1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Ram backed block device driver.
4 *
5 * Copyright (C) 2007 Nick Piggin
6 * Copyright (C) 2007 Novell Inc.
7 *
8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9 * of their respective owners.
10 */
11
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/radix-tree.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25
26 #include <linux/uaccess.h>
27
28 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
29 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
30
31 /*
32 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
33 * the pages containing the block device's contents. A brd page's ->index is
34 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
35 * with, the kernel's pagecache or buffer cache (which sit above our block
36 * device).
37 */
38 struct brd_device {
39 int brd_number;
40
41 struct request_queue *brd_queue;
42 struct gendisk *brd_disk;
43 struct list_head brd_list;
44
45 /*
46 * Backing store of pages and lock to protect it. This is the contents
47 * of the block device.
48 */
49 spinlock_t brd_lock;
50 struct radix_tree_root brd_pages;
51 };
52
53 /*
54 * Look up and return a brd's page for a given sector.
55 */
brd_lookup_page(struct brd_device * brd,sector_t sector)56 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
57 {
58 pgoff_t idx;
59 struct page *page;
60
61 /*
62 * The page lifetime is protected by the fact that we have opened the
63 * device node -- brd pages will never be deleted under us, so we
64 * don't need any further locking or refcounting.
65 *
66 * This is strictly true for the radix-tree nodes as well (ie. we
67 * don't actually need the rcu_read_lock()), however that is not a
68 * documented feature of the radix-tree API so it is better to be
69 * safe here (we don't have total exclusion from radix tree updates
70 * here, only deletes).
71 */
72 rcu_read_lock();
73 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
74 page = radix_tree_lookup(&brd->brd_pages, idx);
75 rcu_read_unlock();
76
77 BUG_ON(page && page->index != idx);
78
79 return page;
80 }
81
82 /*
83 * Look up and return a brd's page for a given sector.
84 * If one does not exist, allocate an empty page, and insert that. Then
85 * return it.
86 */
brd_insert_page(struct brd_device * brd,sector_t sector)87 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
88 {
89 pgoff_t idx;
90 struct page *page;
91 gfp_t gfp_flags;
92
93 page = brd_lookup_page(brd, sector);
94 if (page)
95 return page;
96
97 /*
98 * Must use NOIO because we don't want to recurse back into the
99 * block or filesystem layers from page reclaim.
100 */
101 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
102 page = alloc_page(gfp_flags);
103 if (!page)
104 return NULL;
105
106 if (radix_tree_preload(GFP_NOIO)) {
107 __free_page(page);
108 return NULL;
109 }
110
111 spin_lock(&brd->brd_lock);
112 idx = sector >> PAGE_SECTORS_SHIFT;
113 page->index = idx;
114 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
115 __free_page(page);
116 page = radix_tree_lookup(&brd->brd_pages, idx);
117 BUG_ON(!page);
118 BUG_ON(page->index != idx);
119 }
120 spin_unlock(&brd->brd_lock);
121
122 radix_tree_preload_end();
123
124 return page;
125 }
126
127 /*
128 * Free all backing store pages and radix tree. This must only be called when
129 * there are no other users of the device.
130 */
131 #define FREE_BATCH 16
brd_free_pages(struct brd_device * brd)132 static void brd_free_pages(struct brd_device *brd)
133 {
134 unsigned long pos = 0;
135 struct page *pages[FREE_BATCH];
136 int nr_pages;
137
138 do {
139 int i;
140
141 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
142 (void **)pages, pos, FREE_BATCH);
143
144 for (i = 0; i < nr_pages; i++) {
145 void *ret;
146
147 BUG_ON(pages[i]->index < pos);
148 pos = pages[i]->index;
149 ret = radix_tree_delete(&brd->brd_pages, pos);
150 BUG_ON(!ret || ret != pages[i]);
151 __free_page(pages[i]);
152 }
153
154 pos++;
155
156 /*
157 * It takes 3.4 seconds to remove 80GiB ramdisk.
158 * So, we need cond_resched to avoid stalling the CPU.
159 */
160 cond_resched();
161
162 /*
163 * This assumes radix_tree_gang_lookup always returns as
164 * many pages as possible. If the radix-tree code changes,
165 * so will this have to.
166 */
167 } while (nr_pages == FREE_BATCH);
168 }
169
170 /*
171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
172 */
copy_to_brd_setup(struct brd_device * brd,sector_t sector,size_t n)173 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
174 {
175 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
176 size_t copy;
177
178 copy = min_t(size_t, n, PAGE_SIZE - offset);
179 if (!brd_insert_page(brd, sector))
180 return -ENOSPC;
181 if (copy < n) {
182 sector += copy >> SECTOR_SHIFT;
183 if (!brd_insert_page(brd, sector))
184 return -ENOSPC;
185 }
186 return 0;
187 }
188
189 /*
190 * Copy n bytes from src to the brd starting at sector. Does not sleep.
191 */
copy_to_brd(struct brd_device * brd,const void * src,sector_t sector,size_t n)192 static void copy_to_brd(struct brd_device *brd, const void *src,
193 sector_t sector, size_t n)
194 {
195 struct page *page;
196 void *dst;
197 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
198 size_t copy;
199
200 copy = min_t(size_t, n, PAGE_SIZE - offset);
201 page = brd_lookup_page(brd, sector);
202 BUG_ON(!page);
203
204 dst = kmap_atomic(page);
205 memcpy(dst + offset, src, copy);
206 kunmap_atomic(dst);
207
208 if (copy < n) {
209 src += copy;
210 sector += copy >> SECTOR_SHIFT;
211 copy = n - copy;
212 page = brd_lookup_page(brd, sector);
213 BUG_ON(!page);
214
215 dst = kmap_atomic(page);
216 memcpy(dst, src, copy);
217 kunmap_atomic(dst);
218 }
219 }
220
221 /*
222 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
223 */
copy_from_brd(void * dst,struct brd_device * brd,sector_t sector,size_t n)224 static void copy_from_brd(void *dst, struct brd_device *brd,
225 sector_t sector, size_t n)
226 {
227 struct page *page;
228 void *src;
229 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
230 size_t copy;
231
232 copy = min_t(size_t, n, PAGE_SIZE - offset);
233 page = brd_lookup_page(brd, sector);
234 if (page) {
235 src = kmap_atomic(page);
236 memcpy(dst, src + offset, copy);
237 kunmap_atomic(src);
238 } else
239 memset(dst, 0, copy);
240
241 if (copy < n) {
242 dst += copy;
243 sector += copy >> SECTOR_SHIFT;
244 copy = n - copy;
245 page = brd_lookup_page(brd, sector);
246 if (page) {
247 src = kmap_atomic(page);
248 memcpy(dst, src, copy);
249 kunmap_atomic(src);
250 } else
251 memset(dst, 0, copy);
252 }
253 }
254
255 /*
256 * Process a single bvec of a bio.
257 */
brd_do_bvec(struct brd_device * brd,struct page * page,unsigned int len,unsigned int off,unsigned int op,sector_t sector)258 static int brd_do_bvec(struct brd_device *brd, struct page *page,
259 unsigned int len, unsigned int off, unsigned int op,
260 sector_t sector)
261 {
262 void *mem;
263 int err = 0;
264
265 if (op_is_write(op)) {
266 err = copy_to_brd_setup(brd, sector, len);
267 if (err)
268 goto out;
269 }
270
271 mem = kmap_atomic(page);
272 if (!op_is_write(op)) {
273 copy_from_brd(mem + off, brd, sector, len);
274 flush_dcache_page(page);
275 } else {
276 flush_dcache_page(page);
277 copy_to_brd(brd, mem + off, sector, len);
278 }
279 kunmap_atomic(mem);
280
281 out:
282 return err;
283 }
284
brd_submit_bio(struct bio * bio)285 static blk_qc_t brd_submit_bio(struct bio *bio)
286 {
287 struct brd_device *brd = bio->bi_disk->private_data;
288 struct bio_vec bvec;
289 sector_t sector;
290 struct bvec_iter iter;
291
292 sector = bio->bi_iter.bi_sector;
293 if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
294 goto io_error;
295
296 bio_for_each_segment(bvec, bio, iter) {
297 unsigned int len = bvec.bv_len;
298 int err;
299
300 /* Don't support un-aligned buffer */
301 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
302 (len & (SECTOR_SIZE - 1)));
303
304 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
305 bio_op(bio), sector);
306 if (err)
307 goto io_error;
308 sector += len >> SECTOR_SHIFT;
309 }
310
311 bio_endio(bio);
312 return BLK_QC_T_NONE;
313 io_error:
314 bio_io_error(bio);
315 return BLK_QC_T_NONE;
316 }
317
brd_rw_page(struct block_device * bdev,sector_t sector,struct page * page,unsigned int op)318 static int brd_rw_page(struct block_device *bdev, sector_t sector,
319 struct page *page, unsigned int op)
320 {
321 struct brd_device *brd = bdev->bd_disk->private_data;
322 int err;
323
324 if (PageTransHuge(page))
325 return -ENOTSUPP;
326 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
327 page_endio(page, op_is_write(op), err);
328 return err;
329 }
330
331 static const struct block_device_operations brd_fops = {
332 .owner = THIS_MODULE,
333 .submit_bio = brd_submit_bio,
334 .rw_page = brd_rw_page,
335 };
336
337 /*
338 * And now the modules code and kernel interface.
339 */
340 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
341 module_param(rd_nr, int, 0444);
342 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
343
344 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
345 module_param(rd_size, ulong, 0444);
346 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
347
348 static int max_part = 1;
349 module_param(max_part, int, 0444);
350 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
351
352 MODULE_LICENSE("GPL");
353 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
354 MODULE_ALIAS("rd");
355
356 #ifndef MODULE
357 /* Legacy boot options - nonmodular */
ramdisk_size(char * str)358 static int __init ramdisk_size(char *str)
359 {
360 rd_size = simple_strtol(str, NULL, 0);
361 return 1;
362 }
363 __setup("ramdisk_size=", ramdisk_size);
364 #endif
365
366 /*
367 * The device scheme is derived from loop.c. Keep them in synch where possible
368 * (should share code eventually).
369 */
370 static LIST_HEAD(brd_devices);
371 static DEFINE_MUTEX(brd_devices_mutex);
372
brd_alloc(int i)373 static struct brd_device *brd_alloc(int i)
374 {
375 struct brd_device *brd;
376 struct gendisk *disk;
377
378 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
379 if (!brd)
380 goto out;
381 brd->brd_number = i;
382 spin_lock_init(&brd->brd_lock);
383 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
384
385 brd->brd_queue = blk_alloc_queue(NUMA_NO_NODE);
386 if (!brd->brd_queue)
387 goto out_free_dev;
388
389 /* This is so fdisk will align partitions on 4k, because of
390 * direct_access API needing 4k alignment, returning a PFN
391 * (This is only a problem on very small devices <= 4M,
392 * otherwise fdisk will align on 1M. Regardless this call
393 * is harmless)
394 */
395 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
396 disk = brd->brd_disk = alloc_disk(max_part);
397 if (!disk)
398 goto out_free_queue;
399 disk->major = RAMDISK_MAJOR;
400 disk->first_minor = i * max_part;
401 disk->fops = &brd_fops;
402 disk->private_data = brd;
403 disk->flags = GENHD_FL_EXT_DEVT;
404 sprintf(disk->disk_name, "ram%d", i);
405 set_capacity(disk, rd_size * 2);
406
407 /* Tell the block layer that this is not a rotational device */
408 blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
409 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
410
411 return brd;
412
413 out_free_queue:
414 blk_cleanup_queue(brd->brd_queue);
415 out_free_dev:
416 kfree(brd);
417 out:
418 return NULL;
419 }
420
brd_free(struct brd_device * brd)421 static void brd_free(struct brd_device *brd)
422 {
423 put_disk(brd->brd_disk);
424 blk_cleanup_queue(brd->brd_queue);
425 brd_free_pages(brd);
426 kfree(brd);
427 }
428
brd_init_one(int i,bool * new)429 static struct brd_device *brd_init_one(int i, bool *new)
430 {
431 struct brd_device *brd;
432
433 *new = false;
434 list_for_each_entry(brd, &brd_devices, brd_list) {
435 if (brd->brd_number == i)
436 goto out;
437 }
438
439 brd = brd_alloc(i);
440 if (brd) {
441 brd->brd_disk->queue = brd->brd_queue;
442 add_disk(brd->brd_disk);
443 list_add_tail(&brd->brd_list, &brd_devices);
444 }
445 *new = true;
446 out:
447 return brd;
448 }
449
brd_del_one(struct brd_device * brd)450 static void brd_del_one(struct brd_device *brd)
451 {
452 list_del(&brd->brd_list);
453 del_gendisk(brd->brd_disk);
454 brd_free(brd);
455 }
456
brd_probe(dev_t dev,int * part,void * data)457 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
458 {
459 struct brd_device *brd;
460 struct kobject *kobj;
461 bool new;
462
463 mutex_lock(&brd_devices_mutex);
464 brd = brd_init_one(MINOR(dev) / max_part, &new);
465 kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
466 mutex_unlock(&brd_devices_mutex);
467
468 if (new)
469 *part = 0;
470
471 return kobj;
472 }
473
brd_check_and_reset_par(void)474 static inline void brd_check_and_reset_par(void)
475 {
476 if (unlikely(!max_part))
477 max_part = 1;
478
479 /*
480 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
481 * otherwise, it is possiable to get same dev_t when adding partitions.
482 */
483 if ((1U << MINORBITS) % max_part != 0)
484 max_part = 1UL << fls(max_part);
485
486 if (max_part > DISK_MAX_PARTS) {
487 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
488 DISK_MAX_PARTS, DISK_MAX_PARTS);
489 max_part = DISK_MAX_PARTS;
490 }
491 }
492
brd_init(void)493 static int __init brd_init(void)
494 {
495 struct brd_device *brd, *next;
496 int i;
497
498 /*
499 * brd module now has a feature to instantiate underlying device
500 * structure on-demand, provided that there is an access dev node.
501 *
502 * (1) if rd_nr is specified, create that many upfront. else
503 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
504 * (2) User can further extend brd devices by create dev node themselves
505 * and have kernel automatically instantiate actual device
506 * on-demand. Example:
507 * mknod /path/devnod_name b 1 X # 1 is the rd major
508 * fdisk -l /path/devnod_name
509 * If (X / max_part) was not already created it will be created
510 * dynamically.
511 */
512
513 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
514 return -EIO;
515
516 brd_check_and_reset_par();
517
518 for (i = 0; i < rd_nr; i++) {
519 brd = brd_alloc(i);
520 if (!brd)
521 goto out_free;
522 list_add_tail(&brd->brd_list, &brd_devices);
523 }
524
525 /* point of no return */
526
527 list_for_each_entry(brd, &brd_devices, brd_list) {
528 /*
529 * associate with queue just before adding disk for
530 * avoiding to mess up failure path
531 */
532 brd->brd_disk->queue = brd->brd_queue;
533 add_disk(brd->brd_disk);
534 }
535
536 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
537 THIS_MODULE, brd_probe, NULL, NULL);
538
539 pr_info("brd: module loaded\n");
540 return 0;
541
542 out_free:
543 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
544 list_del(&brd->brd_list);
545 brd_free(brd);
546 }
547 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
548
549 pr_info("brd: module NOT loaded !!!\n");
550 return -ENOMEM;
551 }
552
brd_exit(void)553 static void __exit brd_exit(void)
554 {
555 struct brd_device *brd, *next;
556
557 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
558 brd_del_one(brd);
559
560 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
561 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
562
563 pr_info("brd: module unloaded\n");
564 }
565
566 module_init(brd_init);
567 module_exit(brd_exit);
568
569