1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4 * Shaohua Li <shli@fb.com>
5 */
6 #include <linux/module.h>
7
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13
14 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
15 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
16 #define SECTOR_MASK (PAGE_SECTORS - 1)
17
18 #define FREE_BATCH 16
19
20 #define TICKS_PER_SEC 50ULL
21 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
22
23 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
24 static DECLARE_FAULT_ATTR(null_timeout_attr);
25 static DECLARE_FAULT_ATTR(null_requeue_attr);
26 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
27 #endif
28
mb_per_tick(int mbps)29 static inline u64 mb_per_tick(int mbps)
30 {
31 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
32 }
33
34 /*
35 * Status flags for nullb_device.
36 *
37 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
38 * UP: Device is currently on and visible in userspace.
39 * THROTTLED: Device is being throttled.
40 * CACHE: Device is using a write-back cache.
41 */
42 enum nullb_device_flags {
43 NULLB_DEV_FL_CONFIGURED = 0,
44 NULLB_DEV_FL_UP = 1,
45 NULLB_DEV_FL_THROTTLED = 2,
46 NULLB_DEV_FL_CACHE = 3,
47 };
48
49 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
50 /*
51 * nullb_page is a page in memory for nullb devices.
52 *
53 * @page: The page holding the data.
54 * @bitmap: The bitmap represents which sector in the page has data.
55 * Each bit represents one block size. For example, sector 8
56 * will use the 7th bit
57 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
58 * page is being flushing to storage. FREE means the cache page is freed and
59 * should be skipped from flushing to storage. Please see
60 * null_make_cache_space
61 */
62 struct nullb_page {
63 struct page *page;
64 DECLARE_BITMAP(bitmap, MAP_SZ);
65 };
66 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
67 #define NULLB_PAGE_FREE (MAP_SZ - 2)
68
69 static LIST_HEAD(nullb_list);
70 static struct mutex lock;
71 static int null_major;
72 static DEFINE_IDA(nullb_indexes);
73 static struct blk_mq_tag_set tag_set;
74
75 enum {
76 NULL_IRQ_NONE = 0,
77 NULL_IRQ_SOFTIRQ = 1,
78 NULL_IRQ_TIMER = 2,
79 };
80
81 enum {
82 NULL_Q_BIO = 0,
83 NULL_Q_RQ = 1,
84 NULL_Q_MQ = 2,
85 };
86
87 static int g_no_sched;
88 module_param_named(no_sched, g_no_sched, int, 0444);
89 MODULE_PARM_DESC(no_sched, "No io scheduler");
90
91 static int g_submit_queues = 1;
92 module_param_named(submit_queues, g_submit_queues, int, 0444);
93 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
94
95 static int g_home_node = NUMA_NO_NODE;
96 module_param_named(home_node, g_home_node, int, 0444);
97 MODULE_PARM_DESC(home_node, "Home node for the device");
98
99 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
100 /*
101 * For more details about fault injection, please refer to
102 * Documentation/fault-injection/fault-injection.rst.
103 */
104 static char g_timeout_str[80];
105 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
106 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
107
108 static char g_requeue_str[80];
109 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
110 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
111
112 static char g_init_hctx_str[80];
113 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
114 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
115 #endif
116
117 static int g_queue_mode = NULL_Q_MQ;
118
null_param_store_val(const char * str,int * val,int min,int max)119 static int null_param_store_val(const char *str, int *val, int min, int max)
120 {
121 int ret, new_val;
122
123 ret = kstrtoint(str, 10, &new_val);
124 if (ret)
125 return -EINVAL;
126
127 if (new_val < min || new_val > max)
128 return -EINVAL;
129
130 *val = new_val;
131 return 0;
132 }
133
null_set_queue_mode(const char * str,const struct kernel_param * kp)134 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
135 {
136 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
137 }
138
139 static const struct kernel_param_ops null_queue_mode_param_ops = {
140 .set = null_set_queue_mode,
141 .get = param_get_int,
142 };
143
144 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
145 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
146
147 static int g_gb = 250;
148 module_param_named(gb, g_gb, int, 0444);
149 MODULE_PARM_DESC(gb, "Size in GB");
150
151 static int g_bs = 512;
152 module_param_named(bs, g_bs, int, 0444);
153 MODULE_PARM_DESC(bs, "Block size (in bytes)");
154
155 static unsigned int nr_devices = 1;
156 module_param(nr_devices, uint, 0444);
157 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
158
159 static bool g_blocking;
160 module_param_named(blocking, g_blocking, bool, 0444);
161 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
162
163 static bool shared_tags;
164 module_param(shared_tags, bool, 0444);
165 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
166
167 static bool g_shared_tag_bitmap;
168 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
169 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
170
171 static int g_irqmode = NULL_IRQ_SOFTIRQ;
172
null_set_irqmode(const char * str,const struct kernel_param * kp)173 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
174 {
175 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
176 NULL_IRQ_TIMER);
177 }
178
179 static const struct kernel_param_ops null_irqmode_param_ops = {
180 .set = null_set_irqmode,
181 .get = param_get_int,
182 };
183
184 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
185 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
186
187 static unsigned long g_completion_nsec = 10000;
188 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
189 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
190
191 static int g_hw_queue_depth = 64;
192 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
193 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
194
195 static bool g_use_per_node_hctx;
196 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
197 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
198
199 static bool g_zoned;
200 module_param_named(zoned, g_zoned, bool, S_IRUGO);
201 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
202
203 static unsigned long g_zone_size = 256;
204 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
205 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
206
207 static unsigned long g_zone_capacity;
208 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
209 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
210
211 static unsigned int g_zone_nr_conv;
212 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
213 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
214
215 static unsigned int g_zone_max_open;
216 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
217 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
218
219 static unsigned int g_zone_max_active;
220 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
221 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
222
223 static struct nullb_device *null_alloc_dev(void);
224 static void null_free_dev(struct nullb_device *dev);
225 static void null_del_dev(struct nullb *nullb);
226 static int null_add_dev(struct nullb_device *dev);
227 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
228
to_nullb_device(struct config_item * item)229 static inline struct nullb_device *to_nullb_device(struct config_item *item)
230 {
231 return item ? container_of(item, struct nullb_device, item) : NULL;
232 }
233
nullb_device_uint_attr_show(unsigned int val,char * page)234 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
235 {
236 return snprintf(page, PAGE_SIZE, "%u\n", val);
237 }
238
nullb_device_ulong_attr_show(unsigned long val,char * page)239 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
240 char *page)
241 {
242 return snprintf(page, PAGE_SIZE, "%lu\n", val);
243 }
244
nullb_device_bool_attr_show(bool val,char * page)245 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
246 {
247 return snprintf(page, PAGE_SIZE, "%u\n", val);
248 }
249
nullb_device_uint_attr_store(unsigned int * val,const char * page,size_t count)250 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
251 const char *page, size_t count)
252 {
253 unsigned int tmp;
254 int result;
255
256 result = kstrtouint(page, 0, &tmp);
257 if (result < 0)
258 return result;
259
260 *val = tmp;
261 return count;
262 }
263
nullb_device_ulong_attr_store(unsigned long * val,const char * page,size_t count)264 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
265 const char *page, size_t count)
266 {
267 int result;
268 unsigned long tmp;
269
270 result = kstrtoul(page, 0, &tmp);
271 if (result < 0)
272 return result;
273
274 *val = tmp;
275 return count;
276 }
277
nullb_device_bool_attr_store(bool * val,const char * page,size_t count)278 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
279 size_t count)
280 {
281 bool tmp;
282 int result;
283
284 result = kstrtobool(page, &tmp);
285 if (result < 0)
286 return result;
287
288 *val = tmp;
289 return count;
290 }
291
292 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
293 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \
294 static ssize_t \
295 nullb_device_##NAME##_show(struct config_item *item, char *page) \
296 { \
297 return nullb_device_##TYPE##_attr_show( \
298 to_nullb_device(item)->NAME, page); \
299 } \
300 static ssize_t \
301 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
302 size_t count) \
303 { \
304 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
305 struct nullb_device *dev = to_nullb_device(item); \
306 TYPE new_value = 0; \
307 int ret; \
308 \
309 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
310 if (ret < 0) \
311 return ret; \
312 if (apply_fn) \
313 ret = apply_fn(dev, new_value); \
314 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \
315 ret = -EBUSY; \
316 if (ret < 0) \
317 return ret; \
318 dev->NAME = new_value; \
319 return count; \
320 } \
321 CONFIGFS_ATTR(nullb_device_, NAME);
322
nullb_apply_submit_queues(struct nullb_device * dev,unsigned int submit_queues)323 static int nullb_apply_submit_queues(struct nullb_device *dev,
324 unsigned int submit_queues)
325 {
326 struct nullb *nullb = dev->nullb;
327 struct blk_mq_tag_set *set;
328
329 if (!nullb)
330 return 0;
331
332 /*
333 * Make sure that null_init_hctx() does not access nullb->queues[] past
334 * the end of that array.
335 */
336 if (submit_queues > nr_cpu_ids)
337 return -EINVAL;
338 set = nullb->tag_set;
339 blk_mq_update_nr_hw_queues(set, submit_queues);
340 return set->nr_hw_queues == submit_queues ? 0 : -ENOMEM;
341 }
342
343 NULLB_DEVICE_ATTR(size, ulong, NULL);
344 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
345 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
346 NULLB_DEVICE_ATTR(home_node, uint, NULL);
347 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
348 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
349 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
350 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
351 NULLB_DEVICE_ATTR(index, uint, NULL);
352 NULLB_DEVICE_ATTR(blocking, bool, NULL);
353 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
354 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
355 NULLB_DEVICE_ATTR(discard, bool, NULL);
356 NULLB_DEVICE_ATTR(mbps, uint, NULL);
357 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
358 NULLB_DEVICE_ATTR(zoned, bool, NULL);
359 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
360 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
361 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
362 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
363 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
364
nullb_device_power_show(struct config_item * item,char * page)365 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
366 {
367 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
368 }
369
nullb_device_power_store(struct config_item * item,const char * page,size_t count)370 static ssize_t nullb_device_power_store(struct config_item *item,
371 const char *page, size_t count)
372 {
373 struct nullb_device *dev = to_nullb_device(item);
374 bool newp = false;
375 ssize_t ret;
376
377 ret = nullb_device_bool_attr_store(&newp, page, count);
378 if (ret < 0)
379 return ret;
380
381 if (!dev->power && newp) {
382 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
383 return count;
384 if (null_add_dev(dev)) {
385 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
386 return -ENOMEM;
387 }
388
389 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
390 dev->power = newp;
391 } else if (dev->power && !newp) {
392 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
393 mutex_lock(&lock);
394 dev->power = newp;
395 null_del_dev(dev->nullb);
396 mutex_unlock(&lock);
397 }
398 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
399 }
400
401 return count;
402 }
403
404 CONFIGFS_ATTR(nullb_device_, power);
405
nullb_device_badblocks_show(struct config_item * item,char * page)406 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
407 {
408 struct nullb_device *t_dev = to_nullb_device(item);
409
410 return badblocks_show(&t_dev->badblocks, page, 0);
411 }
412
nullb_device_badblocks_store(struct config_item * item,const char * page,size_t count)413 static ssize_t nullb_device_badblocks_store(struct config_item *item,
414 const char *page, size_t count)
415 {
416 struct nullb_device *t_dev = to_nullb_device(item);
417 char *orig, *buf, *tmp;
418 u64 start, end;
419 int ret;
420
421 orig = kstrndup(page, count, GFP_KERNEL);
422 if (!orig)
423 return -ENOMEM;
424
425 buf = strstrip(orig);
426
427 ret = -EINVAL;
428 if (buf[0] != '+' && buf[0] != '-')
429 goto out;
430 tmp = strchr(&buf[1], '-');
431 if (!tmp)
432 goto out;
433 *tmp = '\0';
434 ret = kstrtoull(buf + 1, 0, &start);
435 if (ret)
436 goto out;
437 ret = kstrtoull(tmp + 1, 0, &end);
438 if (ret)
439 goto out;
440 ret = -EINVAL;
441 if (start > end)
442 goto out;
443 /* enable badblocks */
444 cmpxchg(&t_dev->badblocks.shift, -1, 0);
445 if (buf[0] == '+')
446 ret = badblocks_set(&t_dev->badblocks, start,
447 end - start + 1, 1);
448 else
449 ret = badblocks_clear(&t_dev->badblocks, start,
450 end - start + 1);
451 if (ret == 0)
452 ret = count;
453 out:
454 kfree(orig);
455 return ret;
456 }
457 CONFIGFS_ATTR(nullb_device_, badblocks);
458
459 static struct configfs_attribute *nullb_device_attrs[] = {
460 &nullb_device_attr_size,
461 &nullb_device_attr_completion_nsec,
462 &nullb_device_attr_submit_queues,
463 &nullb_device_attr_home_node,
464 &nullb_device_attr_queue_mode,
465 &nullb_device_attr_blocksize,
466 &nullb_device_attr_irqmode,
467 &nullb_device_attr_hw_queue_depth,
468 &nullb_device_attr_index,
469 &nullb_device_attr_blocking,
470 &nullb_device_attr_use_per_node_hctx,
471 &nullb_device_attr_power,
472 &nullb_device_attr_memory_backed,
473 &nullb_device_attr_discard,
474 &nullb_device_attr_mbps,
475 &nullb_device_attr_cache_size,
476 &nullb_device_attr_badblocks,
477 &nullb_device_attr_zoned,
478 &nullb_device_attr_zone_size,
479 &nullb_device_attr_zone_capacity,
480 &nullb_device_attr_zone_nr_conv,
481 &nullb_device_attr_zone_max_open,
482 &nullb_device_attr_zone_max_active,
483 NULL,
484 };
485
nullb_device_release(struct config_item * item)486 static void nullb_device_release(struct config_item *item)
487 {
488 struct nullb_device *dev = to_nullb_device(item);
489
490 null_free_device_storage(dev, false);
491 null_free_dev(dev);
492 }
493
494 static struct configfs_item_operations nullb_device_ops = {
495 .release = nullb_device_release,
496 };
497
498 static const struct config_item_type nullb_device_type = {
499 .ct_item_ops = &nullb_device_ops,
500 .ct_attrs = nullb_device_attrs,
501 .ct_owner = THIS_MODULE,
502 };
503
504 static struct
nullb_group_make_item(struct config_group * group,const char * name)505 config_item *nullb_group_make_item(struct config_group *group, const char *name)
506 {
507 struct nullb_device *dev;
508
509 dev = null_alloc_dev();
510 if (!dev)
511 return ERR_PTR(-ENOMEM);
512
513 config_item_init_type_name(&dev->item, name, &nullb_device_type);
514
515 return &dev->item;
516 }
517
518 static void
nullb_group_drop_item(struct config_group * group,struct config_item * item)519 nullb_group_drop_item(struct config_group *group, struct config_item *item)
520 {
521 struct nullb_device *dev = to_nullb_device(item);
522
523 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
524 mutex_lock(&lock);
525 dev->power = false;
526 null_del_dev(dev->nullb);
527 mutex_unlock(&lock);
528 }
529
530 config_item_put(item);
531 }
532
memb_group_features_show(struct config_item * item,char * page)533 static ssize_t memb_group_features_show(struct config_item *item, char *page)
534 {
535 return snprintf(page, PAGE_SIZE,
536 "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active\n");
537 }
538
539 CONFIGFS_ATTR_RO(memb_group_, features);
540
541 static struct configfs_attribute *nullb_group_attrs[] = {
542 &memb_group_attr_features,
543 NULL,
544 };
545
546 static struct configfs_group_operations nullb_group_ops = {
547 .make_item = nullb_group_make_item,
548 .drop_item = nullb_group_drop_item,
549 };
550
551 static const struct config_item_type nullb_group_type = {
552 .ct_group_ops = &nullb_group_ops,
553 .ct_attrs = nullb_group_attrs,
554 .ct_owner = THIS_MODULE,
555 };
556
557 static struct configfs_subsystem nullb_subsys = {
558 .su_group = {
559 .cg_item = {
560 .ci_namebuf = "nullb",
561 .ci_type = &nullb_group_type,
562 },
563 },
564 };
565
null_cache_active(struct nullb * nullb)566 static inline int null_cache_active(struct nullb *nullb)
567 {
568 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
569 }
570
null_alloc_dev(void)571 static struct nullb_device *null_alloc_dev(void)
572 {
573 struct nullb_device *dev;
574
575 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
576 if (!dev)
577 return NULL;
578 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
579 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
580 if (badblocks_init(&dev->badblocks, 0)) {
581 kfree(dev);
582 return NULL;
583 }
584
585 dev->size = g_gb * 1024;
586 dev->completion_nsec = g_completion_nsec;
587 dev->submit_queues = g_submit_queues;
588 dev->home_node = g_home_node;
589 dev->queue_mode = g_queue_mode;
590 dev->blocksize = g_bs;
591 dev->irqmode = g_irqmode;
592 dev->hw_queue_depth = g_hw_queue_depth;
593 dev->blocking = g_blocking;
594 dev->use_per_node_hctx = g_use_per_node_hctx;
595 dev->zoned = g_zoned;
596 dev->zone_size = g_zone_size;
597 dev->zone_capacity = g_zone_capacity;
598 dev->zone_nr_conv = g_zone_nr_conv;
599 dev->zone_max_open = g_zone_max_open;
600 dev->zone_max_active = g_zone_max_active;
601 return dev;
602 }
603
null_free_dev(struct nullb_device * dev)604 static void null_free_dev(struct nullb_device *dev)
605 {
606 if (!dev)
607 return;
608
609 null_free_zoned_dev(dev);
610 badblocks_exit(&dev->badblocks);
611 kfree(dev);
612 }
613
put_tag(struct nullb_queue * nq,unsigned int tag)614 static void put_tag(struct nullb_queue *nq, unsigned int tag)
615 {
616 clear_bit_unlock(tag, nq->tag_map);
617
618 if (waitqueue_active(&nq->wait))
619 wake_up(&nq->wait);
620 }
621
get_tag(struct nullb_queue * nq)622 static unsigned int get_tag(struct nullb_queue *nq)
623 {
624 unsigned int tag;
625
626 do {
627 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
628 if (tag >= nq->queue_depth)
629 return -1U;
630 } while (test_and_set_bit_lock(tag, nq->tag_map));
631
632 return tag;
633 }
634
free_cmd(struct nullb_cmd * cmd)635 static void free_cmd(struct nullb_cmd *cmd)
636 {
637 put_tag(cmd->nq, cmd->tag);
638 }
639
640 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
641
__alloc_cmd(struct nullb_queue * nq)642 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
643 {
644 struct nullb_cmd *cmd;
645 unsigned int tag;
646
647 tag = get_tag(nq);
648 if (tag != -1U) {
649 cmd = &nq->cmds[tag];
650 cmd->tag = tag;
651 cmd->error = BLK_STS_OK;
652 cmd->nq = nq;
653 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
654 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
655 HRTIMER_MODE_REL);
656 cmd->timer.function = null_cmd_timer_expired;
657 }
658 return cmd;
659 }
660
661 return NULL;
662 }
663
alloc_cmd(struct nullb_queue * nq,int can_wait)664 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
665 {
666 struct nullb_cmd *cmd;
667 DEFINE_WAIT(wait);
668
669 cmd = __alloc_cmd(nq);
670 if (cmd || !can_wait)
671 return cmd;
672
673 do {
674 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
675 cmd = __alloc_cmd(nq);
676 if (cmd)
677 break;
678
679 io_schedule();
680 } while (1);
681
682 finish_wait(&nq->wait, &wait);
683 return cmd;
684 }
685
end_cmd(struct nullb_cmd * cmd)686 static void end_cmd(struct nullb_cmd *cmd)
687 {
688 int queue_mode = cmd->nq->dev->queue_mode;
689
690 switch (queue_mode) {
691 case NULL_Q_MQ:
692 blk_mq_end_request(cmd->rq, cmd->error);
693 return;
694 case NULL_Q_BIO:
695 cmd->bio->bi_status = cmd->error;
696 bio_endio(cmd->bio);
697 break;
698 }
699
700 free_cmd(cmd);
701 }
702
null_cmd_timer_expired(struct hrtimer * timer)703 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
704 {
705 end_cmd(container_of(timer, struct nullb_cmd, timer));
706
707 return HRTIMER_NORESTART;
708 }
709
null_cmd_end_timer(struct nullb_cmd * cmd)710 static void null_cmd_end_timer(struct nullb_cmd *cmd)
711 {
712 ktime_t kt = cmd->nq->dev->completion_nsec;
713
714 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
715 }
716
null_complete_rq(struct request * rq)717 static void null_complete_rq(struct request *rq)
718 {
719 end_cmd(blk_mq_rq_to_pdu(rq));
720 }
721
null_alloc_page(gfp_t gfp_flags)722 static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
723 {
724 struct nullb_page *t_page;
725
726 t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
727 if (!t_page)
728 goto out;
729
730 t_page->page = alloc_pages(gfp_flags, 0);
731 if (!t_page->page)
732 goto out_freepage;
733
734 memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
735 return t_page;
736 out_freepage:
737 kfree(t_page);
738 out:
739 return NULL;
740 }
741
null_free_page(struct nullb_page * t_page)742 static void null_free_page(struct nullb_page *t_page)
743 {
744 __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
745 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
746 return;
747 __free_page(t_page->page);
748 kfree(t_page);
749 }
750
null_page_empty(struct nullb_page * page)751 static bool null_page_empty(struct nullb_page *page)
752 {
753 int size = MAP_SZ - 2;
754
755 return find_first_bit(page->bitmap, size) == size;
756 }
757
null_free_sector(struct nullb * nullb,sector_t sector,bool is_cache)758 static void null_free_sector(struct nullb *nullb, sector_t sector,
759 bool is_cache)
760 {
761 unsigned int sector_bit;
762 u64 idx;
763 struct nullb_page *t_page, *ret;
764 struct radix_tree_root *root;
765
766 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
767 idx = sector >> PAGE_SECTORS_SHIFT;
768 sector_bit = (sector & SECTOR_MASK);
769
770 t_page = radix_tree_lookup(root, idx);
771 if (t_page) {
772 __clear_bit(sector_bit, t_page->bitmap);
773
774 if (null_page_empty(t_page)) {
775 ret = radix_tree_delete_item(root, idx, t_page);
776 WARN_ON(ret != t_page);
777 null_free_page(ret);
778 if (is_cache)
779 nullb->dev->curr_cache -= PAGE_SIZE;
780 }
781 }
782 }
783
null_radix_tree_insert(struct nullb * nullb,u64 idx,struct nullb_page * t_page,bool is_cache)784 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
785 struct nullb_page *t_page, bool is_cache)
786 {
787 struct radix_tree_root *root;
788
789 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
790
791 if (radix_tree_insert(root, idx, t_page)) {
792 null_free_page(t_page);
793 t_page = radix_tree_lookup(root, idx);
794 WARN_ON(!t_page || t_page->page->index != idx);
795 } else if (is_cache)
796 nullb->dev->curr_cache += PAGE_SIZE;
797
798 return t_page;
799 }
800
null_free_device_storage(struct nullb_device * dev,bool is_cache)801 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
802 {
803 unsigned long pos = 0;
804 int nr_pages;
805 struct nullb_page *ret, *t_pages[FREE_BATCH];
806 struct radix_tree_root *root;
807
808 root = is_cache ? &dev->cache : &dev->data;
809
810 do {
811 int i;
812
813 nr_pages = radix_tree_gang_lookup(root,
814 (void **)t_pages, pos, FREE_BATCH);
815
816 for (i = 0; i < nr_pages; i++) {
817 pos = t_pages[i]->page->index;
818 ret = radix_tree_delete_item(root, pos, t_pages[i]);
819 WARN_ON(ret != t_pages[i]);
820 null_free_page(ret);
821 }
822
823 pos++;
824 } while (nr_pages == FREE_BATCH);
825
826 if (is_cache)
827 dev->curr_cache = 0;
828 }
829
__null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool is_cache)830 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
831 sector_t sector, bool for_write, bool is_cache)
832 {
833 unsigned int sector_bit;
834 u64 idx;
835 struct nullb_page *t_page;
836 struct radix_tree_root *root;
837
838 idx = sector >> PAGE_SECTORS_SHIFT;
839 sector_bit = (sector & SECTOR_MASK);
840
841 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
842 t_page = radix_tree_lookup(root, idx);
843 WARN_ON(t_page && t_page->page->index != idx);
844
845 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
846 return t_page;
847
848 return NULL;
849 }
850
null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool ignore_cache)851 static struct nullb_page *null_lookup_page(struct nullb *nullb,
852 sector_t sector, bool for_write, bool ignore_cache)
853 {
854 struct nullb_page *page = NULL;
855
856 if (!ignore_cache)
857 page = __null_lookup_page(nullb, sector, for_write, true);
858 if (page)
859 return page;
860 return __null_lookup_page(nullb, sector, for_write, false);
861 }
862
null_insert_page(struct nullb * nullb,sector_t sector,bool ignore_cache)863 static struct nullb_page *null_insert_page(struct nullb *nullb,
864 sector_t sector, bool ignore_cache)
865 __releases(&nullb->lock)
866 __acquires(&nullb->lock)
867 {
868 u64 idx;
869 struct nullb_page *t_page;
870
871 t_page = null_lookup_page(nullb, sector, true, ignore_cache);
872 if (t_page)
873 return t_page;
874
875 spin_unlock_irq(&nullb->lock);
876
877 t_page = null_alloc_page(GFP_NOIO);
878 if (!t_page)
879 goto out_lock;
880
881 if (radix_tree_preload(GFP_NOIO))
882 goto out_freepage;
883
884 spin_lock_irq(&nullb->lock);
885 idx = sector >> PAGE_SECTORS_SHIFT;
886 t_page->page->index = idx;
887 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
888 radix_tree_preload_end();
889
890 return t_page;
891 out_freepage:
892 null_free_page(t_page);
893 out_lock:
894 spin_lock_irq(&nullb->lock);
895 return null_lookup_page(nullb, sector, true, ignore_cache);
896 }
897
null_flush_cache_page(struct nullb * nullb,struct nullb_page * c_page)898 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
899 {
900 int i;
901 unsigned int offset;
902 u64 idx;
903 struct nullb_page *t_page, *ret;
904 void *dst, *src;
905
906 idx = c_page->page->index;
907
908 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
909
910 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
911 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
912 null_free_page(c_page);
913 if (t_page && null_page_empty(t_page)) {
914 ret = radix_tree_delete_item(&nullb->dev->data,
915 idx, t_page);
916 null_free_page(t_page);
917 }
918 return 0;
919 }
920
921 if (!t_page)
922 return -ENOMEM;
923
924 src = kmap_atomic(c_page->page);
925 dst = kmap_atomic(t_page->page);
926
927 for (i = 0; i < PAGE_SECTORS;
928 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
929 if (test_bit(i, c_page->bitmap)) {
930 offset = (i << SECTOR_SHIFT);
931 memcpy(dst + offset, src + offset,
932 nullb->dev->blocksize);
933 __set_bit(i, t_page->bitmap);
934 }
935 }
936
937 kunmap_atomic(dst);
938 kunmap_atomic(src);
939
940 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
941 null_free_page(ret);
942 nullb->dev->curr_cache -= PAGE_SIZE;
943
944 return 0;
945 }
946
null_make_cache_space(struct nullb * nullb,unsigned long n)947 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
948 {
949 int i, err, nr_pages;
950 struct nullb_page *c_pages[FREE_BATCH];
951 unsigned long flushed = 0, one_round;
952
953 again:
954 if ((nullb->dev->cache_size * 1024 * 1024) >
955 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
956 return 0;
957
958 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
959 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
960 /*
961 * nullb_flush_cache_page could unlock before using the c_pages. To
962 * avoid race, we don't allow page free
963 */
964 for (i = 0; i < nr_pages; i++) {
965 nullb->cache_flush_pos = c_pages[i]->page->index;
966 /*
967 * We found the page which is being flushed to disk by other
968 * threads
969 */
970 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
971 c_pages[i] = NULL;
972 else
973 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
974 }
975
976 one_round = 0;
977 for (i = 0; i < nr_pages; i++) {
978 if (c_pages[i] == NULL)
979 continue;
980 err = null_flush_cache_page(nullb, c_pages[i]);
981 if (err)
982 return err;
983 one_round++;
984 }
985 flushed += one_round << PAGE_SHIFT;
986
987 if (n > flushed) {
988 if (nr_pages == 0)
989 nullb->cache_flush_pos = 0;
990 if (one_round == 0) {
991 /* give other threads a chance */
992 spin_unlock_irq(&nullb->lock);
993 spin_lock_irq(&nullb->lock);
994 }
995 goto again;
996 }
997 return 0;
998 }
999
copy_to_nullb(struct nullb * nullb,struct page * source,unsigned int off,sector_t sector,size_t n,bool is_fua)1000 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1001 unsigned int off, sector_t sector, size_t n, bool is_fua)
1002 {
1003 size_t temp, count = 0;
1004 unsigned int offset;
1005 struct nullb_page *t_page;
1006 void *dst, *src;
1007
1008 while (count < n) {
1009 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1010
1011 if (null_cache_active(nullb) && !is_fua)
1012 null_make_cache_space(nullb, PAGE_SIZE);
1013
1014 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1015 t_page = null_insert_page(nullb, sector,
1016 !null_cache_active(nullb) || is_fua);
1017 if (!t_page)
1018 return -ENOSPC;
1019
1020 src = kmap_atomic(source);
1021 dst = kmap_atomic(t_page->page);
1022 memcpy(dst + offset, src + off + count, temp);
1023 kunmap_atomic(dst);
1024 kunmap_atomic(src);
1025
1026 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1027
1028 if (is_fua)
1029 null_free_sector(nullb, sector, true);
1030
1031 count += temp;
1032 sector += temp >> SECTOR_SHIFT;
1033 }
1034 return 0;
1035 }
1036
copy_from_nullb(struct nullb * nullb,struct page * dest,unsigned int off,sector_t sector,size_t n)1037 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1038 unsigned int off, sector_t sector, size_t n)
1039 {
1040 size_t temp, count = 0;
1041 unsigned int offset;
1042 struct nullb_page *t_page;
1043 void *dst, *src;
1044
1045 while (count < n) {
1046 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1047
1048 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1049 t_page = null_lookup_page(nullb, sector, false,
1050 !null_cache_active(nullb));
1051
1052 dst = kmap_atomic(dest);
1053 if (!t_page) {
1054 memset(dst + off + count, 0, temp);
1055 goto next;
1056 }
1057 src = kmap_atomic(t_page->page);
1058 memcpy(dst + off + count, src + offset, temp);
1059 kunmap_atomic(src);
1060 next:
1061 kunmap_atomic(dst);
1062
1063 count += temp;
1064 sector += temp >> SECTOR_SHIFT;
1065 }
1066 return 0;
1067 }
1068
nullb_fill_pattern(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off)1069 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1070 unsigned int len, unsigned int off)
1071 {
1072 void *dst;
1073
1074 dst = kmap_atomic(page);
1075 memset(dst + off, 0xFF, len);
1076 kunmap_atomic(dst);
1077 }
1078
null_handle_discard(struct nullb * nullb,sector_t sector,size_t n)1079 static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
1080 {
1081 size_t temp;
1082
1083 spin_lock_irq(&nullb->lock);
1084 while (n > 0) {
1085 temp = min_t(size_t, n, nullb->dev->blocksize);
1086 null_free_sector(nullb, sector, false);
1087 if (null_cache_active(nullb))
1088 null_free_sector(nullb, sector, true);
1089 sector += temp >> SECTOR_SHIFT;
1090 n -= temp;
1091 }
1092 spin_unlock_irq(&nullb->lock);
1093 }
1094
null_handle_flush(struct nullb * nullb)1095 static int null_handle_flush(struct nullb *nullb)
1096 {
1097 int err;
1098
1099 if (!null_cache_active(nullb))
1100 return 0;
1101
1102 spin_lock_irq(&nullb->lock);
1103 while (true) {
1104 err = null_make_cache_space(nullb,
1105 nullb->dev->cache_size * 1024 * 1024);
1106 if (err || nullb->dev->curr_cache == 0)
1107 break;
1108 }
1109
1110 WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1111 spin_unlock_irq(&nullb->lock);
1112 return err;
1113 }
1114
null_transfer(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off,bool is_write,sector_t sector,bool is_fua)1115 static int null_transfer(struct nullb *nullb, struct page *page,
1116 unsigned int len, unsigned int off, bool is_write, sector_t sector,
1117 bool is_fua)
1118 {
1119 struct nullb_device *dev = nullb->dev;
1120 unsigned int valid_len = len;
1121 int err = 0;
1122
1123 if (!is_write) {
1124 if (dev->zoned)
1125 valid_len = null_zone_valid_read_len(nullb,
1126 sector, len);
1127
1128 if (valid_len) {
1129 err = copy_from_nullb(nullb, page, off,
1130 sector, valid_len);
1131 off += valid_len;
1132 len -= valid_len;
1133 }
1134
1135 if (len)
1136 nullb_fill_pattern(nullb, page, len, off);
1137 flush_dcache_page(page);
1138 } else {
1139 flush_dcache_page(page);
1140 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1141 }
1142
1143 return err;
1144 }
1145
null_handle_rq(struct nullb_cmd * cmd)1146 static int null_handle_rq(struct nullb_cmd *cmd)
1147 {
1148 struct request *rq = cmd->rq;
1149 struct nullb *nullb = cmd->nq->dev->nullb;
1150 int err;
1151 unsigned int len;
1152 sector_t sector;
1153 struct req_iterator iter;
1154 struct bio_vec bvec;
1155
1156 sector = blk_rq_pos(rq);
1157
1158 if (req_op(rq) == REQ_OP_DISCARD) {
1159 null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1160 return 0;
1161 }
1162
1163 spin_lock_irq(&nullb->lock);
1164 rq_for_each_segment(bvec, rq, iter) {
1165 len = bvec.bv_len;
1166 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1167 op_is_write(req_op(rq)), sector,
1168 rq->cmd_flags & REQ_FUA);
1169 if (err) {
1170 spin_unlock_irq(&nullb->lock);
1171 return err;
1172 }
1173 sector += len >> SECTOR_SHIFT;
1174 }
1175 spin_unlock_irq(&nullb->lock);
1176
1177 return 0;
1178 }
1179
null_handle_bio(struct nullb_cmd * cmd)1180 static int null_handle_bio(struct nullb_cmd *cmd)
1181 {
1182 struct bio *bio = cmd->bio;
1183 struct nullb *nullb = cmd->nq->dev->nullb;
1184 int err;
1185 unsigned int len;
1186 sector_t sector;
1187 struct bio_vec bvec;
1188 struct bvec_iter iter;
1189
1190 sector = bio->bi_iter.bi_sector;
1191
1192 if (bio_op(bio) == REQ_OP_DISCARD) {
1193 null_handle_discard(nullb, sector,
1194 bio_sectors(bio) << SECTOR_SHIFT);
1195 return 0;
1196 }
1197
1198 spin_lock_irq(&nullb->lock);
1199 bio_for_each_segment(bvec, bio, iter) {
1200 len = bvec.bv_len;
1201 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1202 op_is_write(bio_op(bio)), sector,
1203 bio->bi_opf & REQ_FUA);
1204 if (err) {
1205 spin_unlock_irq(&nullb->lock);
1206 return err;
1207 }
1208 sector += len >> SECTOR_SHIFT;
1209 }
1210 spin_unlock_irq(&nullb->lock);
1211 return 0;
1212 }
1213
null_stop_queue(struct nullb * nullb)1214 static void null_stop_queue(struct nullb *nullb)
1215 {
1216 struct request_queue *q = nullb->q;
1217
1218 if (nullb->dev->queue_mode == NULL_Q_MQ)
1219 blk_mq_stop_hw_queues(q);
1220 }
1221
null_restart_queue_async(struct nullb * nullb)1222 static void null_restart_queue_async(struct nullb *nullb)
1223 {
1224 struct request_queue *q = nullb->q;
1225
1226 if (nullb->dev->queue_mode == NULL_Q_MQ)
1227 blk_mq_start_stopped_hw_queues(q, true);
1228 }
1229
null_handle_throttled(struct nullb_cmd * cmd)1230 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1231 {
1232 struct nullb_device *dev = cmd->nq->dev;
1233 struct nullb *nullb = dev->nullb;
1234 blk_status_t sts = BLK_STS_OK;
1235 struct request *rq = cmd->rq;
1236
1237 if (!hrtimer_active(&nullb->bw_timer))
1238 hrtimer_restart(&nullb->bw_timer);
1239
1240 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1241 null_stop_queue(nullb);
1242 /* race with timer */
1243 if (atomic_long_read(&nullb->cur_bytes) > 0)
1244 null_restart_queue_async(nullb);
1245 /* requeue request */
1246 sts = BLK_STS_DEV_RESOURCE;
1247 }
1248 return sts;
1249 }
1250
null_handle_badblocks(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors)1251 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1252 sector_t sector,
1253 sector_t nr_sectors)
1254 {
1255 struct badblocks *bb = &cmd->nq->dev->badblocks;
1256 sector_t first_bad;
1257 int bad_sectors;
1258
1259 if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1260 return BLK_STS_IOERR;
1261
1262 return BLK_STS_OK;
1263 }
1264
null_handle_memory_backed(struct nullb_cmd * cmd,enum req_opf op)1265 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1266 enum req_opf op)
1267 {
1268 struct nullb_device *dev = cmd->nq->dev;
1269 int err;
1270
1271 if (dev->queue_mode == NULL_Q_BIO)
1272 err = null_handle_bio(cmd);
1273 else
1274 err = null_handle_rq(cmd);
1275
1276 return errno_to_blk_status(err);
1277 }
1278
nullb_zero_read_cmd_buffer(struct nullb_cmd * cmd)1279 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1280 {
1281 struct nullb_device *dev = cmd->nq->dev;
1282 struct bio *bio;
1283
1284 if (dev->memory_backed)
1285 return;
1286
1287 if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1288 zero_fill_bio(cmd->bio);
1289 } else if (req_op(cmd->rq) == REQ_OP_READ) {
1290 __rq_for_each_bio(bio, cmd->rq)
1291 zero_fill_bio(bio);
1292 }
1293 }
1294
nullb_complete_cmd(struct nullb_cmd * cmd)1295 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1296 {
1297 /*
1298 * Since root privileges are required to configure the null_blk
1299 * driver, it is fine that this driver does not initialize the
1300 * data buffers of read commands. Zero-initialize these buffers
1301 * anyway if KMSAN is enabled to prevent that KMSAN complains
1302 * about null_blk not initializing read data buffers.
1303 */
1304 if (IS_ENABLED(CONFIG_KMSAN))
1305 nullb_zero_read_cmd_buffer(cmd);
1306
1307 /* Complete IO by inline, softirq or timer */
1308 switch (cmd->nq->dev->irqmode) {
1309 case NULL_IRQ_SOFTIRQ:
1310 switch (cmd->nq->dev->queue_mode) {
1311 case NULL_Q_MQ:
1312 if (likely(!blk_should_fake_timeout(cmd->rq->q)))
1313 blk_mq_complete_request(cmd->rq);
1314 break;
1315 case NULL_Q_BIO:
1316 /*
1317 * XXX: no proper submitting cpu information available.
1318 */
1319 end_cmd(cmd);
1320 break;
1321 }
1322 break;
1323 case NULL_IRQ_NONE:
1324 end_cmd(cmd);
1325 break;
1326 case NULL_IRQ_TIMER:
1327 null_cmd_end_timer(cmd);
1328 break;
1329 }
1330 }
1331
null_process_cmd(struct nullb_cmd * cmd,enum req_opf op,sector_t sector,unsigned int nr_sectors)1332 blk_status_t null_process_cmd(struct nullb_cmd *cmd,
1333 enum req_opf op, sector_t sector,
1334 unsigned int nr_sectors)
1335 {
1336 struct nullb_device *dev = cmd->nq->dev;
1337 blk_status_t ret;
1338
1339 if (dev->badblocks.shift != -1) {
1340 ret = null_handle_badblocks(cmd, sector, nr_sectors);
1341 if (ret != BLK_STS_OK)
1342 return ret;
1343 }
1344
1345 if (dev->memory_backed)
1346 return null_handle_memory_backed(cmd, op);
1347
1348 return BLK_STS_OK;
1349 }
1350
null_handle_cmd(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors,enum req_opf op)1351 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1352 sector_t nr_sectors, enum req_opf op)
1353 {
1354 struct nullb_device *dev = cmd->nq->dev;
1355 struct nullb *nullb = dev->nullb;
1356 blk_status_t sts;
1357
1358 if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1359 sts = null_handle_throttled(cmd);
1360 if (sts != BLK_STS_OK)
1361 return sts;
1362 }
1363
1364 if (op == REQ_OP_FLUSH) {
1365 cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1366 goto out;
1367 }
1368
1369 if (dev->zoned)
1370 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1371 else
1372 sts = null_process_cmd(cmd, op, sector, nr_sectors);
1373
1374 /* Do not overwrite errors (e.g. timeout errors) */
1375 if (cmd->error == BLK_STS_OK)
1376 cmd->error = sts;
1377
1378 out:
1379 nullb_complete_cmd(cmd);
1380 return BLK_STS_OK;
1381 }
1382
nullb_bwtimer_fn(struct hrtimer * timer)1383 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1384 {
1385 struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1386 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1387 unsigned int mbps = nullb->dev->mbps;
1388
1389 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1390 return HRTIMER_NORESTART;
1391
1392 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1393 null_restart_queue_async(nullb);
1394
1395 hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1396
1397 return HRTIMER_RESTART;
1398 }
1399
nullb_setup_bwtimer(struct nullb * nullb)1400 static void nullb_setup_bwtimer(struct nullb *nullb)
1401 {
1402 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1403
1404 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1405 nullb->bw_timer.function = nullb_bwtimer_fn;
1406 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1407 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1408 }
1409
nullb_to_queue(struct nullb * nullb)1410 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1411 {
1412 int index = 0;
1413
1414 if (nullb->nr_queues != 1)
1415 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1416
1417 return &nullb->queues[index];
1418 }
1419
null_submit_bio(struct bio * bio)1420 static blk_qc_t null_submit_bio(struct bio *bio)
1421 {
1422 sector_t sector = bio->bi_iter.bi_sector;
1423 sector_t nr_sectors = bio_sectors(bio);
1424 struct nullb *nullb = bio->bi_disk->private_data;
1425 struct nullb_queue *nq = nullb_to_queue(nullb);
1426 struct nullb_cmd *cmd;
1427
1428 cmd = alloc_cmd(nq, 1);
1429 cmd->bio = bio;
1430
1431 null_handle_cmd(cmd, sector, nr_sectors, bio_op(bio));
1432 return BLK_QC_T_NONE;
1433 }
1434
should_timeout_request(struct request * rq)1435 static bool should_timeout_request(struct request *rq)
1436 {
1437 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1438 if (g_timeout_str[0])
1439 return should_fail(&null_timeout_attr, 1);
1440 #endif
1441 return false;
1442 }
1443
should_requeue_request(struct request * rq)1444 static bool should_requeue_request(struct request *rq)
1445 {
1446 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1447 if (g_requeue_str[0])
1448 return should_fail(&null_requeue_attr, 1);
1449 #endif
1450 return false;
1451 }
1452
null_timeout_rq(struct request * rq,bool res)1453 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1454 {
1455 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1456
1457 pr_info("rq %p timed out\n", rq);
1458
1459 /*
1460 * If the device is marked as blocking (i.e. memory backed or zoned
1461 * device), the submission path may be blocked waiting for resources
1462 * and cause real timeouts. For these real timeouts, the submission
1463 * path will complete the request using blk_mq_complete_request().
1464 * Only fake timeouts need to execute blk_mq_complete_request() here.
1465 */
1466 cmd->error = BLK_STS_TIMEOUT;
1467 if (cmd->fake_timeout)
1468 blk_mq_complete_request(rq);
1469 return BLK_EH_DONE;
1470 }
1471
null_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1472 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1473 const struct blk_mq_queue_data *bd)
1474 {
1475 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1476 struct nullb_queue *nq = hctx->driver_data;
1477 sector_t nr_sectors = blk_rq_sectors(bd->rq);
1478 sector_t sector = blk_rq_pos(bd->rq);
1479
1480 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1481
1482 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1483 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1484 cmd->timer.function = null_cmd_timer_expired;
1485 }
1486 cmd->rq = bd->rq;
1487 cmd->error = BLK_STS_OK;
1488 cmd->nq = nq;
1489 cmd->fake_timeout = should_timeout_request(bd->rq);
1490
1491 blk_mq_start_request(bd->rq);
1492
1493 if (should_requeue_request(bd->rq)) {
1494 /*
1495 * Alternate between hitting the core BUSY path, and the
1496 * driver driven requeue path
1497 */
1498 nq->requeue_selection++;
1499 if (nq->requeue_selection & 1)
1500 return BLK_STS_RESOURCE;
1501 else {
1502 blk_mq_requeue_request(bd->rq, true);
1503 return BLK_STS_OK;
1504 }
1505 }
1506 if (cmd->fake_timeout)
1507 return BLK_STS_OK;
1508
1509 return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1510 }
1511
cleanup_queue(struct nullb_queue * nq)1512 static void cleanup_queue(struct nullb_queue *nq)
1513 {
1514 kfree(nq->tag_map);
1515 kfree(nq->cmds);
1516 }
1517
cleanup_queues(struct nullb * nullb)1518 static void cleanup_queues(struct nullb *nullb)
1519 {
1520 int i;
1521
1522 for (i = 0; i < nullb->nr_queues; i++)
1523 cleanup_queue(&nullb->queues[i]);
1524
1525 kfree(nullb->queues);
1526 }
1527
null_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)1528 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1529 {
1530 struct nullb_queue *nq = hctx->driver_data;
1531 struct nullb *nullb = nq->dev->nullb;
1532
1533 nullb->nr_queues--;
1534 }
1535
null_init_queue(struct nullb * nullb,struct nullb_queue * nq)1536 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1537 {
1538 init_waitqueue_head(&nq->wait);
1539 nq->queue_depth = nullb->queue_depth;
1540 nq->dev = nullb->dev;
1541 }
1542
null_init_hctx(struct blk_mq_hw_ctx * hctx,void * driver_data,unsigned int hctx_idx)1543 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1544 unsigned int hctx_idx)
1545 {
1546 struct nullb *nullb = hctx->queue->queuedata;
1547 struct nullb_queue *nq;
1548
1549 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1550 if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1551 return -EFAULT;
1552 #endif
1553
1554 nq = &nullb->queues[hctx_idx];
1555 hctx->driver_data = nq;
1556 null_init_queue(nullb, nq);
1557 nullb->nr_queues++;
1558
1559 return 0;
1560 }
1561
1562 static const struct blk_mq_ops null_mq_ops = {
1563 .queue_rq = null_queue_rq,
1564 .complete = null_complete_rq,
1565 .timeout = null_timeout_rq,
1566 .init_hctx = null_init_hctx,
1567 .exit_hctx = null_exit_hctx,
1568 };
1569
null_del_dev(struct nullb * nullb)1570 static void null_del_dev(struct nullb *nullb)
1571 {
1572 struct nullb_device *dev;
1573
1574 if (!nullb)
1575 return;
1576
1577 dev = nullb->dev;
1578
1579 ida_simple_remove(&nullb_indexes, nullb->index);
1580
1581 list_del_init(&nullb->list);
1582
1583 del_gendisk(nullb->disk);
1584
1585 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1586 hrtimer_cancel(&nullb->bw_timer);
1587 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1588 null_restart_queue_async(nullb);
1589 }
1590
1591 blk_cleanup_queue(nullb->q);
1592 if (dev->queue_mode == NULL_Q_MQ &&
1593 nullb->tag_set == &nullb->__tag_set)
1594 blk_mq_free_tag_set(nullb->tag_set);
1595 put_disk(nullb->disk);
1596 cleanup_queues(nullb);
1597 if (null_cache_active(nullb))
1598 null_free_device_storage(nullb->dev, true);
1599 kfree(nullb);
1600 dev->nullb = NULL;
1601 }
1602
null_config_discard(struct nullb * nullb)1603 static void null_config_discard(struct nullb *nullb)
1604 {
1605 if (nullb->dev->discard == false)
1606 return;
1607
1608 if (nullb->dev->zoned) {
1609 nullb->dev->discard = false;
1610 pr_info("discard option is ignored in zoned mode\n");
1611 return;
1612 }
1613
1614 nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1615 nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1616 blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1617 blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1618 }
1619
1620 static const struct block_device_operations null_bio_ops = {
1621 .owner = THIS_MODULE,
1622 .submit_bio = null_submit_bio,
1623 .report_zones = null_report_zones,
1624 };
1625
1626 static const struct block_device_operations null_rq_ops = {
1627 .owner = THIS_MODULE,
1628 .report_zones = null_report_zones,
1629 };
1630
setup_commands(struct nullb_queue * nq)1631 static int setup_commands(struct nullb_queue *nq)
1632 {
1633 struct nullb_cmd *cmd;
1634 int i, tag_size;
1635
1636 nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1637 if (!nq->cmds)
1638 return -ENOMEM;
1639
1640 tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1641 nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1642 if (!nq->tag_map) {
1643 kfree(nq->cmds);
1644 return -ENOMEM;
1645 }
1646
1647 for (i = 0; i < nq->queue_depth; i++) {
1648 cmd = &nq->cmds[i];
1649 cmd->tag = -1U;
1650 }
1651
1652 return 0;
1653 }
1654
setup_queues(struct nullb * nullb)1655 static int setup_queues(struct nullb *nullb)
1656 {
1657 nullb->queues = kcalloc(nr_cpu_ids, sizeof(struct nullb_queue),
1658 GFP_KERNEL);
1659 if (!nullb->queues)
1660 return -ENOMEM;
1661
1662 nullb->queue_depth = nullb->dev->hw_queue_depth;
1663
1664 return 0;
1665 }
1666
init_driver_queues(struct nullb * nullb)1667 static int init_driver_queues(struct nullb *nullb)
1668 {
1669 struct nullb_queue *nq;
1670 int i, ret = 0;
1671
1672 for (i = 0; i < nullb->dev->submit_queues; i++) {
1673 nq = &nullb->queues[i];
1674
1675 null_init_queue(nullb, nq);
1676
1677 ret = setup_commands(nq);
1678 if (ret)
1679 return ret;
1680 nullb->nr_queues++;
1681 }
1682 return 0;
1683 }
1684
null_gendisk_register(struct nullb * nullb)1685 static int null_gendisk_register(struct nullb *nullb)
1686 {
1687 sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1688 struct gendisk *disk;
1689
1690 disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1691 if (!disk)
1692 return -ENOMEM;
1693 set_capacity(disk, size);
1694
1695 disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1696 disk->major = null_major;
1697 disk->first_minor = nullb->index;
1698 if (queue_is_mq(nullb->q))
1699 disk->fops = &null_rq_ops;
1700 else
1701 disk->fops = &null_bio_ops;
1702 disk->private_data = nullb;
1703 disk->queue = nullb->q;
1704 strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1705
1706 if (nullb->dev->zoned) {
1707 int ret = null_register_zoned_dev(nullb);
1708
1709 if (ret)
1710 return ret;
1711 }
1712
1713 add_disk(disk);
1714 return 0;
1715 }
1716
null_init_tag_set(struct nullb * nullb,struct blk_mq_tag_set * set)1717 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1718 {
1719 set->ops = &null_mq_ops;
1720 set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1721 g_submit_queues;
1722 set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1723 g_hw_queue_depth;
1724 set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1725 set->cmd_size = sizeof(struct nullb_cmd);
1726 set->flags = BLK_MQ_F_SHOULD_MERGE;
1727 if (g_no_sched)
1728 set->flags |= BLK_MQ_F_NO_SCHED;
1729 if (g_shared_tag_bitmap)
1730 set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1731 set->driver_data = NULL;
1732
1733 if ((nullb && nullb->dev->blocking) || g_blocking)
1734 set->flags |= BLK_MQ_F_BLOCKING;
1735
1736 return blk_mq_alloc_tag_set(set);
1737 }
1738
null_validate_conf(struct nullb_device * dev)1739 static int null_validate_conf(struct nullb_device *dev)
1740 {
1741 dev->blocksize = round_down(dev->blocksize, 512);
1742 dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1743
1744 if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1745 if (dev->submit_queues != nr_online_nodes)
1746 dev->submit_queues = nr_online_nodes;
1747 } else if (dev->submit_queues > nr_cpu_ids)
1748 dev->submit_queues = nr_cpu_ids;
1749 else if (dev->submit_queues == 0)
1750 dev->submit_queues = 1;
1751
1752 dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1753 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1754
1755 /* Do memory allocation, so set blocking */
1756 if (dev->memory_backed)
1757 dev->blocking = true;
1758 else /* cache is meaningless */
1759 dev->cache_size = 0;
1760 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1761 dev->cache_size);
1762 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1763 /* can not stop a queue */
1764 if (dev->queue_mode == NULL_Q_BIO)
1765 dev->mbps = 0;
1766
1767 if (dev->zoned &&
1768 (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1769 pr_err("zone_size must be power-of-two\n");
1770 return -EINVAL;
1771 }
1772
1773 return 0;
1774 }
1775
1776 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
__null_setup_fault(struct fault_attr * attr,char * str)1777 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1778 {
1779 if (!str[0])
1780 return true;
1781
1782 if (!setup_fault_attr(attr, str))
1783 return false;
1784
1785 attr->verbose = 0;
1786 return true;
1787 }
1788 #endif
1789
null_setup_fault(void)1790 static bool null_setup_fault(void)
1791 {
1792 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1793 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1794 return false;
1795 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1796 return false;
1797 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1798 return false;
1799 #endif
1800 return true;
1801 }
1802
null_add_dev(struct nullb_device * dev)1803 static int null_add_dev(struct nullb_device *dev)
1804 {
1805 struct nullb *nullb;
1806 int rv;
1807
1808 rv = null_validate_conf(dev);
1809 if (rv)
1810 return rv;
1811
1812 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1813 if (!nullb) {
1814 rv = -ENOMEM;
1815 goto out;
1816 }
1817 nullb->dev = dev;
1818 dev->nullb = nullb;
1819
1820 spin_lock_init(&nullb->lock);
1821
1822 rv = setup_queues(nullb);
1823 if (rv)
1824 goto out_free_nullb;
1825
1826 if (dev->queue_mode == NULL_Q_MQ) {
1827 if (shared_tags) {
1828 nullb->tag_set = &tag_set;
1829 rv = 0;
1830 } else {
1831 nullb->tag_set = &nullb->__tag_set;
1832 rv = null_init_tag_set(nullb, nullb->tag_set);
1833 }
1834
1835 if (rv)
1836 goto out_cleanup_queues;
1837
1838 if (!null_setup_fault())
1839 goto out_cleanup_queues;
1840
1841 nullb->tag_set->timeout = 5 * HZ;
1842 nullb->q = blk_mq_init_queue_data(nullb->tag_set, nullb);
1843 if (IS_ERR(nullb->q)) {
1844 rv = -ENOMEM;
1845 goto out_cleanup_tags;
1846 }
1847 } else if (dev->queue_mode == NULL_Q_BIO) {
1848 nullb->q = blk_alloc_queue(dev->home_node);
1849 if (!nullb->q) {
1850 rv = -ENOMEM;
1851 goto out_cleanup_queues;
1852 }
1853 rv = init_driver_queues(nullb);
1854 if (rv)
1855 goto out_cleanup_blk_queue;
1856 }
1857
1858 if (dev->mbps) {
1859 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1860 nullb_setup_bwtimer(nullb);
1861 }
1862
1863 if (dev->cache_size > 0) {
1864 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1865 blk_queue_write_cache(nullb->q, true, true);
1866 }
1867
1868 if (dev->zoned) {
1869 rv = null_init_zoned_dev(dev, nullb->q);
1870 if (rv)
1871 goto out_cleanup_blk_queue;
1872 }
1873
1874 nullb->q->queuedata = nullb;
1875 blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1876 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1877
1878 mutex_lock(&lock);
1879 rv = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1880 if (rv < 0) {
1881 mutex_unlock(&lock);
1882 goto out_cleanup_zone;
1883 }
1884 nullb->index = rv;
1885 dev->index = rv;
1886 mutex_unlock(&lock);
1887
1888 blk_queue_logical_block_size(nullb->q, dev->blocksize);
1889 blk_queue_physical_block_size(nullb->q, dev->blocksize);
1890
1891 null_config_discard(nullb);
1892
1893 sprintf(nullb->disk_name, "nullb%d", nullb->index);
1894
1895 rv = null_gendisk_register(nullb);
1896 if (rv)
1897 goto out_ida_free;
1898
1899 mutex_lock(&lock);
1900 list_add_tail(&nullb->list, &nullb_list);
1901 mutex_unlock(&lock);
1902
1903 return 0;
1904
1905 out_ida_free:
1906 ida_free(&nullb_indexes, nullb->index);
1907 out_cleanup_zone:
1908 null_free_zoned_dev(dev);
1909 out_cleanup_blk_queue:
1910 blk_cleanup_queue(nullb->q);
1911 out_cleanup_tags:
1912 if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1913 blk_mq_free_tag_set(nullb->tag_set);
1914 out_cleanup_queues:
1915 cleanup_queues(nullb);
1916 out_free_nullb:
1917 kfree(nullb);
1918 dev->nullb = NULL;
1919 out:
1920 return rv;
1921 }
1922
null_init(void)1923 static int __init null_init(void)
1924 {
1925 int ret = 0;
1926 unsigned int i;
1927 struct nullb *nullb;
1928 struct nullb_device *dev;
1929
1930 if (g_bs > PAGE_SIZE) {
1931 pr_warn("invalid block size\n");
1932 pr_warn("defaults block size to %lu\n", PAGE_SIZE);
1933 g_bs = PAGE_SIZE;
1934 }
1935
1936 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1937 pr_err("invalid home_node value\n");
1938 g_home_node = NUMA_NO_NODE;
1939 }
1940
1941 if (g_queue_mode == NULL_Q_RQ) {
1942 pr_err("legacy IO path no longer available\n");
1943 return -EINVAL;
1944 }
1945 if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1946 if (g_submit_queues != nr_online_nodes) {
1947 pr_warn("submit_queues param is set to %u.\n",
1948 nr_online_nodes);
1949 g_submit_queues = nr_online_nodes;
1950 }
1951 } else if (g_submit_queues > nr_cpu_ids)
1952 g_submit_queues = nr_cpu_ids;
1953 else if (g_submit_queues <= 0)
1954 g_submit_queues = 1;
1955
1956 if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1957 ret = null_init_tag_set(NULL, &tag_set);
1958 if (ret)
1959 return ret;
1960 }
1961
1962 config_group_init(&nullb_subsys.su_group);
1963 mutex_init(&nullb_subsys.su_mutex);
1964
1965 ret = configfs_register_subsystem(&nullb_subsys);
1966 if (ret)
1967 goto err_tagset;
1968
1969 mutex_init(&lock);
1970
1971 null_major = register_blkdev(0, "nullb");
1972 if (null_major < 0) {
1973 ret = null_major;
1974 goto err_conf;
1975 }
1976
1977 for (i = 0; i < nr_devices; i++) {
1978 dev = null_alloc_dev();
1979 if (!dev) {
1980 ret = -ENOMEM;
1981 goto err_dev;
1982 }
1983 ret = null_add_dev(dev);
1984 if (ret) {
1985 null_free_dev(dev);
1986 goto err_dev;
1987 }
1988 }
1989
1990 pr_info("module loaded\n");
1991 return 0;
1992
1993 err_dev:
1994 while (!list_empty(&nullb_list)) {
1995 nullb = list_entry(nullb_list.next, struct nullb, list);
1996 dev = nullb->dev;
1997 null_del_dev(nullb);
1998 null_free_dev(dev);
1999 }
2000 unregister_blkdev(null_major, "nullb");
2001 err_conf:
2002 configfs_unregister_subsystem(&nullb_subsys);
2003 err_tagset:
2004 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2005 blk_mq_free_tag_set(&tag_set);
2006 return ret;
2007 }
2008
null_exit(void)2009 static void __exit null_exit(void)
2010 {
2011 struct nullb *nullb;
2012
2013 configfs_unregister_subsystem(&nullb_subsys);
2014
2015 unregister_blkdev(null_major, "nullb");
2016
2017 mutex_lock(&lock);
2018 while (!list_empty(&nullb_list)) {
2019 struct nullb_device *dev;
2020
2021 nullb = list_entry(nullb_list.next, struct nullb, list);
2022 dev = nullb->dev;
2023 null_del_dev(nullb);
2024 null_free_dev(dev);
2025 }
2026 mutex_unlock(&lock);
2027
2028 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2029 blk_mq_free_tag_set(&tag_set);
2030 }
2031
2032 module_init(null_init);
2033 module_exit(null_exit);
2034
2035 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2036 MODULE_LICENSE("GPL");
2037