1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * caam - Freescale FSL CAAM support for Public Key Cryptography
4 *
5 * Copyright 2016 Freescale Semiconductor, Inc.
6 * Copyright 2018-2019 NXP
7 *
8 * There is no Shared Descriptor for PKC so that the Job Descriptor must carry
9 * all the desired key parameters, input and output pointers.
10 */
11 #include "compat.h"
12 #include "regs.h"
13 #include "intern.h"
14 #include "jr.h"
15 #include "error.h"
16 #include "desc_constr.h"
17 #include "sg_sw_sec4.h"
18 #include "caampkc.h"
19
20 #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB)
21 #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \
22 SIZEOF_RSA_PRIV_F1_PDB)
23 #define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \
24 SIZEOF_RSA_PRIV_F2_PDB)
25 #define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \
26 SIZEOF_RSA_PRIV_F3_PDB)
27 #define CAAM_RSA_MAX_INPUT_SIZE 512 /* for a 4096-bit modulus */
28
29 /* buffer filled with zeros, used for padding */
30 static u8 *zero_buffer;
31
32 /*
33 * variable used to avoid double free of resources in case
34 * algorithm registration was unsuccessful
35 */
36 static bool init_done;
37
38 struct caam_akcipher_alg {
39 struct akcipher_alg akcipher;
40 bool registered;
41 };
42
rsa_io_unmap(struct device * dev,struct rsa_edesc * edesc,struct akcipher_request * req)43 static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc,
44 struct akcipher_request *req)
45 {
46 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
47
48 dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE);
49 dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE);
50
51 if (edesc->sec4_sg_bytes)
52 dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes,
53 DMA_TO_DEVICE);
54 }
55
rsa_pub_unmap(struct device * dev,struct rsa_edesc * edesc,struct akcipher_request * req)56 static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc,
57 struct akcipher_request *req)
58 {
59 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
60 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
61 struct caam_rsa_key *key = &ctx->key;
62 struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
63
64 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
65 dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE);
66 }
67
rsa_priv_f1_unmap(struct device * dev,struct rsa_edesc * edesc,struct akcipher_request * req)68 static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc,
69 struct akcipher_request *req)
70 {
71 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
72 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
73 struct caam_rsa_key *key = &ctx->key;
74 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
75
76 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
77 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
78 }
79
rsa_priv_f2_unmap(struct device * dev,struct rsa_edesc * edesc,struct akcipher_request * req)80 static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc,
81 struct akcipher_request *req)
82 {
83 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
84 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
85 struct caam_rsa_key *key = &ctx->key;
86 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
87 size_t p_sz = key->p_sz;
88 size_t q_sz = key->q_sz;
89
90 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
91 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
92 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
93 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
94 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
95 }
96
rsa_priv_f3_unmap(struct device * dev,struct rsa_edesc * edesc,struct akcipher_request * req)97 static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc,
98 struct akcipher_request *req)
99 {
100 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
101 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
102 struct caam_rsa_key *key = &ctx->key;
103 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
104 size_t p_sz = key->p_sz;
105 size_t q_sz = key->q_sz;
106
107 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
108 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
109 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
110 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
111 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
112 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
113 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
114 }
115
116 /* RSA Job Completion handler */
rsa_pub_done(struct device * dev,u32 * desc,u32 err,void * context)117 static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context)
118 {
119 struct akcipher_request *req = context;
120 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
121 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
122 struct rsa_edesc *edesc;
123 int ecode = 0;
124 bool has_bklog;
125
126 if (err)
127 ecode = caam_jr_strstatus(dev, err);
128
129 edesc = req_ctx->edesc;
130 has_bklog = edesc->bklog;
131
132 rsa_pub_unmap(dev, edesc, req);
133 rsa_io_unmap(dev, edesc, req);
134 kfree(edesc);
135
136 /*
137 * If no backlog flag, the completion of the request is done
138 * by CAAM, not crypto engine.
139 */
140 if (!has_bklog)
141 akcipher_request_complete(req, ecode);
142 else
143 crypto_finalize_akcipher_request(jrp->engine, req, ecode);
144 }
145
rsa_priv_f_done(struct device * dev,u32 * desc,u32 err,void * context)146 static void rsa_priv_f_done(struct device *dev, u32 *desc, u32 err,
147 void *context)
148 {
149 struct akcipher_request *req = context;
150 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
151 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
152 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
153 struct caam_rsa_key *key = &ctx->key;
154 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
155 struct rsa_edesc *edesc;
156 int ecode = 0;
157 bool has_bklog;
158
159 if (err)
160 ecode = caam_jr_strstatus(dev, err);
161
162 edesc = req_ctx->edesc;
163 has_bklog = edesc->bklog;
164
165 switch (key->priv_form) {
166 case FORM1:
167 rsa_priv_f1_unmap(dev, edesc, req);
168 break;
169 case FORM2:
170 rsa_priv_f2_unmap(dev, edesc, req);
171 break;
172 case FORM3:
173 rsa_priv_f3_unmap(dev, edesc, req);
174 }
175
176 rsa_io_unmap(dev, edesc, req);
177 kfree(edesc);
178
179 /*
180 * If no backlog flag, the completion of the request is done
181 * by CAAM, not crypto engine.
182 */
183 if (!has_bklog)
184 akcipher_request_complete(req, ecode);
185 else
186 crypto_finalize_akcipher_request(jrp->engine, req, ecode);
187 }
188
189 /**
190 * Count leading zeros, need it to strip, from a given scatterlist
191 *
192 * @sgl : scatterlist to count zeros from
193 * @nbytes: number of zeros, in bytes, to strip
194 * @flags : operation flags
195 */
caam_rsa_count_leading_zeros(struct scatterlist * sgl,unsigned int nbytes,unsigned int flags)196 static int caam_rsa_count_leading_zeros(struct scatterlist *sgl,
197 unsigned int nbytes,
198 unsigned int flags)
199 {
200 struct sg_mapping_iter miter;
201 int lzeros, ents;
202 unsigned int len;
203 unsigned int tbytes = nbytes;
204 const u8 *buff;
205
206 ents = sg_nents_for_len(sgl, nbytes);
207 if (ents < 0)
208 return ents;
209
210 sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags);
211
212 lzeros = 0;
213 len = 0;
214 while (nbytes > 0) {
215 /* do not strip more than given bytes */
216 while (len && !*buff && lzeros < nbytes) {
217 lzeros++;
218 len--;
219 buff++;
220 }
221
222 if (len && *buff)
223 break;
224
225 sg_miter_next(&miter);
226 buff = miter.addr;
227 len = miter.length;
228
229 nbytes -= lzeros;
230 lzeros = 0;
231 }
232
233 miter.consumed = lzeros;
234 sg_miter_stop(&miter);
235 nbytes -= lzeros;
236
237 return tbytes - nbytes;
238 }
239
rsa_edesc_alloc(struct akcipher_request * req,size_t desclen)240 static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req,
241 size_t desclen)
242 {
243 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
244 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
245 struct device *dev = ctx->dev;
246 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
247 struct caam_rsa_key *key = &ctx->key;
248 struct rsa_edesc *edesc;
249 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
250 GFP_KERNEL : GFP_ATOMIC;
251 int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0;
252 int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes;
253 int src_nents, dst_nents;
254 int mapped_src_nents, mapped_dst_nents;
255 unsigned int diff_size = 0;
256 int lzeros;
257
258 if (req->src_len > key->n_sz) {
259 /*
260 * strip leading zeros and
261 * return the number of zeros to skip
262 */
263 lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len -
264 key->n_sz, sg_flags);
265 if (lzeros < 0)
266 return ERR_PTR(lzeros);
267
268 req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src,
269 lzeros);
270 req_ctx->fixup_src_len = req->src_len - lzeros;
271 } else {
272 /*
273 * input src is less then n key modulus,
274 * so there will be zero padding
275 */
276 diff_size = key->n_sz - req->src_len;
277 req_ctx->fixup_src = req->src;
278 req_ctx->fixup_src_len = req->src_len;
279 }
280
281 src_nents = sg_nents_for_len(req_ctx->fixup_src,
282 req_ctx->fixup_src_len);
283 dst_nents = sg_nents_for_len(req->dst, req->dst_len);
284
285 mapped_src_nents = dma_map_sg(dev, req_ctx->fixup_src, src_nents,
286 DMA_TO_DEVICE);
287 if (unlikely(!mapped_src_nents)) {
288 dev_err(dev, "unable to map source\n");
289 return ERR_PTR(-ENOMEM);
290 }
291 mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
292 DMA_FROM_DEVICE);
293 if (unlikely(!mapped_dst_nents)) {
294 dev_err(dev, "unable to map destination\n");
295 goto src_fail;
296 }
297
298 if (!diff_size && mapped_src_nents == 1)
299 sec4_sg_len = 0; /* no need for an input hw s/g table */
300 else
301 sec4_sg_len = mapped_src_nents + !!diff_size;
302 sec4_sg_index = sec4_sg_len;
303
304 if (mapped_dst_nents > 1)
305 sec4_sg_len += pad_sg_nents(mapped_dst_nents);
306 else
307 sec4_sg_len = pad_sg_nents(sec4_sg_len);
308
309 sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);
310
311 /* allocate space for base edesc, hw desc commands and link tables */
312 edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes,
313 GFP_DMA | flags);
314 if (!edesc)
315 goto dst_fail;
316
317 edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen;
318 if (diff_size)
319 dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size,
320 0);
321
322 if (sec4_sg_index)
323 sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len,
324 edesc->sec4_sg + !!diff_size, 0);
325
326 if (mapped_dst_nents > 1)
327 sg_to_sec4_sg_last(req->dst, req->dst_len,
328 edesc->sec4_sg + sec4_sg_index, 0);
329
330 /* Save nents for later use in Job Descriptor */
331 edesc->src_nents = src_nents;
332 edesc->dst_nents = dst_nents;
333
334 req_ctx->edesc = edesc;
335
336 if (!sec4_sg_bytes)
337 return edesc;
338
339 edesc->mapped_src_nents = mapped_src_nents;
340 edesc->mapped_dst_nents = mapped_dst_nents;
341
342 edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg,
343 sec4_sg_bytes, DMA_TO_DEVICE);
344 if (dma_mapping_error(dev, edesc->sec4_sg_dma)) {
345 dev_err(dev, "unable to map S/G table\n");
346 goto sec4_sg_fail;
347 }
348
349 edesc->sec4_sg_bytes = sec4_sg_bytes;
350
351 print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ",
352 DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
353 edesc->sec4_sg_bytes, 1);
354
355 return edesc;
356
357 sec4_sg_fail:
358 kfree(edesc);
359 dst_fail:
360 dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
361 src_fail:
362 dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE);
363 return ERR_PTR(-ENOMEM);
364 }
365
akcipher_do_one_req(struct crypto_engine * engine,void * areq)366 static int akcipher_do_one_req(struct crypto_engine *engine, void *areq)
367 {
368 struct akcipher_request *req = container_of(areq,
369 struct akcipher_request,
370 base);
371 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
372 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
373 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
374 struct device *jrdev = ctx->dev;
375 u32 *desc = req_ctx->edesc->hw_desc;
376 int ret;
377
378 req_ctx->edesc->bklog = true;
379
380 ret = caam_jr_enqueue(jrdev, desc, req_ctx->akcipher_op_done, req);
381
382 if (ret != -EINPROGRESS) {
383 rsa_pub_unmap(jrdev, req_ctx->edesc, req);
384 rsa_io_unmap(jrdev, req_ctx->edesc, req);
385 kfree(req_ctx->edesc);
386 } else {
387 ret = 0;
388 }
389
390 return ret;
391 }
392
set_rsa_pub_pdb(struct akcipher_request * req,struct rsa_edesc * edesc)393 static int set_rsa_pub_pdb(struct akcipher_request *req,
394 struct rsa_edesc *edesc)
395 {
396 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
397 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
398 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
399 struct caam_rsa_key *key = &ctx->key;
400 struct device *dev = ctx->dev;
401 struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
402 int sec4_sg_index = 0;
403
404 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
405 if (dma_mapping_error(dev, pdb->n_dma)) {
406 dev_err(dev, "Unable to map RSA modulus memory\n");
407 return -ENOMEM;
408 }
409
410 pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE);
411 if (dma_mapping_error(dev, pdb->e_dma)) {
412 dev_err(dev, "Unable to map RSA public exponent memory\n");
413 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
414 return -ENOMEM;
415 }
416
417 if (edesc->mapped_src_nents > 1) {
418 pdb->sgf |= RSA_PDB_SGF_F;
419 pdb->f_dma = edesc->sec4_sg_dma;
420 sec4_sg_index += edesc->mapped_src_nents;
421 } else {
422 pdb->f_dma = sg_dma_address(req_ctx->fixup_src);
423 }
424
425 if (edesc->mapped_dst_nents > 1) {
426 pdb->sgf |= RSA_PDB_SGF_G;
427 pdb->g_dma = edesc->sec4_sg_dma +
428 sec4_sg_index * sizeof(struct sec4_sg_entry);
429 } else {
430 pdb->g_dma = sg_dma_address(req->dst);
431 }
432
433 pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz;
434 pdb->f_len = req_ctx->fixup_src_len;
435
436 return 0;
437 }
438
set_rsa_priv_f1_pdb(struct akcipher_request * req,struct rsa_edesc * edesc)439 static int set_rsa_priv_f1_pdb(struct akcipher_request *req,
440 struct rsa_edesc *edesc)
441 {
442 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
443 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
444 struct caam_rsa_key *key = &ctx->key;
445 struct device *dev = ctx->dev;
446 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
447 int sec4_sg_index = 0;
448
449 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
450 if (dma_mapping_error(dev, pdb->n_dma)) {
451 dev_err(dev, "Unable to map modulus memory\n");
452 return -ENOMEM;
453 }
454
455 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
456 if (dma_mapping_error(dev, pdb->d_dma)) {
457 dev_err(dev, "Unable to map RSA private exponent memory\n");
458 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
459 return -ENOMEM;
460 }
461
462 if (edesc->mapped_src_nents > 1) {
463 pdb->sgf |= RSA_PRIV_PDB_SGF_G;
464 pdb->g_dma = edesc->sec4_sg_dma;
465 sec4_sg_index += edesc->mapped_src_nents;
466
467 } else {
468 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
469
470 pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
471 }
472
473 if (edesc->mapped_dst_nents > 1) {
474 pdb->sgf |= RSA_PRIV_PDB_SGF_F;
475 pdb->f_dma = edesc->sec4_sg_dma +
476 sec4_sg_index * sizeof(struct sec4_sg_entry);
477 } else {
478 pdb->f_dma = sg_dma_address(req->dst);
479 }
480
481 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
482
483 return 0;
484 }
485
set_rsa_priv_f2_pdb(struct akcipher_request * req,struct rsa_edesc * edesc)486 static int set_rsa_priv_f2_pdb(struct akcipher_request *req,
487 struct rsa_edesc *edesc)
488 {
489 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
490 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
491 struct caam_rsa_key *key = &ctx->key;
492 struct device *dev = ctx->dev;
493 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
494 int sec4_sg_index = 0;
495 size_t p_sz = key->p_sz;
496 size_t q_sz = key->q_sz;
497
498 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
499 if (dma_mapping_error(dev, pdb->d_dma)) {
500 dev_err(dev, "Unable to map RSA private exponent memory\n");
501 return -ENOMEM;
502 }
503
504 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
505 if (dma_mapping_error(dev, pdb->p_dma)) {
506 dev_err(dev, "Unable to map RSA prime factor p memory\n");
507 goto unmap_d;
508 }
509
510 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
511 if (dma_mapping_error(dev, pdb->q_dma)) {
512 dev_err(dev, "Unable to map RSA prime factor q memory\n");
513 goto unmap_p;
514 }
515
516 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
517 if (dma_mapping_error(dev, pdb->tmp1_dma)) {
518 dev_err(dev, "Unable to map RSA tmp1 memory\n");
519 goto unmap_q;
520 }
521
522 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
523 if (dma_mapping_error(dev, pdb->tmp2_dma)) {
524 dev_err(dev, "Unable to map RSA tmp2 memory\n");
525 goto unmap_tmp1;
526 }
527
528 if (edesc->mapped_src_nents > 1) {
529 pdb->sgf |= RSA_PRIV_PDB_SGF_G;
530 pdb->g_dma = edesc->sec4_sg_dma;
531 sec4_sg_index += edesc->mapped_src_nents;
532 } else {
533 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
534
535 pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
536 }
537
538 if (edesc->mapped_dst_nents > 1) {
539 pdb->sgf |= RSA_PRIV_PDB_SGF_F;
540 pdb->f_dma = edesc->sec4_sg_dma +
541 sec4_sg_index * sizeof(struct sec4_sg_entry);
542 } else {
543 pdb->f_dma = sg_dma_address(req->dst);
544 }
545
546 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
547 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
548
549 return 0;
550
551 unmap_tmp1:
552 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
553 unmap_q:
554 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
555 unmap_p:
556 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
557 unmap_d:
558 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
559
560 return -ENOMEM;
561 }
562
set_rsa_priv_f3_pdb(struct akcipher_request * req,struct rsa_edesc * edesc)563 static int set_rsa_priv_f3_pdb(struct akcipher_request *req,
564 struct rsa_edesc *edesc)
565 {
566 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
567 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
568 struct caam_rsa_key *key = &ctx->key;
569 struct device *dev = ctx->dev;
570 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
571 int sec4_sg_index = 0;
572 size_t p_sz = key->p_sz;
573 size_t q_sz = key->q_sz;
574
575 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
576 if (dma_mapping_error(dev, pdb->p_dma)) {
577 dev_err(dev, "Unable to map RSA prime factor p memory\n");
578 return -ENOMEM;
579 }
580
581 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
582 if (dma_mapping_error(dev, pdb->q_dma)) {
583 dev_err(dev, "Unable to map RSA prime factor q memory\n");
584 goto unmap_p;
585 }
586
587 pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE);
588 if (dma_mapping_error(dev, pdb->dp_dma)) {
589 dev_err(dev, "Unable to map RSA exponent dp memory\n");
590 goto unmap_q;
591 }
592
593 pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE);
594 if (dma_mapping_error(dev, pdb->dq_dma)) {
595 dev_err(dev, "Unable to map RSA exponent dq memory\n");
596 goto unmap_dp;
597 }
598
599 pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE);
600 if (dma_mapping_error(dev, pdb->c_dma)) {
601 dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n");
602 goto unmap_dq;
603 }
604
605 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
606 if (dma_mapping_error(dev, pdb->tmp1_dma)) {
607 dev_err(dev, "Unable to map RSA tmp1 memory\n");
608 goto unmap_qinv;
609 }
610
611 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
612 if (dma_mapping_error(dev, pdb->tmp2_dma)) {
613 dev_err(dev, "Unable to map RSA tmp2 memory\n");
614 goto unmap_tmp1;
615 }
616
617 if (edesc->mapped_src_nents > 1) {
618 pdb->sgf |= RSA_PRIV_PDB_SGF_G;
619 pdb->g_dma = edesc->sec4_sg_dma;
620 sec4_sg_index += edesc->mapped_src_nents;
621 } else {
622 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
623
624 pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
625 }
626
627 if (edesc->mapped_dst_nents > 1) {
628 pdb->sgf |= RSA_PRIV_PDB_SGF_F;
629 pdb->f_dma = edesc->sec4_sg_dma +
630 sec4_sg_index * sizeof(struct sec4_sg_entry);
631 } else {
632 pdb->f_dma = sg_dma_address(req->dst);
633 }
634
635 pdb->sgf |= key->n_sz;
636 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
637
638 return 0;
639
640 unmap_tmp1:
641 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
642 unmap_qinv:
643 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
644 unmap_dq:
645 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
646 unmap_dp:
647 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
648 unmap_q:
649 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
650 unmap_p:
651 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
652
653 return -ENOMEM;
654 }
655
akcipher_enqueue_req(struct device * jrdev,void (* cbk)(struct device * jrdev,u32 * desc,u32 err,void * context),struct akcipher_request * req)656 static int akcipher_enqueue_req(struct device *jrdev,
657 void (*cbk)(struct device *jrdev, u32 *desc,
658 u32 err, void *context),
659 struct akcipher_request *req)
660 {
661 struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev);
662 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
663 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
664 struct caam_rsa_key *key = &ctx->key;
665 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
666 struct rsa_edesc *edesc = req_ctx->edesc;
667 u32 *desc = edesc->hw_desc;
668 int ret;
669
670 req_ctx->akcipher_op_done = cbk;
671 /*
672 * Only the backlog request are sent to crypto-engine since the others
673 * can be handled by CAAM, if free, especially since JR has up to 1024
674 * entries (more than the 10 entries from crypto-engine).
675 */
676 if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
677 ret = crypto_transfer_akcipher_request_to_engine(jrpriv->engine,
678 req);
679 else
680 ret = caam_jr_enqueue(jrdev, desc, cbk, req);
681
682 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) {
683 switch (key->priv_form) {
684 case FORM1:
685 rsa_priv_f1_unmap(jrdev, edesc, req);
686 break;
687 case FORM2:
688 rsa_priv_f2_unmap(jrdev, edesc, req);
689 break;
690 case FORM3:
691 rsa_priv_f3_unmap(jrdev, edesc, req);
692 break;
693 default:
694 rsa_pub_unmap(jrdev, edesc, req);
695 }
696 rsa_io_unmap(jrdev, edesc, req);
697 kfree(edesc);
698 }
699
700 return ret;
701 }
702
caam_rsa_enc(struct akcipher_request * req)703 static int caam_rsa_enc(struct akcipher_request *req)
704 {
705 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
706 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
707 struct caam_rsa_key *key = &ctx->key;
708 struct device *jrdev = ctx->dev;
709 struct rsa_edesc *edesc;
710 int ret;
711
712 if (unlikely(!key->n || !key->e))
713 return -EINVAL;
714
715 if (req->dst_len < key->n_sz) {
716 req->dst_len = key->n_sz;
717 dev_err(jrdev, "Output buffer length less than parameter n\n");
718 return -EOVERFLOW;
719 }
720
721 /* Allocate extended descriptor */
722 edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN);
723 if (IS_ERR(edesc))
724 return PTR_ERR(edesc);
725
726 /* Set RSA Encrypt Protocol Data Block */
727 ret = set_rsa_pub_pdb(req, edesc);
728 if (ret)
729 goto init_fail;
730
731 /* Initialize Job Descriptor */
732 init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub);
733
734 return akcipher_enqueue_req(jrdev, rsa_pub_done, req);
735
736 init_fail:
737 rsa_io_unmap(jrdev, edesc, req);
738 kfree(edesc);
739 return ret;
740 }
741
caam_rsa_dec_priv_f1(struct akcipher_request * req)742 static int caam_rsa_dec_priv_f1(struct akcipher_request *req)
743 {
744 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
745 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
746 struct device *jrdev = ctx->dev;
747 struct rsa_edesc *edesc;
748 int ret;
749
750 /* Allocate extended descriptor */
751 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN);
752 if (IS_ERR(edesc))
753 return PTR_ERR(edesc);
754
755 /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */
756 ret = set_rsa_priv_f1_pdb(req, edesc);
757 if (ret)
758 goto init_fail;
759
760 /* Initialize Job Descriptor */
761 init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1);
762
763 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);
764
765 init_fail:
766 rsa_io_unmap(jrdev, edesc, req);
767 kfree(edesc);
768 return ret;
769 }
770
caam_rsa_dec_priv_f2(struct akcipher_request * req)771 static int caam_rsa_dec_priv_f2(struct akcipher_request *req)
772 {
773 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
774 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
775 struct device *jrdev = ctx->dev;
776 struct rsa_edesc *edesc;
777 int ret;
778
779 /* Allocate extended descriptor */
780 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN);
781 if (IS_ERR(edesc))
782 return PTR_ERR(edesc);
783
784 /* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */
785 ret = set_rsa_priv_f2_pdb(req, edesc);
786 if (ret)
787 goto init_fail;
788
789 /* Initialize Job Descriptor */
790 init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2);
791
792 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);
793
794 init_fail:
795 rsa_io_unmap(jrdev, edesc, req);
796 kfree(edesc);
797 return ret;
798 }
799
caam_rsa_dec_priv_f3(struct akcipher_request * req)800 static int caam_rsa_dec_priv_f3(struct akcipher_request *req)
801 {
802 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
803 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
804 struct device *jrdev = ctx->dev;
805 struct rsa_edesc *edesc;
806 int ret;
807
808 /* Allocate extended descriptor */
809 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN);
810 if (IS_ERR(edesc))
811 return PTR_ERR(edesc);
812
813 /* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */
814 ret = set_rsa_priv_f3_pdb(req, edesc);
815 if (ret)
816 goto init_fail;
817
818 /* Initialize Job Descriptor */
819 init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3);
820
821 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req);
822
823 init_fail:
824 rsa_io_unmap(jrdev, edesc, req);
825 kfree(edesc);
826 return ret;
827 }
828
caam_rsa_dec(struct akcipher_request * req)829 static int caam_rsa_dec(struct akcipher_request *req)
830 {
831 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
832 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
833 struct caam_rsa_key *key = &ctx->key;
834 int ret;
835
836 if (unlikely(!key->n || !key->d))
837 return -EINVAL;
838
839 if (req->dst_len < key->n_sz) {
840 req->dst_len = key->n_sz;
841 dev_err(ctx->dev, "Output buffer length less than parameter n\n");
842 return -EOVERFLOW;
843 }
844
845 if (key->priv_form == FORM3)
846 ret = caam_rsa_dec_priv_f3(req);
847 else if (key->priv_form == FORM2)
848 ret = caam_rsa_dec_priv_f2(req);
849 else
850 ret = caam_rsa_dec_priv_f1(req);
851
852 return ret;
853 }
854
caam_rsa_free_key(struct caam_rsa_key * key)855 static void caam_rsa_free_key(struct caam_rsa_key *key)
856 {
857 kfree_sensitive(key->d);
858 kfree_sensitive(key->p);
859 kfree_sensitive(key->q);
860 kfree_sensitive(key->dp);
861 kfree_sensitive(key->dq);
862 kfree_sensitive(key->qinv);
863 kfree_sensitive(key->tmp1);
864 kfree_sensitive(key->tmp2);
865 kfree(key->e);
866 kfree(key->n);
867 memset(key, 0, sizeof(*key));
868 }
869
caam_rsa_drop_leading_zeros(const u8 ** ptr,size_t * nbytes)870 static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes)
871 {
872 while (!**ptr && *nbytes) {
873 (*ptr)++;
874 (*nbytes)--;
875 }
876 }
877
878 /**
879 * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members.
880 * dP, dQ and qInv could decode to less than corresponding p, q length, as the
881 * BER-encoding requires that the minimum number of bytes be used to encode the
882 * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate
883 * length.
884 *
885 * @ptr : pointer to {dP, dQ, qInv} CRT member
886 * @nbytes: length in bytes of {dP, dQ, qInv} CRT member
887 * @dstlen: length in bytes of corresponding p or q prime factor
888 */
caam_read_rsa_crt(const u8 * ptr,size_t nbytes,size_t dstlen)889 static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen)
890 {
891 u8 *dst;
892
893 caam_rsa_drop_leading_zeros(&ptr, &nbytes);
894 if (!nbytes)
895 return NULL;
896
897 dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL);
898 if (!dst)
899 return NULL;
900
901 memcpy(dst + (dstlen - nbytes), ptr, nbytes);
902
903 return dst;
904 }
905
906 /**
907 * caam_read_raw_data - Read a raw byte stream as a positive integer.
908 * The function skips buffer's leading zeros, copies the remained data
909 * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns
910 * the address of the new buffer.
911 *
912 * @buf : The data to read
913 * @nbytes: The amount of data to read
914 */
caam_read_raw_data(const u8 * buf,size_t * nbytes)915 static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes)
916 {
917
918 caam_rsa_drop_leading_zeros(&buf, nbytes);
919 if (!*nbytes)
920 return NULL;
921
922 return kmemdup(buf, *nbytes, GFP_DMA | GFP_KERNEL);
923 }
924
caam_rsa_check_key_length(unsigned int len)925 static int caam_rsa_check_key_length(unsigned int len)
926 {
927 if (len > 4096)
928 return -EINVAL;
929 return 0;
930 }
931
caam_rsa_set_pub_key(struct crypto_akcipher * tfm,const void * key,unsigned int keylen)932 static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
933 unsigned int keylen)
934 {
935 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
936 struct rsa_key raw_key = {NULL};
937 struct caam_rsa_key *rsa_key = &ctx->key;
938 int ret;
939
940 /* Free the old RSA key if any */
941 caam_rsa_free_key(rsa_key);
942
943 ret = rsa_parse_pub_key(&raw_key, key, keylen);
944 if (ret)
945 return ret;
946
947 /* Copy key in DMA zone */
948 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL);
949 if (!rsa_key->e)
950 goto err;
951
952 /*
953 * Skip leading zeros and copy the positive integer to a buffer
954 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
955 * expects a positive integer for the RSA modulus and uses its length as
956 * decryption output length.
957 */
958 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
959 if (!rsa_key->n)
960 goto err;
961
962 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
963 caam_rsa_free_key(rsa_key);
964 return -EINVAL;
965 }
966
967 rsa_key->e_sz = raw_key.e_sz;
968 rsa_key->n_sz = raw_key.n_sz;
969
970 return 0;
971 err:
972 caam_rsa_free_key(rsa_key);
973 return -ENOMEM;
974 }
975
caam_rsa_set_priv_key_form(struct caam_rsa_ctx * ctx,struct rsa_key * raw_key)976 static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx,
977 struct rsa_key *raw_key)
978 {
979 struct caam_rsa_key *rsa_key = &ctx->key;
980 size_t p_sz = raw_key->p_sz;
981 size_t q_sz = raw_key->q_sz;
982
983 rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz);
984 if (!rsa_key->p)
985 return;
986 rsa_key->p_sz = p_sz;
987
988 rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz);
989 if (!rsa_key->q)
990 goto free_p;
991 rsa_key->q_sz = q_sz;
992
993 rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL);
994 if (!rsa_key->tmp1)
995 goto free_q;
996
997 rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL);
998 if (!rsa_key->tmp2)
999 goto free_tmp1;
1000
1001 rsa_key->priv_form = FORM2;
1002
1003 rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz);
1004 if (!rsa_key->dp)
1005 goto free_tmp2;
1006
1007 rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz);
1008 if (!rsa_key->dq)
1009 goto free_dp;
1010
1011 rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz,
1012 q_sz);
1013 if (!rsa_key->qinv)
1014 goto free_dq;
1015
1016 rsa_key->priv_form = FORM3;
1017
1018 return;
1019
1020 free_dq:
1021 kfree_sensitive(rsa_key->dq);
1022 free_dp:
1023 kfree_sensitive(rsa_key->dp);
1024 free_tmp2:
1025 kfree_sensitive(rsa_key->tmp2);
1026 free_tmp1:
1027 kfree_sensitive(rsa_key->tmp1);
1028 free_q:
1029 kfree_sensitive(rsa_key->q);
1030 free_p:
1031 kfree_sensitive(rsa_key->p);
1032 }
1033
caam_rsa_set_priv_key(struct crypto_akcipher * tfm,const void * key,unsigned int keylen)1034 static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
1035 unsigned int keylen)
1036 {
1037 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1038 struct rsa_key raw_key = {NULL};
1039 struct caam_rsa_key *rsa_key = &ctx->key;
1040 int ret;
1041
1042 /* Free the old RSA key if any */
1043 caam_rsa_free_key(rsa_key);
1044
1045 ret = rsa_parse_priv_key(&raw_key, key, keylen);
1046 if (ret)
1047 return ret;
1048
1049 /* Copy key in DMA zone */
1050 rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_DMA | GFP_KERNEL);
1051 if (!rsa_key->d)
1052 goto err;
1053
1054 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL);
1055 if (!rsa_key->e)
1056 goto err;
1057
1058 /*
1059 * Skip leading zeros and copy the positive integer to a buffer
1060 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
1061 * expects a positive integer for the RSA modulus and uses its length as
1062 * decryption output length.
1063 */
1064 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
1065 if (!rsa_key->n)
1066 goto err;
1067
1068 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
1069 caam_rsa_free_key(rsa_key);
1070 return -EINVAL;
1071 }
1072
1073 rsa_key->d_sz = raw_key.d_sz;
1074 rsa_key->e_sz = raw_key.e_sz;
1075 rsa_key->n_sz = raw_key.n_sz;
1076
1077 caam_rsa_set_priv_key_form(ctx, &raw_key);
1078
1079 return 0;
1080
1081 err:
1082 caam_rsa_free_key(rsa_key);
1083 return -ENOMEM;
1084 }
1085
caam_rsa_max_size(struct crypto_akcipher * tfm)1086 static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm)
1087 {
1088 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1089
1090 return ctx->key.n_sz;
1091 }
1092
1093 /* Per session pkc's driver context creation function */
caam_rsa_init_tfm(struct crypto_akcipher * tfm)1094 static int caam_rsa_init_tfm(struct crypto_akcipher *tfm)
1095 {
1096 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1097
1098 ctx->dev = caam_jr_alloc();
1099
1100 if (IS_ERR(ctx->dev)) {
1101 pr_err("Job Ring Device allocation for transform failed\n");
1102 return PTR_ERR(ctx->dev);
1103 }
1104
1105 ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer,
1106 CAAM_RSA_MAX_INPUT_SIZE - 1,
1107 DMA_TO_DEVICE);
1108 if (dma_mapping_error(ctx->dev, ctx->padding_dma)) {
1109 dev_err(ctx->dev, "unable to map padding\n");
1110 caam_jr_free(ctx->dev);
1111 return -ENOMEM;
1112 }
1113
1114 ctx->enginectx.op.do_one_request = akcipher_do_one_req;
1115
1116 return 0;
1117 }
1118
1119 /* Per session pkc's driver context cleanup function */
caam_rsa_exit_tfm(struct crypto_akcipher * tfm)1120 static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm)
1121 {
1122 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
1123 struct caam_rsa_key *key = &ctx->key;
1124
1125 dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE -
1126 1, DMA_TO_DEVICE);
1127 caam_rsa_free_key(key);
1128 caam_jr_free(ctx->dev);
1129 }
1130
1131 static struct caam_akcipher_alg caam_rsa = {
1132 .akcipher = {
1133 .encrypt = caam_rsa_enc,
1134 .decrypt = caam_rsa_dec,
1135 .set_pub_key = caam_rsa_set_pub_key,
1136 .set_priv_key = caam_rsa_set_priv_key,
1137 .max_size = caam_rsa_max_size,
1138 .init = caam_rsa_init_tfm,
1139 .exit = caam_rsa_exit_tfm,
1140 .reqsize = sizeof(struct caam_rsa_req_ctx),
1141 .base = {
1142 .cra_name = "rsa",
1143 .cra_driver_name = "rsa-caam",
1144 .cra_priority = 3000,
1145 .cra_module = THIS_MODULE,
1146 .cra_ctxsize = sizeof(struct caam_rsa_ctx),
1147 },
1148 }
1149 };
1150
1151 /* Public Key Cryptography module initialization handler */
caam_pkc_init(struct device * ctrldev)1152 int caam_pkc_init(struct device *ctrldev)
1153 {
1154 struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
1155 u32 pk_inst, pkha;
1156 int err;
1157 init_done = false;
1158
1159 /* Determine public key hardware accelerator presence. */
1160 if (priv->era < 10) {
1161 pk_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) &
1162 CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT;
1163 } else {
1164 pkha = rd_reg32(&priv->ctrl->vreg.pkha);
1165 pk_inst = pkha & CHA_VER_NUM_MASK;
1166
1167 /*
1168 * Newer CAAMs support partially disabled functionality. If this is the
1169 * case, the number is non-zero, but this bit is set to indicate that
1170 * no encryption or decryption is supported. Only signing and verifying
1171 * is supported.
1172 */
1173 if (pkha & CHA_VER_MISC_PKHA_NO_CRYPT)
1174 pk_inst = 0;
1175 }
1176
1177 /* Do not register algorithms if PKHA is not present. */
1178 if (!pk_inst)
1179 return 0;
1180
1181 /* allocate zero buffer, used for padding input */
1182 zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_DMA |
1183 GFP_KERNEL);
1184 if (!zero_buffer)
1185 return -ENOMEM;
1186
1187 err = crypto_register_akcipher(&caam_rsa.akcipher);
1188
1189 if (err) {
1190 kfree(zero_buffer);
1191 dev_warn(ctrldev, "%s alg registration failed\n",
1192 caam_rsa.akcipher.base.cra_driver_name);
1193 } else {
1194 init_done = true;
1195 caam_rsa.registered = true;
1196 dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n");
1197 }
1198
1199 return err;
1200 }
1201
caam_pkc_exit(void)1202 void caam_pkc_exit(void)
1203 {
1204 if (!init_done)
1205 return;
1206
1207 if (caam_rsa.registered)
1208 crypto_unregister_akcipher(&caam_rsa.akcipher);
1209
1210 kfree(zero_buffer);
1211 }
1212