• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx NPE-C crypto driver
4  *
5  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6  */
7 
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18 
19 #include <crypto/ctr.h>
20 #include <crypto/internal/des.h>
21 #include <crypto/aes.h>
22 #include <crypto/hmac.h>
23 #include <crypto/sha.h>
24 #include <crypto/algapi.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
29 
30 #include <linux/soc/ixp4xx/npe.h>
31 #include <linux/soc/ixp4xx/qmgr.h>
32 
33 #define MAX_KEYLEN 32
34 
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
38 
39 #define NPE_OP_HASH_VERIFY   0x01
40 #define NPE_OP_CCM_ENABLE    0x04
41 #define NPE_OP_CRYPT_ENABLE  0x08
42 #define NPE_OP_HASH_ENABLE   0x10
43 #define NPE_OP_NOT_IN_PLACE  0x20
44 #define NPE_OP_HMAC_DISABLE  0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
46 
47 #define NPE_OP_CCM_GEN_MIC   0xcc
48 #define NPE_OP_HASH_GEN_ICV  0x50
49 #define NPE_OP_ENC_GEN_KEY   0xc9
50 
51 #define MOD_ECB     0x0000
52 #define MOD_CTR     0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
57 
58 #define KEYLEN_128  4
59 #define KEYLEN_192  6
60 #define KEYLEN_256  8
61 
62 #define CIPH_DECR   0x0000
63 #define CIPH_ENCR   0x0400
64 
65 #define MOD_DES     0x0000
66 #define MOD_TDEA2   0x0100
67 #define MOD_3DES   0x0200
68 #define MOD_AES     0x0800
69 #define MOD_AES128  (0x0800 | KEYLEN_128)
70 #define MOD_AES192  (0x0900 | KEYLEN_192)
71 #define MOD_AES256  (0x0a00 | KEYLEN_256)
72 
73 #define MAX_IVLEN   16
74 #define NPE_ID      2  /* NPE C */
75 #define NPE_QLEN    16
76 /* Space for registering when the first
77  * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
79 
80 #define SEND_QID    29
81 #define RECV_QID    30
82 
83 #define CTL_FLAG_UNUSED		0x0000
84 #define CTL_FLAG_USED		0x1000
85 #define CTL_FLAG_PERFORM_ABLK	0x0001
86 #define CTL_FLAG_GEN_ICV	0x0002
87 #define CTL_FLAG_GEN_REVAES	0x0004
88 #define CTL_FLAG_PERFORM_AEAD	0x0008
89 #define CTL_FLAG_MASK		0x000f
90 
91 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
92 
93 #define MD5_DIGEST_SIZE   16
94 
95 struct buffer_desc {
96 	u32 phys_next;
97 #ifdef __ARMEB__
98 	u16 buf_len;
99 	u16 pkt_len;
100 #else
101 	u16 pkt_len;
102 	u16 buf_len;
103 #endif
104 	dma_addr_t phys_addr;
105 	u32 __reserved[4];
106 	struct buffer_desc *next;
107 	enum dma_data_direction dir;
108 };
109 
110 struct crypt_ctl {
111 #ifdef __ARMEB__
112 	u8 mode;		/* NPE_OP_*  operation mode */
113 	u8 init_len;
114 	u16 reserved;
115 #else
116 	u16 reserved;
117 	u8 init_len;
118 	u8 mode;		/* NPE_OP_*  operation mode */
119 #endif
120 	u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */
121 	dma_addr_t icv_rev_aes;	/* icv or rev aes */
122 	dma_addr_t src_buf;
123 	dma_addr_t dst_buf;
124 #ifdef __ARMEB__
125 	u16 auth_offs;		/* Authentication start offset */
126 	u16 auth_len;		/* Authentication data length */
127 	u16 crypt_offs;		/* Cryption start offset */
128 	u16 crypt_len;		/* Cryption data length */
129 #else
130 	u16 auth_len;		/* Authentication data length */
131 	u16 auth_offs;		/* Authentication start offset */
132 	u16 crypt_len;		/* Cryption data length */
133 	u16 crypt_offs;		/* Cryption start offset */
134 #endif
135 	u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */
136 	u32 crypto_ctx;		/* NPE Crypto Param structure address */
137 
138 	/* Used by Host: 4*4 bytes*/
139 	unsigned ctl_flags;
140 	union {
141 		struct skcipher_request *ablk_req;
142 		struct aead_request *aead_req;
143 		struct crypto_tfm *tfm;
144 	} data;
145 	struct buffer_desc *regist_buf;
146 	u8 *regist_ptr;
147 };
148 
149 struct ablk_ctx {
150 	struct buffer_desc *src;
151 	struct buffer_desc *dst;
152 	u8 iv[MAX_IVLEN];
153 	bool encrypt;
154 };
155 
156 struct aead_ctx {
157 	struct buffer_desc *src;
158 	struct buffer_desc *dst;
159 	struct scatterlist ivlist;
160 	/* used when the hmac is not on one sg entry */
161 	u8 *hmac_virt;
162 	int encrypt;
163 };
164 
165 struct ix_hash_algo {
166 	u32 cfgword;
167 	unsigned char *icv;
168 };
169 
170 struct ix_sa_dir {
171 	unsigned char *npe_ctx;
172 	dma_addr_t npe_ctx_phys;
173 	int npe_ctx_idx;
174 	u8 npe_mode;
175 };
176 
177 struct ixp_ctx {
178 	struct ix_sa_dir encrypt;
179 	struct ix_sa_dir decrypt;
180 	int authkey_len;
181 	u8 authkey[MAX_KEYLEN];
182 	int enckey_len;
183 	u8 enckey[MAX_KEYLEN];
184 	u8 salt[MAX_IVLEN];
185 	u8 nonce[CTR_RFC3686_NONCE_SIZE];
186 	unsigned salted;
187 	atomic_t configuring;
188 	struct completion completion;
189 };
190 
191 struct ixp_alg {
192 	struct skcipher_alg crypto;
193 	const struct ix_hash_algo *hash;
194 	u32 cfg_enc;
195 	u32 cfg_dec;
196 
197 	int registered;
198 };
199 
200 struct ixp_aead_alg {
201 	struct aead_alg crypto;
202 	const struct ix_hash_algo *hash;
203 	u32 cfg_enc;
204 	u32 cfg_dec;
205 
206 	int registered;
207 };
208 
209 static const struct ix_hash_algo hash_alg_md5 = {
210 	.cfgword	= 0xAA010004,
211 	.icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
212 			  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
213 };
214 static const struct ix_hash_algo hash_alg_sha1 = {
215 	.cfgword	= 0x00000005,
216 	.icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
217 			  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
218 };
219 
220 static struct npe *npe_c;
221 static struct dma_pool *buffer_pool = NULL;
222 static struct dma_pool *ctx_pool = NULL;
223 
224 static struct crypt_ctl *crypt_virt = NULL;
225 static dma_addr_t crypt_phys;
226 
227 static int support_aes = 1;
228 
229 #define DRIVER_NAME "ixp4xx_crypto"
230 
231 static struct platform_device *pdev;
232 
crypt_virt2phys(struct crypt_ctl * virt)233 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
234 {
235 	return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
236 }
237 
crypt_phys2virt(dma_addr_t phys)238 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
239 {
240 	return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
241 }
242 
cipher_cfg_enc(struct crypto_tfm * tfm)243 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
244 {
245 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto.base)->cfg_enc;
246 }
247 
cipher_cfg_dec(struct crypto_tfm * tfm)248 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
249 {
250 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto.base)->cfg_dec;
251 }
252 
ix_hash(struct crypto_tfm * tfm)253 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
254 {
255 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
256 }
257 
setup_crypt_desc(void)258 static int setup_crypt_desc(void)
259 {
260 	struct device *dev = &pdev->dev;
261 	BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
262 	crypt_virt = dma_alloc_coherent(dev,
263 					NPE_QLEN * sizeof(struct crypt_ctl),
264 					&crypt_phys, GFP_ATOMIC);
265 	if (!crypt_virt)
266 		return -ENOMEM;
267 	return 0;
268 }
269 
270 static spinlock_t desc_lock;
get_crypt_desc(void)271 static struct crypt_ctl *get_crypt_desc(void)
272 {
273 	int i;
274 	static int idx = 0;
275 	unsigned long flags;
276 
277 	spin_lock_irqsave(&desc_lock, flags);
278 
279 	if (unlikely(!crypt_virt))
280 		setup_crypt_desc();
281 	if (unlikely(!crypt_virt)) {
282 		spin_unlock_irqrestore(&desc_lock, flags);
283 		return NULL;
284 	}
285 	i = idx;
286 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
287 		if (++idx >= NPE_QLEN)
288 			idx = 0;
289 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
290 		spin_unlock_irqrestore(&desc_lock, flags);
291 		return crypt_virt +i;
292 	} else {
293 		spin_unlock_irqrestore(&desc_lock, flags);
294 		return NULL;
295 	}
296 }
297 
298 static spinlock_t emerg_lock;
get_crypt_desc_emerg(void)299 static struct crypt_ctl *get_crypt_desc_emerg(void)
300 {
301 	int i;
302 	static int idx = NPE_QLEN;
303 	struct crypt_ctl *desc;
304 	unsigned long flags;
305 
306 	desc = get_crypt_desc();
307 	if (desc)
308 		return desc;
309 	if (unlikely(!crypt_virt))
310 		return NULL;
311 
312 	spin_lock_irqsave(&emerg_lock, flags);
313 	i = idx;
314 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
315 		if (++idx >= NPE_QLEN_TOTAL)
316 			idx = NPE_QLEN;
317 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
318 		spin_unlock_irqrestore(&emerg_lock, flags);
319 		return crypt_virt +i;
320 	} else {
321 		spin_unlock_irqrestore(&emerg_lock, flags);
322 		return NULL;
323 	}
324 }
325 
free_buf_chain(struct device * dev,struct buffer_desc * buf,dma_addr_t phys)326 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
327 			   dma_addr_t phys)
328 {
329 	while (buf) {
330 		struct buffer_desc *buf1;
331 		u32 phys1;
332 
333 		buf1 = buf->next;
334 		phys1 = buf->phys_next;
335 		dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir);
336 		dma_pool_free(buffer_pool, buf, phys);
337 		buf = buf1;
338 		phys = phys1;
339 	}
340 }
341 
342 static struct tasklet_struct crypto_done_tasklet;
343 
finish_scattered_hmac(struct crypt_ctl * crypt)344 static void finish_scattered_hmac(struct crypt_ctl *crypt)
345 {
346 	struct aead_request *req = crypt->data.aead_req;
347 	struct aead_ctx *req_ctx = aead_request_ctx(req);
348 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
349 	int authsize = crypto_aead_authsize(tfm);
350 	int decryptlen = req->assoclen + req->cryptlen - authsize;
351 
352 	if (req_ctx->encrypt) {
353 		scatterwalk_map_and_copy(req_ctx->hmac_virt,
354 			req->dst, decryptlen, authsize, 1);
355 	}
356 	dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
357 }
358 
one_packet(dma_addr_t phys)359 static void one_packet(dma_addr_t phys)
360 {
361 	struct device *dev = &pdev->dev;
362 	struct crypt_ctl *crypt;
363 	struct ixp_ctx *ctx;
364 	int failed;
365 
366 	failed = phys & 0x1 ? -EBADMSG : 0;
367 	phys &= ~0x3;
368 	crypt = crypt_phys2virt(phys);
369 
370 	switch (crypt->ctl_flags & CTL_FLAG_MASK) {
371 	case CTL_FLAG_PERFORM_AEAD: {
372 		struct aead_request *req = crypt->data.aead_req;
373 		struct aead_ctx *req_ctx = aead_request_ctx(req);
374 
375 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
376 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
377 		if (req_ctx->hmac_virt) {
378 			finish_scattered_hmac(crypt);
379 		}
380 		req->base.complete(&req->base, failed);
381 		break;
382 	}
383 	case CTL_FLAG_PERFORM_ABLK: {
384 		struct skcipher_request *req = crypt->data.ablk_req;
385 		struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
386 		struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
387 		unsigned int ivsize = crypto_skcipher_ivsize(tfm);
388 		unsigned int offset;
389 
390 		if (ivsize > 0) {
391 			offset = req->cryptlen - ivsize;
392 			if (req_ctx->encrypt) {
393 				scatterwalk_map_and_copy(req->iv, req->dst,
394 							 offset, ivsize, 0);
395 			} else {
396 				memcpy(req->iv, req_ctx->iv, ivsize);
397 				memzero_explicit(req_ctx->iv, ivsize);
398 			}
399 		}
400 
401 		if (req_ctx->dst) {
402 			free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
403 		}
404 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
405 		req->base.complete(&req->base, failed);
406 		break;
407 	}
408 	case CTL_FLAG_GEN_ICV:
409 		ctx = crypto_tfm_ctx(crypt->data.tfm);
410 		dma_pool_free(ctx_pool, crypt->regist_ptr,
411 				crypt->regist_buf->phys_addr);
412 		dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
413 		if (atomic_dec_and_test(&ctx->configuring))
414 			complete(&ctx->completion);
415 		break;
416 	case CTL_FLAG_GEN_REVAES:
417 		ctx = crypto_tfm_ctx(crypt->data.tfm);
418 		*(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
419 		if (atomic_dec_and_test(&ctx->configuring))
420 			complete(&ctx->completion);
421 		break;
422 	default:
423 		BUG();
424 	}
425 	crypt->ctl_flags = CTL_FLAG_UNUSED;
426 }
427 
irqhandler(void * _unused)428 static void irqhandler(void *_unused)
429 {
430 	tasklet_schedule(&crypto_done_tasklet);
431 }
432 
crypto_done_action(unsigned long arg)433 static void crypto_done_action(unsigned long arg)
434 {
435 	int i;
436 
437 	for(i=0; i<4; i++) {
438 		dma_addr_t phys = qmgr_get_entry(RECV_QID);
439 		if (!phys)
440 			return;
441 		one_packet(phys);
442 	}
443 	tasklet_schedule(&crypto_done_tasklet);
444 }
445 
init_ixp_crypto(struct device * dev)446 static int init_ixp_crypto(struct device *dev)
447 {
448 	int ret = -ENODEV;
449 	u32 msg[2] = { 0, 0 };
450 
451 	if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
452 				IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
453 		printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
454 		return ret;
455 	}
456 	npe_c = npe_request(NPE_ID);
457 	if (!npe_c)
458 		return ret;
459 
460 	if (!npe_running(npe_c)) {
461 		ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
462 		if (ret)
463 			goto npe_release;
464 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
465 			goto npe_error;
466 	} else {
467 		if (npe_send_message(npe_c, msg, "STATUS_MSG"))
468 			goto npe_error;
469 
470 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
471 			goto npe_error;
472 	}
473 
474 	switch ((msg[1]>>16) & 0xff) {
475 	case 3:
476 		printk(KERN_WARNING "Firmware of %s lacks AES support\n",
477 				npe_name(npe_c));
478 		support_aes = 0;
479 		break;
480 	case 4:
481 	case 5:
482 		support_aes = 1;
483 		break;
484 	default:
485 		printk(KERN_ERR "Firmware of %s lacks crypto support\n",
486 			npe_name(npe_c));
487 		ret = -ENODEV;
488 		goto npe_release;
489 	}
490 	/* buffer_pool will also be used to sometimes store the hmac,
491 	 * so assure it is large enough
492 	 */
493 	BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
494 	buffer_pool = dma_pool_create("buffer", dev,
495 			sizeof(struct buffer_desc), 32, 0);
496 	ret = -ENOMEM;
497 	if (!buffer_pool) {
498 		goto err;
499 	}
500 	ctx_pool = dma_pool_create("context", dev,
501 			NPE_CTX_LEN, 16, 0);
502 	if (!ctx_pool) {
503 		goto err;
504 	}
505 	ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
506 				 "ixp_crypto:out", NULL);
507 	if (ret)
508 		goto err;
509 	ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
510 				 "ixp_crypto:in", NULL);
511 	if (ret) {
512 		qmgr_release_queue(SEND_QID);
513 		goto err;
514 	}
515 	qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
516 	tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
517 
518 	qmgr_enable_irq(RECV_QID);
519 	return 0;
520 
521 npe_error:
522 	printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
523 	ret = -EIO;
524 err:
525 	dma_pool_destroy(ctx_pool);
526 	dma_pool_destroy(buffer_pool);
527 npe_release:
528 	npe_release(npe_c);
529 	return ret;
530 }
531 
release_ixp_crypto(struct device * dev)532 static void release_ixp_crypto(struct device *dev)
533 {
534 	qmgr_disable_irq(RECV_QID);
535 	tasklet_kill(&crypto_done_tasklet);
536 
537 	qmgr_release_queue(SEND_QID);
538 	qmgr_release_queue(RECV_QID);
539 
540 	dma_pool_destroy(ctx_pool);
541 	dma_pool_destroy(buffer_pool);
542 
543 	npe_release(npe_c);
544 
545 	if (crypt_virt) {
546 		dma_free_coherent(dev,
547 			NPE_QLEN * sizeof(struct crypt_ctl),
548 			crypt_virt, crypt_phys);
549 	}
550 }
551 
reset_sa_dir(struct ix_sa_dir * dir)552 static void reset_sa_dir(struct ix_sa_dir *dir)
553 {
554 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
555 	dir->npe_ctx_idx = 0;
556 	dir->npe_mode = 0;
557 }
558 
init_sa_dir(struct ix_sa_dir * dir)559 static int init_sa_dir(struct ix_sa_dir *dir)
560 {
561 	dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
562 	if (!dir->npe_ctx) {
563 		return -ENOMEM;
564 	}
565 	reset_sa_dir(dir);
566 	return 0;
567 }
568 
free_sa_dir(struct ix_sa_dir * dir)569 static void free_sa_dir(struct ix_sa_dir *dir)
570 {
571 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
572 	dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
573 }
574 
init_tfm(struct crypto_tfm * tfm)575 static int init_tfm(struct crypto_tfm *tfm)
576 {
577 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
578 	int ret;
579 
580 	atomic_set(&ctx->configuring, 0);
581 	ret = init_sa_dir(&ctx->encrypt);
582 	if (ret)
583 		return ret;
584 	ret = init_sa_dir(&ctx->decrypt);
585 	if (ret) {
586 		free_sa_dir(&ctx->encrypt);
587 	}
588 	return ret;
589 }
590 
init_tfm_ablk(struct crypto_skcipher * tfm)591 static int init_tfm_ablk(struct crypto_skcipher *tfm)
592 {
593 	crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx));
594 	return init_tfm(crypto_skcipher_tfm(tfm));
595 }
596 
init_tfm_aead(struct crypto_aead * tfm)597 static int init_tfm_aead(struct crypto_aead *tfm)
598 {
599 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
600 	return init_tfm(crypto_aead_tfm(tfm));
601 }
602 
exit_tfm(struct crypto_tfm * tfm)603 static void exit_tfm(struct crypto_tfm *tfm)
604 {
605 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
606 	free_sa_dir(&ctx->encrypt);
607 	free_sa_dir(&ctx->decrypt);
608 }
609 
exit_tfm_ablk(struct crypto_skcipher * tfm)610 static void exit_tfm_ablk(struct crypto_skcipher *tfm)
611 {
612 	exit_tfm(crypto_skcipher_tfm(tfm));
613 }
614 
exit_tfm_aead(struct crypto_aead * tfm)615 static void exit_tfm_aead(struct crypto_aead *tfm)
616 {
617 	exit_tfm(crypto_aead_tfm(tfm));
618 }
619 
register_chain_var(struct crypto_tfm * tfm,u8 xpad,u32 target,int init_len,u32 ctx_addr,const u8 * key,int key_len)620 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
621 		int init_len, u32 ctx_addr, const u8 *key, int key_len)
622 {
623 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
624 	struct crypt_ctl *crypt;
625 	struct buffer_desc *buf;
626 	int i;
627 	u8 *pad;
628 	dma_addr_t pad_phys, buf_phys;
629 
630 	BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
631 	pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
632 	if (!pad)
633 		return -ENOMEM;
634 	buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
635 	if (!buf) {
636 		dma_pool_free(ctx_pool, pad, pad_phys);
637 		return -ENOMEM;
638 	}
639 	crypt = get_crypt_desc_emerg();
640 	if (!crypt) {
641 		dma_pool_free(ctx_pool, pad, pad_phys);
642 		dma_pool_free(buffer_pool, buf, buf_phys);
643 		return -EAGAIN;
644 	}
645 
646 	memcpy(pad, key, key_len);
647 	memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
648 	for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
649 		pad[i] ^= xpad;
650 	}
651 
652 	crypt->data.tfm = tfm;
653 	crypt->regist_ptr = pad;
654 	crypt->regist_buf = buf;
655 
656 	crypt->auth_offs = 0;
657 	crypt->auth_len = HMAC_PAD_BLOCKLEN;
658 	crypt->crypto_ctx = ctx_addr;
659 	crypt->src_buf = buf_phys;
660 	crypt->icv_rev_aes = target;
661 	crypt->mode = NPE_OP_HASH_GEN_ICV;
662 	crypt->init_len = init_len;
663 	crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
664 
665 	buf->next = 0;
666 	buf->buf_len = HMAC_PAD_BLOCKLEN;
667 	buf->pkt_len = 0;
668 	buf->phys_addr = pad_phys;
669 
670 	atomic_inc(&ctx->configuring);
671 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
672 	BUG_ON(qmgr_stat_overflow(SEND_QID));
673 	return 0;
674 }
675 
setup_auth(struct crypto_tfm * tfm,int encrypt,unsigned authsize,const u8 * key,int key_len,unsigned digest_len)676 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
677 		const u8 *key, int key_len, unsigned digest_len)
678 {
679 	u32 itarget, otarget, npe_ctx_addr;
680 	unsigned char *cinfo;
681 	int init_len, ret = 0;
682 	u32 cfgword;
683 	struct ix_sa_dir *dir;
684 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
685 	const struct ix_hash_algo *algo;
686 
687 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
688 	cinfo = dir->npe_ctx + dir->npe_ctx_idx;
689 	algo = ix_hash(tfm);
690 
691 	/* write cfg word to cryptinfo */
692 	cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
693 #ifndef __ARMEB__
694 	cfgword ^= 0xAA000000; /* change the "byte swap" flags */
695 #endif
696 	*(u32*)cinfo = cpu_to_be32(cfgword);
697 	cinfo += sizeof(cfgword);
698 
699 	/* write ICV to cryptinfo */
700 	memcpy(cinfo, algo->icv, digest_len);
701 	cinfo += digest_len;
702 
703 	itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
704 				+ sizeof(algo->cfgword);
705 	otarget = itarget + digest_len;
706 	init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
707 	npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
708 
709 	dir->npe_ctx_idx += init_len;
710 	dir->npe_mode |= NPE_OP_HASH_ENABLE;
711 
712 	if (!encrypt)
713 		dir->npe_mode |= NPE_OP_HASH_VERIFY;
714 
715 	ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
716 			init_len, npe_ctx_addr, key, key_len);
717 	if (ret)
718 		return ret;
719 	return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
720 			init_len, npe_ctx_addr, key, key_len);
721 }
722 
gen_rev_aes_key(struct crypto_tfm * tfm)723 static int gen_rev_aes_key(struct crypto_tfm *tfm)
724 {
725 	struct crypt_ctl *crypt;
726 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
727 	struct ix_sa_dir *dir = &ctx->decrypt;
728 
729 	crypt = get_crypt_desc_emerg();
730 	if (!crypt) {
731 		return -EAGAIN;
732 	}
733 	*(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
734 
735 	crypt->data.tfm = tfm;
736 	crypt->crypt_offs = 0;
737 	crypt->crypt_len = AES_BLOCK128;
738 	crypt->src_buf = 0;
739 	crypt->crypto_ctx = dir->npe_ctx_phys;
740 	crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
741 	crypt->mode = NPE_OP_ENC_GEN_KEY;
742 	crypt->init_len = dir->npe_ctx_idx;
743 	crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
744 
745 	atomic_inc(&ctx->configuring);
746 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
747 	BUG_ON(qmgr_stat_overflow(SEND_QID));
748 	return 0;
749 }
750 
setup_cipher(struct crypto_tfm * tfm,int encrypt,const u8 * key,int key_len)751 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
752 		const u8 *key, int key_len)
753 {
754 	u8 *cinfo;
755 	u32 cipher_cfg;
756 	u32 keylen_cfg = 0;
757 	struct ix_sa_dir *dir;
758 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
759 	int err;
760 
761 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
762 	cinfo = dir->npe_ctx;
763 
764 	if (encrypt) {
765 		cipher_cfg = cipher_cfg_enc(tfm);
766 		dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
767 	} else {
768 		cipher_cfg = cipher_cfg_dec(tfm);
769 	}
770 	if (cipher_cfg & MOD_AES) {
771 		switch (key_len) {
772 		case 16: keylen_cfg = MOD_AES128; break;
773 		case 24: keylen_cfg = MOD_AES192; break;
774 		case 32: keylen_cfg = MOD_AES256; break;
775 		default:
776 			return -EINVAL;
777 		}
778 		cipher_cfg |= keylen_cfg;
779 	} else {
780 		err = crypto_des_verify_key(tfm, key);
781 		if (err)
782 			return err;
783 	}
784 	/* write cfg word to cryptinfo */
785 	*(u32*)cinfo = cpu_to_be32(cipher_cfg);
786 	cinfo += sizeof(cipher_cfg);
787 
788 	/* write cipher key to cryptinfo */
789 	memcpy(cinfo, key, key_len);
790 	/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
791 	if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
792 		memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
793 		key_len = DES3_EDE_KEY_SIZE;
794 	}
795 	dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
796 	dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
797 	if ((cipher_cfg & MOD_AES) && !encrypt) {
798 		return gen_rev_aes_key(tfm);
799 	}
800 	return 0;
801 }
802 
chainup_buffers(struct device * dev,struct scatterlist * sg,unsigned nbytes,struct buffer_desc * buf,gfp_t flags,enum dma_data_direction dir)803 static struct buffer_desc *chainup_buffers(struct device *dev,
804 		struct scatterlist *sg,	unsigned nbytes,
805 		struct buffer_desc *buf, gfp_t flags,
806 		enum dma_data_direction dir)
807 {
808 	for (; nbytes > 0; sg = sg_next(sg)) {
809 		unsigned len = min(nbytes, sg->length);
810 		struct buffer_desc *next_buf;
811 		dma_addr_t next_buf_phys;
812 		void *ptr;
813 
814 		nbytes -= len;
815 		ptr = sg_virt(sg);
816 		next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
817 		if (!next_buf) {
818 			buf = NULL;
819 			break;
820 		}
821 		sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
822 		buf->next = next_buf;
823 		buf->phys_next = next_buf_phys;
824 		buf = next_buf;
825 
826 		buf->phys_addr = sg_dma_address(sg);
827 		buf->buf_len = len;
828 		buf->dir = dir;
829 	}
830 	buf->next = NULL;
831 	buf->phys_next = 0;
832 	return buf;
833 }
834 
ablk_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)835 static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
836 			unsigned int key_len)
837 {
838 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
839 	int ret;
840 
841 	init_completion(&ctx->completion);
842 	atomic_inc(&ctx->configuring);
843 
844 	reset_sa_dir(&ctx->encrypt);
845 	reset_sa_dir(&ctx->decrypt);
846 
847 	ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
848 	ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
849 
850 	ret = setup_cipher(&tfm->base, 0, key, key_len);
851 	if (ret)
852 		goto out;
853 	ret = setup_cipher(&tfm->base, 1, key, key_len);
854 out:
855 	if (!atomic_dec_and_test(&ctx->configuring))
856 		wait_for_completion(&ctx->completion);
857 	return ret;
858 }
859 
ablk_des3_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)860 static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
861 			    unsigned int key_len)
862 {
863 	return verify_skcipher_des3_key(tfm, key) ?:
864 	       ablk_setkey(tfm, key, key_len);
865 }
866 
ablk_rfc3686_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)867 static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
868 		unsigned int key_len)
869 {
870 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
871 
872 	/* the nonce is stored in bytes at end of key */
873 	if (key_len < CTR_RFC3686_NONCE_SIZE)
874 		return -EINVAL;
875 
876 	memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
877 			CTR_RFC3686_NONCE_SIZE);
878 
879 	key_len -= CTR_RFC3686_NONCE_SIZE;
880 	return ablk_setkey(tfm, key, key_len);
881 }
882 
ablk_perform(struct skcipher_request * req,int encrypt)883 static int ablk_perform(struct skcipher_request *req, int encrypt)
884 {
885 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
886 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
887 	unsigned ivsize = crypto_skcipher_ivsize(tfm);
888 	struct ix_sa_dir *dir;
889 	struct crypt_ctl *crypt;
890 	unsigned int nbytes = req->cryptlen;
891 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
892 	struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
893 	struct buffer_desc src_hook;
894 	struct device *dev = &pdev->dev;
895 	unsigned int offset;
896 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
897 				GFP_KERNEL : GFP_ATOMIC;
898 
899 	if (qmgr_stat_full(SEND_QID))
900 		return -EAGAIN;
901 	if (atomic_read(&ctx->configuring))
902 		return -EAGAIN;
903 
904 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
905 	req_ctx->encrypt = encrypt;
906 
907 	crypt = get_crypt_desc();
908 	if (!crypt)
909 		return -ENOMEM;
910 
911 	crypt->data.ablk_req = req;
912 	crypt->crypto_ctx = dir->npe_ctx_phys;
913 	crypt->mode = dir->npe_mode;
914 	crypt->init_len = dir->npe_ctx_idx;
915 
916 	crypt->crypt_offs = 0;
917 	crypt->crypt_len = nbytes;
918 
919 	BUG_ON(ivsize && !req->iv);
920 	memcpy(crypt->iv, req->iv, ivsize);
921 	if (ivsize > 0 && !encrypt) {
922 		offset = req->cryptlen - ivsize;
923 		scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0);
924 	}
925 	if (req->src != req->dst) {
926 		struct buffer_desc dst_hook;
927 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
928 		/* This was never tested by Intel
929 		 * for more than one dst buffer, I think. */
930 		req_ctx->dst = NULL;
931 		if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
932 					flags, DMA_FROM_DEVICE))
933 			goto free_buf_dest;
934 		src_direction = DMA_TO_DEVICE;
935 		req_ctx->dst = dst_hook.next;
936 		crypt->dst_buf = dst_hook.phys_next;
937 	} else {
938 		req_ctx->dst = NULL;
939 	}
940 	req_ctx->src = NULL;
941 	if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
942 				flags, src_direction))
943 		goto free_buf_src;
944 
945 	req_ctx->src = src_hook.next;
946 	crypt->src_buf = src_hook.phys_next;
947 	crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
948 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
949 	BUG_ON(qmgr_stat_overflow(SEND_QID));
950 	return -EINPROGRESS;
951 
952 free_buf_src:
953 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
954 free_buf_dest:
955 	if (req->src != req->dst) {
956 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
957 	}
958 	crypt->ctl_flags = CTL_FLAG_UNUSED;
959 	return -ENOMEM;
960 }
961 
ablk_encrypt(struct skcipher_request * req)962 static int ablk_encrypt(struct skcipher_request *req)
963 {
964 	return ablk_perform(req, 1);
965 }
966 
ablk_decrypt(struct skcipher_request * req)967 static int ablk_decrypt(struct skcipher_request *req)
968 {
969 	return ablk_perform(req, 0);
970 }
971 
ablk_rfc3686_crypt(struct skcipher_request * req)972 static int ablk_rfc3686_crypt(struct skcipher_request *req)
973 {
974 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
975 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
976 	u8 iv[CTR_RFC3686_BLOCK_SIZE];
977 	u8 *info = req->iv;
978 	int ret;
979 
980 	/* set up counter block */
981         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
982 	memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
983 
984 	/* initialize counter portion of counter block */
985 	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
986 		cpu_to_be32(1);
987 
988 	req->iv = iv;
989 	ret = ablk_perform(req, 1);
990 	req->iv = info;
991 	return ret;
992 }
993 
aead_perform(struct aead_request * req,int encrypt,int cryptoffset,int eff_cryptlen,u8 * iv)994 static int aead_perform(struct aead_request *req, int encrypt,
995 		int cryptoffset, int eff_cryptlen, u8 *iv)
996 {
997 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
998 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
999 	unsigned ivsize = crypto_aead_ivsize(tfm);
1000 	unsigned authsize = crypto_aead_authsize(tfm);
1001 	struct ix_sa_dir *dir;
1002 	struct crypt_ctl *crypt;
1003 	unsigned int cryptlen;
1004 	struct buffer_desc *buf, src_hook;
1005 	struct aead_ctx *req_ctx = aead_request_ctx(req);
1006 	struct device *dev = &pdev->dev;
1007 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1008 				GFP_KERNEL : GFP_ATOMIC;
1009 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1010 	unsigned int lastlen;
1011 
1012 	if (qmgr_stat_full(SEND_QID))
1013 		return -EAGAIN;
1014 	if (atomic_read(&ctx->configuring))
1015 		return -EAGAIN;
1016 
1017 	if (encrypt) {
1018 		dir = &ctx->encrypt;
1019 		cryptlen = req->cryptlen;
1020 	} else {
1021 		dir = &ctx->decrypt;
1022 		/* req->cryptlen includes the authsize when decrypting */
1023 		cryptlen = req->cryptlen -authsize;
1024 		eff_cryptlen -= authsize;
1025 	}
1026 	crypt = get_crypt_desc();
1027 	if (!crypt)
1028 		return -ENOMEM;
1029 
1030 	crypt->data.aead_req = req;
1031 	crypt->crypto_ctx = dir->npe_ctx_phys;
1032 	crypt->mode = dir->npe_mode;
1033 	crypt->init_len = dir->npe_ctx_idx;
1034 
1035 	crypt->crypt_offs = cryptoffset;
1036 	crypt->crypt_len = eff_cryptlen;
1037 
1038 	crypt->auth_offs = 0;
1039 	crypt->auth_len = req->assoclen + cryptlen;
1040 	BUG_ON(ivsize && !req->iv);
1041 	memcpy(crypt->iv, req->iv, ivsize);
1042 
1043 	buf = chainup_buffers(dev, req->src, crypt->auth_len,
1044 			      &src_hook, flags, src_direction);
1045 	req_ctx->src = src_hook.next;
1046 	crypt->src_buf = src_hook.phys_next;
1047 	if (!buf)
1048 		goto free_buf_src;
1049 
1050 	lastlen = buf->buf_len;
1051 	if (lastlen >= authsize)
1052 		crypt->icv_rev_aes = buf->phys_addr +
1053 				     buf->buf_len - authsize;
1054 
1055 	req_ctx->dst = NULL;
1056 
1057 	if (req->src != req->dst) {
1058 		struct buffer_desc dst_hook;
1059 
1060 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
1061 		src_direction = DMA_TO_DEVICE;
1062 
1063 		buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1064 				      &dst_hook, flags, DMA_FROM_DEVICE);
1065 		req_ctx->dst = dst_hook.next;
1066 		crypt->dst_buf = dst_hook.phys_next;
1067 
1068 		if (!buf)
1069 			goto free_buf_dst;
1070 
1071 		if (encrypt) {
1072 			lastlen = buf->buf_len;
1073 			if (lastlen >= authsize)
1074 				crypt->icv_rev_aes = buf->phys_addr +
1075 						     buf->buf_len - authsize;
1076 		}
1077 	}
1078 
1079 	if (unlikely(lastlen < authsize)) {
1080 		/* The 12 hmac bytes are scattered,
1081 		 * we need to copy them into a safe buffer */
1082 		req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1083 				&crypt->icv_rev_aes);
1084 		if (unlikely(!req_ctx->hmac_virt))
1085 			goto free_buf_dst;
1086 		if (!encrypt) {
1087 			scatterwalk_map_and_copy(req_ctx->hmac_virt,
1088 				req->src, cryptlen, authsize, 0);
1089 		}
1090 		req_ctx->encrypt = encrypt;
1091 	} else {
1092 		req_ctx->hmac_virt = NULL;
1093 	}
1094 
1095 	crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1096 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1097 	BUG_ON(qmgr_stat_overflow(SEND_QID));
1098 	return -EINPROGRESS;
1099 
1100 free_buf_dst:
1101 	free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1102 free_buf_src:
1103 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1104 	crypt->ctl_flags = CTL_FLAG_UNUSED;
1105 	return -ENOMEM;
1106 }
1107 
aead_setup(struct crypto_aead * tfm,unsigned int authsize)1108 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1109 {
1110 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1111 	unsigned digest_len = crypto_aead_maxauthsize(tfm);
1112 	int ret;
1113 
1114 	if (!ctx->enckey_len && !ctx->authkey_len)
1115 		return 0;
1116 	init_completion(&ctx->completion);
1117 	atomic_inc(&ctx->configuring);
1118 
1119 	reset_sa_dir(&ctx->encrypt);
1120 	reset_sa_dir(&ctx->decrypt);
1121 
1122 	ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1123 	if (ret)
1124 		goto out;
1125 	ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1126 	if (ret)
1127 		goto out;
1128 	ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1129 			ctx->authkey_len, digest_len);
1130 	if (ret)
1131 		goto out;
1132 	ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1133 			ctx->authkey_len, digest_len);
1134 out:
1135 	if (!atomic_dec_and_test(&ctx->configuring))
1136 		wait_for_completion(&ctx->completion);
1137 	return ret;
1138 }
1139 
aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1140 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1141 {
1142 	int max = crypto_aead_maxauthsize(tfm) >> 2;
1143 
1144 	if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1145 		return -EINVAL;
1146 	return aead_setup(tfm, authsize);
1147 }
1148 
aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1149 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1150 			unsigned int keylen)
1151 {
1152 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1153 	struct crypto_authenc_keys keys;
1154 
1155 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1156 		goto badkey;
1157 
1158 	if (keys.authkeylen > sizeof(ctx->authkey))
1159 		goto badkey;
1160 
1161 	if (keys.enckeylen > sizeof(ctx->enckey))
1162 		goto badkey;
1163 
1164 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1165 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1166 	ctx->authkey_len = keys.authkeylen;
1167 	ctx->enckey_len = keys.enckeylen;
1168 
1169 	memzero_explicit(&keys, sizeof(keys));
1170 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1171 badkey:
1172 	memzero_explicit(&keys, sizeof(keys));
1173 	return -EINVAL;
1174 }
1175 
des3_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1176 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1177 			    unsigned int keylen)
1178 {
1179 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1180 	struct crypto_authenc_keys keys;
1181 	int err;
1182 
1183 	err = crypto_authenc_extractkeys(&keys, key, keylen);
1184 	if (unlikely(err))
1185 		goto badkey;
1186 
1187 	err = -EINVAL;
1188 	if (keys.authkeylen > sizeof(ctx->authkey))
1189 		goto badkey;
1190 
1191 	err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1192 	if (err)
1193 		goto badkey;
1194 
1195 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1196 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1197 	ctx->authkey_len = keys.authkeylen;
1198 	ctx->enckey_len = keys.enckeylen;
1199 
1200 	memzero_explicit(&keys, sizeof(keys));
1201 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1202 badkey:
1203 	memzero_explicit(&keys, sizeof(keys));
1204 	return err;
1205 }
1206 
aead_encrypt(struct aead_request * req)1207 static int aead_encrypt(struct aead_request *req)
1208 {
1209 	return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1210 }
1211 
aead_decrypt(struct aead_request * req)1212 static int aead_decrypt(struct aead_request *req)
1213 {
1214 	return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1215 }
1216 
1217 static struct ixp_alg ixp4xx_algos[] = {
1218 {
1219 	.crypto	= {
1220 		.base.cra_name		= "cbc(des)",
1221 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1222 
1223 		.min_keysize		= DES_KEY_SIZE,
1224 		.max_keysize		= DES_KEY_SIZE,
1225 		.ivsize			= DES_BLOCK_SIZE,
1226 	},
1227 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1228 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1229 
1230 }, {
1231 	.crypto	= {
1232 		.base.cra_name		= "ecb(des)",
1233 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1234 		.min_keysize		= DES_KEY_SIZE,
1235 		.max_keysize		= DES_KEY_SIZE,
1236 	},
1237 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1238 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1239 }, {
1240 	.crypto	= {
1241 		.base.cra_name		= "cbc(des3_ede)",
1242 		.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1243 
1244 		.min_keysize		= DES3_EDE_KEY_SIZE,
1245 		.max_keysize		= DES3_EDE_KEY_SIZE,
1246 		.ivsize			= DES3_EDE_BLOCK_SIZE,
1247 		.setkey			= ablk_des3_setkey,
1248 	},
1249 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1250 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1251 }, {
1252 	.crypto	= {
1253 		.base.cra_name		= "ecb(des3_ede)",
1254 		.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1255 
1256 		.min_keysize		= DES3_EDE_KEY_SIZE,
1257 		.max_keysize		= DES3_EDE_KEY_SIZE,
1258 		.setkey			= ablk_des3_setkey,
1259 	},
1260 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1261 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1262 }, {
1263 	.crypto	= {
1264 		.base.cra_name		= "cbc(aes)",
1265 		.base.cra_blocksize	= AES_BLOCK_SIZE,
1266 
1267 		.min_keysize		= AES_MIN_KEY_SIZE,
1268 		.max_keysize		= AES_MAX_KEY_SIZE,
1269 		.ivsize			= AES_BLOCK_SIZE,
1270 	},
1271 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1272 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1273 }, {
1274 	.crypto	= {
1275 		.base.cra_name		= "ecb(aes)",
1276 		.base.cra_blocksize	= AES_BLOCK_SIZE,
1277 
1278 		.min_keysize		= AES_MIN_KEY_SIZE,
1279 		.max_keysize		= AES_MAX_KEY_SIZE,
1280 	},
1281 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1282 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1283 }, {
1284 	.crypto	= {
1285 		.base.cra_name		= "ctr(aes)",
1286 		.base.cra_blocksize	= 1,
1287 
1288 		.min_keysize		= AES_MIN_KEY_SIZE,
1289 		.max_keysize		= AES_MAX_KEY_SIZE,
1290 		.ivsize			= AES_BLOCK_SIZE,
1291 	},
1292 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1293 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1294 }, {
1295 	.crypto	= {
1296 		.base.cra_name		= "rfc3686(ctr(aes))",
1297 		.base.cra_blocksize	= 1,
1298 
1299 		.min_keysize		= AES_MIN_KEY_SIZE,
1300 		.max_keysize		= AES_MAX_KEY_SIZE,
1301 		.ivsize			= AES_BLOCK_SIZE,
1302 		.setkey			= ablk_rfc3686_setkey,
1303 		.encrypt		= ablk_rfc3686_crypt,
1304 		.decrypt		= ablk_rfc3686_crypt,
1305 	},
1306 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1307 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1308 } };
1309 
1310 static struct ixp_aead_alg ixp4xx_aeads[] = {
1311 {
1312 	.crypto	= {
1313 		.base = {
1314 			.cra_name	= "authenc(hmac(md5),cbc(des))",
1315 			.cra_blocksize	= DES_BLOCK_SIZE,
1316 		},
1317 		.ivsize		= DES_BLOCK_SIZE,
1318 		.maxauthsize	= MD5_DIGEST_SIZE,
1319 	},
1320 	.hash = &hash_alg_md5,
1321 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1322 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1323 }, {
1324 	.crypto	= {
1325 		.base = {
1326 			.cra_name	= "authenc(hmac(md5),cbc(des3_ede))",
1327 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1328 		},
1329 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1330 		.maxauthsize	= MD5_DIGEST_SIZE,
1331 		.setkey		= des3_aead_setkey,
1332 	},
1333 	.hash = &hash_alg_md5,
1334 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1335 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1336 }, {
1337 	.crypto	= {
1338 		.base = {
1339 			.cra_name	= "authenc(hmac(sha1),cbc(des))",
1340 			.cra_blocksize	= DES_BLOCK_SIZE,
1341 		},
1342 			.ivsize		= DES_BLOCK_SIZE,
1343 			.maxauthsize	= SHA1_DIGEST_SIZE,
1344 	},
1345 	.hash = &hash_alg_sha1,
1346 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1347 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1348 }, {
1349 	.crypto	= {
1350 		.base = {
1351 			.cra_name	= "authenc(hmac(sha1),cbc(des3_ede))",
1352 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1353 		},
1354 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1355 		.maxauthsize	= SHA1_DIGEST_SIZE,
1356 		.setkey		= des3_aead_setkey,
1357 	},
1358 	.hash = &hash_alg_sha1,
1359 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1360 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1361 }, {
1362 	.crypto	= {
1363 		.base = {
1364 			.cra_name	= "authenc(hmac(md5),cbc(aes))",
1365 			.cra_blocksize	= AES_BLOCK_SIZE,
1366 		},
1367 		.ivsize		= AES_BLOCK_SIZE,
1368 		.maxauthsize	= MD5_DIGEST_SIZE,
1369 	},
1370 	.hash = &hash_alg_md5,
1371 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1372 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1373 }, {
1374 	.crypto	= {
1375 		.base = {
1376 			.cra_name	= "authenc(hmac(sha1),cbc(aes))",
1377 			.cra_blocksize	= AES_BLOCK_SIZE,
1378 		},
1379 		.ivsize		= AES_BLOCK_SIZE,
1380 		.maxauthsize	= SHA1_DIGEST_SIZE,
1381 	},
1382 	.hash = &hash_alg_sha1,
1383 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1384 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1385 } };
1386 
1387 #define IXP_POSTFIX "-ixp4xx"
1388 
1389 static const struct platform_device_info ixp_dev_info __initdata = {
1390 	.name		= DRIVER_NAME,
1391 	.id		= 0,
1392 	.dma_mask	= DMA_BIT_MASK(32),
1393 };
1394 
ixp_module_init(void)1395 static int __init ixp_module_init(void)
1396 {
1397 	int num = ARRAY_SIZE(ixp4xx_algos);
1398 	int i, err;
1399 
1400 	pdev = platform_device_register_full(&ixp_dev_info);
1401 	if (IS_ERR(pdev))
1402 		return PTR_ERR(pdev);
1403 
1404 	spin_lock_init(&desc_lock);
1405 	spin_lock_init(&emerg_lock);
1406 
1407 	err = init_ixp_crypto(&pdev->dev);
1408 	if (err) {
1409 		platform_device_unregister(pdev);
1410 		return err;
1411 	}
1412 	for (i=0; i< num; i++) {
1413 		struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1414 
1415 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1416 			"%s"IXP_POSTFIX, cra->base.cra_name) >=
1417 			CRYPTO_MAX_ALG_NAME)
1418 		{
1419 			continue;
1420 		}
1421 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1422 			continue;
1423 		}
1424 
1425 		/* block ciphers */
1426 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1427 				      CRYPTO_ALG_ASYNC |
1428 				      CRYPTO_ALG_ALLOCATES_MEMORY;
1429 		if (!cra->setkey)
1430 			cra->setkey = ablk_setkey;
1431 		if (!cra->encrypt)
1432 			cra->encrypt = ablk_encrypt;
1433 		if (!cra->decrypt)
1434 			cra->decrypt = ablk_decrypt;
1435 		cra->init = init_tfm_ablk;
1436 		cra->exit = exit_tfm_ablk;
1437 
1438 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1439 		cra->base.cra_module = THIS_MODULE;
1440 		cra->base.cra_alignmask = 3;
1441 		cra->base.cra_priority = 300;
1442 		if (crypto_register_skcipher(cra))
1443 			printk(KERN_ERR "Failed to register '%s'\n",
1444 				cra->base.cra_name);
1445 		else
1446 			ixp4xx_algos[i].registered = 1;
1447 	}
1448 
1449 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1450 		struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1451 
1452 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1453 			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
1454 		    CRYPTO_MAX_ALG_NAME)
1455 			continue;
1456 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1457 			continue;
1458 
1459 		/* authenc */
1460 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1461 				      CRYPTO_ALG_ASYNC |
1462 				      CRYPTO_ALG_ALLOCATES_MEMORY;
1463 		cra->setkey = cra->setkey ?: aead_setkey;
1464 		cra->setauthsize = aead_setauthsize;
1465 		cra->encrypt = aead_encrypt;
1466 		cra->decrypt = aead_decrypt;
1467 		cra->init = init_tfm_aead;
1468 		cra->exit = exit_tfm_aead;
1469 
1470 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1471 		cra->base.cra_module = THIS_MODULE;
1472 		cra->base.cra_alignmask = 3;
1473 		cra->base.cra_priority = 300;
1474 
1475 		if (crypto_register_aead(cra))
1476 			printk(KERN_ERR "Failed to register '%s'\n",
1477 				cra->base.cra_driver_name);
1478 		else
1479 			ixp4xx_aeads[i].registered = 1;
1480 	}
1481 	return 0;
1482 }
1483 
ixp_module_exit(void)1484 static void __exit ixp_module_exit(void)
1485 {
1486 	int num = ARRAY_SIZE(ixp4xx_algos);
1487 	int i;
1488 
1489 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1490 		if (ixp4xx_aeads[i].registered)
1491 			crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1492 	}
1493 
1494 	for (i=0; i< num; i++) {
1495 		if (ixp4xx_algos[i].registered)
1496 			crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1497 	}
1498 	release_ixp_crypto(&pdev->dev);
1499 	platform_device_unregister(pdev);
1500 }
1501 
1502 module_init(ixp_module_init);
1503 module_exit(ixp_module_exit);
1504 
1505 MODULE_LICENSE("GPL");
1506 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1507 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1508 
1509