• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
4  *
5  * Copyright (C) 2014 Atmel Corporation
6  *
7  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
8  */
9 
10 #include <asm/barrier.h>
11 #include <dt-bindings/dma/at91.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 
25 #include "dmaengine.h"
26 
27 /* Global registers */
28 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
29 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
30 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
31 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
32 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
33 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
34 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
35 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
36 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
37 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
38 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
39 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
40 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
41 #define AT_XDMAC_GRS		0x28	/* Global Channel Read Suspend Register */
42 #define AT_XDMAC_GWS		0x2C	/* Global Write Suspend Register */
43 #define AT_XDMAC_GRWS		0x30	/* Global Channel Read Write Suspend Register */
44 #define AT_XDMAC_GRWR		0x34	/* Global Channel Read Write Resume Register */
45 #define AT_XDMAC_GSWR		0x38	/* Global Channel Software Request Register */
46 #define AT_XDMAC_GSWS		0x3C	/* Global channel Software Request Status Register */
47 #define AT_XDMAC_GSWF		0x40	/* Global Channel Software Flush Request Register */
48 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
49 
50 /* Channel relative registers offsets */
51 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
52 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
53 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
54 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
55 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
56 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
57 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
58 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
59 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
60 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
61 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
62 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
63 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
64 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
65 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
66 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
67 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
68 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
69 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
70 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
71 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
72 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
73 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
74 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
75 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
76 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
77 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
78 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
79 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
80 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
81 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
82 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
83 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
84 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
85 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
86 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
87 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
88 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
89 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
90 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
91 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
92 #define		AT_XDMAC_CNDC_NDVIEW_MASK	GENMASK(28, 27)
93 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
94 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
95 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
96 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
97 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
98 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
99 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
100 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
101 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
102 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
103 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
104 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
105 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
106 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
107 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
108 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
109 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
110 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
111 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
112 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
113 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
114 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
115 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
116 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
117 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
118 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
119 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
120 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
121 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
122 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
123 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
124 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
125 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
126 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
127 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
128 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
129 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
130 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
131 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
132 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
133 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
134 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
135 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
136 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
137 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
138 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
139 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
140 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
141 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
142 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
143 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
144 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
145 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
146 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
147 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
148 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
149 #define		AT_XDMAC_CC_PERID(i)	((0x7f & (i)) << 24)	/* Channel Peripheral Identifier */
150 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
151 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
152 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
153 
154 #define AT_XDMAC_CHAN_REG_BASE	0x50	/* Channel registers base address */
155 
156 /* Microblock control members */
157 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
158 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
159 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
160 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
161 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
162 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
163 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
164 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
165 
166 #define AT_XDMAC_MAX_CHAN	0x20
167 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
168 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
169 #define AT_XDMAC_RESIDUE_MAX_RETRIES	5
170 
171 #define AT_XDMAC_DMA_BUSWIDTHS\
172 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
173 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
174 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
175 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
176 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
177 
178 enum atc_status {
179 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
180 	AT_XDMAC_CHAN_IS_PAUSED,
181 };
182 
183 /* ----- Channels ----- */
184 struct at_xdmac_chan {
185 	struct dma_chan			chan;
186 	void __iomem			*ch_regs;
187 	u32				mask;		/* Channel Mask */
188 	u32				cfg;		/* Channel Configuration Register */
189 	u8				perid;		/* Peripheral ID */
190 	u8				perif;		/* Peripheral Interface */
191 	u8				memif;		/* Memory Interface */
192 	u32				save_cc;
193 	u32				save_cim;
194 	u32				save_cnda;
195 	u32				save_cndc;
196 	u32				irq_status;
197 	unsigned long			status;
198 	struct tasklet_struct		tasklet;
199 	struct dma_slave_config		sconfig;
200 
201 	spinlock_t			lock;
202 
203 	struct list_head		xfers_list;
204 	struct list_head		free_descs_list;
205 };
206 
207 
208 /* ----- Controller ----- */
209 struct at_xdmac {
210 	struct dma_device	dma;
211 	void __iomem		*regs;
212 	int			irq;
213 	struct clk		*clk;
214 	u32			save_gim;
215 	struct dma_pool		*at_xdmac_desc_pool;
216 	struct at_xdmac_chan	chan[];
217 };
218 
219 
220 /* ----- Descriptors ----- */
221 
222 /* Linked List Descriptor */
223 struct at_xdmac_lld {
224 	u32 mbr_nda;	/* Next Descriptor Member */
225 	u32 mbr_ubc;	/* Microblock Control Member */
226 	u32 mbr_sa;	/* Source Address Member */
227 	u32 mbr_da;	/* Destination Address Member */
228 	u32 mbr_cfg;	/* Configuration Register */
229 	u32 mbr_bc;	/* Block Control Register */
230 	u32 mbr_ds;	/* Data Stride Register */
231 	u32 mbr_sus;	/* Source Microblock Stride Register */
232 	u32 mbr_dus;	/* Destination Microblock Stride Register */
233 };
234 
235 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
236 struct at_xdmac_desc {
237 	struct at_xdmac_lld		lld;
238 	enum dma_transfer_direction	direction;
239 	struct dma_async_tx_descriptor	tx_dma_desc;
240 	struct list_head		desc_node;
241 	/* Following members are only used by the first descriptor */
242 	bool				active_xfer;
243 	unsigned int			xfer_size;
244 	struct list_head		descs_list;
245 	struct list_head		xfer_node;
246 } __aligned(sizeof(u64));
247 
at_xdmac_chan_reg_base(struct at_xdmac * atxdmac,unsigned int chan_nb)248 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
249 {
250 	return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
251 }
252 
253 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
254 #define at_xdmac_write(atxdmac, reg, value) \
255 	writel_relaxed((value), (atxdmac)->regs + (reg))
256 
257 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
258 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
259 
to_at_xdmac_chan(struct dma_chan * dchan)260 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
261 {
262 	return container_of(dchan, struct at_xdmac_chan, chan);
263 }
264 
chan2dev(struct dma_chan * chan)265 static struct device *chan2dev(struct dma_chan *chan)
266 {
267 	return &chan->dev->device;
268 }
269 
to_at_xdmac(struct dma_device * ddev)270 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
271 {
272 	return container_of(ddev, struct at_xdmac, dma);
273 }
274 
txd_to_at_desc(struct dma_async_tx_descriptor * txd)275 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
276 {
277 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
278 }
279 
at_xdmac_chan_is_cyclic(struct at_xdmac_chan * atchan)280 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
281 {
282 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
283 }
284 
at_xdmac_chan_is_paused(struct at_xdmac_chan * atchan)285 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
286 {
287 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
288 }
289 
at_xdmac_csize(u32 maxburst)290 static inline int at_xdmac_csize(u32 maxburst)
291 {
292 	int csize;
293 
294 	csize = ffs(maxburst) - 1;
295 	if (csize > 4)
296 		csize = -EINVAL;
297 
298 	return csize;
299 };
300 
at_xdmac_chan_is_peripheral_xfer(u32 cfg)301 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
302 {
303 	return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
304 }
305 
at_xdmac_get_dwidth(u32 cfg)306 static inline u8 at_xdmac_get_dwidth(u32 cfg)
307 {
308 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
309 };
310 
311 static unsigned int init_nr_desc_per_channel = 64;
312 module_param(init_nr_desc_per_channel, uint, 0644);
313 MODULE_PARM_DESC(init_nr_desc_per_channel,
314 		 "initial descriptors per channel (default: 64)");
315 
316 
at_xdmac_chan_is_enabled(struct at_xdmac_chan * atchan)317 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
318 {
319 	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
320 }
321 
at_xdmac_off(struct at_xdmac * atxdmac)322 static void at_xdmac_off(struct at_xdmac *atxdmac)
323 {
324 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
325 
326 	/* Wait that all chans are disabled. */
327 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
328 		cpu_relax();
329 
330 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
331 }
332 
333 /* Call with lock hold. */
at_xdmac_start_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * first)334 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
335 				struct at_xdmac_desc *first)
336 {
337 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
338 	u32		reg;
339 
340 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
341 
342 	/* Set transfer as active to not try to start it again. */
343 	first->active_xfer = true;
344 
345 	/* Tell xdmac where to get the first descriptor. */
346 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
347 	      | AT_XDMAC_CNDA_NDAIF(atchan->memif);
348 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
349 
350 	/*
351 	 * When doing non cyclic transfer we need to use the next
352 	 * descriptor view 2 since some fields of the configuration register
353 	 * depend on transfer size and src/dest addresses.
354 	 */
355 	if (at_xdmac_chan_is_cyclic(atchan))
356 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
357 	else if ((first->lld.mbr_ubc &
358 		  AT_XDMAC_CNDC_NDVIEW_MASK) == AT_XDMAC_MBR_UBC_NDV3)
359 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
360 	else
361 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
362 	/*
363 	 * Even if the register will be updated from the configuration in the
364 	 * descriptor when using view 2 or higher, the PROT bit won't be set
365 	 * properly. This bit can be modified only by using the channel
366 	 * configuration register.
367 	 */
368 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
369 
370 	reg |= AT_XDMAC_CNDC_NDDUP
371 	       | AT_XDMAC_CNDC_NDSUP
372 	       | AT_XDMAC_CNDC_NDE;
373 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
374 
375 	dev_vdbg(chan2dev(&atchan->chan),
376 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
377 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
378 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
379 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
380 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
381 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
382 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
383 
384 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
385 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
386 	/*
387 	 * Request Overflow Error is only for peripheral synchronized transfers
388 	 */
389 	if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
390 		reg |= AT_XDMAC_CIE_ROIE;
391 
392 	/*
393 	 * There is no end of list when doing cyclic dma, we need to get
394 	 * an interrupt after each periods.
395 	 */
396 	if (at_xdmac_chan_is_cyclic(atchan))
397 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
398 				    reg | AT_XDMAC_CIE_BIE);
399 	else
400 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
401 				    reg | AT_XDMAC_CIE_LIE);
402 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
403 	dev_vdbg(chan2dev(&atchan->chan),
404 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
405 	wmb();
406 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
407 
408 	dev_vdbg(chan2dev(&atchan->chan),
409 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
410 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
411 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
412 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
413 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
414 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
415 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
416 
417 }
418 
at_xdmac_tx_submit(struct dma_async_tx_descriptor * tx)419 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
420 {
421 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
422 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
423 	dma_cookie_t		cookie;
424 	unsigned long		irqflags;
425 
426 	spin_lock_irqsave(&atchan->lock, irqflags);
427 	cookie = dma_cookie_assign(tx);
428 
429 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
430 	spin_unlock_irqrestore(&atchan->lock, irqflags);
431 
432 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
433 		 __func__, atchan, desc);
434 
435 	return cookie;
436 }
437 
at_xdmac_alloc_desc(struct dma_chan * chan,gfp_t gfp_flags)438 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
439 						 gfp_t gfp_flags)
440 {
441 	struct at_xdmac_desc	*desc;
442 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
443 	dma_addr_t		phys;
444 
445 	desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
446 	if (desc) {
447 		INIT_LIST_HEAD(&desc->descs_list);
448 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
449 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
450 		desc->tx_dma_desc.phys = phys;
451 	}
452 
453 	return desc;
454 }
455 
at_xdmac_init_used_desc(struct at_xdmac_desc * desc)456 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
457 {
458 	memset(&desc->lld, 0, sizeof(desc->lld));
459 	INIT_LIST_HEAD(&desc->descs_list);
460 	desc->direction = DMA_TRANS_NONE;
461 	desc->xfer_size = 0;
462 	desc->active_xfer = false;
463 }
464 
465 /* Call must be protected by lock. */
at_xdmac_get_desc(struct at_xdmac_chan * atchan)466 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
467 {
468 	struct at_xdmac_desc *desc;
469 
470 	if (list_empty(&atchan->free_descs_list)) {
471 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
472 	} else {
473 		desc = list_first_entry(&atchan->free_descs_list,
474 					struct at_xdmac_desc, desc_node);
475 		list_del(&desc->desc_node);
476 		at_xdmac_init_used_desc(desc);
477 	}
478 
479 	return desc;
480 }
481 
at_xdmac_queue_desc(struct dma_chan * chan,struct at_xdmac_desc * prev,struct at_xdmac_desc * desc)482 static void at_xdmac_queue_desc(struct dma_chan *chan,
483 				struct at_xdmac_desc *prev,
484 				struct at_xdmac_desc *desc)
485 {
486 	if (!prev || !desc)
487 		return;
488 
489 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
490 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
491 
492 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
493 		__func__, prev, &prev->lld.mbr_nda);
494 }
495 
at_xdmac_increment_block_count(struct dma_chan * chan,struct at_xdmac_desc * desc)496 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
497 						  struct at_xdmac_desc *desc)
498 {
499 	if (!desc)
500 		return;
501 
502 	desc->lld.mbr_bc++;
503 
504 	dev_dbg(chan2dev(chan),
505 		"%s: incrementing the block count of the desc 0x%p\n",
506 		__func__, desc);
507 }
508 
at_xdmac_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)509 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
510 				       struct of_dma *of_dma)
511 {
512 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
513 	struct at_xdmac_chan	*atchan;
514 	struct dma_chan		*chan;
515 	struct device		*dev = atxdmac->dma.dev;
516 
517 	if (dma_spec->args_count != 1) {
518 		dev_err(dev, "dma phandler args: bad number of args\n");
519 		return NULL;
520 	}
521 
522 	chan = dma_get_any_slave_channel(&atxdmac->dma);
523 	if (!chan) {
524 		dev_err(dev, "can't get a dma channel\n");
525 		return NULL;
526 	}
527 
528 	atchan = to_at_xdmac_chan(chan);
529 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
530 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
531 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
532 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
533 		 atchan->memif, atchan->perif, atchan->perid);
534 
535 	return chan;
536 }
537 
at_xdmac_compute_chan_conf(struct dma_chan * chan,enum dma_transfer_direction direction)538 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
539 				      enum dma_transfer_direction direction)
540 {
541 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
542 	int			csize, dwidth;
543 
544 	if (direction == DMA_DEV_TO_MEM) {
545 		atchan->cfg =
546 			AT91_XDMAC_DT_PERID(atchan->perid)
547 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
548 			| AT_XDMAC_CC_SAM_FIXED_AM
549 			| AT_XDMAC_CC_DIF(atchan->memif)
550 			| AT_XDMAC_CC_SIF(atchan->perif)
551 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
552 			| AT_XDMAC_CC_DSYNC_PER2MEM
553 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
554 			| AT_XDMAC_CC_TYPE_PER_TRAN;
555 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
556 		if (csize < 0) {
557 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
558 			return -EINVAL;
559 		}
560 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
561 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
562 		if (dwidth < 0) {
563 			dev_err(chan2dev(chan), "invalid src addr width value\n");
564 			return -EINVAL;
565 		}
566 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
567 	} else if (direction == DMA_MEM_TO_DEV) {
568 		atchan->cfg =
569 			AT91_XDMAC_DT_PERID(atchan->perid)
570 			| AT_XDMAC_CC_DAM_FIXED_AM
571 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
572 			| AT_XDMAC_CC_DIF(atchan->perif)
573 			| AT_XDMAC_CC_SIF(atchan->memif)
574 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
575 			| AT_XDMAC_CC_DSYNC_MEM2PER
576 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
577 			| AT_XDMAC_CC_TYPE_PER_TRAN;
578 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
579 		if (csize < 0) {
580 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
581 			return -EINVAL;
582 		}
583 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
584 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
585 		if (dwidth < 0) {
586 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
587 			return -EINVAL;
588 		}
589 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
590 	}
591 
592 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
593 
594 	return 0;
595 }
596 
597 /*
598  * Only check that maxburst and addr width values are supported by the
599  * the controller but not that the configuration is good to perform the
600  * transfer since we don't know the direction at this stage.
601  */
at_xdmac_check_slave_config(struct dma_slave_config * sconfig)602 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
603 {
604 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
605 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
606 		return -EINVAL;
607 
608 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
609 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
610 		return -EINVAL;
611 
612 	return 0;
613 }
614 
at_xdmac_set_slave_config(struct dma_chan * chan,struct dma_slave_config * sconfig)615 static int at_xdmac_set_slave_config(struct dma_chan *chan,
616 				      struct dma_slave_config *sconfig)
617 {
618 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
619 
620 	if (at_xdmac_check_slave_config(sconfig)) {
621 		dev_err(chan2dev(chan), "invalid slave configuration\n");
622 		return -EINVAL;
623 	}
624 
625 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
626 
627 	return 0;
628 }
629 
630 static struct dma_async_tx_descriptor *
at_xdmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)631 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
632 		       unsigned int sg_len, enum dma_transfer_direction direction,
633 		       unsigned long flags, void *context)
634 {
635 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
636 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
637 	struct scatterlist		*sg;
638 	int				i;
639 	unsigned int			xfer_size = 0;
640 	unsigned long			irqflags;
641 	struct dma_async_tx_descriptor	*ret = NULL;
642 
643 	if (!sgl)
644 		return NULL;
645 
646 	if (!is_slave_direction(direction)) {
647 		dev_err(chan2dev(chan), "invalid DMA direction\n");
648 		return NULL;
649 	}
650 
651 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
652 		 __func__, sg_len,
653 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
654 		 flags);
655 
656 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
657 	spin_lock_irqsave(&atchan->lock, irqflags);
658 
659 	if (at_xdmac_compute_chan_conf(chan, direction))
660 		goto spin_unlock;
661 
662 	/* Prepare descriptors. */
663 	for_each_sg(sgl, sg, sg_len, i) {
664 		struct at_xdmac_desc	*desc = NULL;
665 		u32			len, mem, dwidth, fixed_dwidth;
666 
667 		len = sg_dma_len(sg);
668 		mem = sg_dma_address(sg);
669 		if (unlikely(!len)) {
670 			dev_err(chan2dev(chan), "sg data length is zero\n");
671 			goto spin_unlock;
672 		}
673 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
674 			 __func__, i, len, mem);
675 
676 		desc = at_xdmac_get_desc(atchan);
677 		if (!desc) {
678 			dev_err(chan2dev(chan), "can't get descriptor\n");
679 			if (first)
680 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
681 			goto spin_unlock;
682 		}
683 
684 		/* Linked list descriptor setup. */
685 		if (direction == DMA_DEV_TO_MEM) {
686 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
687 			desc->lld.mbr_da = mem;
688 		} else {
689 			desc->lld.mbr_sa = mem;
690 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
691 		}
692 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
693 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
694 			       ? dwidth
695 			       : AT_XDMAC_CC_DWIDTH_BYTE;
696 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
697 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
698 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
699 			| (len >> fixed_dwidth);				/* microblock length */
700 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
701 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
702 		dev_dbg(chan2dev(chan),
703 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
704 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
705 
706 		/* Chain lld. */
707 		if (prev)
708 			at_xdmac_queue_desc(chan, prev, desc);
709 
710 		prev = desc;
711 		if (!first)
712 			first = desc;
713 
714 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
715 			 __func__, desc, first);
716 		list_add_tail(&desc->desc_node, &first->descs_list);
717 		xfer_size += len;
718 	}
719 
720 
721 	first->tx_dma_desc.flags = flags;
722 	first->xfer_size = xfer_size;
723 	first->direction = direction;
724 	ret = &first->tx_dma_desc;
725 
726 spin_unlock:
727 	spin_unlock_irqrestore(&atchan->lock, irqflags);
728 	return ret;
729 }
730 
731 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)732 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
733 			 size_t buf_len, size_t period_len,
734 			 enum dma_transfer_direction direction,
735 			 unsigned long flags)
736 {
737 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
738 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
739 	unsigned int		periods = buf_len / period_len;
740 	int			i;
741 	unsigned long		irqflags;
742 
743 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
744 		__func__, &buf_addr, buf_len, period_len,
745 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
746 
747 	if (!is_slave_direction(direction)) {
748 		dev_err(chan2dev(chan), "invalid DMA direction\n");
749 		return NULL;
750 	}
751 
752 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
753 		dev_err(chan2dev(chan), "channel currently used\n");
754 		return NULL;
755 	}
756 
757 	if (at_xdmac_compute_chan_conf(chan, direction))
758 		return NULL;
759 
760 	for (i = 0; i < periods; i++) {
761 		struct at_xdmac_desc	*desc = NULL;
762 
763 		spin_lock_irqsave(&atchan->lock, irqflags);
764 		desc = at_xdmac_get_desc(atchan);
765 		if (!desc) {
766 			dev_err(chan2dev(chan), "can't get descriptor\n");
767 			if (first)
768 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
769 			spin_unlock_irqrestore(&atchan->lock, irqflags);
770 			return NULL;
771 		}
772 		spin_unlock_irqrestore(&atchan->lock, irqflags);
773 		dev_dbg(chan2dev(chan),
774 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
775 			__func__, desc, &desc->tx_dma_desc.phys);
776 
777 		if (direction == DMA_DEV_TO_MEM) {
778 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
779 			desc->lld.mbr_da = buf_addr + i * period_len;
780 		} else {
781 			desc->lld.mbr_sa = buf_addr + i * period_len;
782 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
783 		}
784 		desc->lld.mbr_cfg = atchan->cfg;
785 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
786 			| AT_XDMAC_MBR_UBC_NDEN
787 			| AT_XDMAC_MBR_UBC_NSEN
788 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
789 
790 		dev_dbg(chan2dev(chan),
791 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
792 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
793 
794 		/* Chain lld. */
795 		if (prev)
796 			at_xdmac_queue_desc(chan, prev, desc);
797 
798 		prev = desc;
799 		if (!first)
800 			first = desc;
801 
802 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
803 			 __func__, desc, first);
804 		list_add_tail(&desc->desc_node, &first->descs_list);
805 	}
806 
807 	at_xdmac_queue_desc(chan, prev, first);
808 	first->tx_dma_desc.flags = flags;
809 	first->xfer_size = buf_len;
810 	first->direction = direction;
811 
812 	return &first->tx_dma_desc;
813 }
814 
at_xdmac_align_width(struct dma_chan * chan,dma_addr_t addr)815 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
816 {
817 	u32 width;
818 
819 	/*
820 	 * Check address alignment to select the greater data width we
821 	 * can use.
822 	 *
823 	 * Some XDMAC implementations don't provide dword transfer, in
824 	 * this case selecting dword has the same behavior as
825 	 * selecting word transfers.
826 	 */
827 	if (!(addr & 7)) {
828 		width = AT_XDMAC_CC_DWIDTH_DWORD;
829 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
830 	} else if (!(addr & 3)) {
831 		width = AT_XDMAC_CC_DWIDTH_WORD;
832 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
833 	} else if (!(addr & 1)) {
834 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
835 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
836 	} else {
837 		width = AT_XDMAC_CC_DWIDTH_BYTE;
838 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
839 	}
840 
841 	return width;
842 }
843 
844 static struct at_xdmac_desc *
at_xdmac_interleaved_queue_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,struct at_xdmac_desc * prev,dma_addr_t src,dma_addr_t dst,struct dma_interleaved_template * xt,struct data_chunk * chunk)845 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
846 				struct at_xdmac_chan *atchan,
847 				struct at_xdmac_desc *prev,
848 				dma_addr_t src, dma_addr_t dst,
849 				struct dma_interleaved_template *xt,
850 				struct data_chunk *chunk)
851 {
852 	struct at_xdmac_desc	*desc;
853 	u32			dwidth;
854 	unsigned long		flags;
855 	size_t			ublen;
856 	/*
857 	 * WARNING: The channel configuration is set here since there is no
858 	 * dmaengine_slave_config call in this case. Moreover we don't know the
859 	 * direction, it involves we can't dynamically set the source and dest
860 	 * interface so we have to use the same one. Only interface 0 allows EBI
861 	 * access. Hopefully we can access DDR through both ports (at least on
862 	 * SAMA5D4x), so we can use the same interface for source and dest,
863 	 * that solves the fact we don't know the direction.
864 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
865 	 * match the one of another channel. If not, it could lead to spurious
866 	 * flag status.
867 	 */
868 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
869 					| AT_XDMAC_CC_DIF(0)
870 					| AT_XDMAC_CC_SIF(0)
871 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
872 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
873 
874 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
875 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
876 		dev_dbg(chan2dev(chan),
877 			"%s: chunk too big (%zu, max size %lu)...\n",
878 			__func__, chunk->size,
879 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
880 		return NULL;
881 	}
882 
883 	if (prev)
884 		dev_dbg(chan2dev(chan),
885 			"Adding items at the end of desc 0x%p\n", prev);
886 
887 	if (xt->src_inc) {
888 		if (xt->src_sgl)
889 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
890 		else
891 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
892 	}
893 
894 	if (xt->dst_inc) {
895 		if (xt->dst_sgl)
896 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
897 		else
898 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
899 	}
900 
901 	spin_lock_irqsave(&atchan->lock, flags);
902 	desc = at_xdmac_get_desc(atchan);
903 	spin_unlock_irqrestore(&atchan->lock, flags);
904 	if (!desc) {
905 		dev_err(chan2dev(chan), "can't get descriptor\n");
906 		return NULL;
907 	}
908 
909 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
910 
911 	ublen = chunk->size >> dwidth;
912 
913 	desc->lld.mbr_sa = src;
914 	desc->lld.mbr_da = dst;
915 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
916 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
917 
918 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
919 		| AT_XDMAC_MBR_UBC_NDEN
920 		| AT_XDMAC_MBR_UBC_NSEN
921 		| ublen;
922 	desc->lld.mbr_cfg = chan_cc;
923 
924 	dev_dbg(chan2dev(chan),
925 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
926 		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
927 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
928 
929 	/* Chain lld. */
930 	if (prev)
931 		at_xdmac_queue_desc(chan, prev, desc);
932 
933 	return desc;
934 }
935 
936 static struct dma_async_tx_descriptor *
at_xdmac_prep_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)937 at_xdmac_prep_interleaved(struct dma_chan *chan,
938 			  struct dma_interleaved_template *xt,
939 			  unsigned long flags)
940 {
941 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
942 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
943 	dma_addr_t		dst_addr, src_addr;
944 	size_t			src_skip = 0, dst_skip = 0, len = 0;
945 	struct data_chunk	*chunk;
946 	int			i;
947 
948 	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
949 		return NULL;
950 
951 	/*
952 	 * TODO: Handle the case where we have to repeat a chain of
953 	 * descriptors...
954 	 */
955 	if ((xt->numf > 1) && (xt->frame_size > 1))
956 		return NULL;
957 
958 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
959 		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
960 		xt->frame_size, flags);
961 
962 	src_addr = xt->src_start;
963 	dst_addr = xt->dst_start;
964 
965 	if (xt->numf > 1) {
966 		first = at_xdmac_interleaved_queue_desc(chan, atchan,
967 							NULL,
968 							src_addr, dst_addr,
969 							xt, xt->sgl);
970 
971 		/* Length of the block is (BLEN+1) microblocks. */
972 		for (i = 0; i < xt->numf - 1; i++)
973 			at_xdmac_increment_block_count(chan, first);
974 
975 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
976 			__func__, first, first);
977 		list_add_tail(&first->desc_node, &first->descs_list);
978 	} else {
979 		for (i = 0; i < xt->frame_size; i++) {
980 			size_t src_icg = 0, dst_icg = 0;
981 			struct at_xdmac_desc *desc;
982 
983 			chunk = xt->sgl + i;
984 
985 			dst_icg = dmaengine_get_dst_icg(xt, chunk);
986 			src_icg = dmaengine_get_src_icg(xt, chunk);
987 
988 			src_skip = chunk->size + src_icg;
989 			dst_skip = chunk->size + dst_icg;
990 
991 			dev_dbg(chan2dev(chan),
992 				"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
993 				__func__, chunk->size, src_icg, dst_icg);
994 
995 			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
996 							       prev,
997 							       src_addr, dst_addr,
998 							       xt, chunk);
999 			if (!desc) {
1000 				list_splice_init(&first->descs_list,
1001 						 &atchan->free_descs_list);
1002 				return NULL;
1003 			}
1004 
1005 			if (!first)
1006 				first = desc;
1007 
1008 			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1009 				__func__, desc, first);
1010 			list_add_tail(&desc->desc_node, &first->descs_list);
1011 
1012 			if (xt->src_sgl)
1013 				src_addr += src_skip;
1014 
1015 			if (xt->dst_sgl)
1016 				dst_addr += dst_skip;
1017 
1018 			len += chunk->size;
1019 			prev = desc;
1020 		}
1021 	}
1022 
1023 	first->tx_dma_desc.cookie = -EBUSY;
1024 	first->tx_dma_desc.flags = flags;
1025 	first->xfer_size = len;
1026 
1027 	return &first->tx_dma_desc;
1028 }
1029 
1030 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1031 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1032 			 size_t len, unsigned long flags)
1033 {
1034 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1035 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1036 	size_t			remaining_size = len, xfer_size = 0, ublen;
1037 	dma_addr_t		src_addr = src, dst_addr = dest;
1038 	u32			dwidth;
1039 	/*
1040 	 * WARNING: We don't know the direction, it involves we can't
1041 	 * dynamically set the source and dest interface so we have to use the
1042 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1043 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1044 	 * the same interface for source and dest, that solves the fact we
1045 	 * don't know the direction.
1046 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1047 	 * match the one of another channel. If not, it could lead to spurious
1048 	 * flag status.
1049 	 */
1050 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
1051 					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1052 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1053 					| AT_XDMAC_CC_DIF(0)
1054 					| AT_XDMAC_CC_SIF(0)
1055 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1056 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1057 	unsigned long		irqflags;
1058 
1059 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1060 		__func__, &src, &dest, len, flags);
1061 
1062 	if (unlikely(!len))
1063 		return NULL;
1064 
1065 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1066 
1067 	/* Prepare descriptors. */
1068 	while (remaining_size) {
1069 		struct at_xdmac_desc	*desc = NULL;
1070 
1071 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1072 
1073 		spin_lock_irqsave(&atchan->lock, irqflags);
1074 		desc = at_xdmac_get_desc(atchan);
1075 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1076 		if (!desc) {
1077 			dev_err(chan2dev(chan), "can't get descriptor\n");
1078 			if (first)
1079 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
1080 			return NULL;
1081 		}
1082 
1083 		/* Update src and dest addresses. */
1084 		src_addr += xfer_size;
1085 		dst_addr += xfer_size;
1086 
1087 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1088 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1089 		else
1090 			xfer_size = remaining_size;
1091 
1092 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1093 
1094 		/* Check remaining length and change data width if needed. */
1095 		dwidth = at_xdmac_align_width(chan,
1096 					      src_addr | dst_addr | xfer_size);
1097 		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1098 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1099 
1100 		ublen = xfer_size >> dwidth;
1101 		remaining_size -= xfer_size;
1102 
1103 		desc->lld.mbr_sa = src_addr;
1104 		desc->lld.mbr_da = dst_addr;
1105 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1106 			| AT_XDMAC_MBR_UBC_NDEN
1107 			| AT_XDMAC_MBR_UBC_NSEN
1108 			| ublen;
1109 		desc->lld.mbr_cfg = chan_cc;
1110 
1111 		dev_dbg(chan2dev(chan),
1112 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1113 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1114 
1115 		/* Chain lld. */
1116 		if (prev)
1117 			at_xdmac_queue_desc(chan, prev, desc);
1118 
1119 		prev = desc;
1120 		if (!first)
1121 			first = desc;
1122 
1123 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1124 			 __func__, desc, first);
1125 		list_add_tail(&desc->desc_node, &first->descs_list);
1126 	}
1127 
1128 	first->tx_dma_desc.flags = flags;
1129 	first->xfer_size = len;
1130 
1131 	return &first->tx_dma_desc;
1132 }
1133 
at_xdmac_memset_create_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,dma_addr_t dst_addr,size_t len,int value)1134 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1135 							 struct at_xdmac_chan *atchan,
1136 							 dma_addr_t dst_addr,
1137 							 size_t len,
1138 							 int value)
1139 {
1140 	struct at_xdmac_desc	*desc;
1141 	unsigned long		flags;
1142 	size_t			ublen;
1143 	u32			dwidth;
1144 	/*
1145 	 * WARNING: The channel configuration is set here since there is no
1146 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1147 	 * direction, it involves we can't dynamically set the source and dest
1148 	 * interface so we have to use the same one. Only interface 0 allows EBI
1149 	 * access. Hopefully we can access DDR through both ports (at least on
1150 	 * SAMA5D4x), so we can use the same interface for source and dest,
1151 	 * that solves the fact we don't know the direction.
1152 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1153 	 * match the one of another channel. If not, it could lead to spurious
1154 	 * flag status.
1155 	 */
1156 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
1157 					| AT_XDMAC_CC_DAM_UBS_AM
1158 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1159 					| AT_XDMAC_CC_DIF(0)
1160 					| AT_XDMAC_CC_SIF(0)
1161 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1162 					| AT_XDMAC_CC_MEMSET_HW_MODE
1163 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1164 
1165 	dwidth = at_xdmac_align_width(chan, dst_addr);
1166 
1167 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1168 		dev_err(chan2dev(chan),
1169 			"%s: Transfer too large, aborting...\n",
1170 			__func__);
1171 		return NULL;
1172 	}
1173 
1174 	spin_lock_irqsave(&atchan->lock, flags);
1175 	desc = at_xdmac_get_desc(atchan);
1176 	spin_unlock_irqrestore(&atchan->lock, flags);
1177 	if (!desc) {
1178 		dev_err(chan2dev(chan), "can't get descriptor\n");
1179 		return NULL;
1180 	}
1181 
1182 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1183 
1184 	ublen = len >> dwidth;
1185 
1186 	desc->lld.mbr_da = dst_addr;
1187 	desc->lld.mbr_ds = value;
1188 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1189 		| AT_XDMAC_MBR_UBC_NDEN
1190 		| AT_XDMAC_MBR_UBC_NSEN
1191 		| ublen;
1192 	desc->lld.mbr_cfg = chan_cc;
1193 
1194 	dev_dbg(chan2dev(chan),
1195 		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1196 		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1197 		desc->lld.mbr_cfg);
1198 
1199 	return desc;
1200 }
1201 
1202 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1203 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1204 			 size_t len, unsigned long flags)
1205 {
1206 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1207 	struct at_xdmac_desc	*desc;
1208 
1209 	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1210 		__func__, &dest, len, value, flags);
1211 
1212 	if (unlikely(!len))
1213 		return NULL;
1214 
1215 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1216 	list_add_tail(&desc->desc_node, &desc->descs_list);
1217 
1218 	desc->tx_dma_desc.cookie = -EBUSY;
1219 	desc->tx_dma_desc.flags = flags;
1220 	desc->xfer_size = len;
1221 
1222 	return &desc->tx_dma_desc;
1223 }
1224 
1225 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)1226 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1227 			    unsigned int sg_len, int value,
1228 			    unsigned long flags)
1229 {
1230 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1231 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1232 				*ppdesc = NULL, *first = NULL;
1233 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1234 	size_t			stride = 0, pstride = 0, len = 0;
1235 	int			i;
1236 
1237 	if (!sgl)
1238 		return NULL;
1239 
1240 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1241 		__func__, sg_len, value, flags);
1242 
1243 	/* Prepare descriptors. */
1244 	for_each_sg(sgl, sg, sg_len, i) {
1245 		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1246 			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1247 			value, flags);
1248 		desc = at_xdmac_memset_create_desc(chan, atchan,
1249 						   sg_dma_address(sg),
1250 						   sg_dma_len(sg),
1251 						   value);
1252 		if (!desc && first)
1253 			list_splice_init(&first->descs_list,
1254 					 &atchan->free_descs_list);
1255 
1256 		if (!first)
1257 			first = desc;
1258 
1259 		/* Update our strides */
1260 		pstride = stride;
1261 		if (psg)
1262 			stride = sg_dma_address(sg) -
1263 				(sg_dma_address(psg) + sg_dma_len(psg));
1264 
1265 		/*
1266 		 * The scatterlist API gives us only the address and
1267 		 * length of each elements.
1268 		 *
1269 		 * Unfortunately, we don't have the stride, which we
1270 		 * will need to compute.
1271 		 *
1272 		 * That make us end up in a situation like this one:
1273 		 *    len    stride    len    stride    len
1274 		 * +-------+        +-------+        +-------+
1275 		 * |  N-2  |        |  N-1  |        |   N   |
1276 		 * +-------+        +-------+        +-------+
1277 		 *
1278 		 * We need all these three elements (N-2, N-1 and N)
1279 		 * to actually take the decision on whether we need to
1280 		 * queue N-1 or reuse N-2.
1281 		 *
1282 		 * We will only consider N if it is the last element.
1283 		 */
1284 		if (ppdesc && pdesc) {
1285 			if ((stride == pstride) &&
1286 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1287 				dev_dbg(chan2dev(chan),
1288 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1289 					__func__, pdesc, ppdesc);
1290 
1291 				/*
1292 				 * Increment the block count of the
1293 				 * N-2 descriptor
1294 				 */
1295 				at_xdmac_increment_block_count(chan, ppdesc);
1296 				ppdesc->lld.mbr_dus = stride;
1297 
1298 				/*
1299 				 * Put back the N-1 descriptor in the
1300 				 * free descriptor list
1301 				 */
1302 				list_add_tail(&pdesc->desc_node,
1303 					      &atchan->free_descs_list);
1304 
1305 				/*
1306 				 * Make our N-1 descriptor pointer
1307 				 * point to the N-2 since they were
1308 				 * actually merged.
1309 				 */
1310 				pdesc = ppdesc;
1311 
1312 			/*
1313 			 * Rule out the case where we don't have
1314 			 * pstride computed yet (our second sg
1315 			 * element)
1316 			 *
1317 			 * We also want to catch the case where there
1318 			 * would be a negative stride,
1319 			 */
1320 			} else if (pstride ||
1321 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1322 				/*
1323 				 * Queue the N-1 descriptor after the
1324 				 * N-2
1325 				 */
1326 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1327 
1328 				/*
1329 				 * Add the N-1 descriptor to the list
1330 				 * of the descriptors used for this
1331 				 * transfer
1332 				 */
1333 				list_add_tail(&desc->desc_node,
1334 					      &first->descs_list);
1335 				dev_dbg(chan2dev(chan),
1336 					"%s: add desc 0x%p to descs_list 0x%p\n",
1337 					__func__, desc, first);
1338 			}
1339 		}
1340 
1341 		/*
1342 		 * If we are the last element, just see if we have the
1343 		 * same size than the previous element.
1344 		 *
1345 		 * If so, we can merge it with the previous descriptor
1346 		 * since we don't care about the stride anymore.
1347 		 */
1348 		if ((i == (sg_len - 1)) &&
1349 		    sg_dma_len(psg) == sg_dma_len(sg)) {
1350 			dev_dbg(chan2dev(chan),
1351 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1352 				__func__, desc, pdesc);
1353 
1354 			/*
1355 			 * Increment the block count of the N-1
1356 			 * descriptor
1357 			 */
1358 			at_xdmac_increment_block_count(chan, pdesc);
1359 			pdesc->lld.mbr_dus = stride;
1360 
1361 			/*
1362 			 * Put back the N descriptor in the free
1363 			 * descriptor list
1364 			 */
1365 			list_add_tail(&desc->desc_node,
1366 				      &atchan->free_descs_list);
1367 		}
1368 
1369 		/* Update our descriptors */
1370 		ppdesc = pdesc;
1371 		pdesc = desc;
1372 
1373 		/* Update our scatter pointers */
1374 		ppsg = psg;
1375 		psg = sg;
1376 
1377 		len += sg_dma_len(sg);
1378 	}
1379 
1380 	first->tx_dma_desc.cookie = -EBUSY;
1381 	first->tx_dma_desc.flags = flags;
1382 	first->xfer_size = len;
1383 
1384 	return &first->tx_dma_desc;
1385 }
1386 
1387 static enum dma_status
at_xdmac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1388 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1389 		struct dma_tx_state *txstate)
1390 {
1391 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1392 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1393 	struct at_xdmac_desc	*desc, *_desc, *iter;
1394 	struct list_head	*descs_list;
1395 	enum dma_status		ret;
1396 	int			residue, retry;
1397 	u32			cur_nda, check_nda, cur_ubc, mask, value;
1398 	u8			dwidth = 0;
1399 	unsigned long		flags;
1400 	bool			initd;
1401 
1402 	ret = dma_cookie_status(chan, cookie, txstate);
1403 	if (ret == DMA_COMPLETE)
1404 		return ret;
1405 
1406 	if (!txstate)
1407 		return ret;
1408 
1409 	spin_lock_irqsave(&atchan->lock, flags);
1410 
1411 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1412 
1413 	/*
1414 	 * If the transfer has not been started yet, don't need to compute the
1415 	 * residue, it's the transfer length.
1416 	 */
1417 	if (!desc->active_xfer) {
1418 		dma_set_residue(txstate, desc->xfer_size);
1419 		goto spin_unlock;
1420 	}
1421 
1422 	residue = desc->xfer_size;
1423 	/*
1424 	 * Flush FIFO: only relevant when the transfer is source peripheral
1425 	 * synchronized. Flush is needed before reading CUBC because data in
1426 	 * the FIFO are not reported by CUBC. Reporting a residue of the
1427 	 * transfer length while we have data in FIFO can cause issue.
1428 	 * Usecase: atmel USART has a timeout which means I have received
1429 	 * characters but there is no more character received for a while. On
1430 	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1431 	 * we will return a residue of the transfer length. It means no data
1432 	 * received. If an application is waiting for these data, it will hang
1433 	 * since we won't have another USART timeout without receiving new
1434 	 * data.
1435 	 */
1436 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1437 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1438 	if ((desc->lld.mbr_cfg & mask) == value) {
1439 		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1440 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1441 			cpu_relax();
1442 	}
1443 
1444 	/*
1445 	 * The easiest way to compute the residue should be to pause the DMA
1446 	 * but doing this can lead to miss some data as some devices don't
1447 	 * have FIFO.
1448 	 * We need to read several registers because:
1449 	 * - DMA is running therefore a descriptor change is possible while
1450 	 * reading these registers
1451 	 * - When the block transfer is done, the value of the CUBC register
1452 	 * is set to its initial value until the fetch of the next descriptor.
1453 	 * This value will corrupt the residue calculation so we have to skip
1454 	 * it.
1455 	 *
1456 	 * INITD --------                    ------------
1457 	 *              |____________________|
1458 	 *       _______________________  _______________
1459 	 * NDA       @desc2             \/   @desc3
1460 	 *       _______________________/\_______________
1461 	 *       __________  ___________  _______________
1462 	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1463 	 *       __________/\___________/\_______________
1464 	 *
1465 	 * Since descriptors are aligned on 64 bits, we can assume that
1466 	 * the update of NDA and CUBC is atomic.
1467 	 * Memory barriers are used to ensure the read order of the registers.
1468 	 * A max number of retries is set because unlikely it could never ends.
1469 	 */
1470 	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1471 		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1472 		rmb();
1473 		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1474 		rmb();
1475 		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1476 		rmb();
1477 		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1478 		rmb();
1479 
1480 		if ((check_nda == cur_nda) && initd)
1481 			break;
1482 	}
1483 
1484 	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1485 		ret = DMA_ERROR;
1486 		goto spin_unlock;
1487 	}
1488 
1489 	/*
1490 	 * Flush FIFO: only relevant when the transfer is source peripheral
1491 	 * synchronized. Another flush is needed here because CUBC is updated
1492 	 * when the controller sends the data write command. It can lead to
1493 	 * report data that are not written in the memory or the device. The
1494 	 * FIFO flush ensures that data are really written.
1495 	 */
1496 	if ((desc->lld.mbr_cfg & mask) == value) {
1497 		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1498 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1499 			cpu_relax();
1500 	}
1501 
1502 	/*
1503 	 * Remove size of all microblocks already transferred and the current
1504 	 * one. Then add the remaining size to transfer of the current
1505 	 * microblock.
1506 	 */
1507 	descs_list = &desc->descs_list;
1508 	list_for_each_entry_safe(iter, _desc, descs_list, desc_node) {
1509 		dwidth = at_xdmac_get_dwidth(iter->lld.mbr_cfg);
1510 		residue -= (iter->lld.mbr_ubc & 0xffffff) << dwidth;
1511 		if ((iter->lld.mbr_nda & 0xfffffffc) == cur_nda) {
1512 			desc = iter;
1513 			break;
1514 		}
1515 	}
1516 	residue += cur_ubc << dwidth;
1517 
1518 	dma_set_residue(txstate, residue);
1519 
1520 	dev_dbg(chan2dev(chan),
1521 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1522 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1523 
1524 spin_unlock:
1525 	spin_unlock_irqrestore(&atchan->lock, flags);
1526 	return ret;
1527 }
1528 
1529 /* Call must be protected by lock. */
at_xdmac_remove_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * desc)1530 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1531 				    struct at_xdmac_desc *desc)
1532 {
1533 	dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1534 
1535 	/*
1536 	 * Remove the transfer from the transfer list then move the transfer
1537 	 * descriptors into the free descriptors list.
1538 	 */
1539 	list_del(&desc->xfer_node);
1540 	list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1541 }
1542 
at_xdmac_advance_work(struct at_xdmac_chan * atchan)1543 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1544 {
1545 	struct at_xdmac_desc	*desc;
1546 
1547 	/*
1548 	 * If channel is enabled, do nothing, advance_work will be triggered
1549 	 * after the interruption.
1550 	 */
1551 	if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1552 		desc = list_first_entry(&atchan->xfers_list,
1553 					struct at_xdmac_desc,
1554 					xfer_node);
1555 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1556 		if (!desc->active_xfer)
1557 			at_xdmac_start_xfer(atchan, desc);
1558 	}
1559 }
1560 
at_xdmac_handle_cyclic(struct at_xdmac_chan * atchan)1561 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1562 {
1563 	struct at_xdmac_desc		*desc;
1564 	struct dma_async_tx_descriptor	*txd;
1565 
1566 	spin_lock_irq(&atchan->lock);
1567 	if (list_empty(&atchan->xfers_list)) {
1568 		spin_unlock_irq(&atchan->lock);
1569 		return;
1570 	}
1571 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1572 				xfer_node);
1573 	spin_unlock_irq(&atchan->lock);
1574 	txd = &desc->tx_dma_desc;
1575 	if (txd->flags & DMA_PREP_INTERRUPT)
1576 		dmaengine_desc_get_callback_invoke(txd, NULL);
1577 }
1578 
at_xdmac_handle_error(struct at_xdmac_chan * atchan)1579 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1580 {
1581 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1582 	struct at_xdmac_desc	*bad_desc;
1583 
1584 	/*
1585 	 * The descriptor currently at the head of the active list is
1586 	 * broken. Since we don't have any way to report errors, we'll
1587 	 * just have to scream loudly and try to continue with other
1588 	 * descriptors queued (if any).
1589 	 */
1590 	if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1591 		dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1592 	if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1593 		dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1594 	if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1595 		dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1596 
1597 	spin_lock_irq(&atchan->lock);
1598 
1599 	/* Channel must be disabled first as it's not done automatically */
1600 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1601 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1602 		cpu_relax();
1603 
1604 	bad_desc = list_first_entry(&atchan->xfers_list,
1605 				    struct at_xdmac_desc,
1606 				    xfer_node);
1607 
1608 	spin_unlock_irq(&atchan->lock);
1609 
1610 	/* Print bad descriptor's details if needed */
1611 	dev_dbg(chan2dev(&atchan->chan),
1612 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1613 		__func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1614 		bad_desc->lld.mbr_ubc);
1615 
1616 	/* Then continue with usual descriptor management */
1617 }
1618 
at_xdmac_tasklet(struct tasklet_struct * t)1619 static void at_xdmac_tasklet(struct tasklet_struct *t)
1620 {
1621 	struct at_xdmac_chan	*atchan = from_tasklet(atchan, t, tasklet);
1622 	struct at_xdmac_desc	*desc;
1623 	u32			error_mask;
1624 
1625 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1626 		__func__, atchan->irq_status);
1627 
1628 	error_mask = AT_XDMAC_CIS_RBEIS
1629 		     | AT_XDMAC_CIS_WBEIS
1630 		     | AT_XDMAC_CIS_ROIS;
1631 
1632 	if (at_xdmac_chan_is_cyclic(atchan)) {
1633 		at_xdmac_handle_cyclic(atchan);
1634 	} else if ((atchan->irq_status & AT_XDMAC_CIS_LIS)
1635 		   || (atchan->irq_status & error_mask)) {
1636 		struct dma_async_tx_descriptor  *txd;
1637 
1638 		if (atchan->irq_status & error_mask)
1639 			at_xdmac_handle_error(atchan);
1640 
1641 		spin_lock_irq(&atchan->lock);
1642 		desc = list_first_entry(&atchan->xfers_list,
1643 					struct at_xdmac_desc,
1644 					xfer_node);
1645 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1646 		if (!desc->active_xfer) {
1647 			dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1648 			spin_unlock_irq(&atchan->lock);
1649 			return;
1650 		}
1651 
1652 		txd = &desc->tx_dma_desc;
1653 
1654 		at_xdmac_remove_xfer(atchan, desc);
1655 		spin_unlock_irq(&atchan->lock);
1656 
1657 		dma_cookie_complete(txd);
1658 		if (txd->flags & DMA_PREP_INTERRUPT)
1659 			dmaengine_desc_get_callback_invoke(txd, NULL);
1660 
1661 		dma_run_dependencies(txd);
1662 
1663 		spin_lock_irq(&atchan->lock);
1664 		at_xdmac_advance_work(atchan);
1665 		spin_unlock_irq(&atchan->lock);
1666 	}
1667 }
1668 
at_xdmac_interrupt(int irq,void * dev_id)1669 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1670 {
1671 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1672 	struct at_xdmac_chan	*atchan;
1673 	u32			imr, status, pending;
1674 	u32			chan_imr, chan_status;
1675 	int			i, ret = IRQ_NONE;
1676 
1677 	do {
1678 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1679 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1680 		pending = status & imr;
1681 
1682 		dev_vdbg(atxdmac->dma.dev,
1683 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1684 			 __func__, status, imr, pending);
1685 
1686 		if (!pending)
1687 			break;
1688 
1689 		/* We have to find which channel has generated the interrupt. */
1690 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1691 			if (!((1 << i) & pending))
1692 				continue;
1693 
1694 			atchan = &atxdmac->chan[i];
1695 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1696 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1697 			atchan->irq_status = chan_status & chan_imr;
1698 			dev_vdbg(atxdmac->dma.dev,
1699 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1700 				 __func__, i, chan_imr, chan_status);
1701 			dev_vdbg(chan2dev(&atchan->chan),
1702 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1703 				 __func__,
1704 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1705 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1706 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1707 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1708 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1709 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1710 
1711 			if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1712 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1713 
1714 			tasklet_schedule(&atchan->tasklet);
1715 			ret = IRQ_HANDLED;
1716 		}
1717 
1718 	} while (pending);
1719 
1720 	return ret;
1721 }
1722 
at_xdmac_issue_pending(struct dma_chan * chan)1723 static void at_xdmac_issue_pending(struct dma_chan *chan)
1724 {
1725 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1726 	unsigned long flags;
1727 
1728 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1729 
1730 	spin_lock_irqsave(&atchan->lock, flags);
1731 	at_xdmac_advance_work(atchan);
1732 	spin_unlock_irqrestore(&atchan->lock, flags);
1733 
1734 	return;
1735 }
1736 
at_xdmac_device_config(struct dma_chan * chan,struct dma_slave_config * config)1737 static int at_xdmac_device_config(struct dma_chan *chan,
1738 				  struct dma_slave_config *config)
1739 {
1740 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1741 	int ret;
1742 	unsigned long		flags;
1743 
1744 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1745 
1746 	spin_lock_irqsave(&atchan->lock, flags);
1747 	ret = at_xdmac_set_slave_config(chan, config);
1748 	spin_unlock_irqrestore(&atchan->lock, flags);
1749 
1750 	return ret;
1751 }
1752 
at_xdmac_device_pause(struct dma_chan * chan)1753 static int at_xdmac_device_pause(struct dma_chan *chan)
1754 {
1755 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1756 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1757 	unsigned long		flags;
1758 
1759 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1760 
1761 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1762 		return 0;
1763 
1764 	spin_lock_irqsave(&atchan->lock, flags);
1765 	at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1766 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1767 	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1768 		cpu_relax();
1769 	spin_unlock_irqrestore(&atchan->lock, flags);
1770 
1771 	return 0;
1772 }
1773 
at_xdmac_device_resume(struct dma_chan * chan)1774 static int at_xdmac_device_resume(struct dma_chan *chan)
1775 {
1776 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1777 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1778 	unsigned long		flags;
1779 
1780 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1781 
1782 	spin_lock_irqsave(&atchan->lock, flags);
1783 	if (!at_xdmac_chan_is_paused(atchan)) {
1784 		spin_unlock_irqrestore(&atchan->lock, flags);
1785 		return 0;
1786 	}
1787 
1788 	at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1789 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1790 	spin_unlock_irqrestore(&atchan->lock, flags);
1791 
1792 	return 0;
1793 }
1794 
at_xdmac_device_terminate_all(struct dma_chan * chan)1795 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1796 {
1797 	struct at_xdmac_desc	*desc, *_desc;
1798 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1799 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1800 	unsigned long		flags;
1801 
1802 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1803 
1804 	spin_lock_irqsave(&atchan->lock, flags);
1805 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1806 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1807 		cpu_relax();
1808 
1809 	/* Cancel all pending transfers. */
1810 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1811 		at_xdmac_remove_xfer(atchan, desc);
1812 
1813 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1814 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1815 	spin_unlock_irqrestore(&atchan->lock, flags);
1816 
1817 	return 0;
1818 }
1819 
at_xdmac_alloc_chan_resources(struct dma_chan * chan)1820 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1821 {
1822 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1823 	struct at_xdmac_desc	*desc;
1824 	int			i;
1825 
1826 	if (at_xdmac_chan_is_enabled(atchan)) {
1827 		dev_err(chan2dev(chan),
1828 			"can't allocate channel resources (channel enabled)\n");
1829 		return -EIO;
1830 	}
1831 
1832 	if (!list_empty(&atchan->free_descs_list)) {
1833 		dev_err(chan2dev(chan),
1834 			"can't allocate channel resources (channel not free from a previous use)\n");
1835 		return -EIO;
1836 	}
1837 
1838 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1839 		desc = at_xdmac_alloc_desc(chan, GFP_KERNEL);
1840 		if (!desc) {
1841 			if (i == 0) {
1842 				dev_warn(chan2dev(chan),
1843 					 "can't allocate any descriptors\n");
1844 				return -EIO;
1845 			}
1846 			dev_warn(chan2dev(chan),
1847 				"only %d descriptors have been allocated\n", i);
1848 			break;
1849 		}
1850 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1851 	}
1852 
1853 	dma_cookie_init(chan);
1854 
1855 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1856 
1857 	return i;
1858 }
1859 
at_xdmac_free_chan_resources(struct dma_chan * chan)1860 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1861 {
1862 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1863 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
1864 	struct at_xdmac_desc	*desc, *_desc;
1865 
1866 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1867 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1868 		list_del(&desc->desc_node);
1869 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1870 	}
1871 
1872 	return;
1873 }
1874 
1875 #ifdef CONFIG_PM
atmel_xdmac_prepare(struct device * dev)1876 static int atmel_xdmac_prepare(struct device *dev)
1877 {
1878 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1879 	struct dma_chan		*chan, *_chan;
1880 
1881 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1882 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1883 
1884 		/* Wait for transfer completion, except in cyclic case. */
1885 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1886 			return -EAGAIN;
1887 	}
1888 	return 0;
1889 }
1890 #else
1891 #	define atmel_xdmac_prepare NULL
1892 #endif
1893 
1894 #ifdef CONFIG_PM_SLEEP
atmel_xdmac_suspend(struct device * dev)1895 static int atmel_xdmac_suspend(struct device *dev)
1896 {
1897 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1898 	struct dma_chan		*chan, *_chan;
1899 
1900 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1901 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1902 
1903 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1904 		if (at_xdmac_chan_is_cyclic(atchan)) {
1905 			if (!at_xdmac_chan_is_paused(atchan))
1906 				at_xdmac_device_pause(chan);
1907 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1908 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1909 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1910 		}
1911 	}
1912 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1913 
1914 	at_xdmac_off(atxdmac);
1915 	clk_disable_unprepare(atxdmac->clk);
1916 	return 0;
1917 }
1918 
atmel_xdmac_resume(struct device * dev)1919 static int atmel_xdmac_resume(struct device *dev)
1920 {
1921 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1922 	struct at_xdmac_chan	*atchan;
1923 	struct dma_chan		*chan, *_chan;
1924 	int			i;
1925 	int ret;
1926 
1927 	ret = clk_prepare_enable(atxdmac->clk);
1928 	if (ret)
1929 		return ret;
1930 
1931 	/* Clear pending interrupts. */
1932 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
1933 		atchan = &atxdmac->chan[i];
1934 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1935 			cpu_relax();
1936 	}
1937 
1938 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1939 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1940 		atchan = to_at_xdmac_chan(chan);
1941 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1942 		if (at_xdmac_chan_is_cyclic(atchan)) {
1943 			if (at_xdmac_chan_is_paused(atchan))
1944 				at_xdmac_device_resume(chan);
1945 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1946 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1947 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1948 			wmb();
1949 			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1950 		}
1951 	}
1952 	return 0;
1953 }
1954 #endif /* CONFIG_PM_SLEEP */
1955 
at_xdmac_probe(struct platform_device * pdev)1956 static int at_xdmac_probe(struct platform_device *pdev)
1957 {
1958 	struct at_xdmac	*atxdmac;
1959 	int		irq, size, nr_channels, i, ret;
1960 	void __iomem	*base;
1961 	u32		reg;
1962 
1963 	irq = platform_get_irq(pdev, 0);
1964 	if (irq < 0)
1965 		return irq;
1966 
1967 	base = devm_platform_ioremap_resource(pdev, 0);
1968 	if (IS_ERR(base))
1969 		return PTR_ERR(base);
1970 
1971 	/*
1972 	 * Read number of xdmac channels, read helper function can't be used
1973 	 * since atxdmac is not yet allocated and we need to know the number
1974 	 * of channels to do the allocation.
1975 	 */
1976 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1977 	nr_channels = AT_XDMAC_NB_CH(reg);
1978 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
1979 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1980 			nr_channels);
1981 		return -EINVAL;
1982 	}
1983 
1984 	size = sizeof(*atxdmac);
1985 	size += nr_channels * sizeof(struct at_xdmac_chan);
1986 	atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1987 	if (!atxdmac) {
1988 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1989 		return -ENOMEM;
1990 	}
1991 
1992 	atxdmac->regs = base;
1993 	atxdmac->irq = irq;
1994 
1995 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
1996 	if (IS_ERR(atxdmac->clk)) {
1997 		dev_err(&pdev->dev, "can't get dma_clk\n");
1998 		return PTR_ERR(atxdmac->clk);
1999 	}
2000 
2001 	/* Do not use dev res to prevent races with tasklet */
2002 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2003 	if (ret) {
2004 		dev_err(&pdev->dev, "can't request irq\n");
2005 		return ret;
2006 	}
2007 
2008 	ret = clk_prepare_enable(atxdmac->clk);
2009 	if (ret) {
2010 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
2011 		goto err_free_irq;
2012 	}
2013 
2014 	atxdmac->at_xdmac_desc_pool =
2015 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2016 				sizeof(struct at_xdmac_desc), 4, 0);
2017 	if (!atxdmac->at_xdmac_desc_pool) {
2018 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2019 		ret = -ENOMEM;
2020 		goto err_clk_disable;
2021 	}
2022 
2023 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2024 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2025 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2026 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2027 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2028 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2029 	/*
2030 	 * Without DMA_PRIVATE the driver is not able to allocate more than
2031 	 * one channel, second allocation fails in private_candidate.
2032 	 */
2033 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2034 	atxdmac->dma.dev				= &pdev->dev;
2035 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2036 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2037 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2038 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2039 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2040 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2041 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2042 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2043 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2044 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2045 	atxdmac->dma.device_config			= at_xdmac_device_config;
2046 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2047 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2048 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2049 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2050 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2051 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2052 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2053 
2054 	/* Disable all chans and interrupts. */
2055 	at_xdmac_off(atxdmac);
2056 
2057 	/* Init channels. */
2058 	INIT_LIST_HEAD(&atxdmac->dma.channels);
2059 	for (i = 0; i < nr_channels; i++) {
2060 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2061 
2062 		atchan->chan.device = &atxdmac->dma;
2063 		list_add_tail(&atchan->chan.device_node,
2064 			      &atxdmac->dma.channels);
2065 
2066 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2067 		atchan->mask = 1 << i;
2068 
2069 		spin_lock_init(&atchan->lock);
2070 		INIT_LIST_HEAD(&atchan->xfers_list);
2071 		INIT_LIST_HEAD(&atchan->free_descs_list);
2072 		tasklet_setup(&atchan->tasklet, at_xdmac_tasklet);
2073 
2074 		/* Clear pending interrupts. */
2075 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2076 			cpu_relax();
2077 	}
2078 	platform_set_drvdata(pdev, atxdmac);
2079 
2080 	ret = dma_async_device_register(&atxdmac->dma);
2081 	if (ret) {
2082 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2083 		goto err_clk_disable;
2084 	}
2085 
2086 	ret = of_dma_controller_register(pdev->dev.of_node,
2087 					 at_xdmac_xlate, atxdmac);
2088 	if (ret) {
2089 		dev_err(&pdev->dev, "could not register of dma controller\n");
2090 		goto err_dma_unregister;
2091 	}
2092 
2093 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2094 		 nr_channels, atxdmac->regs);
2095 
2096 	return 0;
2097 
2098 err_dma_unregister:
2099 	dma_async_device_unregister(&atxdmac->dma);
2100 err_clk_disable:
2101 	clk_disable_unprepare(atxdmac->clk);
2102 err_free_irq:
2103 	free_irq(atxdmac->irq, atxdmac);
2104 	return ret;
2105 }
2106 
at_xdmac_remove(struct platform_device * pdev)2107 static int at_xdmac_remove(struct platform_device *pdev)
2108 {
2109 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2110 	int		i;
2111 
2112 	at_xdmac_off(atxdmac);
2113 	of_dma_controller_free(pdev->dev.of_node);
2114 	dma_async_device_unregister(&atxdmac->dma);
2115 	clk_disable_unprepare(atxdmac->clk);
2116 
2117 	free_irq(atxdmac->irq, atxdmac);
2118 
2119 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2120 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2121 
2122 		tasklet_kill(&atchan->tasklet);
2123 		at_xdmac_free_chan_resources(&atchan->chan);
2124 	}
2125 
2126 	return 0;
2127 }
2128 
2129 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2130 	.prepare	= atmel_xdmac_prepare,
2131 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2132 };
2133 
2134 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2135 	{
2136 		.compatible = "atmel,sama5d4-dma",
2137 	}, {
2138 		/* sentinel */
2139 	}
2140 };
2141 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2142 
2143 static struct platform_driver at_xdmac_driver = {
2144 	.probe		= at_xdmac_probe,
2145 	.remove		= at_xdmac_remove,
2146 	.driver = {
2147 		.name		= "at_xdmac",
2148 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2149 		.pm		= &atmel_xdmac_dev_pm_ops,
2150 	}
2151 };
2152 
at_xdmac_init(void)2153 static int __init at_xdmac_init(void)
2154 {
2155 	return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2156 }
2157 subsys_initcall(at_xdmac_init);
2158 
2159 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2160 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2161 MODULE_LICENSE("GPL");
2162