1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_10_1_0_offset.h"
25 #include "gc/gc_10_1_0_sh_mask.h"
26 #include "navi10_enum.h"
27 #include "athub/athub_2_0_0_offset.h"
28 #include "athub/athub_2_0_0_sh_mask.h"
29 #include "oss/osssys_5_0_0_offset.h"
30 #include "oss/osssys_5_0_0_sh_mask.h"
31 #include "soc15_common.h"
32 #include "v10_structs.h"
33 #include "nv.h"
34 #include "nvd.h"
35
36 enum hqd_dequeue_request_type {
37 NO_ACTION = 0,
38 DRAIN_PIPE,
39 RESET_WAVES,
40 SAVE_WAVES
41 };
42
get_amdgpu_device(struct kgd_dev * kgd)43 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
44 {
45 return (struct amdgpu_device *)kgd;
46 }
47
lock_srbm(struct kgd_dev * kgd,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid)48 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
49 uint32_t queue, uint32_t vmid)
50 {
51 struct amdgpu_device *adev = get_amdgpu_device(kgd);
52
53 mutex_lock(&adev->srbm_mutex);
54 nv_grbm_select(adev, mec, pipe, queue, vmid);
55 }
56
unlock_srbm(struct kgd_dev * kgd)57 static void unlock_srbm(struct kgd_dev *kgd)
58 {
59 struct amdgpu_device *adev = get_amdgpu_device(kgd);
60
61 nv_grbm_select(adev, 0, 0, 0, 0);
62 mutex_unlock(&adev->srbm_mutex);
63 }
64
acquire_queue(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id)65 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
66 uint32_t queue_id)
67 {
68 struct amdgpu_device *adev = get_amdgpu_device(kgd);
69
70 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
71 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
72
73 lock_srbm(kgd, mec, pipe, queue_id, 0);
74 }
75
get_queue_mask(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id)76 static uint64_t get_queue_mask(struct amdgpu_device *adev,
77 uint32_t pipe_id, uint32_t queue_id)
78 {
79 unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
80 queue_id;
81
82 return 1ull << bit;
83 }
84
release_queue(struct kgd_dev * kgd)85 static void release_queue(struct kgd_dev *kgd)
86 {
87 unlock_srbm(kgd);
88 }
89
kgd_program_sh_mem_settings(struct kgd_dev * kgd,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases)90 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
91 uint32_t sh_mem_config,
92 uint32_t sh_mem_ape1_base,
93 uint32_t sh_mem_ape1_limit,
94 uint32_t sh_mem_bases)
95 {
96 struct amdgpu_device *adev = get_amdgpu_device(kgd);
97
98 lock_srbm(kgd, 0, 0, 0, vmid);
99
100 WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
101 WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
102 /* APE1 no longer exists on GFX9 */
103
104 unlock_srbm(kgd);
105 }
106
kgd_set_pasid_vmid_mapping(struct kgd_dev * kgd,u32 pasid,unsigned int vmid)107 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
108 unsigned int vmid)
109 {
110 struct amdgpu_device *adev = get_amdgpu_device(kgd);
111
112 /*
113 * We have to assume that there is no outstanding mapping.
114 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
115 * a mapping is in progress or because a mapping finished
116 * and the SW cleared it.
117 * So the protocol is to always wait & clear.
118 */
119 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
120 ATC_VMID0_PASID_MAPPING__VALID_MASK;
121
122 pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping);
123
124 pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid);
125 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
126 pasid_mapping);
127
128 #if 0
129 /* TODO: uncomment this code when the hardware support is ready. */
130 while (!(RREG32(SOC15_REG_OFFSET(
131 ATHUB, 0,
132 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
133 (1U << vmid)))
134 cpu_relax();
135
136 pr_debug("ATHUB mapping update finished\n");
137 WREG32(SOC15_REG_OFFSET(ATHUB, 0,
138 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
139 1U << vmid);
140 #endif
141
142 /* Mapping vmid to pasid also for IH block */
143 pr_debug("update mapping for IH block and mmhub");
144 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
145 pasid_mapping);
146
147 return 0;
148 }
149
150 /* TODO - RING0 form of field is obsolete, seems to date back to SI
151 * but still works
152 */
153
kgd_init_interrupts(struct kgd_dev * kgd,uint32_t pipe_id)154 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
155 {
156 struct amdgpu_device *adev = get_amdgpu_device(kgd);
157 uint32_t mec;
158 uint32_t pipe;
159
160 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
161 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
162
163 lock_srbm(kgd, mec, pipe, 0, 0);
164
165 WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
166 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
167 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
168
169 unlock_srbm(kgd);
170
171 return 0;
172 }
173
get_sdma_rlc_reg_offset(struct amdgpu_device * adev,unsigned int engine_id,unsigned int queue_id)174 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
175 unsigned int engine_id,
176 unsigned int queue_id)
177 {
178 uint32_t sdma_engine_reg_base[2] = {
179 SOC15_REG_OFFSET(SDMA0, 0,
180 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
181 /* On gfx10, mmSDMA1_xxx registers are defined NOT based
182 * on SDMA1 base address (dw 0x1860) but based on SDMA0
183 * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL
184 * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc
185 * below
186 */
187 SOC15_REG_OFFSET(SDMA1, 0,
188 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL
189 };
190
191 uint32_t retval = sdma_engine_reg_base[engine_id]
192 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
193
194 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
195 queue_id, retval);
196
197 return retval;
198 }
199
200 #if 0
201 static uint32_t get_watch_base_addr(struct amdgpu_device *adev)
202 {
203 uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) -
204 mmTCP_WATCH0_ADDR_H;
205
206 pr_debug("kfd: reg watch base address: 0x%x\n", retval);
207
208 return retval;
209 }
210 #endif
211
get_mqd(void * mqd)212 static inline struct v10_compute_mqd *get_mqd(void *mqd)
213 {
214 return (struct v10_compute_mqd *)mqd;
215 }
216
get_sdma_mqd(void * mqd)217 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
218 {
219 return (struct v10_sdma_mqd *)mqd;
220 }
221
kgd_hqd_load(struct kgd_dev * kgd,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm)222 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
223 uint32_t queue_id, uint32_t __user *wptr,
224 uint32_t wptr_shift, uint32_t wptr_mask,
225 struct mm_struct *mm)
226 {
227 struct amdgpu_device *adev = get_amdgpu_device(kgd);
228 struct v10_compute_mqd *m;
229 uint32_t *mqd_hqd;
230 uint32_t reg, hqd_base, data;
231
232 m = get_mqd(mqd);
233
234 pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
235 acquire_queue(kgd, pipe_id, queue_id);
236
237 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
238 mqd_hqd = &m->cp_mqd_base_addr_lo;
239 hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
240
241 for (reg = hqd_base;
242 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
243 WREG32(reg, mqd_hqd[reg - hqd_base]);
244
245
246 /* Activate doorbell logic before triggering WPTR poll. */
247 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
248 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
249 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
250
251 if (wptr) {
252 /* Don't read wptr with get_user because the user
253 * context may not be accessible (if this function
254 * runs in a work queue). Instead trigger a one-shot
255 * polling read from memory in the CP. This assumes
256 * that wptr is GPU-accessible in the queue's VMID via
257 * ATC or SVM. WPTR==RPTR before starting the poll so
258 * the CP starts fetching new commands from the right
259 * place.
260 *
261 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
262 * tricky. Assume that the queue didn't overflow. The
263 * number of valid bits in the 32-bit RPTR depends on
264 * the queue size. The remaining bits are taken from
265 * the saved 64-bit WPTR. If the WPTR wrapped, add the
266 * queue size.
267 */
268 uint32_t queue_size =
269 2 << REG_GET_FIELD(m->cp_hqd_pq_control,
270 CP_HQD_PQ_CONTROL, QUEUE_SIZE);
271 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
272
273 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
274 guessed_wptr += queue_size;
275 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
276 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
277
278 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
279 lower_32_bits(guessed_wptr));
280 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
281 upper_32_bits(guessed_wptr));
282 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
283 lower_32_bits((uint64_t)wptr));
284 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
285 upper_32_bits((uint64_t)wptr));
286 pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
287 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
288 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
289 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
290 }
291
292 /* Start the EOP fetcher */
293 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
294 REG_SET_FIELD(m->cp_hqd_eop_rptr,
295 CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
296
297 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
298 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
299
300 release_queue(kgd);
301
302 return 0;
303 }
304
kgd_hiq_mqd_load(struct kgd_dev * kgd,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t doorbell_off)305 static int kgd_hiq_mqd_load(struct kgd_dev *kgd, void *mqd,
306 uint32_t pipe_id, uint32_t queue_id,
307 uint32_t doorbell_off)
308 {
309 struct amdgpu_device *adev = get_amdgpu_device(kgd);
310 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
311 struct v10_compute_mqd *m;
312 uint32_t mec, pipe;
313 int r;
314
315 m = get_mqd(mqd);
316
317 acquire_queue(kgd, pipe_id, queue_id);
318
319 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
320 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
321
322 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
323 mec, pipe, queue_id);
324
325 spin_lock(&adev->gfx.kiq.ring_lock);
326 r = amdgpu_ring_alloc(kiq_ring, 7);
327 if (r) {
328 pr_err("Failed to alloc KIQ (%d).\n", r);
329 goto out_unlock;
330 }
331
332 amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
333 amdgpu_ring_write(kiq_ring,
334 PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
335 PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
336 PACKET3_MAP_QUEUES_QUEUE(queue_id) |
337 PACKET3_MAP_QUEUES_PIPE(pipe) |
338 PACKET3_MAP_QUEUES_ME((mec - 1)) |
339 PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
340 PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
341 PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
342 PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
343 amdgpu_ring_write(kiq_ring,
344 PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
345 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
346 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
347 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
348 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
349 amdgpu_ring_commit(kiq_ring);
350
351 out_unlock:
352 spin_unlock(&adev->gfx.kiq.ring_lock);
353 release_queue(kgd);
354
355 return r;
356 }
357
kgd_hqd_dump(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)358 static int kgd_hqd_dump(struct kgd_dev *kgd,
359 uint32_t pipe_id, uint32_t queue_id,
360 uint32_t (**dump)[2], uint32_t *n_regs)
361 {
362 struct amdgpu_device *adev = get_amdgpu_device(kgd);
363 uint32_t i = 0, reg;
364 #define HQD_N_REGS 56
365 #define DUMP_REG(addr) do { \
366 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
367 break; \
368 (*dump)[i][0] = (addr) << 2; \
369 (*dump)[i++][1] = RREG32(addr); \
370 } while (0)
371
372 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
373 if (*dump == NULL)
374 return -ENOMEM;
375
376 acquire_queue(kgd, pipe_id, queue_id);
377
378 for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
379 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
380 DUMP_REG(reg);
381
382 release_queue(kgd);
383
384 WARN_ON_ONCE(i != HQD_N_REGS);
385 *n_regs = i;
386
387 return 0;
388 }
389
kgd_hqd_sdma_load(struct kgd_dev * kgd,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)390 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
391 uint32_t __user *wptr, struct mm_struct *mm)
392 {
393 struct amdgpu_device *adev = get_amdgpu_device(kgd);
394 struct v10_sdma_mqd *m;
395 uint32_t sdma_rlc_reg_offset;
396 unsigned long end_jiffies;
397 uint32_t data;
398 uint64_t data64;
399 uint64_t __user *wptr64 = (uint64_t __user *)wptr;
400
401 m = get_sdma_mqd(mqd);
402 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
403 m->sdma_queue_id);
404
405 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
406 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
407
408 end_jiffies = msecs_to_jiffies(2000) + jiffies;
409 while (true) {
410 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
411 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
412 break;
413 if (time_after(jiffies, end_jiffies)) {
414 pr_err("SDMA RLC not idle in %s\n", __func__);
415 return -ETIME;
416 }
417 usleep_range(500, 1000);
418 }
419
420 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
421 m->sdmax_rlcx_doorbell_offset);
422
423 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
424 ENABLE, 1);
425 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
426 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
427 m->sdmax_rlcx_rb_rptr);
428 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
429 m->sdmax_rlcx_rb_rptr_hi);
430
431 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
432 if (read_user_wptr(mm, wptr64, data64)) {
433 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
434 lower_32_bits(data64));
435 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
436 upper_32_bits(data64));
437 } else {
438 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
439 m->sdmax_rlcx_rb_rptr);
440 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
441 m->sdmax_rlcx_rb_rptr_hi);
442 }
443 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
444
445 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
446 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
447 m->sdmax_rlcx_rb_base_hi);
448 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
449 m->sdmax_rlcx_rb_rptr_addr_lo);
450 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
451 m->sdmax_rlcx_rb_rptr_addr_hi);
452
453 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
454 RB_ENABLE, 1);
455 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
456
457 return 0;
458 }
459
kgd_hqd_sdma_dump(struct kgd_dev * kgd,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)460 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
461 uint32_t engine_id, uint32_t queue_id,
462 uint32_t (**dump)[2], uint32_t *n_regs)
463 {
464 struct amdgpu_device *adev = get_amdgpu_device(kgd);
465 uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
466 engine_id, queue_id);
467 uint32_t i = 0, reg;
468 #undef HQD_N_REGS
469 #define HQD_N_REGS (19+6+7+10)
470
471 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
472 if (*dump == NULL)
473 return -ENOMEM;
474
475 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
476 DUMP_REG(sdma_rlc_reg_offset + reg);
477 for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
478 DUMP_REG(sdma_rlc_reg_offset + reg);
479 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
480 reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
481 DUMP_REG(sdma_rlc_reg_offset + reg);
482 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
483 reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
484 DUMP_REG(sdma_rlc_reg_offset + reg);
485
486 WARN_ON_ONCE(i != HQD_N_REGS);
487 *n_regs = i;
488
489 return 0;
490 }
491
kgd_hqd_is_occupied(struct kgd_dev * kgd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)492 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
493 uint32_t pipe_id, uint32_t queue_id)
494 {
495 struct amdgpu_device *adev = get_amdgpu_device(kgd);
496 uint32_t act;
497 bool retval = false;
498 uint32_t low, high;
499
500 acquire_queue(kgd, pipe_id, queue_id);
501 act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
502 if (act) {
503 low = lower_32_bits(queue_address >> 8);
504 high = upper_32_bits(queue_address >> 8);
505
506 if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
507 high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
508 retval = true;
509 }
510 release_queue(kgd);
511 return retval;
512 }
513
kgd_hqd_sdma_is_occupied(struct kgd_dev * kgd,void * mqd)514 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
515 {
516 struct amdgpu_device *adev = get_amdgpu_device(kgd);
517 struct v10_sdma_mqd *m;
518 uint32_t sdma_rlc_reg_offset;
519 uint32_t sdma_rlc_rb_cntl;
520
521 m = get_sdma_mqd(mqd);
522 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
523 m->sdma_queue_id);
524
525 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
526
527 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
528 return true;
529
530 return false;
531 }
532
kgd_hqd_destroy(struct kgd_dev * kgd,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id)533 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
534 enum kfd_preempt_type reset_type,
535 unsigned int utimeout, uint32_t pipe_id,
536 uint32_t queue_id)
537 {
538 struct amdgpu_device *adev = get_amdgpu_device(kgd);
539 enum hqd_dequeue_request_type type;
540 unsigned long end_jiffies;
541 uint32_t temp;
542 struct v10_compute_mqd *m = get_mqd(mqd);
543
544 if (amdgpu_in_reset(adev))
545 return -EIO;
546
547 #if 0
548 unsigned long flags;
549 int retry;
550 #endif
551
552 acquire_queue(kgd, pipe_id, queue_id);
553
554 if (m->cp_hqd_vmid == 0)
555 WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
556
557 switch (reset_type) {
558 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
559 type = DRAIN_PIPE;
560 break;
561 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
562 type = RESET_WAVES;
563 break;
564 default:
565 type = DRAIN_PIPE;
566 break;
567 }
568
569 #if 0 /* Is this still needed? */
570 /* Workaround: If IQ timer is active and the wait time is close to or
571 * equal to 0, dequeueing is not safe. Wait until either the wait time
572 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
573 * cleared before continuing. Also, ensure wait times are set to at
574 * least 0x3.
575 */
576 local_irq_save(flags);
577 preempt_disable();
578 retry = 5000; /* wait for 500 usecs at maximum */
579 while (true) {
580 temp = RREG32(mmCP_HQD_IQ_TIMER);
581 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
582 pr_debug("HW is processing IQ\n");
583 goto loop;
584 }
585 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
586 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
587 == 3) /* SEM-rearm is safe */
588 break;
589 /* Wait time 3 is safe for CP, but our MMIO read/write
590 * time is close to 1 microsecond, so check for 10 to
591 * leave more buffer room
592 */
593 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
594 >= 10)
595 break;
596 pr_debug("IQ timer is active\n");
597 } else
598 break;
599 loop:
600 if (!retry) {
601 pr_err("CP HQD IQ timer status time out\n");
602 break;
603 }
604 ndelay(100);
605 --retry;
606 }
607 retry = 1000;
608 while (true) {
609 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
610 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
611 break;
612 pr_debug("Dequeue request is pending\n");
613
614 if (!retry) {
615 pr_err("CP HQD dequeue request time out\n");
616 break;
617 }
618 ndelay(100);
619 --retry;
620 }
621 local_irq_restore(flags);
622 preempt_enable();
623 #endif
624
625 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
626
627 end_jiffies = (utimeout * HZ / 1000) + jiffies;
628 while (true) {
629 temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
630 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
631 break;
632 if (time_after(jiffies, end_jiffies)) {
633 pr_err("cp queue preemption time out.\n");
634 release_queue(kgd);
635 return -ETIME;
636 }
637 usleep_range(500, 1000);
638 }
639
640 release_queue(kgd);
641 return 0;
642 }
643
kgd_hqd_sdma_destroy(struct kgd_dev * kgd,void * mqd,unsigned int utimeout)644 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
645 unsigned int utimeout)
646 {
647 struct amdgpu_device *adev = get_amdgpu_device(kgd);
648 struct v10_sdma_mqd *m;
649 uint32_t sdma_rlc_reg_offset;
650 uint32_t temp;
651 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
652
653 m = get_sdma_mqd(mqd);
654 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
655 m->sdma_queue_id);
656
657 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
658 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
659 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
660
661 while (true) {
662 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
663 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
664 break;
665 if (time_after(jiffies, end_jiffies)) {
666 pr_err("SDMA RLC not idle in %s\n", __func__);
667 return -ETIME;
668 }
669 usleep_range(500, 1000);
670 }
671
672 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
673 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
674 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
675 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
676
677 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
678 m->sdmax_rlcx_rb_rptr_hi =
679 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
680
681 return 0;
682 }
683
get_atc_vmid_pasid_mapping_info(struct kgd_dev * kgd,uint8_t vmid,uint16_t * p_pasid)684 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
685 uint8_t vmid, uint16_t *p_pasid)
686 {
687 uint32_t value;
688 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
689
690 value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
691 + vmid);
692 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
693
694 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
695 }
696
kgd_address_watch_disable(struct kgd_dev * kgd)697 static int kgd_address_watch_disable(struct kgd_dev *kgd)
698 {
699 return 0;
700 }
701
kgd_address_watch_execute(struct kgd_dev * kgd,unsigned int watch_point_id,uint32_t cntl_val,uint32_t addr_hi,uint32_t addr_lo)702 static int kgd_address_watch_execute(struct kgd_dev *kgd,
703 unsigned int watch_point_id,
704 uint32_t cntl_val,
705 uint32_t addr_hi,
706 uint32_t addr_lo)
707 {
708 return 0;
709 }
710
kgd_wave_control_execute(struct kgd_dev * kgd,uint32_t gfx_index_val,uint32_t sq_cmd)711 static int kgd_wave_control_execute(struct kgd_dev *kgd,
712 uint32_t gfx_index_val,
713 uint32_t sq_cmd)
714 {
715 struct amdgpu_device *adev = get_amdgpu_device(kgd);
716 uint32_t data = 0;
717
718 mutex_lock(&adev->grbm_idx_mutex);
719
720 WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), gfx_index_val);
721 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
722
723 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
724 INSTANCE_BROADCAST_WRITES, 1);
725 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
726 SA_BROADCAST_WRITES, 1);
727 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
728 SE_BROADCAST_WRITES, 1);
729
730 WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), data);
731 mutex_unlock(&adev->grbm_idx_mutex);
732
733 return 0;
734 }
735
kgd_address_watch_get_offset(struct kgd_dev * kgd,unsigned int watch_point_id,unsigned int reg_offset)736 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
737 unsigned int watch_point_id,
738 unsigned int reg_offset)
739 {
740 return 0;
741 }
742
set_vm_context_page_table_base(struct kgd_dev * kgd,uint32_t vmid,uint64_t page_table_base)743 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
744 uint64_t page_table_base)
745 {
746 struct amdgpu_device *adev = get_amdgpu_device(kgd);
747
748 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
749 pr_err("trying to set page table base for wrong VMID %u\n",
750 vmid);
751 return;
752 }
753
754 /* SDMA is on gfxhub as well for Navi1* series */
755 adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
756 }
757
758 const struct kfd2kgd_calls gfx_v10_kfd2kgd = {
759 .program_sh_mem_settings = kgd_program_sh_mem_settings,
760 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
761 .init_interrupts = kgd_init_interrupts,
762 .hqd_load = kgd_hqd_load,
763 .hiq_mqd_load = kgd_hiq_mqd_load,
764 .hqd_sdma_load = kgd_hqd_sdma_load,
765 .hqd_dump = kgd_hqd_dump,
766 .hqd_sdma_dump = kgd_hqd_sdma_dump,
767 .hqd_is_occupied = kgd_hqd_is_occupied,
768 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
769 .hqd_destroy = kgd_hqd_destroy,
770 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
771 .address_watch_disable = kgd_address_watch_disable,
772 .address_watch_execute = kgd_address_watch_execute,
773 .wave_control_execute = kgd_wave_control_execute,
774 .address_watch_get_offset = kgd_address_watch_get_offset,
775 .get_atc_vmid_pasid_mapping_info =
776 get_atc_vmid_pasid_mapping_info,
777 .set_vm_context_page_table_base = set_vm_context_page_table_base,
778 };
779