• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 
9 #include "intel_breadcrumbs.h"
10 #include "intel_context.h"
11 #include "intel_engine.h"
12 #include "intel_engine_heartbeat.h"
13 #include "intel_engine_pm.h"
14 #include "intel_gt.h"
15 #include "intel_gt_pm.h"
16 #include "intel_rc6.h"
17 #include "intel_ring.h"
18 #include "shmem_utils.h"
19 
__engine_unpark(struct intel_wakeref * wf)20 static int __engine_unpark(struct intel_wakeref *wf)
21 {
22 	struct intel_engine_cs *engine =
23 		container_of(wf, typeof(*engine), wakeref);
24 	struct intel_context *ce;
25 
26 	ENGINE_TRACE(engine, "\n");
27 
28 	intel_gt_pm_get(engine->gt);
29 
30 	/* Discard stale context state from across idling */
31 	ce = engine->kernel_context;
32 	if (ce) {
33 		GEM_BUG_ON(test_bit(CONTEXT_VALID_BIT, &ce->flags));
34 
35 		/* First poison the image to verify we never fully trust it */
36 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && ce->state) {
37 			struct drm_i915_gem_object *obj = ce->state->obj;
38 			int type = i915_coherent_map_type(engine->i915);
39 			void *map;
40 
41 			map = i915_gem_object_pin_map(obj, type);
42 			if (!IS_ERR(map)) {
43 				memset(map, CONTEXT_REDZONE, obj->base.size);
44 				i915_gem_object_flush_map(obj);
45 				i915_gem_object_unpin_map(obj);
46 			}
47 		}
48 
49 		ce->ops->reset(ce);
50 	}
51 
52 	if (engine->unpark)
53 		engine->unpark(engine);
54 
55 	intel_engine_unpark_heartbeat(engine);
56 	return 0;
57 }
58 
59 #if IS_ENABLED(CONFIG_LOCKDEP)
60 
__timeline_mark_lock(struct intel_context * ce)61 static inline unsigned long __timeline_mark_lock(struct intel_context *ce)
62 {
63 	unsigned long flags;
64 
65 	local_irq_save(flags);
66 	mutex_acquire(&ce->timeline->mutex.dep_map, 2, 0, _THIS_IP_);
67 
68 	return flags;
69 }
70 
__timeline_mark_unlock(struct intel_context * ce,unsigned long flags)71 static inline void __timeline_mark_unlock(struct intel_context *ce,
72 					  unsigned long flags)
73 {
74 	mutex_release(&ce->timeline->mutex.dep_map, _THIS_IP_);
75 	local_irq_restore(flags);
76 }
77 
78 #else
79 
__timeline_mark_lock(struct intel_context * ce)80 static inline unsigned long __timeline_mark_lock(struct intel_context *ce)
81 {
82 	return 0;
83 }
84 
__timeline_mark_unlock(struct intel_context * ce,unsigned long flags)85 static inline void __timeline_mark_unlock(struct intel_context *ce,
86 					  unsigned long flags)
87 {
88 }
89 
90 #endif /* !IS_ENABLED(CONFIG_LOCKDEP) */
91 
duration(struct dma_fence * fence,struct dma_fence_cb * cb)92 static void duration(struct dma_fence *fence, struct dma_fence_cb *cb)
93 {
94 	struct i915_request *rq = to_request(fence);
95 
96 	ewma__engine_latency_add(&rq->engine->latency,
97 				 ktime_us_delta(rq->fence.timestamp,
98 						rq->duration.emitted));
99 }
100 
101 static void
__queue_and_release_pm(struct i915_request * rq,struct intel_timeline * tl,struct intel_engine_cs * engine)102 __queue_and_release_pm(struct i915_request *rq,
103 		       struct intel_timeline *tl,
104 		       struct intel_engine_cs *engine)
105 {
106 	struct intel_gt_timelines *timelines = &engine->gt->timelines;
107 
108 	ENGINE_TRACE(engine, "parking\n");
109 
110 	/*
111 	 * We have to serialise all potential retirement paths with our
112 	 * submission, as we don't want to underflow either the
113 	 * engine->wakeref.counter or our timeline->active_count.
114 	 *
115 	 * Equally, we cannot allow a new submission to start until
116 	 * after we finish queueing, nor could we allow that submitter
117 	 * to retire us before we are ready!
118 	 */
119 	spin_lock(&timelines->lock);
120 
121 	/* Let intel_gt_retire_requests() retire us (acquired under lock) */
122 	if (!atomic_fetch_inc(&tl->active_count))
123 		list_add_tail(&tl->link, &timelines->active_list);
124 
125 	/* Hand the request over to HW and so engine_retire() */
126 	__i915_request_queue(rq, NULL);
127 
128 	/* Let new submissions commence (and maybe retire this timeline) */
129 	__intel_wakeref_defer_park(&engine->wakeref);
130 
131 	spin_unlock(&timelines->lock);
132 }
133 
switch_to_kernel_context(struct intel_engine_cs * engine)134 static bool switch_to_kernel_context(struct intel_engine_cs *engine)
135 {
136 	struct intel_context *ce = engine->kernel_context;
137 	struct i915_request *rq;
138 	unsigned long flags;
139 	bool result = true;
140 
141 	/* GPU is pointing to the void, as good as in the kernel context. */
142 	if (intel_gt_is_wedged(engine->gt))
143 		return true;
144 
145 	GEM_BUG_ON(!intel_context_is_barrier(ce));
146 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != engine->status_page.vma);
147 
148 	/* Already inside the kernel context, safe to power down. */
149 	if (engine->wakeref_serial == engine->serial)
150 		return true;
151 
152 	/*
153 	 * Note, we do this without taking the timeline->mutex. We cannot
154 	 * as we may be called while retiring the kernel context and so
155 	 * already underneath the timeline->mutex. Instead we rely on the
156 	 * exclusive property of the __engine_park that prevents anyone
157 	 * else from creating a request on this engine. This also requires
158 	 * that the ring is empty and we avoid any waits while constructing
159 	 * the context, as they assume protection by the timeline->mutex.
160 	 * This should hold true as we can only park the engine after
161 	 * retiring the last request, thus all rings should be empty and
162 	 * all timelines idle.
163 	 *
164 	 * For unlocking, there are 2 other parties and the GPU who have a
165 	 * stake here.
166 	 *
167 	 * A new gpu user will be waiting on the engine-pm to start their
168 	 * engine_unpark. New waiters are predicated on engine->wakeref.count
169 	 * and so intel_wakeref_defer_park() acts like a mutex_unlock of the
170 	 * engine->wakeref.
171 	 *
172 	 * The other party is intel_gt_retire_requests(), which is walking the
173 	 * list of active timelines looking for completions. Meanwhile as soon
174 	 * as we call __i915_request_queue(), the GPU may complete our request.
175 	 * Ergo, if we put ourselves on the timelines.active_list
176 	 * (se intel_timeline_enter()) before we increment the
177 	 * engine->wakeref.count, we may see the request completion and retire
178 	 * it causing an underflow of the engine->wakeref.
179 	 */
180 	flags = __timeline_mark_lock(ce);
181 	GEM_BUG_ON(atomic_read(&ce->timeline->active_count) < 0);
182 
183 	rq = __i915_request_create(ce, GFP_NOWAIT);
184 	if (IS_ERR(rq))
185 		/* Context switch failed, hope for the best! Maybe reset? */
186 		goto out_unlock;
187 
188 	/* Check again on the next retirement. */
189 	engine->wakeref_serial = engine->serial + 1;
190 	i915_request_add_active_barriers(rq);
191 
192 	/* Install ourselves as a preemption barrier */
193 	rq->sched.attr.priority = I915_PRIORITY_BARRIER;
194 	if (likely(!__i915_request_commit(rq))) { /* engine should be idle! */
195 		/*
196 		 * Use an interrupt for precise measurement of duration,
197 		 * otherwise we rely on someone else retiring all the requests
198 		 * which may delay the signaling (i.e. we will likely wait
199 		 * until the background request retirement running every
200 		 * second or two).
201 		 */
202 		BUILD_BUG_ON(sizeof(rq->duration) > sizeof(rq->submitq));
203 		dma_fence_add_callback(&rq->fence, &rq->duration.cb, duration);
204 		rq->duration.emitted = ktime_get();
205 	}
206 
207 	/* Expose ourselves to the world */
208 	__queue_and_release_pm(rq, ce->timeline, engine);
209 
210 	result = false;
211 out_unlock:
212 	__timeline_mark_unlock(ce, flags);
213 	return result;
214 }
215 
call_idle_barriers(struct intel_engine_cs * engine)216 static void call_idle_barriers(struct intel_engine_cs *engine)
217 {
218 	struct llist_node *node, *next;
219 
220 	llist_for_each_safe(node, next, llist_del_all(&engine->barrier_tasks)) {
221 		struct dma_fence_cb *cb =
222 			container_of((struct list_head *)node,
223 				     typeof(*cb), node);
224 
225 		cb->func(ERR_PTR(-EAGAIN), cb);
226 	}
227 }
228 
__engine_park(struct intel_wakeref * wf)229 static int __engine_park(struct intel_wakeref *wf)
230 {
231 	struct intel_engine_cs *engine =
232 		container_of(wf, typeof(*engine), wakeref);
233 
234 	engine->saturated = 0;
235 
236 	/*
237 	 * If one and only one request is completed between pm events,
238 	 * we know that we are inside the kernel context and it is
239 	 * safe to power down. (We are paranoid in case that runtime
240 	 * suspend causes corruption to the active context image, and
241 	 * want to avoid that impacting userspace.)
242 	 */
243 	if (!switch_to_kernel_context(engine))
244 		return -EBUSY;
245 
246 	ENGINE_TRACE(engine, "parked\n");
247 
248 	call_idle_barriers(engine); /* cleanup after wedging */
249 
250 	intel_engine_park_heartbeat(engine);
251 	intel_breadcrumbs_park(engine->breadcrumbs);
252 
253 	/* Must be reset upon idling, or we may miss the busy wakeup. */
254 	GEM_BUG_ON(engine->execlists.queue_priority_hint != INT_MIN);
255 
256 	if (engine->park)
257 		engine->park(engine);
258 
259 	engine->execlists.no_priolist = false;
260 
261 	/* While gt calls i915_vma_parked(), we have to break the lock cycle */
262 	intel_gt_pm_put_async(engine->gt);
263 	return 0;
264 }
265 
266 static const struct intel_wakeref_ops wf_ops = {
267 	.get = __engine_unpark,
268 	.put = __engine_park,
269 };
270 
intel_engine_init__pm(struct intel_engine_cs * engine)271 void intel_engine_init__pm(struct intel_engine_cs *engine)
272 {
273 	struct intel_runtime_pm *rpm = engine->uncore->rpm;
274 
275 	intel_wakeref_init(&engine->wakeref, rpm, &wf_ops);
276 	intel_engine_init_heartbeat(engine);
277 }
278 
279 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
280 #include "selftest_engine_pm.c"
281 #endif
282