1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/kobject.h>
7 #include <linux/sysfs.h>
8
9 #include "i915_drv.h"
10 #include "intel_engine.h"
11 #include "intel_engine_heartbeat.h"
12 #include "sysfs_engines.h"
13
14 struct kobj_engine {
15 struct kobject base;
16 struct intel_engine_cs *engine;
17 };
18
kobj_to_engine(struct kobject * kobj)19 static struct intel_engine_cs *kobj_to_engine(struct kobject *kobj)
20 {
21 return container_of(kobj, struct kobj_engine, base)->engine;
22 }
23
24 static ssize_t
name_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)25 name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
26 {
27 return sprintf(buf, "%s\n", kobj_to_engine(kobj)->name);
28 }
29
30 static struct kobj_attribute name_attr =
31 __ATTR(name, 0444, name_show, NULL);
32
33 static ssize_t
class_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)34 class_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
35 {
36 return sprintf(buf, "%d\n", kobj_to_engine(kobj)->uabi_class);
37 }
38
39 static struct kobj_attribute class_attr =
40 __ATTR(class, 0444, class_show, NULL);
41
42 static ssize_t
inst_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)43 inst_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
44 {
45 return sprintf(buf, "%d\n", kobj_to_engine(kobj)->uabi_instance);
46 }
47
48 static struct kobj_attribute inst_attr =
49 __ATTR(instance, 0444, inst_show, NULL);
50
51 static ssize_t
mmio_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)52 mmio_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
53 {
54 return sprintf(buf, "0x%x\n", kobj_to_engine(kobj)->mmio_base);
55 }
56
57 static struct kobj_attribute mmio_attr =
58 __ATTR(mmio_base, 0444, mmio_show, NULL);
59
60 static const char * const vcs_caps[] = {
61 [ilog2(I915_VIDEO_CLASS_CAPABILITY_HEVC)] = "hevc",
62 [ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc",
63 };
64
65 static const char * const vecs_caps[] = {
66 [ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc",
67 };
68
repr_trim(char * buf,ssize_t len)69 static ssize_t repr_trim(char *buf, ssize_t len)
70 {
71 /* Trim off the trailing space and replace with a newline */
72 if (len > PAGE_SIZE)
73 len = PAGE_SIZE;
74 if (len > 0)
75 buf[len - 1] = '\n';
76
77 return len;
78 }
79
80 static ssize_t
__caps_show(struct intel_engine_cs * engine,u32 caps,char * buf,bool show_unknown)81 __caps_show(struct intel_engine_cs *engine,
82 u32 caps, char *buf, bool show_unknown)
83 {
84 const char * const *repr;
85 int count, n;
86 ssize_t len;
87
88 BUILD_BUG_ON(!typecheck(typeof(caps), engine->uabi_capabilities));
89
90 switch (engine->class) {
91 case VIDEO_DECODE_CLASS:
92 repr = vcs_caps;
93 count = ARRAY_SIZE(vcs_caps);
94 break;
95
96 case VIDEO_ENHANCEMENT_CLASS:
97 repr = vecs_caps;
98 count = ARRAY_SIZE(vecs_caps);
99 break;
100
101 default:
102 repr = NULL;
103 count = 0;
104 break;
105 }
106 GEM_BUG_ON(count > BITS_PER_TYPE(typeof(caps)));
107
108 len = 0;
109 for_each_set_bit(n,
110 (unsigned long *)&caps,
111 show_unknown ? BITS_PER_TYPE(typeof(caps)) : count) {
112 if (n >= count || !repr[n]) {
113 if (GEM_WARN_ON(show_unknown))
114 len += snprintf(buf + len, PAGE_SIZE - len,
115 "[%x] ", n);
116 } else {
117 len += snprintf(buf + len, PAGE_SIZE - len,
118 "%s ", repr[n]);
119 }
120 if (GEM_WARN_ON(len >= PAGE_SIZE))
121 break;
122 }
123 return repr_trim(buf, len);
124 }
125
126 static ssize_t
caps_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)127 caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
128 {
129 struct intel_engine_cs *engine = kobj_to_engine(kobj);
130
131 return __caps_show(engine, engine->uabi_capabilities, buf, true);
132 }
133
134 static struct kobj_attribute caps_attr =
135 __ATTR(capabilities, 0444, caps_show, NULL);
136
137 static ssize_t
all_caps_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)138 all_caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
139 {
140 return __caps_show(kobj_to_engine(kobj), -1, buf, false);
141 }
142
143 static struct kobj_attribute all_caps_attr =
144 __ATTR(known_capabilities, 0444, all_caps_show, NULL);
145
146 static ssize_t
max_spin_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)147 max_spin_store(struct kobject *kobj, struct kobj_attribute *attr,
148 const char *buf, size_t count)
149 {
150 struct intel_engine_cs *engine = kobj_to_engine(kobj);
151 unsigned long long duration;
152 int err;
153
154 /*
155 * When waiting for a request, if is it currently being executed
156 * on the GPU, we busywait for a short while before sleeping. The
157 * premise is that most requests are short, and if it is already
158 * executing then there is a good chance that it will complete
159 * before we can setup the interrupt handler and go to sleep.
160 * We try to offset the cost of going to sleep, by first spinning
161 * on the request -- if it completed in less time than it would take
162 * to go sleep, process the interrupt and return back to the client,
163 * then we have saved the client some latency, albeit at the cost
164 * of spinning on an expensive CPU core.
165 *
166 * While we try to avoid waiting at all for a request that is unlikely
167 * to complete, deciding how long it is worth spinning is for is an
168 * arbitrary decision: trading off power vs latency.
169 */
170
171 err = kstrtoull(buf, 0, &duration);
172 if (err)
173 return err;
174
175 if (duration > jiffies_to_nsecs(2))
176 return -EINVAL;
177
178 WRITE_ONCE(engine->props.max_busywait_duration_ns, duration);
179
180 return count;
181 }
182
183 static ssize_t
max_spin_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)184 max_spin_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
185 {
186 struct intel_engine_cs *engine = kobj_to_engine(kobj);
187
188 return sprintf(buf, "%lu\n", engine->props.max_busywait_duration_ns);
189 }
190
191 static struct kobj_attribute max_spin_attr =
192 __ATTR(max_busywait_duration_ns, 0644, max_spin_show, max_spin_store);
193
194 static ssize_t
max_spin_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)195 max_spin_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
196 {
197 struct intel_engine_cs *engine = kobj_to_engine(kobj);
198
199 return sprintf(buf, "%lu\n", engine->defaults.max_busywait_duration_ns);
200 }
201
202 static struct kobj_attribute max_spin_def =
203 __ATTR(max_busywait_duration_ns, 0444, max_spin_default, NULL);
204
205 static ssize_t
timeslice_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)206 timeslice_store(struct kobject *kobj, struct kobj_attribute *attr,
207 const char *buf, size_t count)
208 {
209 struct intel_engine_cs *engine = kobj_to_engine(kobj);
210 unsigned long long duration;
211 int err;
212
213 /*
214 * Execlists uses a scheduling quantum (a timeslice) to alternate
215 * execution between ready-to-run contexts of equal priority. This
216 * ensures that all users (though only if they of equal importance)
217 * have the opportunity to run and prevents livelocks where contexts
218 * may have implicit ordering due to userspace semaphores.
219 */
220
221 err = kstrtoull(buf, 0, &duration);
222 if (err)
223 return err;
224
225 if (duration > jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT))
226 return -EINVAL;
227
228 WRITE_ONCE(engine->props.timeslice_duration_ms, duration);
229
230 if (execlists_active(&engine->execlists))
231 set_timer_ms(&engine->execlists.timer, duration);
232
233 return count;
234 }
235
236 static ssize_t
timeslice_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)237 timeslice_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
238 {
239 struct intel_engine_cs *engine = kobj_to_engine(kobj);
240
241 return sprintf(buf, "%lu\n", engine->props.timeslice_duration_ms);
242 }
243
244 static struct kobj_attribute timeslice_duration_attr =
245 __ATTR(timeslice_duration_ms, 0644, timeslice_show, timeslice_store);
246
247 static ssize_t
timeslice_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)248 timeslice_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
249 {
250 struct intel_engine_cs *engine = kobj_to_engine(kobj);
251
252 return sprintf(buf, "%lu\n", engine->defaults.timeslice_duration_ms);
253 }
254
255 static struct kobj_attribute timeslice_duration_def =
256 __ATTR(timeslice_duration_ms, 0444, timeslice_default, NULL);
257
258 static ssize_t
stop_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)259 stop_store(struct kobject *kobj, struct kobj_attribute *attr,
260 const char *buf, size_t count)
261 {
262 struct intel_engine_cs *engine = kobj_to_engine(kobj);
263 unsigned long long duration;
264 int err;
265
266 /*
267 * When we allow ourselves to sleep before a GPU reset after disabling
268 * submission, even for a few milliseconds, gives an innocent context
269 * the opportunity to clear the GPU before the reset occurs. However,
270 * how long to sleep depends on the typical non-preemptible duration
271 * (a similar problem to determining the ideal preempt-reset timeout
272 * or even the heartbeat interval).
273 */
274
275 err = kstrtoull(buf, 0, &duration);
276 if (err)
277 return err;
278
279 if (duration > jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT))
280 return -EINVAL;
281
282 WRITE_ONCE(engine->props.stop_timeout_ms, duration);
283 return count;
284 }
285
286 static ssize_t
stop_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)287 stop_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
288 {
289 struct intel_engine_cs *engine = kobj_to_engine(kobj);
290
291 return sprintf(buf, "%lu\n", engine->props.stop_timeout_ms);
292 }
293
294 static struct kobj_attribute stop_timeout_attr =
295 __ATTR(stop_timeout_ms, 0644, stop_show, stop_store);
296
297 static ssize_t
stop_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)298 stop_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
299 {
300 struct intel_engine_cs *engine = kobj_to_engine(kobj);
301
302 return sprintf(buf, "%lu\n", engine->defaults.stop_timeout_ms);
303 }
304
305 static struct kobj_attribute stop_timeout_def =
306 __ATTR(stop_timeout_ms, 0444, stop_default, NULL);
307
308 static ssize_t
preempt_timeout_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)309 preempt_timeout_store(struct kobject *kobj, struct kobj_attribute *attr,
310 const char *buf, size_t count)
311 {
312 struct intel_engine_cs *engine = kobj_to_engine(kobj);
313 unsigned long long timeout;
314 int err;
315
316 /*
317 * After initialising a preemption request, we give the current
318 * resident a small amount of time to vacate the GPU. The preemption
319 * request is for a higher priority context and should be immediate to
320 * maintain high quality of service (and avoid priority inversion).
321 * However, the preemption granularity of the GPU can be quite coarse
322 * and so we need a compromise.
323 */
324
325 err = kstrtoull(buf, 0, &timeout);
326 if (err)
327 return err;
328
329 if (timeout > jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT))
330 return -EINVAL;
331
332 WRITE_ONCE(engine->props.preempt_timeout_ms, timeout);
333
334 if (READ_ONCE(engine->execlists.pending[0]))
335 set_timer_ms(&engine->execlists.preempt, timeout);
336
337 return count;
338 }
339
340 static ssize_t
preempt_timeout_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)341 preempt_timeout_show(struct kobject *kobj, struct kobj_attribute *attr,
342 char *buf)
343 {
344 struct intel_engine_cs *engine = kobj_to_engine(kobj);
345
346 return sprintf(buf, "%lu\n", engine->props.preempt_timeout_ms);
347 }
348
349 static struct kobj_attribute preempt_timeout_attr =
350 __ATTR(preempt_timeout_ms, 0644, preempt_timeout_show, preempt_timeout_store);
351
352 static ssize_t
preempt_timeout_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)353 preempt_timeout_default(struct kobject *kobj, struct kobj_attribute *attr,
354 char *buf)
355 {
356 struct intel_engine_cs *engine = kobj_to_engine(kobj);
357
358 return sprintf(buf, "%lu\n", engine->defaults.preempt_timeout_ms);
359 }
360
361 static struct kobj_attribute preempt_timeout_def =
362 __ATTR(preempt_timeout_ms, 0444, preempt_timeout_default, NULL);
363
364 static ssize_t
heartbeat_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)365 heartbeat_store(struct kobject *kobj, struct kobj_attribute *attr,
366 const char *buf, size_t count)
367 {
368 struct intel_engine_cs *engine = kobj_to_engine(kobj);
369 unsigned long long delay;
370 int err;
371
372 /*
373 * We monitor the health of the system via periodic heartbeat pulses.
374 * The pulses also provide the opportunity to perform garbage
375 * collection. However, we interpret an incomplete pulse (a missed
376 * heartbeat) as an indication that the system is no longer responsive,
377 * i.e. hung, and perform an engine or full GPU reset. Given that the
378 * preemption granularity can be very coarse on a system, the optimal
379 * value for any workload is unknowable!
380 */
381
382 err = kstrtoull(buf, 0, &delay);
383 if (err)
384 return err;
385
386 if (delay >= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT))
387 return -EINVAL;
388
389 err = intel_engine_set_heartbeat(engine, delay);
390 if (err)
391 return err;
392
393 return count;
394 }
395
396 static ssize_t
heartbeat_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)397 heartbeat_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
398 {
399 struct intel_engine_cs *engine = kobj_to_engine(kobj);
400
401 return sprintf(buf, "%lu\n", engine->props.heartbeat_interval_ms);
402 }
403
404 static struct kobj_attribute heartbeat_interval_attr =
405 __ATTR(heartbeat_interval_ms, 0644, heartbeat_show, heartbeat_store);
406
407 static ssize_t
heartbeat_default(struct kobject * kobj,struct kobj_attribute * attr,char * buf)408 heartbeat_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
409 {
410 struct intel_engine_cs *engine = kobj_to_engine(kobj);
411
412 return sprintf(buf, "%lu\n", engine->defaults.heartbeat_interval_ms);
413 }
414
415 static struct kobj_attribute heartbeat_interval_def =
416 __ATTR(heartbeat_interval_ms, 0444, heartbeat_default, NULL);
417
kobj_engine_release(struct kobject * kobj)418 static void kobj_engine_release(struct kobject *kobj)
419 {
420 kfree(kobj);
421 }
422
423 static struct kobj_type kobj_engine_type = {
424 .release = kobj_engine_release,
425 .sysfs_ops = &kobj_sysfs_ops
426 };
427
428 static struct kobject *
kobj_engine(struct kobject * dir,struct intel_engine_cs * engine)429 kobj_engine(struct kobject *dir, struct intel_engine_cs *engine)
430 {
431 struct kobj_engine *ke;
432
433 ke = kzalloc(sizeof(*ke), GFP_KERNEL);
434 if (!ke)
435 return NULL;
436
437 kobject_init(&ke->base, &kobj_engine_type);
438 ke->engine = engine;
439
440 if (kobject_add(&ke->base, dir, "%s", engine->name)) {
441 kobject_put(&ke->base);
442 return NULL;
443 }
444
445 /* xfer ownership to sysfs tree */
446 return &ke->base;
447 }
448
add_defaults(struct kobj_engine * parent)449 static void add_defaults(struct kobj_engine *parent)
450 {
451 static const struct attribute *files[] = {
452 &max_spin_def.attr,
453 &stop_timeout_def.attr,
454 #if CONFIG_DRM_I915_HEARTBEAT_INTERVAL
455 &heartbeat_interval_def.attr,
456 #endif
457 NULL
458 };
459 struct kobj_engine *ke;
460
461 ke = kzalloc(sizeof(*ke), GFP_KERNEL);
462 if (!ke)
463 return;
464
465 kobject_init(&ke->base, &kobj_engine_type);
466 ke->engine = parent->engine;
467
468 if (kobject_add(&ke->base, &parent->base, "%s", ".defaults")) {
469 kobject_put(&ke->base);
470 return;
471 }
472
473 if (sysfs_create_files(&ke->base, files))
474 return;
475
476 if (intel_engine_has_timeslices(ke->engine) &&
477 sysfs_create_file(&ke->base, ×lice_duration_def.attr))
478 return;
479
480 if (intel_engine_has_preempt_reset(ke->engine) &&
481 sysfs_create_file(&ke->base, &preempt_timeout_def.attr))
482 return;
483 }
484
intel_engines_add_sysfs(struct drm_i915_private * i915)485 void intel_engines_add_sysfs(struct drm_i915_private *i915)
486 {
487 static const struct attribute *files[] = {
488 &name_attr.attr,
489 &class_attr.attr,
490 &inst_attr.attr,
491 &mmio_attr.attr,
492 &caps_attr.attr,
493 &all_caps_attr.attr,
494 &max_spin_attr.attr,
495 &stop_timeout_attr.attr,
496 #if CONFIG_DRM_I915_HEARTBEAT_INTERVAL
497 &heartbeat_interval_attr.attr,
498 #endif
499 NULL
500 };
501
502 struct device *kdev = i915->drm.primary->kdev;
503 struct intel_engine_cs *engine;
504 struct kobject *dir;
505
506 dir = kobject_create_and_add("engine", &kdev->kobj);
507 if (!dir)
508 return;
509
510 for_each_uabi_engine(engine, i915) {
511 struct kobject *kobj;
512
513 kobj = kobj_engine(dir, engine);
514 if (!kobj)
515 goto err_engine;
516
517 if (sysfs_create_files(kobj, files))
518 goto err_object;
519
520 if (intel_engine_has_timeslices(engine) &&
521 sysfs_create_file(kobj, ×lice_duration_attr.attr))
522 goto err_engine;
523
524 if (intel_engine_has_preempt_reset(engine) &&
525 sysfs_create_file(kobj, &preempt_timeout_attr.attr))
526 goto err_engine;
527
528 add_defaults(container_of(kobj, struct kobj_engine, base));
529
530 if (0) {
531 err_object:
532 kobject_put(kobj);
533 err_engine:
534 dev_err(kdev, "Failed to add sysfs engine '%s'\n",
535 engine->name);
536 break;
537 }
538 }
539 }
540