1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * atlas-sensor.c - Support for Atlas Scientific OEM SM sensors
4 *
5 * Copyright (C) 2015-2019 Konsulko Group
6 * Author: Matt Ranostay <matt.ranostay@konsulko.com>
7 */
8
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/delay.h>
13 #include <linux/mutex.h>
14 #include <linux/err.h>
15 #include <linux/irq.h>
16 #include <linux/irq_work.h>
17 #include <linux/i2c.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/regmap.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/trigger.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/triggered_buffer.h>
25 #include <linux/pm_runtime.h>
26
27 #define ATLAS_REGMAP_NAME "atlas_regmap"
28 #define ATLAS_DRV_NAME "atlas"
29
30 #define ATLAS_REG_DEV_TYPE 0x00
31 #define ATLAS_REG_DEV_VERSION 0x01
32
33 #define ATLAS_REG_INT_CONTROL 0x04
34 #define ATLAS_REG_INT_CONTROL_EN BIT(3)
35
36 #define ATLAS_REG_PWR_CONTROL 0x06
37
38 #define ATLAS_REG_PH_CALIB_STATUS 0x0d
39 #define ATLAS_REG_PH_CALIB_STATUS_MASK 0x07
40 #define ATLAS_REG_PH_CALIB_STATUS_LOW BIT(0)
41 #define ATLAS_REG_PH_CALIB_STATUS_MID BIT(1)
42 #define ATLAS_REG_PH_CALIB_STATUS_HIGH BIT(2)
43
44 #define ATLAS_REG_EC_CALIB_STATUS 0x0f
45 #define ATLAS_REG_EC_CALIB_STATUS_MASK 0x0f
46 #define ATLAS_REG_EC_CALIB_STATUS_DRY BIT(0)
47 #define ATLAS_REG_EC_CALIB_STATUS_SINGLE BIT(1)
48 #define ATLAS_REG_EC_CALIB_STATUS_LOW BIT(2)
49 #define ATLAS_REG_EC_CALIB_STATUS_HIGH BIT(3)
50
51 #define ATLAS_REG_DO_CALIB_STATUS 0x09
52 #define ATLAS_REG_DO_CALIB_STATUS_MASK 0x03
53 #define ATLAS_REG_DO_CALIB_STATUS_PRESSURE BIT(0)
54 #define ATLAS_REG_DO_CALIB_STATUS_DO BIT(1)
55
56 #define ATLAS_REG_RTD_DATA 0x0e
57
58 #define ATLAS_REG_PH_TEMP_DATA 0x0e
59 #define ATLAS_REG_PH_DATA 0x16
60
61 #define ATLAS_REG_EC_PROBE 0x08
62 #define ATLAS_REG_EC_TEMP_DATA 0x10
63 #define ATLAS_REG_EC_DATA 0x18
64 #define ATLAS_REG_TDS_DATA 0x1c
65 #define ATLAS_REG_PSS_DATA 0x20
66
67 #define ATLAS_REG_ORP_CALIB_STATUS 0x0d
68 #define ATLAS_REG_ORP_DATA 0x0e
69
70 #define ATLAS_REG_DO_TEMP_DATA 0x12
71 #define ATLAS_REG_DO_DATA 0x22
72
73 #define ATLAS_PH_INT_TIME_IN_MS 450
74 #define ATLAS_EC_INT_TIME_IN_MS 650
75 #define ATLAS_ORP_INT_TIME_IN_MS 450
76 #define ATLAS_DO_INT_TIME_IN_MS 450
77 #define ATLAS_RTD_INT_TIME_IN_MS 450
78
79 enum {
80 ATLAS_PH_SM,
81 ATLAS_EC_SM,
82 ATLAS_ORP_SM,
83 ATLAS_DO_SM,
84 ATLAS_RTD_SM,
85 };
86
87 struct atlas_data {
88 struct i2c_client *client;
89 struct iio_trigger *trig;
90 struct atlas_device *chip;
91 struct regmap *regmap;
92 struct irq_work work;
93 unsigned int interrupt_enabled;
94 /* 96-bit data + 32-bit pad + 64-bit timestamp */
95 __be32 buffer[6] __aligned(8);
96 };
97
98 static const struct regmap_config atlas_regmap_config = {
99 .name = ATLAS_REGMAP_NAME,
100 .reg_bits = 8,
101 .val_bits = 8,
102 };
103
atlas_buffer_num_channels(const struct iio_chan_spec * spec)104 static int atlas_buffer_num_channels(const struct iio_chan_spec *spec)
105 {
106 int idx = 0;
107
108 for (; spec->type != IIO_TIMESTAMP; spec++)
109 idx++;
110
111 return idx;
112 };
113
114 static const struct iio_chan_spec atlas_ph_channels[] = {
115 {
116 .type = IIO_PH,
117 .address = ATLAS_REG_PH_DATA,
118 .info_mask_separate =
119 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
120 .scan_index = 0,
121 .scan_type = {
122 .sign = 'u',
123 .realbits = 32,
124 .storagebits = 32,
125 .endianness = IIO_BE,
126 },
127 },
128 IIO_CHAN_SOFT_TIMESTAMP(1),
129 {
130 .type = IIO_TEMP,
131 .address = ATLAS_REG_PH_TEMP_DATA,
132 .info_mask_separate =
133 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
134 .output = 1,
135 .scan_index = -1
136 },
137 };
138
139 #define ATLAS_CONCENTRATION_CHANNEL(_idx, _addr) \
140 {\
141 .type = IIO_CONCENTRATION, \
142 .indexed = 1, \
143 .channel = _idx, \
144 .address = _addr, \
145 .info_mask_separate = \
146 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), \
147 .scan_index = _idx + 1, \
148 .scan_type = { \
149 .sign = 'u', \
150 .realbits = 32, \
151 .storagebits = 32, \
152 .endianness = IIO_BE, \
153 }, \
154 }
155
156 static const struct iio_chan_spec atlas_ec_channels[] = {
157 {
158 .type = IIO_ELECTRICALCONDUCTIVITY,
159 .address = ATLAS_REG_EC_DATA,
160 .info_mask_separate =
161 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
162 .scan_index = 0,
163 .scan_type = {
164 .sign = 'u',
165 .realbits = 32,
166 .storagebits = 32,
167 .endianness = IIO_BE,
168 },
169 },
170 ATLAS_CONCENTRATION_CHANNEL(0, ATLAS_REG_TDS_DATA),
171 ATLAS_CONCENTRATION_CHANNEL(1, ATLAS_REG_PSS_DATA),
172 IIO_CHAN_SOFT_TIMESTAMP(3),
173 {
174 .type = IIO_TEMP,
175 .address = ATLAS_REG_EC_TEMP_DATA,
176 .info_mask_separate =
177 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
178 .output = 1,
179 .scan_index = -1
180 },
181 };
182
183 static const struct iio_chan_spec atlas_orp_channels[] = {
184 {
185 .type = IIO_VOLTAGE,
186 .address = ATLAS_REG_ORP_DATA,
187 .info_mask_separate =
188 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
189 .scan_index = 0,
190 .scan_type = {
191 .sign = 's',
192 .realbits = 32,
193 .storagebits = 32,
194 .endianness = IIO_BE,
195 },
196 },
197 IIO_CHAN_SOFT_TIMESTAMP(1),
198 };
199
200 static const struct iio_chan_spec atlas_do_channels[] = {
201 {
202 .type = IIO_CONCENTRATION,
203 .address = ATLAS_REG_DO_DATA,
204 .info_mask_separate =
205 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
206 .scan_index = 0,
207 .scan_type = {
208 .sign = 'u',
209 .realbits = 32,
210 .storagebits = 32,
211 .endianness = IIO_BE,
212 },
213 },
214 IIO_CHAN_SOFT_TIMESTAMP(1),
215 {
216 .type = IIO_TEMP,
217 .address = ATLAS_REG_DO_TEMP_DATA,
218 .info_mask_separate =
219 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
220 .output = 1,
221 .scan_index = -1
222 },
223 };
224
225 static const struct iio_chan_spec atlas_rtd_channels[] = {
226 {
227 .type = IIO_TEMP,
228 .address = ATLAS_REG_RTD_DATA,
229 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
230 .scan_index = 0,
231 .scan_type = {
232 .sign = 's',
233 .realbits = 32,
234 .storagebits = 32,
235 .endianness = IIO_BE,
236 },
237 },
238 IIO_CHAN_SOFT_TIMESTAMP(1),
239 };
240
atlas_check_ph_calibration(struct atlas_data * data)241 static int atlas_check_ph_calibration(struct atlas_data *data)
242 {
243 struct device *dev = &data->client->dev;
244 int ret;
245 unsigned int val;
246
247 ret = regmap_read(data->regmap, ATLAS_REG_PH_CALIB_STATUS, &val);
248 if (ret)
249 return ret;
250
251 if (!(val & ATLAS_REG_PH_CALIB_STATUS_MASK)) {
252 dev_warn(dev, "device has not been calibrated\n");
253 return 0;
254 }
255
256 if (!(val & ATLAS_REG_PH_CALIB_STATUS_LOW))
257 dev_warn(dev, "device missing low point calibration\n");
258
259 if (!(val & ATLAS_REG_PH_CALIB_STATUS_MID))
260 dev_warn(dev, "device missing mid point calibration\n");
261
262 if (!(val & ATLAS_REG_PH_CALIB_STATUS_HIGH))
263 dev_warn(dev, "device missing high point calibration\n");
264
265 return 0;
266 }
267
atlas_check_ec_calibration(struct atlas_data * data)268 static int atlas_check_ec_calibration(struct atlas_data *data)
269 {
270 struct device *dev = &data->client->dev;
271 int ret;
272 unsigned int val;
273 __be16 rval;
274
275 ret = regmap_bulk_read(data->regmap, ATLAS_REG_EC_PROBE, &rval, 2);
276 if (ret)
277 return ret;
278
279 val = be16_to_cpu(rval);
280 dev_info(dev, "probe set to K = %d.%.2d", val / 100, val % 100);
281
282 ret = regmap_read(data->regmap, ATLAS_REG_EC_CALIB_STATUS, &val);
283 if (ret)
284 return ret;
285
286 if (!(val & ATLAS_REG_EC_CALIB_STATUS_MASK)) {
287 dev_warn(dev, "device has not been calibrated\n");
288 return 0;
289 }
290
291 if (!(val & ATLAS_REG_EC_CALIB_STATUS_DRY))
292 dev_warn(dev, "device missing dry point calibration\n");
293
294 if (val & ATLAS_REG_EC_CALIB_STATUS_SINGLE) {
295 dev_warn(dev, "device using single point calibration\n");
296 } else {
297 if (!(val & ATLAS_REG_EC_CALIB_STATUS_LOW))
298 dev_warn(dev, "device missing low point calibration\n");
299
300 if (!(val & ATLAS_REG_EC_CALIB_STATUS_HIGH))
301 dev_warn(dev, "device missing high point calibration\n");
302 }
303
304 return 0;
305 }
306
atlas_check_orp_calibration(struct atlas_data * data)307 static int atlas_check_orp_calibration(struct atlas_data *data)
308 {
309 struct device *dev = &data->client->dev;
310 int ret;
311 unsigned int val;
312
313 ret = regmap_read(data->regmap, ATLAS_REG_ORP_CALIB_STATUS, &val);
314 if (ret)
315 return ret;
316
317 if (!val)
318 dev_warn(dev, "device has not been calibrated\n");
319
320 return 0;
321 }
322
atlas_check_do_calibration(struct atlas_data * data)323 static int atlas_check_do_calibration(struct atlas_data *data)
324 {
325 struct device *dev = &data->client->dev;
326 int ret;
327 unsigned int val;
328
329 ret = regmap_read(data->regmap, ATLAS_REG_DO_CALIB_STATUS, &val);
330 if (ret)
331 return ret;
332
333 if (!(val & ATLAS_REG_DO_CALIB_STATUS_MASK)) {
334 dev_warn(dev, "device has not been calibrated\n");
335 return 0;
336 }
337
338 if (!(val & ATLAS_REG_DO_CALIB_STATUS_PRESSURE))
339 dev_warn(dev, "device missing atmospheric pressure calibration\n");
340
341 if (!(val & ATLAS_REG_DO_CALIB_STATUS_DO))
342 dev_warn(dev, "device missing dissolved oxygen calibration\n");
343
344 return 0;
345 }
346
347 struct atlas_device {
348 const struct iio_chan_spec *channels;
349 int num_channels;
350 int data_reg;
351
352 int (*calibration)(struct atlas_data *data);
353 int delay;
354 };
355
356 static struct atlas_device atlas_devices[] = {
357 [ATLAS_PH_SM] = {
358 .channels = atlas_ph_channels,
359 .num_channels = 3,
360 .data_reg = ATLAS_REG_PH_DATA,
361 .calibration = &atlas_check_ph_calibration,
362 .delay = ATLAS_PH_INT_TIME_IN_MS,
363 },
364 [ATLAS_EC_SM] = {
365 .channels = atlas_ec_channels,
366 .num_channels = 5,
367 .data_reg = ATLAS_REG_EC_DATA,
368 .calibration = &atlas_check_ec_calibration,
369 .delay = ATLAS_EC_INT_TIME_IN_MS,
370 },
371 [ATLAS_ORP_SM] = {
372 .channels = atlas_orp_channels,
373 .num_channels = 2,
374 .data_reg = ATLAS_REG_ORP_DATA,
375 .calibration = &atlas_check_orp_calibration,
376 .delay = ATLAS_ORP_INT_TIME_IN_MS,
377 },
378 [ATLAS_DO_SM] = {
379 .channels = atlas_do_channels,
380 .num_channels = 3,
381 .data_reg = ATLAS_REG_DO_DATA,
382 .calibration = &atlas_check_do_calibration,
383 .delay = ATLAS_DO_INT_TIME_IN_MS,
384 },
385 [ATLAS_RTD_SM] = {
386 .channels = atlas_rtd_channels,
387 .num_channels = 2,
388 .data_reg = ATLAS_REG_RTD_DATA,
389 .delay = ATLAS_RTD_INT_TIME_IN_MS,
390 },
391 };
392
atlas_set_powermode(struct atlas_data * data,int on)393 static int atlas_set_powermode(struct atlas_data *data, int on)
394 {
395 return regmap_write(data->regmap, ATLAS_REG_PWR_CONTROL, on);
396 }
397
atlas_set_interrupt(struct atlas_data * data,bool state)398 static int atlas_set_interrupt(struct atlas_data *data, bool state)
399 {
400 if (!data->interrupt_enabled)
401 return 0;
402
403 return regmap_update_bits(data->regmap, ATLAS_REG_INT_CONTROL,
404 ATLAS_REG_INT_CONTROL_EN,
405 state ? ATLAS_REG_INT_CONTROL_EN : 0);
406 }
407
atlas_buffer_postenable(struct iio_dev * indio_dev)408 static int atlas_buffer_postenable(struct iio_dev *indio_dev)
409 {
410 struct atlas_data *data = iio_priv(indio_dev);
411 int ret;
412
413 ret = pm_runtime_get_sync(&data->client->dev);
414 if (ret < 0) {
415 pm_runtime_put_noidle(&data->client->dev);
416 return ret;
417 }
418
419 return atlas_set_interrupt(data, true);
420 }
421
atlas_buffer_predisable(struct iio_dev * indio_dev)422 static int atlas_buffer_predisable(struct iio_dev *indio_dev)
423 {
424 struct atlas_data *data = iio_priv(indio_dev);
425 int ret;
426
427 ret = atlas_set_interrupt(data, false);
428 if (ret)
429 return ret;
430
431 pm_runtime_mark_last_busy(&data->client->dev);
432 ret = pm_runtime_put_autosuspend(&data->client->dev);
433 if (ret)
434 return ret;
435
436 return 0;
437 }
438
439 static const struct iio_trigger_ops atlas_interrupt_trigger_ops = {
440 };
441
442 static const struct iio_buffer_setup_ops atlas_buffer_setup_ops = {
443 .postenable = atlas_buffer_postenable,
444 .predisable = atlas_buffer_predisable,
445 };
446
atlas_work_handler(struct irq_work * work)447 static void atlas_work_handler(struct irq_work *work)
448 {
449 struct atlas_data *data = container_of(work, struct atlas_data, work);
450
451 iio_trigger_poll(data->trig);
452 }
453
atlas_trigger_handler(int irq,void * private)454 static irqreturn_t atlas_trigger_handler(int irq, void *private)
455 {
456 struct iio_poll_func *pf = private;
457 struct iio_dev *indio_dev = pf->indio_dev;
458 struct atlas_data *data = iio_priv(indio_dev);
459 int channels = atlas_buffer_num_channels(data->chip->channels);
460 int ret;
461
462 ret = regmap_bulk_read(data->regmap, data->chip->data_reg,
463 &data->buffer, sizeof(__be32) * channels);
464
465 if (!ret)
466 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
467 iio_get_time_ns(indio_dev));
468
469 iio_trigger_notify_done(indio_dev->trig);
470
471 return IRQ_HANDLED;
472 }
473
atlas_interrupt_handler(int irq,void * private)474 static irqreturn_t atlas_interrupt_handler(int irq, void *private)
475 {
476 struct iio_dev *indio_dev = private;
477 struct atlas_data *data = iio_priv(indio_dev);
478
479 irq_work_queue(&data->work);
480
481 return IRQ_HANDLED;
482 }
483
atlas_read_measurement(struct atlas_data * data,int reg,__be32 * val)484 static int atlas_read_measurement(struct atlas_data *data, int reg, __be32 *val)
485 {
486 struct device *dev = &data->client->dev;
487 int suspended = pm_runtime_suspended(dev);
488 int ret;
489
490 ret = pm_runtime_get_sync(dev);
491 if (ret < 0) {
492 pm_runtime_put_noidle(dev);
493 return ret;
494 }
495
496 if (suspended)
497 msleep(data->chip->delay);
498
499 ret = regmap_bulk_read(data->regmap, reg, val, sizeof(*val));
500
501 pm_runtime_mark_last_busy(dev);
502 pm_runtime_put_autosuspend(dev);
503
504 return ret;
505 }
506
atlas_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)507 static int atlas_read_raw(struct iio_dev *indio_dev,
508 struct iio_chan_spec const *chan,
509 int *val, int *val2, long mask)
510 {
511 struct atlas_data *data = iio_priv(indio_dev);
512
513 switch (mask) {
514 case IIO_CHAN_INFO_PROCESSED:
515 case IIO_CHAN_INFO_RAW: {
516 int ret;
517 __be32 reg;
518
519 switch (chan->type) {
520 case IIO_TEMP:
521 ret = regmap_bulk_read(data->regmap, chan->address,
522 ®, sizeof(reg));
523 break;
524 case IIO_PH:
525 case IIO_CONCENTRATION:
526 case IIO_ELECTRICALCONDUCTIVITY:
527 case IIO_VOLTAGE:
528 ret = iio_device_claim_direct_mode(indio_dev);
529 if (ret)
530 return ret;
531
532 ret = atlas_read_measurement(data, chan->address, ®);
533
534 iio_device_release_direct_mode(indio_dev);
535 break;
536 default:
537 ret = -EINVAL;
538 }
539
540 if (!ret) {
541 *val = be32_to_cpu(reg);
542 ret = IIO_VAL_INT;
543 }
544 return ret;
545 }
546 case IIO_CHAN_INFO_SCALE:
547 switch (chan->type) {
548 case IIO_TEMP:
549 *val = 10;
550 return IIO_VAL_INT;
551 case IIO_PH:
552 *val = 1; /* 0.001 */
553 *val2 = 1000;
554 break;
555 case IIO_ELECTRICALCONDUCTIVITY:
556 *val = 1; /* 0.00001 */
557 *val2 = 100000;
558 break;
559 case IIO_CONCENTRATION:
560 *val = 0; /* 0.000000001 */
561 *val2 = 1000;
562 return IIO_VAL_INT_PLUS_NANO;
563 case IIO_VOLTAGE:
564 *val = 1; /* 0.1 */
565 *val2 = 10;
566 break;
567 default:
568 return -EINVAL;
569 }
570 return IIO_VAL_FRACTIONAL;
571 }
572
573 return -EINVAL;
574 }
575
atlas_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)576 static int atlas_write_raw(struct iio_dev *indio_dev,
577 struct iio_chan_spec const *chan,
578 int val, int val2, long mask)
579 {
580 struct atlas_data *data = iio_priv(indio_dev);
581 __be32 reg = cpu_to_be32(val / 10);
582
583 if (val2 != 0 || val < 0 || val > 20000)
584 return -EINVAL;
585
586 if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_TEMP)
587 return -EINVAL;
588
589 return regmap_bulk_write(data->regmap, chan->address,
590 ®, sizeof(reg));
591 }
592
593 static const struct iio_info atlas_info = {
594 .read_raw = atlas_read_raw,
595 .write_raw = atlas_write_raw,
596 };
597
598 static const struct i2c_device_id atlas_id[] = {
599 { "atlas-ph-sm", ATLAS_PH_SM},
600 { "atlas-ec-sm", ATLAS_EC_SM},
601 { "atlas-orp-sm", ATLAS_ORP_SM},
602 { "atlas-do-sm", ATLAS_DO_SM},
603 { "atlas-rtd-sm", ATLAS_RTD_SM},
604 {}
605 };
606 MODULE_DEVICE_TABLE(i2c, atlas_id);
607
608 static const struct of_device_id atlas_dt_ids[] = {
609 { .compatible = "atlas,ph-sm", .data = (void *)ATLAS_PH_SM, },
610 { .compatible = "atlas,ec-sm", .data = (void *)ATLAS_EC_SM, },
611 { .compatible = "atlas,orp-sm", .data = (void *)ATLAS_ORP_SM, },
612 { .compatible = "atlas,do-sm", .data = (void *)ATLAS_DO_SM, },
613 { .compatible = "atlas,rtd-sm", .data = (void *)ATLAS_RTD_SM, },
614 { }
615 };
616 MODULE_DEVICE_TABLE(of, atlas_dt_ids);
617
atlas_probe(struct i2c_client * client,const struct i2c_device_id * id)618 static int atlas_probe(struct i2c_client *client,
619 const struct i2c_device_id *id)
620 {
621 struct atlas_data *data;
622 struct atlas_device *chip;
623 struct iio_trigger *trig;
624 struct iio_dev *indio_dev;
625 int ret;
626
627 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
628 if (!indio_dev)
629 return -ENOMEM;
630
631 if (!dev_fwnode(&client->dev))
632 chip = &atlas_devices[id->driver_data];
633 else
634 chip = &atlas_devices[(unsigned long)device_get_match_data(&client->dev)];
635
636 indio_dev->info = &atlas_info;
637 indio_dev->name = ATLAS_DRV_NAME;
638 indio_dev->channels = chip->channels;
639 indio_dev->num_channels = chip->num_channels;
640 indio_dev->modes = INDIO_BUFFER_SOFTWARE | INDIO_DIRECT_MODE;
641
642 trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d",
643 indio_dev->name, indio_dev->id);
644
645 if (!trig)
646 return -ENOMEM;
647
648 data = iio_priv(indio_dev);
649 data->client = client;
650 data->trig = trig;
651 data->chip = chip;
652 trig->dev.parent = indio_dev->dev.parent;
653 trig->ops = &atlas_interrupt_trigger_ops;
654 iio_trigger_set_drvdata(trig, indio_dev);
655
656 i2c_set_clientdata(client, indio_dev);
657
658 data->regmap = devm_regmap_init_i2c(client, &atlas_regmap_config);
659 if (IS_ERR(data->regmap)) {
660 dev_err(&client->dev, "regmap initialization failed\n");
661 return PTR_ERR(data->regmap);
662 }
663
664 ret = pm_runtime_set_active(&client->dev);
665 if (ret)
666 return ret;
667
668 ret = chip->calibration(data);
669 if (ret)
670 return ret;
671
672 ret = iio_trigger_register(trig);
673 if (ret) {
674 dev_err(&client->dev, "failed to register trigger\n");
675 return ret;
676 }
677
678 ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
679 &atlas_trigger_handler, &atlas_buffer_setup_ops);
680 if (ret) {
681 dev_err(&client->dev, "cannot setup iio trigger\n");
682 goto unregister_trigger;
683 }
684
685 init_irq_work(&data->work, atlas_work_handler);
686
687 if (client->irq > 0) {
688 /* interrupt pin toggles on new conversion */
689 ret = devm_request_threaded_irq(&client->dev, client->irq,
690 NULL, atlas_interrupt_handler,
691 IRQF_TRIGGER_RISING |
692 IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
693 "atlas_irq",
694 indio_dev);
695
696 if (ret)
697 dev_warn(&client->dev,
698 "request irq (%d) failed\n", client->irq);
699 else
700 data->interrupt_enabled = 1;
701 }
702
703 ret = atlas_set_powermode(data, 1);
704 if (ret) {
705 dev_err(&client->dev, "cannot power device on");
706 goto unregister_buffer;
707 }
708
709 pm_runtime_enable(&client->dev);
710 pm_runtime_set_autosuspend_delay(&client->dev, 2500);
711 pm_runtime_use_autosuspend(&client->dev);
712
713 ret = iio_device_register(indio_dev);
714 if (ret) {
715 dev_err(&client->dev, "unable to register device\n");
716 goto unregister_pm;
717 }
718
719 return 0;
720
721 unregister_pm:
722 pm_runtime_disable(&client->dev);
723 atlas_set_powermode(data, 0);
724
725 unregister_buffer:
726 iio_triggered_buffer_cleanup(indio_dev);
727
728 unregister_trigger:
729 iio_trigger_unregister(data->trig);
730
731 return ret;
732 }
733
atlas_remove(struct i2c_client * client)734 static int atlas_remove(struct i2c_client *client)
735 {
736 struct iio_dev *indio_dev = i2c_get_clientdata(client);
737 struct atlas_data *data = iio_priv(indio_dev);
738
739 iio_device_unregister(indio_dev);
740 iio_triggered_buffer_cleanup(indio_dev);
741 iio_trigger_unregister(data->trig);
742
743 pm_runtime_disable(&client->dev);
744 pm_runtime_set_suspended(&client->dev);
745 pm_runtime_put_noidle(&client->dev);
746
747 return atlas_set_powermode(data, 0);
748 }
749
750 #ifdef CONFIG_PM
atlas_runtime_suspend(struct device * dev)751 static int atlas_runtime_suspend(struct device *dev)
752 {
753 struct atlas_data *data =
754 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
755
756 return atlas_set_powermode(data, 0);
757 }
758
atlas_runtime_resume(struct device * dev)759 static int atlas_runtime_resume(struct device *dev)
760 {
761 struct atlas_data *data =
762 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
763
764 return atlas_set_powermode(data, 1);
765 }
766 #endif
767
768 static const struct dev_pm_ops atlas_pm_ops = {
769 SET_RUNTIME_PM_OPS(atlas_runtime_suspend,
770 atlas_runtime_resume, NULL)
771 };
772
773 static struct i2c_driver atlas_driver = {
774 .driver = {
775 .name = ATLAS_DRV_NAME,
776 .of_match_table = atlas_dt_ids,
777 .pm = &atlas_pm_ops,
778 },
779 .probe = atlas_probe,
780 .remove = atlas_remove,
781 .id_table = atlas_id,
782 };
783 module_i2c_driver(atlas_driver);
784
785 MODULE_AUTHOR("Matt Ranostay <matt.ranostay@konsulko.com>");
786 MODULE_DESCRIPTION("Atlas Scientific SM sensors");
787 MODULE_LICENSE("GPL");
788