• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26 
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31 
32 #include "irq-gic-common.h"
33 
34 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
35 
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
38 
39 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
40 
41 struct redist_region {
42 	void __iomem		*redist_base;
43 	phys_addr_t		phys_base;
44 	bool			single_redist;
45 };
46 
47 struct gic_chip_data {
48 	struct fwnode_handle	*fwnode;
49 	void __iomem		*dist_base;
50 	struct redist_region	*redist_regions;
51 	struct rdists		rdists;
52 	struct irq_domain	*domain;
53 	u64			redist_stride;
54 	u32			nr_redist_regions;
55 	u64			flags;
56 	bool			has_rss;
57 	unsigned int		ppi_nr;
58 	struct partition_desc	**ppi_descs;
59 };
60 
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63 
64 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67 
68 /*
69  * The behaviours of RPR and PMR registers differ depending on the value of
70  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71  * distributor and redistributors depends on whether security is enabled in the
72  * GIC.
73  *
74  * When security is enabled, non-secure priority values from the (re)distributor
75  * are presented to the GIC CPUIF as follow:
76  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77  *
78  * If SCR_EL3.FIQ == 1, the values writen to/read from PMR and RPR at non-secure
79  * EL1 are subject to a similar operation thus matching the priorities presented
80  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81  * these values are unchanched by the GIC.
82  *
83  * see GICv3/GICv4 Architecture Specification (IHI0069D):
84  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85  *   priorities.
86  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87  *   interrupt.
88  */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90 
91 /*
92  * Global static key controlling whether an update to PMR allowing more
93  * interrupts requires to be propagated to the redistributor (DSB SY).
94  * And this needs to be exported for modules to be able to enable
95  * interrupts...
96  */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99 
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102 
103 /*
104  * When the Non-secure world has access to group 0 interrupts (as a
105  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106  * return the Distributor's view of the interrupt priority.
107  *
108  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109  * written by software is moved to the Non-secure range by the Distributor.
110  *
111  * If both are true (which is when gic_nonsecure_priorities gets enabled),
112  * we need to shift down the priority programmed by software to match it
113  * against the value returned by ICC_RPR_EL1.
114  */
115 #define GICD_INT_RPR_PRI(priority)					\
116 	({								\
117 		u32 __priority = (priority);				\
118 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
119 			__priority = 0x80 | (__priority >> 1);		\
120 									\
121 		__priority;						\
122 	})
123 
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
126 
127 static struct gic_kvm_info gic_v3_kvm_info;
128 static DEFINE_PER_CPU(bool, has_rss);
129 
130 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
134 
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE	0xf0
137 
138 enum gic_intid_range {
139 	SGI_RANGE,
140 	PPI_RANGE,
141 	SPI_RANGE,
142 	EPPI_RANGE,
143 	ESPI_RANGE,
144 	LPI_RANGE,
145 	__INVALID_RANGE__
146 };
147 
__get_intid_range(irq_hw_number_t hwirq)148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
149 {
150 	switch (hwirq) {
151 	case 0 ... 15:
152 		return SGI_RANGE;
153 	case 16 ... 31:
154 		return PPI_RANGE;
155 	case 32 ... 1019:
156 		return SPI_RANGE;
157 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
158 		return EPPI_RANGE;
159 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
160 		return ESPI_RANGE;
161 	case 8192 ... GENMASK(23, 0):
162 		return LPI_RANGE;
163 	default:
164 		return __INVALID_RANGE__;
165 	}
166 }
167 
get_intid_range(struct irq_data * d)168 static enum gic_intid_range get_intid_range(struct irq_data *d)
169 {
170 	return __get_intid_range(d->hwirq);
171 }
172 
gic_irq(struct irq_data * d)173 static inline unsigned int gic_irq(struct irq_data *d)
174 {
175 	return d->hwirq;
176 }
177 
gic_irq_in_rdist(struct irq_data * d)178 static inline bool gic_irq_in_rdist(struct irq_data *d)
179 {
180 	switch (get_intid_range(d)) {
181 	case SGI_RANGE:
182 	case PPI_RANGE:
183 	case EPPI_RANGE:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
gic_dist_base(struct irq_data * d)190 static inline void __iomem *gic_dist_base(struct irq_data *d)
191 {
192 	switch (get_intid_range(d)) {
193 	case SGI_RANGE:
194 	case PPI_RANGE:
195 	case EPPI_RANGE:
196 		/* SGI+PPI -> SGI_base for this CPU */
197 		return gic_data_rdist_sgi_base();
198 
199 	case SPI_RANGE:
200 	case ESPI_RANGE:
201 		/* SPI -> dist_base */
202 		return gic_data.dist_base;
203 
204 	default:
205 		return NULL;
206 	}
207 }
208 
gic_do_wait_for_rwp(void __iomem * base,u32 bit)209 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
210 {
211 	u32 count = 1000000;	/* 1s! */
212 
213 	while (readl_relaxed(base + GICD_CTLR) & bit) {
214 		count--;
215 		if (!count) {
216 			pr_err_ratelimited("RWP timeout, gone fishing\n");
217 			return;
218 		}
219 		cpu_relax();
220 		udelay(1);
221 	}
222 }
223 
224 /* Wait for completion of a distributor change */
gic_dist_wait_for_rwp(void)225 static void gic_dist_wait_for_rwp(void)
226 {
227 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
228 }
229 
230 /* Wait for completion of a redistributor change */
gic_redist_wait_for_rwp(void)231 static void gic_redist_wait_for_rwp(void)
232 {
233 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
234 }
235 
236 #ifdef CONFIG_ARM64
237 
gic_read_iar(void)238 static u64 __maybe_unused gic_read_iar(void)
239 {
240 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
241 		return gic_read_iar_cavium_thunderx();
242 	else
243 		return gic_read_iar_common();
244 }
245 #endif
246 
gic_enable_redist(bool enable)247 static void gic_enable_redist(bool enable)
248 {
249 	void __iomem *rbase;
250 	u32 count = 1000000;	/* 1s! */
251 	u32 val;
252 
253 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
254 		return;
255 
256 	rbase = gic_data_rdist_rd_base();
257 
258 	val = readl_relaxed(rbase + GICR_WAKER);
259 	if (enable)
260 		/* Wake up this CPU redistributor */
261 		val &= ~GICR_WAKER_ProcessorSleep;
262 	else
263 		val |= GICR_WAKER_ProcessorSleep;
264 	writel_relaxed(val, rbase + GICR_WAKER);
265 
266 	if (!enable) {		/* Check that GICR_WAKER is writeable */
267 		val = readl_relaxed(rbase + GICR_WAKER);
268 		if (!(val & GICR_WAKER_ProcessorSleep))
269 			return;	/* No PM support in this redistributor */
270 	}
271 
272 	while (--count) {
273 		val = readl_relaxed(rbase + GICR_WAKER);
274 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
275 			break;
276 		cpu_relax();
277 		udelay(1);
278 	}
279 	if (!count)
280 		pr_err_ratelimited("redistributor failed to %s...\n",
281 				   enable ? "wakeup" : "sleep");
282 }
283 
284 /*
285  * Routines to disable, enable, EOI and route interrupts
286  */
convert_offset_index(struct irq_data * d,u32 offset,u32 * index)287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
288 {
289 	switch (get_intid_range(d)) {
290 	case SGI_RANGE:
291 	case PPI_RANGE:
292 	case SPI_RANGE:
293 		*index = d->hwirq;
294 		return offset;
295 	case EPPI_RANGE:
296 		/*
297 		 * Contrary to the ESPI range, the EPPI range is contiguous
298 		 * to the PPI range in the registers, so let's adjust the
299 		 * displacement accordingly. Consistency is overrated.
300 		 */
301 		*index = d->hwirq - EPPI_BASE_INTID + 32;
302 		return offset;
303 	case ESPI_RANGE:
304 		*index = d->hwirq - ESPI_BASE_INTID;
305 		switch (offset) {
306 		case GICD_ISENABLER:
307 			return GICD_ISENABLERnE;
308 		case GICD_ICENABLER:
309 			return GICD_ICENABLERnE;
310 		case GICD_ISPENDR:
311 			return GICD_ISPENDRnE;
312 		case GICD_ICPENDR:
313 			return GICD_ICPENDRnE;
314 		case GICD_ISACTIVER:
315 			return GICD_ISACTIVERnE;
316 		case GICD_ICACTIVER:
317 			return GICD_ICACTIVERnE;
318 		case GICD_IPRIORITYR:
319 			return GICD_IPRIORITYRnE;
320 		case GICD_ICFGR:
321 			return GICD_ICFGRnE;
322 		case GICD_IROUTER:
323 			return GICD_IROUTERnE;
324 		default:
325 			break;
326 		}
327 		break;
328 	default:
329 		break;
330 	}
331 
332 	WARN_ON(1);
333 	*index = d->hwirq;
334 	return offset;
335 }
336 
gic_peek_irq(struct irq_data * d,u32 offset)337 static int gic_peek_irq(struct irq_data *d, u32 offset)
338 {
339 	void __iomem *base;
340 	u32 index, mask;
341 
342 	offset = convert_offset_index(d, offset, &index);
343 	mask = 1 << (index % 32);
344 
345 	if (gic_irq_in_rdist(d))
346 		base = gic_data_rdist_sgi_base();
347 	else
348 		base = gic_data.dist_base;
349 
350 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
351 }
352 
gic_poke_irq(struct irq_data * d,u32 offset)353 static void gic_poke_irq(struct irq_data *d, u32 offset)
354 {
355 	void (*rwp_wait)(void);
356 	void __iomem *base;
357 	u32 index, mask;
358 
359 	offset = convert_offset_index(d, offset, &index);
360 	mask = 1 << (index % 32);
361 
362 	if (gic_irq_in_rdist(d)) {
363 		base = gic_data_rdist_sgi_base();
364 		rwp_wait = gic_redist_wait_for_rwp;
365 	} else {
366 		base = gic_data.dist_base;
367 		rwp_wait = gic_dist_wait_for_rwp;
368 	}
369 
370 	writel_relaxed(mask, base + offset + (index / 32) * 4);
371 	rwp_wait();
372 }
373 
gic_mask_irq(struct irq_data * d)374 static void gic_mask_irq(struct irq_data *d)
375 {
376 	gic_poke_irq(d, GICD_ICENABLER);
377 }
378 
gic_eoimode1_mask_irq(struct irq_data * d)379 static void gic_eoimode1_mask_irq(struct irq_data *d)
380 {
381 	gic_mask_irq(d);
382 	/*
383 	 * When masking a forwarded interrupt, make sure it is
384 	 * deactivated as well.
385 	 *
386 	 * This ensures that an interrupt that is getting
387 	 * disabled/masked will not get "stuck", because there is
388 	 * noone to deactivate it (guest is being terminated).
389 	 */
390 	if (irqd_is_forwarded_to_vcpu(d))
391 		gic_poke_irq(d, GICD_ICACTIVER);
392 }
393 
gic_unmask_irq(struct irq_data * d)394 static void gic_unmask_irq(struct irq_data *d)
395 {
396 	gic_poke_irq(d, GICD_ISENABLER);
397 }
398 
gic_supports_nmi(void)399 static inline bool gic_supports_nmi(void)
400 {
401 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
402 	       static_branch_likely(&supports_pseudo_nmis);
403 }
404 
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)405 static int gic_irq_set_irqchip_state(struct irq_data *d,
406 				     enum irqchip_irq_state which, bool val)
407 {
408 	u32 reg;
409 
410 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
411 		return -EINVAL;
412 
413 	switch (which) {
414 	case IRQCHIP_STATE_PENDING:
415 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
416 		break;
417 
418 	case IRQCHIP_STATE_ACTIVE:
419 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
420 		break;
421 
422 	case IRQCHIP_STATE_MASKED:
423 		reg = val ? GICD_ICENABLER : GICD_ISENABLER;
424 		break;
425 
426 	default:
427 		return -EINVAL;
428 	}
429 
430 	gic_poke_irq(d, reg);
431 	return 0;
432 }
433 
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)434 static int gic_irq_get_irqchip_state(struct irq_data *d,
435 				     enum irqchip_irq_state which, bool *val)
436 {
437 	if (d->hwirq >= 8192) /* PPI/SPI only */
438 		return -EINVAL;
439 
440 	switch (which) {
441 	case IRQCHIP_STATE_PENDING:
442 		*val = gic_peek_irq(d, GICD_ISPENDR);
443 		break;
444 
445 	case IRQCHIP_STATE_ACTIVE:
446 		*val = gic_peek_irq(d, GICD_ISACTIVER);
447 		break;
448 
449 	case IRQCHIP_STATE_MASKED:
450 		*val = !gic_peek_irq(d, GICD_ISENABLER);
451 		break;
452 
453 	default:
454 		return -EINVAL;
455 	}
456 
457 	return 0;
458 }
459 
gic_irq_set_prio(struct irq_data * d,u8 prio)460 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
461 {
462 	void __iomem *base = gic_dist_base(d);
463 	u32 offset, index;
464 
465 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
466 
467 	writeb_relaxed(prio, base + offset + index);
468 }
469 
gic_get_ppi_index(struct irq_data * d)470 static u32 gic_get_ppi_index(struct irq_data *d)
471 {
472 	switch (get_intid_range(d)) {
473 	case PPI_RANGE:
474 		return d->hwirq - 16;
475 	case EPPI_RANGE:
476 		return d->hwirq - EPPI_BASE_INTID + 16;
477 	default:
478 		unreachable();
479 	}
480 }
481 
gic_irq_nmi_setup(struct irq_data * d)482 static int gic_irq_nmi_setup(struct irq_data *d)
483 {
484 	struct irq_desc *desc = irq_to_desc(d->irq);
485 
486 	if (!gic_supports_nmi())
487 		return -EINVAL;
488 
489 	if (gic_peek_irq(d, GICD_ISENABLER)) {
490 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
491 		return -EINVAL;
492 	}
493 
494 	/*
495 	 * A secondary irq_chip should be in charge of LPI request,
496 	 * it should not be possible to get there
497 	 */
498 	if (WARN_ON(gic_irq(d) >= 8192))
499 		return -EINVAL;
500 
501 	/* desc lock should already be held */
502 	if (gic_irq_in_rdist(d)) {
503 		u32 idx = gic_get_ppi_index(d);
504 
505 		/* Setting up PPI as NMI, only switch handler for first NMI */
506 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
507 			refcount_set(&ppi_nmi_refs[idx], 1);
508 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
509 		}
510 	} else {
511 		desc->handle_irq = handle_fasteoi_nmi;
512 	}
513 
514 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
515 
516 	return 0;
517 }
518 
gic_irq_nmi_teardown(struct irq_data * d)519 static void gic_irq_nmi_teardown(struct irq_data *d)
520 {
521 	struct irq_desc *desc = irq_to_desc(d->irq);
522 
523 	if (WARN_ON(!gic_supports_nmi()))
524 		return;
525 
526 	if (gic_peek_irq(d, GICD_ISENABLER)) {
527 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
528 		return;
529 	}
530 
531 	/*
532 	 * A secondary irq_chip should be in charge of LPI request,
533 	 * it should not be possible to get there
534 	 */
535 	if (WARN_ON(gic_irq(d) >= 8192))
536 		return;
537 
538 	/* desc lock should already be held */
539 	if (gic_irq_in_rdist(d)) {
540 		u32 idx = gic_get_ppi_index(d);
541 
542 		/* Tearing down NMI, only switch handler for last NMI */
543 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
544 			desc->handle_irq = handle_percpu_devid_irq;
545 	} else {
546 		desc->handle_irq = handle_fasteoi_irq;
547 	}
548 
549 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
550 }
551 
gic_eoi_irq(struct irq_data * d)552 static void gic_eoi_irq(struct irq_data *d)
553 {
554 	gic_write_eoir(gic_irq(d));
555 }
556 
gic_eoimode1_eoi_irq(struct irq_data * d)557 static void gic_eoimode1_eoi_irq(struct irq_data *d)
558 {
559 	/*
560 	 * No need to deactivate an LPI, or an interrupt that
561 	 * is is getting forwarded to a vcpu.
562 	 */
563 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
564 		return;
565 	gic_write_dir(gic_irq(d));
566 }
567 
gic_set_type(struct irq_data * d,unsigned int type)568 static int gic_set_type(struct irq_data *d, unsigned int type)
569 {
570 	enum gic_intid_range range;
571 	unsigned int irq = gic_irq(d);
572 	void (*rwp_wait)(void);
573 	void __iomem *base;
574 	u32 offset, index;
575 	int ret;
576 
577 	range = get_intid_range(d);
578 
579 	/* Interrupt configuration for SGIs can't be changed */
580 	if (range == SGI_RANGE)
581 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
582 
583 	/* SPIs have restrictions on the supported types */
584 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
585 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
586 		return -EINVAL;
587 
588 	if (gic_irq_in_rdist(d)) {
589 		base = gic_data_rdist_sgi_base();
590 		rwp_wait = gic_redist_wait_for_rwp;
591 	} else {
592 		base = gic_data.dist_base;
593 		rwp_wait = gic_dist_wait_for_rwp;
594 	}
595 
596 	offset = convert_offset_index(d, GICD_ICFGR, &index);
597 
598 	ret = gic_configure_irq(index, type, base + offset, rwp_wait);
599 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
600 		/* Misconfigured PPIs are usually not fatal */
601 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
602 		ret = 0;
603 	}
604 
605 	return ret;
606 }
607 
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)608 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
609 {
610 	if (get_intid_range(d) == SGI_RANGE)
611 		return -EINVAL;
612 
613 	if (vcpu)
614 		irqd_set_forwarded_to_vcpu(d);
615 	else
616 		irqd_clr_forwarded_to_vcpu(d);
617 	return 0;
618 }
619 
gic_mpidr_to_affinity(unsigned long mpidr)620 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
621 {
622 	u64 aff;
623 
624 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
625 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
626 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
627 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
628 
629 	return aff;
630 }
631 
gic_deactivate_unhandled(u32 irqnr)632 static void gic_deactivate_unhandled(u32 irqnr)
633 {
634 	if (static_branch_likely(&supports_deactivate_key)) {
635 		if (irqnr < 8192)
636 			gic_write_dir(irqnr);
637 	} else {
638 		gic_write_eoir(irqnr);
639 	}
640 }
641 
gic_handle_nmi(u32 irqnr,struct pt_regs * regs)642 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
643 {
644 	bool irqs_enabled = interrupts_enabled(regs);
645 	int err;
646 
647 	if (irqs_enabled)
648 		nmi_enter();
649 
650 	if (static_branch_likely(&supports_deactivate_key))
651 		gic_write_eoir(irqnr);
652 	/*
653 	 * Leave the PSR.I bit set to prevent other NMIs to be
654 	 * received while handling this one.
655 	 * PSR.I will be restored when we ERET to the
656 	 * interrupted context.
657 	 */
658 	err = handle_domain_nmi(gic_data.domain, irqnr, regs);
659 	if (err)
660 		gic_deactivate_unhandled(irqnr);
661 
662 	if (irqs_enabled)
663 		nmi_exit();
664 }
665 
do_read_iar(struct pt_regs * regs)666 static u32 do_read_iar(struct pt_regs *regs)
667 {
668 	u32 iar;
669 
670 	if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
671 		u64 pmr;
672 
673 		/*
674 		 * We were in a context with IRQs disabled. However, the
675 		 * entry code has set PMR to a value that allows any
676 		 * interrupt to be acknowledged, and not just NMIs. This can
677 		 * lead to surprising effects if the NMI has been retired in
678 		 * the meantime, and that there is an IRQ pending. The IRQ
679 		 * would then be taken in NMI context, something that nobody
680 		 * wants to debug twice.
681 		 *
682 		 * Until we sort this, drop PMR again to a level that will
683 		 * actually only allow NMIs before reading IAR, and then
684 		 * restore it to what it was.
685 		 */
686 		pmr = gic_read_pmr();
687 		gic_pmr_mask_irqs();
688 		isb();
689 
690 		iar = gic_read_iar();
691 
692 		gic_write_pmr(pmr);
693 	} else {
694 		iar = gic_read_iar();
695 	}
696 
697 	return iar;
698 }
699 
gic_handle_irq(struct pt_regs * regs)700 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
701 {
702 	u32 irqnr;
703 
704 	irqnr = do_read_iar(regs);
705 
706 	/* Check for special IDs first */
707 	if ((irqnr >= 1020 && irqnr <= 1023))
708 		return;
709 
710 	if (gic_supports_nmi() &&
711 	    unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI))) {
712 		gic_handle_nmi(irqnr, regs);
713 		return;
714 	}
715 
716 	if (gic_prio_masking_enabled()) {
717 		gic_pmr_mask_irqs();
718 		gic_arch_enable_irqs();
719 	}
720 
721 	if (static_branch_likely(&supports_deactivate_key))
722 		gic_write_eoir(irqnr);
723 	else
724 		isb();
725 
726 	if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
727 		WARN_ONCE(true, "Unexpected interrupt received!\n");
728 		gic_deactivate_unhandled(irqnr);
729 	}
730 }
731 
gic_get_pribits(void)732 static u32 gic_get_pribits(void)
733 {
734 	u32 pribits;
735 
736 	pribits = gic_read_ctlr();
737 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
738 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
739 	pribits++;
740 
741 	return pribits;
742 }
743 
gic_has_group0(void)744 static bool gic_has_group0(void)
745 {
746 	u32 val;
747 	u32 old_pmr;
748 
749 	old_pmr = gic_read_pmr();
750 
751 	/*
752 	 * Let's find out if Group0 is under control of EL3 or not by
753 	 * setting the highest possible, non-zero priority in PMR.
754 	 *
755 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
756 	 * order for the CPU interface to set bit 7, and keep the
757 	 * actual priority in the non-secure range. In the process, it
758 	 * looses the least significant bit and the actual priority
759 	 * becomes 0x80. Reading it back returns 0, indicating that
760 	 * we're don't have access to Group0.
761 	 */
762 	gic_write_pmr(BIT(8 - gic_get_pribits()));
763 	val = gic_read_pmr();
764 
765 	gic_write_pmr(old_pmr);
766 
767 	return val != 0;
768 }
769 
gic_dist_init(void)770 static void __init gic_dist_init(void)
771 {
772 	unsigned int i;
773 	u64 affinity;
774 	void __iomem *base = gic_data.dist_base;
775 	u32 val;
776 
777 	/* Disable the distributor */
778 	writel_relaxed(0, base + GICD_CTLR);
779 	gic_dist_wait_for_rwp();
780 
781 	/*
782 	 * Configure SPIs as non-secure Group-1. This will only matter
783 	 * if the GIC only has a single security state. This will not
784 	 * do the right thing if the kernel is running in secure mode,
785 	 * but that's not the intended use case anyway.
786 	 */
787 	for (i = 32; i < GIC_LINE_NR; i += 32)
788 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
789 
790 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
791 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
792 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
793 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
794 	}
795 
796 	for (i = 0; i < GIC_ESPI_NR; i += 32)
797 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
798 
799 	for (i = 0; i < GIC_ESPI_NR; i += 16)
800 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
801 
802 	for (i = 0; i < GIC_ESPI_NR; i += 4)
803 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
804 
805 	/* Now do the common stuff, and wait for the distributor to drain */
806 	gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
807 
808 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
809 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
810 		pr_info("Enabling SGIs without active state\n");
811 		val |= GICD_CTLR_nASSGIreq;
812 	}
813 
814 	/* Enable distributor with ARE, Group1 */
815 	writel_relaxed(val, base + GICD_CTLR);
816 
817 	/*
818 	 * Set all global interrupts to the boot CPU only. ARE must be
819 	 * enabled.
820 	 */
821 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
822 	for (i = 32; i < GIC_LINE_NR; i++)
823 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
824 
825 	for (i = 0; i < GIC_ESPI_NR; i++)
826 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
827 }
828 
gic_iterate_rdists(int (* fn)(struct redist_region *,void __iomem *))829 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
830 {
831 	int ret = -ENODEV;
832 	int i;
833 
834 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
835 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
836 		u64 typer;
837 		u32 reg;
838 
839 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
840 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
841 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
842 			pr_warn("No redistributor present @%p\n", ptr);
843 			break;
844 		}
845 
846 		do {
847 			typer = gic_read_typer(ptr + GICR_TYPER);
848 			ret = fn(gic_data.redist_regions + i, ptr);
849 			if (!ret)
850 				return 0;
851 
852 			if (gic_data.redist_regions[i].single_redist)
853 				break;
854 
855 			if (gic_data.redist_stride) {
856 				ptr += gic_data.redist_stride;
857 			} else {
858 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
859 				if (typer & GICR_TYPER_VLPIS)
860 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
861 			}
862 		} while (!(typer & GICR_TYPER_LAST));
863 	}
864 
865 	return ret ? -ENODEV : 0;
866 }
867 
__gic_populate_rdist(struct redist_region * region,void __iomem * ptr)868 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
869 {
870 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
871 	u64 typer;
872 	u32 aff;
873 
874 	/*
875 	 * Convert affinity to a 32bit value that can be matched to
876 	 * GICR_TYPER bits [63:32].
877 	 */
878 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
879 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
880 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
881 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
882 
883 	typer = gic_read_typer(ptr + GICR_TYPER);
884 	if ((typer >> 32) == aff) {
885 		u64 offset = ptr - region->redist_base;
886 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
887 		gic_data_rdist_rd_base() = ptr;
888 		gic_data_rdist()->phys_base = region->phys_base + offset;
889 
890 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
891 			smp_processor_id(), mpidr,
892 			(int)(region - gic_data.redist_regions),
893 			&gic_data_rdist()->phys_base);
894 		return 0;
895 	}
896 
897 	/* Try next one */
898 	return 1;
899 }
900 
gic_populate_rdist(void)901 static int gic_populate_rdist(void)
902 {
903 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
904 		return 0;
905 
906 	/* We couldn't even deal with ourselves... */
907 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
908 	     smp_processor_id(),
909 	     (unsigned long)cpu_logical_map(smp_processor_id()));
910 	return -ENODEV;
911 }
912 
__gic_update_rdist_properties(struct redist_region * region,void __iomem * ptr)913 static int __gic_update_rdist_properties(struct redist_region *region,
914 					 void __iomem *ptr)
915 {
916 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
917 
918 	/* Boot-time cleanip */
919 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
920 		u64 val;
921 
922 		/* Deactivate any present vPE */
923 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
924 		if (val & GICR_VPENDBASER_Valid)
925 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
926 					      ptr + SZ_128K + GICR_VPENDBASER);
927 
928 		/* Mark the VPE table as invalid */
929 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
930 		val &= ~GICR_VPROPBASER_4_1_VALID;
931 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
932 	}
933 
934 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
935 
936 	/* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
937 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
938 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
939 					   gic_data.rdists.has_rvpeid);
940 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
941 
942 	/* Detect non-sensical configurations */
943 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
944 		gic_data.rdists.has_direct_lpi = false;
945 		gic_data.rdists.has_vlpis = false;
946 		gic_data.rdists.has_rvpeid = false;
947 	}
948 
949 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
950 
951 	return 1;
952 }
953 
gic_update_rdist_properties(void)954 static void gic_update_rdist_properties(void)
955 {
956 	gic_data.ppi_nr = UINT_MAX;
957 	gic_iterate_rdists(__gic_update_rdist_properties);
958 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
959 		gic_data.ppi_nr = 0;
960 	pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
961 	if (gic_data.rdists.has_vlpis)
962 		pr_info("GICv4 features: %s%s%s\n",
963 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
964 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
965 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
966 }
967 
968 /* Check whether it's single security state view */
gic_dist_security_disabled(void)969 static inline bool gic_dist_security_disabled(void)
970 {
971 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
972 }
973 
gic_cpu_sys_reg_init(void)974 static void gic_cpu_sys_reg_init(void)
975 {
976 	int i, cpu = smp_processor_id();
977 	u64 mpidr = cpu_logical_map(cpu);
978 	u64 need_rss = MPIDR_RS(mpidr);
979 	bool group0;
980 	u32 pribits;
981 
982 	/*
983 	 * Need to check that the SRE bit has actually been set. If
984 	 * not, it means that SRE is disabled at EL2. We're going to
985 	 * die painfully, and there is nothing we can do about it.
986 	 *
987 	 * Kindly inform the luser.
988 	 */
989 	if (!gic_enable_sre())
990 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
991 
992 	pribits = gic_get_pribits();
993 
994 	group0 = gic_has_group0();
995 
996 	/* Set priority mask register */
997 	if (!gic_prio_masking_enabled()) {
998 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
999 	} else if (gic_supports_nmi()) {
1000 		/*
1001 		 * Mismatch configuration with boot CPU, the system is likely
1002 		 * to die as interrupt masking will not work properly on all
1003 		 * CPUs
1004 		 *
1005 		 * The boot CPU calls this function before enabling NMI support,
1006 		 * and as a result we'll never see this warning in the boot path
1007 		 * for that CPU.
1008 		 */
1009 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1010 			WARN_ON(!group0 || gic_dist_security_disabled());
1011 		else
1012 			WARN_ON(group0 && !gic_dist_security_disabled());
1013 	}
1014 
1015 	/*
1016 	 * Some firmwares hand over to the kernel with the BPR changed from
1017 	 * its reset value (and with a value large enough to prevent
1018 	 * any pre-emptive interrupts from working at all). Writing a zero
1019 	 * to BPR restores is reset value.
1020 	 */
1021 	gic_write_bpr1(0);
1022 
1023 	if (static_branch_likely(&supports_deactivate_key)) {
1024 		/* EOI drops priority only (mode 1) */
1025 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1026 	} else {
1027 		/* EOI deactivates interrupt too (mode 0) */
1028 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1029 	}
1030 
1031 	/* Always whack Group0 before Group1 */
1032 	if (group0) {
1033 		switch(pribits) {
1034 		case 8:
1035 		case 7:
1036 			write_gicreg(0, ICC_AP0R3_EL1);
1037 			write_gicreg(0, ICC_AP0R2_EL1);
1038 			fallthrough;
1039 		case 6:
1040 			write_gicreg(0, ICC_AP0R1_EL1);
1041 			fallthrough;
1042 		case 5:
1043 		case 4:
1044 			write_gicreg(0, ICC_AP0R0_EL1);
1045 		}
1046 
1047 		isb();
1048 	}
1049 
1050 	switch(pribits) {
1051 	case 8:
1052 	case 7:
1053 		write_gicreg(0, ICC_AP1R3_EL1);
1054 		write_gicreg(0, ICC_AP1R2_EL1);
1055 		fallthrough;
1056 	case 6:
1057 		write_gicreg(0, ICC_AP1R1_EL1);
1058 		fallthrough;
1059 	case 5:
1060 	case 4:
1061 		write_gicreg(0, ICC_AP1R0_EL1);
1062 	}
1063 
1064 	isb();
1065 
1066 	/* ... and let's hit the road... */
1067 	gic_write_grpen1(1);
1068 
1069 	/* Keep the RSS capability status in per_cpu variable */
1070 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1071 
1072 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1073 	for_each_online_cpu(i) {
1074 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1075 
1076 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1077 		if (need_rss && (!have_rss))
1078 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1079 				cpu, (unsigned long)mpidr,
1080 				i, (unsigned long)cpu_logical_map(i));
1081 	}
1082 
1083 	/**
1084 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1085 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1086 	 * UNPREDICTABLE choice of :
1087 	 *   - The write is ignored.
1088 	 *   - The RS field is treated as 0.
1089 	 */
1090 	if (need_rss && (!gic_data.has_rss))
1091 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1092 }
1093 
1094 static bool gicv3_nolpi;
1095 
gicv3_nolpi_cfg(char * buf)1096 static int __init gicv3_nolpi_cfg(char *buf)
1097 {
1098 	return strtobool(buf, &gicv3_nolpi);
1099 }
1100 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1101 
gic_dist_supports_lpis(void)1102 static int gic_dist_supports_lpis(void)
1103 {
1104 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1105 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1106 		!gicv3_nolpi);
1107 }
1108 
gic_cpu_init(void)1109 static void gic_cpu_init(void)
1110 {
1111 	void __iomem *rbase;
1112 	int i;
1113 
1114 	/* Register ourselves with the rest of the world */
1115 	if (gic_populate_rdist())
1116 		return;
1117 
1118 	gic_enable_redist(true);
1119 
1120 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1121 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1122 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1123 	     smp_processor_id());
1124 
1125 	rbase = gic_data_rdist_sgi_base();
1126 
1127 	/* Configure SGIs/PPIs as non-secure Group-1 */
1128 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1129 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1130 
1131 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1132 
1133 	/* initialise system registers */
1134 	gic_cpu_sys_reg_init();
1135 }
1136 
1137 #ifdef CONFIG_SMP
1138 
1139 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1140 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1141 
gic_starting_cpu(unsigned int cpu)1142 static int gic_starting_cpu(unsigned int cpu)
1143 {
1144 	gic_cpu_init();
1145 
1146 	if (gic_dist_supports_lpis())
1147 		its_cpu_init();
1148 
1149 	return 0;
1150 }
1151 
gic_compute_target_list(int * base_cpu,const struct cpumask * mask,unsigned long cluster_id)1152 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1153 				   unsigned long cluster_id)
1154 {
1155 	int next_cpu, cpu = *base_cpu;
1156 	unsigned long mpidr = cpu_logical_map(cpu);
1157 	u16 tlist = 0;
1158 
1159 	while (cpu < nr_cpu_ids) {
1160 		tlist |= 1 << (mpidr & 0xf);
1161 
1162 		next_cpu = cpumask_next(cpu, mask);
1163 		if (next_cpu >= nr_cpu_ids)
1164 			goto out;
1165 		cpu = next_cpu;
1166 
1167 		mpidr = cpu_logical_map(cpu);
1168 
1169 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1170 			cpu--;
1171 			goto out;
1172 		}
1173 	}
1174 out:
1175 	*base_cpu = cpu;
1176 	return tlist;
1177 }
1178 
1179 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1180 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1181 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1182 
gic_send_sgi(u64 cluster_id,u16 tlist,unsigned int irq)1183 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1184 {
1185 	u64 val;
1186 
1187 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1188 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1189 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1190 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1191 	       MPIDR_TO_SGI_RS(cluster_id)		|
1192 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1193 
1194 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1195 	gic_write_sgi1r(val);
1196 }
1197 
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)1198 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1199 {
1200 	int cpu;
1201 
1202 	if (WARN_ON(d->hwirq >= 16))
1203 		return;
1204 
1205 	/*
1206 	 * Ensure that stores to Normal memory are visible to the
1207 	 * other CPUs before issuing the IPI.
1208 	 */
1209 	wmb();
1210 
1211 	for_each_cpu(cpu, mask) {
1212 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1213 		u16 tlist;
1214 
1215 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1216 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1217 	}
1218 
1219 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1220 	isb();
1221 }
1222 
gic_smp_init(void)1223 static void __init gic_smp_init(void)
1224 {
1225 	struct irq_fwspec sgi_fwspec = {
1226 		.fwnode		= gic_data.fwnode,
1227 		.param_count	= 1,
1228 	};
1229 	int base_sgi;
1230 
1231 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1232 				  "irqchip/arm/gicv3:starting",
1233 				  gic_starting_cpu, NULL);
1234 
1235 	/* Register all 8 non-secure SGIs */
1236 	base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1237 					   NUMA_NO_NODE, &sgi_fwspec,
1238 					   false, NULL);
1239 	if (WARN_ON(base_sgi <= 0))
1240 		return;
1241 
1242 	set_smp_ipi_range(base_sgi, 8);
1243 }
1244 
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1245 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1246 			    bool force)
1247 {
1248 	unsigned int cpu;
1249 	u32 offset, index;
1250 	void __iomem *reg;
1251 	int enabled;
1252 	u64 val;
1253 
1254 	if (force)
1255 		cpu = cpumask_first(mask_val);
1256 	else
1257 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1258 
1259 	if (cpu >= nr_cpu_ids)
1260 		return -EINVAL;
1261 
1262 	if (gic_irq_in_rdist(d))
1263 		return -EINVAL;
1264 
1265 	/* If interrupt was enabled, disable it first */
1266 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1267 	if (enabled)
1268 		gic_mask_irq(d);
1269 
1270 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1271 	reg = gic_dist_base(d) + offset + (index * 8);
1272 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1273 
1274 	gic_write_irouter(val, reg);
1275 
1276 	/*
1277 	 * If the interrupt was enabled, enabled it again. Otherwise,
1278 	 * just wait for the distributor to have digested our changes.
1279 	 */
1280 	if (enabled)
1281 		gic_unmask_irq(d);
1282 	else
1283 		gic_dist_wait_for_rwp();
1284 
1285 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1286 
1287 	return IRQ_SET_MASK_OK_DONE;
1288 }
1289 #else
1290 #define gic_set_affinity	NULL
1291 #define gic_ipi_send_mask	NULL
1292 #define gic_smp_init()		do { } while(0)
1293 #endif
1294 
gic_retrigger(struct irq_data * data)1295 static int gic_retrigger(struct irq_data *data)
1296 {
1297 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1298 }
1299 
1300 #ifdef CONFIG_CPU_PM
gic_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1301 static int gic_cpu_pm_notifier(struct notifier_block *self,
1302 			       unsigned long cmd, void *v)
1303 {
1304 	if (cmd == CPU_PM_EXIT) {
1305 		if (gic_dist_security_disabled())
1306 			gic_enable_redist(true);
1307 		gic_cpu_sys_reg_init();
1308 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1309 		gic_write_grpen1(0);
1310 		gic_enable_redist(false);
1311 	}
1312 	return NOTIFY_OK;
1313 }
1314 
1315 static struct notifier_block gic_cpu_pm_notifier_block = {
1316 	.notifier_call = gic_cpu_pm_notifier,
1317 };
1318 
gic_cpu_pm_init(void)1319 static void gic_cpu_pm_init(void)
1320 {
1321 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1322 }
1323 
1324 #else
gic_cpu_pm_init(void)1325 static inline void gic_cpu_pm_init(void) { }
1326 #endif /* CONFIG_CPU_PM */
1327 
1328 static struct irq_chip gic_chip = {
1329 	.name			= "GICv3",
1330 	.irq_mask		= gic_mask_irq,
1331 	.irq_unmask		= gic_unmask_irq,
1332 	.irq_eoi		= gic_eoi_irq,
1333 	.irq_set_type		= gic_set_type,
1334 	.irq_set_affinity	= gic_set_affinity,
1335 	.irq_retrigger          = gic_retrigger,
1336 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1337 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1338 	.irq_nmi_setup		= gic_irq_nmi_setup,
1339 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1340 	.ipi_send_mask		= gic_ipi_send_mask,
1341 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1342 				  IRQCHIP_SKIP_SET_WAKE |
1343 				  IRQCHIP_MASK_ON_SUSPEND,
1344 };
1345 
1346 static struct irq_chip gic_eoimode1_chip = {
1347 	.name			= "GICv3",
1348 	.irq_mask		= gic_eoimode1_mask_irq,
1349 	.irq_unmask		= gic_unmask_irq,
1350 	.irq_eoi		= gic_eoimode1_eoi_irq,
1351 	.irq_set_type		= gic_set_type,
1352 	.irq_set_affinity	= gic_set_affinity,
1353 	.irq_retrigger          = gic_retrigger,
1354 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1355 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1356 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1357 	.irq_nmi_setup		= gic_irq_nmi_setup,
1358 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1359 	.ipi_send_mask		= gic_ipi_send_mask,
1360 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1361 				  IRQCHIP_SKIP_SET_WAKE |
1362 				  IRQCHIP_MASK_ON_SUSPEND,
1363 };
1364 
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1365 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1366 			      irq_hw_number_t hw)
1367 {
1368 	struct irq_chip *chip = &gic_chip;
1369 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1370 
1371 	if (static_branch_likely(&supports_deactivate_key))
1372 		chip = &gic_eoimode1_chip;
1373 
1374 	switch (__get_intid_range(hw)) {
1375 	case SGI_RANGE:
1376 		irq_set_percpu_devid(irq);
1377 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1378 				    handle_percpu_devid_fasteoi_ipi,
1379 				    NULL, NULL);
1380 		break;
1381 
1382 	case PPI_RANGE:
1383 	case EPPI_RANGE:
1384 		irq_set_percpu_devid(irq);
1385 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1386 				    handle_percpu_devid_irq, NULL, NULL);
1387 		break;
1388 
1389 	case SPI_RANGE:
1390 	case ESPI_RANGE:
1391 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1392 				    handle_fasteoi_irq, NULL, NULL);
1393 		irq_set_probe(irq);
1394 		irqd_set_single_target(irqd);
1395 		break;
1396 
1397 	case LPI_RANGE:
1398 		if (!gic_dist_supports_lpis())
1399 			return -EPERM;
1400 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1401 				    handle_fasteoi_irq, NULL, NULL);
1402 		break;
1403 
1404 	default:
1405 		return -EPERM;
1406 	}
1407 
1408 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1409 	irqd_set_handle_enforce_irqctx(irqd);
1410 	return 0;
1411 }
1412 
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1413 static int gic_irq_domain_translate(struct irq_domain *d,
1414 				    struct irq_fwspec *fwspec,
1415 				    unsigned long *hwirq,
1416 				    unsigned int *type)
1417 {
1418 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1419 		*hwirq = fwspec->param[0];
1420 		*type = IRQ_TYPE_EDGE_RISING;
1421 		return 0;
1422 	}
1423 
1424 	if (is_of_node(fwspec->fwnode)) {
1425 		if (fwspec->param_count < 3)
1426 			return -EINVAL;
1427 
1428 		switch (fwspec->param[0]) {
1429 		case 0:			/* SPI */
1430 			*hwirq = fwspec->param[1] + 32;
1431 			break;
1432 		case 1:			/* PPI */
1433 			*hwirq = fwspec->param[1] + 16;
1434 			break;
1435 		case 2:			/* ESPI */
1436 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1437 			break;
1438 		case 3:			/* EPPI */
1439 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1440 			break;
1441 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1442 			*hwirq = fwspec->param[1];
1443 			break;
1444 		case GIC_IRQ_TYPE_PARTITION:
1445 			*hwirq = fwspec->param[1];
1446 			if (fwspec->param[1] >= 16)
1447 				*hwirq += EPPI_BASE_INTID - 16;
1448 			else
1449 				*hwirq += 16;
1450 			break;
1451 		default:
1452 			return -EINVAL;
1453 		}
1454 
1455 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1456 
1457 		/*
1458 		 * Make it clear that broken DTs are... broken.
1459 		 * Partitionned PPIs are an unfortunate exception.
1460 		 */
1461 		WARN_ON(*type == IRQ_TYPE_NONE &&
1462 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1463 		return 0;
1464 	}
1465 
1466 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1467 		if(fwspec->param_count != 2)
1468 			return -EINVAL;
1469 
1470 		if (fwspec->param[0] < 16) {
1471 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1472 			       fwspec->param[0]);
1473 			return -EINVAL;
1474 		}
1475 
1476 		*hwirq = fwspec->param[0];
1477 		*type = fwspec->param[1];
1478 
1479 		WARN_ON(*type == IRQ_TYPE_NONE);
1480 		return 0;
1481 	}
1482 
1483 	return -EINVAL;
1484 }
1485 
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1486 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1487 				unsigned int nr_irqs, void *arg)
1488 {
1489 	int i, ret;
1490 	irq_hw_number_t hwirq;
1491 	unsigned int type = IRQ_TYPE_NONE;
1492 	struct irq_fwspec *fwspec = arg;
1493 
1494 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1495 	if (ret)
1496 		return ret;
1497 
1498 	for (i = 0; i < nr_irqs; i++) {
1499 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1500 		if (ret)
1501 			return ret;
1502 	}
1503 
1504 	return 0;
1505 }
1506 
gic_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1507 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1508 				unsigned int nr_irqs)
1509 {
1510 	int i;
1511 
1512 	for (i = 0; i < nr_irqs; i++) {
1513 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1514 		irq_set_handler(virq + i, NULL);
1515 		irq_domain_reset_irq_data(d);
1516 	}
1517 }
1518 
gic_irq_domain_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1519 static int gic_irq_domain_select(struct irq_domain *d,
1520 				 struct irq_fwspec *fwspec,
1521 				 enum irq_domain_bus_token bus_token)
1522 {
1523 	/* Not for us */
1524         if (fwspec->fwnode != d->fwnode)
1525 		return 0;
1526 
1527 	/* If this is not DT, then we have a single domain */
1528 	if (!is_of_node(fwspec->fwnode))
1529 		return 1;
1530 
1531 	/*
1532 	 * If this is a PPI and we have a 4th (non-null) parameter,
1533 	 * then we need to match the partition domain.
1534 	 */
1535 	if (fwspec->param_count >= 4 &&
1536 	    fwspec->param[0] == 1 && fwspec->param[3] != 0 &&
1537 	    gic_data.ppi_descs)
1538 		return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]);
1539 
1540 	return d == gic_data.domain;
1541 }
1542 
1543 static const struct irq_domain_ops gic_irq_domain_ops = {
1544 	.translate = gic_irq_domain_translate,
1545 	.alloc = gic_irq_domain_alloc,
1546 	.free = gic_irq_domain_free,
1547 	.select = gic_irq_domain_select,
1548 };
1549 
partition_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1550 static int partition_domain_translate(struct irq_domain *d,
1551 				      struct irq_fwspec *fwspec,
1552 				      unsigned long *hwirq,
1553 				      unsigned int *type)
1554 {
1555 	struct device_node *np;
1556 	int ret;
1557 
1558 	if (!gic_data.ppi_descs)
1559 		return -ENOMEM;
1560 
1561 	np = of_find_node_by_phandle(fwspec->param[3]);
1562 	if (WARN_ON(!np))
1563 		return -EINVAL;
1564 
1565 	ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]],
1566 				     of_node_to_fwnode(np));
1567 	if (ret < 0)
1568 		return ret;
1569 
1570 	*hwirq = ret;
1571 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1572 
1573 	return 0;
1574 }
1575 
1576 static const struct irq_domain_ops partition_domain_ops = {
1577 	.translate = partition_domain_translate,
1578 	.select = gic_irq_domain_select,
1579 };
1580 
gic_enable_quirk_msm8996(void * data)1581 static bool gic_enable_quirk_msm8996(void *data)
1582 {
1583 	struct gic_chip_data *d = data;
1584 
1585 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1586 
1587 	return true;
1588 }
1589 
gic_enable_quirk_cavium_38539(void * data)1590 static bool gic_enable_quirk_cavium_38539(void *data)
1591 {
1592 	struct gic_chip_data *d = data;
1593 
1594 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1595 
1596 	return true;
1597 }
1598 
gic_enable_quirk_hip06_07(void * data)1599 static bool gic_enable_quirk_hip06_07(void *data)
1600 {
1601 	struct gic_chip_data *d = data;
1602 
1603 	/*
1604 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1605 	 * not being an actual ARM implementation). The saving grace is
1606 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1607 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1608 	 * have ESPI. In both cases, put them right.
1609 	 */
1610 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1611 		/* Zero both ESPI and the RES0 field next to it... */
1612 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1613 		return true;
1614 	}
1615 
1616 	return false;
1617 }
1618 
1619 static const struct gic_quirk gic_quirks[] = {
1620 	{
1621 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1622 		.compatible = "qcom,msm8996-gic-v3",
1623 		.init	= gic_enable_quirk_msm8996,
1624 	},
1625 	{
1626 		.desc	= "GICv3: HIP06 erratum 161010803",
1627 		.iidr	= 0x0204043b,
1628 		.mask	= 0xffffffff,
1629 		.init	= gic_enable_quirk_hip06_07,
1630 	},
1631 	{
1632 		.desc	= "GICv3: HIP07 erratum 161010803",
1633 		.iidr	= 0x00000000,
1634 		.mask	= 0xffffffff,
1635 		.init	= gic_enable_quirk_hip06_07,
1636 	},
1637 	{
1638 		/*
1639 		 * Reserved register accesses generate a Synchronous
1640 		 * External Abort. This erratum applies to:
1641 		 * - ThunderX: CN88xx
1642 		 * - OCTEON TX: CN83xx, CN81xx
1643 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1644 		 */
1645 		.desc	= "GICv3: Cavium erratum 38539",
1646 		.iidr	= 0xa000034c,
1647 		.mask	= 0xe8f00fff,
1648 		.init	= gic_enable_quirk_cavium_38539,
1649 	},
1650 	{
1651 	}
1652 };
1653 
gic_enable_nmi_support(void)1654 static void gic_enable_nmi_support(void)
1655 {
1656 	int i;
1657 
1658 	if (!gic_prio_masking_enabled())
1659 		return;
1660 
1661 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1662 	if (!ppi_nmi_refs)
1663 		return;
1664 
1665 	for (i = 0; i < gic_data.ppi_nr; i++)
1666 		refcount_set(&ppi_nmi_refs[i], 0);
1667 
1668 	/*
1669 	 * Linux itself doesn't use 1:N distribution, so has no need to
1670 	 * set PMHE. The only reason to have it set is if EL3 requires it
1671 	 * (and we can't change it).
1672 	 */
1673 	if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1674 		static_branch_enable(&gic_pmr_sync);
1675 
1676 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1677 		static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1678 
1679 	/*
1680 	 * How priority values are used by the GIC depends on two things:
1681 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1682 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1683 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1684 	 * the ICC_PMR_EL1 register and the priority that software assigns to
1685 	 * interrupts:
1686 	 *
1687 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1688 	 * -----------------------------------------------------------
1689 	 *      1       |      -      |  unchanged  |    unchanged
1690 	 * -----------------------------------------------------------
1691 	 *      0       |      1      |  non-secure |    non-secure
1692 	 * -----------------------------------------------------------
1693 	 *      0       |      0      |  unchanged  |    non-secure
1694 	 *
1695 	 * where non-secure means that the value is right-shifted by one and the
1696 	 * MSB bit set, to make it fit in the non-secure priority range.
1697 	 *
1698 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1699 	 * are both either modified or unchanged, we can use the same set of
1700 	 * priorities.
1701 	 *
1702 	 * In the last case, where only the interrupt priorities are modified to
1703 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1704 	 * and the rest of the values that we use remain unchanged.
1705 	 */
1706 	if (gic_has_group0() && !gic_dist_security_disabled())
1707 		static_branch_enable(&gic_nonsecure_priorities);
1708 
1709 	static_branch_enable(&supports_pseudo_nmis);
1710 
1711 	if (static_branch_likely(&supports_deactivate_key))
1712 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1713 	else
1714 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1715 }
1716 
gic_init_bases(void __iomem * dist_base,struct redist_region * rdist_regs,u32 nr_redist_regions,u64 redist_stride,struct fwnode_handle * handle)1717 static int __init gic_init_bases(void __iomem *dist_base,
1718 				 struct redist_region *rdist_regs,
1719 				 u32 nr_redist_regions,
1720 				 u64 redist_stride,
1721 				 struct fwnode_handle *handle)
1722 {
1723 	u32 typer;
1724 	int err;
1725 
1726 	if (!is_hyp_mode_available())
1727 		static_branch_disable(&supports_deactivate_key);
1728 
1729 	if (static_branch_likely(&supports_deactivate_key))
1730 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1731 
1732 	gic_data.fwnode = handle;
1733 	gic_data.dist_base = dist_base;
1734 	gic_data.redist_regions = rdist_regs;
1735 	gic_data.nr_redist_regions = nr_redist_regions;
1736 	gic_data.redist_stride = redist_stride;
1737 
1738 	/*
1739 	 * Find out how many interrupts are supported.
1740 	 */
1741 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1742 	gic_data.rdists.gicd_typer = typer;
1743 
1744 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1745 			  gic_quirks, &gic_data);
1746 
1747 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1748 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1749 
1750 	/*
1751 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1752 	 * architecture spec (which says that reserved registers are RES0).
1753 	 */
1754 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1755 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1756 
1757 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1758 						 &gic_data);
1759 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1760 	gic_data.rdists.has_rvpeid = true;
1761 	gic_data.rdists.has_vlpis = true;
1762 	gic_data.rdists.has_direct_lpi = true;
1763 	gic_data.rdists.has_vpend_valid_dirty = true;
1764 
1765 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1766 		err = -ENOMEM;
1767 		goto out_free;
1768 	}
1769 
1770 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1771 
1772 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1773 	pr_info("Distributor has %sRange Selector support\n",
1774 		gic_data.has_rss ? "" : "no ");
1775 
1776 	if (typer & GICD_TYPER_MBIS) {
1777 		err = mbi_init(handle, gic_data.domain);
1778 		if (err)
1779 			pr_err("Failed to initialize MBIs\n");
1780 	}
1781 
1782 	set_handle_irq(gic_handle_irq);
1783 
1784 	gic_update_rdist_properties();
1785 
1786 	gic_dist_init();
1787 	gic_cpu_init();
1788 	gic_smp_init();
1789 	gic_cpu_pm_init();
1790 
1791 	if (gic_dist_supports_lpis()) {
1792 		its_init(handle, &gic_data.rdists, gic_data.domain);
1793 		its_cpu_init();
1794 	} else {
1795 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1796 			gicv2m_init(handle, gic_data.domain);
1797 	}
1798 
1799 	gic_enable_nmi_support();
1800 
1801 	return 0;
1802 
1803 out_free:
1804 	if (gic_data.domain)
1805 		irq_domain_remove(gic_data.domain);
1806 	free_percpu(gic_data.rdists.rdist);
1807 	return err;
1808 }
1809 
gic_validate_dist_version(void __iomem * dist_base)1810 static int __init gic_validate_dist_version(void __iomem *dist_base)
1811 {
1812 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1813 
1814 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1815 		return -ENODEV;
1816 
1817 	return 0;
1818 }
1819 
1820 /* Create all possible partitions at boot time */
gic_populate_ppi_partitions(struct device_node * gic_node)1821 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1822 {
1823 	struct device_node *parts_node, *child_part;
1824 	int part_idx = 0, i;
1825 	int nr_parts;
1826 	struct partition_affinity *parts;
1827 
1828 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1829 	if (!parts_node)
1830 		return;
1831 
1832 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1833 	if (!gic_data.ppi_descs)
1834 		goto out_put_node;
1835 
1836 	nr_parts = of_get_child_count(parts_node);
1837 
1838 	if (!nr_parts)
1839 		goto out_put_node;
1840 
1841 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1842 	if (WARN_ON(!parts))
1843 		goto out_put_node;
1844 
1845 	for_each_child_of_node(parts_node, child_part) {
1846 		struct partition_affinity *part;
1847 		int n;
1848 
1849 		part = &parts[part_idx];
1850 
1851 		part->partition_id = of_node_to_fwnode(child_part);
1852 
1853 		pr_info("GIC: PPI partition %pOFn[%d] { ",
1854 			child_part, part_idx);
1855 
1856 		n = of_property_count_elems_of_size(child_part, "affinity",
1857 						    sizeof(u32));
1858 		WARN_ON(n <= 0);
1859 
1860 		for (i = 0; i < n; i++) {
1861 			int err, cpu;
1862 			u32 cpu_phandle;
1863 			struct device_node *cpu_node;
1864 
1865 			err = of_property_read_u32_index(child_part, "affinity",
1866 							 i, &cpu_phandle);
1867 			if (WARN_ON(err))
1868 				continue;
1869 
1870 			cpu_node = of_find_node_by_phandle(cpu_phandle);
1871 			if (WARN_ON(!cpu_node))
1872 				continue;
1873 
1874 			cpu = of_cpu_node_to_id(cpu_node);
1875 			if (WARN_ON(cpu < 0)) {
1876 				of_node_put(cpu_node);
1877 				continue;
1878 			}
1879 
1880 			pr_cont("%pOF[%d] ", cpu_node, cpu);
1881 
1882 			cpumask_set_cpu(cpu, &part->mask);
1883 			of_node_put(cpu_node);
1884 		}
1885 
1886 		pr_cont("}\n");
1887 		part_idx++;
1888 	}
1889 
1890 	for (i = 0; i < gic_data.ppi_nr; i++) {
1891 		unsigned int irq;
1892 		struct partition_desc *desc;
1893 		struct irq_fwspec ppi_fwspec = {
1894 			.fwnode		= gic_data.fwnode,
1895 			.param_count	= 3,
1896 			.param		= {
1897 				[0]	= GIC_IRQ_TYPE_PARTITION,
1898 				[1]	= i,
1899 				[2]	= IRQ_TYPE_NONE,
1900 			},
1901 		};
1902 
1903 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
1904 		if (WARN_ON(!irq))
1905 			continue;
1906 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1907 					     irq, &partition_domain_ops);
1908 		if (WARN_ON(!desc))
1909 			continue;
1910 
1911 		gic_data.ppi_descs[i] = desc;
1912 	}
1913 
1914 out_put_node:
1915 	of_node_put(parts_node);
1916 }
1917 
gic_of_setup_kvm_info(struct device_node * node)1918 static void __init gic_of_setup_kvm_info(struct device_node *node)
1919 {
1920 	int ret;
1921 	struct resource r;
1922 	u32 gicv_idx;
1923 
1924 	gic_v3_kvm_info.type = GIC_V3;
1925 
1926 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1927 	if (!gic_v3_kvm_info.maint_irq)
1928 		return;
1929 
1930 	if (of_property_read_u32(node, "#redistributor-regions",
1931 				 &gicv_idx))
1932 		gicv_idx = 1;
1933 
1934 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
1935 	ret = of_address_to_resource(node, gicv_idx, &r);
1936 	if (!ret)
1937 		gic_v3_kvm_info.vcpu = r;
1938 
1939 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1940 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1941 	gic_set_kvm_info(&gic_v3_kvm_info);
1942 }
1943 
gic_of_init(struct device_node * node,struct device_node * parent)1944 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1945 {
1946 	void __iomem *dist_base;
1947 	struct redist_region *rdist_regs;
1948 	u64 redist_stride;
1949 	u32 nr_redist_regions;
1950 	int err, i;
1951 
1952 	dist_base = of_iomap(node, 0);
1953 	if (!dist_base) {
1954 		pr_err("%pOF: unable to map gic dist registers\n", node);
1955 		return -ENXIO;
1956 	}
1957 
1958 	err = gic_validate_dist_version(dist_base);
1959 	if (err) {
1960 		pr_err("%pOF: no distributor detected, giving up\n", node);
1961 		goto out_unmap_dist;
1962 	}
1963 
1964 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1965 		nr_redist_regions = 1;
1966 
1967 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1968 			     GFP_KERNEL);
1969 	if (!rdist_regs) {
1970 		err = -ENOMEM;
1971 		goto out_unmap_dist;
1972 	}
1973 
1974 	for (i = 0; i < nr_redist_regions; i++) {
1975 		struct resource res;
1976 		int ret;
1977 
1978 		ret = of_address_to_resource(node, 1 + i, &res);
1979 		rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1980 		if (ret || !rdist_regs[i].redist_base) {
1981 			pr_err("%pOF: couldn't map region %d\n", node, i);
1982 			err = -ENODEV;
1983 			goto out_unmap_rdist;
1984 		}
1985 		rdist_regs[i].phys_base = res.start;
1986 	}
1987 
1988 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1989 		redist_stride = 0;
1990 
1991 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
1992 
1993 	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
1994 			     redist_stride, &node->fwnode);
1995 	if (err)
1996 		goto out_unmap_rdist;
1997 
1998 	gic_populate_ppi_partitions(node);
1999 
2000 	if (static_branch_likely(&supports_deactivate_key))
2001 		gic_of_setup_kvm_info(node);
2002 	return 0;
2003 
2004 out_unmap_rdist:
2005 	for (i = 0; i < nr_redist_regions; i++)
2006 		if (rdist_regs[i].redist_base)
2007 			iounmap(rdist_regs[i].redist_base);
2008 	kfree(rdist_regs);
2009 out_unmap_dist:
2010 	iounmap(dist_base);
2011 	return err;
2012 }
2013 
2014 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2015 
2016 #ifdef CONFIG_ACPI
2017 static struct
2018 {
2019 	void __iomem *dist_base;
2020 	struct redist_region *redist_regs;
2021 	u32 nr_redist_regions;
2022 	bool single_redist;
2023 	int enabled_rdists;
2024 	u32 maint_irq;
2025 	int maint_irq_mode;
2026 	phys_addr_t vcpu_base;
2027 } acpi_data __initdata;
2028 
2029 static void __init
gic_acpi_register_redist(phys_addr_t phys_base,void __iomem * redist_base)2030 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2031 {
2032 	static int count = 0;
2033 
2034 	acpi_data.redist_regs[count].phys_base = phys_base;
2035 	acpi_data.redist_regs[count].redist_base = redist_base;
2036 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2037 	count++;
2038 }
2039 
2040 static int __init
gic_acpi_parse_madt_redist(union acpi_subtable_headers * header,const unsigned long end)2041 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2042 			   const unsigned long end)
2043 {
2044 	struct acpi_madt_generic_redistributor *redist =
2045 			(struct acpi_madt_generic_redistributor *)header;
2046 	void __iomem *redist_base;
2047 
2048 	redist_base = ioremap(redist->base_address, redist->length);
2049 	if (!redist_base) {
2050 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2051 		return -ENOMEM;
2052 	}
2053 
2054 	gic_acpi_register_redist(redist->base_address, redist_base);
2055 	return 0;
2056 }
2057 
2058 static int __init
gic_acpi_parse_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2059 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2060 			 const unsigned long end)
2061 {
2062 	struct acpi_madt_generic_interrupt *gicc =
2063 				(struct acpi_madt_generic_interrupt *)header;
2064 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2065 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2066 	void __iomem *redist_base;
2067 
2068 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2069 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2070 		return 0;
2071 
2072 	redist_base = ioremap(gicc->gicr_base_address, size);
2073 	if (!redist_base)
2074 		return -ENOMEM;
2075 
2076 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2077 	return 0;
2078 }
2079 
gic_acpi_collect_gicr_base(void)2080 static int __init gic_acpi_collect_gicr_base(void)
2081 {
2082 	acpi_tbl_entry_handler redist_parser;
2083 	enum acpi_madt_type type;
2084 
2085 	if (acpi_data.single_redist) {
2086 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2087 		redist_parser = gic_acpi_parse_madt_gicc;
2088 	} else {
2089 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2090 		redist_parser = gic_acpi_parse_madt_redist;
2091 	}
2092 
2093 	/* Collect redistributor base addresses in GICR entries */
2094 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2095 		return 0;
2096 
2097 	pr_info("No valid GICR entries exist\n");
2098 	return -ENODEV;
2099 }
2100 
gic_acpi_match_gicr(union acpi_subtable_headers * header,const unsigned long end)2101 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2102 				  const unsigned long end)
2103 {
2104 	/* Subtable presence means that redist exists, that's it */
2105 	return 0;
2106 }
2107 
gic_acpi_match_gicc(union acpi_subtable_headers * header,const unsigned long end)2108 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2109 				      const unsigned long end)
2110 {
2111 	struct acpi_madt_generic_interrupt *gicc =
2112 				(struct acpi_madt_generic_interrupt *)header;
2113 
2114 	/*
2115 	 * If GICC is enabled and has valid gicr base address, then it means
2116 	 * GICR base is presented via GICC
2117 	 */
2118 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2119 		acpi_data.enabled_rdists++;
2120 		return 0;
2121 	}
2122 
2123 	/*
2124 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2125 	 * should not treat as errors, skip the entry instead of probe fail.
2126 	 */
2127 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2128 		return 0;
2129 
2130 	return -ENODEV;
2131 }
2132 
gic_acpi_count_gicr_regions(void)2133 static int __init gic_acpi_count_gicr_regions(void)
2134 {
2135 	int count;
2136 
2137 	/*
2138 	 * Count how many redistributor regions we have. It is not allowed
2139 	 * to mix redistributor description, GICR and GICC subtables have to be
2140 	 * mutually exclusive.
2141 	 */
2142 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2143 				      gic_acpi_match_gicr, 0);
2144 	if (count > 0) {
2145 		acpi_data.single_redist = false;
2146 		return count;
2147 	}
2148 
2149 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2150 				      gic_acpi_match_gicc, 0);
2151 	if (count > 0) {
2152 		acpi_data.single_redist = true;
2153 		count = acpi_data.enabled_rdists;
2154 	}
2155 
2156 	return count;
2157 }
2158 
acpi_validate_gic_table(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)2159 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2160 					   struct acpi_probe_entry *ape)
2161 {
2162 	struct acpi_madt_generic_distributor *dist;
2163 	int count;
2164 
2165 	dist = (struct acpi_madt_generic_distributor *)header;
2166 	if (dist->version != ape->driver_data)
2167 		return false;
2168 
2169 	/* We need to do that exercise anyway, the sooner the better */
2170 	count = gic_acpi_count_gicr_regions();
2171 	if (count <= 0)
2172 		return false;
2173 
2174 	acpi_data.nr_redist_regions = count;
2175 	return true;
2176 }
2177 
gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2178 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2179 						const unsigned long end)
2180 {
2181 	struct acpi_madt_generic_interrupt *gicc =
2182 		(struct acpi_madt_generic_interrupt *)header;
2183 	int maint_irq_mode;
2184 	static int first_madt = true;
2185 
2186 	/* Skip unusable CPUs */
2187 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2188 		return 0;
2189 
2190 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2191 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2192 
2193 	if (first_madt) {
2194 		first_madt = false;
2195 
2196 		acpi_data.maint_irq = gicc->vgic_interrupt;
2197 		acpi_data.maint_irq_mode = maint_irq_mode;
2198 		acpi_data.vcpu_base = gicc->gicv_base_address;
2199 
2200 		return 0;
2201 	}
2202 
2203 	/*
2204 	 * The maintenance interrupt and GICV should be the same for every CPU
2205 	 */
2206 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2207 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2208 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2209 		return -EINVAL;
2210 
2211 	return 0;
2212 }
2213 
gic_acpi_collect_virt_info(void)2214 static bool __init gic_acpi_collect_virt_info(void)
2215 {
2216 	int count;
2217 
2218 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2219 				      gic_acpi_parse_virt_madt_gicc, 0);
2220 
2221 	return (count > 0);
2222 }
2223 
2224 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2225 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2226 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2227 
gic_acpi_setup_kvm_info(void)2228 static void __init gic_acpi_setup_kvm_info(void)
2229 {
2230 	int irq;
2231 
2232 	if (!gic_acpi_collect_virt_info()) {
2233 		pr_warn("Unable to get hardware information used for virtualization\n");
2234 		return;
2235 	}
2236 
2237 	gic_v3_kvm_info.type = GIC_V3;
2238 
2239 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2240 				acpi_data.maint_irq_mode,
2241 				ACPI_ACTIVE_HIGH);
2242 	if (irq <= 0)
2243 		return;
2244 
2245 	gic_v3_kvm_info.maint_irq = irq;
2246 
2247 	if (acpi_data.vcpu_base) {
2248 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2249 
2250 		vcpu->flags = IORESOURCE_MEM;
2251 		vcpu->start = acpi_data.vcpu_base;
2252 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2253 	}
2254 
2255 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2256 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2257 	gic_set_kvm_info(&gic_v3_kvm_info);
2258 }
2259 
2260 static int __init
gic_acpi_init(union acpi_subtable_headers * header,const unsigned long end)2261 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2262 {
2263 	struct acpi_madt_generic_distributor *dist;
2264 	struct fwnode_handle *domain_handle;
2265 	size_t size;
2266 	int i, err;
2267 
2268 	/* Get distributor base address */
2269 	dist = (struct acpi_madt_generic_distributor *)header;
2270 	acpi_data.dist_base = ioremap(dist->base_address,
2271 				      ACPI_GICV3_DIST_MEM_SIZE);
2272 	if (!acpi_data.dist_base) {
2273 		pr_err("Unable to map GICD registers\n");
2274 		return -ENOMEM;
2275 	}
2276 
2277 	err = gic_validate_dist_version(acpi_data.dist_base);
2278 	if (err) {
2279 		pr_err("No distributor detected at @%p, giving up\n",
2280 		       acpi_data.dist_base);
2281 		goto out_dist_unmap;
2282 	}
2283 
2284 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2285 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2286 	if (!acpi_data.redist_regs) {
2287 		err = -ENOMEM;
2288 		goto out_dist_unmap;
2289 	}
2290 
2291 	err = gic_acpi_collect_gicr_base();
2292 	if (err)
2293 		goto out_redist_unmap;
2294 
2295 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2296 	if (!domain_handle) {
2297 		err = -ENOMEM;
2298 		goto out_redist_unmap;
2299 	}
2300 
2301 	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2302 			     acpi_data.nr_redist_regions, 0, domain_handle);
2303 	if (err)
2304 		goto out_fwhandle_free;
2305 
2306 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2307 
2308 	if (static_branch_likely(&supports_deactivate_key))
2309 		gic_acpi_setup_kvm_info();
2310 
2311 	return 0;
2312 
2313 out_fwhandle_free:
2314 	irq_domain_free_fwnode(domain_handle);
2315 out_redist_unmap:
2316 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2317 		if (acpi_data.redist_regs[i].redist_base)
2318 			iounmap(acpi_data.redist_regs[i].redist_base);
2319 	kfree(acpi_data.redist_regs);
2320 out_dist_unmap:
2321 	iounmap(acpi_data.dist_base);
2322 	return err;
2323 }
2324 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2325 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2326 		     gic_acpi_init);
2327 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2328 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2329 		     gic_acpi_init);
2330 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2331 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2332 		     gic_acpi_init);
2333 #endif
2334