1 /*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #define DM_MSG_PREFIX "integrity"
27
28 #define DEFAULT_INTERLEAVE_SECTORS 32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
31 #define DEFAULT_BUFFER_SECTORS 128
32 #define DEFAULT_JOURNAL_WATERMARK 50
33 #define DEFAULT_SYNC_MSEC 10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS 3
36 #define MAX_LOG2_INTERLEAVE_SECTORS 31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
38 #define RECALC_SECTORS 8192
39 #define RECALC_WRITE_SUPER 16
40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
42 #define DISCARD_FILLER 0xf6
43
44 /*
45 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
46 * so it should not be enabled in the official kernel
47 */
48 //#define DEBUG_PRINT
49 //#define INTERNAL_VERIFY
50
51 /*
52 * On disk structures
53 */
54
55 #define SB_MAGIC "integrt"
56 #define SB_VERSION_1 1
57 #define SB_VERSION_2 2
58 #define SB_VERSION_3 3
59 #define SB_VERSION_4 4
60 #define SB_SECTORS 8
61 #define MAX_SECTORS_PER_BLOCK 8
62
63 struct superblock {
64 __u8 magic[8];
65 __u8 version;
66 __u8 log2_interleave_sectors;
67 __u16 integrity_tag_size;
68 __u32 journal_sections;
69 __u64 provided_data_sectors; /* userspace uses this value */
70 __u32 flags;
71 __u8 log2_sectors_per_block;
72 __u8 log2_blocks_per_bitmap_bit;
73 __u8 pad[2];
74 __u64 recalc_sector;
75 };
76
77 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
78 #define SB_FLAG_RECALCULATING 0x2
79 #define SB_FLAG_DIRTY_BITMAP 0x4
80 #define SB_FLAG_FIXED_PADDING 0x8
81
82 #define JOURNAL_ENTRY_ROUNDUP 8
83
84 typedef __u64 commit_id_t;
85 #define JOURNAL_MAC_PER_SECTOR 8
86
87 struct journal_entry {
88 union {
89 struct {
90 __u32 sector_lo;
91 __u32 sector_hi;
92 } s;
93 __u64 sector;
94 } u;
95 commit_id_t last_bytes[];
96 /* __u8 tag[0]; */
97 };
98
99 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
100
101 #if BITS_PER_LONG == 64
102 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
103 #else
104 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
105 #endif
106 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
107 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
108 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
109 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
110 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
111
112 #define JOURNAL_BLOCK_SECTORS 8
113 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
114 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
115
116 struct journal_sector {
117 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
118 __u8 mac[JOURNAL_MAC_PER_SECTOR];
119 commit_id_t commit_id;
120 };
121
122 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
123
124 #define METADATA_PADDING_SECTORS 8
125
126 #define N_COMMIT_IDS 4
127
prev_commit_seq(unsigned char seq)128 static unsigned char prev_commit_seq(unsigned char seq)
129 {
130 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
131 }
132
next_commit_seq(unsigned char seq)133 static unsigned char next_commit_seq(unsigned char seq)
134 {
135 return (seq + 1) % N_COMMIT_IDS;
136 }
137
138 /*
139 * In-memory structures
140 */
141
142 struct journal_node {
143 struct rb_node node;
144 sector_t sector;
145 };
146
147 struct alg_spec {
148 char *alg_string;
149 char *key_string;
150 __u8 *key;
151 unsigned key_size;
152 };
153
154 struct dm_integrity_c {
155 struct dm_dev *dev;
156 struct dm_dev *meta_dev;
157 unsigned tag_size;
158 __s8 log2_tag_size;
159 sector_t start;
160 mempool_t journal_io_mempool;
161 struct dm_io_client *io;
162 struct dm_bufio_client *bufio;
163 struct workqueue_struct *metadata_wq;
164 struct superblock *sb;
165 unsigned journal_pages;
166 unsigned n_bitmap_blocks;
167
168 struct page_list *journal;
169 struct page_list *journal_io;
170 struct page_list *journal_xor;
171 struct page_list *recalc_bitmap;
172 struct page_list *may_write_bitmap;
173 struct bitmap_block_status *bbs;
174 unsigned bitmap_flush_interval;
175 int synchronous_mode;
176 struct bio_list synchronous_bios;
177 struct delayed_work bitmap_flush_work;
178
179 struct crypto_skcipher *journal_crypt;
180 struct scatterlist **journal_scatterlist;
181 struct scatterlist **journal_io_scatterlist;
182 struct skcipher_request **sk_requests;
183
184 struct crypto_shash *journal_mac;
185
186 struct journal_node *journal_tree;
187 struct rb_root journal_tree_root;
188
189 sector_t provided_data_sectors;
190
191 unsigned short journal_entry_size;
192 unsigned char journal_entries_per_sector;
193 unsigned char journal_section_entries;
194 unsigned short journal_section_sectors;
195 unsigned journal_sections;
196 unsigned journal_entries;
197 sector_t data_device_sectors;
198 sector_t meta_device_sectors;
199 unsigned initial_sectors;
200 unsigned metadata_run;
201 __s8 log2_metadata_run;
202 __u8 log2_buffer_sectors;
203 __u8 sectors_per_block;
204 __u8 log2_blocks_per_bitmap_bit;
205
206 unsigned char mode;
207
208 int failed;
209
210 struct crypto_shash *internal_hash;
211
212 struct dm_target *ti;
213
214 /* these variables are locked with endio_wait.lock */
215 struct rb_root in_progress;
216 struct list_head wait_list;
217 wait_queue_head_t endio_wait;
218 struct workqueue_struct *wait_wq;
219 struct workqueue_struct *offload_wq;
220
221 unsigned char commit_seq;
222 commit_id_t commit_ids[N_COMMIT_IDS];
223
224 unsigned committed_section;
225 unsigned n_committed_sections;
226
227 unsigned uncommitted_section;
228 unsigned n_uncommitted_sections;
229
230 unsigned free_section;
231 unsigned char free_section_entry;
232 unsigned free_sectors;
233
234 unsigned free_sectors_threshold;
235
236 struct workqueue_struct *commit_wq;
237 struct work_struct commit_work;
238
239 struct workqueue_struct *writer_wq;
240 struct work_struct writer_work;
241
242 struct workqueue_struct *recalc_wq;
243 struct work_struct recalc_work;
244 u8 *recalc_buffer;
245 u8 *recalc_tags;
246
247 struct bio_list flush_bio_list;
248
249 unsigned long autocommit_jiffies;
250 struct timer_list autocommit_timer;
251 unsigned autocommit_msec;
252
253 wait_queue_head_t copy_to_journal_wait;
254
255 struct completion crypto_backoff;
256
257 bool wrote_to_journal;
258 bool journal_uptodate;
259 bool just_formatted;
260 bool recalculate_flag;
261 bool discard;
262 bool fix_padding;
263 bool legacy_recalculate;
264
265 struct alg_spec internal_hash_alg;
266 struct alg_spec journal_crypt_alg;
267 struct alg_spec journal_mac_alg;
268
269 atomic64_t number_of_mismatches;
270
271 struct notifier_block reboot_notifier;
272 };
273
274 struct dm_integrity_range {
275 sector_t logical_sector;
276 sector_t n_sectors;
277 bool waiting;
278 union {
279 struct rb_node node;
280 struct {
281 struct task_struct *task;
282 struct list_head wait_entry;
283 };
284 };
285 };
286
287 struct dm_integrity_io {
288 struct work_struct work;
289
290 struct dm_integrity_c *ic;
291 enum req_opf op;
292 bool fua;
293
294 struct dm_integrity_range range;
295
296 sector_t metadata_block;
297 unsigned metadata_offset;
298
299 atomic_t in_flight;
300 blk_status_t bi_status;
301
302 struct completion *completion;
303
304 struct dm_bio_details bio_details;
305 };
306
307 struct journal_completion {
308 struct dm_integrity_c *ic;
309 atomic_t in_flight;
310 struct completion comp;
311 };
312
313 struct journal_io {
314 struct dm_integrity_range range;
315 struct journal_completion *comp;
316 };
317
318 struct bitmap_block_status {
319 struct work_struct work;
320 struct dm_integrity_c *ic;
321 unsigned idx;
322 unsigned long *bitmap;
323 struct bio_list bio_queue;
324 spinlock_t bio_queue_lock;
325
326 };
327
328 static struct kmem_cache *journal_io_cache;
329
330 #define JOURNAL_IO_MEMPOOL 32
331
332 #ifdef DEBUG_PRINT
333 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
__DEBUG_bytes(__u8 * bytes,size_t len,const char * msg,...)334 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
335 {
336 va_list args;
337 va_start(args, msg);
338 vprintk(msg, args);
339 va_end(args);
340 if (len)
341 pr_cont(":");
342 while (len) {
343 pr_cont(" %02x", *bytes);
344 bytes++;
345 len--;
346 }
347 pr_cont("\n");
348 }
349 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
350 #else
351 #define DEBUG_print(x, ...) do { } while (0)
352 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
353 #endif
354
dm_integrity_prepare(struct request * rq)355 static void dm_integrity_prepare(struct request *rq)
356 {
357 }
358
dm_integrity_complete(struct request * rq,unsigned int nr_bytes)359 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
360 {
361 }
362
363 /*
364 * DM Integrity profile, protection is performed layer above (dm-crypt)
365 */
366 static const struct blk_integrity_profile dm_integrity_profile = {
367 .name = "DM-DIF-EXT-TAG",
368 .generate_fn = NULL,
369 .verify_fn = NULL,
370 .prepare_fn = dm_integrity_prepare,
371 .complete_fn = dm_integrity_complete,
372 };
373
374 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
375 static void integrity_bio_wait(struct work_struct *w);
376 static void dm_integrity_dtr(struct dm_target *ti);
377
dm_integrity_io_error(struct dm_integrity_c * ic,const char * msg,int err)378 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
379 {
380 if (err == -EILSEQ)
381 atomic64_inc(&ic->number_of_mismatches);
382 if (!cmpxchg(&ic->failed, 0, err))
383 DMERR("Error on %s: %d", msg, err);
384 }
385
dm_integrity_failed(struct dm_integrity_c * ic)386 static int dm_integrity_failed(struct dm_integrity_c *ic)
387 {
388 return READ_ONCE(ic->failed);
389 }
390
dm_integrity_disable_recalculate(struct dm_integrity_c * ic)391 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
392 {
393 if ((ic->internal_hash_alg.key || ic->journal_mac_alg.key) &&
394 !ic->legacy_recalculate)
395 return true;
396 return false;
397 }
398
dm_integrity_commit_id(struct dm_integrity_c * ic,unsigned i,unsigned j,unsigned char seq)399 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
400 unsigned j, unsigned char seq)
401 {
402 /*
403 * Xor the number with section and sector, so that if a piece of
404 * journal is written at wrong place, it is detected.
405 */
406 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
407 }
408
get_area_and_offset(struct dm_integrity_c * ic,sector_t data_sector,sector_t * area,sector_t * offset)409 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
410 sector_t *area, sector_t *offset)
411 {
412 if (!ic->meta_dev) {
413 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
414 *area = data_sector >> log2_interleave_sectors;
415 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
416 } else {
417 *area = 0;
418 *offset = data_sector;
419 }
420 }
421
422 #define sector_to_block(ic, n) \
423 do { \
424 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
425 (n) >>= (ic)->sb->log2_sectors_per_block; \
426 } while (0)
427
get_metadata_sector_and_offset(struct dm_integrity_c * ic,sector_t area,sector_t offset,unsigned * metadata_offset)428 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
429 sector_t offset, unsigned *metadata_offset)
430 {
431 __u64 ms;
432 unsigned mo;
433
434 ms = area << ic->sb->log2_interleave_sectors;
435 if (likely(ic->log2_metadata_run >= 0))
436 ms += area << ic->log2_metadata_run;
437 else
438 ms += area * ic->metadata_run;
439 ms >>= ic->log2_buffer_sectors;
440
441 sector_to_block(ic, offset);
442
443 if (likely(ic->log2_tag_size >= 0)) {
444 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
445 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
446 } else {
447 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
448 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
449 }
450 *metadata_offset = mo;
451 return ms;
452 }
453
get_data_sector(struct dm_integrity_c * ic,sector_t area,sector_t offset)454 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
455 {
456 sector_t result;
457
458 if (ic->meta_dev)
459 return offset;
460
461 result = area << ic->sb->log2_interleave_sectors;
462 if (likely(ic->log2_metadata_run >= 0))
463 result += (area + 1) << ic->log2_metadata_run;
464 else
465 result += (area + 1) * ic->metadata_run;
466
467 result += (sector_t)ic->initial_sectors + offset;
468 result += ic->start;
469
470 return result;
471 }
472
wraparound_section(struct dm_integrity_c * ic,unsigned * sec_ptr)473 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
474 {
475 if (unlikely(*sec_ptr >= ic->journal_sections))
476 *sec_ptr -= ic->journal_sections;
477 }
478
sb_set_version(struct dm_integrity_c * ic)479 static void sb_set_version(struct dm_integrity_c *ic)
480 {
481 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
482 ic->sb->version = SB_VERSION_4;
483 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
484 ic->sb->version = SB_VERSION_3;
485 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
486 ic->sb->version = SB_VERSION_2;
487 else
488 ic->sb->version = SB_VERSION_1;
489 }
490
sync_rw_sb(struct dm_integrity_c * ic,int op,int op_flags)491 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
492 {
493 struct dm_io_request io_req;
494 struct dm_io_region io_loc;
495
496 io_req.bi_op = op;
497 io_req.bi_op_flags = op_flags;
498 io_req.mem.type = DM_IO_KMEM;
499 io_req.mem.ptr.addr = ic->sb;
500 io_req.notify.fn = NULL;
501 io_req.client = ic->io;
502 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
503 io_loc.sector = ic->start;
504 io_loc.count = SB_SECTORS;
505
506 if (op == REQ_OP_WRITE)
507 sb_set_version(ic);
508
509 return dm_io(&io_req, 1, &io_loc, NULL);
510 }
511
512 #define BITMAP_OP_TEST_ALL_SET 0
513 #define BITMAP_OP_TEST_ALL_CLEAR 1
514 #define BITMAP_OP_SET 2
515 #define BITMAP_OP_CLEAR 3
516
block_bitmap_op(struct dm_integrity_c * ic,struct page_list * bitmap,sector_t sector,sector_t n_sectors,int mode)517 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
518 sector_t sector, sector_t n_sectors, int mode)
519 {
520 unsigned long bit, end_bit, this_end_bit, page, end_page;
521 unsigned long *data;
522
523 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
524 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
525 sector,
526 n_sectors,
527 ic->sb->log2_sectors_per_block,
528 ic->log2_blocks_per_bitmap_bit,
529 mode);
530 BUG();
531 }
532
533 if (unlikely(!n_sectors))
534 return true;
535
536 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
537 end_bit = (sector + n_sectors - 1) >>
538 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
539
540 page = bit / (PAGE_SIZE * 8);
541 bit %= PAGE_SIZE * 8;
542
543 end_page = end_bit / (PAGE_SIZE * 8);
544 end_bit %= PAGE_SIZE * 8;
545
546 repeat:
547 if (page < end_page) {
548 this_end_bit = PAGE_SIZE * 8 - 1;
549 } else {
550 this_end_bit = end_bit;
551 }
552
553 data = lowmem_page_address(bitmap[page].page);
554
555 if (mode == BITMAP_OP_TEST_ALL_SET) {
556 while (bit <= this_end_bit) {
557 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
558 do {
559 if (data[bit / BITS_PER_LONG] != -1)
560 return false;
561 bit += BITS_PER_LONG;
562 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
563 continue;
564 }
565 if (!test_bit(bit, data))
566 return false;
567 bit++;
568 }
569 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
570 while (bit <= this_end_bit) {
571 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
572 do {
573 if (data[bit / BITS_PER_LONG] != 0)
574 return false;
575 bit += BITS_PER_LONG;
576 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
577 continue;
578 }
579 if (test_bit(bit, data))
580 return false;
581 bit++;
582 }
583 } else if (mode == BITMAP_OP_SET) {
584 while (bit <= this_end_bit) {
585 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
586 do {
587 data[bit / BITS_PER_LONG] = -1;
588 bit += BITS_PER_LONG;
589 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
590 continue;
591 }
592 __set_bit(bit, data);
593 bit++;
594 }
595 } else if (mode == BITMAP_OP_CLEAR) {
596 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
597 clear_page(data);
598 else while (bit <= this_end_bit) {
599 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
600 do {
601 data[bit / BITS_PER_LONG] = 0;
602 bit += BITS_PER_LONG;
603 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
604 continue;
605 }
606 __clear_bit(bit, data);
607 bit++;
608 }
609 } else {
610 BUG();
611 }
612
613 if (unlikely(page < end_page)) {
614 bit = 0;
615 page++;
616 goto repeat;
617 }
618
619 return true;
620 }
621
block_bitmap_copy(struct dm_integrity_c * ic,struct page_list * dst,struct page_list * src)622 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
623 {
624 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
625 unsigned i;
626
627 for (i = 0; i < n_bitmap_pages; i++) {
628 unsigned long *dst_data = lowmem_page_address(dst[i].page);
629 unsigned long *src_data = lowmem_page_address(src[i].page);
630 copy_page(dst_data, src_data);
631 }
632 }
633
sector_to_bitmap_block(struct dm_integrity_c * ic,sector_t sector)634 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
635 {
636 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
637 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
638
639 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
640 return &ic->bbs[bitmap_block];
641 }
642
access_journal_check(struct dm_integrity_c * ic,unsigned section,unsigned offset,bool e,const char * function)643 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
644 bool e, const char *function)
645 {
646 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
647 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
648
649 if (unlikely(section >= ic->journal_sections) ||
650 unlikely(offset >= limit)) {
651 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
652 function, section, offset, ic->journal_sections, limit);
653 BUG();
654 }
655 #endif
656 }
657
page_list_location(struct dm_integrity_c * ic,unsigned section,unsigned offset,unsigned * pl_index,unsigned * pl_offset)658 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
659 unsigned *pl_index, unsigned *pl_offset)
660 {
661 unsigned sector;
662
663 access_journal_check(ic, section, offset, false, "page_list_location");
664
665 sector = section * ic->journal_section_sectors + offset;
666
667 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
668 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
669 }
670
access_page_list(struct dm_integrity_c * ic,struct page_list * pl,unsigned section,unsigned offset,unsigned * n_sectors)671 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
672 unsigned section, unsigned offset, unsigned *n_sectors)
673 {
674 unsigned pl_index, pl_offset;
675 char *va;
676
677 page_list_location(ic, section, offset, &pl_index, &pl_offset);
678
679 if (n_sectors)
680 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
681
682 va = lowmem_page_address(pl[pl_index].page);
683
684 return (struct journal_sector *)(va + pl_offset);
685 }
686
access_journal(struct dm_integrity_c * ic,unsigned section,unsigned offset)687 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
688 {
689 return access_page_list(ic, ic->journal, section, offset, NULL);
690 }
691
access_journal_entry(struct dm_integrity_c * ic,unsigned section,unsigned n)692 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
693 {
694 unsigned rel_sector, offset;
695 struct journal_sector *js;
696
697 access_journal_check(ic, section, n, true, "access_journal_entry");
698
699 rel_sector = n % JOURNAL_BLOCK_SECTORS;
700 offset = n / JOURNAL_BLOCK_SECTORS;
701
702 js = access_journal(ic, section, rel_sector);
703 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
704 }
705
access_journal_data(struct dm_integrity_c * ic,unsigned section,unsigned n)706 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
707 {
708 n <<= ic->sb->log2_sectors_per_block;
709
710 n += JOURNAL_BLOCK_SECTORS;
711
712 access_journal_check(ic, section, n, false, "access_journal_data");
713
714 return access_journal(ic, section, n);
715 }
716
section_mac(struct dm_integrity_c * ic,unsigned section,__u8 result[JOURNAL_MAC_SIZE])717 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
718 {
719 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
720 int r;
721 unsigned j, size;
722
723 desc->tfm = ic->journal_mac;
724
725 r = crypto_shash_init(desc);
726 if (unlikely(r)) {
727 dm_integrity_io_error(ic, "crypto_shash_init", r);
728 goto err;
729 }
730
731 for (j = 0; j < ic->journal_section_entries; j++) {
732 struct journal_entry *je = access_journal_entry(ic, section, j);
733 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
734 if (unlikely(r)) {
735 dm_integrity_io_error(ic, "crypto_shash_update", r);
736 goto err;
737 }
738 }
739
740 size = crypto_shash_digestsize(ic->journal_mac);
741
742 if (likely(size <= JOURNAL_MAC_SIZE)) {
743 r = crypto_shash_final(desc, result);
744 if (unlikely(r)) {
745 dm_integrity_io_error(ic, "crypto_shash_final", r);
746 goto err;
747 }
748 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
749 } else {
750 __u8 digest[HASH_MAX_DIGESTSIZE];
751
752 if (WARN_ON(size > sizeof(digest))) {
753 dm_integrity_io_error(ic, "digest_size", -EINVAL);
754 goto err;
755 }
756 r = crypto_shash_final(desc, digest);
757 if (unlikely(r)) {
758 dm_integrity_io_error(ic, "crypto_shash_final", r);
759 goto err;
760 }
761 memcpy(result, digest, JOURNAL_MAC_SIZE);
762 }
763
764 return;
765 err:
766 memset(result, 0, JOURNAL_MAC_SIZE);
767 }
768
rw_section_mac(struct dm_integrity_c * ic,unsigned section,bool wr)769 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
770 {
771 __u8 result[JOURNAL_MAC_SIZE];
772 unsigned j;
773
774 if (!ic->journal_mac)
775 return;
776
777 section_mac(ic, section, result);
778
779 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
780 struct journal_sector *js = access_journal(ic, section, j);
781
782 if (likely(wr))
783 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
784 else {
785 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
786 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
787 }
788 }
789 }
790
complete_journal_op(void * context)791 static void complete_journal_op(void *context)
792 {
793 struct journal_completion *comp = context;
794 BUG_ON(!atomic_read(&comp->in_flight));
795 if (likely(atomic_dec_and_test(&comp->in_flight)))
796 complete(&comp->comp);
797 }
798
xor_journal(struct dm_integrity_c * ic,bool encrypt,unsigned section,unsigned n_sections,struct journal_completion * comp)799 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
800 unsigned n_sections, struct journal_completion *comp)
801 {
802 struct async_submit_ctl submit;
803 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
804 unsigned pl_index, pl_offset, section_index;
805 struct page_list *source_pl, *target_pl;
806
807 if (likely(encrypt)) {
808 source_pl = ic->journal;
809 target_pl = ic->journal_io;
810 } else {
811 source_pl = ic->journal_io;
812 target_pl = ic->journal;
813 }
814
815 page_list_location(ic, section, 0, &pl_index, &pl_offset);
816
817 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
818
819 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
820
821 section_index = pl_index;
822
823 do {
824 size_t this_step;
825 struct page *src_pages[2];
826 struct page *dst_page;
827
828 while (unlikely(pl_index == section_index)) {
829 unsigned dummy;
830 if (likely(encrypt))
831 rw_section_mac(ic, section, true);
832 section++;
833 n_sections--;
834 if (!n_sections)
835 break;
836 page_list_location(ic, section, 0, §ion_index, &dummy);
837 }
838
839 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
840 dst_page = target_pl[pl_index].page;
841 src_pages[0] = source_pl[pl_index].page;
842 src_pages[1] = ic->journal_xor[pl_index].page;
843
844 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
845
846 pl_index++;
847 pl_offset = 0;
848 n_bytes -= this_step;
849 } while (n_bytes);
850
851 BUG_ON(n_sections);
852
853 async_tx_issue_pending_all();
854 }
855
complete_journal_encrypt(struct crypto_async_request * req,int err)856 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
857 {
858 struct journal_completion *comp = req->data;
859 if (unlikely(err)) {
860 if (likely(err == -EINPROGRESS)) {
861 complete(&comp->ic->crypto_backoff);
862 return;
863 }
864 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
865 }
866 complete_journal_op(comp);
867 }
868
do_crypt(bool encrypt,struct skcipher_request * req,struct journal_completion * comp)869 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
870 {
871 int r;
872 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
873 complete_journal_encrypt, comp);
874 if (likely(encrypt))
875 r = crypto_skcipher_encrypt(req);
876 else
877 r = crypto_skcipher_decrypt(req);
878 if (likely(!r))
879 return false;
880 if (likely(r == -EINPROGRESS))
881 return true;
882 if (likely(r == -EBUSY)) {
883 wait_for_completion(&comp->ic->crypto_backoff);
884 reinit_completion(&comp->ic->crypto_backoff);
885 return true;
886 }
887 dm_integrity_io_error(comp->ic, "encrypt", r);
888 return false;
889 }
890
crypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned section,unsigned n_sections,struct journal_completion * comp)891 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
892 unsigned n_sections, struct journal_completion *comp)
893 {
894 struct scatterlist **source_sg;
895 struct scatterlist **target_sg;
896
897 atomic_add(2, &comp->in_flight);
898
899 if (likely(encrypt)) {
900 source_sg = ic->journal_scatterlist;
901 target_sg = ic->journal_io_scatterlist;
902 } else {
903 source_sg = ic->journal_io_scatterlist;
904 target_sg = ic->journal_scatterlist;
905 }
906
907 do {
908 struct skcipher_request *req;
909 unsigned ivsize;
910 char *iv;
911
912 if (likely(encrypt))
913 rw_section_mac(ic, section, true);
914
915 req = ic->sk_requests[section];
916 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
917 iv = req->iv;
918
919 memcpy(iv, iv + ivsize, ivsize);
920
921 req->src = source_sg[section];
922 req->dst = target_sg[section];
923
924 if (unlikely(do_crypt(encrypt, req, comp)))
925 atomic_inc(&comp->in_flight);
926
927 section++;
928 n_sections--;
929 } while (n_sections);
930
931 atomic_dec(&comp->in_flight);
932 complete_journal_op(comp);
933 }
934
encrypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned section,unsigned n_sections,struct journal_completion * comp)935 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
936 unsigned n_sections, struct journal_completion *comp)
937 {
938 if (ic->journal_xor)
939 return xor_journal(ic, encrypt, section, n_sections, comp);
940 else
941 return crypt_journal(ic, encrypt, section, n_sections, comp);
942 }
943
complete_journal_io(unsigned long error,void * context)944 static void complete_journal_io(unsigned long error, void *context)
945 {
946 struct journal_completion *comp = context;
947 if (unlikely(error != 0))
948 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
949 complete_journal_op(comp);
950 }
951
rw_journal_sectors(struct dm_integrity_c * ic,int op,int op_flags,unsigned sector,unsigned n_sectors,struct journal_completion * comp)952 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
953 unsigned sector, unsigned n_sectors, struct journal_completion *comp)
954 {
955 struct dm_io_request io_req;
956 struct dm_io_region io_loc;
957 unsigned pl_index, pl_offset;
958 int r;
959
960 if (unlikely(dm_integrity_failed(ic))) {
961 if (comp)
962 complete_journal_io(-1UL, comp);
963 return;
964 }
965
966 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
967 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
968
969 io_req.bi_op = op;
970 io_req.bi_op_flags = op_flags;
971 io_req.mem.type = DM_IO_PAGE_LIST;
972 if (ic->journal_io)
973 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
974 else
975 io_req.mem.ptr.pl = &ic->journal[pl_index];
976 io_req.mem.offset = pl_offset;
977 if (likely(comp != NULL)) {
978 io_req.notify.fn = complete_journal_io;
979 io_req.notify.context = comp;
980 } else {
981 io_req.notify.fn = NULL;
982 }
983 io_req.client = ic->io;
984 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
985 io_loc.sector = ic->start + SB_SECTORS + sector;
986 io_loc.count = n_sectors;
987
988 r = dm_io(&io_req, 1, &io_loc, NULL);
989 if (unlikely(r)) {
990 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
991 if (comp) {
992 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
993 complete_journal_io(-1UL, comp);
994 }
995 }
996 }
997
rw_journal(struct dm_integrity_c * ic,int op,int op_flags,unsigned section,unsigned n_sections,struct journal_completion * comp)998 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
999 unsigned n_sections, struct journal_completion *comp)
1000 {
1001 unsigned sector, n_sectors;
1002
1003 sector = section * ic->journal_section_sectors;
1004 n_sectors = n_sections * ic->journal_section_sectors;
1005
1006 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1007 }
1008
write_journal(struct dm_integrity_c * ic,unsigned commit_start,unsigned commit_sections)1009 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1010 {
1011 struct journal_completion io_comp;
1012 struct journal_completion crypt_comp_1;
1013 struct journal_completion crypt_comp_2;
1014 unsigned i;
1015
1016 io_comp.ic = ic;
1017 init_completion(&io_comp.comp);
1018
1019 if (commit_start + commit_sections <= ic->journal_sections) {
1020 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1021 if (ic->journal_io) {
1022 crypt_comp_1.ic = ic;
1023 init_completion(&crypt_comp_1.comp);
1024 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1025 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1026 wait_for_completion_io(&crypt_comp_1.comp);
1027 } else {
1028 for (i = 0; i < commit_sections; i++)
1029 rw_section_mac(ic, commit_start + i, true);
1030 }
1031 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1032 commit_sections, &io_comp);
1033 } else {
1034 unsigned to_end;
1035 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1036 to_end = ic->journal_sections - commit_start;
1037 if (ic->journal_io) {
1038 crypt_comp_1.ic = ic;
1039 init_completion(&crypt_comp_1.comp);
1040 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1041 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1042 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1043 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1044 reinit_completion(&crypt_comp_1.comp);
1045 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1046 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1047 wait_for_completion_io(&crypt_comp_1.comp);
1048 } else {
1049 crypt_comp_2.ic = ic;
1050 init_completion(&crypt_comp_2.comp);
1051 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1052 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1053 wait_for_completion_io(&crypt_comp_1.comp);
1054 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1055 wait_for_completion_io(&crypt_comp_2.comp);
1056 }
1057 } else {
1058 for (i = 0; i < to_end; i++)
1059 rw_section_mac(ic, commit_start + i, true);
1060 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1061 for (i = 0; i < commit_sections - to_end; i++)
1062 rw_section_mac(ic, i, true);
1063 }
1064 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1065 }
1066
1067 wait_for_completion_io(&io_comp.comp);
1068 }
1069
copy_from_journal(struct dm_integrity_c * ic,unsigned section,unsigned offset,unsigned n_sectors,sector_t target,io_notify_fn fn,void * data)1070 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1071 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1072 {
1073 struct dm_io_request io_req;
1074 struct dm_io_region io_loc;
1075 int r;
1076 unsigned sector, pl_index, pl_offset;
1077
1078 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1079
1080 if (unlikely(dm_integrity_failed(ic))) {
1081 fn(-1UL, data);
1082 return;
1083 }
1084
1085 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1086
1087 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1088 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1089
1090 io_req.bi_op = REQ_OP_WRITE;
1091 io_req.bi_op_flags = 0;
1092 io_req.mem.type = DM_IO_PAGE_LIST;
1093 io_req.mem.ptr.pl = &ic->journal[pl_index];
1094 io_req.mem.offset = pl_offset;
1095 io_req.notify.fn = fn;
1096 io_req.notify.context = data;
1097 io_req.client = ic->io;
1098 io_loc.bdev = ic->dev->bdev;
1099 io_loc.sector = target;
1100 io_loc.count = n_sectors;
1101
1102 r = dm_io(&io_req, 1, &io_loc, NULL);
1103 if (unlikely(r)) {
1104 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1105 fn(-1UL, data);
1106 }
1107 }
1108
ranges_overlap(struct dm_integrity_range * range1,struct dm_integrity_range * range2)1109 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1110 {
1111 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1112 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1113 }
1114
add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range,bool check_waiting)1115 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1116 {
1117 struct rb_node **n = &ic->in_progress.rb_node;
1118 struct rb_node *parent;
1119
1120 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1121
1122 if (likely(check_waiting)) {
1123 struct dm_integrity_range *range;
1124 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1125 if (unlikely(ranges_overlap(range, new_range)))
1126 return false;
1127 }
1128 }
1129
1130 parent = NULL;
1131
1132 while (*n) {
1133 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1134
1135 parent = *n;
1136 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1137 n = &range->node.rb_left;
1138 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1139 n = &range->node.rb_right;
1140 } else {
1141 return false;
1142 }
1143 }
1144
1145 rb_link_node(&new_range->node, parent, n);
1146 rb_insert_color(&new_range->node, &ic->in_progress);
1147
1148 return true;
1149 }
1150
remove_range_unlocked(struct dm_integrity_c * ic,struct dm_integrity_range * range)1151 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1152 {
1153 rb_erase(&range->node, &ic->in_progress);
1154 while (unlikely(!list_empty(&ic->wait_list))) {
1155 struct dm_integrity_range *last_range =
1156 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1157 struct task_struct *last_range_task;
1158 last_range_task = last_range->task;
1159 list_del(&last_range->wait_entry);
1160 if (!add_new_range(ic, last_range, false)) {
1161 last_range->task = last_range_task;
1162 list_add(&last_range->wait_entry, &ic->wait_list);
1163 break;
1164 }
1165 last_range->waiting = false;
1166 wake_up_process(last_range_task);
1167 }
1168 }
1169
remove_range(struct dm_integrity_c * ic,struct dm_integrity_range * range)1170 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1171 {
1172 unsigned long flags;
1173
1174 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1175 remove_range_unlocked(ic, range);
1176 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1177 }
1178
wait_and_add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1179 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1180 {
1181 new_range->waiting = true;
1182 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1183 new_range->task = current;
1184 do {
1185 __set_current_state(TASK_UNINTERRUPTIBLE);
1186 spin_unlock_irq(&ic->endio_wait.lock);
1187 io_schedule();
1188 spin_lock_irq(&ic->endio_wait.lock);
1189 } while (unlikely(new_range->waiting));
1190 }
1191
add_new_range_and_wait(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1192 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1193 {
1194 if (unlikely(!add_new_range(ic, new_range, true)))
1195 wait_and_add_new_range(ic, new_range);
1196 }
1197
init_journal_node(struct journal_node * node)1198 static void init_journal_node(struct journal_node *node)
1199 {
1200 RB_CLEAR_NODE(&node->node);
1201 node->sector = (sector_t)-1;
1202 }
1203
add_journal_node(struct dm_integrity_c * ic,struct journal_node * node,sector_t sector)1204 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1205 {
1206 struct rb_node **link;
1207 struct rb_node *parent;
1208
1209 node->sector = sector;
1210 BUG_ON(!RB_EMPTY_NODE(&node->node));
1211
1212 link = &ic->journal_tree_root.rb_node;
1213 parent = NULL;
1214
1215 while (*link) {
1216 struct journal_node *j;
1217 parent = *link;
1218 j = container_of(parent, struct journal_node, node);
1219 if (sector < j->sector)
1220 link = &j->node.rb_left;
1221 else
1222 link = &j->node.rb_right;
1223 }
1224
1225 rb_link_node(&node->node, parent, link);
1226 rb_insert_color(&node->node, &ic->journal_tree_root);
1227 }
1228
remove_journal_node(struct dm_integrity_c * ic,struct journal_node * node)1229 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1230 {
1231 BUG_ON(RB_EMPTY_NODE(&node->node));
1232 rb_erase(&node->node, &ic->journal_tree_root);
1233 init_journal_node(node);
1234 }
1235
1236 #define NOT_FOUND (-1U)
1237
find_journal_node(struct dm_integrity_c * ic,sector_t sector,sector_t * next_sector)1238 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1239 {
1240 struct rb_node *n = ic->journal_tree_root.rb_node;
1241 unsigned found = NOT_FOUND;
1242 *next_sector = (sector_t)-1;
1243 while (n) {
1244 struct journal_node *j = container_of(n, struct journal_node, node);
1245 if (sector == j->sector) {
1246 found = j - ic->journal_tree;
1247 }
1248 if (sector < j->sector) {
1249 *next_sector = j->sector;
1250 n = j->node.rb_left;
1251 } else {
1252 n = j->node.rb_right;
1253 }
1254 }
1255
1256 return found;
1257 }
1258
test_journal_node(struct dm_integrity_c * ic,unsigned pos,sector_t sector)1259 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1260 {
1261 struct journal_node *node, *next_node;
1262 struct rb_node *next;
1263
1264 if (unlikely(pos >= ic->journal_entries))
1265 return false;
1266 node = &ic->journal_tree[pos];
1267 if (unlikely(RB_EMPTY_NODE(&node->node)))
1268 return false;
1269 if (unlikely(node->sector != sector))
1270 return false;
1271
1272 next = rb_next(&node->node);
1273 if (unlikely(!next))
1274 return true;
1275
1276 next_node = container_of(next, struct journal_node, node);
1277 return next_node->sector != sector;
1278 }
1279
find_newer_committed_node(struct dm_integrity_c * ic,struct journal_node * node)1280 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1281 {
1282 struct rb_node *next;
1283 struct journal_node *next_node;
1284 unsigned next_section;
1285
1286 BUG_ON(RB_EMPTY_NODE(&node->node));
1287
1288 next = rb_next(&node->node);
1289 if (unlikely(!next))
1290 return false;
1291
1292 next_node = container_of(next, struct journal_node, node);
1293
1294 if (next_node->sector != node->sector)
1295 return false;
1296
1297 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1298 if (next_section >= ic->committed_section &&
1299 next_section < ic->committed_section + ic->n_committed_sections)
1300 return true;
1301 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1302 return true;
1303
1304 return false;
1305 }
1306
1307 #define TAG_READ 0
1308 #define TAG_WRITE 1
1309 #define TAG_CMP 2
1310
dm_integrity_rw_tag(struct dm_integrity_c * ic,unsigned char * tag,sector_t * metadata_block,unsigned * metadata_offset,unsigned total_size,int op)1311 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1312 unsigned *metadata_offset, unsigned total_size, int op)
1313 {
1314 #define MAY_BE_FILLER 1
1315 #define MAY_BE_HASH 2
1316 unsigned hash_offset = 0;
1317 unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1318
1319 do {
1320 unsigned char *data, *dp;
1321 struct dm_buffer *b;
1322 unsigned to_copy;
1323 int r;
1324
1325 r = dm_integrity_failed(ic);
1326 if (unlikely(r))
1327 return r;
1328
1329 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1330 if (IS_ERR(data))
1331 return PTR_ERR(data);
1332
1333 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1334 dp = data + *metadata_offset;
1335 if (op == TAG_READ) {
1336 memcpy(tag, dp, to_copy);
1337 } else if (op == TAG_WRITE) {
1338 memcpy(dp, tag, to_copy);
1339 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1340 } else {
1341 /* e.g.: op == TAG_CMP */
1342
1343 if (likely(is_power_of_2(ic->tag_size))) {
1344 if (unlikely(memcmp(dp, tag, to_copy)))
1345 if (unlikely(!ic->discard) ||
1346 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1347 goto thorough_test;
1348 }
1349 } else {
1350 unsigned i, ts;
1351 thorough_test:
1352 ts = total_size;
1353
1354 for (i = 0; i < to_copy; i++, ts--) {
1355 if (unlikely(dp[i] != tag[i]))
1356 may_be &= ~MAY_BE_HASH;
1357 if (likely(dp[i] != DISCARD_FILLER))
1358 may_be &= ~MAY_BE_FILLER;
1359 hash_offset++;
1360 if (unlikely(hash_offset == ic->tag_size)) {
1361 if (unlikely(!may_be)) {
1362 dm_bufio_release(b);
1363 return ts;
1364 }
1365 hash_offset = 0;
1366 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1367 }
1368 }
1369 }
1370 }
1371 dm_bufio_release(b);
1372
1373 tag += to_copy;
1374 *metadata_offset += to_copy;
1375 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1376 (*metadata_block)++;
1377 *metadata_offset = 0;
1378 }
1379
1380 if (unlikely(!is_power_of_2(ic->tag_size))) {
1381 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1382 }
1383
1384 total_size -= to_copy;
1385 } while (unlikely(total_size));
1386
1387 return 0;
1388 #undef MAY_BE_FILLER
1389 #undef MAY_BE_HASH
1390 }
1391
1392 struct flush_request {
1393 struct dm_io_request io_req;
1394 struct dm_io_region io_reg;
1395 struct dm_integrity_c *ic;
1396 struct completion comp;
1397 };
1398
flush_notify(unsigned long error,void * fr_)1399 static void flush_notify(unsigned long error, void *fr_)
1400 {
1401 struct flush_request *fr = fr_;
1402 if (unlikely(error != 0))
1403 dm_integrity_io_error(fr->ic, "flusing disk cache", -EIO);
1404 complete(&fr->comp);
1405 }
1406
dm_integrity_flush_buffers(struct dm_integrity_c * ic,bool flush_data)1407 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1408 {
1409 int r;
1410
1411 struct flush_request fr;
1412
1413 if (!ic->meta_dev)
1414 flush_data = false;
1415 if (flush_data) {
1416 fr.io_req.bi_op = REQ_OP_WRITE,
1417 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1418 fr.io_req.mem.type = DM_IO_KMEM,
1419 fr.io_req.mem.ptr.addr = NULL,
1420 fr.io_req.notify.fn = flush_notify,
1421 fr.io_req.notify.context = &fr;
1422 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1423 fr.io_reg.bdev = ic->dev->bdev,
1424 fr.io_reg.sector = 0,
1425 fr.io_reg.count = 0,
1426 fr.ic = ic;
1427 init_completion(&fr.comp);
1428 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1429 BUG_ON(r);
1430 }
1431
1432 r = dm_bufio_write_dirty_buffers(ic->bufio);
1433 if (unlikely(r))
1434 dm_integrity_io_error(ic, "writing tags", r);
1435
1436 if (flush_data)
1437 wait_for_completion(&fr.comp);
1438 }
1439
sleep_on_endio_wait(struct dm_integrity_c * ic)1440 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1441 {
1442 DECLARE_WAITQUEUE(wait, current);
1443 __add_wait_queue(&ic->endio_wait, &wait);
1444 __set_current_state(TASK_UNINTERRUPTIBLE);
1445 spin_unlock_irq(&ic->endio_wait.lock);
1446 io_schedule();
1447 spin_lock_irq(&ic->endio_wait.lock);
1448 __remove_wait_queue(&ic->endio_wait, &wait);
1449 }
1450
autocommit_fn(struct timer_list * t)1451 static void autocommit_fn(struct timer_list *t)
1452 {
1453 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1454
1455 if (likely(!dm_integrity_failed(ic)))
1456 queue_work(ic->commit_wq, &ic->commit_work);
1457 }
1458
schedule_autocommit(struct dm_integrity_c * ic)1459 static void schedule_autocommit(struct dm_integrity_c *ic)
1460 {
1461 if (!timer_pending(&ic->autocommit_timer))
1462 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1463 }
1464
submit_flush_bio(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1465 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1466 {
1467 struct bio *bio;
1468 unsigned long flags;
1469
1470 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1471 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1472 bio_list_add(&ic->flush_bio_list, bio);
1473 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1474
1475 queue_work(ic->commit_wq, &ic->commit_work);
1476 }
1477
do_endio(struct dm_integrity_c * ic,struct bio * bio)1478 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1479 {
1480 int r = dm_integrity_failed(ic);
1481 if (unlikely(r) && !bio->bi_status)
1482 bio->bi_status = errno_to_blk_status(r);
1483 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1484 unsigned long flags;
1485 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1486 bio_list_add(&ic->synchronous_bios, bio);
1487 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1488 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1489 return;
1490 }
1491 bio_endio(bio);
1492 }
1493
do_endio_flush(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1494 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1495 {
1496 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1497
1498 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1499 submit_flush_bio(ic, dio);
1500 else
1501 do_endio(ic, bio);
1502 }
1503
dec_in_flight(struct dm_integrity_io * dio)1504 static void dec_in_flight(struct dm_integrity_io *dio)
1505 {
1506 if (atomic_dec_and_test(&dio->in_flight)) {
1507 struct dm_integrity_c *ic = dio->ic;
1508 struct bio *bio;
1509
1510 remove_range(ic, &dio->range);
1511
1512 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1513 schedule_autocommit(ic);
1514
1515 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1516
1517 if (unlikely(dio->bi_status) && !bio->bi_status)
1518 bio->bi_status = dio->bi_status;
1519 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1520 dio->range.logical_sector += dio->range.n_sectors;
1521 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1522 INIT_WORK(&dio->work, integrity_bio_wait);
1523 queue_work(ic->offload_wq, &dio->work);
1524 return;
1525 }
1526 do_endio_flush(ic, dio);
1527 }
1528 }
1529
integrity_end_io(struct bio * bio)1530 static void integrity_end_io(struct bio *bio)
1531 {
1532 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1533
1534 dm_bio_restore(&dio->bio_details, bio);
1535 if (bio->bi_integrity)
1536 bio->bi_opf |= REQ_INTEGRITY;
1537
1538 if (dio->completion)
1539 complete(dio->completion);
1540
1541 dec_in_flight(dio);
1542 }
1543
integrity_sector_checksum(struct dm_integrity_c * ic,sector_t sector,const char * data,char * result)1544 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1545 const char *data, char *result)
1546 {
1547 __u64 sector_le = cpu_to_le64(sector);
1548 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1549 int r;
1550 unsigned digest_size;
1551
1552 req->tfm = ic->internal_hash;
1553
1554 r = crypto_shash_init(req);
1555 if (unlikely(r < 0)) {
1556 dm_integrity_io_error(ic, "crypto_shash_init", r);
1557 goto failed;
1558 }
1559
1560 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le);
1561 if (unlikely(r < 0)) {
1562 dm_integrity_io_error(ic, "crypto_shash_update", r);
1563 goto failed;
1564 }
1565
1566 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1567 if (unlikely(r < 0)) {
1568 dm_integrity_io_error(ic, "crypto_shash_update", r);
1569 goto failed;
1570 }
1571
1572 r = crypto_shash_final(req, result);
1573 if (unlikely(r < 0)) {
1574 dm_integrity_io_error(ic, "crypto_shash_final", r);
1575 goto failed;
1576 }
1577
1578 digest_size = crypto_shash_digestsize(ic->internal_hash);
1579 if (unlikely(digest_size < ic->tag_size))
1580 memset(result + digest_size, 0, ic->tag_size - digest_size);
1581
1582 return;
1583
1584 failed:
1585 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1586 get_random_bytes(result, ic->tag_size);
1587 }
1588
integrity_metadata(struct work_struct * w)1589 static void integrity_metadata(struct work_struct *w)
1590 {
1591 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1592 struct dm_integrity_c *ic = dio->ic;
1593
1594 int r;
1595
1596 if (ic->internal_hash) {
1597 struct bvec_iter iter;
1598 struct bio_vec bv;
1599 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1600 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1601 char *checksums;
1602 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1603 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1604 sector_t sector;
1605 unsigned sectors_to_process;
1606
1607 if (unlikely(ic->mode == 'R'))
1608 goto skip_io;
1609
1610 if (likely(dio->op != REQ_OP_DISCARD))
1611 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1612 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1613 else
1614 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1615 if (!checksums) {
1616 checksums = checksums_onstack;
1617 if (WARN_ON(extra_space &&
1618 digest_size > sizeof(checksums_onstack))) {
1619 r = -EINVAL;
1620 goto error;
1621 }
1622 }
1623
1624 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1625 sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1626 unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1627 unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1628 unsigned max_blocks = max_size / ic->tag_size;
1629 memset(checksums, DISCARD_FILLER, max_size);
1630
1631 while (bi_size) {
1632 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1633 this_step_blocks = min(this_step_blocks, max_blocks);
1634 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1635 this_step_blocks * ic->tag_size, TAG_WRITE);
1636 if (unlikely(r)) {
1637 if (likely(checksums != checksums_onstack))
1638 kfree(checksums);
1639 goto error;
1640 }
1641
1642 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1643 printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1644 printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1645 BUG();
1646 }*/
1647 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1648 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1649 }
1650
1651 if (likely(checksums != checksums_onstack))
1652 kfree(checksums);
1653 goto skip_io;
1654 }
1655
1656 sector = dio->range.logical_sector;
1657 sectors_to_process = dio->range.n_sectors;
1658
1659 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1660 unsigned pos;
1661 char *mem, *checksums_ptr;
1662
1663 again:
1664 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1665 pos = 0;
1666 checksums_ptr = checksums;
1667 do {
1668 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1669 checksums_ptr += ic->tag_size;
1670 sectors_to_process -= ic->sectors_per_block;
1671 pos += ic->sectors_per_block << SECTOR_SHIFT;
1672 sector += ic->sectors_per_block;
1673 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1674 kunmap_atomic(mem);
1675
1676 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1677 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1678 if (unlikely(r)) {
1679 if (r > 0) {
1680 char b[BDEVNAME_SIZE];
1681 DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1682 (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1683 r = -EILSEQ;
1684 atomic64_inc(&ic->number_of_mismatches);
1685 }
1686 if (likely(checksums != checksums_onstack))
1687 kfree(checksums);
1688 goto error;
1689 }
1690
1691 if (!sectors_to_process)
1692 break;
1693
1694 if (unlikely(pos < bv.bv_len)) {
1695 bv.bv_offset += pos;
1696 bv.bv_len -= pos;
1697 goto again;
1698 }
1699 }
1700
1701 if (likely(checksums != checksums_onstack))
1702 kfree(checksums);
1703 } else {
1704 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1705
1706 if (bip) {
1707 struct bio_vec biv;
1708 struct bvec_iter iter;
1709 unsigned data_to_process = dio->range.n_sectors;
1710 sector_to_block(ic, data_to_process);
1711 data_to_process *= ic->tag_size;
1712
1713 bip_for_each_vec(biv, bip, iter) {
1714 unsigned char *tag;
1715 unsigned this_len;
1716
1717 BUG_ON(PageHighMem(biv.bv_page));
1718 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1719 this_len = min(biv.bv_len, data_to_process);
1720 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1721 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1722 if (unlikely(r))
1723 goto error;
1724 data_to_process -= this_len;
1725 if (!data_to_process)
1726 break;
1727 }
1728 }
1729 }
1730 skip_io:
1731 dec_in_flight(dio);
1732 return;
1733 error:
1734 dio->bi_status = errno_to_blk_status(r);
1735 dec_in_flight(dio);
1736 }
1737
dm_integrity_map(struct dm_target * ti,struct bio * bio)1738 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1739 {
1740 struct dm_integrity_c *ic = ti->private;
1741 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1742 struct bio_integrity_payload *bip;
1743
1744 sector_t area, offset;
1745
1746 dio->ic = ic;
1747 dio->bi_status = 0;
1748 dio->op = bio_op(bio);
1749
1750 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1751 if (ti->max_io_len) {
1752 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1753 unsigned log2_max_io_len = __fls(ti->max_io_len);
1754 sector_t start_boundary = sec >> log2_max_io_len;
1755 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1756 if (start_boundary < end_boundary) {
1757 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1758 dm_accept_partial_bio(bio, len);
1759 }
1760 }
1761 }
1762
1763 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1764 submit_flush_bio(ic, dio);
1765 return DM_MAPIO_SUBMITTED;
1766 }
1767
1768 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1769 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1770 if (unlikely(dio->fua)) {
1771 /*
1772 * Don't pass down the FUA flag because we have to flush
1773 * disk cache anyway.
1774 */
1775 bio->bi_opf &= ~REQ_FUA;
1776 }
1777 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1778 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1779 dio->range.logical_sector, bio_sectors(bio),
1780 ic->provided_data_sectors);
1781 return DM_MAPIO_KILL;
1782 }
1783 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1784 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1785 ic->sectors_per_block,
1786 dio->range.logical_sector, bio_sectors(bio));
1787 return DM_MAPIO_KILL;
1788 }
1789
1790 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1791 struct bvec_iter iter;
1792 struct bio_vec bv;
1793 bio_for_each_segment(bv, bio, iter) {
1794 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1795 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1796 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1797 return DM_MAPIO_KILL;
1798 }
1799 }
1800 }
1801
1802 bip = bio_integrity(bio);
1803 if (!ic->internal_hash) {
1804 if (bip) {
1805 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1806 if (ic->log2_tag_size >= 0)
1807 wanted_tag_size <<= ic->log2_tag_size;
1808 else
1809 wanted_tag_size *= ic->tag_size;
1810 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1811 DMERR("Invalid integrity data size %u, expected %u",
1812 bip->bip_iter.bi_size, wanted_tag_size);
1813 return DM_MAPIO_KILL;
1814 }
1815 }
1816 } else {
1817 if (unlikely(bip != NULL)) {
1818 DMERR("Unexpected integrity data when using internal hash");
1819 return DM_MAPIO_KILL;
1820 }
1821 }
1822
1823 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1824 return DM_MAPIO_KILL;
1825
1826 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1827 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1828 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1829
1830 dm_integrity_map_continue(dio, true);
1831 return DM_MAPIO_SUBMITTED;
1832 }
1833
__journal_read_write(struct dm_integrity_io * dio,struct bio * bio,unsigned journal_section,unsigned journal_entry)1834 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1835 unsigned journal_section, unsigned journal_entry)
1836 {
1837 struct dm_integrity_c *ic = dio->ic;
1838 sector_t logical_sector;
1839 unsigned n_sectors;
1840
1841 logical_sector = dio->range.logical_sector;
1842 n_sectors = dio->range.n_sectors;
1843 do {
1844 struct bio_vec bv = bio_iovec(bio);
1845 char *mem;
1846
1847 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1848 bv.bv_len = n_sectors << SECTOR_SHIFT;
1849 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1850 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1851 retry_kmap:
1852 mem = kmap_atomic(bv.bv_page);
1853 if (likely(dio->op == REQ_OP_WRITE))
1854 flush_dcache_page(bv.bv_page);
1855
1856 do {
1857 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1858
1859 if (unlikely(dio->op == REQ_OP_READ)) {
1860 struct journal_sector *js;
1861 char *mem_ptr;
1862 unsigned s;
1863
1864 if (unlikely(journal_entry_is_inprogress(je))) {
1865 flush_dcache_page(bv.bv_page);
1866 kunmap_atomic(mem);
1867
1868 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1869 goto retry_kmap;
1870 }
1871 smp_rmb();
1872 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1873 js = access_journal_data(ic, journal_section, journal_entry);
1874 mem_ptr = mem + bv.bv_offset;
1875 s = 0;
1876 do {
1877 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1878 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1879 js++;
1880 mem_ptr += 1 << SECTOR_SHIFT;
1881 } while (++s < ic->sectors_per_block);
1882 #ifdef INTERNAL_VERIFY
1883 if (ic->internal_hash) {
1884 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1885
1886 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1887 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1888 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1889 logical_sector);
1890 }
1891 }
1892 #endif
1893 }
1894
1895 if (!ic->internal_hash) {
1896 struct bio_integrity_payload *bip = bio_integrity(bio);
1897 unsigned tag_todo = ic->tag_size;
1898 char *tag_ptr = journal_entry_tag(ic, je);
1899
1900 if (bip) do {
1901 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1902 unsigned tag_now = min(biv.bv_len, tag_todo);
1903 char *tag_addr;
1904 BUG_ON(PageHighMem(biv.bv_page));
1905 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1906 if (likely(dio->op == REQ_OP_WRITE))
1907 memcpy(tag_ptr, tag_addr, tag_now);
1908 else
1909 memcpy(tag_addr, tag_ptr, tag_now);
1910 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1911 tag_ptr += tag_now;
1912 tag_todo -= tag_now;
1913 } while (unlikely(tag_todo)); else {
1914 if (likely(dio->op == REQ_OP_WRITE))
1915 memset(tag_ptr, 0, tag_todo);
1916 }
1917 }
1918
1919 if (likely(dio->op == REQ_OP_WRITE)) {
1920 struct journal_sector *js;
1921 unsigned s;
1922
1923 js = access_journal_data(ic, journal_section, journal_entry);
1924 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1925
1926 s = 0;
1927 do {
1928 je->last_bytes[s] = js[s].commit_id;
1929 } while (++s < ic->sectors_per_block);
1930
1931 if (ic->internal_hash) {
1932 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1933 if (unlikely(digest_size > ic->tag_size)) {
1934 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1935 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1936 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1937 } else
1938 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1939 }
1940
1941 journal_entry_set_sector(je, logical_sector);
1942 }
1943 logical_sector += ic->sectors_per_block;
1944
1945 journal_entry++;
1946 if (unlikely(journal_entry == ic->journal_section_entries)) {
1947 journal_entry = 0;
1948 journal_section++;
1949 wraparound_section(ic, &journal_section);
1950 }
1951
1952 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1953 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1954
1955 if (unlikely(dio->op == REQ_OP_READ))
1956 flush_dcache_page(bv.bv_page);
1957 kunmap_atomic(mem);
1958 } while (n_sectors);
1959
1960 if (likely(dio->op == REQ_OP_WRITE)) {
1961 smp_mb();
1962 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1963 wake_up(&ic->copy_to_journal_wait);
1964 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1965 queue_work(ic->commit_wq, &ic->commit_work);
1966 } else {
1967 schedule_autocommit(ic);
1968 }
1969 } else {
1970 remove_range(ic, &dio->range);
1971 }
1972
1973 if (unlikely(bio->bi_iter.bi_size)) {
1974 sector_t area, offset;
1975
1976 dio->range.logical_sector = logical_sector;
1977 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1978 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1979 return true;
1980 }
1981
1982 return false;
1983 }
1984
dm_integrity_map_continue(struct dm_integrity_io * dio,bool from_map)1985 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1986 {
1987 struct dm_integrity_c *ic = dio->ic;
1988 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1989 unsigned journal_section, journal_entry;
1990 unsigned journal_read_pos;
1991 struct completion read_comp;
1992 bool discard_retried = false;
1993 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
1994 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
1995 need_sync_io = true;
1996
1997 if (need_sync_io && from_map) {
1998 INIT_WORK(&dio->work, integrity_bio_wait);
1999 queue_work(ic->offload_wq, &dio->work);
2000 return;
2001 }
2002
2003 lock_retry:
2004 spin_lock_irq(&ic->endio_wait.lock);
2005 retry:
2006 if (unlikely(dm_integrity_failed(ic))) {
2007 spin_unlock_irq(&ic->endio_wait.lock);
2008 do_endio(ic, bio);
2009 return;
2010 }
2011 dio->range.n_sectors = bio_sectors(bio);
2012 journal_read_pos = NOT_FOUND;
2013 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2014 if (dio->op == REQ_OP_WRITE) {
2015 unsigned next_entry, i, pos;
2016 unsigned ws, we, range_sectors;
2017
2018 dio->range.n_sectors = min(dio->range.n_sectors,
2019 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2020 if (unlikely(!dio->range.n_sectors)) {
2021 if (from_map)
2022 goto offload_to_thread;
2023 sleep_on_endio_wait(ic);
2024 goto retry;
2025 }
2026 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2027 ic->free_sectors -= range_sectors;
2028 journal_section = ic->free_section;
2029 journal_entry = ic->free_section_entry;
2030
2031 next_entry = ic->free_section_entry + range_sectors;
2032 ic->free_section_entry = next_entry % ic->journal_section_entries;
2033 ic->free_section += next_entry / ic->journal_section_entries;
2034 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2035 wraparound_section(ic, &ic->free_section);
2036
2037 pos = journal_section * ic->journal_section_entries + journal_entry;
2038 ws = journal_section;
2039 we = journal_entry;
2040 i = 0;
2041 do {
2042 struct journal_entry *je;
2043
2044 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2045 pos++;
2046 if (unlikely(pos >= ic->journal_entries))
2047 pos = 0;
2048
2049 je = access_journal_entry(ic, ws, we);
2050 BUG_ON(!journal_entry_is_unused(je));
2051 journal_entry_set_inprogress(je);
2052 we++;
2053 if (unlikely(we == ic->journal_section_entries)) {
2054 we = 0;
2055 ws++;
2056 wraparound_section(ic, &ws);
2057 }
2058 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2059
2060 spin_unlock_irq(&ic->endio_wait.lock);
2061 goto journal_read_write;
2062 } else {
2063 sector_t next_sector;
2064 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2065 if (likely(journal_read_pos == NOT_FOUND)) {
2066 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2067 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2068 } else {
2069 unsigned i;
2070 unsigned jp = journal_read_pos + 1;
2071 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2072 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2073 break;
2074 }
2075 dio->range.n_sectors = i;
2076 }
2077 }
2078 }
2079 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2080 /*
2081 * We must not sleep in the request routine because it could
2082 * stall bios on current->bio_list.
2083 * So, we offload the bio to a workqueue if we have to sleep.
2084 */
2085 if (from_map) {
2086 offload_to_thread:
2087 spin_unlock_irq(&ic->endio_wait.lock);
2088 INIT_WORK(&dio->work, integrity_bio_wait);
2089 queue_work(ic->wait_wq, &dio->work);
2090 return;
2091 }
2092 if (journal_read_pos != NOT_FOUND)
2093 dio->range.n_sectors = ic->sectors_per_block;
2094 wait_and_add_new_range(ic, &dio->range);
2095 /*
2096 * wait_and_add_new_range drops the spinlock, so the journal
2097 * may have been changed arbitrarily. We need to recheck.
2098 * To simplify the code, we restrict I/O size to just one block.
2099 */
2100 if (journal_read_pos != NOT_FOUND) {
2101 sector_t next_sector;
2102 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2103 if (unlikely(new_pos != journal_read_pos)) {
2104 remove_range_unlocked(ic, &dio->range);
2105 goto retry;
2106 }
2107 }
2108 }
2109 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2110 sector_t next_sector;
2111 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2112 if (unlikely(new_pos != NOT_FOUND) ||
2113 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2114 remove_range_unlocked(ic, &dio->range);
2115 spin_unlock_irq(&ic->endio_wait.lock);
2116 queue_work(ic->commit_wq, &ic->commit_work);
2117 flush_workqueue(ic->commit_wq);
2118 queue_work(ic->writer_wq, &ic->writer_work);
2119 flush_workqueue(ic->writer_wq);
2120 discard_retried = true;
2121 goto lock_retry;
2122 }
2123 }
2124 spin_unlock_irq(&ic->endio_wait.lock);
2125
2126 if (unlikely(journal_read_pos != NOT_FOUND)) {
2127 journal_section = journal_read_pos / ic->journal_section_entries;
2128 journal_entry = journal_read_pos % ic->journal_section_entries;
2129 goto journal_read_write;
2130 }
2131
2132 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2133 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2134 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2135 struct bitmap_block_status *bbs;
2136
2137 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2138 spin_lock(&bbs->bio_queue_lock);
2139 bio_list_add(&bbs->bio_queue, bio);
2140 spin_unlock(&bbs->bio_queue_lock);
2141 queue_work(ic->writer_wq, &bbs->work);
2142 return;
2143 }
2144 }
2145
2146 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2147
2148 if (need_sync_io) {
2149 init_completion(&read_comp);
2150 dio->completion = &read_comp;
2151 } else
2152 dio->completion = NULL;
2153
2154 dm_bio_record(&dio->bio_details, bio);
2155 bio_set_dev(bio, ic->dev->bdev);
2156 bio->bi_integrity = NULL;
2157 bio->bi_opf &= ~REQ_INTEGRITY;
2158 bio->bi_end_io = integrity_end_io;
2159 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2160
2161 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2162 integrity_metadata(&dio->work);
2163 dm_integrity_flush_buffers(ic, false);
2164
2165 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2166 dio->completion = NULL;
2167
2168 submit_bio_noacct(bio);
2169
2170 return;
2171 }
2172
2173 submit_bio_noacct(bio);
2174
2175 if (need_sync_io) {
2176 wait_for_completion_io(&read_comp);
2177 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2178 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2179 goto skip_check;
2180 if (ic->mode == 'B') {
2181 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2182 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2183 goto skip_check;
2184 }
2185
2186 if (likely(!bio->bi_status))
2187 integrity_metadata(&dio->work);
2188 else
2189 skip_check:
2190 dec_in_flight(dio);
2191
2192 } else {
2193 INIT_WORK(&dio->work, integrity_metadata);
2194 queue_work(ic->metadata_wq, &dio->work);
2195 }
2196
2197 return;
2198
2199 journal_read_write:
2200 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2201 goto lock_retry;
2202
2203 do_endio_flush(ic, dio);
2204 }
2205
2206
integrity_bio_wait(struct work_struct * w)2207 static void integrity_bio_wait(struct work_struct *w)
2208 {
2209 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2210
2211 dm_integrity_map_continue(dio, false);
2212 }
2213
pad_uncommitted(struct dm_integrity_c * ic)2214 static void pad_uncommitted(struct dm_integrity_c *ic)
2215 {
2216 if (ic->free_section_entry) {
2217 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2218 ic->free_section_entry = 0;
2219 ic->free_section++;
2220 wraparound_section(ic, &ic->free_section);
2221 ic->n_uncommitted_sections++;
2222 }
2223 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2224 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2225 ic->journal_section_entries + ic->free_sectors)) {
2226 DMCRIT("journal_sections %u, journal_section_entries %u, "
2227 "n_uncommitted_sections %u, n_committed_sections %u, "
2228 "journal_section_entries %u, free_sectors %u",
2229 ic->journal_sections, ic->journal_section_entries,
2230 ic->n_uncommitted_sections, ic->n_committed_sections,
2231 ic->journal_section_entries, ic->free_sectors);
2232 }
2233 }
2234
integrity_commit(struct work_struct * w)2235 static void integrity_commit(struct work_struct *w)
2236 {
2237 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2238 unsigned commit_start, commit_sections;
2239 unsigned i, j, n;
2240 struct bio *flushes;
2241
2242 del_timer(&ic->autocommit_timer);
2243
2244 spin_lock_irq(&ic->endio_wait.lock);
2245 flushes = bio_list_get(&ic->flush_bio_list);
2246 if (unlikely(ic->mode != 'J')) {
2247 spin_unlock_irq(&ic->endio_wait.lock);
2248 dm_integrity_flush_buffers(ic, true);
2249 goto release_flush_bios;
2250 }
2251
2252 pad_uncommitted(ic);
2253 commit_start = ic->uncommitted_section;
2254 commit_sections = ic->n_uncommitted_sections;
2255 spin_unlock_irq(&ic->endio_wait.lock);
2256
2257 if (!commit_sections)
2258 goto release_flush_bios;
2259
2260 ic->wrote_to_journal = true;
2261
2262 i = commit_start;
2263 for (n = 0; n < commit_sections; n++) {
2264 for (j = 0; j < ic->journal_section_entries; j++) {
2265 struct journal_entry *je;
2266 je = access_journal_entry(ic, i, j);
2267 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2268 }
2269 for (j = 0; j < ic->journal_section_sectors; j++) {
2270 struct journal_sector *js;
2271 js = access_journal(ic, i, j);
2272 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2273 }
2274 i++;
2275 if (unlikely(i >= ic->journal_sections))
2276 ic->commit_seq = next_commit_seq(ic->commit_seq);
2277 wraparound_section(ic, &i);
2278 }
2279 smp_rmb();
2280
2281 write_journal(ic, commit_start, commit_sections);
2282
2283 spin_lock_irq(&ic->endio_wait.lock);
2284 ic->uncommitted_section += commit_sections;
2285 wraparound_section(ic, &ic->uncommitted_section);
2286 ic->n_uncommitted_sections -= commit_sections;
2287 ic->n_committed_sections += commit_sections;
2288 spin_unlock_irq(&ic->endio_wait.lock);
2289
2290 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2291 queue_work(ic->writer_wq, &ic->writer_work);
2292
2293 release_flush_bios:
2294 while (flushes) {
2295 struct bio *next = flushes->bi_next;
2296 flushes->bi_next = NULL;
2297 do_endio(ic, flushes);
2298 flushes = next;
2299 }
2300 }
2301
complete_copy_from_journal(unsigned long error,void * context)2302 static void complete_copy_from_journal(unsigned long error, void *context)
2303 {
2304 struct journal_io *io = context;
2305 struct journal_completion *comp = io->comp;
2306 struct dm_integrity_c *ic = comp->ic;
2307 remove_range(ic, &io->range);
2308 mempool_free(io, &ic->journal_io_mempool);
2309 if (unlikely(error != 0))
2310 dm_integrity_io_error(ic, "copying from journal", -EIO);
2311 complete_journal_op(comp);
2312 }
2313
restore_last_bytes(struct dm_integrity_c * ic,struct journal_sector * js,struct journal_entry * je)2314 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2315 struct journal_entry *je)
2316 {
2317 unsigned s = 0;
2318 do {
2319 js->commit_id = je->last_bytes[s];
2320 js++;
2321 } while (++s < ic->sectors_per_block);
2322 }
2323
do_journal_write(struct dm_integrity_c * ic,unsigned write_start,unsigned write_sections,bool from_replay)2324 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2325 unsigned write_sections, bool from_replay)
2326 {
2327 unsigned i, j, n;
2328 struct journal_completion comp;
2329 struct blk_plug plug;
2330
2331 blk_start_plug(&plug);
2332
2333 comp.ic = ic;
2334 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2335 init_completion(&comp.comp);
2336
2337 i = write_start;
2338 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2339 #ifndef INTERNAL_VERIFY
2340 if (unlikely(from_replay))
2341 #endif
2342 rw_section_mac(ic, i, false);
2343 for (j = 0; j < ic->journal_section_entries; j++) {
2344 struct journal_entry *je = access_journal_entry(ic, i, j);
2345 sector_t sec, area, offset;
2346 unsigned k, l, next_loop;
2347 sector_t metadata_block;
2348 unsigned metadata_offset;
2349 struct journal_io *io;
2350
2351 if (journal_entry_is_unused(je))
2352 continue;
2353 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2354 sec = journal_entry_get_sector(je);
2355 if (unlikely(from_replay)) {
2356 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2357 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2358 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2359 }
2360 if (unlikely(sec >= ic->provided_data_sectors)) {
2361 journal_entry_set_unused(je);
2362 continue;
2363 }
2364 }
2365 get_area_and_offset(ic, sec, &area, &offset);
2366 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2367 for (k = j + 1; k < ic->journal_section_entries; k++) {
2368 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2369 sector_t sec2, area2, offset2;
2370 if (journal_entry_is_unused(je2))
2371 break;
2372 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2373 sec2 = journal_entry_get_sector(je2);
2374 if (unlikely(sec2 >= ic->provided_data_sectors))
2375 break;
2376 get_area_and_offset(ic, sec2, &area2, &offset2);
2377 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2378 break;
2379 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2380 }
2381 next_loop = k - 1;
2382
2383 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2384 io->comp = ∁
2385 io->range.logical_sector = sec;
2386 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2387
2388 spin_lock_irq(&ic->endio_wait.lock);
2389 add_new_range_and_wait(ic, &io->range);
2390
2391 if (likely(!from_replay)) {
2392 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2393
2394 /* don't write if there is newer committed sector */
2395 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2396 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2397
2398 journal_entry_set_unused(je2);
2399 remove_journal_node(ic, §ion_node[j]);
2400 j++;
2401 sec += ic->sectors_per_block;
2402 offset += ic->sectors_per_block;
2403 }
2404 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2405 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2406
2407 journal_entry_set_unused(je2);
2408 remove_journal_node(ic, §ion_node[k - 1]);
2409 k--;
2410 }
2411 if (j == k) {
2412 remove_range_unlocked(ic, &io->range);
2413 spin_unlock_irq(&ic->endio_wait.lock);
2414 mempool_free(io, &ic->journal_io_mempool);
2415 goto skip_io;
2416 }
2417 for (l = j; l < k; l++) {
2418 remove_journal_node(ic, §ion_node[l]);
2419 }
2420 }
2421 spin_unlock_irq(&ic->endio_wait.lock);
2422
2423 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2424 for (l = j; l < k; l++) {
2425 int r;
2426 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2427
2428 if (
2429 #ifndef INTERNAL_VERIFY
2430 unlikely(from_replay) &&
2431 #endif
2432 ic->internal_hash) {
2433 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2434
2435 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2436 (char *)access_journal_data(ic, i, l), test_tag);
2437 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2438 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2439 }
2440
2441 journal_entry_set_unused(je2);
2442 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2443 ic->tag_size, TAG_WRITE);
2444 if (unlikely(r)) {
2445 dm_integrity_io_error(ic, "reading tags", r);
2446 }
2447 }
2448
2449 atomic_inc(&comp.in_flight);
2450 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2451 (k - j) << ic->sb->log2_sectors_per_block,
2452 get_data_sector(ic, area, offset),
2453 complete_copy_from_journal, io);
2454 skip_io:
2455 j = next_loop;
2456 }
2457 }
2458
2459 dm_bufio_write_dirty_buffers_async(ic->bufio);
2460
2461 blk_finish_plug(&plug);
2462
2463 complete_journal_op(&comp);
2464 wait_for_completion_io(&comp.comp);
2465
2466 dm_integrity_flush_buffers(ic, true);
2467 }
2468
integrity_writer(struct work_struct * w)2469 static void integrity_writer(struct work_struct *w)
2470 {
2471 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2472 unsigned write_start, write_sections;
2473
2474 unsigned prev_free_sectors;
2475
2476 spin_lock_irq(&ic->endio_wait.lock);
2477 write_start = ic->committed_section;
2478 write_sections = ic->n_committed_sections;
2479 spin_unlock_irq(&ic->endio_wait.lock);
2480
2481 if (!write_sections)
2482 return;
2483
2484 do_journal_write(ic, write_start, write_sections, false);
2485
2486 spin_lock_irq(&ic->endio_wait.lock);
2487
2488 ic->committed_section += write_sections;
2489 wraparound_section(ic, &ic->committed_section);
2490 ic->n_committed_sections -= write_sections;
2491
2492 prev_free_sectors = ic->free_sectors;
2493 ic->free_sectors += write_sections * ic->journal_section_entries;
2494 if (unlikely(!prev_free_sectors))
2495 wake_up_locked(&ic->endio_wait);
2496
2497 spin_unlock_irq(&ic->endio_wait.lock);
2498 }
2499
recalc_write_super(struct dm_integrity_c * ic)2500 static void recalc_write_super(struct dm_integrity_c *ic)
2501 {
2502 int r;
2503
2504 dm_integrity_flush_buffers(ic, false);
2505 if (dm_integrity_failed(ic))
2506 return;
2507
2508 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2509 if (unlikely(r))
2510 dm_integrity_io_error(ic, "writing superblock", r);
2511 }
2512
integrity_recalc(struct work_struct * w)2513 static void integrity_recalc(struct work_struct *w)
2514 {
2515 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2516 struct dm_integrity_range range;
2517 struct dm_io_request io_req;
2518 struct dm_io_region io_loc;
2519 sector_t area, offset;
2520 sector_t metadata_block;
2521 unsigned metadata_offset;
2522 sector_t logical_sector, n_sectors;
2523 __u8 *t;
2524 unsigned i;
2525 int r;
2526 unsigned super_counter = 0;
2527
2528 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2529
2530 spin_lock_irq(&ic->endio_wait.lock);
2531
2532 next_chunk:
2533
2534 if (unlikely(dm_post_suspending(ic->ti)))
2535 goto unlock_ret;
2536
2537 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2538 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2539 if (ic->mode == 'B') {
2540 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2541 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2542 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2543 }
2544 goto unlock_ret;
2545 }
2546
2547 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2548 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2549 if (!ic->meta_dev)
2550 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2551
2552 add_new_range_and_wait(ic, &range);
2553 spin_unlock_irq(&ic->endio_wait.lock);
2554 logical_sector = range.logical_sector;
2555 n_sectors = range.n_sectors;
2556
2557 if (ic->mode == 'B') {
2558 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2559 goto advance_and_next;
2560 }
2561 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2562 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2563 logical_sector += ic->sectors_per_block;
2564 n_sectors -= ic->sectors_per_block;
2565 cond_resched();
2566 }
2567 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2568 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2569 n_sectors -= ic->sectors_per_block;
2570 cond_resched();
2571 }
2572 get_area_and_offset(ic, logical_sector, &area, &offset);
2573 }
2574
2575 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2576
2577 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2578 recalc_write_super(ic);
2579 if (ic->mode == 'B') {
2580 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2581 }
2582 super_counter = 0;
2583 }
2584
2585 if (unlikely(dm_integrity_failed(ic)))
2586 goto err;
2587
2588 io_req.bi_op = REQ_OP_READ;
2589 io_req.bi_op_flags = 0;
2590 io_req.mem.type = DM_IO_VMA;
2591 io_req.mem.ptr.addr = ic->recalc_buffer;
2592 io_req.notify.fn = NULL;
2593 io_req.client = ic->io;
2594 io_loc.bdev = ic->dev->bdev;
2595 io_loc.sector = get_data_sector(ic, area, offset);
2596 io_loc.count = n_sectors;
2597
2598 r = dm_io(&io_req, 1, &io_loc, NULL);
2599 if (unlikely(r)) {
2600 dm_integrity_io_error(ic, "reading data", r);
2601 goto err;
2602 }
2603
2604 t = ic->recalc_tags;
2605 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2606 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2607 t += ic->tag_size;
2608 }
2609
2610 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2611
2612 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2613 if (unlikely(r)) {
2614 dm_integrity_io_error(ic, "writing tags", r);
2615 goto err;
2616 }
2617
2618 if (ic->mode == 'B') {
2619 sector_t start, end;
2620 start = (range.logical_sector >>
2621 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2622 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2623 end = ((range.logical_sector + range.n_sectors) >>
2624 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2625 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2626 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2627 }
2628
2629 advance_and_next:
2630 cond_resched();
2631
2632 spin_lock_irq(&ic->endio_wait.lock);
2633 remove_range_unlocked(ic, &range);
2634 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2635 goto next_chunk;
2636
2637 err:
2638 remove_range(ic, &range);
2639 return;
2640
2641 unlock_ret:
2642 spin_unlock_irq(&ic->endio_wait.lock);
2643
2644 recalc_write_super(ic);
2645 }
2646
bitmap_block_work(struct work_struct * w)2647 static void bitmap_block_work(struct work_struct *w)
2648 {
2649 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2650 struct dm_integrity_c *ic = bbs->ic;
2651 struct bio *bio;
2652 struct bio_list bio_queue;
2653 struct bio_list waiting;
2654
2655 bio_list_init(&waiting);
2656
2657 spin_lock(&bbs->bio_queue_lock);
2658 bio_queue = bbs->bio_queue;
2659 bio_list_init(&bbs->bio_queue);
2660 spin_unlock(&bbs->bio_queue_lock);
2661
2662 while ((bio = bio_list_pop(&bio_queue))) {
2663 struct dm_integrity_io *dio;
2664
2665 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2666
2667 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2668 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2669 remove_range(ic, &dio->range);
2670 INIT_WORK(&dio->work, integrity_bio_wait);
2671 queue_work(ic->offload_wq, &dio->work);
2672 } else {
2673 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2674 dio->range.n_sectors, BITMAP_OP_SET);
2675 bio_list_add(&waiting, bio);
2676 }
2677 }
2678
2679 if (bio_list_empty(&waiting))
2680 return;
2681
2682 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2683 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2684 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2685
2686 while ((bio = bio_list_pop(&waiting))) {
2687 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2688
2689 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2690 dio->range.n_sectors, BITMAP_OP_SET);
2691
2692 remove_range(ic, &dio->range);
2693 INIT_WORK(&dio->work, integrity_bio_wait);
2694 queue_work(ic->offload_wq, &dio->work);
2695 }
2696
2697 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2698 }
2699
bitmap_flush_work(struct work_struct * work)2700 static void bitmap_flush_work(struct work_struct *work)
2701 {
2702 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2703 struct dm_integrity_range range;
2704 unsigned long limit;
2705 struct bio *bio;
2706
2707 dm_integrity_flush_buffers(ic, false);
2708
2709 range.logical_sector = 0;
2710 range.n_sectors = ic->provided_data_sectors;
2711
2712 spin_lock_irq(&ic->endio_wait.lock);
2713 add_new_range_and_wait(ic, &range);
2714 spin_unlock_irq(&ic->endio_wait.lock);
2715
2716 dm_integrity_flush_buffers(ic, true);
2717
2718 limit = ic->provided_data_sectors;
2719 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2720 limit = le64_to_cpu(ic->sb->recalc_sector)
2721 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2722 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2723 }
2724 /*DEBUG_print("zeroing journal\n");*/
2725 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2726 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2727
2728 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2729 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2730
2731 spin_lock_irq(&ic->endio_wait.lock);
2732 remove_range_unlocked(ic, &range);
2733 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2734 bio_endio(bio);
2735 spin_unlock_irq(&ic->endio_wait.lock);
2736 spin_lock_irq(&ic->endio_wait.lock);
2737 }
2738 spin_unlock_irq(&ic->endio_wait.lock);
2739 }
2740
2741
init_journal(struct dm_integrity_c * ic,unsigned start_section,unsigned n_sections,unsigned char commit_seq)2742 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2743 unsigned n_sections, unsigned char commit_seq)
2744 {
2745 unsigned i, j, n;
2746
2747 if (!n_sections)
2748 return;
2749
2750 for (n = 0; n < n_sections; n++) {
2751 i = start_section + n;
2752 wraparound_section(ic, &i);
2753 for (j = 0; j < ic->journal_section_sectors; j++) {
2754 struct journal_sector *js = access_journal(ic, i, j);
2755 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2756 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2757 }
2758 for (j = 0; j < ic->journal_section_entries; j++) {
2759 struct journal_entry *je = access_journal_entry(ic, i, j);
2760 journal_entry_set_unused(je);
2761 }
2762 }
2763
2764 write_journal(ic, start_section, n_sections);
2765 }
2766
find_commit_seq(struct dm_integrity_c * ic,unsigned i,unsigned j,commit_id_t id)2767 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2768 {
2769 unsigned char k;
2770 for (k = 0; k < N_COMMIT_IDS; k++) {
2771 if (dm_integrity_commit_id(ic, i, j, k) == id)
2772 return k;
2773 }
2774 dm_integrity_io_error(ic, "journal commit id", -EIO);
2775 return -EIO;
2776 }
2777
replay_journal(struct dm_integrity_c * ic)2778 static void replay_journal(struct dm_integrity_c *ic)
2779 {
2780 unsigned i, j;
2781 bool used_commit_ids[N_COMMIT_IDS];
2782 unsigned max_commit_id_sections[N_COMMIT_IDS];
2783 unsigned write_start, write_sections;
2784 unsigned continue_section;
2785 bool journal_empty;
2786 unsigned char unused, last_used, want_commit_seq;
2787
2788 if (ic->mode == 'R')
2789 return;
2790
2791 if (ic->journal_uptodate)
2792 return;
2793
2794 last_used = 0;
2795 write_start = 0;
2796
2797 if (!ic->just_formatted) {
2798 DEBUG_print("reading journal\n");
2799 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2800 if (ic->journal_io)
2801 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2802 if (ic->journal_io) {
2803 struct journal_completion crypt_comp;
2804 crypt_comp.ic = ic;
2805 init_completion(&crypt_comp.comp);
2806 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2807 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2808 wait_for_completion(&crypt_comp.comp);
2809 }
2810 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2811 }
2812
2813 if (dm_integrity_failed(ic))
2814 goto clear_journal;
2815
2816 journal_empty = true;
2817 memset(used_commit_ids, 0, sizeof used_commit_ids);
2818 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2819 for (i = 0; i < ic->journal_sections; i++) {
2820 for (j = 0; j < ic->journal_section_sectors; j++) {
2821 int k;
2822 struct journal_sector *js = access_journal(ic, i, j);
2823 k = find_commit_seq(ic, i, j, js->commit_id);
2824 if (k < 0)
2825 goto clear_journal;
2826 used_commit_ids[k] = true;
2827 max_commit_id_sections[k] = i;
2828 }
2829 if (journal_empty) {
2830 for (j = 0; j < ic->journal_section_entries; j++) {
2831 struct journal_entry *je = access_journal_entry(ic, i, j);
2832 if (!journal_entry_is_unused(je)) {
2833 journal_empty = false;
2834 break;
2835 }
2836 }
2837 }
2838 }
2839
2840 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2841 unused = N_COMMIT_IDS - 1;
2842 while (unused && !used_commit_ids[unused - 1])
2843 unused--;
2844 } else {
2845 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2846 if (!used_commit_ids[unused])
2847 break;
2848 if (unused == N_COMMIT_IDS) {
2849 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2850 goto clear_journal;
2851 }
2852 }
2853 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2854 unused, used_commit_ids[0], used_commit_ids[1],
2855 used_commit_ids[2], used_commit_ids[3]);
2856
2857 last_used = prev_commit_seq(unused);
2858 want_commit_seq = prev_commit_seq(last_used);
2859
2860 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2861 journal_empty = true;
2862
2863 write_start = max_commit_id_sections[last_used] + 1;
2864 if (unlikely(write_start >= ic->journal_sections))
2865 want_commit_seq = next_commit_seq(want_commit_seq);
2866 wraparound_section(ic, &write_start);
2867
2868 i = write_start;
2869 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2870 for (j = 0; j < ic->journal_section_sectors; j++) {
2871 struct journal_sector *js = access_journal(ic, i, j);
2872
2873 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2874 /*
2875 * This could be caused by crash during writing.
2876 * We won't replay the inconsistent part of the
2877 * journal.
2878 */
2879 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2880 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2881 goto brk;
2882 }
2883 }
2884 i++;
2885 if (unlikely(i >= ic->journal_sections))
2886 want_commit_seq = next_commit_seq(want_commit_seq);
2887 wraparound_section(ic, &i);
2888 }
2889 brk:
2890
2891 if (!journal_empty) {
2892 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2893 write_sections, write_start, want_commit_seq);
2894 do_journal_write(ic, write_start, write_sections, true);
2895 }
2896
2897 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2898 continue_section = write_start;
2899 ic->commit_seq = want_commit_seq;
2900 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2901 } else {
2902 unsigned s;
2903 unsigned char erase_seq;
2904 clear_journal:
2905 DEBUG_print("clearing journal\n");
2906
2907 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2908 s = write_start;
2909 init_journal(ic, s, 1, erase_seq);
2910 s++;
2911 wraparound_section(ic, &s);
2912 if (ic->journal_sections >= 2) {
2913 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2914 s += ic->journal_sections - 2;
2915 wraparound_section(ic, &s);
2916 init_journal(ic, s, 1, erase_seq);
2917 }
2918
2919 continue_section = 0;
2920 ic->commit_seq = next_commit_seq(erase_seq);
2921 }
2922
2923 ic->committed_section = continue_section;
2924 ic->n_committed_sections = 0;
2925
2926 ic->uncommitted_section = continue_section;
2927 ic->n_uncommitted_sections = 0;
2928
2929 ic->free_section = continue_section;
2930 ic->free_section_entry = 0;
2931 ic->free_sectors = ic->journal_entries;
2932
2933 ic->journal_tree_root = RB_ROOT;
2934 for (i = 0; i < ic->journal_entries; i++)
2935 init_journal_node(&ic->journal_tree[i]);
2936 }
2937
dm_integrity_enter_synchronous_mode(struct dm_integrity_c * ic)2938 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2939 {
2940 DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2941
2942 if (ic->mode == 'B') {
2943 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2944 ic->synchronous_mode = 1;
2945
2946 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2947 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2948 flush_workqueue(ic->commit_wq);
2949 }
2950 }
2951
dm_integrity_reboot(struct notifier_block * n,unsigned long code,void * x)2952 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2953 {
2954 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2955
2956 DEBUG_print("dm_integrity_reboot\n");
2957
2958 dm_integrity_enter_synchronous_mode(ic);
2959
2960 return NOTIFY_DONE;
2961 }
2962
dm_integrity_postsuspend(struct dm_target * ti)2963 static void dm_integrity_postsuspend(struct dm_target *ti)
2964 {
2965 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2966 int r;
2967
2968 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2969
2970 del_timer_sync(&ic->autocommit_timer);
2971
2972 if (ic->recalc_wq)
2973 drain_workqueue(ic->recalc_wq);
2974
2975 if (ic->mode == 'B')
2976 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2977
2978 queue_work(ic->commit_wq, &ic->commit_work);
2979 drain_workqueue(ic->commit_wq);
2980
2981 if (ic->mode == 'J') {
2982 queue_work(ic->writer_wq, &ic->writer_work);
2983 drain_workqueue(ic->writer_wq);
2984 dm_integrity_flush_buffers(ic, true);
2985 if (ic->wrote_to_journal) {
2986 init_journal(ic, ic->free_section,
2987 ic->journal_sections - ic->free_section, ic->commit_seq);
2988 if (ic->free_section) {
2989 init_journal(ic, 0, ic->free_section,
2990 next_commit_seq(ic->commit_seq));
2991 }
2992 }
2993 }
2994
2995 if (ic->mode == 'B') {
2996 dm_integrity_flush_buffers(ic, true);
2997 #if 1
2998 /* set to 0 to test bitmap replay code */
2999 init_journal(ic, 0, ic->journal_sections, 0);
3000 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3001 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3002 if (unlikely(r))
3003 dm_integrity_io_error(ic, "writing superblock", r);
3004 #endif
3005 }
3006
3007 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3008
3009 ic->journal_uptodate = true;
3010 }
3011
dm_integrity_resume(struct dm_target * ti)3012 static void dm_integrity_resume(struct dm_target *ti)
3013 {
3014 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3015 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3016 int r;
3017
3018 DEBUG_print("resume\n");
3019
3020 ic->wrote_to_journal = false;
3021
3022 if (ic->provided_data_sectors != old_provided_data_sectors) {
3023 if (ic->provided_data_sectors > old_provided_data_sectors &&
3024 ic->mode == 'B' &&
3025 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3026 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3027 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3028 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3029 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3030 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3031 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3032 }
3033
3034 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3035 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3036 if (unlikely(r))
3037 dm_integrity_io_error(ic, "writing superblock", r);
3038 }
3039
3040 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3041 DEBUG_print("resume dirty_bitmap\n");
3042 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3043 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3044 if (ic->mode == 'B') {
3045 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3046 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3047 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3048 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3049 BITMAP_OP_TEST_ALL_CLEAR)) {
3050 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3051 ic->sb->recalc_sector = cpu_to_le64(0);
3052 }
3053 } else {
3054 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3055 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3056 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3057 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3058 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3059 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3060 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3061 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3062 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3063 ic->sb->recalc_sector = cpu_to_le64(0);
3064 }
3065 } else {
3066 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3067 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
3068 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3069 ic->sb->recalc_sector = cpu_to_le64(0);
3070 }
3071 init_journal(ic, 0, ic->journal_sections, 0);
3072 replay_journal(ic);
3073 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3074 }
3075 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3076 if (unlikely(r))
3077 dm_integrity_io_error(ic, "writing superblock", r);
3078 } else {
3079 replay_journal(ic);
3080 if (ic->mode == 'B') {
3081 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3082 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3083 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3084 if (unlikely(r))
3085 dm_integrity_io_error(ic, "writing superblock", r);
3086
3087 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3088 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3089 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3090 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3091 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3092 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3093 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3094 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3095 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3096 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3097 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3098 }
3099 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3100 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3101 }
3102 }
3103
3104 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3105 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3106 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3107 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3108 if (recalc_pos < ic->provided_data_sectors) {
3109 queue_work(ic->recalc_wq, &ic->recalc_work);
3110 } else if (recalc_pos > ic->provided_data_sectors) {
3111 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3112 recalc_write_super(ic);
3113 }
3114 }
3115
3116 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3117 ic->reboot_notifier.next = NULL;
3118 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3119 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3120
3121 #if 0
3122 /* set to 1 to stress test synchronous mode */
3123 dm_integrity_enter_synchronous_mode(ic);
3124 #endif
3125 }
3126
dm_integrity_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3127 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3128 unsigned status_flags, char *result, unsigned maxlen)
3129 {
3130 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3131 unsigned arg_count;
3132 size_t sz = 0;
3133
3134 switch (type) {
3135 case STATUSTYPE_INFO:
3136 DMEMIT("%llu %llu",
3137 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3138 ic->provided_data_sectors);
3139 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3140 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3141 else
3142 DMEMIT(" -");
3143 break;
3144
3145 case STATUSTYPE_TABLE: {
3146 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3147 watermark_percentage += ic->journal_entries / 2;
3148 do_div(watermark_percentage, ic->journal_entries);
3149 arg_count = 3;
3150 arg_count += !!ic->meta_dev;
3151 arg_count += ic->sectors_per_block != 1;
3152 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3153 arg_count += ic->discard;
3154 arg_count += ic->mode == 'J';
3155 arg_count += ic->mode == 'J';
3156 arg_count += ic->mode == 'B';
3157 arg_count += ic->mode == 'B';
3158 arg_count += !!ic->internal_hash_alg.alg_string;
3159 arg_count += !!ic->journal_crypt_alg.alg_string;
3160 arg_count += !!ic->journal_mac_alg.alg_string;
3161 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3162 arg_count += ic->legacy_recalculate;
3163 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3164 ic->tag_size, ic->mode, arg_count);
3165 if (ic->meta_dev)
3166 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3167 if (ic->sectors_per_block != 1)
3168 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3169 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3170 DMEMIT(" recalculate");
3171 if (ic->discard)
3172 DMEMIT(" allow_discards");
3173 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3174 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3175 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3176 if (ic->mode == 'J') {
3177 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3178 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3179 }
3180 if (ic->mode == 'B') {
3181 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3182 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3183 }
3184 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3185 DMEMIT(" fix_padding");
3186 if (ic->legacy_recalculate)
3187 DMEMIT(" legacy_recalculate");
3188
3189 #define EMIT_ALG(a, n) \
3190 do { \
3191 if (ic->a.alg_string) { \
3192 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3193 if (ic->a.key_string) \
3194 DMEMIT(":%s", ic->a.key_string);\
3195 } \
3196 } while (0)
3197 EMIT_ALG(internal_hash_alg, "internal_hash");
3198 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3199 EMIT_ALG(journal_mac_alg, "journal_mac");
3200 break;
3201 }
3202 }
3203 }
3204
dm_integrity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3205 static int dm_integrity_iterate_devices(struct dm_target *ti,
3206 iterate_devices_callout_fn fn, void *data)
3207 {
3208 struct dm_integrity_c *ic = ti->private;
3209
3210 if (!ic->meta_dev)
3211 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3212 else
3213 return fn(ti, ic->dev, 0, ti->len, data);
3214 }
3215
dm_integrity_io_hints(struct dm_target * ti,struct queue_limits * limits)3216 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3217 {
3218 struct dm_integrity_c *ic = ti->private;
3219
3220 if (ic->sectors_per_block > 1) {
3221 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3222 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3223 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3224 }
3225 }
3226
calculate_journal_section_size(struct dm_integrity_c * ic)3227 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3228 {
3229 unsigned sector_space = JOURNAL_SECTOR_DATA;
3230
3231 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3232 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3233 JOURNAL_ENTRY_ROUNDUP);
3234
3235 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3236 sector_space -= JOURNAL_MAC_PER_SECTOR;
3237 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3238 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3239 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3240 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3241 }
3242
calculate_device_limits(struct dm_integrity_c * ic)3243 static int calculate_device_limits(struct dm_integrity_c *ic)
3244 {
3245 __u64 initial_sectors;
3246
3247 calculate_journal_section_size(ic);
3248 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3249 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3250 return -EINVAL;
3251 ic->initial_sectors = initial_sectors;
3252
3253 if (!ic->meta_dev) {
3254 sector_t last_sector, last_area, last_offset;
3255
3256 /* we have to maintain excessive padding for compatibility with existing volumes */
3257 __u64 metadata_run_padding =
3258 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3259 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3260 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3261
3262 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3263 metadata_run_padding) >> SECTOR_SHIFT;
3264 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3265 ic->log2_metadata_run = __ffs(ic->metadata_run);
3266 else
3267 ic->log2_metadata_run = -1;
3268
3269 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3270 last_sector = get_data_sector(ic, last_area, last_offset);
3271 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3272 return -EINVAL;
3273 } else {
3274 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3275 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3276 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3277 meta_size <<= ic->log2_buffer_sectors;
3278 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3279 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3280 return -EINVAL;
3281 ic->metadata_run = 1;
3282 ic->log2_metadata_run = 0;
3283 }
3284
3285 return 0;
3286 }
3287
get_provided_data_sectors(struct dm_integrity_c * ic)3288 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3289 {
3290 if (!ic->meta_dev) {
3291 int test_bit;
3292 ic->provided_data_sectors = 0;
3293 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3294 __u64 prev_data_sectors = ic->provided_data_sectors;
3295
3296 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3297 if (calculate_device_limits(ic))
3298 ic->provided_data_sectors = prev_data_sectors;
3299 }
3300 } else {
3301 ic->provided_data_sectors = ic->data_device_sectors;
3302 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3303 }
3304 }
3305
initialize_superblock(struct dm_integrity_c * ic,unsigned journal_sectors,unsigned interleave_sectors)3306 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3307 {
3308 unsigned journal_sections;
3309 int test_bit;
3310
3311 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3312 memcpy(ic->sb->magic, SB_MAGIC, 8);
3313 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3314 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3315 if (ic->journal_mac_alg.alg_string)
3316 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3317
3318 calculate_journal_section_size(ic);
3319 journal_sections = journal_sectors / ic->journal_section_sectors;
3320 if (!journal_sections)
3321 journal_sections = 1;
3322
3323 if (!ic->meta_dev) {
3324 if (ic->fix_padding)
3325 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3326 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3327 if (!interleave_sectors)
3328 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3329 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3330 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3331 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3332
3333 get_provided_data_sectors(ic);
3334 if (!ic->provided_data_sectors)
3335 return -EINVAL;
3336 } else {
3337 ic->sb->log2_interleave_sectors = 0;
3338
3339 get_provided_data_sectors(ic);
3340 if (!ic->provided_data_sectors)
3341 return -EINVAL;
3342
3343 try_smaller_buffer:
3344 ic->sb->journal_sections = cpu_to_le32(0);
3345 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3346 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3347 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3348 if (test_journal_sections > journal_sections)
3349 continue;
3350 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3351 if (calculate_device_limits(ic))
3352 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3353
3354 }
3355 if (!le32_to_cpu(ic->sb->journal_sections)) {
3356 if (ic->log2_buffer_sectors > 3) {
3357 ic->log2_buffer_sectors--;
3358 goto try_smaller_buffer;
3359 }
3360 return -EINVAL;
3361 }
3362 }
3363
3364 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3365
3366 sb_set_version(ic);
3367
3368 return 0;
3369 }
3370
dm_integrity_set(struct dm_target * ti,struct dm_integrity_c * ic)3371 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3372 {
3373 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3374 struct blk_integrity bi;
3375
3376 memset(&bi, 0, sizeof(bi));
3377 bi.profile = &dm_integrity_profile;
3378 bi.tuple_size = ic->tag_size;
3379 bi.tag_size = bi.tuple_size;
3380 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3381
3382 blk_integrity_register(disk, &bi);
3383 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3384 }
3385
dm_integrity_free_page_list(struct page_list * pl)3386 static void dm_integrity_free_page_list(struct page_list *pl)
3387 {
3388 unsigned i;
3389
3390 if (!pl)
3391 return;
3392 for (i = 0; pl[i].page; i++)
3393 __free_page(pl[i].page);
3394 kvfree(pl);
3395 }
3396
dm_integrity_alloc_page_list(unsigned n_pages)3397 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3398 {
3399 struct page_list *pl;
3400 unsigned i;
3401
3402 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3403 if (!pl)
3404 return NULL;
3405
3406 for (i = 0; i < n_pages; i++) {
3407 pl[i].page = alloc_page(GFP_KERNEL);
3408 if (!pl[i].page) {
3409 dm_integrity_free_page_list(pl);
3410 return NULL;
3411 }
3412 if (i)
3413 pl[i - 1].next = &pl[i];
3414 }
3415 pl[i].page = NULL;
3416 pl[i].next = NULL;
3417
3418 return pl;
3419 }
3420
dm_integrity_free_journal_scatterlist(struct dm_integrity_c * ic,struct scatterlist ** sl)3421 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3422 {
3423 unsigned i;
3424 for (i = 0; i < ic->journal_sections; i++)
3425 kvfree(sl[i]);
3426 kvfree(sl);
3427 }
3428
dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c * ic,struct page_list * pl)3429 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3430 struct page_list *pl)
3431 {
3432 struct scatterlist **sl;
3433 unsigned i;
3434
3435 sl = kvmalloc_array(ic->journal_sections,
3436 sizeof(struct scatterlist *),
3437 GFP_KERNEL | __GFP_ZERO);
3438 if (!sl)
3439 return NULL;
3440
3441 for (i = 0; i < ic->journal_sections; i++) {
3442 struct scatterlist *s;
3443 unsigned start_index, start_offset;
3444 unsigned end_index, end_offset;
3445 unsigned n_pages;
3446 unsigned idx;
3447
3448 page_list_location(ic, i, 0, &start_index, &start_offset);
3449 page_list_location(ic, i, ic->journal_section_sectors - 1,
3450 &end_index, &end_offset);
3451
3452 n_pages = (end_index - start_index + 1);
3453
3454 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3455 GFP_KERNEL);
3456 if (!s) {
3457 dm_integrity_free_journal_scatterlist(ic, sl);
3458 return NULL;
3459 }
3460
3461 sg_init_table(s, n_pages);
3462 for (idx = start_index; idx <= end_index; idx++) {
3463 char *va = lowmem_page_address(pl[idx].page);
3464 unsigned start = 0, end = PAGE_SIZE;
3465 if (idx == start_index)
3466 start = start_offset;
3467 if (idx == end_index)
3468 end = end_offset + (1 << SECTOR_SHIFT);
3469 sg_set_buf(&s[idx - start_index], va + start, end - start);
3470 }
3471
3472 sl[i] = s;
3473 }
3474
3475 return sl;
3476 }
3477
free_alg(struct alg_spec * a)3478 static void free_alg(struct alg_spec *a)
3479 {
3480 kfree_sensitive(a->alg_string);
3481 kfree_sensitive(a->key);
3482 memset(a, 0, sizeof *a);
3483 }
3484
get_alg_and_key(const char * arg,struct alg_spec * a,char ** error,char * error_inval)3485 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3486 {
3487 char *k;
3488
3489 free_alg(a);
3490
3491 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3492 if (!a->alg_string)
3493 goto nomem;
3494
3495 k = strchr(a->alg_string, ':');
3496 if (k) {
3497 *k = 0;
3498 a->key_string = k + 1;
3499 if (strlen(a->key_string) & 1)
3500 goto inval;
3501
3502 a->key_size = strlen(a->key_string) / 2;
3503 a->key = kmalloc(a->key_size, GFP_KERNEL);
3504 if (!a->key)
3505 goto nomem;
3506 if (hex2bin(a->key, a->key_string, a->key_size))
3507 goto inval;
3508 }
3509
3510 return 0;
3511 inval:
3512 *error = error_inval;
3513 return -EINVAL;
3514 nomem:
3515 *error = "Out of memory for an argument";
3516 return -ENOMEM;
3517 }
3518
get_mac(struct crypto_shash ** hash,struct alg_spec * a,char ** error,char * error_alg,char * error_key)3519 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3520 char *error_alg, char *error_key)
3521 {
3522 int r;
3523
3524 if (a->alg_string) {
3525 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3526 if (IS_ERR(*hash)) {
3527 *error = error_alg;
3528 r = PTR_ERR(*hash);
3529 *hash = NULL;
3530 return r;
3531 }
3532
3533 if (a->key) {
3534 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3535 if (r) {
3536 *error = error_key;
3537 return r;
3538 }
3539 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3540 *error = error_key;
3541 return -ENOKEY;
3542 }
3543 }
3544
3545 return 0;
3546 }
3547
create_journal(struct dm_integrity_c * ic,char ** error)3548 static int create_journal(struct dm_integrity_c *ic, char **error)
3549 {
3550 int r = 0;
3551 unsigned i;
3552 __u64 journal_pages, journal_desc_size, journal_tree_size;
3553 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3554 struct skcipher_request *req = NULL;
3555
3556 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3557 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3558 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3559 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3560
3561 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3562 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3563 journal_desc_size = journal_pages * sizeof(struct page_list);
3564 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3565 *error = "Journal doesn't fit into memory";
3566 r = -ENOMEM;
3567 goto bad;
3568 }
3569 ic->journal_pages = journal_pages;
3570
3571 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3572 if (!ic->journal) {
3573 *error = "Could not allocate memory for journal";
3574 r = -ENOMEM;
3575 goto bad;
3576 }
3577 if (ic->journal_crypt_alg.alg_string) {
3578 unsigned ivsize, blocksize;
3579 struct journal_completion comp;
3580
3581 comp.ic = ic;
3582 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3583 if (IS_ERR(ic->journal_crypt)) {
3584 *error = "Invalid journal cipher";
3585 r = PTR_ERR(ic->journal_crypt);
3586 ic->journal_crypt = NULL;
3587 goto bad;
3588 }
3589 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3590 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3591
3592 if (ic->journal_crypt_alg.key) {
3593 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3594 ic->journal_crypt_alg.key_size);
3595 if (r) {
3596 *error = "Error setting encryption key";
3597 goto bad;
3598 }
3599 }
3600 DEBUG_print("cipher %s, block size %u iv size %u\n",
3601 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3602
3603 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3604 if (!ic->journal_io) {
3605 *error = "Could not allocate memory for journal io";
3606 r = -ENOMEM;
3607 goto bad;
3608 }
3609
3610 if (blocksize == 1) {
3611 struct scatterlist *sg;
3612
3613 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3614 if (!req) {
3615 *error = "Could not allocate crypt request";
3616 r = -ENOMEM;
3617 goto bad;
3618 }
3619
3620 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3621 if (!crypt_iv) {
3622 *error = "Could not allocate iv";
3623 r = -ENOMEM;
3624 goto bad;
3625 }
3626
3627 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3628 if (!ic->journal_xor) {
3629 *error = "Could not allocate memory for journal xor";
3630 r = -ENOMEM;
3631 goto bad;
3632 }
3633
3634 sg = kvmalloc_array(ic->journal_pages + 1,
3635 sizeof(struct scatterlist),
3636 GFP_KERNEL);
3637 if (!sg) {
3638 *error = "Unable to allocate sg list";
3639 r = -ENOMEM;
3640 goto bad;
3641 }
3642 sg_init_table(sg, ic->journal_pages + 1);
3643 for (i = 0; i < ic->journal_pages; i++) {
3644 char *va = lowmem_page_address(ic->journal_xor[i].page);
3645 clear_page(va);
3646 sg_set_buf(&sg[i], va, PAGE_SIZE);
3647 }
3648 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3649
3650 skcipher_request_set_crypt(req, sg, sg,
3651 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3652 init_completion(&comp.comp);
3653 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3654 if (do_crypt(true, req, &comp))
3655 wait_for_completion(&comp.comp);
3656 kvfree(sg);
3657 r = dm_integrity_failed(ic);
3658 if (r) {
3659 *error = "Unable to encrypt journal";
3660 goto bad;
3661 }
3662 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3663
3664 crypto_free_skcipher(ic->journal_crypt);
3665 ic->journal_crypt = NULL;
3666 } else {
3667 unsigned crypt_len = roundup(ivsize, blocksize);
3668
3669 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3670 if (!req) {
3671 *error = "Could not allocate crypt request";
3672 r = -ENOMEM;
3673 goto bad;
3674 }
3675
3676 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3677 if (!crypt_iv) {
3678 *error = "Could not allocate iv";
3679 r = -ENOMEM;
3680 goto bad;
3681 }
3682
3683 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3684 if (!crypt_data) {
3685 *error = "Unable to allocate crypt data";
3686 r = -ENOMEM;
3687 goto bad;
3688 }
3689
3690 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3691 if (!ic->journal_scatterlist) {
3692 *error = "Unable to allocate sg list";
3693 r = -ENOMEM;
3694 goto bad;
3695 }
3696 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3697 if (!ic->journal_io_scatterlist) {
3698 *error = "Unable to allocate sg list";
3699 r = -ENOMEM;
3700 goto bad;
3701 }
3702 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3703 sizeof(struct skcipher_request *),
3704 GFP_KERNEL | __GFP_ZERO);
3705 if (!ic->sk_requests) {
3706 *error = "Unable to allocate sk requests";
3707 r = -ENOMEM;
3708 goto bad;
3709 }
3710 for (i = 0; i < ic->journal_sections; i++) {
3711 struct scatterlist sg;
3712 struct skcipher_request *section_req;
3713 __u32 section_le = cpu_to_le32(i);
3714
3715 memset(crypt_iv, 0x00, ivsize);
3716 memset(crypt_data, 0x00, crypt_len);
3717 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le)));
3718
3719 sg_init_one(&sg, crypt_data, crypt_len);
3720 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3721 init_completion(&comp.comp);
3722 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3723 if (do_crypt(true, req, &comp))
3724 wait_for_completion(&comp.comp);
3725
3726 r = dm_integrity_failed(ic);
3727 if (r) {
3728 *error = "Unable to generate iv";
3729 goto bad;
3730 }
3731
3732 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3733 if (!section_req) {
3734 *error = "Unable to allocate crypt request";
3735 r = -ENOMEM;
3736 goto bad;
3737 }
3738 section_req->iv = kmalloc_array(ivsize, 2,
3739 GFP_KERNEL);
3740 if (!section_req->iv) {
3741 skcipher_request_free(section_req);
3742 *error = "Unable to allocate iv";
3743 r = -ENOMEM;
3744 goto bad;
3745 }
3746 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3747 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3748 ic->sk_requests[i] = section_req;
3749 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3750 }
3751 }
3752 }
3753
3754 for (i = 0; i < N_COMMIT_IDS; i++) {
3755 unsigned j;
3756 retest_commit_id:
3757 for (j = 0; j < i; j++) {
3758 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3759 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3760 goto retest_commit_id;
3761 }
3762 }
3763 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3764 }
3765
3766 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3767 if (journal_tree_size > ULONG_MAX) {
3768 *error = "Journal doesn't fit into memory";
3769 r = -ENOMEM;
3770 goto bad;
3771 }
3772 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3773 if (!ic->journal_tree) {
3774 *error = "Could not allocate memory for journal tree";
3775 r = -ENOMEM;
3776 }
3777 bad:
3778 kfree(crypt_data);
3779 kfree(crypt_iv);
3780 skcipher_request_free(req);
3781
3782 return r;
3783 }
3784
3785 /*
3786 * Construct a integrity mapping
3787 *
3788 * Arguments:
3789 * device
3790 * offset from the start of the device
3791 * tag size
3792 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3793 * number of optional arguments
3794 * optional arguments:
3795 * journal_sectors
3796 * interleave_sectors
3797 * buffer_sectors
3798 * journal_watermark
3799 * commit_time
3800 * meta_device
3801 * block_size
3802 * sectors_per_bit
3803 * bitmap_flush_interval
3804 * internal_hash
3805 * journal_crypt
3806 * journal_mac
3807 * recalculate
3808 */
dm_integrity_ctr(struct dm_target * ti,unsigned argc,char ** argv)3809 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3810 {
3811 struct dm_integrity_c *ic;
3812 char dummy;
3813 int r;
3814 unsigned extra_args;
3815 struct dm_arg_set as;
3816 static const struct dm_arg _args[] = {
3817 {0, 16, "Invalid number of feature args"},
3818 };
3819 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3820 bool should_write_sb;
3821 __u64 threshold;
3822 unsigned long long start;
3823 __s8 log2_sectors_per_bitmap_bit = -1;
3824 __s8 log2_blocks_per_bitmap_bit;
3825 __u64 bits_in_journal;
3826 __u64 n_bitmap_bits;
3827
3828 #define DIRECT_ARGUMENTS 4
3829
3830 if (argc <= DIRECT_ARGUMENTS) {
3831 ti->error = "Invalid argument count";
3832 return -EINVAL;
3833 }
3834
3835 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3836 if (!ic) {
3837 ti->error = "Cannot allocate integrity context";
3838 return -ENOMEM;
3839 }
3840 ti->private = ic;
3841 ti->per_io_data_size = sizeof(struct dm_integrity_io);
3842 ic->ti = ti;
3843
3844 ic->in_progress = RB_ROOT;
3845 INIT_LIST_HEAD(&ic->wait_list);
3846 init_waitqueue_head(&ic->endio_wait);
3847 bio_list_init(&ic->flush_bio_list);
3848 init_waitqueue_head(&ic->copy_to_journal_wait);
3849 init_completion(&ic->crypto_backoff);
3850 atomic64_set(&ic->number_of_mismatches, 0);
3851 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3852
3853 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3854 if (r) {
3855 ti->error = "Device lookup failed";
3856 goto bad;
3857 }
3858
3859 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3860 ti->error = "Invalid starting offset";
3861 r = -EINVAL;
3862 goto bad;
3863 }
3864 ic->start = start;
3865
3866 if (strcmp(argv[2], "-")) {
3867 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3868 ti->error = "Invalid tag size";
3869 r = -EINVAL;
3870 goto bad;
3871 }
3872 }
3873
3874 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3875 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3876 ic->mode = argv[3][0];
3877 } else {
3878 ti->error = "Invalid mode (expecting J, B, D, R)";
3879 r = -EINVAL;
3880 goto bad;
3881 }
3882
3883 journal_sectors = 0;
3884 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3885 buffer_sectors = DEFAULT_BUFFER_SECTORS;
3886 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3887 sync_msec = DEFAULT_SYNC_MSEC;
3888 ic->sectors_per_block = 1;
3889
3890 as.argc = argc - DIRECT_ARGUMENTS;
3891 as.argv = argv + DIRECT_ARGUMENTS;
3892 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3893 if (r)
3894 goto bad;
3895
3896 while (extra_args--) {
3897 const char *opt_string;
3898 unsigned val;
3899 unsigned long long llval;
3900 opt_string = dm_shift_arg(&as);
3901 if (!opt_string) {
3902 r = -EINVAL;
3903 ti->error = "Not enough feature arguments";
3904 goto bad;
3905 }
3906 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3907 journal_sectors = val ? val : 1;
3908 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3909 interleave_sectors = val;
3910 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3911 buffer_sectors = val;
3912 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3913 journal_watermark = val;
3914 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3915 sync_msec = val;
3916 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3917 if (ic->meta_dev) {
3918 dm_put_device(ti, ic->meta_dev);
3919 ic->meta_dev = NULL;
3920 }
3921 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3922 dm_table_get_mode(ti->table), &ic->meta_dev);
3923 if (r) {
3924 ti->error = "Device lookup failed";
3925 goto bad;
3926 }
3927 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3928 if (val < 1 << SECTOR_SHIFT ||
3929 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3930 (val & (val -1))) {
3931 r = -EINVAL;
3932 ti->error = "Invalid block_size argument";
3933 goto bad;
3934 }
3935 ic->sectors_per_block = val >> SECTOR_SHIFT;
3936 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3937 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3938 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3939 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3940 r = -EINVAL;
3941 ti->error = "Invalid bitmap_flush_interval argument";
3942 goto bad;
3943 }
3944 ic->bitmap_flush_interval = msecs_to_jiffies(val);
3945 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3946 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3947 "Invalid internal_hash argument");
3948 if (r)
3949 goto bad;
3950 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3951 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3952 "Invalid journal_crypt argument");
3953 if (r)
3954 goto bad;
3955 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3956 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
3957 "Invalid journal_mac argument");
3958 if (r)
3959 goto bad;
3960 } else if (!strcmp(opt_string, "recalculate")) {
3961 ic->recalculate_flag = true;
3962 } else if (!strcmp(opt_string, "allow_discards")) {
3963 ic->discard = true;
3964 } else if (!strcmp(opt_string, "fix_padding")) {
3965 ic->fix_padding = true;
3966 } else if (!strcmp(opt_string, "legacy_recalculate")) {
3967 ic->legacy_recalculate = true;
3968 } else {
3969 r = -EINVAL;
3970 ti->error = "Invalid argument";
3971 goto bad;
3972 }
3973 }
3974
3975 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3976 if (!ic->meta_dev)
3977 ic->meta_device_sectors = ic->data_device_sectors;
3978 else
3979 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3980
3981 if (!journal_sectors) {
3982 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3983 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3984 }
3985
3986 if (!buffer_sectors)
3987 buffer_sectors = 1;
3988 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3989
3990 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3991 "Invalid internal hash", "Error setting internal hash key");
3992 if (r)
3993 goto bad;
3994
3995 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3996 "Invalid journal mac", "Error setting journal mac key");
3997 if (r)
3998 goto bad;
3999
4000 if (!ic->tag_size) {
4001 if (!ic->internal_hash) {
4002 ti->error = "Unknown tag size";
4003 r = -EINVAL;
4004 goto bad;
4005 }
4006 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4007 }
4008 if (ic->tag_size > MAX_TAG_SIZE) {
4009 ti->error = "Too big tag size";
4010 r = -EINVAL;
4011 goto bad;
4012 }
4013 if (!(ic->tag_size & (ic->tag_size - 1)))
4014 ic->log2_tag_size = __ffs(ic->tag_size);
4015 else
4016 ic->log2_tag_size = -1;
4017
4018 if (ic->mode == 'B' && !ic->internal_hash) {
4019 r = -EINVAL;
4020 ti->error = "Bitmap mode can be only used with internal hash";
4021 goto bad;
4022 }
4023
4024 if (ic->discard && !ic->internal_hash) {
4025 r = -EINVAL;
4026 ti->error = "Discard can be only used with internal hash";
4027 goto bad;
4028 }
4029
4030 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4031 ic->autocommit_msec = sync_msec;
4032 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4033
4034 ic->io = dm_io_client_create();
4035 if (IS_ERR(ic->io)) {
4036 r = PTR_ERR(ic->io);
4037 ic->io = NULL;
4038 ti->error = "Cannot allocate dm io";
4039 goto bad;
4040 }
4041
4042 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4043 if (r) {
4044 ti->error = "Cannot allocate mempool";
4045 goto bad;
4046 }
4047
4048 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4049 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4050 if (!ic->metadata_wq) {
4051 ti->error = "Cannot allocate workqueue";
4052 r = -ENOMEM;
4053 goto bad;
4054 }
4055
4056 /*
4057 * If this workqueue were percpu, it would cause bio reordering
4058 * and reduced performance.
4059 */
4060 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4061 if (!ic->wait_wq) {
4062 ti->error = "Cannot allocate workqueue";
4063 r = -ENOMEM;
4064 goto bad;
4065 }
4066
4067 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4068 METADATA_WORKQUEUE_MAX_ACTIVE);
4069 if (!ic->offload_wq) {
4070 ti->error = "Cannot allocate workqueue";
4071 r = -ENOMEM;
4072 goto bad;
4073 }
4074
4075 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4076 if (!ic->commit_wq) {
4077 ti->error = "Cannot allocate workqueue";
4078 r = -ENOMEM;
4079 goto bad;
4080 }
4081 INIT_WORK(&ic->commit_work, integrity_commit);
4082
4083 if (ic->mode == 'J' || ic->mode == 'B') {
4084 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4085 if (!ic->writer_wq) {
4086 ti->error = "Cannot allocate workqueue";
4087 r = -ENOMEM;
4088 goto bad;
4089 }
4090 INIT_WORK(&ic->writer_work, integrity_writer);
4091 }
4092
4093 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4094 if (!ic->sb) {
4095 r = -ENOMEM;
4096 ti->error = "Cannot allocate superblock area";
4097 goto bad;
4098 }
4099
4100 r = sync_rw_sb(ic, REQ_OP_READ, 0);
4101 if (r) {
4102 ti->error = "Error reading superblock";
4103 goto bad;
4104 }
4105 should_write_sb = false;
4106 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4107 if (ic->mode != 'R') {
4108 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4109 r = -EINVAL;
4110 ti->error = "The device is not initialized";
4111 goto bad;
4112 }
4113 }
4114
4115 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4116 if (r) {
4117 ti->error = "Could not initialize superblock";
4118 goto bad;
4119 }
4120 if (ic->mode != 'R')
4121 should_write_sb = true;
4122 }
4123
4124 if (!ic->sb->version || ic->sb->version > SB_VERSION_4) {
4125 r = -EINVAL;
4126 ti->error = "Unknown version";
4127 goto bad;
4128 }
4129 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4130 r = -EINVAL;
4131 ti->error = "Tag size doesn't match the information in superblock";
4132 goto bad;
4133 }
4134 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4135 r = -EINVAL;
4136 ti->error = "Block size doesn't match the information in superblock";
4137 goto bad;
4138 }
4139 if (!le32_to_cpu(ic->sb->journal_sections)) {
4140 r = -EINVAL;
4141 ti->error = "Corrupted superblock, journal_sections is 0";
4142 goto bad;
4143 }
4144 /* make sure that ti->max_io_len doesn't overflow */
4145 if (!ic->meta_dev) {
4146 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4147 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4148 r = -EINVAL;
4149 ti->error = "Invalid interleave_sectors in the superblock";
4150 goto bad;
4151 }
4152 } else {
4153 if (ic->sb->log2_interleave_sectors) {
4154 r = -EINVAL;
4155 ti->error = "Invalid interleave_sectors in the superblock";
4156 goto bad;
4157 }
4158 }
4159 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4160 r = -EINVAL;
4161 ti->error = "Journal mac mismatch";
4162 goto bad;
4163 }
4164
4165 get_provided_data_sectors(ic);
4166 if (!ic->provided_data_sectors) {
4167 r = -EINVAL;
4168 ti->error = "The device is too small";
4169 goto bad;
4170 }
4171
4172 try_smaller_buffer:
4173 r = calculate_device_limits(ic);
4174 if (r) {
4175 if (ic->meta_dev) {
4176 if (ic->log2_buffer_sectors > 3) {
4177 ic->log2_buffer_sectors--;
4178 goto try_smaller_buffer;
4179 }
4180 }
4181 ti->error = "The device is too small";
4182 goto bad;
4183 }
4184
4185 if (log2_sectors_per_bitmap_bit < 0)
4186 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4187 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4188 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4189
4190 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4191 if (bits_in_journal > UINT_MAX)
4192 bits_in_journal = UINT_MAX;
4193 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4194 log2_sectors_per_bitmap_bit++;
4195
4196 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4197 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4198 if (should_write_sb) {
4199 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4200 }
4201 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4202 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4203 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4204
4205 if (!ic->meta_dev)
4206 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4207
4208 if (ti->len > ic->provided_data_sectors) {
4209 r = -EINVAL;
4210 ti->error = "Not enough provided sectors for requested mapping size";
4211 goto bad;
4212 }
4213
4214
4215 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4216 threshold += 50;
4217 do_div(threshold, 100);
4218 ic->free_sectors_threshold = threshold;
4219
4220 DEBUG_print("initialized:\n");
4221 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4222 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4223 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4224 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4225 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4226 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4227 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4228 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4229 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4230 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4231 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4232 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4233 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4234 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4235 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4236
4237 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4238 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4239 ic->sb->recalc_sector = cpu_to_le64(0);
4240 }
4241
4242 if (ic->internal_hash) {
4243 size_t recalc_tags_size;
4244 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4245 if (!ic->recalc_wq ) {
4246 ti->error = "Cannot allocate workqueue";
4247 r = -ENOMEM;
4248 goto bad;
4249 }
4250 INIT_WORK(&ic->recalc_work, integrity_recalc);
4251 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4252 if (!ic->recalc_buffer) {
4253 ti->error = "Cannot allocate buffer for recalculating";
4254 r = -ENOMEM;
4255 goto bad;
4256 }
4257 recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4258 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4259 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4260 ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4261 if (!ic->recalc_tags) {
4262 ti->error = "Cannot allocate tags for recalculating";
4263 r = -ENOMEM;
4264 goto bad;
4265 }
4266 } else {
4267 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4268 ti->error = "Recalculate can only be specified with internal_hash";
4269 r = -EINVAL;
4270 goto bad;
4271 }
4272 }
4273
4274 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4275 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4276 dm_integrity_disable_recalculate(ic)) {
4277 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4278 r = -EOPNOTSUPP;
4279 goto bad;
4280 }
4281
4282 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4283 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4284 if (IS_ERR(ic->bufio)) {
4285 r = PTR_ERR(ic->bufio);
4286 ti->error = "Cannot initialize dm-bufio";
4287 ic->bufio = NULL;
4288 goto bad;
4289 }
4290 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4291
4292 if (ic->mode != 'R') {
4293 r = create_journal(ic, &ti->error);
4294 if (r)
4295 goto bad;
4296
4297 }
4298
4299 if (ic->mode == 'B') {
4300 unsigned i;
4301 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4302
4303 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4304 if (!ic->recalc_bitmap) {
4305 r = -ENOMEM;
4306 goto bad;
4307 }
4308 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4309 if (!ic->may_write_bitmap) {
4310 r = -ENOMEM;
4311 goto bad;
4312 }
4313 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4314 if (!ic->bbs) {
4315 r = -ENOMEM;
4316 goto bad;
4317 }
4318 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4319 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4320 struct bitmap_block_status *bbs = &ic->bbs[i];
4321 unsigned sector, pl_index, pl_offset;
4322
4323 INIT_WORK(&bbs->work, bitmap_block_work);
4324 bbs->ic = ic;
4325 bbs->idx = i;
4326 bio_list_init(&bbs->bio_queue);
4327 spin_lock_init(&bbs->bio_queue_lock);
4328
4329 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4330 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4331 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4332
4333 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4334 }
4335 }
4336
4337 if (should_write_sb) {
4338 init_journal(ic, 0, ic->journal_sections, 0);
4339 r = dm_integrity_failed(ic);
4340 if (unlikely(r)) {
4341 ti->error = "Error initializing journal";
4342 goto bad;
4343 }
4344 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4345 if (r) {
4346 ti->error = "Error initializing superblock";
4347 goto bad;
4348 }
4349 ic->just_formatted = true;
4350 }
4351
4352 if (!ic->meta_dev) {
4353 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4354 if (r)
4355 goto bad;
4356 }
4357 if (ic->mode == 'B') {
4358 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4359 if (!max_io_len)
4360 max_io_len = 1U << 31;
4361 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4362 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4363 r = dm_set_target_max_io_len(ti, max_io_len);
4364 if (r)
4365 goto bad;
4366 }
4367 }
4368
4369 if (!ic->internal_hash)
4370 dm_integrity_set(ti, ic);
4371
4372 ti->num_flush_bios = 1;
4373 ti->flush_supported = true;
4374 if (ic->discard)
4375 ti->num_discard_bios = 1;
4376
4377 return 0;
4378
4379 bad:
4380 dm_integrity_dtr(ti);
4381 return r;
4382 }
4383
dm_integrity_dtr(struct dm_target * ti)4384 static void dm_integrity_dtr(struct dm_target *ti)
4385 {
4386 struct dm_integrity_c *ic = ti->private;
4387
4388 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4389 BUG_ON(!list_empty(&ic->wait_list));
4390
4391 if (ic->mode == 'B')
4392 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4393 if (ic->metadata_wq)
4394 destroy_workqueue(ic->metadata_wq);
4395 if (ic->wait_wq)
4396 destroy_workqueue(ic->wait_wq);
4397 if (ic->offload_wq)
4398 destroy_workqueue(ic->offload_wq);
4399 if (ic->commit_wq)
4400 destroy_workqueue(ic->commit_wq);
4401 if (ic->writer_wq)
4402 destroy_workqueue(ic->writer_wq);
4403 if (ic->recalc_wq)
4404 destroy_workqueue(ic->recalc_wq);
4405 vfree(ic->recalc_buffer);
4406 kvfree(ic->recalc_tags);
4407 kvfree(ic->bbs);
4408 if (ic->bufio)
4409 dm_bufio_client_destroy(ic->bufio);
4410 mempool_exit(&ic->journal_io_mempool);
4411 if (ic->io)
4412 dm_io_client_destroy(ic->io);
4413 if (ic->dev)
4414 dm_put_device(ti, ic->dev);
4415 if (ic->meta_dev)
4416 dm_put_device(ti, ic->meta_dev);
4417 dm_integrity_free_page_list(ic->journal);
4418 dm_integrity_free_page_list(ic->journal_io);
4419 dm_integrity_free_page_list(ic->journal_xor);
4420 dm_integrity_free_page_list(ic->recalc_bitmap);
4421 dm_integrity_free_page_list(ic->may_write_bitmap);
4422 if (ic->journal_scatterlist)
4423 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4424 if (ic->journal_io_scatterlist)
4425 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4426 if (ic->sk_requests) {
4427 unsigned i;
4428
4429 for (i = 0; i < ic->journal_sections; i++) {
4430 struct skcipher_request *req = ic->sk_requests[i];
4431 if (req) {
4432 kfree_sensitive(req->iv);
4433 skcipher_request_free(req);
4434 }
4435 }
4436 kvfree(ic->sk_requests);
4437 }
4438 kvfree(ic->journal_tree);
4439 if (ic->sb)
4440 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4441
4442 if (ic->internal_hash)
4443 crypto_free_shash(ic->internal_hash);
4444 free_alg(&ic->internal_hash_alg);
4445
4446 if (ic->journal_crypt)
4447 crypto_free_skcipher(ic->journal_crypt);
4448 free_alg(&ic->journal_crypt_alg);
4449
4450 if (ic->journal_mac)
4451 crypto_free_shash(ic->journal_mac);
4452 free_alg(&ic->journal_mac_alg);
4453
4454 kfree(ic);
4455 }
4456
4457 static struct target_type integrity_target = {
4458 .name = "integrity",
4459 .version = {1, 6, 0},
4460 .module = THIS_MODULE,
4461 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4462 .ctr = dm_integrity_ctr,
4463 .dtr = dm_integrity_dtr,
4464 .map = dm_integrity_map,
4465 .postsuspend = dm_integrity_postsuspend,
4466 .resume = dm_integrity_resume,
4467 .status = dm_integrity_status,
4468 .iterate_devices = dm_integrity_iterate_devices,
4469 .io_hints = dm_integrity_io_hints,
4470 };
4471
dm_integrity_init(void)4472 static int __init dm_integrity_init(void)
4473 {
4474 int r;
4475
4476 journal_io_cache = kmem_cache_create("integrity_journal_io",
4477 sizeof(struct journal_io), 0, 0, NULL);
4478 if (!journal_io_cache) {
4479 DMERR("can't allocate journal io cache");
4480 return -ENOMEM;
4481 }
4482
4483 r = dm_register_target(&integrity_target);
4484
4485 if (r < 0)
4486 DMERR("register failed %d", r);
4487
4488 return r;
4489 }
4490
dm_integrity_exit(void)4491 static void __exit dm_integrity_exit(void)
4492 {
4493 dm_unregister_target(&integrity_target);
4494 kmem_cache_destroy(journal_io_cache);
4495 }
4496
4497 module_init(dm_integrity_init);
4498 module_exit(dm_integrity_exit);
4499
4500 MODULE_AUTHOR("Milan Broz");
4501 MODULE_AUTHOR("Mikulas Patocka");
4502 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4503 MODULE_LICENSE("GPL");
4504