• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 
19 #define DM_MSG_PREFIX "writecache"
20 
21 #define HIGH_WATERMARK			50
22 #define LOW_WATERMARK			45
23 #define MAX_WRITEBACK_JOBS		min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
24 #define ENDIO_LATENCY			16
25 #define WRITEBACK_LATENCY		64
26 #define AUTOCOMMIT_BLOCKS_SSD		65536
27 #define AUTOCOMMIT_BLOCKS_PMEM		64
28 #define AUTOCOMMIT_MSEC			1000
29 #define MAX_AGE_DIV			16
30 #define MAX_AGE_UNSPECIFIED		-1UL
31 
32 #define BITMAP_GRANULARITY	65536
33 #if BITMAP_GRANULARITY < PAGE_SIZE
34 #undef BITMAP_GRANULARITY
35 #define BITMAP_GRANULARITY	PAGE_SIZE
36 #endif
37 
38 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
39 #define DM_WRITECACHE_HAS_PMEM
40 #endif
41 
42 #ifdef DM_WRITECACHE_HAS_PMEM
43 #define pmem_assign(dest, src)					\
44 do {								\
45 	typeof(dest) uniq = (src);				\
46 	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
47 } while (0)
48 #else
49 #define pmem_assign(dest, src)	((dest) = (src))
50 #endif
51 
52 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
53 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
54 #endif
55 
56 #define MEMORY_SUPERBLOCK_MAGIC		0x23489321
57 #define MEMORY_SUPERBLOCK_VERSION	1
58 
59 struct wc_memory_entry {
60 	__le64 original_sector;
61 	__le64 seq_count;
62 };
63 
64 struct wc_memory_superblock {
65 	union {
66 		struct {
67 			__le32 magic;
68 			__le32 version;
69 			__le32 block_size;
70 			__le32 pad;
71 			__le64 n_blocks;
72 			__le64 seq_count;
73 		};
74 		__le64 padding[8];
75 	};
76 	struct wc_memory_entry entries[0];
77 };
78 
79 struct wc_entry {
80 	struct rb_node rb_node;
81 	struct list_head lru;
82 	unsigned short wc_list_contiguous;
83 	bool write_in_progress
84 #if BITS_PER_LONG == 64
85 		:1
86 #endif
87 	;
88 	unsigned long index
89 #if BITS_PER_LONG == 64
90 		:47
91 #endif
92 	;
93 	unsigned long age;
94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
95 	uint64_t original_sector;
96 	uint64_t seq_count;
97 #endif
98 };
99 
100 #ifdef DM_WRITECACHE_HAS_PMEM
101 #define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
102 #define WC_MODE_FUA(wc)				((wc)->writeback_fua)
103 #else
104 #define WC_MODE_PMEM(wc)			false
105 #define WC_MODE_FUA(wc)				false
106 #endif
107 #define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
108 
109 struct dm_writecache {
110 	struct mutex lock;
111 	struct list_head lru;
112 	union {
113 		struct list_head freelist;
114 		struct {
115 			struct rb_root freetree;
116 			struct wc_entry *current_free;
117 		};
118 	};
119 	struct rb_root tree;
120 
121 	size_t freelist_size;
122 	size_t writeback_size;
123 	size_t freelist_high_watermark;
124 	size_t freelist_low_watermark;
125 	unsigned long max_age;
126 
127 	unsigned uncommitted_blocks;
128 	unsigned autocommit_blocks;
129 	unsigned max_writeback_jobs;
130 
131 	int error;
132 
133 	unsigned long autocommit_jiffies;
134 	struct timer_list autocommit_timer;
135 	struct wait_queue_head freelist_wait;
136 
137 	struct timer_list max_age_timer;
138 
139 	atomic_t bio_in_progress[2];
140 	struct wait_queue_head bio_in_progress_wait[2];
141 
142 	struct dm_target *ti;
143 	struct dm_dev *dev;
144 	struct dm_dev *ssd_dev;
145 	sector_t start_sector;
146 	void *memory_map;
147 	uint64_t memory_map_size;
148 	size_t metadata_sectors;
149 	size_t n_blocks;
150 	uint64_t seq_count;
151 	sector_t data_device_sectors;
152 	void *block_start;
153 	struct wc_entry *entries;
154 	unsigned block_size;
155 	unsigned char block_size_bits;
156 
157 	bool pmem_mode:1;
158 	bool writeback_fua:1;
159 
160 	bool overwrote_committed:1;
161 	bool memory_vmapped:1;
162 
163 	bool start_sector_set:1;
164 	bool high_wm_percent_set:1;
165 	bool low_wm_percent_set:1;
166 	bool max_writeback_jobs_set:1;
167 	bool autocommit_blocks_set:1;
168 	bool autocommit_time_set:1;
169 	bool max_age_set:1;
170 	bool writeback_fua_set:1;
171 	bool flush_on_suspend:1;
172 	bool cleaner:1;
173 	bool cleaner_set:1;
174 
175 	unsigned high_wm_percent_value;
176 	unsigned low_wm_percent_value;
177 	unsigned autocommit_time_value;
178 	unsigned max_age_value;
179 
180 	unsigned writeback_all;
181 	struct workqueue_struct *writeback_wq;
182 	struct work_struct writeback_work;
183 	struct work_struct flush_work;
184 
185 	struct dm_io_client *dm_io;
186 
187 	raw_spinlock_t endio_list_lock;
188 	struct list_head endio_list;
189 	struct task_struct *endio_thread;
190 
191 	struct task_struct *flush_thread;
192 	struct bio_list flush_list;
193 
194 	struct dm_kcopyd_client *dm_kcopyd;
195 	unsigned long *dirty_bitmap;
196 	unsigned dirty_bitmap_size;
197 
198 	struct bio_set bio_set;
199 	mempool_t copy_pool;
200 };
201 
202 #define WB_LIST_INLINE		16
203 
204 struct writeback_struct {
205 	struct list_head endio_entry;
206 	struct dm_writecache *wc;
207 	struct wc_entry **wc_list;
208 	unsigned wc_list_n;
209 	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
210 	struct bio bio;
211 };
212 
213 struct copy_struct {
214 	struct list_head endio_entry;
215 	struct dm_writecache *wc;
216 	struct wc_entry *e;
217 	unsigned n_entries;
218 	int error;
219 };
220 
221 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
222 					    "A percentage of time allocated for data copying");
223 
wc_lock(struct dm_writecache * wc)224 static void wc_lock(struct dm_writecache *wc)
225 {
226 	mutex_lock(&wc->lock);
227 }
228 
wc_unlock(struct dm_writecache * wc)229 static void wc_unlock(struct dm_writecache *wc)
230 {
231 	mutex_unlock(&wc->lock);
232 }
233 
234 #ifdef DM_WRITECACHE_HAS_PMEM
persistent_memory_claim(struct dm_writecache * wc)235 static int persistent_memory_claim(struct dm_writecache *wc)
236 {
237 	int r;
238 	loff_t s;
239 	long p, da;
240 	pfn_t pfn;
241 	int id;
242 	struct page **pages;
243 	sector_t offset;
244 
245 	wc->memory_vmapped = false;
246 
247 	s = wc->memory_map_size;
248 	p = s >> PAGE_SHIFT;
249 	if (!p) {
250 		r = -EINVAL;
251 		goto err1;
252 	}
253 	if (p != s >> PAGE_SHIFT) {
254 		r = -EOVERFLOW;
255 		goto err1;
256 	}
257 
258 	offset = get_start_sect(wc->ssd_dev->bdev);
259 	if (offset & (PAGE_SIZE / 512 - 1)) {
260 		r = -EINVAL;
261 		goto err1;
262 	}
263 	offset >>= PAGE_SHIFT - 9;
264 
265 	id = dax_read_lock();
266 
267 	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
268 	if (da < 0) {
269 		wc->memory_map = NULL;
270 		r = da;
271 		goto err2;
272 	}
273 	if (!pfn_t_has_page(pfn)) {
274 		wc->memory_map = NULL;
275 		r = -EOPNOTSUPP;
276 		goto err2;
277 	}
278 	if (da != p) {
279 		long i;
280 		wc->memory_map = NULL;
281 		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
282 		if (!pages) {
283 			r = -ENOMEM;
284 			goto err2;
285 		}
286 		i = 0;
287 		do {
288 			long daa;
289 			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
290 						NULL, &pfn);
291 			if (daa <= 0) {
292 				r = daa ? daa : -EINVAL;
293 				goto err3;
294 			}
295 			if (!pfn_t_has_page(pfn)) {
296 				r = -EOPNOTSUPP;
297 				goto err3;
298 			}
299 			while (daa-- && i < p) {
300 				pages[i++] = pfn_t_to_page(pfn);
301 				pfn.val++;
302 				if (!(i & 15))
303 					cond_resched();
304 			}
305 		} while (i < p);
306 		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
307 		if (!wc->memory_map) {
308 			r = -ENOMEM;
309 			goto err3;
310 		}
311 		kvfree(pages);
312 		wc->memory_vmapped = true;
313 	}
314 
315 	dax_read_unlock(id);
316 
317 	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
318 	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
319 
320 	return 0;
321 err3:
322 	kvfree(pages);
323 err2:
324 	dax_read_unlock(id);
325 err1:
326 	return r;
327 }
328 #else
persistent_memory_claim(struct dm_writecache * wc)329 static int persistent_memory_claim(struct dm_writecache *wc)
330 {
331 	return -EOPNOTSUPP;
332 }
333 #endif
334 
persistent_memory_release(struct dm_writecache * wc)335 static void persistent_memory_release(struct dm_writecache *wc)
336 {
337 	if (wc->memory_vmapped)
338 		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
339 }
340 
persistent_memory_page(void * addr)341 static struct page *persistent_memory_page(void *addr)
342 {
343 	if (is_vmalloc_addr(addr))
344 		return vmalloc_to_page(addr);
345 	else
346 		return virt_to_page(addr);
347 }
348 
persistent_memory_page_offset(void * addr)349 static unsigned persistent_memory_page_offset(void *addr)
350 {
351 	return (unsigned long)addr & (PAGE_SIZE - 1);
352 }
353 
persistent_memory_flush_cache(void * ptr,size_t size)354 static void persistent_memory_flush_cache(void *ptr, size_t size)
355 {
356 	if (is_vmalloc_addr(ptr))
357 		flush_kernel_vmap_range(ptr, size);
358 }
359 
persistent_memory_invalidate_cache(void * ptr,size_t size)360 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
361 {
362 	if (is_vmalloc_addr(ptr))
363 		invalidate_kernel_vmap_range(ptr, size);
364 }
365 
sb(struct dm_writecache * wc)366 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
367 {
368 	return wc->memory_map;
369 }
370 
memory_entry(struct dm_writecache * wc,struct wc_entry * e)371 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
372 {
373 	return &sb(wc)->entries[e->index];
374 }
375 
memory_data(struct dm_writecache * wc,struct wc_entry * e)376 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
377 {
378 	return (char *)wc->block_start + (e->index << wc->block_size_bits);
379 }
380 
cache_sector(struct dm_writecache * wc,struct wc_entry * e)381 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
382 {
383 	return wc->start_sector + wc->metadata_sectors +
384 		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
385 }
386 
read_original_sector(struct dm_writecache * wc,struct wc_entry * e)387 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
388 {
389 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
390 	return e->original_sector;
391 #else
392 	return le64_to_cpu(memory_entry(wc, e)->original_sector);
393 #endif
394 }
395 
read_seq_count(struct dm_writecache * wc,struct wc_entry * e)396 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
397 {
398 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
399 	return e->seq_count;
400 #else
401 	return le64_to_cpu(memory_entry(wc, e)->seq_count);
402 #endif
403 }
404 
clear_seq_count(struct dm_writecache * wc,struct wc_entry * e)405 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
406 {
407 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
408 	e->seq_count = -1;
409 #endif
410 	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
411 }
412 
write_original_sector_seq_count(struct dm_writecache * wc,struct wc_entry * e,uint64_t original_sector,uint64_t seq_count)413 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
414 					    uint64_t original_sector, uint64_t seq_count)
415 {
416 	struct wc_memory_entry me;
417 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
418 	e->original_sector = original_sector;
419 	e->seq_count = seq_count;
420 #endif
421 	me.original_sector = cpu_to_le64(original_sector);
422 	me.seq_count = cpu_to_le64(seq_count);
423 	pmem_assign(*memory_entry(wc, e), me);
424 }
425 
426 #define writecache_error(wc, err, msg, arg...)				\
427 do {									\
428 	if (!cmpxchg(&(wc)->error, 0, err))				\
429 		DMERR(msg, ##arg);					\
430 	wake_up(&(wc)->freelist_wait);					\
431 } while (0)
432 
433 #define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
434 
writecache_flush_all_metadata(struct dm_writecache * wc)435 static void writecache_flush_all_metadata(struct dm_writecache *wc)
436 {
437 	if (!WC_MODE_PMEM(wc))
438 		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
439 }
440 
writecache_flush_region(struct dm_writecache * wc,void * ptr,size_t size)441 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
442 {
443 	if (!WC_MODE_PMEM(wc))
444 		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
445 			  wc->dirty_bitmap);
446 }
447 
448 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
449 
450 struct io_notify {
451 	struct dm_writecache *wc;
452 	struct completion c;
453 	atomic_t count;
454 };
455 
writecache_notify_io(unsigned long error,void * context)456 static void writecache_notify_io(unsigned long error, void *context)
457 {
458 	struct io_notify *endio = context;
459 
460 	if (unlikely(error != 0))
461 		writecache_error(endio->wc, -EIO, "error writing metadata");
462 	BUG_ON(atomic_read(&endio->count) <= 0);
463 	if (atomic_dec_and_test(&endio->count))
464 		complete(&endio->c);
465 }
466 
writecache_wait_for_ios(struct dm_writecache * wc,int direction)467 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
468 {
469 	wait_event(wc->bio_in_progress_wait[direction],
470 		   !atomic_read(&wc->bio_in_progress[direction]));
471 }
472 
ssd_commit_flushed(struct dm_writecache * wc,bool wait_for_ios)473 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
474 {
475 	struct dm_io_region region;
476 	struct dm_io_request req;
477 	struct io_notify endio = {
478 		wc,
479 		COMPLETION_INITIALIZER_ONSTACK(endio.c),
480 		ATOMIC_INIT(1),
481 	};
482 	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
483 	unsigned i = 0;
484 
485 	while (1) {
486 		unsigned j;
487 		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
488 		if (unlikely(i == bitmap_bits))
489 			break;
490 		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
491 
492 		region.bdev = wc->ssd_dev->bdev;
493 		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
494 		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
495 
496 		if (unlikely(region.sector >= wc->metadata_sectors))
497 			break;
498 		if (unlikely(region.sector + region.count > wc->metadata_sectors))
499 			region.count = wc->metadata_sectors - region.sector;
500 
501 		region.sector += wc->start_sector;
502 		atomic_inc(&endio.count);
503 		req.bi_op = REQ_OP_WRITE;
504 		req.bi_op_flags = REQ_SYNC;
505 		req.mem.type = DM_IO_VMA;
506 		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
507 		req.client = wc->dm_io;
508 		req.notify.fn = writecache_notify_io;
509 		req.notify.context = &endio;
510 
511 		/* writing via async dm-io (implied by notify.fn above) won't return an error */
512 	        (void) dm_io(&req, 1, &region, NULL);
513 		i = j;
514 	}
515 
516 	writecache_notify_io(0, &endio);
517 	wait_for_completion_io(&endio.c);
518 
519 	if (wait_for_ios)
520 		writecache_wait_for_ios(wc, WRITE);
521 
522 	writecache_disk_flush(wc, wc->ssd_dev);
523 
524 	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
525 }
526 
ssd_commit_superblock(struct dm_writecache * wc)527 static void ssd_commit_superblock(struct dm_writecache *wc)
528 {
529 	int r;
530 	struct dm_io_region region;
531 	struct dm_io_request req;
532 
533 	region.bdev = wc->ssd_dev->bdev;
534 	region.sector = 0;
535 	region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
536 
537 	if (unlikely(region.sector + region.count > wc->metadata_sectors))
538 		region.count = wc->metadata_sectors - region.sector;
539 
540 	region.sector += wc->start_sector;
541 
542 	req.bi_op = REQ_OP_WRITE;
543 	req.bi_op_flags = REQ_SYNC | REQ_FUA;
544 	req.mem.type = DM_IO_VMA;
545 	req.mem.ptr.vma = (char *)wc->memory_map;
546 	req.client = wc->dm_io;
547 	req.notify.fn = NULL;
548 	req.notify.context = NULL;
549 
550 	r = dm_io(&req, 1, &region, NULL);
551 	if (unlikely(r))
552 		writecache_error(wc, r, "error writing superblock");
553 }
554 
writecache_commit_flushed(struct dm_writecache * wc,bool wait_for_ios)555 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
556 {
557 	if (WC_MODE_PMEM(wc))
558 		pmem_wmb();
559 	else
560 		ssd_commit_flushed(wc, wait_for_ios);
561 }
562 
writecache_disk_flush(struct dm_writecache * wc,struct dm_dev * dev)563 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
564 {
565 	int r;
566 	struct dm_io_region region;
567 	struct dm_io_request req;
568 
569 	region.bdev = dev->bdev;
570 	region.sector = 0;
571 	region.count = 0;
572 	req.bi_op = REQ_OP_WRITE;
573 	req.bi_op_flags = REQ_PREFLUSH;
574 	req.mem.type = DM_IO_KMEM;
575 	req.mem.ptr.addr = NULL;
576 	req.client = wc->dm_io;
577 	req.notify.fn = NULL;
578 
579 	r = dm_io(&req, 1, &region, NULL);
580 	if (unlikely(r))
581 		writecache_error(wc, r, "error flushing metadata: %d", r);
582 }
583 
584 #define WFE_RETURN_FOLLOWING	1
585 #define WFE_LOWEST_SEQ		2
586 
writecache_find_entry(struct dm_writecache * wc,uint64_t block,int flags)587 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
588 					      uint64_t block, int flags)
589 {
590 	struct wc_entry *e;
591 	struct rb_node *node = wc->tree.rb_node;
592 
593 	if (unlikely(!node))
594 		return NULL;
595 
596 	while (1) {
597 		e = container_of(node, struct wc_entry, rb_node);
598 		if (read_original_sector(wc, e) == block)
599 			break;
600 
601 		node = (read_original_sector(wc, e) >= block ?
602 			e->rb_node.rb_left : e->rb_node.rb_right);
603 		if (unlikely(!node)) {
604 			if (!(flags & WFE_RETURN_FOLLOWING))
605 				return NULL;
606 			if (read_original_sector(wc, e) >= block) {
607 				return e;
608 			} else {
609 				node = rb_next(&e->rb_node);
610 				if (unlikely(!node))
611 					return NULL;
612 				e = container_of(node, struct wc_entry, rb_node);
613 				return e;
614 			}
615 		}
616 	}
617 
618 	while (1) {
619 		struct wc_entry *e2;
620 		if (flags & WFE_LOWEST_SEQ)
621 			node = rb_prev(&e->rb_node);
622 		else
623 			node = rb_next(&e->rb_node);
624 		if (unlikely(!node))
625 			return e;
626 		e2 = container_of(node, struct wc_entry, rb_node);
627 		if (read_original_sector(wc, e2) != block)
628 			return e;
629 		e = e2;
630 	}
631 }
632 
writecache_insert_entry(struct dm_writecache * wc,struct wc_entry * ins)633 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
634 {
635 	struct wc_entry *e;
636 	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
637 
638 	while (*node) {
639 		e = container_of(*node, struct wc_entry, rb_node);
640 		parent = &e->rb_node;
641 		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
642 			node = &parent->rb_left;
643 		else
644 			node = &parent->rb_right;
645 	}
646 	rb_link_node(&ins->rb_node, parent, node);
647 	rb_insert_color(&ins->rb_node, &wc->tree);
648 	list_add(&ins->lru, &wc->lru);
649 	ins->age = jiffies;
650 }
651 
writecache_unlink(struct dm_writecache * wc,struct wc_entry * e)652 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
653 {
654 	list_del(&e->lru);
655 	rb_erase(&e->rb_node, &wc->tree);
656 }
657 
writecache_add_to_freelist(struct dm_writecache * wc,struct wc_entry * e)658 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
659 {
660 	if (WC_MODE_SORT_FREELIST(wc)) {
661 		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
662 		if (unlikely(!*node))
663 			wc->current_free = e;
664 		while (*node) {
665 			parent = *node;
666 			if (&e->rb_node < *node)
667 				node = &parent->rb_left;
668 			else
669 				node = &parent->rb_right;
670 		}
671 		rb_link_node(&e->rb_node, parent, node);
672 		rb_insert_color(&e->rb_node, &wc->freetree);
673 	} else {
674 		list_add_tail(&e->lru, &wc->freelist);
675 	}
676 	wc->freelist_size++;
677 }
678 
writecache_verify_watermark(struct dm_writecache * wc)679 static inline void writecache_verify_watermark(struct dm_writecache *wc)
680 {
681 	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
682 		queue_work(wc->writeback_wq, &wc->writeback_work);
683 }
684 
writecache_max_age_timer(struct timer_list * t)685 static void writecache_max_age_timer(struct timer_list *t)
686 {
687 	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
688 
689 	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
690 		queue_work(wc->writeback_wq, &wc->writeback_work);
691 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
692 	}
693 }
694 
writecache_pop_from_freelist(struct dm_writecache * wc,sector_t expected_sector)695 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
696 {
697 	struct wc_entry *e;
698 
699 	if (WC_MODE_SORT_FREELIST(wc)) {
700 		struct rb_node *next;
701 		if (unlikely(!wc->current_free))
702 			return NULL;
703 		e = wc->current_free;
704 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
705 			return NULL;
706 		next = rb_next(&e->rb_node);
707 		rb_erase(&e->rb_node, &wc->freetree);
708 		if (unlikely(!next))
709 			next = rb_first(&wc->freetree);
710 		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
711 	} else {
712 		if (unlikely(list_empty(&wc->freelist)))
713 			return NULL;
714 		e = container_of(wc->freelist.next, struct wc_entry, lru);
715 		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
716 			return NULL;
717 		list_del(&e->lru);
718 	}
719 	wc->freelist_size--;
720 
721 	writecache_verify_watermark(wc);
722 
723 	return e;
724 }
725 
writecache_free_entry(struct dm_writecache * wc,struct wc_entry * e)726 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
727 {
728 	writecache_unlink(wc, e);
729 	writecache_add_to_freelist(wc, e);
730 	clear_seq_count(wc, e);
731 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
732 	if (unlikely(waitqueue_active(&wc->freelist_wait)))
733 		wake_up(&wc->freelist_wait);
734 }
735 
writecache_wait_on_freelist(struct dm_writecache * wc)736 static void writecache_wait_on_freelist(struct dm_writecache *wc)
737 {
738 	DEFINE_WAIT(wait);
739 
740 	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
741 	wc_unlock(wc);
742 	io_schedule();
743 	finish_wait(&wc->freelist_wait, &wait);
744 	wc_lock(wc);
745 }
746 
writecache_poison_lists(struct dm_writecache * wc)747 static void writecache_poison_lists(struct dm_writecache *wc)
748 {
749 	/*
750 	 * Catch incorrect access to these values while the device is suspended.
751 	 */
752 	memset(&wc->tree, -1, sizeof wc->tree);
753 	wc->lru.next = LIST_POISON1;
754 	wc->lru.prev = LIST_POISON2;
755 	wc->freelist.next = LIST_POISON1;
756 	wc->freelist.prev = LIST_POISON2;
757 }
758 
writecache_flush_entry(struct dm_writecache * wc,struct wc_entry * e)759 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
760 {
761 	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
762 	if (WC_MODE_PMEM(wc))
763 		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
764 }
765 
writecache_entry_is_committed(struct dm_writecache * wc,struct wc_entry * e)766 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
767 {
768 	return read_seq_count(wc, e) < wc->seq_count;
769 }
770 
writecache_flush(struct dm_writecache * wc)771 static void writecache_flush(struct dm_writecache *wc)
772 {
773 	struct wc_entry *e, *e2;
774 	bool need_flush_after_free;
775 
776 	wc->uncommitted_blocks = 0;
777 	del_timer(&wc->autocommit_timer);
778 
779 	if (list_empty(&wc->lru))
780 		return;
781 
782 	e = container_of(wc->lru.next, struct wc_entry, lru);
783 	if (writecache_entry_is_committed(wc, e)) {
784 		if (wc->overwrote_committed) {
785 			writecache_wait_for_ios(wc, WRITE);
786 			writecache_disk_flush(wc, wc->ssd_dev);
787 			wc->overwrote_committed = false;
788 		}
789 		return;
790 	}
791 	while (1) {
792 		writecache_flush_entry(wc, e);
793 		if (unlikely(e->lru.next == &wc->lru))
794 			break;
795 		e2 = container_of(e->lru.next, struct wc_entry, lru);
796 		if (writecache_entry_is_committed(wc, e2))
797 			break;
798 		e = e2;
799 		cond_resched();
800 	}
801 	writecache_commit_flushed(wc, true);
802 
803 	wc->seq_count++;
804 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
805 	if (WC_MODE_PMEM(wc))
806 		writecache_commit_flushed(wc, false);
807 	else
808 		ssd_commit_superblock(wc);
809 
810 	wc->overwrote_committed = false;
811 
812 	need_flush_after_free = false;
813 	while (1) {
814 		/* Free another committed entry with lower seq-count */
815 		struct rb_node *rb_node = rb_prev(&e->rb_node);
816 
817 		if (rb_node) {
818 			e2 = container_of(rb_node, struct wc_entry, rb_node);
819 			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
820 			    likely(!e2->write_in_progress)) {
821 				writecache_free_entry(wc, e2);
822 				need_flush_after_free = true;
823 			}
824 		}
825 		if (unlikely(e->lru.prev == &wc->lru))
826 			break;
827 		e = container_of(e->lru.prev, struct wc_entry, lru);
828 		cond_resched();
829 	}
830 
831 	if (need_flush_after_free)
832 		writecache_commit_flushed(wc, false);
833 }
834 
writecache_flush_work(struct work_struct * work)835 static void writecache_flush_work(struct work_struct *work)
836 {
837 	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
838 
839 	wc_lock(wc);
840 	writecache_flush(wc);
841 	wc_unlock(wc);
842 }
843 
writecache_autocommit_timer(struct timer_list * t)844 static void writecache_autocommit_timer(struct timer_list *t)
845 {
846 	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
847 	if (!writecache_has_error(wc))
848 		queue_work(wc->writeback_wq, &wc->flush_work);
849 }
850 
writecache_schedule_autocommit(struct dm_writecache * wc)851 static void writecache_schedule_autocommit(struct dm_writecache *wc)
852 {
853 	if (!timer_pending(&wc->autocommit_timer))
854 		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
855 }
856 
writecache_discard(struct dm_writecache * wc,sector_t start,sector_t end)857 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
858 {
859 	struct wc_entry *e;
860 	bool discarded_something = false;
861 
862 	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
863 	if (unlikely(!e))
864 		return;
865 
866 	while (read_original_sector(wc, e) < end) {
867 		struct rb_node *node = rb_next(&e->rb_node);
868 
869 		if (likely(!e->write_in_progress)) {
870 			if (!discarded_something) {
871 				if (!WC_MODE_PMEM(wc)) {
872 					writecache_wait_for_ios(wc, READ);
873 					writecache_wait_for_ios(wc, WRITE);
874 				}
875 				discarded_something = true;
876 			}
877 			if (!writecache_entry_is_committed(wc, e))
878 				wc->uncommitted_blocks--;
879 			writecache_free_entry(wc, e);
880 		}
881 
882 		if (unlikely(!node))
883 			break;
884 
885 		e = container_of(node, struct wc_entry, rb_node);
886 	}
887 
888 	if (discarded_something)
889 		writecache_commit_flushed(wc, false);
890 }
891 
writecache_wait_for_writeback(struct dm_writecache * wc)892 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
893 {
894 	if (wc->writeback_size) {
895 		writecache_wait_on_freelist(wc);
896 		return true;
897 	}
898 	return false;
899 }
900 
writecache_suspend(struct dm_target * ti)901 static void writecache_suspend(struct dm_target *ti)
902 {
903 	struct dm_writecache *wc = ti->private;
904 	bool flush_on_suspend;
905 
906 	del_timer_sync(&wc->autocommit_timer);
907 	del_timer_sync(&wc->max_age_timer);
908 
909 	wc_lock(wc);
910 	writecache_flush(wc);
911 	flush_on_suspend = wc->flush_on_suspend;
912 	if (flush_on_suspend) {
913 		wc->flush_on_suspend = false;
914 		wc->writeback_all++;
915 		queue_work(wc->writeback_wq, &wc->writeback_work);
916 	}
917 	wc_unlock(wc);
918 
919 	drain_workqueue(wc->writeback_wq);
920 
921 	wc_lock(wc);
922 	if (flush_on_suspend)
923 		wc->writeback_all--;
924 	while (writecache_wait_for_writeback(wc));
925 
926 	if (WC_MODE_PMEM(wc))
927 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
928 
929 	writecache_poison_lists(wc);
930 
931 	wc_unlock(wc);
932 }
933 
writecache_alloc_entries(struct dm_writecache * wc)934 static int writecache_alloc_entries(struct dm_writecache *wc)
935 {
936 	size_t b;
937 
938 	if (wc->entries)
939 		return 0;
940 	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
941 	if (!wc->entries)
942 		return -ENOMEM;
943 	for (b = 0; b < wc->n_blocks; b++) {
944 		struct wc_entry *e = &wc->entries[b];
945 		e->index = b;
946 		e->write_in_progress = false;
947 		cond_resched();
948 	}
949 
950 	return 0;
951 }
952 
writecache_read_metadata(struct dm_writecache * wc,sector_t n_sectors)953 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
954 {
955 	struct dm_io_region region;
956 	struct dm_io_request req;
957 
958 	region.bdev = wc->ssd_dev->bdev;
959 	region.sector = wc->start_sector;
960 	region.count = n_sectors;
961 	req.bi_op = REQ_OP_READ;
962 	req.bi_op_flags = REQ_SYNC;
963 	req.mem.type = DM_IO_VMA;
964 	req.mem.ptr.vma = (char *)wc->memory_map;
965 	req.client = wc->dm_io;
966 	req.notify.fn = NULL;
967 
968 	return dm_io(&req, 1, &region, NULL);
969 }
970 
writecache_resume(struct dm_target * ti)971 static void writecache_resume(struct dm_target *ti)
972 {
973 	struct dm_writecache *wc = ti->private;
974 	size_t b;
975 	bool need_flush = false;
976 	__le64 sb_seq_count;
977 	int r;
978 
979 	wc_lock(wc);
980 
981 	wc->data_device_sectors = i_size_read(wc->dev->bdev->bd_inode) >> SECTOR_SHIFT;
982 
983 	if (WC_MODE_PMEM(wc)) {
984 		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
985 	} else {
986 		r = writecache_read_metadata(wc, wc->metadata_sectors);
987 		if (r) {
988 			size_t sb_entries_offset;
989 			writecache_error(wc, r, "unable to read metadata: %d", r);
990 			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
991 			memset((char *)wc->memory_map + sb_entries_offset, -1,
992 			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
993 		}
994 	}
995 
996 	wc->tree = RB_ROOT;
997 	INIT_LIST_HEAD(&wc->lru);
998 	if (WC_MODE_SORT_FREELIST(wc)) {
999 		wc->freetree = RB_ROOT;
1000 		wc->current_free = NULL;
1001 	} else {
1002 		INIT_LIST_HEAD(&wc->freelist);
1003 	}
1004 	wc->freelist_size = 0;
1005 
1006 	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1007 			      sizeof(uint64_t));
1008 	if (r) {
1009 		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1010 		sb_seq_count = cpu_to_le64(0);
1011 	}
1012 	wc->seq_count = le64_to_cpu(sb_seq_count);
1013 
1014 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1015 	for (b = 0; b < wc->n_blocks; b++) {
1016 		struct wc_entry *e = &wc->entries[b];
1017 		struct wc_memory_entry wme;
1018 		if (writecache_has_error(wc)) {
1019 			e->original_sector = -1;
1020 			e->seq_count = -1;
1021 			continue;
1022 		}
1023 		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1024 				      sizeof(struct wc_memory_entry));
1025 		if (r) {
1026 			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1027 					 (unsigned long)b, r);
1028 			e->original_sector = -1;
1029 			e->seq_count = -1;
1030 		} else {
1031 			e->original_sector = le64_to_cpu(wme.original_sector);
1032 			e->seq_count = le64_to_cpu(wme.seq_count);
1033 		}
1034 		cond_resched();
1035 	}
1036 #endif
1037 	for (b = 0; b < wc->n_blocks; b++) {
1038 		struct wc_entry *e = &wc->entries[b];
1039 		if (!writecache_entry_is_committed(wc, e)) {
1040 			if (read_seq_count(wc, e) != -1) {
1041 erase_this:
1042 				clear_seq_count(wc, e);
1043 				need_flush = true;
1044 			}
1045 			writecache_add_to_freelist(wc, e);
1046 		} else {
1047 			struct wc_entry *old;
1048 
1049 			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1050 			if (!old) {
1051 				writecache_insert_entry(wc, e);
1052 			} else {
1053 				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1054 					writecache_error(wc, -EINVAL,
1055 						 "two identical entries, position %llu, sector %llu, sequence %llu",
1056 						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1057 						 (unsigned long long)read_seq_count(wc, e));
1058 				}
1059 				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1060 					goto erase_this;
1061 				} else {
1062 					writecache_free_entry(wc, old);
1063 					writecache_insert_entry(wc, e);
1064 					need_flush = true;
1065 				}
1066 			}
1067 		}
1068 		cond_resched();
1069 	}
1070 
1071 	if (need_flush) {
1072 		writecache_flush_all_metadata(wc);
1073 		writecache_commit_flushed(wc, false);
1074 	}
1075 
1076 	writecache_verify_watermark(wc);
1077 
1078 	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1079 		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1080 
1081 	wc_unlock(wc);
1082 }
1083 
process_flush_mesg(unsigned argc,char ** argv,struct dm_writecache * wc)1084 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1085 {
1086 	if (argc != 1)
1087 		return -EINVAL;
1088 
1089 	wc_lock(wc);
1090 	if (dm_suspended(wc->ti)) {
1091 		wc_unlock(wc);
1092 		return -EBUSY;
1093 	}
1094 	if (writecache_has_error(wc)) {
1095 		wc_unlock(wc);
1096 		return -EIO;
1097 	}
1098 
1099 	writecache_flush(wc);
1100 	wc->writeback_all++;
1101 	queue_work(wc->writeback_wq, &wc->writeback_work);
1102 	wc_unlock(wc);
1103 
1104 	flush_workqueue(wc->writeback_wq);
1105 
1106 	wc_lock(wc);
1107 	wc->writeback_all--;
1108 	if (writecache_has_error(wc)) {
1109 		wc_unlock(wc);
1110 		return -EIO;
1111 	}
1112 	wc_unlock(wc);
1113 
1114 	return 0;
1115 }
1116 
process_flush_on_suspend_mesg(unsigned argc,char ** argv,struct dm_writecache * wc)1117 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1118 {
1119 	if (argc != 1)
1120 		return -EINVAL;
1121 
1122 	wc_lock(wc);
1123 	wc->flush_on_suspend = true;
1124 	wc_unlock(wc);
1125 
1126 	return 0;
1127 }
1128 
activate_cleaner(struct dm_writecache * wc)1129 static void activate_cleaner(struct dm_writecache *wc)
1130 {
1131 	wc->flush_on_suspend = true;
1132 	wc->cleaner = true;
1133 	wc->freelist_high_watermark = wc->n_blocks;
1134 	wc->freelist_low_watermark = wc->n_blocks;
1135 }
1136 
process_cleaner_mesg(unsigned argc,char ** argv,struct dm_writecache * wc)1137 static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1138 {
1139 	if (argc != 1)
1140 		return -EINVAL;
1141 
1142 	wc_lock(wc);
1143 	activate_cleaner(wc);
1144 	if (!dm_suspended(wc->ti))
1145 		writecache_verify_watermark(wc);
1146 	wc_unlock(wc);
1147 
1148 	return 0;
1149 }
1150 
writecache_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)1151 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1152 			      char *result, unsigned maxlen)
1153 {
1154 	int r = -EINVAL;
1155 	struct dm_writecache *wc = ti->private;
1156 
1157 	if (!strcasecmp(argv[0], "flush"))
1158 		r = process_flush_mesg(argc, argv, wc);
1159 	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1160 		r = process_flush_on_suspend_mesg(argc, argv, wc);
1161 	else if (!strcasecmp(argv[0], "cleaner"))
1162 		r = process_cleaner_mesg(argc, argv, wc);
1163 	else
1164 		DMERR("unrecognised message received: %s", argv[0]);
1165 
1166 	return r;
1167 }
1168 
memcpy_flushcache_optimized(void * dest,void * source,size_t size)1169 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1170 {
1171 	/*
1172 	 * clflushopt performs better with block size 1024, 2048, 4096
1173 	 * non-temporal stores perform better with block size 512
1174 	 *
1175 	 * block size   512             1024            2048            4096
1176 	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1177 	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1178 	 *
1179 	 * We see that movnti performs better for 512-byte blocks, and
1180 	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1181 	 * prefer clflushopt for sizes >= 768.
1182 	 *
1183 	 * NOTE: this happens to be the case now (with dm-writecache's single
1184 	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1185 	 * enabled to use movdir64b which might invalidate this performance
1186 	 * advantage seen with cache-allocating-writes plus flushing.
1187 	 */
1188 #ifdef CONFIG_X86
1189 	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1190 	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1191 	    likely(size >= 768)) {
1192 		do {
1193 			memcpy((void *)dest, (void *)source, 64);
1194 			clflushopt((void *)dest);
1195 			dest += 64;
1196 			source += 64;
1197 			size -= 64;
1198 		} while (size >= 64);
1199 		return;
1200 	}
1201 #endif
1202 	memcpy_flushcache(dest, source, size);
1203 }
1204 
bio_copy_block(struct dm_writecache * wc,struct bio * bio,void * data)1205 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1206 {
1207 	void *buf;
1208 	unsigned long flags;
1209 	unsigned size;
1210 	int rw = bio_data_dir(bio);
1211 	unsigned remaining_size = wc->block_size;
1212 
1213 	do {
1214 		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1215 		buf = bvec_kmap_irq(&bv, &flags);
1216 		size = bv.bv_len;
1217 		if (unlikely(size > remaining_size))
1218 			size = remaining_size;
1219 
1220 		if (rw == READ) {
1221 			int r;
1222 			r = copy_mc_to_kernel(buf, data, size);
1223 			flush_dcache_page(bio_page(bio));
1224 			if (unlikely(r)) {
1225 				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1226 				bio->bi_status = BLK_STS_IOERR;
1227 			}
1228 		} else {
1229 			flush_dcache_page(bio_page(bio));
1230 			memcpy_flushcache_optimized(data, buf, size);
1231 		}
1232 
1233 		bvec_kunmap_irq(buf, &flags);
1234 
1235 		data = (char *)data + size;
1236 		remaining_size -= size;
1237 		bio_advance(bio, size);
1238 	} while (unlikely(remaining_size));
1239 }
1240 
writecache_flush_thread(void * data)1241 static int writecache_flush_thread(void *data)
1242 {
1243 	struct dm_writecache *wc = data;
1244 
1245 	while (1) {
1246 		struct bio *bio;
1247 
1248 		wc_lock(wc);
1249 		bio = bio_list_pop(&wc->flush_list);
1250 		if (!bio) {
1251 			set_current_state(TASK_INTERRUPTIBLE);
1252 			wc_unlock(wc);
1253 
1254 			if (unlikely(kthread_should_stop())) {
1255 				set_current_state(TASK_RUNNING);
1256 				break;
1257 			}
1258 
1259 			schedule();
1260 			continue;
1261 		}
1262 
1263 		if (bio_op(bio) == REQ_OP_DISCARD) {
1264 			writecache_discard(wc, bio->bi_iter.bi_sector,
1265 					   bio_end_sector(bio));
1266 			wc_unlock(wc);
1267 			bio_set_dev(bio, wc->dev->bdev);
1268 			submit_bio_noacct(bio);
1269 		} else {
1270 			writecache_flush(wc);
1271 			wc_unlock(wc);
1272 			if (writecache_has_error(wc))
1273 				bio->bi_status = BLK_STS_IOERR;
1274 			bio_endio(bio);
1275 		}
1276 	}
1277 
1278 	return 0;
1279 }
1280 
writecache_offload_bio(struct dm_writecache * wc,struct bio * bio)1281 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1282 {
1283 	if (bio_list_empty(&wc->flush_list))
1284 		wake_up_process(wc->flush_thread);
1285 	bio_list_add(&wc->flush_list, bio);
1286 }
1287 
writecache_map(struct dm_target * ti,struct bio * bio)1288 static int writecache_map(struct dm_target *ti, struct bio *bio)
1289 {
1290 	struct wc_entry *e;
1291 	struct dm_writecache *wc = ti->private;
1292 
1293 	bio->bi_private = NULL;
1294 
1295 	wc_lock(wc);
1296 
1297 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1298 		if (writecache_has_error(wc))
1299 			goto unlock_error;
1300 		if (WC_MODE_PMEM(wc)) {
1301 			writecache_flush(wc);
1302 			if (writecache_has_error(wc))
1303 				goto unlock_error;
1304 			if (unlikely(wc->cleaner))
1305 				goto unlock_remap_origin;
1306 			goto unlock_submit;
1307 		} else {
1308 			if (dm_bio_get_target_bio_nr(bio))
1309 				goto unlock_remap_origin;
1310 			writecache_offload_bio(wc, bio);
1311 			goto unlock_return;
1312 		}
1313 	}
1314 
1315 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1316 
1317 	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1318 				(wc->block_size / 512 - 1)) != 0)) {
1319 		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1320 		      (unsigned long long)bio->bi_iter.bi_sector,
1321 		      bio->bi_iter.bi_size, wc->block_size);
1322 		goto unlock_error;
1323 	}
1324 
1325 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1326 		if (writecache_has_error(wc))
1327 			goto unlock_error;
1328 		if (WC_MODE_PMEM(wc)) {
1329 			writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1330 			goto unlock_remap_origin;
1331 		} else {
1332 			writecache_offload_bio(wc, bio);
1333 			goto unlock_return;
1334 		}
1335 	}
1336 
1337 	if (bio_data_dir(bio) == READ) {
1338 read_next_block:
1339 		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1340 		if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1341 			if (WC_MODE_PMEM(wc)) {
1342 				bio_copy_block(wc, bio, memory_data(wc, e));
1343 				if (bio->bi_iter.bi_size)
1344 					goto read_next_block;
1345 				goto unlock_submit;
1346 			} else {
1347 				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1348 				bio_set_dev(bio, wc->ssd_dev->bdev);
1349 				bio->bi_iter.bi_sector = cache_sector(wc, e);
1350 				if (!writecache_entry_is_committed(wc, e))
1351 					writecache_wait_for_ios(wc, WRITE);
1352 				goto unlock_remap;
1353 			}
1354 		} else {
1355 			if (e) {
1356 				sector_t next_boundary =
1357 					read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1358 				if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1359 					dm_accept_partial_bio(bio, next_boundary);
1360 				}
1361 			}
1362 			goto unlock_remap_origin;
1363 		}
1364 	} else {
1365 		do {
1366 			bool found_entry = false;
1367 			bool search_used = false;
1368 			if (writecache_has_error(wc))
1369 				goto unlock_error;
1370 			e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1371 			if (e) {
1372 				if (!writecache_entry_is_committed(wc, e)) {
1373 					search_used = true;
1374 					goto bio_copy;
1375 				}
1376 				if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1377 					wc->overwrote_committed = true;
1378 					search_used = true;
1379 					goto bio_copy;
1380 				}
1381 				found_entry = true;
1382 			} else {
1383 				if (unlikely(wc->cleaner))
1384 					goto direct_write;
1385 			}
1386 			e = writecache_pop_from_freelist(wc, (sector_t)-1);
1387 			if (unlikely(!e)) {
1388 				if (!WC_MODE_PMEM(wc) && !found_entry) {
1389 direct_write:
1390 					e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1391 					if (e) {
1392 						sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1393 						BUG_ON(!next_boundary);
1394 						if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1395 							dm_accept_partial_bio(bio, next_boundary);
1396 						}
1397 					}
1398 					goto unlock_remap_origin;
1399 				}
1400 				writecache_wait_on_freelist(wc);
1401 				continue;
1402 			}
1403 			write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1404 			writecache_insert_entry(wc, e);
1405 			wc->uncommitted_blocks++;
1406 bio_copy:
1407 			if (WC_MODE_PMEM(wc)) {
1408 				bio_copy_block(wc, bio, memory_data(wc, e));
1409 			} else {
1410 				unsigned bio_size = wc->block_size;
1411 				sector_t start_cache_sec = cache_sector(wc, e);
1412 				sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1413 
1414 				while (bio_size < bio->bi_iter.bi_size) {
1415 					if (!search_used) {
1416 						struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1417 						if (!f)
1418 							break;
1419 						write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1420 										(bio_size >> SECTOR_SHIFT), wc->seq_count);
1421 						writecache_insert_entry(wc, f);
1422 						wc->uncommitted_blocks++;
1423 					} else {
1424 						struct wc_entry *f;
1425 						struct rb_node *next = rb_next(&e->rb_node);
1426 						if (!next)
1427 							break;
1428 						f = container_of(next, struct wc_entry, rb_node);
1429 						if (f != e + 1)
1430 							break;
1431 						if (read_original_sector(wc, f) !=
1432 						    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1433 							break;
1434 						if (unlikely(f->write_in_progress))
1435 							break;
1436 						if (writecache_entry_is_committed(wc, f))
1437 							wc->overwrote_committed = true;
1438 						e = f;
1439 					}
1440 					bio_size += wc->block_size;
1441 					current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1442 				}
1443 
1444 				bio_set_dev(bio, wc->ssd_dev->bdev);
1445 				bio->bi_iter.bi_sector = start_cache_sec;
1446 				dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1447 
1448 				if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1449 					wc->uncommitted_blocks = 0;
1450 					queue_work(wc->writeback_wq, &wc->flush_work);
1451 				} else {
1452 					writecache_schedule_autocommit(wc);
1453 				}
1454 				goto unlock_remap;
1455 			}
1456 		} while (bio->bi_iter.bi_size);
1457 
1458 		if (unlikely(bio->bi_opf & REQ_FUA ||
1459 			     wc->uncommitted_blocks >= wc->autocommit_blocks))
1460 			writecache_flush(wc);
1461 		else
1462 			writecache_schedule_autocommit(wc);
1463 		goto unlock_submit;
1464 	}
1465 
1466 unlock_remap_origin:
1467 	bio_set_dev(bio, wc->dev->bdev);
1468 	wc_unlock(wc);
1469 	return DM_MAPIO_REMAPPED;
1470 
1471 unlock_remap:
1472 	/* make sure that writecache_end_io decrements bio_in_progress: */
1473 	bio->bi_private = (void *)1;
1474 	atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1475 	wc_unlock(wc);
1476 	return DM_MAPIO_REMAPPED;
1477 
1478 unlock_submit:
1479 	wc_unlock(wc);
1480 	bio_endio(bio);
1481 	return DM_MAPIO_SUBMITTED;
1482 
1483 unlock_return:
1484 	wc_unlock(wc);
1485 	return DM_MAPIO_SUBMITTED;
1486 
1487 unlock_error:
1488 	wc_unlock(wc);
1489 	bio_io_error(bio);
1490 	return DM_MAPIO_SUBMITTED;
1491 }
1492 
writecache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * status)1493 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1494 {
1495 	struct dm_writecache *wc = ti->private;
1496 
1497 	if (bio->bi_private != NULL) {
1498 		int dir = bio_data_dir(bio);
1499 		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1500 			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1501 				wake_up(&wc->bio_in_progress_wait[dir]);
1502 	}
1503 	return 0;
1504 }
1505 
writecache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)1506 static int writecache_iterate_devices(struct dm_target *ti,
1507 				      iterate_devices_callout_fn fn, void *data)
1508 {
1509 	struct dm_writecache *wc = ti->private;
1510 
1511 	return fn(ti, wc->dev, 0, ti->len, data);
1512 }
1513 
writecache_io_hints(struct dm_target * ti,struct queue_limits * limits)1514 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1515 {
1516 	struct dm_writecache *wc = ti->private;
1517 
1518 	if (limits->logical_block_size < wc->block_size)
1519 		limits->logical_block_size = wc->block_size;
1520 
1521 	if (limits->physical_block_size < wc->block_size)
1522 		limits->physical_block_size = wc->block_size;
1523 
1524 	if (limits->io_min < wc->block_size)
1525 		limits->io_min = wc->block_size;
1526 }
1527 
1528 
writecache_writeback_endio(struct bio * bio)1529 static void writecache_writeback_endio(struct bio *bio)
1530 {
1531 	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1532 	struct dm_writecache *wc = wb->wc;
1533 	unsigned long flags;
1534 
1535 	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1536 	if (unlikely(list_empty(&wc->endio_list)))
1537 		wake_up_process(wc->endio_thread);
1538 	list_add_tail(&wb->endio_entry, &wc->endio_list);
1539 	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1540 }
1541 
writecache_copy_endio(int read_err,unsigned long write_err,void * ptr)1542 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1543 {
1544 	struct copy_struct *c = ptr;
1545 	struct dm_writecache *wc = c->wc;
1546 
1547 	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1548 
1549 	raw_spin_lock_irq(&wc->endio_list_lock);
1550 	if (unlikely(list_empty(&wc->endio_list)))
1551 		wake_up_process(wc->endio_thread);
1552 	list_add_tail(&c->endio_entry, &wc->endio_list);
1553 	raw_spin_unlock_irq(&wc->endio_list_lock);
1554 }
1555 
__writecache_endio_pmem(struct dm_writecache * wc,struct list_head * list)1556 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1557 {
1558 	unsigned i;
1559 	struct writeback_struct *wb;
1560 	struct wc_entry *e;
1561 	unsigned long n_walked = 0;
1562 
1563 	do {
1564 		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1565 		list_del(&wb->endio_entry);
1566 
1567 		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1568 			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1569 					"write error %d", wb->bio.bi_status);
1570 		i = 0;
1571 		do {
1572 			e = wb->wc_list[i];
1573 			BUG_ON(!e->write_in_progress);
1574 			e->write_in_progress = false;
1575 			INIT_LIST_HEAD(&e->lru);
1576 			if (!writecache_has_error(wc))
1577 				writecache_free_entry(wc, e);
1578 			BUG_ON(!wc->writeback_size);
1579 			wc->writeback_size--;
1580 			n_walked++;
1581 			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1582 				writecache_commit_flushed(wc, false);
1583 				wc_unlock(wc);
1584 				wc_lock(wc);
1585 				n_walked = 0;
1586 			}
1587 		} while (++i < wb->wc_list_n);
1588 
1589 		if (wb->wc_list != wb->wc_list_inline)
1590 			kfree(wb->wc_list);
1591 		bio_put(&wb->bio);
1592 	} while (!list_empty(list));
1593 }
1594 
__writecache_endio_ssd(struct dm_writecache * wc,struct list_head * list)1595 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1596 {
1597 	struct copy_struct *c;
1598 	struct wc_entry *e;
1599 
1600 	do {
1601 		c = list_entry(list->next, struct copy_struct, endio_entry);
1602 		list_del(&c->endio_entry);
1603 
1604 		if (unlikely(c->error))
1605 			writecache_error(wc, c->error, "copy error");
1606 
1607 		e = c->e;
1608 		do {
1609 			BUG_ON(!e->write_in_progress);
1610 			e->write_in_progress = false;
1611 			INIT_LIST_HEAD(&e->lru);
1612 			if (!writecache_has_error(wc))
1613 				writecache_free_entry(wc, e);
1614 
1615 			BUG_ON(!wc->writeback_size);
1616 			wc->writeback_size--;
1617 			e++;
1618 		} while (--c->n_entries);
1619 		mempool_free(c, &wc->copy_pool);
1620 	} while (!list_empty(list));
1621 }
1622 
writecache_endio_thread(void * data)1623 static int writecache_endio_thread(void *data)
1624 {
1625 	struct dm_writecache *wc = data;
1626 
1627 	while (1) {
1628 		struct list_head list;
1629 
1630 		raw_spin_lock_irq(&wc->endio_list_lock);
1631 		if (!list_empty(&wc->endio_list))
1632 			goto pop_from_list;
1633 		set_current_state(TASK_INTERRUPTIBLE);
1634 		raw_spin_unlock_irq(&wc->endio_list_lock);
1635 
1636 		if (unlikely(kthread_should_stop())) {
1637 			set_current_state(TASK_RUNNING);
1638 			break;
1639 		}
1640 
1641 		schedule();
1642 
1643 		continue;
1644 
1645 pop_from_list:
1646 		list = wc->endio_list;
1647 		list.next->prev = list.prev->next = &list;
1648 		INIT_LIST_HEAD(&wc->endio_list);
1649 		raw_spin_unlock_irq(&wc->endio_list_lock);
1650 
1651 		if (!WC_MODE_FUA(wc))
1652 			writecache_disk_flush(wc, wc->dev);
1653 
1654 		wc_lock(wc);
1655 
1656 		if (WC_MODE_PMEM(wc)) {
1657 			__writecache_endio_pmem(wc, &list);
1658 		} else {
1659 			__writecache_endio_ssd(wc, &list);
1660 			writecache_wait_for_ios(wc, READ);
1661 		}
1662 
1663 		writecache_commit_flushed(wc, false);
1664 
1665 		wc_unlock(wc);
1666 	}
1667 
1668 	return 0;
1669 }
1670 
wc_add_block(struct writeback_struct * wb,struct wc_entry * e,gfp_t gfp)1671 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1672 {
1673 	struct dm_writecache *wc = wb->wc;
1674 	unsigned block_size = wc->block_size;
1675 	void *address = memory_data(wc, e);
1676 
1677 	persistent_memory_flush_cache(address, block_size);
1678 
1679 	if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1680 		return true;
1681 
1682 	return bio_add_page(&wb->bio, persistent_memory_page(address),
1683 			    block_size, persistent_memory_page_offset(address)) != 0;
1684 }
1685 
1686 struct writeback_list {
1687 	struct list_head list;
1688 	size_t size;
1689 };
1690 
__writeback_throttle(struct dm_writecache * wc,struct writeback_list * wbl)1691 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1692 {
1693 	if (unlikely(wc->max_writeback_jobs)) {
1694 		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1695 			wc_lock(wc);
1696 			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1697 				writecache_wait_on_freelist(wc);
1698 			wc_unlock(wc);
1699 		}
1700 	}
1701 	cond_resched();
1702 }
1703 
__writecache_writeback_pmem(struct dm_writecache * wc,struct writeback_list * wbl)1704 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1705 {
1706 	struct wc_entry *e, *f;
1707 	struct bio *bio;
1708 	struct writeback_struct *wb;
1709 	unsigned max_pages;
1710 
1711 	while (wbl->size) {
1712 		wbl->size--;
1713 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1714 		list_del(&e->lru);
1715 
1716 		max_pages = e->wc_list_contiguous;
1717 
1718 		bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1719 		wb = container_of(bio, struct writeback_struct, bio);
1720 		wb->wc = wc;
1721 		bio->bi_end_io = writecache_writeback_endio;
1722 		bio_set_dev(bio, wc->dev->bdev);
1723 		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1724 		if (max_pages <= WB_LIST_INLINE ||
1725 		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1726 							   GFP_NOIO | __GFP_NORETRY |
1727 							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1728 			wb->wc_list = wb->wc_list_inline;
1729 			max_pages = WB_LIST_INLINE;
1730 		}
1731 
1732 		BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1733 
1734 		wb->wc_list[0] = e;
1735 		wb->wc_list_n = 1;
1736 
1737 		while (wbl->size && wb->wc_list_n < max_pages) {
1738 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1739 			if (read_original_sector(wc, f) !=
1740 			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1741 				break;
1742 			if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1743 				break;
1744 			wbl->size--;
1745 			list_del(&f->lru);
1746 			wb->wc_list[wb->wc_list_n++] = f;
1747 			e = f;
1748 		}
1749 		bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1750 		if (writecache_has_error(wc)) {
1751 			bio->bi_status = BLK_STS_IOERR;
1752 			bio_endio(bio);
1753 		} else if (unlikely(!bio_sectors(bio))) {
1754 			bio->bi_status = BLK_STS_OK;
1755 			bio_endio(bio);
1756 		} else {
1757 			submit_bio(bio);
1758 		}
1759 
1760 		__writeback_throttle(wc, wbl);
1761 	}
1762 }
1763 
__writecache_writeback_ssd(struct dm_writecache * wc,struct writeback_list * wbl)1764 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1765 {
1766 	struct wc_entry *e, *f;
1767 	struct dm_io_region from, to;
1768 	struct copy_struct *c;
1769 
1770 	while (wbl->size) {
1771 		unsigned n_sectors;
1772 
1773 		wbl->size--;
1774 		e = container_of(wbl->list.prev, struct wc_entry, lru);
1775 		list_del(&e->lru);
1776 
1777 		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1778 
1779 		from.bdev = wc->ssd_dev->bdev;
1780 		from.sector = cache_sector(wc, e);
1781 		from.count = n_sectors;
1782 		to.bdev = wc->dev->bdev;
1783 		to.sector = read_original_sector(wc, e);
1784 		to.count = n_sectors;
1785 
1786 		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1787 		c->wc = wc;
1788 		c->e = e;
1789 		c->n_entries = e->wc_list_contiguous;
1790 
1791 		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1792 			wbl->size--;
1793 			f = container_of(wbl->list.prev, struct wc_entry, lru);
1794 			BUG_ON(f != e + 1);
1795 			list_del(&f->lru);
1796 			e = f;
1797 		}
1798 
1799 		if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1800 			if (to.sector >= wc->data_device_sectors) {
1801 				writecache_copy_endio(0, 0, c);
1802 				continue;
1803 			}
1804 			from.count = to.count = wc->data_device_sectors - to.sector;
1805 		}
1806 
1807 		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1808 
1809 		__writeback_throttle(wc, wbl);
1810 	}
1811 }
1812 
writecache_writeback(struct work_struct * work)1813 static void writecache_writeback(struct work_struct *work)
1814 {
1815 	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1816 	struct blk_plug plug;
1817 	struct wc_entry *f, *g, *e = NULL;
1818 	struct rb_node *node, *next_node;
1819 	struct list_head skipped;
1820 	struct writeback_list wbl;
1821 	unsigned long n_walked;
1822 
1823 	wc_lock(wc);
1824 restart:
1825 	if (writecache_has_error(wc)) {
1826 		wc_unlock(wc);
1827 		return;
1828 	}
1829 
1830 	if (unlikely(wc->writeback_all)) {
1831 		if (writecache_wait_for_writeback(wc))
1832 			goto restart;
1833 	}
1834 
1835 	if (wc->overwrote_committed) {
1836 		writecache_wait_for_ios(wc, WRITE);
1837 	}
1838 
1839 	n_walked = 0;
1840 	INIT_LIST_HEAD(&skipped);
1841 	INIT_LIST_HEAD(&wbl.list);
1842 	wbl.size = 0;
1843 	while (!list_empty(&wc->lru) &&
1844 	       (wc->writeback_all ||
1845 		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1846 		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1847 		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1848 
1849 		n_walked++;
1850 		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1851 		    likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1852 			queue_work(wc->writeback_wq, &wc->writeback_work);
1853 			break;
1854 		}
1855 
1856 		if (unlikely(wc->writeback_all)) {
1857 			if (unlikely(!e)) {
1858 				writecache_flush(wc);
1859 				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1860 			} else
1861 				e = g;
1862 		} else
1863 			e = container_of(wc->lru.prev, struct wc_entry, lru);
1864 		BUG_ON(e->write_in_progress);
1865 		if (unlikely(!writecache_entry_is_committed(wc, e))) {
1866 			writecache_flush(wc);
1867 		}
1868 		node = rb_prev(&e->rb_node);
1869 		if (node) {
1870 			f = container_of(node, struct wc_entry, rb_node);
1871 			if (unlikely(read_original_sector(wc, f) ==
1872 				     read_original_sector(wc, e))) {
1873 				BUG_ON(!f->write_in_progress);
1874 				list_del(&e->lru);
1875 				list_add(&e->lru, &skipped);
1876 				cond_resched();
1877 				continue;
1878 			}
1879 		}
1880 		wc->writeback_size++;
1881 		list_del(&e->lru);
1882 		list_add(&e->lru, &wbl.list);
1883 		wbl.size++;
1884 		e->write_in_progress = true;
1885 		e->wc_list_contiguous = 1;
1886 
1887 		f = e;
1888 
1889 		while (1) {
1890 			next_node = rb_next(&f->rb_node);
1891 			if (unlikely(!next_node))
1892 				break;
1893 			g = container_of(next_node, struct wc_entry, rb_node);
1894 			if (unlikely(read_original_sector(wc, g) ==
1895 			    read_original_sector(wc, f))) {
1896 				f = g;
1897 				continue;
1898 			}
1899 			if (read_original_sector(wc, g) !=
1900 			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1901 				break;
1902 			if (unlikely(g->write_in_progress))
1903 				break;
1904 			if (unlikely(!writecache_entry_is_committed(wc, g)))
1905 				break;
1906 
1907 			if (!WC_MODE_PMEM(wc)) {
1908 				if (g != f + 1)
1909 					break;
1910 			}
1911 
1912 			n_walked++;
1913 			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1914 			//	break;
1915 
1916 			wc->writeback_size++;
1917 			list_del(&g->lru);
1918 			list_add(&g->lru, &wbl.list);
1919 			wbl.size++;
1920 			g->write_in_progress = true;
1921 			g->wc_list_contiguous = BIO_MAX_PAGES;
1922 			f = g;
1923 			e->wc_list_contiguous++;
1924 			if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1925 				if (unlikely(wc->writeback_all)) {
1926 					next_node = rb_next(&f->rb_node);
1927 					if (likely(next_node))
1928 						g = container_of(next_node, struct wc_entry, rb_node);
1929 				}
1930 				break;
1931 			}
1932 		}
1933 		cond_resched();
1934 	}
1935 
1936 	if (!list_empty(&skipped)) {
1937 		list_splice_tail(&skipped, &wc->lru);
1938 		/*
1939 		 * If we didn't do any progress, we must wait until some
1940 		 * writeback finishes to avoid burning CPU in a loop
1941 		 */
1942 		if (unlikely(!wbl.size))
1943 			writecache_wait_for_writeback(wc);
1944 	}
1945 
1946 	wc_unlock(wc);
1947 
1948 	blk_start_plug(&plug);
1949 
1950 	if (WC_MODE_PMEM(wc))
1951 		__writecache_writeback_pmem(wc, &wbl);
1952 	else
1953 		__writecache_writeback_ssd(wc, &wbl);
1954 
1955 	blk_finish_plug(&plug);
1956 
1957 	if (unlikely(wc->writeback_all)) {
1958 		wc_lock(wc);
1959 		while (writecache_wait_for_writeback(wc));
1960 		wc_unlock(wc);
1961 	}
1962 }
1963 
calculate_memory_size(uint64_t device_size,unsigned block_size,size_t * n_blocks_p,size_t * n_metadata_blocks_p)1964 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1965 				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1966 {
1967 	uint64_t n_blocks, offset;
1968 	struct wc_entry e;
1969 
1970 	n_blocks = device_size;
1971 	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1972 
1973 	while (1) {
1974 		if (!n_blocks)
1975 			return -ENOSPC;
1976 		/* Verify the following entries[n_blocks] won't overflow */
1977 		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1978 				 sizeof(struct wc_memory_entry)))
1979 			return -EFBIG;
1980 		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1981 		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1982 		if (offset + n_blocks * block_size <= device_size)
1983 			break;
1984 		n_blocks--;
1985 	}
1986 
1987 	/* check if the bit field overflows */
1988 	e.index = n_blocks;
1989 	if (e.index != n_blocks)
1990 		return -EFBIG;
1991 
1992 	if (n_blocks_p)
1993 		*n_blocks_p = n_blocks;
1994 	if (n_metadata_blocks_p)
1995 		*n_metadata_blocks_p = offset >> __ffs(block_size);
1996 	return 0;
1997 }
1998 
init_memory(struct dm_writecache * wc)1999 static int init_memory(struct dm_writecache *wc)
2000 {
2001 	size_t b;
2002 	int r;
2003 
2004 	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2005 	if (r)
2006 		return r;
2007 
2008 	r = writecache_alloc_entries(wc);
2009 	if (r)
2010 		return r;
2011 
2012 	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2013 		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2014 	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2015 	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2016 	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2017 	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2018 
2019 	for (b = 0; b < wc->n_blocks; b++) {
2020 		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2021 		cond_resched();
2022 	}
2023 
2024 	writecache_flush_all_metadata(wc);
2025 	writecache_commit_flushed(wc, false);
2026 	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2027 	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2028 	writecache_commit_flushed(wc, false);
2029 
2030 	return 0;
2031 }
2032 
writecache_dtr(struct dm_target * ti)2033 static void writecache_dtr(struct dm_target *ti)
2034 {
2035 	struct dm_writecache *wc = ti->private;
2036 
2037 	if (!wc)
2038 		return;
2039 
2040 	if (wc->endio_thread)
2041 		kthread_stop(wc->endio_thread);
2042 
2043 	if (wc->flush_thread)
2044 		kthread_stop(wc->flush_thread);
2045 
2046 	bioset_exit(&wc->bio_set);
2047 
2048 	mempool_exit(&wc->copy_pool);
2049 
2050 	if (wc->writeback_wq)
2051 		destroy_workqueue(wc->writeback_wq);
2052 
2053 	if (wc->dev)
2054 		dm_put_device(ti, wc->dev);
2055 
2056 	if (wc->ssd_dev)
2057 		dm_put_device(ti, wc->ssd_dev);
2058 
2059 	if (wc->entries)
2060 		vfree(wc->entries);
2061 
2062 	if (wc->memory_map) {
2063 		if (WC_MODE_PMEM(wc))
2064 			persistent_memory_release(wc);
2065 		else
2066 			vfree(wc->memory_map);
2067 	}
2068 
2069 	if (wc->dm_kcopyd)
2070 		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2071 
2072 	if (wc->dm_io)
2073 		dm_io_client_destroy(wc->dm_io);
2074 
2075 	if (wc->dirty_bitmap)
2076 		vfree(wc->dirty_bitmap);
2077 
2078 	kfree(wc);
2079 }
2080 
writecache_ctr(struct dm_target * ti,unsigned argc,char ** argv)2081 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2082 {
2083 	struct dm_writecache *wc;
2084 	struct dm_arg_set as;
2085 	const char *string;
2086 	unsigned opt_params;
2087 	size_t offset, data_size;
2088 	int i, r;
2089 	char dummy;
2090 	int high_wm_percent = HIGH_WATERMARK;
2091 	int low_wm_percent = LOW_WATERMARK;
2092 	uint64_t x;
2093 	struct wc_memory_superblock s;
2094 
2095 	static struct dm_arg _args[] = {
2096 		{0, 16, "Invalid number of feature args"},
2097 	};
2098 
2099 	as.argc = argc;
2100 	as.argv = argv;
2101 
2102 	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2103 	if (!wc) {
2104 		ti->error = "Cannot allocate writecache structure";
2105 		r = -ENOMEM;
2106 		goto bad;
2107 	}
2108 	ti->private = wc;
2109 	wc->ti = ti;
2110 
2111 	mutex_init(&wc->lock);
2112 	wc->max_age = MAX_AGE_UNSPECIFIED;
2113 	writecache_poison_lists(wc);
2114 	init_waitqueue_head(&wc->freelist_wait);
2115 	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2116 	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2117 
2118 	for (i = 0; i < 2; i++) {
2119 		atomic_set(&wc->bio_in_progress[i], 0);
2120 		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2121 	}
2122 
2123 	wc->dm_io = dm_io_client_create();
2124 	if (IS_ERR(wc->dm_io)) {
2125 		r = PTR_ERR(wc->dm_io);
2126 		ti->error = "Unable to allocate dm-io client";
2127 		wc->dm_io = NULL;
2128 		goto bad;
2129 	}
2130 
2131 	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2132 	if (!wc->writeback_wq) {
2133 		r = -ENOMEM;
2134 		ti->error = "Could not allocate writeback workqueue";
2135 		goto bad;
2136 	}
2137 	INIT_WORK(&wc->writeback_work, writecache_writeback);
2138 	INIT_WORK(&wc->flush_work, writecache_flush_work);
2139 
2140 	raw_spin_lock_init(&wc->endio_list_lock);
2141 	INIT_LIST_HEAD(&wc->endio_list);
2142 	wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
2143 	if (IS_ERR(wc->endio_thread)) {
2144 		r = PTR_ERR(wc->endio_thread);
2145 		wc->endio_thread = NULL;
2146 		ti->error = "Couldn't spawn endio thread";
2147 		goto bad;
2148 	}
2149 	wake_up_process(wc->endio_thread);
2150 
2151 	/*
2152 	 * Parse the mode (pmem or ssd)
2153 	 */
2154 	string = dm_shift_arg(&as);
2155 	if (!string)
2156 		goto bad_arguments;
2157 
2158 	if (!strcasecmp(string, "s")) {
2159 		wc->pmem_mode = false;
2160 	} else if (!strcasecmp(string, "p")) {
2161 #ifdef DM_WRITECACHE_HAS_PMEM
2162 		wc->pmem_mode = true;
2163 		wc->writeback_fua = true;
2164 #else
2165 		/*
2166 		 * If the architecture doesn't support persistent memory or
2167 		 * the kernel doesn't support any DAX drivers, this driver can
2168 		 * only be used in SSD-only mode.
2169 		 */
2170 		r = -EOPNOTSUPP;
2171 		ti->error = "Persistent memory or DAX not supported on this system";
2172 		goto bad;
2173 #endif
2174 	} else {
2175 		goto bad_arguments;
2176 	}
2177 
2178 	if (WC_MODE_PMEM(wc)) {
2179 		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2180 				offsetof(struct writeback_struct, bio),
2181 				BIOSET_NEED_BVECS);
2182 		if (r) {
2183 			ti->error = "Could not allocate bio set";
2184 			goto bad;
2185 		}
2186 	} else {
2187 		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2188 		if (r) {
2189 			ti->error = "Could not allocate mempool";
2190 			goto bad;
2191 		}
2192 	}
2193 
2194 	/*
2195 	 * Parse the origin data device
2196 	 */
2197 	string = dm_shift_arg(&as);
2198 	if (!string)
2199 		goto bad_arguments;
2200 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2201 	if (r) {
2202 		ti->error = "Origin data device lookup failed";
2203 		goto bad;
2204 	}
2205 
2206 	/*
2207 	 * Parse cache data device (be it pmem or ssd)
2208 	 */
2209 	string = dm_shift_arg(&as);
2210 	if (!string)
2211 		goto bad_arguments;
2212 
2213 	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2214 	if (r) {
2215 		ti->error = "Cache data device lookup failed";
2216 		goto bad;
2217 	}
2218 	wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
2219 
2220 	/*
2221 	 * Parse the cache block size
2222 	 */
2223 	string = dm_shift_arg(&as);
2224 	if (!string)
2225 		goto bad_arguments;
2226 	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2227 	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2228 	    (wc->block_size & (wc->block_size - 1))) {
2229 		r = -EINVAL;
2230 		ti->error = "Invalid block size";
2231 		goto bad;
2232 	}
2233 	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2234 	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2235 		r = -EINVAL;
2236 		ti->error = "Block size is smaller than device logical block size";
2237 		goto bad;
2238 	}
2239 	wc->block_size_bits = __ffs(wc->block_size);
2240 
2241 	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2242 	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2243 	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2244 
2245 	/*
2246 	 * Parse optional arguments
2247 	 */
2248 	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2249 	if (r)
2250 		goto bad;
2251 
2252 	while (opt_params) {
2253 		string = dm_shift_arg(&as), opt_params--;
2254 		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2255 			unsigned long long start_sector;
2256 			string = dm_shift_arg(&as), opt_params--;
2257 			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2258 				goto invalid_optional;
2259 			wc->start_sector = start_sector;
2260 			wc->start_sector_set = true;
2261 			if (wc->start_sector != start_sector ||
2262 			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2263 				goto invalid_optional;
2264 		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2265 			string = dm_shift_arg(&as), opt_params--;
2266 			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2267 				goto invalid_optional;
2268 			if (high_wm_percent < 0 || high_wm_percent > 100)
2269 				goto invalid_optional;
2270 			wc->high_wm_percent_value = high_wm_percent;
2271 			wc->high_wm_percent_set = true;
2272 		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2273 			string = dm_shift_arg(&as), opt_params--;
2274 			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2275 				goto invalid_optional;
2276 			if (low_wm_percent < 0 || low_wm_percent > 100)
2277 				goto invalid_optional;
2278 			wc->low_wm_percent_value = low_wm_percent;
2279 			wc->low_wm_percent_set = true;
2280 		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2281 			string = dm_shift_arg(&as), opt_params--;
2282 			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2283 				goto invalid_optional;
2284 			wc->max_writeback_jobs_set = true;
2285 		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2286 			string = dm_shift_arg(&as), opt_params--;
2287 			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2288 				goto invalid_optional;
2289 			wc->autocommit_blocks_set = true;
2290 		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2291 			unsigned autocommit_msecs;
2292 			string = dm_shift_arg(&as), opt_params--;
2293 			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2294 				goto invalid_optional;
2295 			if (autocommit_msecs > 3600000)
2296 				goto invalid_optional;
2297 			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2298 			wc->autocommit_time_value = autocommit_msecs;
2299 			wc->autocommit_time_set = true;
2300 		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2301 			unsigned max_age_msecs;
2302 			string = dm_shift_arg(&as), opt_params--;
2303 			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2304 				goto invalid_optional;
2305 			if (max_age_msecs > 86400000)
2306 				goto invalid_optional;
2307 			wc->max_age = msecs_to_jiffies(max_age_msecs);
2308 			wc->max_age_set = true;
2309 			wc->max_age_value = max_age_msecs;
2310 		} else if (!strcasecmp(string, "cleaner")) {
2311 			wc->cleaner_set = true;
2312 			wc->cleaner = true;
2313 		} else if (!strcasecmp(string, "fua")) {
2314 			if (WC_MODE_PMEM(wc)) {
2315 				wc->writeback_fua = true;
2316 				wc->writeback_fua_set = true;
2317 			} else goto invalid_optional;
2318 		} else if (!strcasecmp(string, "nofua")) {
2319 			if (WC_MODE_PMEM(wc)) {
2320 				wc->writeback_fua = false;
2321 				wc->writeback_fua_set = true;
2322 			} else goto invalid_optional;
2323 		} else {
2324 invalid_optional:
2325 			r = -EINVAL;
2326 			ti->error = "Invalid optional argument";
2327 			goto bad;
2328 		}
2329 	}
2330 
2331 	if (high_wm_percent < low_wm_percent) {
2332 		r = -EINVAL;
2333 		ti->error = "High watermark must be greater than or equal to low watermark";
2334 		goto bad;
2335 	}
2336 
2337 	if (WC_MODE_PMEM(wc)) {
2338 		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2339 			r = -EOPNOTSUPP;
2340 			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2341 			goto bad;
2342 		}
2343 
2344 		r = persistent_memory_claim(wc);
2345 		if (r) {
2346 			ti->error = "Unable to map persistent memory for cache";
2347 			goto bad;
2348 		}
2349 	} else {
2350 		size_t n_blocks, n_metadata_blocks;
2351 		uint64_t n_bitmap_bits;
2352 
2353 		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2354 
2355 		bio_list_init(&wc->flush_list);
2356 		wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2357 		if (IS_ERR(wc->flush_thread)) {
2358 			r = PTR_ERR(wc->flush_thread);
2359 			wc->flush_thread = NULL;
2360 			ti->error = "Couldn't spawn flush thread";
2361 			goto bad;
2362 		}
2363 		wake_up_process(wc->flush_thread);
2364 
2365 		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2366 					  &n_blocks, &n_metadata_blocks);
2367 		if (r) {
2368 			ti->error = "Invalid device size";
2369 			goto bad;
2370 		}
2371 
2372 		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2373 				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2374 		/* this is limitation of test_bit functions */
2375 		if (n_bitmap_bits > 1U << 31) {
2376 			r = -EFBIG;
2377 			ti->error = "Invalid device size";
2378 			goto bad;
2379 		}
2380 
2381 		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2382 		if (!wc->memory_map) {
2383 			r = -ENOMEM;
2384 			ti->error = "Unable to allocate memory for metadata";
2385 			goto bad;
2386 		}
2387 
2388 		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2389 		if (IS_ERR(wc->dm_kcopyd)) {
2390 			r = PTR_ERR(wc->dm_kcopyd);
2391 			ti->error = "Unable to allocate dm-kcopyd client";
2392 			wc->dm_kcopyd = NULL;
2393 			goto bad;
2394 		}
2395 
2396 		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2397 		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2398 			BITS_PER_LONG * sizeof(unsigned long);
2399 		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2400 		if (!wc->dirty_bitmap) {
2401 			r = -ENOMEM;
2402 			ti->error = "Unable to allocate dirty bitmap";
2403 			goto bad;
2404 		}
2405 
2406 		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2407 		if (r) {
2408 			ti->error = "Unable to read first block of metadata";
2409 			goto bad;
2410 		}
2411 	}
2412 
2413 	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2414 	if (r) {
2415 		ti->error = "Hardware memory error when reading superblock";
2416 		goto bad;
2417 	}
2418 	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2419 		r = init_memory(wc);
2420 		if (r) {
2421 			ti->error = "Unable to initialize device";
2422 			goto bad;
2423 		}
2424 		r = copy_mc_to_kernel(&s, sb(wc),
2425 				      sizeof(struct wc_memory_superblock));
2426 		if (r) {
2427 			ti->error = "Hardware memory error when reading superblock";
2428 			goto bad;
2429 		}
2430 	}
2431 
2432 	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2433 		ti->error = "Invalid magic in the superblock";
2434 		r = -EINVAL;
2435 		goto bad;
2436 	}
2437 
2438 	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2439 		ti->error = "Invalid version in the superblock";
2440 		r = -EINVAL;
2441 		goto bad;
2442 	}
2443 
2444 	if (le32_to_cpu(s.block_size) != wc->block_size) {
2445 		ti->error = "Block size does not match superblock";
2446 		r = -EINVAL;
2447 		goto bad;
2448 	}
2449 
2450 	wc->n_blocks = le64_to_cpu(s.n_blocks);
2451 
2452 	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2453 	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2454 overflow:
2455 		ti->error = "Overflow in size calculation";
2456 		r = -EINVAL;
2457 		goto bad;
2458 	}
2459 	offset += sizeof(struct wc_memory_superblock);
2460 	if (offset < sizeof(struct wc_memory_superblock))
2461 		goto overflow;
2462 	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2463 	data_size = wc->n_blocks * (size_t)wc->block_size;
2464 	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2465 	    (offset + data_size < offset))
2466 		goto overflow;
2467 	if (offset + data_size > wc->memory_map_size) {
2468 		ti->error = "Memory area is too small";
2469 		r = -EINVAL;
2470 		goto bad;
2471 	}
2472 
2473 	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2474 	wc->block_start = (char *)sb(wc) + offset;
2475 
2476 	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2477 	x += 50;
2478 	do_div(x, 100);
2479 	wc->freelist_high_watermark = x;
2480 	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2481 	x += 50;
2482 	do_div(x, 100);
2483 	wc->freelist_low_watermark = x;
2484 
2485 	if (wc->cleaner)
2486 		activate_cleaner(wc);
2487 
2488 	r = writecache_alloc_entries(wc);
2489 	if (r) {
2490 		ti->error = "Cannot allocate memory";
2491 		goto bad;
2492 	}
2493 
2494 	ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2495 	ti->flush_supported = true;
2496 	ti->num_discard_bios = 1;
2497 
2498 	if (WC_MODE_PMEM(wc))
2499 		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2500 
2501 	return 0;
2502 
2503 bad_arguments:
2504 	r = -EINVAL;
2505 	ti->error = "Bad arguments";
2506 bad:
2507 	writecache_dtr(ti);
2508 	return r;
2509 }
2510 
writecache_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)2511 static void writecache_status(struct dm_target *ti, status_type_t type,
2512 			      unsigned status_flags, char *result, unsigned maxlen)
2513 {
2514 	struct dm_writecache *wc = ti->private;
2515 	unsigned extra_args;
2516 	unsigned sz = 0;
2517 
2518 	switch (type) {
2519 	case STATUSTYPE_INFO:
2520 		DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2521 		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2522 		       (unsigned long long)wc->writeback_size);
2523 		break;
2524 	case STATUSTYPE_TABLE:
2525 		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2526 				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2527 		extra_args = 0;
2528 		if (wc->start_sector_set)
2529 			extra_args += 2;
2530 		if (wc->high_wm_percent_set)
2531 			extra_args += 2;
2532 		if (wc->low_wm_percent_set)
2533 			extra_args += 2;
2534 		if (wc->max_writeback_jobs_set)
2535 			extra_args += 2;
2536 		if (wc->autocommit_blocks_set)
2537 			extra_args += 2;
2538 		if (wc->autocommit_time_set)
2539 			extra_args += 2;
2540 		if (wc->max_age_set)
2541 			extra_args += 2;
2542 		if (wc->cleaner_set)
2543 			extra_args++;
2544 		if (wc->writeback_fua_set)
2545 			extra_args++;
2546 
2547 		DMEMIT("%u", extra_args);
2548 		if (wc->start_sector_set)
2549 			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2550 		if (wc->high_wm_percent_set)
2551 			DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2552 		if (wc->low_wm_percent_set)
2553 			DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2554 		if (wc->max_writeback_jobs_set)
2555 			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2556 		if (wc->autocommit_blocks_set)
2557 			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2558 		if (wc->autocommit_time_set)
2559 			DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2560 		if (wc->max_age_set)
2561 			DMEMIT(" max_age %u", wc->max_age_value);
2562 		if (wc->cleaner_set)
2563 			DMEMIT(" cleaner");
2564 		if (wc->writeback_fua_set)
2565 			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2566 		break;
2567 	}
2568 }
2569 
2570 static struct target_type writecache_target = {
2571 	.name			= "writecache",
2572 	.version		= {1, 4, 0},
2573 	.module			= THIS_MODULE,
2574 	.ctr			= writecache_ctr,
2575 	.dtr			= writecache_dtr,
2576 	.status			= writecache_status,
2577 	.postsuspend		= writecache_suspend,
2578 	.resume			= writecache_resume,
2579 	.message		= writecache_message,
2580 	.map			= writecache_map,
2581 	.end_io			= writecache_end_io,
2582 	.iterate_devices	= writecache_iterate_devices,
2583 	.io_hints		= writecache_io_hints,
2584 };
2585 
dm_writecache_init(void)2586 static int __init dm_writecache_init(void)
2587 {
2588 	int r;
2589 
2590 	r = dm_register_target(&writecache_target);
2591 	if (r < 0) {
2592 		DMERR("register failed %d", r);
2593 		return r;
2594 	}
2595 
2596 	return 0;
2597 }
2598 
dm_writecache_exit(void)2599 static void __exit dm_writecache_exit(void)
2600 {
2601 	dm_unregister_target(&writecache_target);
2602 }
2603 
2604 module_init(dm_writecache_init);
2605 module_exit(dm_writecache_exit);
2606 
2607 MODULE_DESCRIPTION(DM_NAME " writecache target");
2608 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2609 MODULE_LICENSE("GPL");
2610