1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright © 2010-2015 Broadcom Corporation
4 */
5
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/err.h>
13 #include <linux/completion.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/ioport.h>
18 #include <linux/bug.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/mm.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/mtd/rawnand.h>
24 #include <linux/mtd/partitions.h>
25 #include <linux/of.h>
26 #include <linux/of_platform.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/log2.h>
30
31 #include "brcmnand.h"
32
33 /*
34 * This flag controls if WP stays on between erase/write commands to mitigate
35 * flash corruption due to power glitches. Values:
36 * 0: NAND_WP is not used or not available
37 * 1: NAND_WP is set by default, cleared for erase/write operations
38 * 2: NAND_WP is always cleared
39 */
40 static int wp_on = 1;
41 module_param(wp_on, int, 0444);
42
43 /***********************************************************************
44 * Definitions
45 ***********************************************************************/
46
47 #define DRV_NAME "brcmnand"
48
49 #define CMD_NULL 0x00
50 #define CMD_PAGE_READ 0x01
51 #define CMD_SPARE_AREA_READ 0x02
52 #define CMD_STATUS_READ 0x03
53 #define CMD_PROGRAM_PAGE 0x04
54 #define CMD_PROGRAM_SPARE_AREA 0x05
55 #define CMD_COPY_BACK 0x06
56 #define CMD_DEVICE_ID_READ 0x07
57 #define CMD_BLOCK_ERASE 0x08
58 #define CMD_FLASH_RESET 0x09
59 #define CMD_BLOCKS_LOCK 0x0a
60 #define CMD_BLOCKS_LOCK_DOWN 0x0b
61 #define CMD_BLOCKS_UNLOCK 0x0c
62 #define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
63 #define CMD_PARAMETER_READ 0x0e
64 #define CMD_PARAMETER_CHANGE_COL 0x0f
65 #define CMD_LOW_LEVEL_OP 0x10
66
67 struct brcm_nand_dma_desc {
68 u32 next_desc;
69 u32 next_desc_ext;
70 u32 cmd_irq;
71 u32 dram_addr;
72 u32 dram_addr_ext;
73 u32 tfr_len;
74 u32 total_len;
75 u32 flash_addr;
76 u32 flash_addr_ext;
77 u32 cs;
78 u32 pad2[5];
79 u32 status_valid;
80 } __packed;
81
82 /* Bitfields for brcm_nand_dma_desc::status_valid */
83 #define FLASH_DMA_ECC_ERROR (1 << 8)
84 #define FLASH_DMA_CORR_ERROR (1 << 9)
85
86 /* Bitfields for DMA_MODE */
87 #define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */
88 #define FLASH_DMA_MODE_MODE BIT(0) /* link list */
89 #define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \
90 FLASH_DMA_MODE_MODE)
91
92 /* 512B flash cache in the NAND controller HW */
93 #define FC_SHIFT 9U
94 #define FC_BYTES 512U
95 #define FC_WORDS (FC_BYTES >> 2)
96
97 #define BRCMNAND_MIN_PAGESIZE 512
98 #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
99 #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
100
101 #define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
102 #define NAND_POLL_STATUS_TIMEOUT_MS 100
103
104 #define EDU_CMD_WRITE 0x00
105 #define EDU_CMD_READ 0x01
106 #define EDU_STATUS_ACTIVE BIT(0)
107 #define EDU_ERR_STATUS_ERRACK BIT(0)
108 #define EDU_DONE_MASK GENMASK(1, 0)
109
110 #define EDU_CONFIG_MODE_NAND BIT(0)
111 #define EDU_CONFIG_SWAP_BYTE BIT(1)
112 #ifdef CONFIG_CPU_BIG_ENDIAN
113 #define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE
114 #else
115 #define EDU_CONFIG_SWAP_CFG 0
116 #endif
117
118 /* edu registers */
119 enum edu_reg {
120 EDU_CONFIG = 0,
121 EDU_DRAM_ADDR,
122 EDU_EXT_ADDR,
123 EDU_LENGTH,
124 EDU_CMD,
125 EDU_STOP,
126 EDU_STATUS,
127 EDU_DONE,
128 EDU_ERR_STATUS,
129 };
130
131 static const u16 edu_regs[] = {
132 [EDU_CONFIG] = 0x00,
133 [EDU_DRAM_ADDR] = 0x04,
134 [EDU_EXT_ADDR] = 0x08,
135 [EDU_LENGTH] = 0x0c,
136 [EDU_CMD] = 0x10,
137 [EDU_STOP] = 0x14,
138 [EDU_STATUS] = 0x18,
139 [EDU_DONE] = 0x1c,
140 [EDU_ERR_STATUS] = 0x20,
141 };
142
143 /* flash_dma registers */
144 enum flash_dma_reg {
145 FLASH_DMA_REVISION = 0,
146 FLASH_DMA_FIRST_DESC,
147 FLASH_DMA_FIRST_DESC_EXT,
148 FLASH_DMA_CTRL,
149 FLASH_DMA_MODE,
150 FLASH_DMA_STATUS,
151 FLASH_DMA_INTERRUPT_DESC,
152 FLASH_DMA_INTERRUPT_DESC_EXT,
153 FLASH_DMA_ERROR_STATUS,
154 FLASH_DMA_CURRENT_DESC,
155 FLASH_DMA_CURRENT_DESC_EXT,
156 };
157
158 /* flash_dma registers v0*/
159 static const u16 flash_dma_regs_v0[] = {
160 [FLASH_DMA_REVISION] = 0x00,
161 [FLASH_DMA_FIRST_DESC] = 0x04,
162 [FLASH_DMA_CTRL] = 0x08,
163 [FLASH_DMA_MODE] = 0x0c,
164 [FLASH_DMA_STATUS] = 0x10,
165 [FLASH_DMA_INTERRUPT_DESC] = 0x14,
166 [FLASH_DMA_ERROR_STATUS] = 0x18,
167 [FLASH_DMA_CURRENT_DESC] = 0x1c,
168 };
169
170 /* flash_dma registers v1*/
171 static const u16 flash_dma_regs_v1[] = {
172 [FLASH_DMA_REVISION] = 0x00,
173 [FLASH_DMA_FIRST_DESC] = 0x04,
174 [FLASH_DMA_FIRST_DESC_EXT] = 0x08,
175 [FLASH_DMA_CTRL] = 0x0c,
176 [FLASH_DMA_MODE] = 0x10,
177 [FLASH_DMA_STATUS] = 0x14,
178 [FLASH_DMA_INTERRUPT_DESC] = 0x18,
179 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c,
180 [FLASH_DMA_ERROR_STATUS] = 0x20,
181 [FLASH_DMA_CURRENT_DESC] = 0x24,
182 [FLASH_DMA_CURRENT_DESC_EXT] = 0x28,
183 };
184
185 /* flash_dma registers v4 */
186 static const u16 flash_dma_regs_v4[] = {
187 [FLASH_DMA_REVISION] = 0x00,
188 [FLASH_DMA_FIRST_DESC] = 0x08,
189 [FLASH_DMA_FIRST_DESC_EXT] = 0x0c,
190 [FLASH_DMA_CTRL] = 0x10,
191 [FLASH_DMA_MODE] = 0x14,
192 [FLASH_DMA_STATUS] = 0x18,
193 [FLASH_DMA_INTERRUPT_DESC] = 0x20,
194 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24,
195 [FLASH_DMA_ERROR_STATUS] = 0x28,
196 [FLASH_DMA_CURRENT_DESC] = 0x30,
197 [FLASH_DMA_CURRENT_DESC_EXT] = 0x34,
198 };
199
200 /* Controller feature flags */
201 enum {
202 BRCMNAND_HAS_1K_SECTORS = BIT(0),
203 BRCMNAND_HAS_PREFETCH = BIT(1),
204 BRCMNAND_HAS_CACHE_MODE = BIT(2),
205 BRCMNAND_HAS_WP = BIT(3),
206 };
207
208 struct brcmnand_host;
209
210 struct brcmnand_controller {
211 struct device *dev;
212 struct nand_controller controller;
213 void __iomem *nand_base;
214 void __iomem *nand_fc; /* flash cache */
215 void __iomem *flash_dma_base;
216 unsigned int irq;
217 unsigned int dma_irq;
218 int nand_version;
219
220 /* Some SoCs provide custom interrupt status register(s) */
221 struct brcmnand_soc *soc;
222
223 /* Some SoCs have a gateable clock for the controller */
224 struct clk *clk;
225
226 int cmd_pending;
227 bool dma_pending;
228 bool edu_pending;
229 struct completion done;
230 struct completion dma_done;
231 struct completion edu_done;
232
233 /* List of NAND hosts (one for each chip-select) */
234 struct list_head host_list;
235
236 /* EDU info, per-transaction */
237 const u16 *edu_offsets;
238 void __iomem *edu_base;
239 int edu_irq;
240 int edu_count;
241 u64 edu_dram_addr;
242 u32 edu_ext_addr;
243 u32 edu_cmd;
244 u32 edu_config;
245
246 /* flash_dma reg */
247 const u16 *flash_dma_offsets;
248 struct brcm_nand_dma_desc *dma_desc;
249 dma_addr_t dma_pa;
250
251 int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
252 u32 len, u8 dma_cmd);
253
254 /* in-memory cache of the FLASH_CACHE, used only for some commands */
255 u8 flash_cache[FC_BYTES];
256
257 /* Controller revision details */
258 const u16 *reg_offsets;
259 unsigned int reg_spacing; /* between CS1, CS2, ... regs */
260 const u8 *cs_offsets; /* within each chip-select */
261 const u8 *cs0_offsets; /* within CS0, if different */
262 unsigned int max_block_size;
263 const unsigned int *block_sizes;
264 unsigned int max_page_size;
265 const unsigned int *page_sizes;
266 unsigned int page_size_shift;
267 unsigned int max_oob;
268 u32 features;
269
270 /* for low-power standby/resume only */
271 u32 nand_cs_nand_select;
272 u32 nand_cs_nand_xor;
273 u32 corr_stat_threshold;
274 u32 flash_dma_mode;
275 u32 flash_edu_mode;
276 bool pio_poll_mode;
277 };
278
279 struct brcmnand_cfg {
280 u64 device_size;
281 unsigned int block_size;
282 unsigned int page_size;
283 unsigned int spare_area_size;
284 unsigned int device_width;
285 unsigned int col_adr_bytes;
286 unsigned int blk_adr_bytes;
287 unsigned int ful_adr_bytes;
288 unsigned int sector_size_1k;
289 unsigned int ecc_level;
290 /* use for low-power standby/resume only */
291 u32 acc_control;
292 u32 config;
293 u32 config_ext;
294 u32 timing_1;
295 u32 timing_2;
296 };
297
298 struct brcmnand_host {
299 struct list_head node;
300
301 struct nand_chip chip;
302 struct platform_device *pdev;
303 int cs;
304
305 unsigned int last_cmd;
306 unsigned int last_byte;
307 u64 last_addr;
308 struct brcmnand_cfg hwcfg;
309 struct brcmnand_controller *ctrl;
310 };
311
312 enum brcmnand_reg {
313 BRCMNAND_CMD_START = 0,
314 BRCMNAND_CMD_EXT_ADDRESS,
315 BRCMNAND_CMD_ADDRESS,
316 BRCMNAND_INTFC_STATUS,
317 BRCMNAND_CS_SELECT,
318 BRCMNAND_CS_XOR,
319 BRCMNAND_LL_OP,
320 BRCMNAND_CS0_BASE,
321 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
322 BRCMNAND_CORR_THRESHOLD,
323 BRCMNAND_CORR_THRESHOLD_EXT,
324 BRCMNAND_UNCORR_COUNT,
325 BRCMNAND_CORR_COUNT,
326 BRCMNAND_CORR_EXT_ADDR,
327 BRCMNAND_CORR_ADDR,
328 BRCMNAND_UNCORR_EXT_ADDR,
329 BRCMNAND_UNCORR_ADDR,
330 BRCMNAND_SEMAPHORE,
331 BRCMNAND_ID,
332 BRCMNAND_ID_EXT,
333 BRCMNAND_LL_RDATA,
334 BRCMNAND_OOB_READ_BASE,
335 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
336 BRCMNAND_OOB_WRITE_BASE,
337 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
338 BRCMNAND_FC_BASE,
339 };
340
341 /* BRCMNAND v2.1-v2.2 */
342 static const u16 brcmnand_regs_v21[] = {
343 [BRCMNAND_CMD_START] = 0x04,
344 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
345 [BRCMNAND_CMD_ADDRESS] = 0x0c,
346 [BRCMNAND_INTFC_STATUS] = 0x5c,
347 [BRCMNAND_CS_SELECT] = 0x14,
348 [BRCMNAND_CS_XOR] = 0x18,
349 [BRCMNAND_LL_OP] = 0,
350 [BRCMNAND_CS0_BASE] = 0x40,
351 [BRCMNAND_CS1_BASE] = 0,
352 [BRCMNAND_CORR_THRESHOLD] = 0,
353 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
354 [BRCMNAND_UNCORR_COUNT] = 0,
355 [BRCMNAND_CORR_COUNT] = 0,
356 [BRCMNAND_CORR_EXT_ADDR] = 0x60,
357 [BRCMNAND_CORR_ADDR] = 0x64,
358 [BRCMNAND_UNCORR_EXT_ADDR] = 0x68,
359 [BRCMNAND_UNCORR_ADDR] = 0x6c,
360 [BRCMNAND_SEMAPHORE] = 0x50,
361 [BRCMNAND_ID] = 0x54,
362 [BRCMNAND_ID_EXT] = 0,
363 [BRCMNAND_LL_RDATA] = 0,
364 [BRCMNAND_OOB_READ_BASE] = 0x20,
365 [BRCMNAND_OOB_READ_10_BASE] = 0,
366 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
367 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
368 [BRCMNAND_FC_BASE] = 0x200,
369 };
370
371 /* BRCMNAND v3.3-v4.0 */
372 static const u16 brcmnand_regs_v33[] = {
373 [BRCMNAND_CMD_START] = 0x04,
374 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
375 [BRCMNAND_CMD_ADDRESS] = 0x0c,
376 [BRCMNAND_INTFC_STATUS] = 0x6c,
377 [BRCMNAND_CS_SELECT] = 0x14,
378 [BRCMNAND_CS_XOR] = 0x18,
379 [BRCMNAND_LL_OP] = 0x178,
380 [BRCMNAND_CS0_BASE] = 0x40,
381 [BRCMNAND_CS1_BASE] = 0xd0,
382 [BRCMNAND_CORR_THRESHOLD] = 0x84,
383 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
384 [BRCMNAND_UNCORR_COUNT] = 0,
385 [BRCMNAND_CORR_COUNT] = 0,
386 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
387 [BRCMNAND_CORR_ADDR] = 0x74,
388 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
389 [BRCMNAND_UNCORR_ADDR] = 0x7c,
390 [BRCMNAND_SEMAPHORE] = 0x58,
391 [BRCMNAND_ID] = 0x60,
392 [BRCMNAND_ID_EXT] = 0x64,
393 [BRCMNAND_LL_RDATA] = 0x17c,
394 [BRCMNAND_OOB_READ_BASE] = 0x20,
395 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
396 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
397 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
398 [BRCMNAND_FC_BASE] = 0x200,
399 };
400
401 /* BRCMNAND v5.0 */
402 static const u16 brcmnand_regs_v50[] = {
403 [BRCMNAND_CMD_START] = 0x04,
404 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
405 [BRCMNAND_CMD_ADDRESS] = 0x0c,
406 [BRCMNAND_INTFC_STATUS] = 0x6c,
407 [BRCMNAND_CS_SELECT] = 0x14,
408 [BRCMNAND_CS_XOR] = 0x18,
409 [BRCMNAND_LL_OP] = 0x178,
410 [BRCMNAND_CS0_BASE] = 0x40,
411 [BRCMNAND_CS1_BASE] = 0xd0,
412 [BRCMNAND_CORR_THRESHOLD] = 0x84,
413 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
414 [BRCMNAND_UNCORR_COUNT] = 0,
415 [BRCMNAND_CORR_COUNT] = 0,
416 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
417 [BRCMNAND_CORR_ADDR] = 0x74,
418 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
419 [BRCMNAND_UNCORR_ADDR] = 0x7c,
420 [BRCMNAND_SEMAPHORE] = 0x58,
421 [BRCMNAND_ID] = 0x60,
422 [BRCMNAND_ID_EXT] = 0x64,
423 [BRCMNAND_LL_RDATA] = 0x17c,
424 [BRCMNAND_OOB_READ_BASE] = 0x20,
425 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
426 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
427 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
428 [BRCMNAND_FC_BASE] = 0x200,
429 };
430
431 /* BRCMNAND v6.0 - v7.1 */
432 static const u16 brcmnand_regs_v60[] = {
433 [BRCMNAND_CMD_START] = 0x04,
434 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
435 [BRCMNAND_CMD_ADDRESS] = 0x0c,
436 [BRCMNAND_INTFC_STATUS] = 0x14,
437 [BRCMNAND_CS_SELECT] = 0x18,
438 [BRCMNAND_CS_XOR] = 0x1c,
439 [BRCMNAND_LL_OP] = 0x20,
440 [BRCMNAND_CS0_BASE] = 0x50,
441 [BRCMNAND_CS1_BASE] = 0,
442 [BRCMNAND_CORR_THRESHOLD] = 0xc0,
443 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
444 [BRCMNAND_UNCORR_COUNT] = 0xfc,
445 [BRCMNAND_CORR_COUNT] = 0x100,
446 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
447 [BRCMNAND_CORR_ADDR] = 0x110,
448 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
449 [BRCMNAND_UNCORR_ADDR] = 0x118,
450 [BRCMNAND_SEMAPHORE] = 0x150,
451 [BRCMNAND_ID] = 0x194,
452 [BRCMNAND_ID_EXT] = 0x198,
453 [BRCMNAND_LL_RDATA] = 0x19c,
454 [BRCMNAND_OOB_READ_BASE] = 0x200,
455 [BRCMNAND_OOB_READ_10_BASE] = 0,
456 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
457 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
458 [BRCMNAND_FC_BASE] = 0x400,
459 };
460
461 /* BRCMNAND v7.1 */
462 static const u16 brcmnand_regs_v71[] = {
463 [BRCMNAND_CMD_START] = 0x04,
464 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
465 [BRCMNAND_CMD_ADDRESS] = 0x0c,
466 [BRCMNAND_INTFC_STATUS] = 0x14,
467 [BRCMNAND_CS_SELECT] = 0x18,
468 [BRCMNAND_CS_XOR] = 0x1c,
469 [BRCMNAND_LL_OP] = 0x20,
470 [BRCMNAND_CS0_BASE] = 0x50,
471 [BRCMNAND_CS1_BASE] = 0,
472 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
473 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
474 [BRCMNAND_UNCORR_COUNT] = 0xfc,
475 [BRCMNAND_CORR_COUNT] = 0x100,
476 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
477 [BRCMNAND_CORR_ADDR] = 0x110,
478 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
479 [BRCMNAND_UNCORR_ADDR] = 0x118,
480 [BRCMNAND_SEMAPHORE] = 0x150,
481 [BRCMNAND_ID] = 0x194,
482 [BRCMNAND_ID_EXT] = 0x198,
483 [BRCMNAND_LL_RDATA] = 0x19c,
484 [BRCMNAND_OOB_READ_BASE] = 0x200,
485 [BRCMNAND_OOB_READ_10_BASE] = 0,
486 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
487 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
488 [BRCMNAND_FC_BASE] = 0x400,
489 };
490
491 /* BRCMNAND v7.2 */
492 static const u16 brcmnand_regs_v72[] = {
493 [BRCMNAND_CMD_START] = 0x04,
494 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
495 [BRCMNAND_CMD_ADDRESS] = 0x0c,
496 [BRCMNAND_INTFC_STATUS] = 0x14,
497 [BRCMNAND_CS_SELECT] = 0x18,
498 [BRCMNAND_CS_XOR] = 0x1c,
499 [BRCMNAND_LL_OP] = 0x20,
500 [BRCMNAND_CS0_BASE] = 0x50,
501 [BRCMNAND_CS1_BASE] = 0,
502 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
503 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
504 [BRCMNAND_UNCORR_COUNT] = 0xfc,
505 [BRCMNAND_CORR_COUNT] = 0x100,
506 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
507 [BRCMNAND_CORR_ADDR] = 0x110,
508 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
509 [BRCMNAND_UNCORR_ADDR] = 0x118,
510 [BRCMNAND_SEMAPHORE] = 0x150,
511 [BRCMNAND_ID] = 0x194,
512 [BRCMNAND_ID_EXT] = 0x198,
513 [BRCMNAND_LL_RDATA] = 0x19c,
514 [BRCMNAND_OOB_READ_BASE] = 0x200,
515 [BRCMNAND_OOB_READ_10_BASE] = 0,
516 [BRCMNAND_OOB_WRITE_BASE] = 0x400,
517 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
518 [BRCMNAND_FC_BASE] = 0x600,
519 };
520
521 enum brcmnand_cs_reg {
522 BRCMNAND_CS_CFG_EXT = 0,
523 BRCMNAND_CS_CFG,
524 BRCMNAND_CS_ACC_CONTROL,
525 BRCMNAND_CS_TIMING1,
526 BRCMNAND_CS_TIMING2,
527 };
528
529 /* Per chip-select offsets for v7.1 */
530 static const u8 brcmnand_cs_offsets_v71[] = {
531 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
532 [BRCMNAND_CS_CFG_EXT] = 0x04,
533 [BRCMNAND_CS_CFG] = 0x08,
534 [BRCMNAND_CS_TIMING1] = 0x0c,
535 [BRCMNAND_CS_TIMING2] = 0x10,
536 };
537
538 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
539 static const u8 brcmnand_cs_offsets[] = {
540 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
541 [BRCMNAND_CS_CFG_EXT] = 0x04,
542 [BRCMNAND_CS_CFG] = 0x04,
543 [BRCMNAND_CS_TIMING1] = 0x08,
544 [BRCMNAND_CS_TIMING2] = 0x0c,
545 };
546
547 /* Per chip-select offset for <= v5.0 on CS0 only */
548 static const u8 brcmnand_cs_offsets_cs0[] = {
549 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
550 [BRCMNAND_CS_CFG_EXT] = 0x08,
551 [BRCMNAND_CS_CFG] = 0x08,
552 [BRCMNAND_CS_TIMING1] = 0x10,
553 [BRCMNAND_CS_TIMING2] = 0x14,
554 };
555
556 /*
557 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
558 * one config register, but once the bitfields overflowed, newer controllers
559 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
560 */
561 enum {
562 CFG_BLK_ADR_BYTES_SHIFT = 8,
563 CFG_COL_ADR_BYTES_SHIFT = 12,
564 CFG_FUL_ADR_BYTES_SHIFT = 16,
565 CFG_BUS_WIDTH_SHIFT = 23,
566 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
567 CFG_DEVICE_SIZE_SHIFT = 24,
568
569 /* Only for v2.1 */
570 CFG_PAGE_SIZE_SHIFT_v2_1 = 30,
571
572 /* Only for pre-v7.1 (with no CFG_EXT register) */
573 CFG_PAGE_SIZE_SHIFT = 20,
574 CFG_BLK_SIZE_SHIFT = 28,
575
576 /* Only for v7.1+ (with CFG_EXT register) */
577 CFG_EXT_PAGE_SIZE_SHIFT = 0,
578 CFG_EXT_BLK_SIZE_SHIFT = 4,
579 };
580
581 /* BRCMNAND_INTFC_STATUS */
582 enum {
583 INTFC_FLASH_STATUS = GENMASK(7, 0),
584
585 INTFC_ERASED = BIT(27),
586 INTFC_OOB_VALID = BIT(28),
587 INTFC_CACHE_VALID = BIT(29),
588 INTFC_FLASH_READY = BIT(30),
589 INTFC_CTLR_READY = BIT(31),
590 };
591
nand_readreg(struct brcmnand_controller * ctrl,u32 offs)592 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
593 {
594 return brcmnand_readl(ctrl->nand_base + offs);
595 }
596
nand_writereg(struct brcmnand_controller * ctrl,u32 offs,u32 val)597 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
598 u32 val)
599 {
600 brcmnand_writel(val, ctrl->nand_base + offs);
601 }
602
brcmnand_revision_init(struct brcmnand_controller * ctrl)603 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
604 {
605 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
606 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
607 static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
608 static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
609 static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
610 static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
611 static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
612
613 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
614
615 /* Only support v2.1+ */
616 if (ctrl->nand_version < 0x0201) {
617 dev_err(ctrl->dev, "version %#x not supported\n",
618 ctrl->nand_version);
619 return -ENODEV;
620 }
621
622 /* Register offsets */
623 if (ctrl->nand_version >= 0x0702)
624 ctrl->reg_offsets = brcmnand_regs_v72;
625 else if (ctrl->nand_version == 0x0701)
626 ctrl->reg_offsets = brcmnand_regs_v71;
627 else if (ctrl->nand_version >= 0x0600)
628 ctrl->reg_offsets = brcmnand_regs_v60;
629 else if (ctrl->nand_version >= 0x0500)
630 ctrl->reg_offsets = brcmnand_regs_v50;
631 else if (ctrl->nand_version >= 0x0303)
632 ctrl->reg_offsets = brcmnand_regs_v33;
633 else if (ctrl->nand_version >= 0x0201)
634 ctrl->reg_offsets = brcmnand_regs_v21;
635
636 /* Chip-select stride */
637 if (ctrl->nand_version >= 0x0701)
638 ctrl->reg_spacing = 0x14;
639 else
640 ctrl->reg_spacing = 0x10;
641
642 /* Per chip-select registers */
643 if (ctrl->nand_version >= 0x0701) {
644 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
645 } else {
646 ctrl->cs_offsets = brcmnand_cs_offsets;
647
648 /* v3.3-5.0 have a different CS0 offset layout */
649 if (ctrl->nand_version >= 0x0303 &&
650 ctrl->nand_version <= 0x0500)
651 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
652 }
653
654 /* Page / block sizes */
655 if (ctrl->nand_version >= 0x0701) {
656 /* >= v7.1 use nice power-of-2 values! */
657 ctrl->max_page_size = 16 * 1024;
658 ctrl->max_block_size = 2 * 1024 * 1024;
659 } else {
660 if (ctrl->nand_version >= 0x0304)
661 ctrl->page_sizes = page_sizes_v3_4;
662 else if (ctrl->nand_version >= 0x0202)
663 ctrl->page_sizes = page_sizes_v2_2;
664 else
665 ctrl->page_sizes = page_sizes_v2_1;
666
667 if (ctrl->nand_version >= 0x0202)
668 ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
669 else
670 ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
671
672 if (ctrl->nand_version >= 0x0600)
673 ctrl->block_sizes = block_sizes_v6;
674 else if (ctrl->nand_version >= 0x0400)
675 ctrl->block_sizes = block_sizes_v4;
676 else if (ctrl->nand_version >= 0x0202)
677 ctrl->block_sizes = block_sizes_v2_2;
678 else
679 ctrl->block_sizes = block_sizes_v2_1;
680
681 if (ctrl->nand_version < 0x0400) {
682 if (ctrl->nand_version < 0x0202)
683 ctrl->max_page_size = 2048;
684 else
685 ctrl->max_page_size = 4096;
686 ctrl->max_block_size = 512 * 1024;
687 }
688 }
689
690 /* Maximum spare area sector size (per 512B) */
691 if (ctrl->nand_version == 0x0702)
692 ctrl->max_oob = 128;
693 else if (ctrl->nand_version >= 0x0600)
694 ctrl->max_oob = 64;
695 else if (ctrl->nand_version >= 0x0500)
696 ctrl->max_oob = 32;
697 else
698 ctrl->max_oob = 16;
699
700 /* v6.0 and newer (except v6.1) have prefetch support */
701 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
702 ctrl->features |= BRCMNAND_HAS_PREFETCH;
703
704 /*
705 * v6.x has cache mode, but it's implemented differently. Ignore it for
706 * now.
707 */
708 if (ctrl->nand_version >= 0x0700)
709 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
710
711 if (ctrl->nand_version >= 0x0500)
712 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
713
714 if (ctrl->nand_version >= 0x0700)
715 ctrl->features |= BRCMNAND_HAS_WP;
716 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
717 ctrl->features |= BRCMNAND_HAS_WP;
718
719 return 0;
720 }
721
brcmnand_flash_dma_revision_init(struct brcmnand_controller * ctrl)722 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
723 {
724 /* flash_dma register offsets */
725 if (ctrl->nand_version >= 0x0703)
726 ctrl->flash_dma_offsets = flash_dma_regs_v4;
727 else if (ctrl->nand_version == 0x0602)
728 ctrl->flash_dma_offsets = flash_dma_regs_v0;
729 else
730 ctrl->flash_dma_offsets = flash_dma_regs_v1;
731 }
732
brcmnand_read_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg)733 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
734 enum brcmnand_reg reg)
735 {
736 u16 offs = ctrl->reg_offsets[reg];
737
738 if (offs)
739 return nand_readreg(ctrl, offs);
740 else
741 return 0;
742 }
743
brcmnand_write_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 val)744 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
745 enum brcmnand_reg reg, u32 val)
746 {
747 u16 offs = ctrl->reg_offsets[reg];
748
749 if (offs)
750 nand_writereg(ctrl, offs, val);
751 }
752
brcmnand_rmw_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 mask,unsigned int shift,u32 val)753 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
754 enum brcmnand_reg reg, u32 mask, unsigned
755 int shift, u32 val)
756 {
757 u32 tmp = brcmnand_read_reg(ctrl, reg);
758
759 tmp &= ~mask;
760 tmp |= val << shift;
761 brcmnand_write_reg(ctrl, reg, tmp);
762 }
763
brcmnand_read_fc(struct brcmnand_controller * ctrl,int word)764 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
765 {
766 return __raw_readl(ctrl->nand_fc + word * 4);
767 }
768
brcmnand_write_fc(struct brcmnand_controller * ctrl,int word,u32 val)769 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
770 int word, u32 val)
771 {
772 __raw_writel(val, ctrl->nand_fc + word * 4);
773 }
774
edu_writel(struct brcmnand_controller * ctrl,enum edu_reg reg,u32 val)775 static inline void edu_writel(struct brcmnand_controller *ctrl,
776 enum edu_reg reg, u32 val)
777 {
778 u16 offs = ctrl->edu_offsets[reg];
779
780 brcmnand_writel(val, ctrl->edu_base + offs);
781 }
782
edu_readl(struct brcmnand_controller * ctrl,enum edu_reg reg)783 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
784 enum edu_reg reg)
785 {
786 u16 offs = ctrl->edu_offsets[reg];
787
788 return brcmnand_readl(ctrl->edu_base + offs);
789 }
790
brcmnand_clear_ecc_addr(struct brcmnand_controller * ctrl)791 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
792 {
793
794 /* Clear error addresses */
795 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
796 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
797 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
798 brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
799 }
800
brcmnand_get_uncorrecc_addr(struct brcmnand_controller * ctrl)801 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
802 {
803 u64 err_addr;
804
805 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
806 err_addr |= ((u64)(brcmnand_read_reg(ctrl,
807 BRCMNAND_UNCORR_EXT_ADDR)
808 & 0xffff) << 32);
809
810 return err_addr;
811 }
812
brcmnand_get_correcc_addr(struct brcmnand_controller * ctrl)813 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
814 {
815 u64 err_addr;
816
817 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
818 err_addr |= ((u64)(brcmnand_read_reg(ctrl,
819 BRCMNAND_CORR_EXT_ADDR)
820 & 0xffff) << 32);
821
822 return err_addr;
823 }
824
brcmnand_set_cmd_addr(struct mtd_info * mtd,u64 addr)825 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
826 {
827 struct nand_chip *chip = mtd_to_nand(mtd);
828 struct brcmnand_host *host = nand_get_controller_data(chip);
829 struct brcmnand_controller *ctrl = host->ctrl;
830
831 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
832 (host->cs << 16) | ((addr >> 32) & 0xffff));
833 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
834 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
835 lower_32_bits(addr));
836 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
837 }
838
brcmnand_cs_offset(struct brcmnand_controller * ctrl,int cs,enum brcmnand_cs_reg reg)839 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
840 enum brcmnand_cs_reg reg)
841 {
842 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
843 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
844 u8 cs_offs;
845
846 if (cs == 0 && ctrl->cs0_offsets)
847 cs_offs = ctrl->cs0_offsets[reg];
848 else
849 cs_offs = ctrl->cs_offsets[reg];
850
851 if (cs && offs_cs1)
852 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
853
854 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
855 }
856
brcmnand_count_corrected(struct brcmnand_controller * ctrl)857 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
858 {
859 if (ctrl->nand_version < 0x0600)
860 return 1;
861 return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
862 }
863
brcmnand_wr_corr_thresh(struct brcmnand_host * host,u8 val)864 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
865 {
866 struct brcmnand_controller *ctrl = host->ctrl;
867 unsigned int shift = 0, bits;
868 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
869 int cs = host->cs;
870
871 if (!ctrl->reg_offsets[reg])
872 return;
873
874 if (ctrl->nand_version == 0x0702)
875 bits = 7;
876 else if (ctrl->nand_version >= 0x0600)
877 bits = 6;
878 else if (ctrl->nand_version >= 0x0500)
879 bits = 5;
880 else
881 bits = 4;
882
883 if (ctrl->nand_version >= 0x0702) {
884 if (cs >= 4)
885 reg = BRCMNAND_CORR_THRESHOLD_EXT;
886 shift = (cs % 4) * bits;
887 } else if (ctrl->nand_version >= 0x0600) {
888 if (cs >= 5)
889 reg = BRCMNAND_CORR_THRESHOLD_EXT;
890 shift = (cs % 5) * bits;
891 }
892 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
893 }
894
brcmnand_cmd_shift(struct brcmnand_controller * ctrl)895 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
896 {
897 if (ctrl->nand_version < 0x0602)
898 return 24;
899 return 0;
900 }
901
902 /***********************************************************************
903 * NAND ACC CONTROL bitfield
904 *
905 * Some bits have remained constant throughout hardware revision, while
906 * others have shifted around.
907 ***********************************************************************/
908
909 /* Constant for all versions (where supported) */
910 enum {
911 /* See BRCMNAND_HAS_CACHE_MODE */
912 ACC_CONTROL_CACHE_MODE = BIT(22),
913
914 /* See BRCMNAND_HAS_PREFETCH */
915 ACC_CONTROL_PREFETCH = BIT(23),
916
917 ACC_CONTROL_PAGE_HIT = BIT(24),
918 ACC_CONTROL_WR_PREEMPT = BIT(25),
919 ACC_CONTROL_PARTIAL_PAGE = BIT(26),
920 ACC_CONTROL_RD_ERASED = BIT(27),
921 ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
922 ACC_CONTROL_WR_ECC = BIT(30),
923 ACC_CONTROL_RD_ECC = BIT(31),
924 };
925
brcmnand_spare_area_mask(struct brcmnand_controller * ctrl)926 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
927 {
928 if (ctrl->nand_version == 0x0702)
929 return GENMASK(7, 0);
930 else if (ctrl->nand_version >= 0x0600)
931 return GENMASK(6, 0);
932 else if (ctrl->nand_version >= 0x0303)
933 return GENMASK(5, 0);
934 else
935 return GENMASK(4, 0);
936 }
937
938 #define NAND_ACC_CONTROL_ECC_SHIFT 16
939 #define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13
940
brcmnand_ecc_level_mask(struct brcmnand_controller * ctrl)941 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
942 {
943 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
944
945 mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
946
947 /* v7.2 includes additional ECC levels */
948 if (ctrl->nand_version >= 0x0702)
949 mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
950
951 return mask;
952 }
953
brcmnand_set_ecc_enabled(struct brcmnand_host * host,int en)954 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
955 {
956 struct brcmnand_controller *ctrl = host->ctrl;
957 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
958 u32 acc_control = nand_readreg(ctrl, offs);
959 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
960
961 if (en) {
962 acc_control |= ecc_flags; /* enable RD/WR ECC */
963 acc_control |= host->hwcfg.ecc_level
964 << NAND_ACC_CONTROL_ECC_SHIFT;
965 } else {
966 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
967 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
968 }
969
970 nand_writereg(ctrl, offs, acc_control);
971 }
972
brcmnand_sector_1k_shift(struct brcmnand_controller * ctrl)973 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
974 {
975 if (ctrl->nand_version >= 0x0702)
976 return 9;
977 else if (ctrl->nand_version >= 0x0600)
978 return 7;
979 else if (ctrl->nand_version >= 0x0500)
980 return 6;
981 else
982 return -1;
983 }
984
brcmnand_get_sector_size_1k(struct brcmnand_host * host)985 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
986 {
987 struct brcmnand_controller *ctrl = host->ctrl;
988 int shift = brcmnand_sector_1k_shift(ctrl);
989 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
990 BRCMNAND_CS_ACC_CONTROL);
991
992 if (shift < 0)
993 return 0;
994
995 return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
996 }
997
brcmnand_set_sector_size_1k(struct brcmnand_host * host,int val)998 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
999 {
1000 struct brcmnand_controller *ctrl = host->ctrl;
1001 int shift = brcmnand_sector_1k_shift(ctrl);
1002 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1003 BRCMNAND_CS_ACC_CONTROL);
1004 u32 tmp;
1005
1006 if (shift < 0)
1007 return;
1008
1009 tmp = nand_readreg(ctrl, acc_control_offs);
1010 tmp &= ~(1 << shift);
1011 tmp |= (!!val) << shift;
1012 nand_writereg(ctrl, acc_control_offs, tmp);
1013 }
1014
1015 /***********************************************************************
1016 * CS_NAND_SELECT
1017 ***********************************************************************/
1018
1019 enum {
1020 CS_SELECT_NAND_WP = BIT(29),
1021 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
1022 };
1023
bcmnand_ctrl_poll_status(struct brcmnand_controller * ctrl,u32 mask,u32 expected_val,unsigned long timeout_ms)1024 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
1025 u32 mask, u32 expected_val,
1026 unsigned long timeout_ms)
1027 {
1028 unsigned long limit;
1029 u32 val;
1030
1031 if (!timeout_ms)
1032 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1033
1034 limit = jiffies + msecs_to_jiffies(timeout_ms);
1035 do {
1036 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1037 if ((val & mask) == expected_val)
1038 return 0;
1039
1040 cpu_relax();
1041 } while (time_after(limit, jiffies));
1042
1043 dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1044 expected_val, val & mask);
1045
1046 return -ETIMEDOUT;
1047 }
1048
brcmnand_set_wp(struct brcmnand_controller * ctrl,bool en)1049 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1050 {
1051 u32 val = en ? CS_SELECT_NAND_WP : 0;
1052
1053 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1054 }
1055
1056 /***********************************************************************
1057 * Flash DMA
1058 ***********************************************************************/
1059
has_flash_dma(struct brcmnand_controller * ctrl)1060 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1061 {
1062 return ctrl->flash_dma_base;
1063 }
1064
has_edu(struct brcmnand_controller * ctrl)1065 static inline bool has_edu(struct brcmnand_controller *ctrl)
1066 {
1067 return ctrl->edu_base;
1068 }
1069
use_dma(struct brcmnand_controller * ctrl)1070 static inline bool use_dma(struct brcmnand_controller *ctrl)
1071 {
1072 return has_flash_dma(ctrl) || has_edu(ctrl);
1073 }
1074
disable_ctrl_irqs(struct brcmnand_controller * ctrl)1075 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1076 {
1077 if (ctrl->pio_poll_mode)
1078 return;
1079
1080 if (has_flash_dma(ctrl)) {
1081 ctrl->flash_dma_base = NULL;
1082 disable_irq(ctrl->dma_irq);
1083 }
1084
1085 disable_irq(ctrl->irq);
1086 ctrl->pio_poll_mode = true;
1087 }
1088
flash_dma_buf_ok(const void * buf)1089 static inline bool flash_dma_buf_ok(const void *buf)
1090 {
1091 return buf && !is_vmalloc_addr(buf) &&
1092 likely(IS_ALIGNED((uintptr_t)buf, 4));
1093 }
1094
flash_dma_writel(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg,u32 val)1095 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1096 enum flash_dma_reg dma_reg, u32 val)
1097 {
1098 u16 offs = ctrl->flash_dma_offsets[dma_reg];
1099
1100 brcmnand_writel(val, ctrl->flash_dma_base + offs);
1101 }
1102
flash_dma_readl(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg)1103 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1104 enum flash_dma_reg dma_reg)
1105 {
1106 u16 offs = ctrl->flash_dma_offsets[dma_reg];
1107
1108 return brcmnand_readl(ctrl->flash_dma_base + offs);
1109 }
1110
1111 /* Low-level operation types: command, address, write, or read */
1112 enum brcmnand_llop_type {
1113 LL_OP_CMD,
1114 LL_OP_ADDR,
1115 LL_OP_WR,
1116 LL_OP_RD,
1117 };
1118
1119 /***********************************************************************
1120 * Internal support functions
1121 ***********************************************************************/
1122
is_hamming_ecc(struct brcmnand_controller * ctrl,struct brcmnand_cfg * cfg)1123 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1124 struct brcmnand_cfg *cfg)
1125 {
1126 if (ctrl->nand_version <= 0x0701)
1127 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1128 cfg->ecc_level == 15;
1129 else
1130 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1131 cfg->ecc_level == 15) ||
1132 (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1133 }
1134
1135 /*
1136 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1137 * the layout/configuration.
1138 * Returns -ERRCODE on failure.
1139 */
brcmnand_hamming_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1140 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1141 struct mtd_oob_region *oobregion)
1142 {
1143 struct nand_chip *chip = mtd_to_nand(mtd);
1144 struct brcmnand_host *host = nand_get_controller_data(chip);
1145 struct brcmnand_cfg *cfg = &host->hwcfg;
1146 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1147 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1148
1149 if (section >= sectors)
1150 return -ERANGE;
1151
1152 oobregion->offset = (section * sas) + 6;
1153 oobregion->length = 3;
1154
1155 return 0;
1156 }
1157
brcmnand_hamming_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1158 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1159 struct mtd_oob_region *oobregion)
1160 {
1161 struct nand_chip *chip = mtd_to_nand(mtd);
1162 struct brcmnand_host *host = nand_get_controller_data(chip);
1163 struct brcmnand_cfg *cfg = &host->hwcfg;
1164 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1165 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1166 u32 next;
1167
1168 if (section > sectors)
1169 return -ERANGE;
1170
1171 next = (section * sas);
1172 if (section < sectors)
1173 next += 6;
1174
1175 if (section) {
1176 oobregion->offset = ((section - 1) * sas) + 9;
1177 } else {
1178 if (cfg->page_size > 512) {
1179 /* Large page NAND uses first 2 bytes for BBI */
1180 oobregion->offset = 2;
1181 } else {
1182 /* Small page NAND uses last byte before ECC for BBI */
1183 oobregion->offset = 0;
1184 next--;
1185 }
1186 }
1187
1188 oobregion->length = next - oobregion->offset;
1189
1190 return 0;
1191 }
1192
1193 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1194 .ecc = brcmnand_hamming_ooblayout_ecc,
1195 .free = brcmnand_hamming_ooblayout_free,
1196 };
1197
brcmnand_bch_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1198 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1199 struct mtd_oob_region *oobregion)
1200 {
1201 struct nand_chip *chip = mtd_to_nand(mtd);
1202 struct brcmnand_host *host = nand_get_controller_data(chip);
1203 struct brcmnand_cfg *cfg = &host->hwcfg;
1204 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1205 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1206
1207 if (section >= sectors)
1208 return -ERANGE;
1209
1210 oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1211 oobregion->length = chip->ecc.bytes;
1212
1213 return 0;
1214 }
1215
brcmnand_bch_ooblayout_free_lp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1216 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1217 struct mtd_oob_region *oobregion)
1218 {
1219 struct nand_chip *chip = mtd_to_nand(mtd);
1220 struct brcmnand_host *host = nand_get_controller_data(chip);
1221 struct brcmnand_cfg *cfg = &host->hwcfg;
1222 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1223 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1224
1225 if (section >= sectors)
1226 return -ERANGE;
1227
1228 if (sas <= chip->ecc.bytes)
1229 return 0;
1230
1231 oobregion->offset = section * sas;
1232 oobregion->length = sas - chip->ecc.bytes;
1233
1234 if (!section) {
1235 oobregion->offset++;
1236 oobregion->length--;
1237 }
1238
1239 return 0;
1240 }
1241
brcmnand_bch_ooblayout_free_sp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1242 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1243 struct mtd_oob_region *oobregion)
1244 {
1245 struct nand_chip *chip = mtd_to_nand(mtd);
1246 struct brcmnand_host *host = nand_get_controller_data(chip);
1247 struct brcmnand_cfg *cfg = &host->hwcfg;
1248 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1249
1250 if (section > 1 || sas - chip->ecc.bytes < 6 ||
1251 (section && sas - chip->ecc.bytes == 6))
1252 return -ERANGE;
1253
1254 if (!section) {
1255 oobregion->offset = 0;
1256 oobregion->length = 5;
1257 } else {
1258 oobregion->offset = 6;
1259 oobregion->length = sas - chip->ecc.bytes - 6;
1260 }
1261
1262 return 0;
1263 }
1264
1265 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1266 .ecc = brcmnand_bch_ooblayout_ecc,
1267 .free = brcmnand_bch_ooblayout_free_lp,
1268 };
1269
1270 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1271 .ecc = brcmnand_bch_ooblayout_ecc,
1272 .free = brcmnand_bch_ooblayout_free_sp,
1273 };
1274
brcmstb_choose_ecc_layout(struct brcmnand_host * host)1275 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1276 {
1277 struct brcmnand_cfg *p = &host->hwcfg;
1278 struct mtd_info *mtd = nand_to_mtd(&host->chip);
1279 struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1280 unsigned int ecc_level = p->ecc_level;
1281 int sas = p->spare_area_size << p->sector_size_1k;
1282 int sectors = p->page_size / (512 << p->sector_size_1k);
1283
1284 if (p->sector_size_1k)
1285 ecc_level <<= 1;
1286
1287 if (is_hamming_ecc(host->ctrl, p)) {
1288 ecc->bytes = 3 * sectors;
1289 mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1290 return 0;
1291 }
1292
1293 /*
1294 * CONTROLLER_VERSION:
1295 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1296 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1297 * But we will just be conservative.
1298 */
1299 ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1300 if (p->page_size == 512)
1301 mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1302 else
1303 mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1304
1305 if (ecc->bytes >= sas) {
1306 dev_err(&host->pdev->dev,
1307 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1308 ecc->bytes, sas);
1309 return -EINVAL;
1310 }
1311
1312 return 0;
1313 }
1314
brcmnand_wp(struct mtd_info * mtd,int wp)1315 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1316 {
1317 struct nand_chip *chip = mtd_to_nand(mtd);
1318 struct brcmnand_host *host = nand_get_controller_data(chip);
1319 struct brcmnand_controller *ctrl = host->ctrl;
1320
1321 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1322 static int old_wp = -1;
1323 int ret;
1324
1325 if (old_wp != wp) {
1326 dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1327 old_wp = wp;
1328 }
1329
1330 /*
1331 * make sure ctrl/flash ready before and after
1332 * changing state of #WP pin
1333 */
1334 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1335 NAND_STATUS_READY,
1336 NAND_CTRL_RDY |
1337 NAND_STATUS_READY, 0);
1338 if (ret)
1339 return;
1340
1341 brcmnand_set_wp(ctrl, wp);
1342 nand_status_op(chip, NULL);
1343 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1344 ret = bcmnand_ctrl_poll_status(ctrl,
1345 NAND_CTRL_RDY |
1346 NAND_STATUS_READY |
1347 NAND_STATUS_WP,
1348 NAND_CTRL_RDY |
1349 NAND_STATUS_READY |
1350 (wp ? 0 : NAND_STATUS_WP), 0);
1351
1352 if (ret)
1353 dev_err_ratelimited(&host->pdev->dev,
1354 "nand #WP expected %s\n",
1355 wp ? "on" : "off");
1356 }
1357 }
1358
1359 /* Helper functions for reading and writing OOB registers */
oob_reg_read(struct brcmnand_controller * ctrl,u32 offs)1360 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1361 {
1362 u16 offset0, offset10, reg_offs;
1363
1364 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1365 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1366
1367 if (offs >= ctrl->max_oob)
1368 return 0x77;
1369
1370 if (offs >= 16 && offset10)
1371 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1372 else
1373 reg_offs = offset0 + (offs & ~0x03);
1374
1375 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1376 }
1377
oob_reg_write(struct brcmnand_controller * ctrl,u32 offs,u32 data)1378 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1379 u32 data)
1380 {
1381 u16 offset0, offset10, reg_offs;
1382
1383 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1384 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1385
1386 if (offs >= ctrl->max_oob)
1387 return;
1388
1389 if (offs >= 16 && offset10)
1390 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1391 else
1392 reg_offs = offset0 + (offs & ~0x03);
1393
1394 nand_writereg(ctrl, reg_offs, data);
1395 }
1396
1397 /*
1398 * read_oob_from_regs - read data from OOB registers
1399 * @ctrl: NAND controller
1400 * @i: sub-page sector index
1401 * @oob: buffer to read to
1402 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1403 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1404 */
read_oob_from_regs(struct brcmnand_controller * ctrl,int i,u8 * oob,int sas,int sector_1k)1405 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1406 int sas, int sector_1k)
1407 {
1408 int tbytes = sas << sector_1k;
1409 int j;
1410
1411 /* Adjust OOB values for 1K sector size */
1412 if (sector_1k && (i & 0x01))
1413 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1414 tbytes = min_t(int, tbytes, ctrl->max_oob);
1415
1416 for (j = 0; j < tbytes; j++)
1417 oob[j] = oob_reg_read(ctrl, j);
1418 return tbytes;
1419 }
1420
1421 /*
1422 * write_oob_to_regs - write data to OOB registers
1423 * @i: sub-page sector index
1424 * @oob: buffer to write from
1425 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1426 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1427 */
write_oob_to_regs(struct brcmnand_controller * ctrl,int i,const u8 * oob,int sas,int sector_1k)1428 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1429 const u8 *oob, int sas, int sector_1k)
1430 {
1431 int tbytes = sas << sector_1k;
1432 int j;
1433
1434 /* Adjust OOB values for 1K sector size */
1435 if (sector_1k && (i & 0x01))
1436 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1437 tbytes = min_t(int, tbytes, ctrl->max_oob);
1438
1439 for (j = 0; j < tbytes; j += 4)
1440 oob_reg_write(ctrl, j,
1441 (oob[j + 0] << 24) |
1442 (oob[j + 1] << 16) |
1443 (oob[j + 2] << 8) |
1444 (oob[j + 3] << 0));
1445 return tbytes;
1446 }
1447
brcmnand_edu_init(struct brcmnand_controller * ctrl)1448 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1449 {
1450 /* initialize edu */
1451 edu_writel(ctrl, EDU_ERR_STATUS, 0);
1452 edu_readl(ctrl, EDU_ERR_STATUS);
1453 edu_writel(ctrl, EDU_DONE, 0);
1454 edu_writel(ctrl, EDU_DONE, 0);
1455 edu_writel(ctrl, EDU_DONE, 0);
1456 edu_writel(ctrl, EDU_DONE, 0);
1457 edu_readl(ctrl, EDU_DONE);
1458 }
1459
1460 /* edu irq */
brcmnand_edu_irq(int irq,void * data)1461 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1462 {
1463 struct brcmnand_controller *ctrl = data;
1464
1465 if (ctrl->edu_count) {
1466 ctrl->edu_count--;
1467 while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1468 udelay(1);
1469 edu_writel(ctrl, EDU_DONE, 0);
1470 edu_readl(ctrl, EDU_DONE);
1471 }
1472
1473 if (ctrl->edu_count) {
1474 ctrl->edu_dram_addr += FC_BYTES;
1475 ctrl->edu_ext_addr += FC_BYTES;
1476
1477 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1478 edu_readl(ctrl, EDU_DRAM_ADDR);
1479 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1480 edu_readl(ctrl, EDU_EXT_ADDR);
1481
1482 mb(); /* flush previous writes */
1483 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1484 edu_readl(ctrl, EDU_CMD);
1485
1486 return IRQ_HANDLED;
1487 }
1488
1489 complete(&ctrl->edu_done);
1490
1491 return IRQ_HANDLED;
1492 }
1493
brcmnand_ctlrdy_irq(int irq,void * data)1494 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1495 {
1496 struct brcmnand_controller *ctrl = data;
1497
1498 /* Discard all NAND_CTLRDY interrupts during DMA */
1499 if (ctrl->dma_pending)
1500 return IRQ_HANDLED;
1501
1502 /* check if you need to piggy back on the ctrlrdy irq */
1503 if (ctrl->edu_pending) {
1504 if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1505 /* Discard interrupts while using dedicated edu irq */
1506 return IRQ_HANDLED;
1507
1508 /* no registered edu irq, call handler */
1509 return brcmnand_edu_irq(irq, data);
1510 }
1511
1512 complete(&ctrl->done);
1513 return IRQ_HANDLED;
1514 }
1515
1516 /* Handle SoC-specific interrupt hardware */
brcmnand_irq(int irq,void * data)1517 static irqreturn_t brcmnand_irq(int irq, void *data)
1518 {
1519 struct brcmnand_controller *ctrl = data;
1520
1521 if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1522 return brcmnand_ctlrdy_irq(irq, data);
1523
1524 return IRQ_NONE;
1525 }
1526
brcmnand_dma_irq(int irq,void * data)1527 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1528 {
1529 struct brcmnand_controller *ctrl = data;
1530
1531 complete(&ctrl->dma_done);
1532
1533 return IRQ_HANDLED;
1534 }
1535
brcmnand_send_cmd(struct brcmnand_host * host,int cmd)1536 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1537 {
1538 struct brcmnand_controller *ctrl = host->ctrl;
1539 int ret;
1540 u64 cmd_addr;
1541
1542 cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1543
1544 dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1545
1546 BUG_ON(ctrl->cmd_pending != 0);
1547 ctrl->cmd_pending = cmd;
1548
1549 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1550 WARN_ON(ret);
1551
1552 mb(); /* flush previous writes */
1553 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1554 cmd << brcmnand_cmd_shift(ctrl));
1555 }
1556
1557 /***********************************************************************
1558 * NAND MTD API: read/program/erase
1559 ***********************************************************************/
1560
brcmnand_cmd_ctrl(struct nand_chip * chip,int dat,unsigned int ctrl)1561 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1562 unsigned int ctrl)
1563 {
1564 /* intentionally left blank */
1565 }
1566
brcmstb_nand_wait_for_completion(struct nand_chip * chip)1567 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1568 {
1569 struct brcmnand_host *host = nand_get_controller_data(chip);
1570 struct brcmnand_controller *ctrl = host->ctrl;
1571 struct mtd_info *mtd = nand_to_mtd(chip);
1572 bool err = false;
1573 int sts;
1574
1575 if (mtd->oops_panic_write) {
1576 /* switch to interrupt polling and PIO mode */
1577 disable_ctrl_irqs(ctrl);
1578 sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1579 NAND_CTRL_RDY, 0);
1580 err = (sts < 0) ? true : false;
1581 } else {
1582 unsigned long timeo = msecs_to_jiffies(
1583 NAND_POLL_STATUS_TIMEOUT_MS);
1584 /* wait for completion interrupt */
1585 sts = wait_for_completion_timeout(&ctrl->done, timeo);
1586 err = (sts <= 0) ? true : false;
1587 }
1588
1589 return err;
1590 }
1591
brcmnand_waitfunc(struct nand_chip * chip)1592 static int brcmnand_waitfunc(struct nand_chip *chip)
1593 {
1594 struct brcmnand_host *host = nand_get_controller_data(chip);
1595 struct brcmnand_controller *ctrl = host->ctrl;
1596 bool err = false;
1597
1598 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1599 if (ctrl->cmd_pending)
1600 err = brcmstb_nand_wait_for_completion(chip);
1601
1602 if (err) {
1603 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1604 >> brcmnand_cmd_shift(ctrl);
1605
1606 dev_err_ratelimited(ctrl->dev,
1607 "timeout waiting for command %#02x\n", cmd);
1608 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1609 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1610 }
1611 ctrl->cmd_pending = 0;
1612 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1613 INTFC_FLASH_STATUS;
1614 }
1615
1616 enum {
1617 LLOP_RE = BIT(16),
1618 LLOP_WE = BIT(17),
1619 LLOP_ALE = BIT(18),
1620 LLOP_CLE = BIT(19),
1621 LLOP_RETURN_IDLE = BIT(31),
1622
1623 LLOP_DATA_MASK = GENMASK(15, 0),
1624 };
1625
brcmnand_low_level_op(struct brcmnand_host * host,enum brcmnand_llop_type type,u32 data,bool last_op)1626 static int brcmnand_low_level_op(struct brcmnand_host *host,
1627 enum brcmnand_llop_type type, u32 data,
1628 bool last_op)
1629 {
1630 struct nand_chip *chip = &host->chip;
1631 struct brcmnand_controller *ctrl = host->ctrl;
1632 u32 tmp;
1633
1634 tmp = data & LLOP_DATA_MASK;
1635 switch (type) {
1636 case LL_OP_CMD:
1637 tmp |= LLOP_WE | LLOP_CLE;
1638 break;
1639 case LL_OP_ADDR:
1640 /* WE | ALE */
1641 tmp |= LLOP_WE | LLOP_ALE;
1642 break;
1643 case LL_OP_WR:
1644 /* WE */
1645 tmp |= LLOP_WE;
1646 break;
1647 case LL_OP_RD:
1648 /* RE */
1649 tmp |= LLOP_RE;
1650 break;
1651 }
1652 if (last_op)
1653 /* RETURN_IDLE */
1654 tmp |= LLOP_RETURN_IDLE;
1655
1656 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1657
1658 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1659 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1660
1661 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1662 return brcmnand_waitfunc(chip);
1663 }
1664
brcmnand_cmdfunc(struct nand_chip * chip,unsigned command,int column,int page_addr)1665 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1666 int column, int page_addr)
1667 {
1668 struct mtd_info *mtd = nand_to_mtd(chip);
1669 struct brcmnand_host *host = nand_get_controller_data(chip);
1670 struct brcmnand_controller *ctrl = host->ctrl;
1671 u64 addr = (u64)page_addr << chip->page_shift;
1672 int native_cmd = 0;
1673
1674 if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1675 command == NAND_CMD_RNDOUT)
1676 addr = (u64)column;
1677 /* Avoid propagating a negative, don't-care address */
1678 else if (page_addr < 0)
1679 addr = 0;
1680
1681 dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1682 (unsigned long long)addr);
1683
1684 host->last_cmd = command;
1685 host->last_byte = 0;
1686 host->last_addr = addr;
1687
1688 switch (command) {
1689 case NAND_CMD_RESET:
1690 native_cmd = CMD_FLASH_RESET;
1691 break;
1692 case NAND_CMD_STATUS:
1693 native_cmd = CMD_STATUS_READ;
1694 break;
1695 case NAND_CMD_READID:
1696 native_cmd = CMD_DEVICE_ID_READ;
1697 break;
1698 case NAND_CMD_READOOB:
1699 native_cmd = CMD_SPARE_AREA_READ;
1700 break;
1701 case NAND_CMD_ERASE1:
1702 native_cmd = CMD_BLOCK_ERASE;
1703 brcmnand_wp(mtd, 0);
1704 break;
1705 case NAND_CMD_PARAM:
1706 native_cmd = CMD_PARAMETER_READ;
1707 break;
1708 case NAND_CMD_SET_FEATURES:
1709 case NAND_CMD_GET_FEATURES:
1710 brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1711 brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1712 break;
1713 case NAND_CMD_RNDOUT:
1714 native_cmd = CMD_PARAMETER_CHANGE_COL;
1715 addr &= ~((u64)(FC_BYTES - 1));
1716 /*
1717 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1718 * NB: hwcfg.sector_size_1k may not be initialized yet
1719 */
1720 if (brcmnand_get_sector_size_1k(host)) {
1721 host->hwcfg.sector_size_1k =
1722 brcmnand_get_sector_size_1k(host);
1723 brcmnand_set_sector_size_1k(host, 0);
1724 }
1725 break;
1726 }
1727
1728 if (!native_cmd)
1729 return;
1730
1731 brcmnand_set_cmd_addr(mtd, addr);
1732 brcmnand_send_cmd(host, native_cmd);
1733 brcmnand_waitfunc(chip);
1734
1735 if (native_cmd == CMD_PARAMETER_READ ||
1736 native_cmd == CMD_PARAMETER_CHANGE_COL) {
1737 /* Copy flash cache word-wise */
1738 u32 *flash_cache = (u32 *)ctrl->flash_cache;
1739 int i;
1740
1741 brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1742
1743 /*
1744 * Must cache the FLASH_CACHE now, since changes in
1745 * SECTOR_SIZE_1K may invalidate it
1746 */
1747 for (i = 0; i < FC_WORDS; i++)
1748 /*
1749 * Flash cache is big endian for parameter pages, at
1750 * least on STB SoCs
1751 */
1752 flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1753
1754 brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1755
1756 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1757 if (host->hwcfg.sector_size_1k)
1758 brcmnand_set_sector_size_1k(host,
1759 host->hwcfg.sector_size_1k);
1760 }
1761
1762 /* Re-enable protection is necessary only after erase */
1763 if (command == NAND_CMD_ERASE1)
1764 brcmnand_wp(mtd, 1);
1765 }
1766
brcmnand_read_byte(struct nand_chip * chip)1767 static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1768 {
1769 struct brcmnand_host *host = nand_get_controller_data(chip);
1770 struct brcmnand_controller *ctrl = host->ctrl;
1771 uint8_t ret = 0;
1772 int addr, offs;
1773
1774 switch (host->last_cmd) {
1775 case NAND_CMD_READID:
1776 if (host->last_byte < 4)
1777 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1778 (24 - (host->last_byte << 3));
1779 else if (host->last_byte < 8)
1780 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1781 (56 - (host->last_byte << 3));
1782 break;
1783
1784 case NAND_CMD_READOOB:
1785 ret = oob_reg_read(ctrl, host->last_byte);
1786 break;
1787
1788 case NAND_CMD_STATUS:
1789 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1790 INTFC_FLASH_STATUS;
1791 if (wp_on) /* hide WP status */
1792 ret |= NAND_STATUS_WP;
1793 break;
1794
1795 case NAND_CMD_PARAM:
1796 case NAND_CMD_RNDOUT:
1797 addr = host->last_addr + host->last_byte;
1798 offs = addr & (FC_BYTES - 1);
1799
1800 /* At FC_BYTES boundary, switch to next column */
1801 if (host->last_byte > 0 && offs == 0)
1802 nand_change_read_column_op(chip, addr, NULL, 0, false);
1803
1804 ret = ctrl->flash_cache[offs];
1805 break;
1806 case NAND_CMD_GET_FEATURES:
1807 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1808 ret = 0;
1809 } else {
1810 bool last = host->last_byte ==
1811 ONFI_SUBFEATURE_PARAM_LEN - 1;
1812 brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1813 ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1814 }
1815 }
1816
1817 dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1818 host->last_byte++;
1819
1820 return ret;
1821 }
1822
brcmnand_read_buf(struct nand_chip * chip,uint8_t * buf,int len)1823 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1824 {
1825 int i;
1826
1827 for (i = 0; i < len; i++, buf++)
1828 *buf = brcmnand_read_byte(chip);
1829 }
1830
brcmnand_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)1831 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1832 int len)
1833 {
1834 int i;
1835 struct brcmnand_host *host = nand_get_controller_data(chip);
1836
1837 switch (host->last_cmd) {
1838 case NAND_CMD_SET_FEATURES:
1839 for (i = 0; i < len; i++)
1840 brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1841 (i + 1) == len);
1842 break;
1843 default:
1844 BUG();
1845 break;
1846 }
1847 }
1848
1849 /**
1850 * Kick EDU engine
1851 */
brcmnand_edu_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u32 len,u8 cmd)1852 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1853 u32 len, u8 cmd)
1854 {
1855 struct brcmnand_controller *ctrl = host->ctrl;
1856 unsigned long timeo = msecs_to_jiffies(200);
1857 int ret = 0;
1858 int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1859 u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1860 unsigned int trans = len >> FC_SHIFT;
1861 dma_addr_t pa;
1862
1863 pa = dma_map_single(ctrl->dev, buf, len, dir);
1864 if (dma_mapping_error(ctrl->dev, pa)) {
1865 dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1866 return -ENOMEM;
1867 }
1868
1869 ctrl->edu_pending = true;
1870 ctrl->edu_dram_addr = pa;
1871 ctrl->edu_ext_addr = addr;
1872 ctrl->edu_cmd = edu_cmd;
1873 ctrl->edu_count = trans;
1874
1875 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1876 edu_readl(ctrl, EDU_DRAM_ADDR);
1877 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1878 edu_readl(ctrl, EDU_EXT_ADDR);
1879 edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1880 edu_readl(ctrl, EDU_LENGTH);
1881
1882 /* Start edu engine */
1883 mb(); /* flush previous writes */
1884 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1885 edu_readl(ctrl, EDU_CMD);
1886
1887 if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1888 dev_err(ctrl->dev,
1889 "timeout waiting for EDU; status %#x, error status %#x\n",
1890 edu_readl(ctrl, EDU_STATUS),
1891 edu_readl(ctrl, EDU_ERR_STATUS));
1892 }
1893
1894 dma_unmap_single(ctrl->dev, pa, len, dir);
1895
1896 /* for program page check NAND status */
1897 if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1898 INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1899 edu_cmd == EDU_CMD_WRITE) {
1900 dev_info(ctrl->dev, "program failed at %llx\n",
1901 (unsigned long long)addr);
1902 ret = -EIO;
1903 }
1904
1905 /* Make sure the EDU status is clean */
1906 if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1907 dev_warn(ctrl->dev, "EDU still active: %#x\n",
1908 edu_readl(ctrl, EDU_STATUS));
1909
1910 if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1911 dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1912 (unsigned long long)addr);
1913 ret = -EIO;
1914 }
1915
1916 ctrl->edu_pending = false;
1917 brcmnand_edu_init(ctrl);
1918 edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1919 edu_readl(ctrl, EDU_STOP);
1920
1921 if (!ret && edu_cmd == EDU_CMD_READ) {
1922 u64 err_addr = 0;
1923
1924 /*
1925 * check for ECC errors here, subpage ECC errors are
1926 * retained in ECC error address register
1927 */
1928 err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1929 if (!err_addr) {
1930 err_addr = brcmnand_get_correcc_addr(ctrl);
1931 if (err_addr)
1932 ret = -EUCLEAN;
1933 } else
1934 ret = -EBADMSG;
1935 }
1936
1937 return ret;
1938 }
1939
1940 /**
1941 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1942 * following ahead of time:
1943 * - Is this descriptor the beginning or end of a linked list?
1944 * - What is the (DMA) address of the next descriptor in the linked list?
1945 */
brcmnand_fill_dma_desc(struct brcmnand_host * host,struct brcm_nand_dma_desc * desc,u64 addr,dma_addr_t buf,u32 len,u8 dma_cmd,bool begin,bool end,dma_addr_t next_desc)1946 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1947 struct brcm_nand_dma_desc *desc, u64 addr,
1948 dma_addr_t buf, u32 len, u8 dma_cmd,
1949 bool begin, bool end,
1950 dma_addr_t next_desc)
1951 {
1952 memset(desc, 0, sizeof(*desc));
1953 /* Descriptors are written in native byte order (wordwise) */
1954 desc->next_desc = lower_32_bits(next_desc);
1955 desc->next_desc_ext = upper_32_bits(next_desc);
1956 desc->cmd_irq = (dma_cmd << 24) |
1957 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1958 (!!begin) | ((!!end) << 1); /* head, tail */
1959 #ifdef CONFIG_CPU_BIG_ENDIAN
1960 desc->cmd_irq |= 0x01 << 12;
1961 #endif
1962 desc->dram_addr = lower_32_bits(buf);
1963 desc->dram_addr_ext = upper_32_bits(buf);
1964 desc->tfr_len = len;
1965 desc->total_len = len;
1966 desc->flash_addr = lower_32_bits(addr);
1967 desc->flash_addr_ext = upper_32_bits(addr);
1968 desc->cs = host->cs;
1969 desc->status_valid = 0x01;
1970 return 0;
1971 }
1972
1973 /**
1974 * Kick the FLASH_DMA engine, with a given DMA descriptor
1975 */
brcmnand_dma_run(struct brcmnand_host * host,dma_addr_t desc)1976 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1977 {
1978 struct brcmnand_controller *ctrl = host->ctrl;
1979 unsigned long timeo = msecs_to_jiffies(100);
1980
1981 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1982 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1983 if (ctrl->nand_version > 0x0602) {
1984 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
1985 upper_32_bits(desc));
1986 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1987 }
1988
1989 /* Start FLASH_DMA engine */
1990 ctrl->dma_pending = true;
1991 mb(); /* flush previous writes */
1992 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1993
1994 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1995 dev_err(ctrl->dev,
1996 "timeout waiting for DMA; status %#x, error status %#x\n",
1997 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1998 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1999 }
2000 ctrl->dma_pending = false;
2001 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2002 }
2003
brcmnand_dma_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u32 len,u8 dma_cmd)2004 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2005 u32 len, u8 dma_cmd)
2006 {
2007 struct brcmnand_controller *ctrl = host->ctrl;
2008 dma_addr_t buf_pa;
2009 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2010
2011 buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2012 if (dma_mapping_error(ctrl->dev, buf_pa)) {
2013 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2014 return -ENOMEM;
2015 }
2016
2017 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2018 dma_cmd, true, true, 0);
2019
2020 brcmnand_dma_run(host, ctrl->dma_pa);
2021
2022 dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2023
2024 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2025 return -EBADMSG;
2026 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2027 return -EUCLEAN;
2028
2029 return 0;
2030 }
2031
2032 /*
2033 * Assumes proper CS is already set
2034 */
brcmnand_read_by_pio(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob,u64 * err_addr)2035 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2036 u64 addr, unsigned int trans, u32 *buf,
2037 u8 *oob, u64 *err_addr)
2038 {
2039 struct brcmnand_host *host = nand_get_controller_data(chip);
2040 struct brcmnand_controller *ctrl = host->ctrl;
2041 int i, j, ret = 0;
2042
2043 brcmnand_clear_ecc_addr(ctrl);
2044
2045 for (i = 0; i < trans; i++, addr += FC_BYTES) {
2046 brcmnand_set_cmd_addr(mtd, addr);
2047 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2048 brcmnand_send_cmd(host, CMD_PAGE_READ);
2049 brcmnand_waitfunc(chip);
2050
2051 if (likely(buf)) {
2052 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2053
2054 for (j = 0; j < FC_WORDS; j++, buf++)
2055 *buf = brcmnand_read_fc(ctrl, j);
2056
2057 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2058 }
2059
2060 if (oob)
2061 oob += read_oob_from_regs(ctrl, i, oob,
2062 mtd->oobsize / trans,
2063 host->hwcfg.sector_size_1k);
2064
2065 if (ret != -EBADMSG) {
2066 *err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2067
2068 if (*err_addr)
2069 ret = -EBADMSG;
2070 }
2071
2072 if (!ret) {
2073 *err_addr = brcmnand_get_correcc_addr(ctrl);
2074
2075 if (*err_addr)
2076 ret = -EUCLEAN;
2077 }
2078 }
2079
2080 return ret;
2081 }
2082
2083 /*
2084 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2085 * error
2086 *
2087 * Because the HW ECC signals an ECC error if an erase paged has even a single
2088 * bitflip, we must check each ECC error to see if it is actually an erased
2089 * page with bitflips, not a truly corrupted page.
2090 *
2091 * On a real error, return a negative error code (-EBADMSG for ECC error), and
2092 * buf will contain raw data.
2093 * Otherwise, buf gets filled with 0xffs and return the maximum number of
2094 * bitflips-per-ECC-sector to the caller.
2095 *
2096 */
brcmstb_nand_verify_erased_page(struct mtd_info * mtd,struct nand_chip * chip,void * buf,u64 addr)2097 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2098 struct nand_chip *chip, void *buf, u64 addr)
2099 {
2100 struct mtd_oob_region ecc;
2101 int i;
2102 int bitflips = 0;
2103 int page = addr >> chip->page_shift;
2104 int ret;
2105 void *ecc_bytes;
2106 void *ecc_chunk;
2107
2108 if (!buf)
2109 buf = nand_get_data_buf(chip);
2110
2111 /* read without ecc for verification */
2112 ret = chip->ecc.read_page_raw(chip, buf, true, page);
2113 if (ret)
2114 return ret;
2115
2116 for (i = 0; i < chip->ecc.steps; i++) {
2117 ecc_chunk = buf + chip->ecc.size * i;
2118
2119 mtd_ooblayout_ecc(mtd, i, &ecc);
2120 ecc_bytes = chip->oob_poi + ecc.offset;
2121
2122 ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2123 ecc_bytes, ecc.length,
2124 NULL, 0,
2125 chip->ecc.strength);
2126 if (ret < 0)
2127 return ret;
2128
2129 bitflips = max(bitflips, ret);
2130 }
2131
2132 return bitflips;
2133 }
2134
brcmnand_read(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob)2135 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2136 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2137 {
2138 struct brcmnand_host *host = nand_get_controller_data(chip);
2139 struct brcmnand_controller *ctrl = host->ctrl;
2140 u64 err_addr = 0;
2141 int err;
2142 bool retry = true;
2143 bool edu_err = false;
2144
2145 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2146
2147 try_dmaread:
2148 brcmnand_clear_ecc_addr(ctrl);
2149
2150 if (ctrl->dma_trans && !oob && flash_dma_buf_ok(buf)) {
2151 err = ctrl->dma_trans(host, addr, buf,
2152 trans * FC_BYTES,
2153 CMD_PAGE_READ);
2154
2155 if (err) {
2156 if (mtd_is_bitflip_or_eccerr(err))
2157 err_addr = addr;
2158 else
2159 return -EIO;
2160 }
2161
2162 if (has_edu(ctrl) && err_addr)
2163 edu_err = true;
2164
2165 } else {
2166 if (oob)
2167 memset(oob, 0x99, mtd->oobsize);
2168
2169 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2170 oob, &err_addr);
2171 }
2172
2173 if (mtd_is_eccerr(err)) {
2174 /*
2175 * On controller version and 7.0, 7.1 , DMA read after a
2176 * prior PIO read that reported uncorrectable error,
2177 * the DMA engine captures this error following DMA read
2178 * cleared only on subsequent DMA read, so just retry once
2179 * to clear a possible false error reported for current DMA
2180 * read
2181 */
2182 if ((ctrl->nand_version == 0x0700) ||
2183 (ctrl->nand_version == 0x0701)) {
2184 if (retry) {
2185 retry = false;
2186 goto try_dmaread;
2187 }
2188 }
2189
2190 /*
2191 * Controller version 7.2 has hw encoder to detect erased page
2192 * bitflips, apply sw verification for older controllers only
2193 */
2194 if (ctrl->nand_version < 0x0702) {
2195 err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2196 addr);
2197 /* erased page bitflips corrected */
2198 if (err >= 0)
2199 return err;
2200 }
2201
2202 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2203 (unsigned long long)err_addr);
2204 mtd->ecc_stats.failed++;
2205 /* NAND layer expects zero on ECC errors */
2206 return 0;
2207 }
2208
2209 if (mtd_is_bitflip(err)) {
2210 unsigned int corrected = brcmnand_count_corrected(ctrl);
2211
2212 /* in case of EDU correctable error we read again using PIO */
2213 if (edu_err)
2214 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2215 oob, &err_addr);
2216
2217 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2218 (unsigned long long)err_addr);
2219 mtd->ecc_stats.corrected += corrected;
2220 /* Always exceed the software-imposed threshold */
2221 return max(mtd->bitflip_threshold, corrected);
2222 }
2223
2224 return 0;
2225 }
2226
brcmnand_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2227 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2228 int oob_required, int page)
2229 {
2230 struct mtd_info *mtd = nand_to_mtd(chip);
2231 struct brcmnand_host *host = nand_get_controller_data(chip);
2232 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2233
2234 nand_read_page_op(chip, page, 0, NULL, 0);
2235
2236 return brcmnand_read(mtd, chip, host->last_addr,
2237 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2238 }
2239
brcmnand_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2240 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2241 int oob_required, int page)
2242 {
2243 struct brcmnand_host *host = nand_get_controller_data(chip);
2244 struct mtd_info *mtd = nand_to_mtd(chip);
2245 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2246 int ret;
2247
2248 nand_read_page_op(chip, page, 0, NULL, 0);
2249
2250 brcmnand_set_ecc_enabled(host, 0);
2251 ret = brcmnand_read(mtd, chip, host->last_addr,
2252 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2253 brcmnand_set_ecc_enabled(host, 1);
2254 return ret;
2255 }
2256
brcmnand_read_oob(struct nand_chip * chip,int page)2257 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2258 {
2259 struct mtd_info *mtd = nand_to_mtd(chip);
2260
2261 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2262 mtd->writesize >> FC_SHIFT,
2263 NULL, (u8 *)chip->oob_poi);
2264 }
2265
brcmnand_read_oob_raw(struct nand_chip * chip,int page)2266 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2267 {
2268 struct mtd_info *mtd = nand_to_mtd(chip);
2269 struct brcmnand_host *host = nand_get_controller_data(chip);
2270
2271 brcmnand_set_ecc_enabled(host, 0);
2272 brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2273 mtd->writesize >> FC_SHIFT,
2274 NULL, (u8 *)chip->oob_poi);
2275 brcmnand_set_ecc_enabled(host, 1);
2276 return 0;
2277 }
2278
brcmnand_write(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,const u32 * buf,u8 * oob)2279 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2280 u64 addr, const u32 *buf, u8 *oob)
2281 {
2282 struct brcmnand_host *host = nand_get_controller_data(chip);
2283 struct brcmnand_controller *ctrl = host->ctrl;
2284 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2285 int status, ret = 0;
2286
2287 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2288
2289 if (unlikely((unsigned long)buf & 0x03)) {
2290 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2291 buf = (u32 *)((unsigned long)buf & ~0x03);
2292 }
2293
2294 brcmnand_wp(mtd, 0);
2295
2296 for (i = 0; i < ctrl->max_oob; i += 4)
2297 oob_reg_write(ctrl, i, 0xffffffff);
2298
2299 if (use_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
2300 if (ctrl->dma_trans(host, addr, (u32 *)buf, mtd->writesize,
2301 CMD_PROGRAM_PAGE))
2302
2303 ret = -EIO;
2304
2305 goto out;
2306 }
2307
2308 for (i = 0; i < trans; i++, addr += FC_BYTES) {
2309 /* full address MUST be set before populating FC */
2310 brcmnand_set_cmd_addr(mtd, addr);
2311
2312 if (buf) {
2313 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2314
2315 for (j = 0; j < FC_WORDS; j++, buf++)
2316 brcmnand_write_fc(ctrl, j, *buf);
2317
2318 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2319 } else if (oob) {
2320 for (j = 0; j < FC_WORDS; j++)
2321 brcmnand_write_fc(ctrl, j, 0xffffffff);
2322 }
2323
2324 if (oob) {
2325 oob += write_oob_to_regs(ctrl, i, oob,
2326 mtd->oobsize / trans,
2327 host->hwcfg.sector_size_1k);
2328 }
2329
2330 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2331 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2332 status = brcmnand_waitfunc(chip);
2333
2334 if (status & NAND_STATUS_FAIL) {
2335 dev_info(ctrl->dev, "program failed at %llx\n",
2336 (unsigned long long)addr);
2337 ret = -EIO;
2338 goto out;
2339 }
2340 }
2341 out:
2342 brcmnand_wp(mtd, 1);
2343 return ret;
2344 }
2345
brcmnand_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2346 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2347 int oob_required, int page)
2348 {
2349 struct mtd_info *mtd = nand_to_mtd(chip);
2350 struct brcmnand_host *host = nand_get_controller_data(chip);
2351 void *oob = oob_required ? chip->oob_poi : NULL;
2352
2353 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2354 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2355
2356 return nand_prog_page_end_op(chip);
2357 }
2358
brcmnand_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2359 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2360 int oob_required, int page)
2361 {
2362 struct mtd_info *mtd = nand_to_mtd(chip);
2363 struct brcmnand_host *host = nand_get_controller_data(chip);
2364 void *oob = oob_required ? chip->oob_poi : NULL;
2365
2366 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2367 brcmnand_set_ecc_enabled(host, 0);
2368 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2369 brcmnand_set_ecc_enabled(host, 1);
2370
2371 return nand_prog_page_end_op(chip);
2372 }
2373
brcmnand_write_oob(struct nand_chip * chip,int page)2374 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2375 {
2376 return brcmnand_write(nand_to_mtd(chip), chip,
2377 (u64)page << chip->page_shift, NULL,
2378 chip->oob_poi);
2379 }
2380
brcmnand_write_oob_raw(struct nand_chip * chip,int page)2381 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2382 {
2383 struct mtd_info *mtd = nand_to_mtd(chip);
2384 struct brcmnand_host *host = nand_get_controller_data(chip);
2385 int ret;
2386
2387 brcmnand_set_ecc_enabled(host, 0);
2388 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2389 (u8 *)chip->oob_poi);
2390 brcmnand_set_ecc_enabled(host, 1);
2391
2392 return ret;
2393 }
2394
2395 /***********************************************************************
2396 * Per-CS setup (1 NAND device)
2397 ***********************************************************************/
2398
brcmnand_set_cfg(struct brcmnand_host * host,struct brcmnand_cfg * cfg)2399 static int brcmnand_set_cfg(struct brcmnand_host *host,
2400 struct brcmnand_cfg *cfg)
2401 {
2402 struct brcmnand_controller *ctrl = host->ctrl;
2403 struct nand_chip *chip = &host->chip;
2404 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2405 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2406 BRCMNAND_CS_CFG_EXT);
2407 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2408 BRCMNAND_CS_ACC_CONTROL);
2409 u8 block_size = 0, page_size = 0, device_size = 0;
2410 u32 tmp;
2411
2412 if (ctrl->block_sizes) {
2413 int i, found;
2414
2415 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2416 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2417 block_size = i;
2418 found = 1;
2419 }
2420 if (!found) {
2421 dev_warn(ctrl->dev, "invalid block size %u\n",
2422 cfg->block_size);
2423 return -EINVAL;
2424 }
2425 } else {
2426 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2427 }
2428
2429 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2430 cfg->block_size > ctrl->max_block_size)) {
2431 dev_warn(ctrl->dev, "invalid block size %u\n",
2432 cfg->block_size);
2433 block_size = 0;
2434 }
2435
2436 if (ctrl->page_sizes) {
2437 int i, found;
2438
2439 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2440 if (ctrl->page_sizes[i] == cfg->page_size) {
2441 page_size = i;
2442 found = 1;
2443 }
2444 if (!found) {
2445 dev_warn(ctrl->dev, "invalid page size %u\n",
2446 cfg->page_size);
2447 return -EINVAL;
2448 }
2449 } else {
2450 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2451 }
2452
2453 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2454 cfg->page_size > ctrl->max_page_size)) {
2455 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2456 return -EINVAL;
2457 }
2458
2459 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2460 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2461 (unsigned long long)cfg->device_size);
2462 return -EINVAL;
2463 }
2464 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2465
2466 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2467 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2468 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2469 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2470 (device_size << CFG_DEVICE_SIZE_SHIFT);
2471 if (cfg_offs == cfg_ext_offs) {
2472 tmp |= (page_size << ctrl->page_size_shift) |
2473 (block_size << CFG_BLK_SIZE_SHIFT);
2474 nand_writereg(ctrl, cfg_offs, tmp);
2475 } else {
2476 nand_writereg(ctrl, cfg_offs, tmp);
2477 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2478 (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2479 nand_writereg(ctrl, cfg_ext_offs, tmp);
2480 }
2481
2482 tmp = nand_readreg(ctrl, acc_control_offs);
2483 tmp &= ~brcmnand_ecc_level_mask(ctrl);
2484 tmp &= ~brcmnand_spare_area_mask(ctrl);
2485 if (ctrl->nand_version >= 0x0302) {
2486 tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2487 tmp |= cfg->spare_area_size;
2488 }
2489 nand_writereg(ctrl, acc_control_offs, tmp);
2490
2491 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2492
2493 /* threshold = ceil(BCH-level * 0.75) */
2494 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2495
2496 return 0;
2497 }
2498
brcmnand_print_cfg(struct brcmnand_host * host,char * buf,struct brcmnand_cfg * cfg)2499 static void brcmnand_print_cfg(struct brcmnand_host *host,
2500 char *buf, struct brcmnand_cfg *cfg)
2501 {
2502 buf += sprintf(buf,
2503 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2504 (unsigned long long)cfg->device_size >> 20,
2505 cfg->block_size >> 10,
2506 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2507 cfg->page_size >= 1024 ? "KiB" : "B",
2508 cfg->spare_area_size, cfg->device_width);
2509
2510 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2511 if (is_hamming_ecc(host->ctrl, cfg))
2512 sprintf(buf, ", Hamming ECC");
2513 else if (cfg->sector_size_1k)
2514 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2515 else
2516 sprintf(buf, ", BCH-%u", cfg->ecc_level);
2517 }
2518
2519 /*
2520 * Minimum number of bytes to address a page. Calculated as:
2521 * roundup(log2(size / page-size) / 8)
2522 *
2523 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2524 * OK because many other things will break if 'size' is irregular...
2525 */
get_blk_adr_bytes(u64 size,u32 writesize)2526 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2527 {
2528 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2529 }
2530
brcmnand_setup_dev(struct brcmnand_host * host)2531 static int brcmnand_setup_dev(struct brcmnand_host *host)
2532 {
2533 struct mtd_info *mtd = nand_to_mtd(&host->chip);
2534 struct nand_chip *chip = &host->chip;
2535 const struct nand_ecc_props *requirements =
2536 nanddev_get_ecc_requirements(&chip->base);
2537 struct brcmnand_controller *ctrl = host->ctrl;
2538 struct brcmnand_cfg *cfg = &host->hwcfg;
2539 char msg[128];
2540 u32 offs, tmp, oob_sector;
2541 int ret;
2542
2543 memset(cfg, 0, sizeof(*cfg));
2544
2545 ret = of_property_read_u32(nand_get_flash_node(chip),
2546 "brcm,nand-oob-sector-size",
2547 &oob_sector);
2548 if (ret) {
2549 /* Use detected size */
2550 cfg->spare_area_size = mtd->oobsize /
2551 (mtd->writesize >> FC_SHIFT);
2552 } else {
2553 cfg->spare_area_size = oob_sector;
2554 }
2555 if (cfg->spare_area_size > ctrl->max_oob)
2556 cfg->spare_area_size = ctrl->max_oob;
2557 /*
2558 * Set oobsize to be consistent with controller's spare_area_size, as
2559 * the rest is inaccessible.
2560 */
2561 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2562
2563 cfg->device_size = mtd->size;
2564 cfg->block_size = mtd->erasesize;
2565 cfg->page_size = mtd->writesize;
2566 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2567 cfg->col_adr_bytes = 2;
2568 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2569
2570 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2571 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2572 chip->ecc.engine_type);
2573 return -EINVAL;
2574 }
2575
2576 if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2577 if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2578 /* Default to Hamming for 1-bit ECC, if unspecified */
2579 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2580 else
2581 /* Otherwise, BCH */
2582 chip->ecc.algo = NAND_ECC_ALGO_BCH;
2583 }
2584
2585 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2586 (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2587 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2588 chip->ecc.strength, chip->ecc.size);
2589 return -EINVAL;
2590 }
2591
2592 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2593 (!chip->ecc.size || !chip->ecc.strength)) {
2594 if (requirements->step_size && requirements->strength) {
2595 /* use detected ECC parameters */
2596 chip->ecc.size = requirements->step_size;
2597 chip->ecc.strength = requirements->strength;
2598 dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2599 chip->ecc.size, chip->ecc.strength);
2600 }
2601 }
2602
2603 switch (chip->ecc.size) {
2604 case 512:
2605 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2606 cfg->ecc_level = 15;
2607 else
2608 cfg->ecc_level = chip->ecc.strength;
2609 cfg->sector_size_1k = 0;
2610 break;
2611 case 1024:
2612 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2613 dev_err(ctrl->dev, "1KB sectors not supported\n");
2614 return -EINVAL;
2615 }
2616 if (chip->ecc.strength & 0x1) {
2617 dev_err(ctrl->dev,
2618 "odd ECC not supported with 1KB sectors\n");
2619 return -EINVAL;
2620 }
2621
2622 cfg->ecc_level = chip->ecc.strength >> 1;
2623 cfg->sector_size_1k = 1;
2624 break;
2625 default:
2626 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2627 chip->ecc.size);
2628 return -EINVAL;
2629 }
2630
2631 cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2632 if (mtd->writesize > 512)
2633 cfg->ful_adr_bytes += cfg->col_adr_bytes;
2634 else
2635 cfg->ful_adr_bytes += 1;
2636
2637 ret = brcmnand_set_cfg(host, cfg);
2638 if (ret)
2639 return ret;
2640
2641 brcmnand_set_ecc_enabled(host, 1);
2642
2643 brcmnand_print_cfg(host, msg, cfg);
2644 dev_info(ctrl->dev, "detected %s\n", msg);
2645
2646 /* Configure ACC_CONTROL */
2647 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2648 tmp = nand_readreg(ctrl, offs);
2649 tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2650 tmp &= ~ACC_CONTROL_RD_ERASED;
2651
2652 /* We need to turn on Read from erased paged protected by ECC */
2653 if (ctrl->nand_version >= 0x0702)
2654 tmp |= ACC_CONTROL_RD_ERASED;
2655 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2656 if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2657 tmp &= ~ACC_CONTROL_PREFETCH;
2658
2659 nand_writereg(ctrl, offs, tmp);
2660
2661 return 0;
2662 }
2663
brcmnand_attach_chip(struct nand_chip * chip)2664 static int brcmnand_attach_chip(struct nand_chip *chip)
2665 {
2666 struct mtd_info *mtd = nand_to_mtd(chip);
2667 struct brcmnand_host *host = nand_get_controller_data(chip);
2668 int ret;
2669
2670 chip->options |= NAND_NO_SUBPAGE_WRITE;
2671 /*
2672 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2673 * to/from, and have nand_base pass us a bounce buffer instead, as
2674 * needed.
2675 */
2676 chip->options |= NAND_USES_DMA;
2677
2678 if (chip->bbt_options & NAND_BBT_USE_FLASH)
2679 chip->bbt_options |= NAND_BBT_NO_OOB;
2680
2681 if (brcmnand_setup_dev(host))
2682 return -ENXIO;
2683
2684 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2685
2686 /* only use our internal HW threshold */
2687 mtd->bitflip_threshold = 1;
2688
2689 ret = brcmstb_choose_ecc_layout(host);
2690
2691 /* If OOB is written with ECC enabled it will cause ECC errors */
2692 if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2693 chip->ecc.write_oob = brcmnand_write_oob_raw;
2694 chip->ecc.read_oob = brcmnand_read_oob_raw;
2695 }
2696
2697 return ret;
2698 }
2699
2700 static const struct nand_controller_ops brcmnand_controller_ops = {
2701 .attach_chip = brcmnand_attach_chip,
2702 };
2703
brcmnand_init_cs(struct brcmnand_host * host,struct device_node * dn)2704 static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2705 {
2706 struct brcmnand_controller *ctrl = host->ctrl;
2707 struct platform_device *pdev = host->pdev;
2708 struct mtd_info *mtd;
2709 struct nand_chip *chip;
2710 int ret;
2711 u16 cfg_offs;
2712
2713 ret = of_property_read_u32(dn, "reg", &host->cs);
2714 if (ret) {
2715 dev_err(&pdev->dev, "can't get chip-select\n");
2716 return -ENXIO;
2717 }
2718
2719 mtd = nand_to_mtd(&host->chip);
2720 chip = &host->chip;
2721
2722 nand_set_flash_node(chip, dn);
2723 nand_set_controller_data(chip, host);
2724 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2725 host->cs);
2726 if (!mtd->name)
2727 return -ENOMEM;
2728
2729 mtd->owner = THIS_MODULE;
2730 mtd->dev.parent = &pdev->dev;
2731
2732 chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2733 chip->legacy.cmdfunc = brcmnand_cmdfunc;
2734 chip->legacy.waitfunc = brcmnand_waitfunc;
2735 chip->legacy.read_byte = brcmnand_read_byte;
2736 chip->legacy.read_buf = brcmnand_read_buf;
2737 chip->legacy.write_buf = brcmnand_write_buf;
2738
2739 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2740 chip->ecc.read_page = brcmnand_read_page;
2741 chip->ecc.write_page = brcmnand_write_page;
2742 chip->ecc.read_page_raw = brcmnand_read_page_raw;
2743 chip->ecc.write_page_raw = brcmnand_write_page_raw;
2744 chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2745 chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2746 chip->ecc.read_oob = brcmnand_read_oob;
2747 chip->ecc.write_oob = brcmnand_write_oob;
2748
2749 chip->controller = &ctrl->controller;
2750
2751 /*
2752 * The bootloader might have configured 16bit mode but
2753 * NAND READID command only works in 8bit mode. We force
2754 * 8bit mode here to ensure that NAND READID commands works.
2755 */
2756 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2757 nand_writereg(ctrl, cfg_offs,
2758 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2759
2760 ret = nand_scan(chip, 1);
2761 if (ret)
2762 return ret;
2763
2764 ret = mtd_device_register(mtd, NULL, 0);
2765 if (ret)
2766 nand_cleanup(chip);
2767
2768 return ret;
2769 }
2770
brcmnand_save_restore_cs_config(struct brcmnand_host * host,int restore)2771 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2772 int restore)
2773 {
2774 struct brcmnand_controller *ctrl = host->ctrl;
2775 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2776 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2777 BRCMNAND_CS_CFG_EXT);
2778 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2779 BRCMNAND_CS_ACC_CONTROL);
2780 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2781 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2782
2783 if (restore) {
2784 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2785 if (cfg_offs != cfg_ext_offs)
2786 nand_writereg(ctrl, cfg_ext_offs,
2787 host->hwcfg.config_ext);
2788 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2789 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2790 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2791 } else {
2792 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2793 if (cfg_offs != cfg_ext_offs)
2794 host->hwcfg.config_ext =
2795 nand_readreg(ctrl, cfg_ext_offs);
2796 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2797 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2798 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2799 }
2800 }
2801
brcmnand_suspend(struct device * dev)2802 static int brcmnand_suspend(struct device *dev)
2803 {
2804 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2805 struct brcmnand_host *host;
2806
2807 list_for_each_entry(host, &ctrl->host_list, node)
2808 brcmnand_save_restore_cs_config(host, 0);
2809
2810 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2811 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2812 ctrl->corr_stat_threshold =
2813 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2814
2815 if (has_flash_dma(ctrl))
2816 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2817 else if (has_edu(ctrl))
2818 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2819
2820 return 0;
2821 }
2822
brcmnand_resume(struct device * dev)2823 static int brcmnand_resume(struct device *dev)
2824 {
2825 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2826 struct brcmnand_host *host;
2827
2828 if (has_flash_dma(ctrl)) {
2829 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2830 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2831 }
2832
2833 if (has_edu(ctrl)) {
2834 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2835 edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2836 edu_readl(ctrl, EDU_CONFIG);
2837 brcmnand_edu_init(ctrl);
2838 }
2839
2840 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2841 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2842 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2843 ctrl->corr_stat_threshold);
2844 if (ctrl->soc) {
2845 /* Clear/re-enable interrupt */
2846 ctrl->soc->ctlrdy_ack(ctrl->soc);
2847 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2848 }
2849
2850 list_for_each_entry(host, &ctrl->host_list, node) {
2851 struct nand_chip *chip = &host->chip;
2852
2853 brcmnand_save_restore_cs_config(host, 1);
2854
2855 /* Reset the chip, required by some chips after power-up */
2856 nand_reset_op(chip);
2857 }
2858
2859 return 0;
2860 }
2861
2862 const struct dev_pm_ops brcmnand_pm_ops = {
2863 .suspend = brcmnand_suspend,
2864 .resume = brcmnand_resume,
2865 };
2866 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2867
2868 static const struct of_device_id brcmnand_of_match[] = {
2869 { .compatible = "brcm,brcmnand-v2.1" },
2870 { .compatible = "brcm,brcmnand-v2.2" },
2871 { .compatible = "brcm,brcmnand-v4.0" },
2872 { .compatible = "brcm,brcmnand-v5.0" },
2873 { .compatible = "brcm,brcmnand-v6.0" },
2874 { .compatible = "brcm,brcmnand-v6.1" },
2875 { .compatible = "brcm,brcmnand-v6.2" },
2876 { .compatible = "brcm,brcmnand-v7.0" },
2877 { .compatible = "brcm,brcmnand-v7.1" },
2878 { .compatible = "brcm,brcmnand-v7.2" },
2879 { .compatible = "brcm,brcmnand-v7.3" },
2880 {},
2881 };
2882 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2883
2884 /***********************************************************************
2885 * Platform driver setup (per controller)
2886 ***********************************************************************/
brcmnand_edu_setup(struct platform_device * pdev)2887 static int brcmnand_edu_setup(struct platform_device *pdev)
2888 {
2889 struct device *dev = &pdev->dev;
2890 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2891 struct resource *res;
2892 int ret;
2893
2894 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
2895 if (res) {
2896 ctrl->edu_base = devm_ioremap_resource(dev, res);
2897 if (IS_ERR(ctrl->edu_base))
2898 return PTR_ERR(ctrl->edu_base);
2899
2900 ctrl->edu_offsets = edu_regs;
2901
2902 edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
2903 EDU_CONFIG_SWAP_CFG);
2904 edu_readl(ctrl, EDU_CONFIG);
2905
2906 /* initialize edu */
2907 brcmnand_edu_init(ctrl);
2908
2909 ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
2910 if (ctrl->edu_irq < 0) {
2911 dev_warn(dev,
2912 "FLASH EDU enabled, using ctlrdy irq\n");
2913 } else {
2914 ret = devm_request_irq(dev, ctrl->edu_irq,
2915 brcmnand_edu_irq, 0,
2916 "brcmnand-edu", ctrl);
2917 if (ret < 0) {
2918 dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
2919 ctrl->edu_irq, ret);
2920 return ret;
2921 }
2922
2923 dev_info(dev, "FLASH EDU enabled using irq %u\n",
2924 ctrl->edu_irq);
2925 }
2926 }
2927
2928 return 0;
2929 }
2930
brcmnand_probe(struct platform_device * pdev,struct brcmnand_soc * soc)2931 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2932 {
2933 struct device *dev = &pdev->dev;
2934 struct device_node *dn = dev->of_node, *child;
2935 struct brcmnand_controller *ctrl;
2936 struct resource *res;
2937 int ret;
2938
2939 /* We only support device-tree instantiation */
2940 if (!dn)
2941 return -ENODEV;
2942
2943 if (!of_match_node(brcmnand_of_match, dn))
2944 return -ENODEV;
2945
2946 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2947 if (!ctrl)
2948 return -ENOMEM;
2949
2950 dev_set_drvdata(dev, ctrl);
2951 ctrl->dev = dev;
2952
2953 init_completion(&ctrl->done);
2954 init_completion(&ctrl->dma_done);
2955 init_completion(&ctrl->edu_done);
2956 nand_controller_init(&ctrl->controller);
2957 ctrl->controller.ops = &brcmnand_controller_ops;
2958 INIT_LIST_HEAD(&ctrl->host_list);
2959
2960 /* NAND register range */
2961 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2962 ctrl->nand_base = devm_ioremap_resource(dev, res);
2963 if (IS_ERR(ctrl->nand_base))
2964 return PTR_ERR(ctrl->nand_base);
2965
2966 /* Enable clock before using NAND registers */
2967 ctrl->clk = devm_clk_get(dev, "nand");
2968 if (!IS_ERR(ctrl->clk)) {
2969 ret = clk_prepare_enable(ctrl->clk);
2970 if (ret)
2971 return ret;
2972 } else {
2973 ret = PTR_ERR(ctrl->clk);
2974 if (ret == -EPROBE_DEFER)
2975 return ret;
2976
2977 ctrl->clk = NULL;
2978 }
2979
2980 /* Initialize NAND revision */
2981 ret = brcmnand_revision_init(ctrl);
2982 if (ret)
2983 goto err;
2984
2985 /*
2986 * Most chips have this cache at a fixed offset within 'nand' block.
2987 * Some must specify this region separately.
2988 */
2989 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2990 if (res) {
2991 ctrl->nand_fc = devm_ioremap_resource(dev, res);
2992 if (IS_ERR(ctrl->nand_fc)) {
2993 ret = PTR_ERR(ctrl->nand_fc);
2994 goto err;
2995 }
2996 } else {
2997 ctrl->nand_fc = ctrl->nand_base +
2998 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2999 }
3000
3001 /* FLASH_DMA */
3002 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3003 if (res) {
3004 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3005 if (IS_ERR(ctrl->flash_dma_base)) {
3006 ret = PTR_ERR(ctrl->flash_dma_base);
3007 goto err;
3008 }
3009
3010 /* initialize the dma version */
3011 brcmnand_flash_dma_revision_init(ctrl);
3012
3013 ret = -EIO;
3014 if (ctrl->nand_version >= 0x0700)
3015 ret = dma_set_mask_and_coherent(&pdev->dev,
3016 DMA_BIT_MASK(40));
3017 if (ret)
3018 ret = dma_set_mask_and_coherent(&pdev->dev,
3019 DMA_BIT_MASK(32));
3020 if (ret)
3021 goto err;
3022
3023 /* linked-list and stop on error */
3024 flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3025 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3026
3027 /* Allocate descriptor(s) */
3028 ctrl->dma_desc = dmam_alloc_coherent(dev,
3029 sizeof(*ctrl->dma_desc),
3030 &ctrl->dma_pa, GFP_KERNEL);
3031 if (!ctrl->dma_desc) {
3032 ret = -ENOMEM;
3033 goto err;
3034 }
3035
3036 ctrl->dma_irq = platform_get_irq(pdev, 1);
3037 if ((int)ctrl->dma_irq < 0) {
3038 dev_err(dev, "missing FLASH_DMA IRQ\n");
3039 ret = -ENODEV;
3040 goto err;
3041 }
3042
3043 ret = devm_request_irq(dev, ctrl->dma_irq,
3044 brcmnand_dma_irq, 0, DRV_NAME,
3045 ctrl);
3046 if (ret < 0) {
3047 dev_err(dev, "can't allocate IRQ %d: error %d\n",
3048 ctrl->dma_irq, ret);
3049 goto err;
3050 }
3051
3052 dev_info(dev, "enabling FLASH_DMA\n");
3053 /* set flash dma transfer function to call */
3054 ctrl->dma_trans = brcmnand_dma_trans;
3055 } else {
3056 ret = brcmnand_edu_setup(pdev);
3057 if (ret < 0)
3058 goto err;
3059
3060 if (has_edu(ctrl))
3061 /* set edu transfer function to call */
3062 ctrl->dma_trans = brcmnand_edu_trans;
3063 }
3064
3065 /* Disable automatic device ID config, direct addressing */
3066 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3067 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3068 /* Disable XOR addressing */
3069 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3070
3071 if (ctrl->features & BRCMNAND_HAS_WP) {
3072 /* Permanently disable write protection */
3073 if (wp_on == 2)
3074 brcmnand_set_wp(ctrl, false);
3075 } else {
3076 wp_on = 0;
3077 }
3078
3079 /* IRQ */
3080 ctrl->irq = platform_get_irq(pdev, 0);
3081 if ((int)ctrl->irq < 0) {
3082 dev_err(dev, "no IRQ defined\n");
3083 ret = -ENODEV;
3084 goto err;
3085 }
3086
3087 /*
3088 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3089 * interesting ways
3090 */
3091 if (soc) {
3092 ctrl->soc = soc;
3093
3094 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3095 DRV_NAME, ctrl);
3096
3097 /* Enable interrupt */
3098 ctrl->soc->ctlrdy_ack(ctrl->soc);
3099 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3100 } else {
3101 /* Use standard interrupt infrastructure */
3102 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3103 DRV_NAME, ctrl);
3104 }
3105 if (ret < 0) {
3106 dev_err(dev, "can't allocate IRQ %d: error %d\n",
3107 ctrl->irq, ret);
3108 goto err;
3109 }
3110
3111 for_each_available_child_of_node(dn, child) {
3112 if (of_device_is_compatible(child, "brcm,nandcs")) {
3113 struct brcmnand_host *host;
3114
3115 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3116 if (!host) {
3117 of_node_put(child);
3118 ret = -ENOMEM;
3119 goto err;
3120 }
3121 host->pdev = pdev;
3122 host->ctrl = ctrl;
3123
3124 ret = brcmnand_init_cs(host, child);
3125 if (ret) {
3126 devm_kfree(dev, host);
3127 continue; /* Try all chip-selects */
3128 }
3129
3130 list_add_tail(&host->node, &ctrl->host_list);
3131 }
3132 }
3133
3134 /* No chip-selects could initialize properly */
3135 if (list_empty(&ctrl->host_list)) {
3136 ret = -ENODEV;
3137 goto err;
3138 }
3139
3140 return 0;
3141
3142 err:
3143 clk_disable_unprepare(ctrl->clk);
3144 return ret;
3145
3146 }
3147 EXPORT_SYMBOL_GPL(brcmnand_probe);
3148
brcmnand_remove(struct platform_device * pdev)3149 int brcmnand_remove(struct platform_device *pdev)
3150 {
3151 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3152 struct brcmnand_host *host;
3153 struct nand_chip *chip;
3154 int ret;
3155
3156 list_for_each_entry(host, &ctrl->host_list, node) {
3157 chip = &host->chip;
3158 ret = mtd_device_unregister(nand_to_mtd(chip));
3159 WARN_ON(ret);
3160 nand_cleanup(chip);
3161 }
3162
3163 clk_disable_unprepare(ctrl->clk);
3164
3165 dev_set_drvdata(&pdev->dev, NULL);
3166
3167 return 0;
3168 }
3169 EXPORT_SYMBOL_GPL(brcmnand_remove);
3170
3171 MODULE_LICENSE("GPL v2");
3172 MODULE_AUTHOR("Kevin Cernekee");
3173 MODULE_AUTHOR("Brian Norris");
3174 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3175 MODULE_ALIAS("platform:brcmnand");
3176