1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) ST-Ericsson AB 2010
4 * Author: Daniel Martensson
5 * Dmitry.Tarnyagin / dmitry.tarnyagin@lockless.no
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME fmt
9
10 #include <linux/init.h>
11 #include <linux/module.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/string.h>
15 #include <linux/list.h>
16 #include <linux/interrupt.h>
17 #include <linux/delay.h>
18 #include <linux/sched.h>
19 #include <linux/if_arp.h>
20 #include <linux/timer.h>
21 #include <net/rtnetlink.h>
22 #include <linux/pkt_sched.h>
23 #include <net/caif/caif_layer.h>
24 #include <net/caif/caif_hsi.h>
25
26 MODULE_LICENSE("GPL");
27 MODULE_AUTHOR("Daniel Martensson");
28 MODULE_DESCRIPTION("CAIF HSI driver");
29
30 /* Returns the number of padding bytes for alignment. */
31 #define PAD_POW2(x, pow) ((((x)&((pow)-1)) == 0) ? 0 :\
32 (((pow)-((x)&((pow)-1)))))
33
34 static const struct cfhsi_config hsi_default_config = {
35
36 /* Inactivity timeout on HSI, ms */
37 .inactivity_timeout = HZ,
38
39 /* Aggregation timeout (ms) of zero means no aggregation is done*/
40 .aggregation_timeout = 1,
41
42 /*
43 * HSI link layer flow-control thresholds.
44 * Threshold values for the HSI packet queue. Flow-control will be
45 * asserted when the number of packets exceeds q_high_mark. It will
46 * not be de-asserted before the number of packets drops below
47 * q_low_mark.
48 * Warning: A high threshold value might increase throughput but it
49 * will at the same time prevent channel prioritization and increase
50 * the risk of flooding the modem. The high threshold should be above
51 * the low.
52 */
53 .q_high_mark = 100,
54 .q_low_mark = 50,
55
56 /*
57 * HSI padding options.
58 * Warning: must be a base of 2 (& operation used) and can not be zero !
59 */
60 .head_align = 4,
61 .tail_align = 4,
62 };
63
64 #define ON 1
65 #define OFF 0
66
67 static LIST_HEAD(cfhsi_list);
68
cfhsi_inactivity_tout(struct timer_list * t)69 static void cfhsi_inactivity_tout(struct timer_list *t)
70 {
71 struct cfhsi *cfhsi = from_timer(cfhsi, t, inactivity_timer);
72
73 netdev_dbg(cfhsi->ndev, "%s.\n",
74 __func__);
75
76 /* Schedule power down work queue. */
77 if (!test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
78 queue_work(cfhsi->wq, &cfhsi->wake_down_work);
79 }
80
cfhsi_update_aggregation_stats(struct cfhsi * cfhsi,const struct sk_buff * skb,int direction)81 static void cfhsi_update_aggregation_stats(struct cfhsi *cfhsi,
82 const struct sk_buff *skb,
83 int direction)
84 {
85 struct caif_payload_info *info;
86 int hpad, tpad, len;
87
88 info = (struct caif_payload_info *)&skb->cb;
89 hpad = 1 + PAD_POW2((info->hdr_len + 1), cfhsi->cfg.head_align);
90 tpad = PAD_POW2((skb->len + hpad), cfhsi->cfg.tail_align);
91 len = skb->len + hpad + tpad;
92
93 if (direction > 0)
94 cfhsi->aggregation_len += len;
95 else if (direction < 0)
96 cfhsi->aggregation_len -= len;
97 }
98
cfhsi_can_send_aggregate(struct cfhsi * cfhsi)99 static bool cfhsi_can_send_aggregate(struct cfhsi *cfhsi)
100 {
101 int i;
102
103 if (cfhsi->cfg.aggregation_timeout == 0)
104 return true;
105
106 for (i = 0; i < CFHSI_PRIO_BEBK; ++i) {
107 if (cfhsi->qhead[i].qlen)
108 return true;
109 }
110
111 /* TODO: Use aggregation_len instead */
112 if (cfhsi->qhead[CFHSI_PRIO_BEBK].qlen >= CFHSI_MAX_PKTS)
113 return true;
114
115 return false;
116 }
117
cfhsi_dequeue(struct cfhsi * cfhsi)118 static struct sk_buff *cfhsi_dequeue(struct cfhsi *cfhsi)
119 {
120 struct sk_buff *skb;
121 int i;
122
123 for (i = 0; i < CFHSI_PRIO_LAST; ++i) {
124 skb = skb_dequeue(&cfhsi->qhead[i]);
125 if (skb)
126 break;
127 }
128
129 return skb;
130 }
131
cfhsi_tx_queue_len(struct cfhsi * cfhsi)132 static int cfhsi_tx_queue_len(struct cfhsi *cfhsi)
133 {
134 int i, len = 0;
135 for (i = 0; i < CFHSI_PRIO_LAST; ++i)
136 len += skb_queue_len(&cfhsi->qhead[i]);
137 return len;
138 }
139
cfhsi_abort_tx(struct cfhsi * cfhsi)140 static void cfhsi_abort_tx(struct cfhsi *cfhsi)
141 {
142 struct sk_buff *skb;
143
144 for (;;) {
145 spin_lock_bh(&cfhsi->lock);
146 skb = cfhsi_dequeue(cfhsi);
147 if (!skb)
148 break;
149
150 cfhsi->ndev->stats.tx_errors++;
151 cfhsi->ndev->stats.tx_dropped++;
152 cfhsi_update_aggregation_stats(cfhsi, skb, -1);
153 spin_unlock_bh(&cfhsi->lock);
154 kfree_skb(skb);
155 }
156 cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
157 if (!test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
158 mod_timer(&cfhsi->inactivity_timer,
159 jiffies + cfhsi->cfg.inactivity_timeout);
160 spin_unlock_bh(&cfhsi->lock);
161 }
162
cfhsi_flush_fifo(struct cfhsi * cfhsi)163 static int cfhsi_flush_fifo(struct cfhsi *cfhsi)
164 {
165 char buffer[32]; /* Any reasonable value */
166 size_t fifo_occupancy;
167 int ret;
168
169 netdev_dbg(cfhsi->ndev, "%s.\n",
170 __func__);
171
172 do {
173 ret = cfhsi->ops->cfhsi_fifo_occupancy(cfhsi->ops,
174 &fifo_occupancy);
175 if (ret) {
176 netdev_warn(cfhsi->ndev,
177 "%s: can't get FIFO occupancy: %d.\n",
178 __func__, ret);
179 break;
180 } else if (!fifo_occupancy)
181 /* No more data, exitting normally */
182 break;
183
184 fifo_occupancy = min(sizeof(buffer), fifo_occupancy);
185 set_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits);
186 ret = cfhsi->ops->cfhsi_rx(buffer, fifo_occupancy,
187 cfhsi->ops);
188 if (ret) {
189 clear_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits);
190 netdev_warn(cfhsi->ndev,
191 "%s: can't read data: %d.\n",
192 __func__, ret);
193 break;
194 }
195
196 ret = 5 * HZ;
197 ret = wait_event_interruptible_timeout(cfhsi->flush_fifo_wait,
198 !test_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits), ret);
199
200 if (ret < 0) {
201 netdev_warn(cfhsi->ndev,
202 "%s: can't wait for flush complete: %d.\n",
203 __func__, ret);
204 break;
205 } else if (!ret) {
206 ret = -ETIMEDOUT;
207 netdev_warn(cfhsi->ndev,
208 "%s: timeout waiting for flush complete.\n",
209 __func__);
210 break;
211 }
212 } while (1);
213
214 return ret;
215 }
216
cfhsi_tx_frm(struct cfhsi_desc * desc,struct cfhsi * cfhsi)217 static int cfhsi_tx_frm(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
218 {
219 int nfrms = 0;
220 int pld_len = 0;
221 struct sk_buff *skb;
222 u8 *pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;
223
224 skb = cfhsi_dequeue(cfhsi);
225 if (!skb)
226 return 0;
227
228 /* Clear offset. */
229 desc->offset = 0;
230
231 /* Check if we can embed a CAIF frame. */
232 if (skb->len < CFHSI_MAX_EMB_FRM_SZ) {
233 struct caif_payload_info *info;
234 int hpad;
235 int tpad;
236
237 /* Calculate needed head alignment and tail alignment. */
238 info = (struct caif_payload_info *)&skb->cb;
239
240 hpad = 1 + PAD_POW2((info->hdr_len + 1), cfhsi->cfg.head_align);
241 tpad = PAD_POW2((skb->len + hpad), cfhsi->cfg.tail_align);
242
243 /* Check if frame still fits with added alignment. */
244 if ((skb->len + hpad + tpad) <= CFHSI_MAX_EMB_FRM_SZ) {
245 u8 *pemb = desc->emb_frm;
246 desc->offset = CFHSI_DESC_SHORT_SZ;
247 *pemb = (u8)(hpad - 1);
248 pemb += hpad;
249
250 /* Update network statistics. */
251 spin_lock_bh(&cfhsi->lock);
252 cfhsi->ndev->stats.tx_packets++;
253 cfhsi->ndev->stats.tx_bytes += skb->len;
254 cfhsi_update_aggregation_stats(cfhsi, skb, -1);
255 spin_unlock_bh(&cfhsi->lock);
256
257 /* Copy in embedded CAIF frame. */
258 skb_copy_bits(skb, 0, pemb, skb->len);
259
260 /* Consume the SKB */
261 consume_skb(skb);
262 skb = NULL;
263 }
264 }
265
266 /* Create payload CAIF frames. */
267 while (nfrms < CFHSI_MAX_PKTS) {
268 struct caif_payload_info *info;
269 int hpad;
270 int tpad;
271
272 if (!skb)
273 skb = cfhsi_dequeue(cfhsi);
274
275 if (!skb)
276 break;
277
278 /* Calculate needed head alignment and tail alignment. */
279 info = (struct caif_payload_info *)&skb->cb;
280
281 hpad = 1 + PAD_POW2((info->hdr_len + 1), cfhsi->cfg.head_align);
282 tpad = PAD_POW2((skb->len + hpad), cfhsi->cfg.tail_align);
283
284 /* Fill in CAIF frame length in descriptor. */
285 desc->cffrm_len[nfrms] = hpad + skb->len + tpad;
286
287 /* Fill head padding information. */
288 *pfrm = (u8)(hpad - 1);
289 pfrm += hpad;
290
291 /* Update network statistics. */
292 spin_lock_bh(&cfhsi->lock);
293 cfhsi->ndev->stats.tx_packets++;
294 cfhsi->ndev->stats.tx_bytes += skb->len;
295 cfhsi_update_aggregation_stats(cfhsi, skb, -1);
296 spin_unlock_bh(&cfhsi->lock);
297
298 /* Copy in CAIF frame. */
299 skb_copy_bits(skb, 0, pfrm, skb->len);
300
301 /* Update payload length. */
302 pld_len += desc->cffrm_len[nfrms];
303
304 /* Update frame pointer. */
305 pfrm += skb->len + tpad;
306
307 /* Consume the SKB */
308 consume_skb(skb);
309 skb = NULL;
310
311 /* Update number of frames. */
312 nfrms++;
313 }
314
315 /* Unused length fields should be zero-filled (according to SPEC). */
316 while (nfrms < CFHSI_MAX_PKTS) {
317 desc->cffrm_len[nfrms] = 0x0000;
318 nfrms++;
319 }
320
321 /* Check if we can piggy-back another descriptor. */
322 if (cfhsi_can_send_aggregate(cfhsi))
323 desc->header |= CFHSI_PIGGY_DESC;
324 else
325 desc->header &= ~CFHSI_PIGGY_DESC;
326
327 return CFHSI_DESC_SZ + pld_len;
328 }
329
cfhsi_start_tx(struct cfhsi * cfhsi)330 static void cfhsi_start_tx(struct cfhsi *cfhsi)
331 {
332 struct cfhsi_desc *desc = (struct cfhsi_desc *)cfhsi->tx_buf;
333 int len, res;
334
335 netdev_dbg(cfhsi->ndev, "%s.\n", __func__);
336
337 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
338 return;
339
340 do {
341 /* Create HSI frame. */
342 len = cfhsi_tx_frm(desc, cfhsi);
343 if (!len) {
344 spin_lock_bh(&cfhsi->lock);
345 if (unlikely(cfhsi_tx_queue_len(cfhsi))) {
346 spin_unlock_bh(&cfhsi->lock);
347 res = -EAGAIN;
348 continue;
349 }
350 cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
351 /* Start inactivity timer. */
352 mod_timer(&cfhsi->inactivity_timer,
353 jiffies + cfhsi->cfg.inactivity_timeout);
354 spin_unlock_bh(&cfhsi->lock);
355 break;
356 }
357
358 /* Set up new transfer. */
359 res = cfhsi->ops->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->ops);
360 if (WARN_ON(res < 0))
361 netdev_err(cfhsi->ndev, "%s: TX error %d.\n",
362 __func__, res);
363 } while (res < 0);
364 }
365
cfhsi_tx_done(struct cfhsi * cfhsi)366 static void cfhsi_tx_done(struct cfhsi *cfhsi)
367 {
368 netdev_dbg(cfhsi->ndev, "%s.\n", __func__);
369
370 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
371 return;
372
373 /*
374 * Send flow on if flow off has been previously signalled
375 * and number of packets is below low water mark.
376 */
377 spin_lock_bh(&cfhsi->lock);
378 if (cfhsi->flow_off_sent &&
379 cfhsi_tx_queue_len(cfhsi) <= cfhsi->cfg.q_low_mark &&
380 cfhsi->cfdev.flowctrl) {
381
382 cfhsi->flow_off_sent = 0;
383 cfhsi->cfdev.flowctrl(cfhsi->ndev, ON);
384 }
385
386 if (cfhsi_can_send_aggregate(cfhsi)) {
387 spin_unlock_bh(&cfhsi->lock);
388 cfhsi_start_tx(cfhsi);
389 } else {
390 mod_timer(&cfhsi->aggregation_timer,
391 jiffies + cfhsi->cfg.aggregation_timeout);
392 spin_unlock_bh(&cfhsi->lock);
393 }
394
395 return;
396 }
397
cfhsi_tx_done_cb(struct cfhsi_cb_ops * cb_ops)398 static void cfhsi_tx_done_cb(struct cfhsi_cb_ops *cb_ops)
399 {
400 struct cfhsi *cfhsi;
401
402 cfhsi = container_of(cb_ops, struct cfhsi, cb_ops);
403 netdev_dbg(cfhsi->ndev, "%s.\n",
404 __func__);
405
406 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
407 return;
408 cfhsi_tx_done(cfhsi);
409 }
410
cfhsi_rx_desc(struct cfhsi_desc * desc,struct cfhsi * cfhsi)411 static int cfhsi_rx_desc(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
412 {
413 int xfer_sz = 0;
414 int nfrms = 0;
415 u16 *plen = NULL;
416 u8 *pfrm = NULL;
417
418 if ((desc->header & ~CFHSI_PIGGY_DESC) ||
419 (desc->offset > CFHSI_MAX_EMB_FRM_SZ)) {
420 netdev_err(cfhsi->ndev, "%s: Invalid descriptor.\n",
421 __func__);
422 return -EPROTO;
423 }
424
425 /* Check for embedded CAIF frame. */
426 if (desc->offset) {
427 struct sk_buff *skb;
428 int len = 0;
429 pfrm = ((u8 *)desc) + desc->offset;
430
431 /* Remove offset padding. */
432 pfrm += *pfrm + 1;
433
434 /* Read length of CAIF frame (little endian). */
435 len = *pfrm;
436 len |= ((*(pfrm+1)) << 8) & 0xFF00;
437 len += 2; /* Add FCS fields. */
438
439 /* Sanity check length of CAIF frame. */
440 if (unlikely(len > CFHSI_MAX_CAIF_FRAME_SZ)) {
441 netdev_err(cfhsi->ndev, "%s: Invalid length.\n",
442 __func__);
443 return -EPROTO;
444 }
445
446 /* Allocate SKB (OK even in IRQ context). */
447 skb = alloc_skb(len + 1, GFP_ATOMIC);
448 if (!skb) {
449 netdev_err(cfhsi->ndev, "%s: Out of memory !\n",
450 __func__);
451 return -ENOMEM;
452 }
453 caif_assert(skb != NULL);
454
455 skb_put_data(skb, pfrm, len);
456
457 skb->protocol = htons(ETH_P_CAIF);
458 skb_reset_mac_header(skb);
459 skb->dev = cfhsi->ndev;
460
461 netif_rx_any_context(skb);
462
463 /* Update network statistics. */
464 cfhsi->ndev->stats.rx_packets++;
465 cfhsi->ndev->stats.rx_bytes += len;
466 }
467
468 /* Calculate transfer length. */
469 plen = desc->cffrm_len;
470 while (nfrms < CFHSI_MAX_PKTS && *plen) {
471 xfer_sz += *plen;
472 plen++;
473 nfrms++;
474 }
475
476 /* Check for piggy-backed descriptor. */
477 if (desc->header & CFHSI_PIGGY_DESC)
478 xfer_sz += CFHSI_DESC_SZ;
479
480 if ((xfer_sz % 4) || (xfer_sz > (CFHSI_BUF_SZ_RX - CFHSI_DESC_SZ))) {
481 netdev_err(cfhsi->ndev,
482 "%s: Invalid payload len: %d, ignored.\n",
483 __func__, xfer_sz);
484 return -EPROTO;
485 }
486 return xfer_sz;
487 }
488
cfhsi_rx_desc_len(struct cfhsi_desc * desc)489 static int cfhsi_rx_desc_len(struct cfhsi_desc *desc)
490 {
491 int xfer_sz = 0;
492 int nfrms = 0;
493 u16 *plen;
494
495 if ((desc->header & ~CFHSI_PIGGY_DESC) ||
496 (desc->offset > CFHSI_MAX_EMB_FRM_SZ)) {
497
498 pr_err("Invalid descriptor. %x %x\n", desc->header,
499 desc->offset);
500 return -EPROTO;
501 }
502
503 /* Calculate transfer length. */
504 plen = desc->cffrm_len;
505 while (nfrms < CFHSI_MAX_PKTS && *plen) {
506 xfer_sz += *plen;
507 plen++;
508 nfrms++;
509 }
510
511 if (xfer_sz % 4) {
512 pr_err("Invalid payload len: %d, ignored.\n", xfer_sz);
513 return -EPROTO;
514 }
515 return xfer_sz;
516 }
517
cfhsi_rx_pld(struct cfhsi_desc * desc,struct cfhsi * cfhsi)518 static int cfhsi_rx_pld(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
519 {
520 int rx_sz = 0;
521 int nfrms = 0;
522 u16 *plen = NULL;
523 u8 *pfrm = NULL;
524
525 /* Sanity check header and offset. */
526 if (WARN_ON((desc->header & ~CFHSI_PIGGY_DESC) ||
527 (desc->offset > CFHSI_MAX_EMB_FRM_SZ))) {
528 netdev_err(cfhsi->ndev, "%s: Invalid descriptor.\n",
529 __func__);
530 return -EPROTO;
531 }
532
533 /* Set frame pointer to start of payload. */
534 pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;
535 plen = desc->cffrm_len;
536
537 /* Skip already processed frames. */
538 while (nfrms < cfhsi->rx_state.nfrms) {
539 pfrm += *plen;
540 rx_sz += *plen;
541 plen++;
542 nfrms++;
543 }
544
545 /* Parse payload. */
546 while (nfrms < CFHSI_MAX_PKTS && *plen) {
547 struct sk_buff *skb;
548 u8 *pcffrm = NULL;
549 int len;
550
551 /* CAIF frame starts after head padding. */
552 pcffrm = pfrm + *pfrm + 1;
553
554 /* Read length of CAIF frame (little endian). */
555 len = *pcffrm;
556 len |= ((*(pcffrm + 1)) << 8) & 0xFF00;
557 len += 2; /* Add FCS fields. */
558
559 /* Sanity check length of CAIF frames. */
560 if (unlikely(len > CFHSI_MAX_CAIF_FRAME_SZ)) {
561 netdev_err(cfhsi->ndev, "%s: Invalid length.\n",
562 __func__);
563 return -EPROTO;
564 }
565
566 /* Allocate SKB (OK even in IRQ context). */
567 skb = alloc_skb(len + 1, GFP_ATOMIC);
568 if (!skb) {
569 netdev_err(cfhsi->ndev, "%s: Out of memory !\n",
570 __func__);
571 cfhsi->rx_state.nfrms = nfrms;
572 return -ENOMEM;
573 }
574 caif_assert(skb != NULL);
575
576 skb_put_data(skb, pcffrm, len);
577
578 skb->protocol = htons(ETH_P_CAIF);
579 skb_reset_mac_header(skb);
580 skb->dev = cfhsi->ndev;
581
582 netif_rx_any_context(skb);
583
584 /* Update network statistics. */
585 cfhsi->ndev->stats.rx_packets++;
586 cfhsi->ndev->stats.rx_bytes += len;
587
588 pfrm += *plen;
589 rx_sz += *plen;
590 plen++;
591 nfrms++;
592 }
593
594 return rx_sz;
595 }
596
cfhsi_rx_done(struct cfhsi * cfhsi)597 static void cfhsi_rx_done(struct cfhsi *cfhsi)
598 {
599 int res;
600 int desc_pld_len = 0, rx_len, rx_state;
601 struct cfhsi_desc *desc = NULL;
602 u8 *rx_ptr, *rx_buf;
603 struct cfhsi_desc *piggy_desc = NULL;
604
605 desc = (struct cfhsi_desc *)cfhsi->rx_buf;
606
607 netdev_dbg(cfhsi->ndev, "%s\n", __func__);
608
609 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
610 return;
611
612 /* Update inactivity timer if pending. */
613 spin_lock_bh(&cfhsi->lock);
614 mod_timer_pending(&cfhsi->inactivity_timer,
615 jiffies + cfhsi->cfg.inactivity_timeout);
616 spin_unlock_bh(&cfhsi->lock);
617
618 if (cfhsi->rx_state.state == CFHSI_RX_STATE_DESC) {
619 desc_pld_len = cfhsi_rx_desc_len(desc);
620
621 if (desc_pld_len < 0)
622 goto out_of_sync;
623
624 rx_buf = cfhsi->rx_buf;
625 rx_len = desc_pld_len;
626 if (desc_pld_len > 0 && (desc->header & CFHSI_PIGGY_DESC))
627 rx_len += CFHSI_DESC_SZ;
628 if (desc_pld_len == 0)
629 rx_buf = cfhsi->rx_flip_buf;
630 } else {
631 rx_buf = cfhsi->rx_flip_buf;
632
633 rx_len = CFHSI_DESC_SZ;
634 if (cfhsi->rx_state.pld_len > 0 &&
635 (desc->header & CFHSI_PIGGY_DESC)) {
636
637 piggy_desc = (struct cfhsi_desc *)
638 (desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ +
639 cfhsi->rx_state.pld_len);
640
641 cfhsi->rx_state.piggy_desc = true;
642
643 /* Extract payload len from piggy-backed descriptor. */
644 desc_pld_len = cfhsi_rx_desc_len(piggy_desc);
645 if (desc_pld_len < 0)
646 goto out_of_sync;
647
648 if (desc_pld_len > 0) {
649 rx_len = desc_pld_len;
650 if (piggy_desc->header & CFHSI_PIGGY_DESC)
651 rx_len += CFHSI_DESC_SZ;
652 }
653
654 /*
655 * Copy needed information from the piggy-backed
656 * descriptor to the descriptor in the start.
657 */
658 memcpy(rx_buf, (u8 *)piggy_desc,
659 CFHSI_DESC_SHORT_SZ);
660 }
661 }
662
663 if (desc_pld_len) {
664 rx_state = CFHSI_RX_STATE_PAYLOAD;
665 rx_ptr = rx_buf + CFHSI_DESC_SZ;
666 } else {
667 rx_state = CFHSI_RX_STATE_DESC;
668 rx_ptr = rx_buf;
669 rx_len = CFHSI_DESC_SZ;
670 }
671
672 /* Initiate next read */
673 if (test_bit(CFHSI_AWAKE, &cfhsi->bits)) {
674 /* Set up new transfer. */
675 netdev_dbg(cfhsi->ndev, "%s: Start RX.\n",
676 __func__);
677
678 res = cfhsi->ops->cfhsi_rx(rx_ptr, rx_len,
679 cfhsi->ops);
680 if (WARN_ON(res < 0)) {
681 netdev_err(cfhsi->ndev, "%s: RX error %d.\n",
682 __func__, res);
683 cfhsi->ndev->stats.rx_errors++;
684 cfhsi->ndev->stats.rx_dropped++;
685 }
686 }
687
688 if (cfhsi->rx_state.state == CFHSI_RX_STATE_DESC) {
689 /* Extract payload from descriptor */
690 if (cfhsi_rx_desc(desc, cfhsi) < 0)
691 goto out_of_sync;
692 } else {
693 /* Extract payload */
694 if (cfhsi_rx_pld(desc, cfhsi) < 0)
695 goto out_of_sync;
696 if (piggy_desc) {
697 /* Extract any payload in piggyback descriptor. */
698 if (cfhsi_rx_desc(piggy_desc, cfhsi) < 0)
699 goto out_of_sync;
700 /* Mark no embedded frame after extracting it */
701 piggy_desc->offset = 0;
702 }
703 }
704
705 /* Update state info */
706 memset(&cfhsi->rx_state, 0, sizeof(cfhsi->rx_state));
707 cfhsi->rx_state.state = rx_state;
708 cfhsi->rx_ptr = rx_ptr;
709 cfhsi->rx_len = rx_len;
710 cfhsi->rx_state.pld_len = desc_pld_len;
711 cfhsi->rx_state.piggy_desc = desc->header & CFHSI_PIGGY_DESC;
712
713 if (rx_buf != cfhsi->rx_buf)
714 swap(cfhsi->rx_buf, cfhsi->rx_flip_buf);
715 return;
716
717 out_of_sync:
718 netdev_err(cfhsi->ndev, "%s: Out of sync.\n", __func__);
719 print_hex_dump_bytes("--> ", DUMP_PREFIX_NONE,
720 cfhsi->rx_buf, CFHSI_DESC_SZ);
721 schedule_work(&cfhsi->out_of_sync_work);
722 }
723
cfhsi_rx_slowpath(struct timer_list * t)724 static void cfhsi_rx_slowpath(struct timer_list *t)
725 {
726 struct cfhsi *cfhsi = from_timer(cfhsi, t, rx_slowpath_timer);
727
728 netdev_dbg(cfhsi->ndev, "%s.\n",
729 __func__);
730
731 cfhsi_rx_done(cfhsi);
732 }
733
cfhsi_rx_done_cb(struct cfhsi_cb_ops * cb_ops)734 static void cfhsi_rx_done_cb(struct cfhsi_cb_ops *cb_ops)
735 {
736 struct cfhsi *cfhsi;
737
738 cfhsi = container_of(cb_ops, struct cfhsi, cb_ops);
739 netdev_dbg(cfhsi->ndev, "%s.\n",
740 __func__);
741
742 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
743 return;
744
745 if (test_and_clear_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits))
746 wake_up_interruptible(&cfhsi->flush_fifo_wait);
747 else
748 cfhsi_rx_done(cfhsi);
749 }
750
cfhsi_wake_up(struct work_struct * work)751 static void cfhsi_wake_up(struct work_struct *work)
752 {
753 struct cfhsi *cfhsi = NULL;
754 int res;
755 int len;
756 long ret;
757
758 cfhsi = container_of(work, struct cfhsi, wake_up_work);
759
760 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
761 return;
762
763 if (unlikely(test_bit(CFHSI_AWAKE, &cfhsi->bits))) {
764 /* It happenes when wakeup is requested by
765 * both ends at the same time. */
766 clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
767 clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
768 return;
769 }
770
771 /* Activate wake line. */
772 cfhsi->ops->cfhsi_wake_up(cfhsi->ops);
773
774 netdev_dbg(cfhsi->ndev, "%s: Start waiting.\n",
775 __func__);
776
777 /* Wait for acknowledge. */
778 ret = CFHSI_WAKE_TOUT;
779 ret = wait_event_interruptible_timeout(cfhsi->wake_up_wait,
780 test_and_clear_bit(CFHSI_WAKE_UP_ACK,
781 &cfhsi->bits), ret);
782 if (unlikely(ret < 0)) {
783 /* Interrupted by signal. */
784 netdev_err(cfhsi->ndev, "%s: Signalled: %ld.\n",
785 __func__, ret);
786
787 clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
788 cfhsi->ops->cfhsi_wake_down(cfhsi->ops);
789 return;
790 } else if (!ret) {
791 bool ca_wake = false;
792 size_t fifo_occupancy = 0;
793
794 /* Wakeup timeout */
795 netdev_dbg(cfhsi->ndev, "%s: Timeout.\n",
796 __func__);
797
798 /* Check FIFO to check if modem has sent something. */
799 WARN_ON(cfhsi->ops->cfhsi_fifo_occupancy(cfhsi->ops,
800 &fifo_occupancy));
801
802 netdev_dbg(cfhsi->ndev, "%s: Bytes in FIFO: %u.\n",
803 __func__, (unsigned) fifo_occupancy);
804
805 /* Check if we misssed the interrupt. */
806 WARN_ON(cfhsi->ops->cfhsi_get_peer_wake(cfhsi->ops,
807 &ca_wake));
808
809 if (ca_wake) {
810 netdev_err(cfhsi->ndev, "%s: CA Wake missed !.\n",
811 __func__);
812
813 /* Clear the CFHSI_WAKE_UP_ACK bit to prevent race. */
814 clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
815
816 /* Continue execution. */
817 goto wake_ack;
818 }
819
820 clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
821 cfhsi->ops->cfhsi_wake_down(cfhsi->ops);
822 return;
823 }
824 wake_ack:
825 netdev_dbg(cfhsi->ndev, "%s: Woken.\n",
826 __func__);
827
828 /* Clear power up bit. */
829 set_bit(CFHSI_AWAKE, &cfhsi->bits);
830 clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
831
832 /* Resume read operation. */
833 netdev_dbg(cfhsi->ndev, "%s: Start RX.\n", __func__);
834 res = cfhsi->ops->cfhsi_rx(cfhsi->rx_ptr, cfhsi->rx_len, cfhsi->ops);
835
836 if (WARN_ON(res < 0))
837 netdev_err(cfhsi->ndev, "%s: RX err %d.\n", __func__, res);
838
839 /* Clear power up acknowledment. */
840 clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
841
842 spin_lock_bh(&cfhsi->lock);
843
844 /* Resume transmit if queues are not empty. */
845 if (!cfhsi_tx_queue_len(cfhsi)) {
846 netdev_dbg(cfhsi->ndev, "%s: Peer wake, start timer.\n",
847 __func__);
848 /* Start inactivity timer. */
849 mod_timer(&cfhsi->inactivity_timer,
850 jiffies + cfhsi->cfg.inactivity_timeout);
851 spin_unlock_bh(&cfhsi->lock);
852 return;
853 }
854
855 netdev_dbg(cfhsi->ndev, "%s: Host wake.\n",
856 __func__);
857
858 spin_unlock_bh(&cfhsi->lock);
859
860 /* Create HSI frame. */
861 len = cfhsi_tx_frm((struct cfhsi_desc *)cfhsi->tx_buf, cfhsi);
862
863 if (likely(len > 0)) {
864 /* Set up new transfer. */
865 res = cfhsi->ops->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->ops);
866 if (WARN_ON(res < 0)) {
867 netdev_err(cfhsi->ndev, "%s: TX error %d.\n",
868 __func__, res);
869 cfhsi_abort_tx(cfhsi);
870 }
871 } else {
872 netdev_err(cfhsi->ndev,
873 "%s: Failed to create HSI frame: %d.\n",
874 __func__, len);
875 }
876 }
877
cfhsi_wake_down(struct work_struct * work)878 static void cfhsi_wake_down(struct work_struct *work)
879 {
880 long ret;
881 struct cfhsi *cfhsi = NULL;
882 size_t fifo_occupancy = 0;
883 int retry = CFHSI_WAKE_TOUT;
884
885 cfhsi = container_of(work, struct cfhsi, wake_down_work);
886 netdev_dbg(cfhsi->ndev, "%s.\n", __func__);
887
888 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
889 return;
890
891 /* Deactivate wake line. */
892 cfhsi->ops->cfhsi_wake_down(cfhsi->ops);
893
894 /* Wait for acknowledge. */
895 ret = CFHSI_WAKE_TOUT;
896 ret = wait_event_interruptible_timeout(cfhsi->wake_down_wait,
897 test_and_clear_bit(CFHSI_WAKE_DOWN_ACK,
898 &cfhsi->bits), ret);
899 if (ret < 0) {
900 /* Interrupted by signal. */
901 netdev_err(cfhsi->ndev, "%s: Signalled: %ld.\n",
902 __func__, ret);
903 return;
904 } else if (!ret) {
905 bool ca_wake = true;
906
907 /* Timeout */
908 netdev_err(cfhsi->ndev, "%s: Timeout.\n", __func__);
909
910 /* Check if we misssed the interrupt. */
911 WARN_ON(cfhsi->ops->cfhsi_get_peer_wake(cfhsi->ops,
912 &ca_wake));
913 if (!ca_wake)
914 netdev_err(cfhsi->ndev, "%s: CA Wake missed !.\n",
915 __func__);
916 }
917
918 /* Check FIFO occupancy. */
919 while (retry) {
920 WARN_ON(cfhsi->ops->cfhsi_fifo_occupancy(cfhsi->ops,
921 &fifo_occupancy));
922
923 if (!fifo_occupancy)
924 break;
925
926 set_current_state(TASK_INTERRUPTIBLE);
927 schedule_timeout(1);
928 retry--;
929 }
930
931 if (!retry)
932 netdev_err(cfhsi->ndev, "%s: FIFO Timeout.\n", __func__);
933
934 /* Clear AWAKE condition. */
935 clear_bit(CFHSI_AWAKE, &cfhsi->bits);
936
937 /* Cancel pending RX requests. */
938 cfhsi->ops->cfhsi_rx_cancel(cfhsi->ops);
939 }
940
cfhsi_out_of_sync(struct work_struct * work)941 static void cfhsi_out_of_sync(struct work_struct *work)
942 {
943 struct cfhsi *cfhsi = NULL;
944
945 cfhsi = container_of(work, struct cfhsi, out_of_sync_work);
946
947 rtnl_lock();
948 dev_close(cfhsi->ndev);
949 rtnl_unlock();
950 }
951
cfhsi_wake_up_cb(struct cfhsi_cb_ops * cb_ops)952 static void cfhsi_wake_up_cb(struct cfhsi_cb_ops *cb_ops)
953 {
954 struct cfhsi *cfhsi = NULL;
955
956 cfhsi = container_of(cb_ops, struct cfhsi, cb_ops);
957 netdev_dbg(cfhsi->ndev, "%s.\n",
958 __func__);
959
960 set_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
961 wake_up_interruptible(&cfhsi->wake_up_wait);
962
963 if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
964 return;
965
966 /* Schedule wake up work queue if the peer initiates. */
967 if (!test_and_set_bit(CFHSI_WAKE_UP, &cfhsi->bits))
968 queue_work(cfhsi->wq, &cfhsi->wake_up_work);
969 }
970
cfhsi_wake_down_cb(struct cfhsi_cb_ops * cb_ops)971 static void cfhsi_wake_down_cb(struct cfhsi_cb_ops *cb_ops)
972 {
973 struct cfhsi *cfhsi = NULL;
974
975 cfhsi = container_of(cb_ops, struct cfhsi, cb_ops);
976 netdev_dbg(cfhsi->ndev, "%s.\n",
977 __func__);
978
979 /* Initiating low power is only permitted by the host (us). */
980 set_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits);
981 wake_up_interruptible(&cfhsi->wake_down_wait);
982 }
983
cfhsi_aggregation_tout(struct timer_list * t)984 static void cfhsi_aggregation_tout(struct timer_list *t)
985 {
986 struct cfhsi *cfhsi = from_timer(cfhsi, t, aggregation_timer);
987
988 netdev_dbg(cfhsi->ndev, "%s.\n",
989 __func__);
990
991 cfhsi_start_tx(cfhsi);
992 }
993
cfhsi_xmit(struct sk_buff * skb,struct net_device * dev)994 static netdev_tx_t cfhsi_xmit(struct sk_buff *skb, struct net_device *dev)
995 {
996 struct cfhsi *cfhsi = NULL;
997 int start_xfer = 0;
998 int timer_active;
999 int prio;
1000
1001 if (!dev)
1002 return -EINVAL;
1003
1004 cfhsi = netdev_priv(dev);
1005
1006 switch (skb->priority) {
1007 case TC_PRIO_BESTEFFORT:
1008 case TC_PRIO_FILLER:
1009 case TC_PRIO_BULK:
1010 prio = CFHSI_PRIO_BEBK;
1011 break;
1012 case TC_PRIO_INTERACTIVE_BULK:
1013 prio = CFHSI_PRIO_VI;
1014 break;
1015 case TC_PRIO_INTERACTIVE:
1016 prio = CFHSI_PRIO_VO;
1017 break;
1018 case TC_PRIO_CONTROL:
1019 default:
1020 prio = CFHSI_PRIO_CTL;
1021 break;
1022 }
1023
1024 spin_lock_bh(&cfhsi->lock);
1025
1026 /* Update aggregation statistics */
1027 cfhsi_update_aggregation_stats(cfhsi, skb, 1);
1028
1029 /* Queue the SKB */
1030 skb_queue_tail(&cfhsi->qhead[prio], skb);
1031
1032 /* Sanity check; xmit should not be called after unregister_netdev */
1033 if (WARN_ON(test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))) {
1034 spin_unlock_bh(&cfhsi->lock);
1035 cfhsi_abort_tx(cfhsi);
1036 return -EINVAL;
1037 }
1038
1039 /* Send flow off if number of packets is above high water mark. */
1040 if (!cfhsi->flow_off_sent &&
1041 cfhsi_tx_queue_len(cfhsi) > cfhsi->cfg.q_high_mark &&
1042 cfhsi->cfdev.flowctrl) {
1043 cfhsi->flow_off_sent = 1;
1044 cfhsi->cfdev.flowctrl(cfhsi->ndev, OFF);
1045 }
1046
1047 if (cfhsi->tx_state == CFHSI_TX_STATE_IDLE) {
1048 cfhsi->tx_state = CFHSI_TX_STATE_XFER;
1049 start_xfer = 1;
1050 }
1051
1052 if (!start_xfer) {
1053 /* Send aggregate if it is possible */
1054 bool aggregate_ready =
1055 cfhsi_can_send_aggregate(cfhsi) &&
1056 del_timer(&cfhsi->aggregation_timer) > 0;
1057 spin_unlock_bh(&cfhsi->lock);
1058 if (aggregate_ready)
1059 cfhsi_start_tx(cfhsi);
1060 return NETDEV_TX_OK;
1061 }
1062
1063 /* Delete inactivity timer if started. */
1064 timer_active = del_timer_sync(&cfhsi->inactivity_timer);
1065
1066 spin_unlock_bh(&cfhsi->lock);
1067
1068 if (timer_active) {
1069 struct cfhsi_desc *desc = (struct cfhsi_desc *)cfhsi->tx_buf;
1070 int len;
1071 int res;
1072
1073 /* Create HSI frame. */
1074 len = cfhsi_tx_frm(desc, cfhsi);
1075 WARN_ON(!len);
1076
1077 /* Set up new transfer. */
1078 res = cfhsi->ops->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->ops);
1079 if (WARN_ON(res < 0)) {
1080 netdev_err(cfhsi->ndev, "%s: TX error %d.\n",
1081 __func__, res);
1082 cfhsi_abort_tx(cfhsi);
1083 }
1084 } else {
1085 /* Schedule wake up work queue if the we initiate. */
1086 if (!test_and_set_bit(CFHSI_WAKE_UP, &cfhsi->bits))
1087 queue_work(cfhsi->wq, &cfhsi->wake_up_work);
1088 }
1089
1090 return NETDEV_TX_OK;
1091 }
1092
1093 static const struct net_device_ops cfhsi_netdevops;
1094
cfhsi_setup(struct net_device * dev)1095 static void cfhsi_setup(struct net_device *dev)
1096 {
1097 int i;
1098 struct cfhsi *cfhsi = netdev_priv(dev);
1099 dev->features = 0;
1100 dev->type = ARPHRD_CAIF;
1101 dev->flags = IFF_POINTOPOINT | IFF_NOARP;
1102 dev->mtu = CFHSI_MAX_CAIF_FRAME_SZ;
1103 dev->priv_flags |= IFF_NO_QUEUE;
1104 dev->needs_free_netdev = true;
1105 dev->netdev_ops = &cfhsi_netdevops;
1106 for (i = 0; i < CFHSI_PRIO_LAST; ++i)
1107 skb_queue_head_init(&cfhsi->qhead[i]);
1108 cfhsi->cfdev.link_select = CAIF_LINK_HIGH_BANDW;
1109 cfhsi->cfdev.use_frag = false;
1110 cfhsi->cfdev.use_stx = false;
1111 cfhsi->cfdev.use_fcs = false;
1112 cfhsi->ndev = dev;
1113 cfhsi->cfg = hsi_default_config;
1114 }
1115
cfhsi_open(struct net_device * ndev)1116 static int cfhsi_open(struct net_device *ndev)
1117 {
1118 struct cfhsi *cfhsi = netdev_priv(ndev);
1119 int res;
1120
1121 clear_bit(CFHSI_SHUTDOWN, &cfhsi->bits);
1122
1123 /* Initialize state vaiables. */
1124 cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
1125 cfhsi->rx_state.state = CFHSI_RX_STATE_DESC;
1126
1127 /* Set flow info */
1128 cfhsi->flow_off_sent = 0;
1129
1130 /*
1131 * Allocate a TX buffer with the size of a HSI packet descriptors
1132 * and the necessary room for CAIF payload frames.
1133 */
1134 cfhsi->tx_buf = kzalloc(CFHSI_BUF_SZ_TX, GFP_KERNEL);
1135 if (!cfhsi->tx_buf) {
1136 res = -ENODEV;
1137 goto err_alloc_tx;
1138 }
1139
1140 /*
1141 * Allocate a RX buffer with the size of two HSI packet descriptors and
1142 * the necessary room for CAIF payload frames.
1143 */
1144 cfhsi->rx_buf = kzalloc(CFHSI_BUF_SZ_RX, GFP_KERNEL);
1145 if (!cfhsi->rx_buf) {
1146 res = -ENODEV;
1147 goto err_alloc_rx;
1148 }
1149
1150 cfhsi->rx_flip_buf = kzalloc(CFHSI_BUF_SZ_RX, GFP_KERNEL);
1151 if (!cfhsi->rx_flip_buf) {
1152 res = -ENODEV;
1153 goto err_alloc_rx_flip;
1154 }
1155
1156 /* Initialize aggregation timeout */
1157 cfhsi->cfg.aggregation_timeout = hsi_default_config.aggregation_timeout;
1158
1159 /* Initialize recieve vaiables. */
1160 cfhsi->rx_ptr = cfhsi->rx_buf;
1161 cfhsi->rx_len = CFHSI_DESC_SZ;
1162
1163 /* Initialize spin locks. */
1164 spin_lock_init(&cfhsi->lock);
1165
1166 /* Set up the driver. */
1167 cfhsi->cb_ops.tx_done_cb = cfhsi_tx_done_cb;
1168 cfhsi->cb_ops.rx_done_cb = cfhsi_rx_done_cb;
1169 cfhsi->cb_ops.wake_up_cb = cfhsi_wake_up_cb;
1170 cfhsi->cb_ops.wake_down_cb = cfhsi_wake_down_cb;
1171
1172 /* Initialize the work queues. */
1173 INIT_WORK(&cfhsi->wake_up_work, cfhsi_wake_up);
1174 INIT_WORK(&cfhsi->wake_down_work, cfhsi_wake_down);
1175 INIT_WORK(&cfhsi->out_of_sync_work, cfhsi_out_of_sync);
1176
1177 /* Clear all bit fields. */
1178 clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
1179 clear_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits);
1180 clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
1181 clear_bit(CFHSI_AWAKE, &cfhsi->bits);
1182
1183 /* Create work thread. */
1184 cfhsi->wq = alloc_ordered_workqueue(cfhsi->ndev->name, WQ_MEM_RECLAIM);
1185 if (!cfhsi->wq) {
1186 netdev_err(cfhsi->ndev, "%s: Failed to create work queue.\n",
1187 __func__);
1188 res = -ENODEV;
1189 goto err_create_wq;
1190 }
1191
1192 /* Initialize wait queues. */
1193 init_waitqueue_head(&cfhsi->wake_up_wait);
1194 init_waitqueue_head(&cfhsi->wake_down_wait);
1195 init_waitqueue_head(&cfhsi->flush_fifo_wait);
1196
1197 /* Setup the inactivity timer. */
1198 timer_setup(&cfhsi->inactivity_timer, cfhsi_inactivity_tout, 0);
1199 /* Setup the slowpath RX timer. */
1200 timer_setup(&cfhsi->rx_slowpath_timer, cfhsi_rx_slowpath, 0);
1201 /* Setup the aggregation timer. */
1202 timer_setup(&cfhsi->aggregation_timer, cfhsi_aggregation_tout, 0);
1203
1204 /* Activate HSI interface. */
1205 res = cfhsi->ops->cfhsi_up(cfhsi->ops);
1206 if (res) {
1207 netdev_err(cfhsi->ndev,
1208 "%s: can't activate HSI interface: %d.\n",
1209 __func__, res);
1210 goto err_activate;
1211 }
1212
1213 /* Flush FIFO */
1214 res = cfhsi_flush_fifo(cfhsi);
1215 if (res) {
1216 netdev_err(cfhsi->ndev, "%s: Can't flush FIFO: %d.\n",
1217 __func__, res);
1218 goto err_net_reg;
1219 }
1220 return res;
1221
1222 err_net_reg:
1223 cfhsi->ops->cfhsi_down(cfhsi->ops);
1224 err_activate:
1225 destroy_workqueue(cfhsi->wq);
1226 err_create_wq:
1227 kfree(cfhsi->rx_flip_buf);
1228 err_alloc_rx_flip:
1229 kfree(cfhsi->rx_buf);
1230 err_alloc_rx:
1231 kfree(cfhsi->tx_buf);
1232 err_alloc_tx:
1233 return res;
1234 }
1235
cfhsi_close(struct net_device * ndev)1236 static int cfhsi_close(struct net_device *ndev)
1237 {
1238 struct cfhsi *cfhsi = netdev_priv(ndev);
1239 u8 *tx_buf, *rx_buf, *flip_buf;
1240
1241 /* going to shutdown driver */
1242 set_bit(CFHSI_SHUTDOWN, &cfhsi->bits);
1243
1244 /* Delete timers if pending */
1245 del_timer_sync(&cfhsi->inactivity_timer);
1246 del_timer_sync(&cfhsi->rx_slowpath_timer);
1247 del_timer_sync(&cfhsi->aggregation_timer);
1248
1249 /* Cancel pending RX request (if any) */
1250 cfhsi->ops->cfhsi_rx_cancel(cfhsi->ops);
1251
1252 /* Destroy workqueue */
1253 destroy_workqueue(cfhsi->wq);
1254
1255 /* Store bufferes: will be freed later. */
1256 tx_buf = cfhsi->tx_buf;
1257 rx_buf = cfhsi->rx_buf;
1258 flip_buf = cfhsi->rx_flip_buf;
1259 /* Flush transmit queues. */
1260 cfhsi_abort_tx(cfhsi);
1261
1262 /* Deactivate interface */
1263 cfhsi->ops->cfhsi_down(cfhsi->ops);
1264
1265 /* Free buffers. */
1266 kfree(tx_buf);
1267 kfree(rx_buf);
1268 kfree(flip_buf);
1269 return 0;
1270 }
1271
cfhsi_uninit(struct net_device * dev)1272 static void cfhsi_uninit(struct net_device *dev)
1273 {
1274 struct cfhsi *cfhsi = netdev_priv(dev);
1275 ASSERT_RTNL();
1276 symbol_put(cfhsi_get_device);
1277 list_del(&cfhsi->list);
1278 }
1279
1280 static const struct net_device_ops cfhsi_netdevops = {
1281 .ndo_uninit = cfhsi_uninit,
1282 .ndo_open = cfhsi_open,
1283 .ndo_stop = cfhsi_close,
1284 .ndo_start_xmit = cfhsi_xmit
1285 };
1286
cfhsi_netlink_parms(struct nlattr * data[],struct cfhsi * cfhsi)1287 static void cfhsi_netlink_parms(struct nlattr *data[], struct cfhsi *cfhsi)
1288 {
1289 int i;
1290
1291 if (!data) {
1292 pr_debug("no params data found\n");
1293 return;
1294 }
1295
1296 i = __IFLA_CAIF_HSI_INACTIVITY_TOUT;
1297 /*
1298 * Inactivity timeout in millisecs. Lowest possible value is 1,
1299 * and highest possible is NEXT_TIMER_MAX_DELTA.
1300 */
1301 if (data[i]) {
1302 u32 inactivity_timeout = nla_get_u32(data[i]);
1303 /* Pre-calculate inactivity timeout. */
1304 cfhsi->cfg.inactivity_timeout = inactivity_timeout * HZ / 1000;
1305 if (cfhsi->cfg.inactivity_timeout == 0)
1306 cfhsi->cfg.inactivity_timeout = 1;
1307 else if (cfhsi->cfg.inactivity_timeout > NEXT_TIMER_MAX_DELTA)
1308 cfhsi->cfg.inactivity_timeout = NEXT_TIMER_MAX_DELTA;
1309 }
1310
1311 i = __IFLA_CAIF_HSI_AGGREGATION_TOUT;
1312 if (data[i])
1313 cfhsi->cfg.aggregation_timeout = nla_get_u32(data[i]);
1314
1315 i = __IFLA_CAIF_HSI_HEAD_ALIGN;
1316 if (data[i])
1317 cfhsi->cfg.head_align = nla_get_u32(data[i]);
1318
1319 i = __IFLA_CAIF_HSI_TAIL_ALIGN;
1320 if (data[i])
1321 cfhsi->cfg.tail_align = nla_get_u32(data[i]);
1322
1323 i = __IFLA_CAIF_HSI_QHIGH_WATERMARK;
1324 if (data[i])
1325 cfhsi->cfg.q_high_mark = nla_get_u32(data[i]);
1326
1327 i = __IFLA_CAIF_HSI_QLOW_WATERMARK;
1328 if (data[i])
1329 cfhsi->cfg.q_low_mark = nla_get_u32(data[i]);
1330 }
1331
caif_hsi_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1332 static int caif_hsi_changelink(struct net_device *dev, struct nlattr *tb[],
1333 struct nlattr *data[],
1334 struct netlink_ext_ack *extack)
1335 {
1336 cfhsi_netlink_parms(data, netdev_priv(dev));
1337 netdev_state_change(dev);
1338 return 0;
1339 }
1340
1341 static const struct nla_policy caif_hsi_policy[__IFLA_CAIF_HSI_MAX + 1] = {
1342 [__IFLA_CAIF_HSI_INACTIVITY_TOUT] = { .type = NLA_U32, .len = 4 },
1343 [__IFLA_CAIF_HSI_AGGREGATION_TOUT] = { .type = NLA_U32, .len = 4 },
1344 [__IFLA_CAIF_HSI_HEAD_ALIGN] = { .type = NLA_U32, .len = 4 },
1345 [__IFLA_CAIF_HSI_TAIL_ALIGN] = { .type = NLA_U32, .len = 4 },
1346 [__IFLA_CAIF_HSI_QHIGH_WATERMARK] = { .type = NLA_U32, .len = 4 },
1347 [__IFLA_CAIF_HSI_QLOW_WATERMARK] = { .type = NLA_U32, .len = 4 },
1348 };
1349
caif_hsi_get_size(const struct net_device * dev)1350 static size_t caif_hsi_get_size(const struct net_device *dev)
1351 {
1352 int i;
1353 size_t s = 0;
1354 for (i = __IFLA_CAIF_HSI_UNSPEC + 1; i < __IFLA_CAIF_HSI_MAX; i++)
1355 s += nla_total_size(caif_hsi_policy[i].len);
1356 return s;
1357 }
1358
caif_hsi_fill_info(struct sk_buff * skb,const struct net_device * dev)1359 static int caif_hsi_fill_info(struct sk_buff *skb, const struct net_device *dev)
1360 {
1361 struct cfhsi *cfhsi = netdev_priv(dev);
1362
1363 if (nla_put_u32(skb, __IFLA_CAIF_HSI_INACTIVITY_TOUT,
1364 cfhsi->cfg.inactivity_timeout) ||
1365 nla_put_u32(skb, __IFLA_CAIF_HSI_AGGREGATION_TOUT,
1366 cfhsi->cfg.aggregation_timeout) ||
1367 nla_put_u32(skb, __IFLA_CAIF_HSI_HEAD_ALIGN,
1368 cfhsi->cfg.head_align) ||
1369 nla_put_u32(skb, __IFLA_CAIF_HSI_TAIL_ALIGN,
1370 cfhsi->cfg.tail_align) ||
1371 nla_put_u32(skb, __IFLA_CAIF_HSI_QHIGH_WATERMARK,
1372 cfhsi->cfg.q_high_mark) ||
1373 nla_put_u32(skb, __IFLA_CAIF_HSI_QLOW_WATERMARK,
1374 cfhsi->cfg.q_low_mark))
1375 return -EMSGSIZE;
1376
1377 return 0;
1378 }
1379
caif_hsi_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1380 static int caif_hsi_newlink(struct net *src_net, struct net_device *dev,
1381 struct nlattr *tb[], struct nlattr *data[],
1382 struct netlink_ext_ack *extack)
1383 {
1384 struct cfhsi *cfhsi = NULL;
1385 struct cfhsi_ops *(*get_ops)(void);
1386
1387 ASSERT_RTNL();
1388
1389 cfhsi = netdev_priv(dev);
1390 cfhsi_netlink_parms(data, cfhsi);
1391
1392 get_ops = symbol_get(cfhsi_get_ops);
1393 if (!get_ops) {
1394 pr_err("%s: failed to get the cfhsi_ops\n", __func__);
1395 return -ENODEV;
1396 }
1397
1398 /* Assign the HSI device. */
1399 cfhsi->ops = (*get_ops)();
1400 if (!cfhsi->ops) {
1401 pr_err("%s: failed to get the cfhsi_ops\n", __func__);
1402 goto err;
1403 }
1404
1405 /* Assign the driver to this HSI device. */
1406 cfhsi->ops->cb_ops = &cfhsi->cb_ops;
1407 if (register_netdevice(dev)) {
1408 pr_warn("%s: caif_hsi device registration failed\n", __func__);
1409 goto err;
1410 }
1411 /* Add CAIF HSI device to list. */
1412 list_add_tail(&cfhsi->list, &cfhsi_list);
1413
1414 return 0;
1415 err:
1416 symbol_put(cfhsi_get_ops);
1417 return -ENODEV;
1418 }
1419
1420 static struct rtnl_link_ops caif_hsi_link_ops __read_mostly = {
1421 .kind = "cfhsi",
1422 .priv_size = sizeof(struct cfhsi),
1423 .setup = cfhsi_setup,
1424 .maxtype = __IFLA_CAIF_HSI_MAX,
1425 .policy = caif_hsi_policy,
1426 .newlink = caif_hsi_newlink,
1427 .changelink = caif_hsi_changelink,
1428 .get_size = caif_hsi_get_size,
1429 .fill_info = caif_hsi_fill_info,
1430 };
1431
cfhsi_exit_module(void)1432 static void __exit cfhsi_exit_module(void)
1433 {
1434 struct list_head *list_node;
1435 struct list_head *n;
1436 struct cfhsi *cfhsi;
1437
1438 rtnl_link_unregister(&caif_hsi_link_ops);
1439
1440 rtnl_lock();
1441 list_for_each_safe(list_node, n, &cfhsi_list) {
1442 cfhsi = list_entry(list_node, struct cfhsi, list);
1443 unregister_netdevice(cfhsi->ndev);
1444 }
1445 rtnl_unlock();
1446 }
1447
cfhsi_init_module(void)1448 static int __init cfhsi_init_module(void)
1449 {
1450 return rtnl_link_register(&caif_hsi_link_ops);
1451 }
1452
1453 module_init(cfhsi_init_module);
1454 module_exit(cfhsi_exit_module);
1455