1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 */
21
22 #include <linux/bitfield.h>
23 #include <linux/can/core.h>
24 #include <linux/can/dev.h>
25 #include <linux/can/led.h>
26 #include <linux/clk.h>
27 #include <linux/completion.h>
28 #include <linux/delay.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/gpio.h>
32 #include <linux/gpio/driver.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/netdevice.h>
39 #include <linux/platform_device.h>
40 #include <linux/property.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/slab.h>
43 #include <linux/spi/spi.h>
44 #include <linux/uaccess.h>
45
46 /* SPI interface instruction set */
47 #define INSTRUCTION_WRITE 0x02
48 #define INSTRUCTION_READ 0x03
49 #define INSTRUCTION_BIT_MODIFY 0x05
50 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
51 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
52 #define INSTRUCTION_RESET 0xC0
53 #define RTS_TXB0 0x01
54 #define RTS_TXB1 0x02
55 #define RTS_TXB2 0x04
56 #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
57
58 /* MPC251x registers */
59 #define BFPCTRL 0x0c
60 # define BFPCTRL_B0BFM BIT(0)
61 # define BFPCTRL_B1BFM BIT(1)
62 # define BFPCTRL_BFM(n) (BFPCTRL_B0BFM << (n))
63 # define BFPCTRL_BFM_MASK GENMASK(1, 0)
64 # define BFPCTRL_B0BFE BIT(2)
65 # define BFPCTRL_B1BFE BIT(3)
66 # define BFPCTRL_BFE(n) (BFPCTRL_B0BFE << (n))
67 # define BFPCTRL_BFE_MASK GENMASK(3, 2)
68 # define BFPCTRL_B0BFS BIT(4)
69 # define BFPCTRL_B1BFS BIT(5)
70 # define BFPCTRL_BFS(n) (BFPCTRL_B0BFS << (n))
71 # define BFPCTRL_BFS_MASK GENMASK(5, 4)
72 #define TXRTSCTRL 0x0d
73 # define TXRTSCTRL_B0RTSM BIT(0)
74 # define TXRTSCTRL_B1RTSM BIT(1)
75 # define TXRTSCTRL_B2RTSM BIT(2)
76 # define TXRTSCTRL_RTSM(n) (TXRTSCTRL_B0RTSM << (n))
77 # define TXRTSCTRL_RTSM_MASK GENMASK(2, 0)
78 # define TXRTSCTRL_B0RTS BIT(3)
79 # define TXRTSCTRL_B1RTS BIT(4)
80 # define TXRTSCTRL_B2RTS BIT(5)
81 # define TXRTSCTRL_RTS(n) (TXRTSCTRL_B0RTS << (n))
82 # define TXRTSCTRL_RTS_MASK GENMASK(5, 3)
83 #define CANSTAT 0x0e
84 #define CANCTRL 0x0f
85 # define CANCTRL_REQOP_MASK 0xe0
86 # define CANCTRL_REQOP_CONF 0x80
87 # define CANCTRL_REQOP_LISTEN_ONLY 0x60
88 # define CANCTRL_REQOP_LOOPBACK 0x40
89 # define CANCTRL_REQOP_SLEEP 0x20
90 # define CANCTRL_REQOP_NORMAL 0x00
91 # define CANCTRL_OSM 0x08
92 # define CANCTRL_ABAT 0x10
93 #define TEC 0x1c
94 #define REC 0x1d
95 #define CNF1 0x2a
96 # define CNF1_SJW_SHIFT 6
97 #define CNF2 0x29
98 # define CNF2_BTLMODE 0x80
99 # define CNF2_SAM 0x40
100 # define CNF2_PS1_SHIFT 3
101 #define CNF3 0x28
102 # define CNF3_SOF 0x08
103 # define CNF3_WAKFIL 0x04
104 # define CNF3_PHSEG2_MASK 0x07
105 #define CANINTE 0x2b
106 # define CANINTE_MERRE 0x80
107 # define CANINTE_WAKIE 0x40
108 # define CANINTE_ERRIE 0x20
109 # define CANINTE_TX2IE 0x10
110 # define CANINTE_TX1IE 0x08
111 # define CANINTE_TX0IE 0x04
112 # define CANINTE_RX1IE 0x02
113 # define CANINTE_RX0IE 0x01
114 #define CANINTF 0x2c
115 # define CANINTF_MERRF 0x80
116 # define CANINTF_WAKIF 0x40
117 # define CANINTF_ERRIF 0x20
118 # define CANINTF_TX2IF 0x10
119 # define CANINTF_TX1IF 0x08
120 # define CANINTF_TX0IF 0x04
121 # define CANINTF_RX1IF 0x02
122 # define CANINTF_RX0IF 0x01
123 # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
124 # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
125 # define CANINTF_ERR (CANINTF_ERRIF)
126 #define EFLG 0x2d
127 # define EFLG_EWARN 0x01
128 # define EFLG_RXWAR 0x02
129 # define EFLG_TXWAR 0x04
130 # define EFLG_RXEP 0x08
131 # define EFLG_TXEP 0x10
132 # define EFLG_TXBO 0x20
133 # define EFLG_RX0OVR 0x40
134 # define EFLG_RX1OVR 0x80
135 #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
136 # define TXBCTRL_ABTF 0x40
137 # define TXBCTRL_MLOA 0x20
138 # define TXBCTRL_TXERR 0x10
139 # define TXBCTRL_TXREQ 0x08
140 #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
141 # define SIDH_SHIFT 3
142 #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
143 # define SIDL_SID_MASK 7
144 # define SIDL_SID_SHIFT 5
145 # define SIDL_EXIDE_SHIFT 3
146 # define SIDL_EID_SHIFT 16
147 # define SIDL_EID_MASK 3
148 #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
149 #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
150 #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
151 # define DLC_RTR_SHIFT 6
152 #define TXBCTRL_OFF 0
153 #define TXBSIDH_OFF 1
154 #define TXBSIDL_OFF 2
155 #define TXBEID8_OFF 3
156 #define TXBEID0_OFF 4
157 #define TXBDLC_OFF 5
158 #define TXBDAT_OFF 6
159 #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
160 # define RXBCTRL_BUKT 0x04
161 # define RXBCTRL_RXM0 0x20
162 # define RXBCTRL_RXM1 0x40
163 #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
164 # define RXBSIDH_SHIFT 3
165 #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
166 # define RXBSIDL_IDE 0x08
167 # define RXBSIDL_SRR 0x10
168 # define RXBSIDL_EID 3
169 # define RXBSIDL_SHIFT 5
170 #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
171 #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
172 #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
173 # define RXBDLC_LEN_MASK 0x0f
174 # define RXBDLC_RTR 0x40
175 #define RXBCTRL_OFF 0
176 #define RXBSIDH_OFF 1
177 #define RXBSIDL_OFF 2
178 #define RXBEID8_OFF 3
179 #define RXBEID0_OFF 4
180 #define RXBDLC_OFF 5
181 #define RXBDAT_OFF 6
182 #define RXFSID(n) ((n < 3) ? 0 : 4)
183 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
184 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
185 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
186 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
187 #define RXMSIDH(n) ((n) * 4 + 0x20)
188 #define RXMSIDL(n) ((n) * 4 + 0x21)
189 #define RXMEID8(n) ((n) * 4 + 0x22)
190 #define RXMEID0(n) ((n) * 4 + 0x23)
191
192 #define GET_BYTE(val, byte) \
193 (((val) >> ((byte) * 8)) & 0xff)
194 #define SET_BYTE(val, byte) \
195 (((val) & 0xff) << ((byte) * 8))
196
197 /* Buffer size required for the largest SPI transfer (i.e., reading a
198 * frame)
199 */
200 #define CAN_FRAME_MAX_DATA_LEN 8
201 #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
202 #define CAN_FRAME_MAX_BITS 128
203
204 #define TX_ECHO_SKB_MAX 1
205
206 #define MCP251X_OST_DELAY_MS (5)
207
208 #define DEVICE_NAME "mcp251x"
209
210 static const struct can_bittiming_const mcp251x_bittiming_const = {
211 .name = DEVICE_NAME,
212 .tseg1_min = 3,
213 .tseg1_max = 16,
214 .tseg2_min = 2,
215 .tseg2_max = 8,
216 .sjw_max = 4,
217 .brp_min = 1,
218 .brp_max = 64,
219 .brp_inc = 1,
220 };
221
222 enum mcp251x_model {
223 CAN_MCP251X_MCP2510 = 0x2510,
224 CAN_MCP251X_MCP2515 = 0x2515,
225 CAN_MCP251X_MCP25625 = 0x25625,
226 };
227
228 struct mcp251x_priv {
229 struct can_priv can;
230 struct net_device *net;
231 struct spi_device *spi;
232 enum mcp251x_model model;
233
234 struct mutex mcp_lock; /* SPI device lock */
235
236 u8 *spi_tx_buf;
237 u8 *spi_rx_buf;
238
239 struct sk_buff *tx_skb;
240 int tx_len;
241
242 struct workqueue_struct *wq;
243 struct work_struct tx_work;
244 struct work_struct restart_work;
245
246 int force_quit;
247 int after_suspend;
248 #define AFTER_SUSPEND_UP 1
249 #define AFTER_SUSPEND_DOWN 2
250 #define AFTER_SUSPEND_POWER 4
251 #define AFTER_SUSPEND_RESTART 8
252 int restart_tx;
253 struct regulator *power;
254 struct regulator *transceiver;
255 struct clk *clk;
256 #ifdef CONFIG_GPIOLIB
257 struct gpio_chip gpio;
258 u8 reg_bfpctrl;
259 #endif
260 };
261
262 #define MCP251X_IS(_model) \
263 static inline int mcp251x_is_##_model(struct spi_device *spi) \
264 { \
265 struct mcp251x_priv *priv = spi_get_drvdata(spi); \
266 return priv->model == CAN_MCP251X_MCP##_model; \
267 }
268
269 MCP251X_IS(2510);
270
mcp251x_clean(struct net_device * net)271 static void mcp251x_clean(struct net_device *net)
272 {
273 struct mcp251x_priv *priv = netdev_priv(net);
274
275 if (priv->tx_skb || priv->tx_len)
276 net->stats.tx_errors++;
277 dev_kfree_skb(priv->tx_skb);
278 if (priv->tx_len)
279 can_free_echo_skb(priv->net, 0);
280 priv->tx_skb = NULL;
281 priv->tx_len = 0;
282 }
283
284 /* Note about handling of error return of mcp251x_spi_trans: accessing
285 * registers via SPI is not really different conceptually than using
286 * normal I/O assembler instructions, although it's much more
287 * complicated from a practical POV. So it's not advisable to always
288 * check the return value of this function. Imagine that every
289 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
290 * error();", it would be a great mess (well there are some situation
291 * when exception handling C++ like could be useful after all). So we
292 * just check that transfers are OK at the beginning of our
293 * conversation with the chip and to avoid doing really nasty things
294 * (like injecting bogus packets in the network stack).
295 */
mcp251x_spi_trans(struct spi_device * spi,int len)296 static int mcp251x_spi_trans(struct spi_device *spi, int len)
297 {
298 struct mcp251x_priv *priv = spi_get_drvdata(spi);
299 struct spi_transfer t = {
300 .tx_buf = priv->spi_tx_buf,
301 .rx_buf = priv->spi_rx_buf,
302 .len = len,
303 .cs_change = 0,
304 };
305 struct spi_message m;
306 int ret;
307
308 spi_message_init(&m);
309 spi_message_add_tail(&t, &m);
310
311 ret = spi_sync(spi, &m);
312 if (ret)
313 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
314 return ret;
315 }
316
mcp251x_spi_write(struct spi_device * spi,int len)317 static int mcp251x_spi_write(struct spi_device *spi, int len)
318 {
319 struct mcp251x_priv *priv = spi_get_drvdata(spi);
320 int ret;
321
322 ret = spi_write(spi, priv->spi_tx_buf, len);
323 if (ret)
324 dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
325
326 return ret;
327 }
328
mcp251x_read_reg(struct spi_device * spi,u8 reg)329 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
330 {
331 struct mcp251x_priv *priv = spi_get_drvdata(spi);
332 u8 val = 0;
333
334 priv->spi_tx_buf[0] = INSTRUCTION_READ;
335 priv->spi_tx_buf[1] = reg;
336
337 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
338 spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
339 } else {
340 mcp251x_spi_trans(spi, 3);
341 val = priv->spi_rx_buf[2];
342 }
343
344 return val;
345 }
346
mcp251x_read_2regs(struct spi_device * spi,u8 reg,u8 * v1,u8 * v2)347 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
348 {
349 struct mcp251x_priv *priv = spi_get_drvdata(spi);
350
351 priv->spi_tx_buf[0] = INSTRUCTION_READ;
352 priv->spi_tx_buf[1] = reg;
353
354 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
355 u8 val[2] = { 0 };
356
357 spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
358 *v1 = val[0];
359 *v2 = val[1];
360 } else {
361 mcp251x_spi_trans(spi, 4);
362
363 *v1 = priv->spi_rx_buf[2];
364 *v2 = priv->spi_rx_buf[3];
365 }
366 }
367
mcp251x_write_reg(struct spi_device * spi,u8 reg,u8 val)368 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
369 {
370 struct mcp251x_priv *priv = spi_get_drvdata(spi);
371
372 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
373 priv->spi_tx_buf[1] = reg;
374 priv->spi_tx_buf[2] = val;
375
376 mcp251x_spi_write(spi, 3);
377 }
378
mcp251x_write_2regs(struct spi_device * spi,u8 reg,u8 v1,u8 v2)379 static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
380 {
381 struct mcp251x_priv *priv = spi_get_drvdata(spi);
382
383 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
384 priv->spi_tx_buf[1] = reg;
385 priv->spi_tx_buf[2] = v1;
386 priv->spi_tx_buf[3] = v2;
387
388 mcp251x_spi_write(spi, 4);
389 }
390
mcp251x_write_bits(struct spi_device * spi,u8 reg,u8 mask,u8 val)391 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
392 u8 mask, u8 val)
393 {
394 struct mcp251x_priv *priv = spi_get_drvdata(spi);
395
396 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
397 priv->spi_tx_buf[1] = reg;
398 priv->spi_tx_buf[2] = mask;
399 priv->spi_tx_buf[3] = val;
400
401 mcp251x_spi_write(spi, 4);
402 }
403
mcp251x_read_stat(struct spi_device * spi)404 static u8 mcp251x_read_stat(struct spi_device *spi)
405 {
406 return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
407 }
408
409 #define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
410 readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
411 delay_us, timeout_us)
412
413 #ifdef CONFIG_GPIOLIB
414 enum {
415 MCP251X_GPIO_TX0RTS = 0, /* inputs */
416 MCP251X_GPIO_TX1RTS,
417 MCP251X_GPIO_TX2RTS,
418 MCP251X_GPIO_RX0BF, /* outputs */
419 MCP251X_GPIO_RX1BF,
420 };
421
422 #define MCP251X_GPIO_INPUT_MASK \
423 GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
424 #define MCP251X_GPIO_OUTPUT_MASK \
425 GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
426
427 static const char * const mcp251x_gpio_names[] = {
428 [MCP251X_GPIO_TX0RTS] = "TX0RTS", /* inputs */
429 [MCP251X_GPIO_TX1RTS] = "TX1RTS",
430 [MCP251X_GPIO_TX2RTS] = "TX2RTS",
431 [MCP251X_GPIO_RX0BF] = "RX0BF", /* outputs */
432 [MCP251X_GPIO_RX1BF] = "RX1BF",
433 };
434
mcp251x_gpio_is_input(unsigned int offset)435 static inline bool mcp251x_gpio_is_input(unsigned int offset)
436 {
437 return offset <= MCP251X_GPIO_TX2RTS;
438 }
439
mcp251x_gpio_request(struct gpio_chip * chip,unsigned int offset)440 static int mcp251x_gpio_request(struct gpio_chip *chip,
441 unsigned int offset)
442 {
443 struct mcp251x_priv *priv = gpiochip_get_data(chip);
444 u8 val;
445
446 /* nothing to be done for inputs */
447 if (mcp251x_gpio_is_input(offset))
448 return 0;
449
450 val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
451
452 mutex_lock(&priv->mcp_lock);
453 mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
454 mutex_unlock(&priv->mcp_lock);
455
456 priv->reg_bfpctrl |= val;
457
458 return 0;
459 }
460
mcp251x_gpio_free(struct gpio_chip * chip,unsigned int offset)461 static void mcp251x_gpio_free(struct gpio_chip *chip,
462 unsigned int offset)
463 {
464 struct mcp251x_priv *priv = gpiochip_get_data(chip);
465 u8 val;
466
467 /* nothing to be done for inputs */
468 if (mcp251x_gpio_is_input(offset))
469 return;
470
471 val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
472
473 mutex_lock(&priv->mcp_lock);
474 mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
475 mutex_unlock(&priv->mcp_lock);
476
477 priv->reg_bfpctrl &= ~val;
478 }
479
mcp251x_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)480 static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
481 unsigned int offset)
482 {
483 if (mcp251x_gpio_is_input(offset))
484 return GPIOF_DIR_IN;
485
486 return GPIOF_DIR_OUT;
487 }
488
mcp251x_gpio_get(struct gpio_chip * chip,unsigned int offset)489 static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
490 {
491 struct mcp251x_priv *priv = gpiochip_get_data(chip);
492 u8 reg, mask, val;
493
494 if (mcp251x_gpio_is_input(offset)) {
495 reg = TXRTSCTRL;
496 mask = TXRTSCTRL_RTS(offset);
497 } else {
498 reg = BFPCTRL;
499 mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
500 }
501
502 mutex_lock(&priv->mcp_lock);
503 val = mcp251x_read_reg(priv->spi, reg);
504 mutex_unlock(&priv->mcp_lock);
505
506 return !!(val & mask);
507 }
508
mcp251x_gpio_get_multiple(struct gpio_chip * chip,unsigned long * maskp,unsigned long * bitsp)509 static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
510 unsigned long *maskp, unsigned long *bitsp)
511 {
512 struct mcp251x_priv *priv = gpiochip_get_data(chip);
513 unsigned long bits = 0;
514 u8 val;
515
516 mutex_lock(&priv->mcp_lock);
517 if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
518 val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
519 val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
520 bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
521 }
522 if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
523 val = mcp251x_read_reg(priv->spi, BFPCTRL);
524 val = FIELD_GET(BFPCTRL_BFS_MASK, val);
525 bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
526 }
527 mutex_unlock(&priv->mcp_lock);
528
529 bitsp[0] = bits;
530 return 0;
531 }
532
mcp251x_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)533 static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
534 int value)
535 {
536 struct mcp251x_priv *priv = gpiochip_get_data(chip);
537 u8 mask, val;
538
539 mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
540 val = value ? mask : 0;
541
542 mutex_lock(&priv->mcp_lock);
543 mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
544 mutex_unlock(&priv->mcp_lock);
545
546 priv->reg_bfpctrl &= ~mask;
547 priv->reg_bfpctrl |= val;
548 }
549
550 static void
mcp251x_gpio_set_multiple(struct gpio_chip * chip,unsigned long * maskp,unsigned long * bitsp)551 mcp251x_gpio_set_multiple(struct gpio_chip *chip,
552 unsigned long *maskp, unsigned long *bitsp)
553 {
554 struct mcp251x_priv *priv = gpiochip_get_data(chip);
555 u8 mask, val;
556
557 mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
558 mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
559
560 val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
561 val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
562
563 if (!mask)
564 return;
565
566 mutex_lock(&priv->mcp_lock);
567 mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
568 mutex_unlock(&priv->mcp_lock);
569
570 priv->reg_bfpctrl &= ~mask;
571 priv->reg_bfpctrl |= val;
572 }
573
mcp251x_gpio_restore(struct spi_device * spi)574 static void mcp251x_gpio_restore(struct spi_device *spi)
575 {
576 struct mcp251x_priv *priv = spi_get_drvdata(spi);
577
578 mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
579 }
580
mcp251x_gpio_setup(struct mcp251x_priv * priv)581 static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
582 {
583 struct gpio_chip *gpio = &priv->gpio;
584
585 if (!device_property_present(&priv->spi->dev, "gpio-controller"))
586 return 0;
587
588 /* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
589 gpio->label = priv->spi->modalias;
590 gpio->parent = &priv->spi->dev;
591 gpio->owner = THIS_MODULE;
592 gpio->request = mcp251x_gpio_request;
593 gpio->free = mcp251x_gpio_free;
594 gpio->get_direction = mcp251x_gpio_get_direction;
595 gpio->get = mcp251x_gpio_get;
596 gpio->get_multiple = mcp251x_gpio_get_multiple;
597 gpio->set = mcp251x_gpio_set;
598 gpio->set_multiple = mcp251x_gpio_set_multiple;
599 gpio->base = -1;
600 gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
601 gpio->names = mcp251x_gpio_names;
602 gpio->can_sleep = true;
603 #ifdef CONFIG_OF_GPIO
604 gpio->of_node = priv->spi->dev.of_node;
605 #endif
606
607 return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
608 }
609 #else
mcp251x_gpio_restore(struct spi_device * spi)610 static inline void mcp251x_gpio_restore(struct spi_device *spi)
611 {
612 }
613
mcp251x_gpio_setup(struct mcp251x_priv * priv)614 static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
615 {
616 return 0;
617 }
618 #endif
619
mcp251x_hw_tx_frame(struct spi_device * spi,u8 * buf,int len,int tx_buf_idx)620 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
621 int len, int tx_buf_idx)
622 {
623 struct mcp251x_priv *priv = spi_get_drvdata(spi);
624
625 if (mcp251x_is_2510(spi)) {
626 int i;
627
628 for (i = 1; i < TXBDAT_OFF + len; i++)
629 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
630 buf[i]);
631 } else {
632 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
633 mcp251x_spi_write(spi, TXBDAT_OFF + len);
634 }
635 }
636
mcp251x_hw_tx(struct spi_device * spi,struct can_frame * frame,int tx_buf_idx)637 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
638 int tx_buf_idx)
639 {
640 struct mcp251x_priv *priv = spi_get_drvdata(spi);
641 u32 sid, eid, exide, rtr;
642 u8 buf[SPI_TRANSFER_BUF_LEN];
643
644 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
645 if (exide)
646 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
647 else
648 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
649 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
650 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
651
652 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
653 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
654 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
655 (exide << SIDL_EXIDE_SHIFT) |
656 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
657 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
658 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
659 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
660 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
661 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
662
663 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
664 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
665 mcp251x_spi_write(priv->spi, 1);
666 }
667
mcp251x_hw_rx_frame(struct spi_device * spi,u8 * buf,int buf_idx)668 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
669 int buf_idx)
670 {
671 struct mcp251x_priv *priv = spi_get_drvdata(spi);
672
673 if (mcp251x_is_2510(spi)) {
674 int i, len;
675
676 for (i = 1; i < RXBDAT_OFF; i++)
677 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
678
679 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
680 for (; i < (RXBDAT_OFF + len); i++)
681 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
682 } else {
683 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
684 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
685 spi_write_then_read(spi, priv->spi_tx_buf, 1,
686 priv->spi_rx_buf,
687 SPI_TRANSFER_BUF_LEN);
688 memcpy(buf + 1, priv->spi_rx_buf,
689 SPI_TRANSFER_BUF_LEN - 1);
690 } else {
691 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
692 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
693 }
694 }
695 }
696
mcp251x_hw_rx(struct spi_device * spi,int buf_idx)697 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
698 {
699 struct mcp251x_priv *priv = spi_get_drvdata(spi);
700 struct sk_buff *skb;
701 struct can_frame *frame;
702 u8 buf[SPI_TRANSFER_BUF_LEN];
703
704 skb = alloc_can_skb(priv->net, &frame);
705 if (!skb) {
706 dev_err(&spi->dev, "cannot allocate RX skb\n");
707 priv->net->stats.rx_dropped++;
708 return;
709 }
710
711 mcp251x_hw_rx_frame(spi, buf, buf_idx);
712 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
713 /* Extended ID format */
714 frame->can_id = CAN_EFF_FLAG;
715 frame->can_id |=
716 /* Extended ID part */
717 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
718 SET_BYTE(buf[RXBEID8_OFF], 1) |
719 SET_BYTE(buf[RXBEID0_OFF], 0) |
720 /* Standard ID part */
721 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
722 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
723 /* Remote transmission request */
724 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
725 frame->can_id |= CAN_RTR_FLAG;
726 } else {
727 /* Standard ID format */
728 frame->can_id =
729 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
730 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
731 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
732 frame->can_id |= CAN_RTR_FLAG;
733 }
734 /* Data length */
735 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
736 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
737
738 priv->net->stats.rx_packets++;
739 priv->net->stats.rx_bytes += frame->can_dlc;
740
741 can_led_event(priv->net, CAN_LED_EVENT_RX);
742
743 netif_rx_ni(skb);
744 }
745
mcp251x_hw_sleep(struct spi_device * spi)746 static void mcp251x_hw_sleep(struct spi_device *spi)
747 {
748 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
749 }
750
751 /* May only be called when device is sleeping! */
mcp251x_hw_wake(struct spi_device * spi)752 static int mcp251x_hw_wake(struct spi_device *spi)
753 {
754 u8 value;
755 int ret;
756
757 /* Force wakeup interrupt to wake device, but don't execute IST */
758 disable_irq(spi->irq);
759 mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
760
761 /* Wait for oscillator startup timer after wake up */
762 mdelay(MCP251X_OST_DELAY_MS);
763
764 /* Put device into config mode */
765 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
766
767 /* Wait for the device to enter config mode */
768 ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
769 MCP251X_OST_DELAY_MS * 1000,
770 USEC_PER_SEC);
771 if (ret) {
772 dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
773 return ret;
774 }
775
776 /* Disable and clear pending interrupts */
777 mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
778 enable_irq(spi->irq);
779
780 return 0;
781 }
782
mcp251x_hard_start_xmit(struct sk_buff * skb,struct net_device * net)783 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
784 struct net_device *net)
785 {
786 struct mcp251x_priv *priv = netdev_priv(net);
787 struct spi_device *spi = priv->spi;
788
789 if (priv->tx_skb || priv->tx_len) {
790 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
791 return NETDEV_TX_BUSY;
792 }
793
794 if (can_dropped_invalid_skb(net, skb))
795 return NETDEV_TX_OK;
796
797 netif_stop_queue(net);
798 priv->tx_skb = skb;
799 queue_work(priv->wq, &priv->tx_work);
800
801 return NETDEV_TX_OK;
802 }
803
mcp251x_do_set_mode(struct net_device * net,enum can_mode mode)804 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
805 {
806 struct mcp251x_priv *priv = netdev_priv(net);
807
808 switch (mode) {
809 case CAN_MODE_START:
810 mcp251x_clean(net);
811 /* We have to delay work since SPI I/O may sleep */
812 priv->can.state = CAN_STATE_ERROR_ACTIVE;
813 priv->restart_tx = 1;
814 if (priv->can.restart_ms == 0)
815 priv->after_suspend = AFTER_SUSPEND_RESTART;
816 queue_work(priv->wq, &priv->restart_work);
817 break;
818 default:
819 return -EOPNOTSUPP;
820 }
821
822 return 0;
823 }
824
mcp251x_set_normal_mode(struct spi_device * spi)825 static int mcp251x_set_normal_mode(struct spi_device *spi)
826 {
827 struct mcp251x_priv *priv = spi_get_drvdata(spi);
828 u8 value;
829 int ret;
830
831 /* Enable interrupts */
832 mcp251x_write_reg(spi, CANINTE,
833 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
834 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
835
836 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
837 /* Put device into loopback mode */
838 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
839 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
840 /* Put device into listen-only mode */
841 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
842 } else {
843 /* Put device into normal mode */
844 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
845
846 /* Wait for the device to enter normal mode */
847 ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
848 MCP251X_OST_DELAY_MS * 1000,
849 USEC_PER_SEC);
850 if (ret) {
851 dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
852 return ret;
853 }
854 }
855 priv->can.state = CAN_STATE_ERROR_ACTIVE;
856 return 0;
857 }
858
mcp251x_do_set_bittiming(struct net_device * net)859 static int mcp251x_do_set_bittiming(struct net_device *net)
860 {
861 struct mcp251x_priv *priv = netdev_priv(net);
862 struct can_bittiming *bt = &priv->can.bittiming;
863 struct spi_device *spi = priv->spi;
864
865 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
866 (bt->brp - 1));
867 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
868 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
869 CNF2_SAM : 0) |
870 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
871 (bt->prop_seg - 1));
872 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
873 (bt->phase_seg2 - 1));
874 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
875 mcp251x_read_reg(spi, CNF1),
876 mcp251x_read_reg(spi, CNF2),
877 mcp251x_read_reg(spi, CNF3));
878
879 return 0;
880 }
881
mcp251x_setup(struct net_device * net,struct spi_device * spi)882 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
883 {
884 mcp251x_do_set_bittiming(net);
885
886 mcp251x_write_reg(spi, RXBCTRL(0),
887 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
888 mcp251x_write_reg(spi, RXBCTRL(1),
889 RXBCTRL_RXM0 | RXBCTRL_RXM1);
890 return 0;
891 }
892
mcp251x_hw_reset(struct spi_device * spi)893 static int mcp251x_hw_reset(struct spi_device *spi)
894 {
895 struct mcp251x_priv *priv = spi_get_drvdata(spi);
896 u8 value;
897 int ret;
898
899 /* Wait for oscillator startup timer after power up */
900 mdelay(MCP251X_OST_DELAY_MS);
901
902 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
903 ret = mcp251x_spi_write(spi, 1);
904 if (ret)
905 return ret;
906
907 /* Wait for oscillator startup timer after reset */
908 mdelay(MCP251X_OST_DELAY_MS);
909
910 /* Wait for reset to finish */
911 ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
912 MCP251X_OST_DELAY_MS * 1000,
913 USEC_PER_SEC);
914 if (ret)
915 dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
916 return ret;
917 }
918
mcp251x_hw_probe(struct spi_device * spi)919 static int mcp251x_hw_probe(struct spi_device *spi)
920 {
921 u8 ctrl;
922 int ret;
923
924 ret = mcp251x_hw_reset(spi);
925 if (ret)
926 return ret;
927
928 ctrl = mcp251x_read_reg(spi, CANCTRL);
929
930 dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
931
932 /* Check for power up default value */
933 if ((ctrl & 0x17) != 0x07)
934 return -ENODEV;
935
936 return 0;
937 }
938
mcp251x_power_enable(struct regulator * reg,int enable)939 static int mcp251x_power_enable(struct regulator *reg, int enable)
940 {
941 if (IS_ERR_OR_NULL(reg))
942 return 0;
943
944 if (enable)
945 return regulator_enable(reg);
946 else
947 return regulator_disable(reg);
948 }
949
mcp251x_stop(struct net_device * net)950 static int mcp251x_stop(struct net_device *net)
951 {
952 struct mcp251x_priv *priv = netdev_priv(net);
953 struct spi_device *spi = priv->spi;
954
955 close_candev(net);
956
957 priv->force_quit = 1;
958 free_irq(spi->irq, priv);
959
960 mutex_lock(&priv->mcp_lock);
961
962 /* Disable and clear pending interrupts */
963 mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
964
965 mcp251x_write_reg(spi, TXBCTRL(0), 0);
966 mcp251x_clean(net);
967
968 mcp251x_hw_sleep(spi);
969
970 mcp251x_power_enable(priv->transceiver, 0);
971
972 priv->can.state = CAN_STATE_STOPPED;
973
974 mutex_unlock(&priv->mcp_lock);
975
976 can_led_event(net, CAN_LED_EVENT_STOP);
977
978 return 0;
979 }
980
mcp251x_error_skb(struct net_device * net,int can_id,int data1)981 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
982 {
983 struct sk_buff *skb;
984 struct can_frame *frame;
985
986 skb = alloc_can_err_skb(net, &frame);
987 if (skb) {
988 frame->can_id |= can_id;
989 frame->data[1] = data1;
990 netif_rx_ni(skb);
991 } else {
992 netdev_err(net, "cannot allocate error skb\n");
993 }
994 }
995
mcp251x_tx_work_handler(struct work_struct * ws)996 static void mcp251x_tx_work_handler(struct work_struct *ws)
997 {
998 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
999 tx_work);
1000 struct spi_device *spi = priv->spi;
1001 struct net_device *net = priv->net;
1002 struct can_frame *frame;
1003
1004 mutex_lock(&priv->mcp_lock);
1005 if (priv->tx_skb) {
1006 if (priv->can.state == CAN_STATE_BUS_OFF) {
1007 mcp251x_clean(net);
1008 } else {
1009 frame = (struct can_frame *)priv->tx_skb->data;
1010
1011 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
1012 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
1013 mcp251x_hw_tx(spi, frame, 0);
1014 priv->tx_len = 1 + frame->can_dlc;
1015 can_put_echo_skb(priv->tx_skb, net, 0);
1016 priv->tx_skb = NULL;
1017 }
1018 }
1019 mutex_unlock(&priv->mcp_lock);
1020 }
1021
mcp251x_restart_work_handler(struct work_struct * ws)1022 static void mcp251x_restart_work_handler(struct work_struct *ws)
1023 {
1024 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1025 restart_work);
1026 struct spi_device *spi = priv->spi;
1027 struct net_device *net = priv->net;
1028
1029 mutex_lock(&priv->mcp_lock);
1030 if (priv->after_suspend) {
1031 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1032 mcp251x_hw_reset(spi);
1033 mcp251x_setup(net, spi);
1034 mcp251x_gpio_restore(spi);
1035 } else {
1036 mcp251x_hw_wake(spi);
1037 }
1038 priv->force_quit = 0;
1039 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1040 mcp251x_set_normal_mode(spi);
1041 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1042 netif_device_attach(net);
1043 mcp251x_clean(net);
1044 mcp251x_set_normal_mode(spi);
1045 netif_wake_queue(net);
1046 } else {
1047 mcp251x_hw_sleep(spi);
1048 }
1049 priv->after_suspend = 0;
1050 }
1051
1052 if (priv->restart_tx) {
1053 priv->restart_tx = 0;
1054 mcp251x_write_reg(spi, TXBCTRL(0), 0);
1055 mcp251x_clean(net);
1056 netif_wake_queue(net);
1057 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1058 }
1059 mutex_unlock(&priv->mcp_lock);
1060 }
1061
mcp251x_can_ist(int irq,void * dev_id)1062 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1063 {
1064 struct mcp251x_priv *priv = dev_id;
1065 struct spi_device *spi = priv->spi;
1066 struct net_device *net = priv->net;
1067
1068 mutex_lock(&priv->mcp_lock);
1069 while (!priv->force_quit) {
1070 enum can_state new_state;
1071 u8 intf, eflag;
1072 u8 clear_intf = 0;
1073 int can_id = 0, data1 = 0;
1074
1075 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1076
1077 /* receive buffer 0 */
1078 if (intf & CANINTF_RX0IF) {
1079 mcp251x_hw_rx(spi, 0);
1080 /* Free one buffer ASAP
1081 * (The MCP2515/25625 does this automatically.)
1082 */
1083 if (mcp251x_is_2510(spi))
1084 mcp251x_write_bits(spi, CANINTF,
1085 CANINTF_RX0IF, 0x00);
1086
1087 /* check if buffer 1 is already known to be full, no need to re-read */
1088 if (!(intf & CANINTF_RX1IF)) {
1089 u8 intf1, eflag1;
1090
1091 /* intf needs to be read again to avoid a race condition */
1092 mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1093
1094 /* combine flags from both operations for error handling */
1095 intf |= intf1;
1096 eflag |= eflag1;
1097 }
1098 }
1099
1100 /* receive buffer 1 */
1101 if (intf & CANINTF_RX1IF) {
1102 mcp251x_hw_rx(spi, 1);
1103 /* The MCP2515/25625 does this automatically. */
1104 if (mcp251x_is_2510(spi))
1105 clear_intf |= CANINTF_RX1IF;
1106 }
1107
1108 /* mask out flags we don't care about */
1109 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1110
1111 /* any error or tx interrupt we need to clear? */
1112 if (intf & (CANINTF_ERR | CANINTF_TX))
1113 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1114 if (clear_intf)
1115 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1116
1117 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1118 mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1119
1120 /* Update can state */
1121 if (eflag & EFLG_TXBO) {
1122 new_state = CAN_STATE_BUS_OFF;
1123 can_id |= CAN_ERR_BUSOFF;
1124 } else if (eflag & EFLG_TXEP) {
1125 new_state = CAN_STATE_ERROR_PASSIVE;
1126 can_id |= CAN_ERR_CRTL;
1127 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1128 } else if (eflag & EFLG_RXEP) {
1129 new_state = CAN_STATE_ERROR_PASSIVE;
1130 can_id |= CAN_ERR_CRTL;
1131 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1132 } else if (eflag & EFLG_TXWAR) {
1133 new_state = CAN_STATE_ERROR_WARNING;
1134 can_id |= CAN_ERR_CRTL;
1135 data1 |= CAN_ERR_CRTL_TX_WARNING;
1136 } else if (eflag & EFLG_RXWAR) {
1137 new_state = CAN_STATE_ERROR_WARNING;
1138 can_id |= CAN_ERR_CRTL;
1139 data1 |= CAN_ERR_CRTL_RX_WARNING;
1140 } else {
1141 new_state = CAN_STATE_ERROR_ACTIVE;
1142 }
1143
1144 /* Update can state statistics */
1145 switch (priv->can.state) {
1146 case CAN_STATE_ERROR_ACTIVE:
1147 if (new_state >= CAN_STATE_ERROR_WARNING &&
1148 new_state <= CAN_STATE_BUS_OFF)
1149 priv->can.can_stats.error_warning++;
1150 fallthrough;
1151 case CAN_STATE_ERROR_WARNING:
1152 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1153 new_state <= CAN_STATE_BUS_OFF)
1154 priv->can.can_stats.error_passive++;
1155 break;
1156 default:
1157 break;
1158 }
1159 priv->can.state = new_state;
1160
1161 if (intf & CANINTF_ERRIF) {
1162 /* Handle overflow counters */
1163 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1164 if (eflag & EFLG_RX0OVR) {
1165 net->stats.rx_over_errors++;
1166 net->stats.rx_errors++;
1167 }
1168 if (eflag & EFLG_RX1OVR) {
1169 net->stats.rx_over_errors++;
1170 net->stats.rx_errors++;
1171 }
1172 can_id |= CAN_ERR_CRTL;
1173 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1174 }
1175 mcp251x_error_skb(net, can_id, data1);
1176 }
1177
1178 if (priv->can.state == CAN_STATE_BUS_OFF) {
1179 if (priv->can.restart_ms == 0) {
1180 priv->force_quit = 1;
1181 priv->can.can_stats.bus_off++;
1182 can_bus_off(net);
1183 mcp251x_hw_sleep(spi);
1184 break;
1185 }
1186 }
1187
1188 if (intf == 0)
1189 break;
1190
1191 if (intf & CANINTF_TX) {
1192 net->stats.tx_packets++;
1193 net->stats.tx_bytes += priv->tx_len - 1;
1194 can_led_event(net, CAN_LED_EVENT_TX);
1195 if (priv->tx_len) {
1196 can_get_echo_skb(net, 0);
1197 priv->tx_len = 0;
1198 }
1199 netif_wake_queue(net);
1200 }
1201 }
1202 mutex_unlock(&priv->mcp_lock);
1203 return IRQ_HANDLED;
1204 }
1205
mcp251x_open(struct net_device * net)1206 static int mcp251x_open(struct net_device *net)
1207 {
1208 struct mcp251x_priv *priv = netdev_priv(net);
1209 struct spi_device *spi = priv->spi;
1210 unsigned long flags = 0;
1211 int ret;
1212
1213 ret = open_candev(net);
1214 if (ret) {
1215 dev_err(&spi->dev, "unable to set initial baudrate!\n");
1216 return ret;
1217 }
1218
1219 mutex_lock(&priv->mcp_lock);
1220 mcp251x_power_enable(priv->transceiver, 1);
1221
1222 priv->force_quit = 0;
1223 priv->tx_skb = NULL;
1224 priv->tx_len = 0;
1225
1226 if (!dev_fwnode(&spi->dev))
1227 flags = IRQF_TRIGGER_FALLING;
1228
1229 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1230 flags | IRQF_ONESHOT, dev_name(&spi->dev),
1231 priv);
1232 if (ret) {
1233 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1234 goto out_close;
1235 }
1236
1237 ret = mcp251x_hw_wake(spi);
1238 if (ret)
1239 goto out_free_irq;
1240 ret = mcp251x_setup(net, spi);
1241 if (ret)
1242 goto out_free_irq;
1243 ret = mcp251x_set_normal_mode(spi);
1244 if (ret)
1245 goto out_free_irq;
1246
1247 can_led_event(net, CAN_LED_EVENT_OPEN);
1248
1249 netif_wake_queue(net);
1250 mutex_unlock(&priv->mcp_lock);
1251
1252 return 0;
1253
1254 out_free_irq:
1255 free_irq(spi->irq, priv);
1256 mcp251x_hw_sleep(spi);
1257 out_close:
1258 mcp251x_power_enable(priv->transceiver, 0);
1259 close_candev(net);
1260 mutex_unlock(&priv->mcp_lock);
1261 return ret;
1262 }
1263
1264 static const struct net_device_ops mcp251x_netdev_ops = {
1265 .ndo_open = mcp251x_open,
1266 .ndo_stop = mcp251x_stop,
1267 .ndo_start_xmit = mcp251x_hard_start_xmit,
1268 .ndo_change_mtu = can_change_mtu,
1269 };
1270
1271 static const struct of_device_id mcp251x_of_match[] = {
1272 {
1273 .compatible = "microchip,mcp2510",
1274 .data = (void *)CAN_MCP251X_MCP2510,
1275 },
1276 {
1277 .compatible = "microchip,mcp2515",
1278 .data = (void *)CAN_MCP251X_MCP2515,
1279 },
1280 {
1281 .compatible = "microchip,mcp25625",
1282 .data = (void *)CAN_MCP251X_MCP25625,
1283 },
1284 { }
1285 };
1286 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1287
1288 static const struct spi_device_id mcp251x_id_table[] = {
1289 {
1290 .name = "mcp2510",
1291 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510,
1292 },
1293 {
1294 .name = "mcp2515",
1295 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515,
1296 },
1297 {
1298 .name = "mcp25625",
1299 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP25625,
1300 },
1301 { }
1302 };
1303 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1304
mcp251x_can_probe(struct spi_device * spi)1305 static int mcp251x_can_probe(struct spi_device *spi)
1306 {
1307 const void *match = device_get_match_data(&spi->dev);
1308 struct net_device *net;
1309 struct mcp251x_priv *priv;
1310 struct clk *clk;
1311 u32 freq;
1312 int ret;
1313
1314 clk = devm_clk_get_optional(&spi->dev, NULL);
1315 if (IS_ERR(clk))
1316 return PTR_ERR(clk);
1317
1318 freq = clk_get_rate(clk);
1319 if (freq == 0)
1320 device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1321
1322 /* Sanity check */
1323 if (freq < 1000000 || freq > 25000000)
1324 return -ERANGE;
1325
1326 /* Allocate can/net device */
1327 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1328 if (!net)
1329 return -ENOMEM;
1330
1331 ret = clk_prepare_enable(clk);
1332 if (ret)
1333 goto out_free;
1334
1335 net->netdev_ops = &mcp251x_netdev_ops;
1336 net->flags |= IFF_ECHO;
1337
1338 priv = netdev_priv(net);
1339 priv->can.bittiming_const = &mcp251x_bittiming_const;
1340 priv->can.do_set_mode = mcp251x_do_set_mode;
1341 priv->can.clock.freq = freq / 2;
1342 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1343 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1344 if (match)
1345 priv->model = (enum mcp251x_model)match;
1346 else
1347 priv->model = spi_get_device_id(spi)->driver_data;
1348 priv->net = net;
1349 priv->clk = clk;
1350
1351 spi_set_drvdata(spi, priv);
1352
1353 /* Configure the SPI bus */
1354 spi->bits_per_word = 8;
1355 if (mcp251x_is_2510(spi))
1356 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1357 else
1358 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1359 ret = spi_setup(spi);
1360 if (ret)
1361 goto out_clk;
1362
1363 priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1364 priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1365 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1366 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1367 ret = -EPROBE_DEFER;
1368 goto out_clk;
1369 }
1370
1371 ret = mcp251x_power_enable(priv->power, 1);
1372 if (ret)
1373 goto out_clk;
1374
1375 priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1376 0);
1377 if (!priv->wq) {
1378 ret = -ENOMEM;
1379 goto out_clk;
1380 }
1381 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1382 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1383
1384 priv->spi = spi;
1385 mutex_init(&priv->mcp_lock);
1386
1387 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1388 GFP_KERNEL);
1389 if (!priv->spi_tx_buf) {
1390 ret = -ENOMEM;
1391 goto error_probe;
1392 }
1393
1394 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1395 GFP_KERNEL);
1396 if (!priv->spi_rx_buf) {
1397 ret = -ENOMEM;
1398 goto error_probe;
1399 }
1400
1401 SET_NETDEV_DEV(net, &spi->dev);
1402
1403 /* Here is OK to not lock the MCP, no one knows about it yet */
1404 ret = mcp251x_hw_probe(spi);
1405 if (ret) {
1406 if (ret == -ENODEV)
1407 dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1408 priv->model);
1409 goto error_probe;
1410 }
1411
1412 mcp251x_hw_sleep(spi);
1413
1414 ret = register_candev(net);
1415 if (ret)
1416 goto error_probe;
1417
1418 devm_can_led_init(net);
1419
1420 ret = mcp251x_gpio_setup(priv);
1421 if (ret)
1422 goto out_unregister_candev;
1423
1424 netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1425 return 0;
1426
1427 out_unregister_candev:
1428 unregister_candev(net);
1429
1430 error_probe:
1431 destroy_workqueue(priv->wq);
1432 priv->wq = NULL;
1433 mcp251x_power_enable(priv->power, 0);
1434
1435 out_clk:
1436 clk_disable_unprepare(clk);
1437
1438 out_free:
1439 free_candev(net);
1440
1441 dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1442 return ret;
1443 }
1444
mcp251x_can_remove(struct spi_device * spi)1445 static int mcp251x_can_remove(struct spi_device *spi)
1446 {
1447 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1448 struct net_device *net = priv->net;
1449
1450 unregister_candev(net);
1451
1452 mcp251x_power_enable(priv->power, 0);
1453
1454 destroy_workqueue(priv->wq);
1455 priv->wq = NULL;
1456
1457 clk_disable_unprepare(priv->clk);
1458
1459 free_candev(net);
1460
1461 return 0;
1462 }
1463
mcp251x_can_suspend(struct device * dev)1464 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1465 {
1466 struct spi_device *spi = to_spi_device(dev);
1467 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1468 struct net_device *net = priv->net;
1469
1470 priv->force_quit = 1;
1471 disable_irq(spi->irq);
1472 /* Note: at this point neither IST nor workqueues are running.
1473 * open/stop cannot be called anyway so locking is not needed
1474 */
1475 if (netif_running(net)) {
1476 netif_device_detach(net);
1477
1478 mcp251x_hw_sleep(spi);
1479 mcp251x_power_enable(priv->transceiver, 0);
1480 priv->after_suspend = AFTER_SUSPEND_UP;
1481 } else {
1482 priv->after_suspend = AFTER_SUSPEND_DOWN;
1483 }
1484
1485 mcp251x_power_enable(priv->power, 0);
1486 priv->after_suspend |= AFTER_SUSPEND_POWER;
1487
1488 return 0;
1489 }
1490
mcp251x_can_resume(struct device * dev)1491 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1492 {
1493 struct spi_device *spi = to_spi_device(dev);
1494 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1495
1496 if (priv->after_suspend & AFTER_SUSPEND_POWER)
1497 mcp251x_power_enable(priv->power, 1);
1498 if (priv->after_suspend & AFTER_SUSPEND_UP)
1499 mcp251x_power_enable(priv->transceiver, 1);
1500
1501 if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1502 queue_work(priv->wq, &priv->restart_work);
1503 else
1504 priv->after_suspend = 0;
1505
1506 priv->force_quit = 0;
1507 enable_irq(spi->irq);
1508 return 0;
1509 }
1510
1511 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1512 mcp251x_can_resume);
1513
1514 static struct spi_driver mcp251x_can_driver = {
1515 .driver = {
1516 .name = DEVICE_NAME,
1517 .of_match_table = mcp251x_of_match,
1518 .pm = &mcp251x_can_pm_ops,
1519 },
1520 .id_table = mcp251x_id_table,
1521 .probe = mcp251x_can_probe,
1522 .remove = mcp251x_can_remove,
1523 };
1524 module_spi_driver(mcp251x_can_driver);
1525
1526 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1527 "Christian Pellegrin <chripell@evolware.org>");
1528 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1529 MODULE_LICENSE("GPL v2");
1530