• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET		BIT(15)
97 #define  GSWIP_MII_CFG_EN		BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE		BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
107 #define  GSWIP_MII_CFG_MODE_MASK	0xf
108 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
109 #define  GSWIP_MII_CFG_RATE_M25	0x10
110 #define  GSWIP_MII_CFG_RATE_M125	0x20
111 #define  GSWIP_MII_CFG_RATE_M50	0x30
112 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
113 #define  GSWIP_MII_CFG_RATE_MASK	0x70
114 #define GSWIP_MII_PCDU0			0x01
115 #define GSWIP_MII_PCDU1			0x03
116 #define GSWIP_MII_PCDU5			0x05
117 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
118 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
119 
120 /* GSWIP Core Registers */
121 #define GSWIP_SWRES			0x000
122 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
123 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
124 #define GSWIP_VERSION			0x013
125 #define  GSWIP_VERSION_REV_SHIFT	0
126 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
127 #define  GSWIP_VERSION_MOD_SHIFT	8
128 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
129 #define   GSWIP_VERSION_2_0		0x100
130 #define   GSWIP_VERSION_2_1		0x021
131 #define   GSWIP_VERSION_2_2		0x122
132 #define   GSWIP_VERSION_2_2_ETC		0x022
133 
134 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
135 #define GSWIP_BM_RAM_ADDR		0x044
136 #define GSWIP_BM_RAM_CTRL		0x045
137 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
138 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
139 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
140 #define GSWIP_BM_QUEUE_GCTRL		0x04A
141 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
142 /* buffer management Port Configuration Register */
143 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
144 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
145 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
146 /* buffer management Port Control Register */
147 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
148 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
149 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
150 
151 /* PCE */
152 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
153 #define GSWIP_PCE_TBL_MASK		0x448
154 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
155 #define GSWIP_PCE_TBL_ADDR		0x44E
156 #define GSWIP_PCE_TBL_CTRL		0x44F
157 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
158 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
159 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
160 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
161 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
162 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
167 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
168 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
169 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
170 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
171 #define GSWIP_PCE_GCTRL_0		0x456
172 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
173 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
174 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
175 #define GSWIP_PCE_GCTRL_1		0x457
176 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
178 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
179 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
180 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
181 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
182 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
188 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
189 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
190 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
191 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
193 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
194 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
195 
196 #define GSWIP_MAC_FLEN			0x8C5
197 #define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
198 #define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
199 #define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
200 #define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
201 #define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
202 #define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
203 #define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
204 #define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
205 #define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
206 #define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
207 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
208 #define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
209 #define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
210 #define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
211 #define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
212 #define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
213 #define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
214 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
215 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
216 
217 /* Ethernet Switch Fetch DMA Port Control Register */
218 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
219 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
220 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
221 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
222 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 
228 /* Ethernet Switch Store DMA Port Control Register */
229 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
230 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
231 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
232 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
233 
234 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
235 #define GSWIP_TABLE_VLAN_MAPPING	0x02
236 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
237 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
238 
239 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
240 
241 struct gswip_hw_info {
242 	int max_ports;
243 	int cpu_port;
244 };
245 
246 struct xway_gphy_match_data {
247 	char *fe_firmware_name;
248 	char *ge_firmware_name;
249 };
250 
251 struct gswip_gphy_fw {
252 	struct clk *clk_gate;
253 	struct reset_control *reset;
254 	u32 fw_addr_offset;
255 	char *fw_name;
256 };
257 
258 struct gswip_vlan {
259 	struct net_device *bridge;
260 	u16 vid;
261 	u8 fid;
262 };
263 
264 struct gswip_priv {
265 	__iomem void *gswip;
266 	__iomem void *mdio;
267 	__iomem void *mii;
268 	const struct gswip_hw_info *hw_info;
269 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
270 	struct dsa_switch *ds;
271 	struct device *dev;
272 	struct regmap *rcu_regmap;
273 	struct gswip_vlan vlans[64];
274 	int num_gphy_fw;
275 	struct gswip_gphy_fw *gphy_fw;
276 	u32 port_vlan_filter;
277 };
278 
279 struct gswip_pce_table_entry {
280 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
281 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
282 	u16 key[8];
283 	u16 val[5];
284 	u16 mask;
285 	u8 gmap;
286 	bool type;
287 	bool valid;
288 	bool key_mode;
289 };
290 
291 struct gswip_rmon_cnt_desc {
292 	unsigned int size;
293 	unsigned int offset;
294 	const char *name;
295 };
296 
297 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
298 
299 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
300 	/** Receive Packet Count (only packets that are accepted and not discarded). */
301 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
302 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
303 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
304 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
305 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
306 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
307 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
308 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
309 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
310 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
311 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
312 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
313 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
314 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
315 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
316 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
317 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
318 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
319 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
320 	MIB_DESC(2, 0x24, "RxGoodBytes"),
321 	MIB_DESC(2, 0x26, "RxBadBytes"),
322 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
323 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
324 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
325 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
326 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
327 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
328 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
329 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
330 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
331 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
332 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
333 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
334 	MIB_DESC(1, 0x09, "TxMultCollCount"),
335 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
336 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
337 	MIB_DESC(1, 0x0D, "TxPauseCount"),
338 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
339 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
340 };
341 
gswip_switch_r(struct gswip_priv * priv,u32 offset)342 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
343 {
344 	return __raw_readl(priv->gswip + (offset * 4));
345 }
346 
gswip_switch_w(struct gswip_priv * priv,u32 val,u32 offset)347 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
348 {
349 	__raw_writel(val, priv->gswip + (offset * 4));
350 }
351 
gswip_switch_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)352 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
353 			      u32 offset)
354 {
355 	u32 val = gswip_switch_r(priv, offset);
356 
357 	val &= ~(clear);
358 	val |= set;
359 	gswip_switch_w(priv, val, offset);
360 }
361 
gswip_switch_r_timeout(struct gswip_priv * priv,u32 offset,u32 cleared)362 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
363 				  u32 cleared)
364 {
365 	u32 val;
366 
367 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
368 				  (val & cleared) == 0, 20, 50000);
369 }
370 
gswip_mdio_r(struct gswip_priv * priv,u32 offset)371 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
372 {
373 	return __raw_readl(priv->mdio + (offset * 4));
374 }
375 
gswip_mdio_w(struct gswip_priv * priv,u32 val,u32 offset)376 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
377 {
378 	__raw_writel(val, priv->mdio + (offset * 4));
379 }
380 
gswip_mdio_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)381 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
382 			    u32 offset)
383 {
384 	u32 val = gswip_mdio_r(priv, offset);
385 
386 	val &= ~(clear);
387 	val |= set;
388 	gswip_mdio_w(priv, val, offset);
389 }
390 
gswip_mii_r(struct gswip_priv * priv,u32 offset)391 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
392 {
393 	return __raw_readl(priv->mii + (offset * 4));
394 }
395 
gswip_mii_w(struct gswip_priv * priv,u32 val,u32 offset)396 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
397 {
398 	__raw_writel(val, priv->mii + (offset * 4));
399 }
400 
gswip_mii_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)401 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
402 			   u32 offset)
403 {
404 	u32 val = gswip_mii_r(priv, offset);
405 
406 	val &= ~(clear);
407 	val |= set;
408 	gswip_mii_w(priv, val, offset);
409 }
410 
gswip_mii_mask_cfg(struct gswip_priv * priv,u32 clear,u32 set,int port)411 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
412 			       int port)
413 {
414 	/* There's no MII_CFG register for the CPU port */
415 	if (!dsa_is_cpu_port(priv->ds, port))
416 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
417 }
418 
gswip_mii_mask_pcdu(struct gswip_priv * priv,u32 clear,u32 set,int port)419 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
420 				int port)
421 {
422 	switch (port) {
423 	case 0:
424 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
425 		break;
426 	case 1:
427 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
428 		break;
429 	case 5:
430 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
431 		break;
432 	}
433 }
434 
gswip_mdio_poll(struct gswip_priv * priv)435 static int gswip_mdio_poll(struct gswip_priv *priv)
436 {
437 	int cnt = 100;
438 
439 	while (likely(cnt--)) {
440 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
441 
442 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
443 			return 0;
444 		usleep_range(20, 40);
445 	}
446 
447 	return -ETIMEDOUT;
448 }
449 
gswip_mdio_wr(struct mii_bus * bus,int addr,int reg,u16 val)450 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
451 {
452 	struct gswip_priv *priv = bus->priv;
453 	int err;
454 
455 	err = gswip_mdio_poll(priv);
456 	if (err) {
457 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
458 		return err;
459 	}
460 
461 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
462 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
463 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
464 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
465 		GSWIP_MDIO_CTRL);
466 
467 	return 0;
468 }
469 
gswip_mdio_rd(struct mii_bus * bus,int addr,int reg)470 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
471 {
472 	struct gswip_priv *priv = bus->priv;
473 	int err;
474 
475 	err = gswip_mdio_poll(priv);
476 	if (err) {
477 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
478 		return err;
479 	}
480 
481 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
482 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
483 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
484 		GSWIP_MDIO_CTRL);
485 
486 	err = gswip_mdio_poll(priv);
487 	if (err) {
488 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
489 		return err;
490 	}
491 
492 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
493 }
494 
gswip_mdio(struct gswip_priv * priv,struct device_node * mdio_np)495 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
496 {
497 	struct dsa_switch *ds = priv->ds;
498 
499 	ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
500 	if (!ds->slave_mii_bus)
501 		return -ENOMEM;
502 
503 	ds->slave_mii_bus->priv = priv;
504 	ds->slave_mii_bus->read = gswip_mdio_rd;
505 	ds->slave_mii_bus->write = gswip_mdio_wr;
506 	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
507 	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
508 		 dev_name(priv->dev));
509 	ds->slave_mii_bus->parent = priv->dev;
510 	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
511 
512 	return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
513 }
514 
gswip_pce_table_entry_read(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)515 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
516 				      struct gswip_pce_table_entry *tbl)
517 {
518 	int i;
519 	int err;
520 	u16 crtl;
521 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
522 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
523 
524 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
525 				     GSWIP_PCE_TBL_CTRL_BAS);
526 	if (err)
527 		return err;
528 
529 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
530 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
531 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
532 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
533 			  GSWIP_PCE_TBL_CTRL);
534 
535 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
536 				     GSWIP_PCE_TBL_CTRL_BAS);
537 	if (err)
538 		return err;
539 
540 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
541 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
542 
543 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
544 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
545 
546 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
547 
548 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
549 
550 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
551 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
552 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
553 
554 	return 0;
555 }
556 
gswip_pce_table_entry_write(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)557 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
558 				       struct gswip_pce_table_entry *tbl)
559 {
560 	int i;
561 	int err;
562 	u16 crtl;
563 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
564 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
565 
566 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
567 				     GSWIP_PCE_TBL_CTRL_BAS);
568 	if (err)
569 		return err;
570 
571 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
572 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
573 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
574 			  tbl->table | addr_mode,
575 			  GSWIP_PCE_TBL_CTRL);
576 
577 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
578 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
579 
580 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
581 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
582 
583 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
584 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
585 			  tbl->table | addr_mode,
586 			  GSWIP_PCE_TBL_CTRL);
587 
588 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
589 
590 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
591 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
592 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
593 	if (tbl->type)
594 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
595 	if (tbl->valid)
596 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
597 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
598 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
599 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
600 
601 	return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
602 				      GSWIP_PCE_TBL_CTRL_BAS);
603 }
604 
605 /* Add the LAN port into a bridge with the CPU port by
606  * default. This prevents automatic forwarding of
607  * packages between the LAN ports when no explicit
608  * bridge is configured.
609  */
gswip_add_single_port_br(struct gswip_priv * priv,int port,bool add)610 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
611 {
612 	struct gswip_pce_table_entry vlan_active = {0,};
613 	struct gswip_pce_table_entry vlan_mapping = {0,};
614 	unsigned int cpu_port = priv->hw_info->cpu_port;
615 	unsigned int max_ports = priv->hw_info->max_ports;
616 	int err;
617 
618 	if (port >= max_ports) {
619 		dev_err(priv->dev, "single port for %i supported\n", port);
620 		return -EIO;
621 	}
622 
623 	vlan_active.index = port + 1;
624 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
625 	vlan_active.key[0] = 0; /* vid */
626 	vlan_active.val[0] = port + 1 /* fid */;
627 	vlan_active.valid = add;
628 	err = gswip_pce_table_entry_write(priv, &vlan_active);
629 	if (err) {
630 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
631 		return err;
632 	}
633 
634 	if (!add)
635 		return 0;
636 
637 	vlan_mapping.index = port + 1;
638 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
639 	vlan_mapping.val[0] = 0 /* vid */;
640 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
641 	vlan_mapping.val[2] = 0;
642 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
643 	if (err) {
644 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
645 		return err;
646 	}
647 
648 	return 0;
649 }
650 
gswip_port_enable(struct dsa_switch * ds,int port,struct phy_device * phydev)651 static int gswip_port_enable(struct dsa_switch *ds, int port,
652 			     struct phy_device *phydev)
653 {
654 	struct gswip_priv *priv = ds->priv;
655 	int err;
656 
657 	if (!dsa_is_user_port(ds, port))
658 		return 0;
659 
660 	if (!dsa_is_cpu_port(ds, port)) {
661 		err = gswip_add_single_port_br(priv, port, true);
662 		if (err)
663 			return err;
664 	}
665 
666 	/* RMON Counter Enable for port */
667 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
668 
669 	/* enable port fetch/store dma & VLAN Modification */
670 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
671 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
672 			 GSWIP_FDMA_PCTRLp(port));
673 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
674 			  GSWIP_SDMA_PCTRLp(port));
675 
676 	if (!dsa_is_cpu_port(ds, port)) {
677 		u32 mdio_phy = 0;
678 
679 		if (phydev)
680 			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
681 
682 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
683 				GSWIP_MDIO_PHYp(port));
684 	}
685 
686 	return 0;
687 }
688 
gswip_port_disable(struct dsa_switch * ds,int port)689 static void gswip_port_disable(struct dsa_switch *ds, int port)
690 {
691 	struct gswip_priv *priv = ds->priv;
692 
693 	if (!dsa_is_user_port(ds, port))
694 		return;
695 
696 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
697 			  GSWIP_FDMA_PCTRLp(port));
698 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
699 			  GSWIP_SDMA_PCTRLp(port));
700 }
701 
gswip_pce_load_microcode(struct gswip_priv * priv)702 static int gswip_pce_load_microcode(struct gswip_priv *priv)
703 {
704 	int i;
705 	int err;
706 
707 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
708 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
709 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
710 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
711 
712 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
713 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
714 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
715 			       GSWIP_PCE_TBL_VAL(0));
716 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
717 			       GSWIP_PCE_TBL_VAL(1));
718 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
719 			       GSWIP_PCE_TBL_VAL(2));
720 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
721 			       GSWIP_PCE_TBL_VAL(3));
722 
723 		/* start the table access: */
724 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
725 				  GSWIP_PCE_TBL_CTRL);
726 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
727 					     GSWIP_PCE_TBL_CTRL_BAS);
728 		if (err)
729 			return err;
730 	}
731 
732 	/* tell the switch that the microcode is loaded */
733 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
734 			  GSWIP_PCE_GCTRL_0);
735 
736 	return 0;
737 }
738 
gswip_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct switchdev_trans * trans)739 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
740 				     bool vlan_filtering,
741 				     struct switchdev_trans *trans)
742 {
743 	struct gswip_priv *priv = ds->priv;
744 
745 	/* Do not allow changing the VLAN filtering options while in bridge */
746 	if (switchdev_trans_ph_prepare(trans)) {
747 		struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
748 
749 		if (!bridge)
750 			return 0;
751 
752 		if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering)
753 			return -EIO;
754 
755 		return 0;
756 	}
757 
758 	if (vlan_filtering) {
759 		/* Use port based VLAN tag */
760 		gswip_switch_mask(priv,
761 				  GSWIP_PCE_VCTRL_VSR,
762 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
763 				  GSWIP_PCE_VCTRL_VEMR,
764 				  GSWIP_PCE_VCTRL(port));
765 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
766 				  GSWIP_PCE_PCTRL_0p(port));
767 	} else {
768 		/* Use port based VLAN tag */
769 		gswip_switch_mask(priv,
770 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
771 				  GSWIP_PCE_VCTRL_VEMR,
772 				  GSWIP_PCE_VCTRL_VSR,
773 				  GSWIP_PCE_VCTRL(port));
774 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
775 				  GSWIP_PCE_PCTRL_0p(port));
776 	}
777 
778 	return 0;
779 }
780 
gswip_setup(struct dsa_switch * ds)781 static int gswip_setup(struct dsa_switch *ds)
782 {
783 	struct gswip_priv *priv = ds->priv;
784 	unsigned int cpu_port = priv->hw_info->cpu_port;
785 	int i;
786 	int err;
787 
788 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
789 	usleep_range(5000, 10000);
790 	gswip_switch_w(priv, 0, GSWIP_SWRES);
791 
792 	/* disable port fetch/store dma on all ports */
793 	for (i = 0; i < priv->hw_info->max_ports; i++) {
794 		struct switchdev_trans trans;
795 
796 		/* Skip the prepare phase, this shouldn't return an error
797 		 * during setup.
798 		 */
799 		trans.ph_prepare = false;
800 
801 		gswip_port_disable(ds, i);
802 		gswip_port_vlan_filtering(ds, i, false, &trans);
803 	}
804 
805 	/* enable Switch */
806 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
807 
808 	err = gswip_pce_load_microcode(priv);
809 	if (err) {
810 		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
811 		return err;
812 	}
813 
814 	/* Default unknown Broadcast/Multicast/Unicast port maps */
815 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
816 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
817 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
818 
819 	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
820 	 * interoperability problem with this auto polling mechanism because
821 	 * their status registers think that the link is in a different state
822 	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
823 	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
824 	 * auto polling state machine consider the link being negotiated with
825 	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
826 	 * to the switch port being completely dead (RX and TX are both not
827 	 * working).
828 	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
829 	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
830 	 * it would work fine for a few minutes to hours and then stop, on
831 	 * other device it would no traffic could be sent or received at all.
832 	 * Testing shows that when PHY auto polling is disabled these problems
833 	 * go away.
834 	 */
835 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
836 
837 	/* Configure the MDIO Clock 2.5 MHz */
838 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
839 
840 	/* Disable the xMII interface and clear it's isolation bit */
841 	for (i = 0; i < priv->hw_info->max_ports; i++)
842 		gswip_mii_mask_cfg(priv,
843 				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
844 				   0, i);
845 
846 	/* enable special tag insertion on cpu port */
847 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
848 			  GSWIP_FDMA_PCTRLp(cpu_port));
849 
850 	/* accept special tag in ingress direction */
851 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
852 			  GSWIP_PCE_PCTRL_0p(cpu_port));
853 
854 	gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
855 			  GSWIP_MAC_CTRL_2p(cpu_port));
856 	gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8 + ETH_FCS_LEN,
857 		       GSWIP_MAC_FLEN);
858 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
859 			  GSWIP_BM_QUEUE_GCTRL);
860 
861 	/* VLAN aware Switching */
862 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
863 
864 	/* Flush MAC Table */
865 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
866 
867 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
868 				     GSWIP_PCE_GCTRL_0_MTFL);
869 	if (err) {
870 		dev_err(priv->dev, "MAC flushing didn't finish\n");
871 		return err;
872 	}
873 
874 	gswip_port_enable(ds, cpu_port, NULL);
875 	return 0;
876 }
877 
gswip_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)878 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
879 						    int port,
880 						    enum dsa_tag_protocol mp)
881 {
882 	return DSA_TAG_PROTO_GSWIP;
883 }
884 
gswip_vlan_active_create(struct gswip_priv * priv,struct net_device * bridge,int fid,u16 vid)885 static int gswip_vlan_active_create(struct gswip_priv *priv,
886 				    struct net_device *bridge,
887 				    int fid, u16 vid)
888 {
889 	struct gswip_pce_table_entry vlan_active = {0,};
890 	unsigned int max_ports = priv->hw_info->max_ports;
891 	int idx = -1;
892 	int err;
893 	int i;
894 
895 	/* Look for a free slot */
896 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
897 		if (!priv->vlans[i].bridge) {
898 			idx = i;
899 			break;
900 		}
901 	}
902 
903 	if (idx == -1)
904 		return -ENOSPC;
905 
906 	if (fid == -1)
907 		fid = idx;
908 
909 	vlan_active.index = idx;
910 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
911 	vlan_active.key[0] = vid;
912 	vlan_active.val[0] = fid;
913 	vlan_active.valid = true;
914 
915 	err = gswip_pce_table_entry_write(priv, &vlan_active);
916 	if (err) {
917 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
918 		return err;
919 	}
920 
921 	priv->vlans[idx].bridge = bridge;
922 	priv->vlans[idx].vid = vid;
923 	priv->vlans[idx].fid = fid;
924 
925 	return idx;
926 }
927 
gswip_vlan_active_remove(struct gswip_priv * priv,int idx)928 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
929 {
930 	struct gswip_pce_table_entry vlan_active = {0,};
931 	int err;
932 
933 	vlan_active.index = idx;
934 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
935 	vlan_active.valid = false;
936 	err = gswip_pce_table_entry_write(priv, &vlan_active);
937 	if (err)
938 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
939 	priv->vlans[idx].bridge = NULL;
940 
941 	return err;
942 }
943 
gswip_vlan_add_unaware(struct gswip_priv * priv,struct net_device * bridge,int port)944 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
945 				  struct net_device *bridge, int port)
946 {
947 	struct gswip_pce_table_entry vlan_mapping = {0,};
948 	unsigned int max_ports = priv->hw_info->max_ports;
949 	unsigned int cpu_port = priv->hw_info->cpu_port;
950 	bool active_vlan_created = false;
951 	int idx = -1;
952 	int i;
953 	int err;
954 
955 	/* Check if there is already a page for this bridge */
956 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
957 		if (priv->vlans[i].bridge == bridge) {
958 			idx = i;
959 			break;
960 		}
961 	}
962 
963 	/* If this bridge is not programmed yet, add a Active VLAN table
964 	 * entry in a free slot and prepare the VLAN mapping table entry.
965 	 */
966 	if (idx == -1) {
967 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
968 		if (idx < 0)
969 			return idx;
970 		active_vlan_created = true;
971 
972 		vlan_mapping.index = idx;
973 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
974 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
975 		vlan_mapping.val[0] = 0;
976 	} else {
977 		/* Read the existing VLAN mapping entry from the switch */
978 		vlan_mapping.index = idx;
979 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
980 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
981 		if (err) {
982 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
983 				err);
984 			return err;
985 		}
986 	}
987 
988 	/* Update the VLAN mapping entry and write it to the switch */
989 	vlan_mapping.val[1] |= BIT(cpu_port);
990 	vlan_mapping.val[1] |= BIT(port);
991 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
992 	if (err) {
993 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
994 		/* In case an Active VLAN was creaetd delete it again */
995 		if (active_vlan_created)
996 			gswip_vlan_active_remove(priv, idx);
997 		return err;
998 	}
999 
1000 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1001 	return 0;
1002 }
1003 
gswip_vlan_add_aware(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool untagged,bool pvid)1004 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1005 				struct net_device *bridge, int port,
1006 				u16 vid, bool untagged,
1007 				bool pvid)
1008 {
1009 	struct gswip_pce_table_entry vlan_mapping = {0,};
1010 	unsigned int max_ports = priv->hw_info->max_ports;
1011 	unsigned int cpu_port = priv->hw_info->cpu_port;
1012 	bool active_vlan_created = false;
1013 	int idx = -1;
1014 	int fid = -1;
1015 	int i;
1016 	int err;
1017 
1018 	/* Check if there is already a page for this bridge */
1019 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1020 		if (priv->vlans[i].bridge == bridge) {
1021 			if (fid != -1 && fid != priv->vlans[i].fid)
1022 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1023 			fid = priv->vlans[i].fid;
1024 			if (priv->vlans[i].vid == vid) {
1025 				idx = i;
1026 				break;
1027 			}
1028 		}
1029 	}
1030 
1031 	/* If this bridge is not programmed yet, add a Active VLAN table
1032 	 * entry in a free slot and prepare the VLAN mapping table entry.
1033 	 */
1034 	if (idx == -1) {
1035 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1036 		if (idx < 0)
1037 			return idx;
1038 		active_vlan_created = true;
1039 
1040 		vlan_mapping.index = idx;
1041 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1042 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1043 		vlan_mapping.val[0] = vid;
1044 	} else {
1045 		/* Read the existing VLAN mapping entry from the switch */
1046 		vlan_mapping.index = idx;
1047 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1048 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1049 		if (err) {
1050 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1051 				err);
1052 			return err;
1053 		}
1054 	}
1055 
1056 	vlan_mapping.val[0] = vid;
1057 	/* Update the VLAN mapping entry and write it to the switch */
1058 	vlan_mapping.val[1] |= BIT(cpu_port);
1059 	vlan_mapping.val[2] |= BIT(cpu_port);
1060 	vlan_mapping.val[1] |= BIT(port);
1061 	if (untagged)
1062 		vlan_mapping.val[2] &= ~BIT(port);
1063 	else
1064 		vlan_mapping.val[2] |= BIT(port);
1065 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1066 	if (err) {
1067 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1068 		/* In case an Active VLAN was creaetd delete it again */
1069 		if (active_vlan_created)
1070 			gswip_vlan_active_remove(priv, idx);
1071 		return err;
1072 	}
1073 
1074 	if (pvid)
1075 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1076 
1077 	return 0;
1078 }
1079 
gswip_vlan_remove(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool pvid,bool vlan_aware)1080 static int gswip_vlan_remove(struct gswip_priv *priv,
1081 			     struct net_device *bridge, int port,
1082 			     u16 vid, bool pvid, bool vlan_aware)
1083 {
1084 	struct gswip_pce_table_entry vlan_mapping = {0,};
1085 	unsigned int max_ports = priv->hw_info->max_ports;
1086 	unsigned int cpu_port = priv->hw_info->cpu_port;
1087 	int idx = -1;
1088 	int i;
1089 	int err;
1090 
1091 	/* Check if there is already a page for this bridge */
1092 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1093 		if (priv->vlans[i].bridge == bridge &&
1094 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1095 			idx = i;
1096 			break;
1097 		}
1098 	}
1099 
1100 	if (idx == -1) {
1101 		dev_err(priv->dev, "bridge to leave does not exists\n");
1102 		return -ENOENT;
1103 	}
1104 
1105 	vlan_mapping.index = idx;
1106 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1107 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1108 	if (err) {
1109 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1110 		return err;
1111 	}
1112 
1113 	vlan_mapping.val[1] &= ~BIT(port);
1114 	vlan_mapping.val[2] &= ~BIT(port);
1115 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1116 	if (err) {
1117 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1118 		return err;
1119 	}
1120 
1121 	/* In case all ports are removed from the bridge, remove the VLAN */
1122 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1123 		err = gswip_vlan_active_remove(priv, idx);
1124 		if (err) {
1125 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1126 				err);
1127 			return err;
1128 		}
1129 	}
1130 
1131 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1132 	if (pvid)
1133 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1134 
1135 	return 0;
1136 }
1137 
gswip_port_bridge_join(struct dsa_switch * ds,int port,struct net_device * bridge)1138 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1139 				  struct net_device *bridge)
1140 {
1141 	struct gswip_priv *priv = ds->priv;
1142 	int err;
1143 
1144 	/* When the bridge uses VLAN filtering we have to configure VLAN
1145 	 * specific bridges. No bridge is configured here.
1146 	 */
1147 	if (!br_vlan_enabled(bridge)) {
1148 		err = gswip_vlan_add_unaware(priv, bridge, port);
1149 		if (err)
1150 			return err;
1151 		priv->port_vlan_filter &= ~BIT(port);
1152 	} else {
1153 		priv->port_vlan_filter |= BIT(port);
1154 	}
1155 	return gswip_add_single_port_br(priv, port, false);
1156 }
1157 
gswip_port_bridge_leave(struct dsa_switch * ds,int port,struct net_device * bridge)1158 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1159 				    struct net_device *bridge)
1160 {
1161 	struct gswip_priv *priv = ds->priv;
1162 
1163 	gswip_add_single_port_br(priv, port, true);
1164 
1165 	/* When the bridge uses VLAN filtering we have to configure VLAN
1166 	 * specific bridges. No bridge is configured here.
1167 	 */
1168 	if (!br_vlan_enabled(bridge))
1169 		gswip_vlan_remove(priv, bridge, port, 0, true, false);
1170 }
1171 
gswip_port_vlan_prepare(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1172 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1173 				   const struct switchdev_obj_port_vlan *vlan)
1174 {
1175 	struct gswip_priv *priv = ds->priv;
1176 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1177 	unsigned int max_ports = priv->hw_info->max_ports;
1178 	u16 vid;
1179 	int i;
1180 	int pos = max_ports;
1181 
1182 	/* We only support VLAN filtering on bridges */
1183 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1184 		return -EOPNOTSUPP;
1185 
1186 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1187 		int idx = -1;
1188 
1189 		/* Check if there is already a page for this VLAN */
1190 		for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1191 			if (priv->vlans[i].bridge == bridge &&
1192 			    priv->vlans[i].vid == vid) {
1193 				idx = i;
1194 				break;
1195 			}
1196 		}
1197 
1198 		/* If this VLAN is not programmed yet, we have to reserve
1199 		 * one entry in the VLAN table. Make sure we start at the
1200 		 * next position round.
1201 		 */
1202 		if (idx == -1) {
1203 			/* Look for a free slot */
1204 			for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1205 				if (!priv->vlans[pos].bridge) {
1206 					idx = pos;
1207 					pos++;
1208 					break;
1209 				}
1210 			}
1211 
1212 			if (idx == -1)
1213 				return -ENOSPC;
1214 		}
1215 	}
1216 
1217 	return 0;
1218 }
1219 
gswip_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1220 static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
1221 				const struct switchdev_obj_port_vlan *vlan)
1222 {
1223 	struct gswip_priv *priv = ds->priv;
1224 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1225 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1226 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1227 	u16 vid;
1228 
1229 	/* We have to receive all packets on the CPU port and should not
1230 	 * do any VLAN filtering here. This is also called with bridge
1231 	 * NULL and then we do not know for which bridge to configure
1232 	 * this.
1233 	 */
1234 	if (dsa_is_cpu_port(ds, port))
1235 		return;
1236 
1237 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1238 		gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
1239 }
1240 
gswip_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1241 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1242 			       const struct switchdev_obj_port_vlan *vlan)
1243 {
1244 	struct gswip_priv *priv = ds->priv;
1245 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1246 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1247 	u16 vid;
1248 	int err;
1249 
1250 	/* We have to receive all packets on the CPU port and should not
1251 	 * do any VLAN filtering here. This is also called with bridge
1252 	 * NULL and then we do not know for which bridge to configure
1253 	 * this.
1254 	 */
1255 	if (dsa_is_cpu_port(ds, port))
1256 		return 0;
1257 
1258 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1259 		err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
1260 		if (err)
1261 			return err;
1262 	}
1263 
1264 	return 0;
1265 }
1266 
gswip_port_fast_age(struct dsa_switch * ds,int port)1267 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1268 {
1269 	struct gswip_priv *priv = ds->priv;
1270 	struct gswip_pce_table_entry mac_bridge = {0,};
1271 	int i;
1272 	int err;
1273 
1274 	for (i = 0; i < 2048; i++) {
1275 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1276 		mac_bridge.index = i;
1277 
1278 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1279 		if (err) {
1280 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1281 				err);
1282 			return;
1283 		}
1284 
1285 		if (!mac_bridge.valid)
1286 			continue;
1287 
1288 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1289 			continue;
1290 
1291 		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1292 			continue;
1293 
1294 		mac_bridge.valid = false;
1295 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1296 		if (err) {
1297 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1298 				err);
1299 			return;
1300 		}
1301 	}
1302 }
1303 
gswip_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)1304 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1305 {
1306 	struct gswip_priv *priv = ds->priv;
1307 	u32 stp_state;
1308 
1309 	switch (state) {
1310 	case BR_STATE_DISABLED:
1311 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1312 				  GSWIP_SDMA_PCTRLp(port));
1313 		return;
1314 	case BR_STATE_BLOCKING:
1315 	case BR_STATE_LISTENING:
1316 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1317 		break;
1318 	case BR_STATE_LEARNING:
1319 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1320 		break;
1321 	case BR_STATE_FORWARDING:
1322 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1323 		break;
1324 	default:
1325 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1326 		return;
1327 	}
1328 
1329 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1330 			  GSWIP_SDMA_PCTRLp(port));
1331 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1332 			  GSWIP_PCE_PCTRL_0p(port));
1333 }
1334 
gswip_port_fdb(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,bool add)1335 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1336 			  const unsigned char *addr, u16 vid, bool add)
1337 {
1338 	struct gswip_priv *priv = ds->priv;
1339 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1340 	struct gswip_pce_table_entry mac_bridge = {0,};
1341 	unsigned int cpu_port = priv->hw_info->cpu_port;
1342 	int fid = -1;
1343 	int i;
1344 	int err;
1345 
1346 	if (!bridge)
1347 		return -EINVAL;
1348 
1349 	for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1350 		if (priv->vlans[i].bridge == bridge) {
1351 			fid = priv->vlans[i].fid;
1352 			break;
1353 		}
1354 	}
1355 
1356 	if (fid == -1) {
1357 		dev_err(priv->dev, "Port not part of a bridge\n");
1358 		return -EINVAL;
1359 	}
1360 
1361 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1362 	mac_bridge.key_mode = true;
1363 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1364 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1365 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1366 	mac_bridge.key[3] = fid;
1367 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1368 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1369 	mac_bridge.valid = add;
1370 
1371 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1372 	if (err)
1373 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1374 
1375 	return err;
1376 }
1377 
gswip_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)1378 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1379 			      const unsigned char *addr, u16 vid)
1380 {
1381 	return gswip_port_fdb(ds, port, addr, vid, true);
1382 }
1383 
gswip_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)1384 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1385 			      const unsigned char *addr, u16 vid)
1386 {
1387 	return gswip_port_fdb(ds, port, addr, vid, false);
1388 }
1389 
gswip_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)1390 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1391 			       dsa_fdb_dump_cb_t *cb, void *data)
1392 {
1393 	struct gswip_priv *priv = ds->priv;
1394 	struct gswip_pce_table_entry mac_bridge = {0,};
1395 	unsigned char addr[6];
1396 	int i;
1397 	int err;
1398 
1399 	for (i = 0; i < 2048; i++) {
1400 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1401 		mac_bridge.index = i;
1402 
1403 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1404 		if (err) {
1405 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1406 				err);
1407 			return err;
1408 		}
1409 
1410 		if (!mac_bridge.valid)
1411 			continue;
1412 
1413 		addr[5] = mac_bridge.key[0] & 0xff;
1414 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1415 		addr[3] = mac_bridge.key[1] & 0xff;
1416 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1417 		addr[1] = mac_bridge.key[2] & 0xff;
1418 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1419 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1420 			if (mac_bridge.val[0] & BIT(port)) {
1421 				err = cb(addr, 0, true, data);
1422 				if (err)
1423 					return err;
1424 			}
1425 		} else {
1426 			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1427 				err = cb(addr, 0, false, data);
1428 				if (err)
1429 					return err;
1430 			}
1431 		}
1432 	}
1433 	return 0;
1434 }
1435 
gswip_phylink_validate(struct dsa_switch * ds,int port,unsigned long * supported,struct phylink_link_state * state)1436 static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1437 				   unsigned long *supported,
1438 				   struct phylink_link_state *state)
1439 {
1440 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1441 
1442 	switch (port) {
1443 	case 0:
1444 	case 1:
1445 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1446 		    state->interface != PHY_INTERFACE_MODE_MII &&
1447 		    state->interface != PHY_INTERFACE_MODE_REVMII &&
1448 		    state->interface != PHY_INTERFACE_MODE_RMII)
1449 			goto unsupported;
1450 		break;
1451 	case 2:
1452 	case 3:
1453 	case 4:
1454 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1455 			goto unsupported;
1456 		break;
1457 	case 5:
1458 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1459 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
1460 			goto unsupported;
1461 		break;
1462 	default:
1463 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1464 		dev_err(ds->dev, "Unsupported port: %i\n", port);
1465 		return;
1466 	}
1467 
1468 	/* Allow all the expected bits */
1469 	phylink_set(mask, Autoneg);
1470 	phylink_set_port_modes(mask);
1471 	phylink_set(mask, Pause);
1472 	phylink_set(mask, Asym_Pause);
1473 
1474 	/* With the exclusion of MII, Reverse MII and Reduced MII, we
1475 	 * support Gigabit, including Half duplex
1476 	 */
1477 	if (state->interface != PHY_INTERFACE_MODE_MII &&
1478 	    state->interface != PHY_INTERFACE_MODE_REVMII &&
1479 	    state->interface != PHY_INTERFACE_MODE_RMII) {
1480 		phylink_set(mask, 1000baseT_Full);
1481 		phylink_set(mask, 1000baseT_Half);
1482 	}
1483 
1484 	phylink_set(mask, 10baseT_Half);
1485 	phylink_set(mask, 10baseT_Full);
1486 	phylink_set(mask, 100baseT_Half);
1487 	phylink_set(mask, 100baseT_Full);
1488 
1489 	bitmap_and(supported, supported, mask,
1490 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1491 	bitmap_and(state->advertising, state->advertising, mask,
1492 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1493 	return;
1494 
1495 unsupported:
1496 	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1497 	dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1498 		phy_modes(state->interface), port);
1499 	return;
1500 }
1501 
gswip_port_set_link(struct gswip_priv * priv,int port,bool link)1502 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1503 {
1504 	u32 mdio_phy;
1505 
1506 	if (link)
1507 		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1508 	else
1509 		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1510 
1511 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1512 			GSWIP_MDIO_PHYp(port));
1513 }
1514 
gswip_port_set_speed(struct gswip_priv * priv,int port,int speed,phy_interface_t interface)1515 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1516 				 phy_interface_t interface)
1517 {
1518 	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1519 
1520 	switch (speed) {
1521 	case SPEED_10:
1522 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1523 
1524 		if (interface == PHY_INTERFACE_MODE_RMII)
1525 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1526 		else
1527 			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1528 
1529 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1530 		break;
1531 
1532 	case SPEED_100:
1533 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1534 
1535 		if (interface == PHY_INTERFACE_MODE_RMII)
1536 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1537 		else
1538 			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1539 
1540 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1541 		break;
1542 
1543 	case SPEED_1000:
1544 		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1545 
1546 		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1547 
1548 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1549 		break;
1550 	}
1551 
1552 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1553 			GSWIP_MDIO_PHYp(port));
1554 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1555 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1556 			  GSWIP_MAC_CTRL_0p(port));
1557 }
1558 
gswip_port_set_duplex(struct gswip_priv * priv,int port,int duplex)1559 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1560 {
1561 	u32 mac_ctrl_0, mdio_phy;
1562 
1563 	if (duplex == DUPLEX_FULL) {
1564 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1565 		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1566 	} else {
1567 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1568 		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1569 	}
1570 
1571 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1572 			  GSWIP_MAC_CTRL_0p(port));
1573 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1574 			GSWIP_MDIO_PHYp(port));
1575 }
1576 
gswip_port_set_pause(struct gswip_priv * priv,int port,bool tx_pause,bool rx_pause)1577 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1578 				 bool tx_pause, bool rx_pause)
1579 {
1580 	u32 mac_ctrl_0, mdio_phy;
1581 
1582 	if (tx_pause && rx_pause) {
1583 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1584 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1585 			   GSWIP_MDIO_PHY_FCONRX_EN;
1586 	} else if (tx_pause) {
1587 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1588 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1589 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1590 	} else if (rx_pause) {
1591 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1592 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1593 			   GSWIP_MDIO_PHY_FCONRX_EN;
1594 	} else {
1595 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1596 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1597 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1598 	}
1599 
1600 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1601 			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1602 	gswip_mdio_mask(priv,
1603 			GSWIP_MDIO_PHY_FCONTX_MASK |
1604 			GSWIP_MDIO_PHY_FCONRX_MASK,
1605 			mdio_phy, GSWIP_MDIO_PHYp(port));
1606 }
1607 
gswip_phylink_mac_config(struct dsa_switch * ds,int port,unsigned int mode,const struct phylink_link_state * state)1608 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1609 				     unsigned int mode,
1610 				     const struct phylink_link_state *state)
1611 {
1612 	struct gswip_priv *priv = ds->priv;
1613 	u32 miicfg = 0;
1614 
1615 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1616 
1617 	switch (state->interface) {
1618 	case PHY_INTERFACE_MODE_MII:
1619 	case PHY_INTERFACE_MODE_INTERNAL:
1620 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1621 		break;
1622 	case PHY_INTERFACE_MODE_REVMII:
1623 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1624 		break;
1625 	case PHY_INTERFACE_MODE_RMII:
1626 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1627 		break;
1628 	case PHY_INTERFACE_MODE_RGMII:
1629 	case PHY_INTERFACE_MODE_RGMII_ID:
1630 	case PHY_INTERFACE_MODE_RGMII_RXID:
1631 	case PHY_INTERFACE_MODE_RGMII_TXID:
1632 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1633 		break;
1634 	default:
1635 		dev_err(ds->dev,
1636 			"Unsupported interface: %d\n", state->interface);
1637 		return;
1638 	}
1639 
1640 	gswip_mii_mask_cfg(priv,
1641 			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1642 			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1643 			   miicfg, port);
1644 
1645 	switch (state->interface) {
1646 	case PHY_INTERFACE_MODE_RGMII_ID:
1647 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1648 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1649 		break;
1650 	case PHY_INTERFACE_MODE_RGMII_RXID:
1651 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1652 		break;
1653 	case PHY_INTERFACE_MODE_RGMII_TXID:
1654 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1655 		break;
1656 	default:
1657 		break;
1658 	}
1659 }
1660 
gswip_phylink_mac_link_down(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)1661 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1662 					unsigned int mode,
1663 					phy_interface_t interface)
1664 {
1665 	struct gswip_priv *priv = ds->priv;
1666 
1667 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1668 
1669 	if (!dsa_is_cpu_port(ds, port))
1670 		gswip_port_set_link(priv, port, false);
1671 }
1672 
gswip_phylink_mac_link_up(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface,struct phy_device * phydev,int speed,int duplex,bool tx_pause,bool rx_pause)1673 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1674 				      unsigned int mode,
1675 				      phy_interface_t interface,
1676 				      struct phy_device *phydev,
1677 				      int speed, int duplex,
1678 				      bool tx_pause, bool rx_pause)
1679 {
1680 	struct gswip_priv *priv = ds->priv;
1681 
1682 	if (!dsa_is_cpu_port(ds, port)) {
1683 		gswip_port_set_link(priv, port, true);
1684 		gswip_port_set_speed(priv, port, speed, interface);
1685 		gswip_port_set_duplex(priv, port, duplex);
1686 		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1687 	}
1688 
1689 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1690 }
1691 
gswip_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)1692 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1693 			      uint8_t *data)
1694 {
1695 	int i;
1696 
1697 	if (stringset != ETH_SS_STATS)
1698 		return;
1699 
1700 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1701 		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1702 			ETH_GSTRING_LEN);
1703 }
1704 
gswip_bcm_ram_entry_read(struct gswip_priv * priv,u32 table,u32 index)1705 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1706 				    u32 index)
1707 {
1708 	u32 result;
1709 	int err;
1710 
1711 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1712 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1713 				GSWIP_BM_RAM_CTRL_OPMOD,
1714 			      table | GSWIP_BM_RAM_CTRL_BAS,
1715 			      GSWIP_BM_RAM_CTRL);
1716 
1717 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1718 				     GSWIP_BM_RAM_CTRL_BAS);
1719 	if (err) {
1720 		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1721 			table, index);
1722 		return 0;
1723 	}
1724 
1725 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1726 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1727 
1728 	return result;
1729 }
1730 
gswip_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)1731 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1732 				    uint64_t *data)
1733 {
1734 	struct gswip_priv *priv = ds->priv;
1735 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1736 	int i;
1737 	u64 high;
1738 
1739 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1740 		rmon_cnt = &gswip_rmon_cnt[i];
1741 
1742 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1743 						   rmon_cnt->offset);
1744 		if (rmon_cnt->size == 2) {
1745 			high = gswip_bcm_ram_entry_read(priv, port,
1746 							rmon_cnt->offset + 1);
1747 			data[i] |= high << 32;
1748 		}
1749 	}
1750 }
1751 
gswip_get_sset_count(struct dsa_switch * ds,int port,int sset)1752 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1753 {
1754 	if (sset != ETH_SS_STATS)
1755 		return 0;
1756 
1757 	return ARRAY_SIZE(gswip_rmon_cnt);
1758 }
1759 
1760 static const struct dsa_switch_ops gswip_switch_ops = {
1761 	.get_tag_protocol	= gswip_get_tag_protocol,
1762 	.setup			= gswip_setup,
1763 	.port_enable		= gswip_port_enable,
1764 	.port_disable		= gswip_port_disable,
1765 	.port_bridge_join	= gswip_port_bridge_join,
1766 	.port_bridge_leave	= gswip_port_bridge_leave,
1767 	.port_fast_age		= gswip_port_fast_age,
1768 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1769 	.port_vlan_prepare	= gswip_port_vlan_prepare,
1770 	.port_vlan_add		= gswip_port_vlan_add,
1771 	.port_vlan_del		= gswip_port_vlan_del,
1772 	.port_stp_state_set	= gswip_port_stp_state_set,
1773 	.port_fdb_add		= gswip_port_fdb_add,
1774 	.port_fdb_del		= gswip_port_fdb_del,
1775 	.port_fdb_dump		= gswip_port_fdb_dump,
1776 	.phylink_validate	= gswip_phylink_validate,
1777 	.phylink_mac_config	= gswip_phylink_mac_config,
1778 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1779 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1780 	.get_strings		= gswip_get_strings,
1781 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1782 	.get_sset_count		= gswip_get_sset_count,
1783 };
1784 
1785 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1786 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1787 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1788 };
1789 
1790 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1791 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1792 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1793 };
1794 
1795 static const struct xway_gphy_match_data xrx300_gphy_data = {
1796 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1797 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1798 };
1799 
1800 static const struct of_device_id xway_gphy_match[] = {
1801 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1802 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1803 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1804 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1805 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1806 	{},
1807 };
1808 
gswip_gphy_fw_load(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1809 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1810 {
1811 	struct device *dev = priv->dev;
1812 	const struct firmware *fw;
1813 	void *fw_addr;
1814 	dma_addr_t dma_addr;
1815 	dma_addr_t dev_addr;
1816 	size_t size;
1817 	int ret;
1818 
1819 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1820 	if (ret)
1821 		return ret;
1822 
1823 	reset_control_assert(gphy_fw->reset);
1824 
1825 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1826 	if (ret) {
1827 		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1828 			gphy_fw->fw_name, ret);
1829 		return ret;
1830 	}
1831 
1832 	/* GPHY cores need the firmware code in a persistent and contiguous
1833 	 * memory area with a 16 kB boundary aligned start address.
1834 	 */
1835 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1836 
1837 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1838 	if (fw_addr) {
1839 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1840 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1841 		memcpy(fw_addr, fw->data, fw->size);
1842 	} else {
1843 		dev_err(dev, "failed to alloc firmware memory\n");
1844 		release_firmware(fw);
1845 		return -ENOMEM;
1846 	}
1847 
1848 	release_firmware(fw);
1849 
1850 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1851 	if (ret)
1852 		return ret;
1853 
1854 	reset_control_deassert(gphy_fw->reset);
1855 
1856 	return ret;
1857 }
1858 
gswip_gphy_fw_probe(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw,struct device_node * gphy_fw_np,int i)1859 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1860 			       struct gswip_gphy_fw *gphy_fw,
1861 			       struct device_node *gphy_fw_np, int i)
1862 {
1863 	struct device *dev = priv->dev;
1864 	u32 gphy_mode;
1865 	int ret;
1866 	char gphyname[10];
1867 
1868 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1869 
1870 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1871 	if (IS_ERR(gphy_fw->clk_gate)) {
1872 		dev_err(dev, "Failed to lookup gate clock\n");
1873 		return PTR_ERR(gphy_fw->clk_gate);
1874 	}
1875 
1876 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1877 	if (ret)
1878 		return ret;
1879 
1880 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1881 	/* Default to GE mode */
1882 	if (ret)
1883 		gphy_mode = GPHY_MODE_GE;
1884 
1885 	switch (gphy_mode) {
1886 	case GPHY_MODE_FE:
1887 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1888 		break;
1889 	case GPHY_MODE_GE:
1890 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1891 		break;
1892 	default:
1893 		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1894 		return -EINVAL;
1895 	}
1896 
1897 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1898 	if (IS_ERR(gphy_fw->reset)) {
1899 		if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1900 			dev_err(dev, "Failed to lookup gphy reset\n");
1901 		return PTR_ERR(gphy_fw->reset);
1902 	}
1903 
1904 	return gswip_gphy_fw_load(priv, gphy_fw);
1905 }
1906 
gswip_gphy_fw_remove(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1907 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1908 				 struct gswip_gphy_fw *gphy_fw)
1909 {
1910 	int ret;
1911 
1912 	/* check if the device was fully probed */
1913 	if (!gphy_fw->fw_name)
1914 		return;
1915 
1916 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1917 	if (ret)
1918 		dev_err(priv->dev, "can not reset GPHY FW pointer");
1919 
1920 	clk_disable_unprepare(gphy_fw->clk_gate);
1921 
1922 	reset_control_put(gphy_fw->reset);
1923 }
1924 
gswip_gphy_fw_list(struct gswip_priv * priv,struct device_node * gphy_fw_list_np,u32 version)1925 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1926 			      struct device_node *gphy_fw_list_np, u32 version)
1927 {
1928 	struct device *dev = priv->dev;
1929 	struct device_node *gphy_fw_np;
1930 	const struct of_device_id *match;
1931 	int err;
1932 	int i = 0;
1933 
1934 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1935 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1936 	 * needs a different GPHY firmware.
1937 	 */
1938 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1939 		switch (version) {
1940 		case GSWIP_VERSION_2_0:
1941 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1942 			break;
1943 		case GSWIP_VERSION_2_1:
1944 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1945 			break;
1946 		default:
1947 			dev_err(dev, "unknown GSWIP version: 0x%x", version);
1948 			return -ENOENT;
1949 		}
1950 	}
1951 
1952 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1953 	if (match && match->data)
1954 		priv->gphy_fw_name_cfg = match->data;
1955 
1956 	if (!priv->gphy_fw_name_cfg) {
1957 		dev_err(dev, "GPHY compatible type not supported");
1958 		return -ENOENT;
1959 	}
1960 
1961 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1962 	if (!priv->num_gphy_fw)
1963 		return -ENOENT;
1964 
1965 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1966 							   "lantiq,rcu");
1967 	if (IS_ERR(priv->rcu_regmap))
1968 		return PTR_ERR(priv->rcu_regmap);
1969 
1970 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1971 					   sizeof(*priv->gphy_fw),
1972 					   GFP_KERNEL | __GFP_ZERO);
1973 	if (!priv->gphy_fw)
1974 		return -ENOMEM;
1975 
1976 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1977 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1978 					  gphy_fw_np, i);
1979 		if (err) {
1980 			of_node_put(gphy_fw_np);
1981 			goto remove_gphy;
1982 		}
1983 		i++;
1984 	}
1985 
1986 	/* The standalone PHY11G requires 300ms to be fully
1987 	 * initialized and ready for any MDIO communication after being
1988 	 * taken out of reset. For the SoC-internal GPHY variant there
1989 	 * is no (known) documentation for the minimum time after a
1990 	 * reset. Use the same value as for the standalone variant as
1991 	 * some users have reported internal PHYs not being detected
1992 	 * without any delay.
1993 	 */
1994 	msleep(300);
1995 
1996 	return 0;
1997 
1998 remove_gphy:
1999 	for (i = 0; i < priv->num_gphy_fw; i++)
2000 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2001 	return err;
2002 }
2003 
gswip_probe(struct platform_device * pdev)2004 static int gswip_probe(struct platform_device *pdev)
2005 {
2006 	struct gswip_priv *priv;
2007 	struct device_node *mdio_np, *gphy_fw_np;
2008 	struct device *dev = &pdev->dev;
2009 	int err;
2010 	int i;
2011 	u32 version;
2012 
2013 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2014 	if (!priv)
2015 		return -ENOMEM;
2016 
2017 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2018 	if (IS_ERR(priv->gswip))
2019 		return PTR_ERR(priv->gswip);
2020 
2021 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2022 	if (IS_ERR(priv->mdio))
2023 		return PTR_ERR(priv->mdio);
2024 
2025 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2026 	if (IS_ERR(priv->mii))
2027 		return PTR_ERR(priv->mii);
2028 
2029 	priv->hw_info = of_device_get_match_data(dev);
2030 	if (!priv->hw_info)
2031 		return -EINVAL;
2032 
2033 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2034 	if (!priv->ds)
2035 		return -ENOMEM;
2036 
2037 	priv->ds->dev = dev;
2038 	priv->ds->num_ports = priv->hw_info->max_ports;
2039 	priv->ds->priv = priv;
2040 	priv->ds->ops = &gswip_switch_ops;
2041 	priv->dev = dev;
2042 	version = gswip_switch_r(priv, GSWIP_VERSION);
2043 
2044 	/* bring up the mdio bus */
2045 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2046 	if (gphy_fw_np) {
2047 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2048 		of_node_put(gphy_fw_np);
2049 		if (err) {
2050 			dev_err(dev, "gphy fw probe failed\n");
2051 			return err;
2052 		}
2053 	}
2054 
2055 	/* bring up the mdio bus */
2056 	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2057 	if (mdio_np) {
2058 		err = gswip_mdio(priv, mdio_np);
2059 		if (err) {
2060 			dev_err(dev, "mdio probe failed\n");
2061 			goto put_mdio_node;
2062 		}
2063 	}
2064 
2065 	err = dsa_register_switch(priv->ds);
2066 	if (err) {
2067 		dev_err(dev, "dsa switch register failed: %i\n", err);
2068 		goto mdio_bus;
2069 	}
2070 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2071 		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2072 			priv->hw_info->cpu_port);
2073 		err = -EINVAL;
2074 		goto disable_switch;
2075 	}
2076 
2077 	platform_set_drvdata(pdev, priv);
2078 
2079 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2080 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2081 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2082 	return 0;
2083 
2084 disable_switch:
2085 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2086 	dsa_unregister_switch(priv->ds);
2087 mdio_bus:
2088 	if (mdio_np)
2089 		mdiobus_unregister(priv->ds->slave_mii_bus);
2090 put_mdio_node:
2091 	of_node_put(mdio_np);
2092 	for (i = 0; i < priv->num_gphy_fw; i++)
2093 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2094 	return err;
2095 }
2096 
gswip_remove(struct platform_device * pdev)2097 static int gswip_remove(struct platform_device *pdev)
2098 {
2099 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2100 	int i;
2101 
2102 	/* disable the switch */
2103 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2104 
2105 	dsa_unregister_switch(priv->ds);
2106 
2107 	if (priv->ds->slave_mii_bus) {
2108 		mdiobus_unregister(priv->ds->slave_mii_bus);
2109 		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2110 		mdiobus_free(priv->ds->slave_mii_bus);
2111 	}
2112 
2113 	for (i = 0; i < priv->num_gphy_fw; i++)
2114 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2115 
2116 	return 0;
2117 }
2118 
2119 static const struct gswip_hw_info gswip_xrx200 = {
2120 	.max_ports = 7,
2121 	.cpu_port = 6,
2122 };
2123 
2124 static const struct of_device_id gswip_of_match[] = {
2125 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2126 	{},
2127 };
2128 MODULE_DEVICE_TABLE(of, gswip_of_match);
2129 
2130 static struct platform_driver gswip_driver = {
2131 	.probe = gswip_probe,
2132 	.remove = gswip_remove,
2133 	.driver = {
2134 		.name = "gswip",
2135 		.of_match_table = gswip_of_match,
2136 	},
2137 };
2138 
2139 module_platform_driver(gswip_driver);
2140 
2141 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2142 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2143 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2144 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2145 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2146 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2147 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2148 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2149 MODULE_LICENSE("GPL v2");
2150