1 /*
2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3 *
4 * This file is free software: you may copy, redistribute and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation, either version 2 of the License, or (at your
7 * option) any later version.
8 *
9 * This file is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 *
17 * This file incorporates work covered by the following copyright and
18 * permission notice:
19 *
20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
21 *
22 * Permission to use, copy, modify, and/or distribute this software for any
23 * purpose with or without fee is hereby granted, provided that the above
24 * copyright notice and this permission notice appear in all copies.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33 */
34
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51
52 static const char alx_drv_name[] = "alx";
53
alx_free_txbuf(struct alx_tx_queue * txq,int entry)54 static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
55 {
56 struct alx_buffer *txb = &txq->bufs[entry];
57
58 if (dma_unmap_len(txb, size)) {
59 dma_unmap_single(txq->dev,
60 dma_unmap_addr(txb, dma),
61 dma_unmap_len(txb, size),
62 DMA_TO_DEVICE);
63 dma_unmap_len_set(txb, size, 0);
64 }
65
66 if (txb->skb) {
67 dev_kfree_skb_any(txb->skb);
68 txb->skb = NULL;
69 }
70 }
71
alx_refill_rx_ring(struct alx_priv * alx,gfp_t gfp)72 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
73 {
74 struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
75 struct sk_buff *skb;
76 struct alx_buffer *cur_buf;
77 dma_addr_t dma;
78 u16 cur, next, count = 0;
79
80 next = cur = rxq->write_idx;
81 if (++next == alx->rx_ringsz)
82 next = 0;
83 cur_buf = &rxq->bufs[cur];
84
85 while (!cur_buf->skb && next != rxq->read_idx) {
86 struct alx_rfd *rfd = &rxq->rfd[cur];
87
88 /*
89 * When DMA RX address is set to something like
90 * 0x....fc0, it will be very likely to cause DMA
91 * RFD overflow issue.
92 *
93 * To work around it, we apply rx skb with 64 bytes
94 * longer space, and offset the address whenever
95 * 0x....fc0 is detected.
96 */
97 skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
98 if (!skb)
99 break;
100
101 if (((unsigned long)skb->data & 0xfff) == 0xfc0)
102 skb_reserve(skb, 64);
103
104 dma = dma_map_single(&alx->hw.pdev->dev,
105 skb->data, alx->rxbuf_size,
106 DMA_FROM_DEVICE);
107 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
108 dev_kfree_skb(skb);
109 break;
110 }
111
112 /* Unfortunately, RX descriptor buffers must be 4-byte
113 * aligned, so we can't use IP alignment.
114 */
115 if (WARN_ON(dma & 3)) {
116 dev_kfree_skb(skb);
117 break;
118 }
119
120 cur_buf->skb = skb;
121 dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
122 dma_unmap_addr_set(cur_buf, dma, dma);
123 rfd->addr = cpu_to_le64(dma);
124
125 cur = next;
126 if (++next == alx->rx_ringsz)
127 next = 0;
128 cur_buf = &rxq->bufs[cur];
129 count++;
130 }
131
132 if (count) {
133 /* flush all updates before updating hardware */
134 wmb();
135 rxq->write_idx = cur;
136 alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
137 }
138
139 return count;
140 }
141
alx_tx_queue_mapping(struct alx_priv * alx,struct sk_buff * skb)142 static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
143 struct sk_buff *skb)
144 {
145 unsigned int r_idx = skb->queue_mapping;
146
147 if (r_idx >= alx->num_txq)
148 r_idx = r_idx % alx->num_txq;
149
150 return alx->qnapi[r_idx]->txq;
151 }
152
alx_get_tx_queue(const struct alx_tx_queue * txq)153 static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
154 {
155 return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
156 }
157
alx_tpd_avail(struct alx_tx_queue * txq)158 static inline int alx_tpd_avail(struct alx_tx_queue *txq)
159 {
160 if (txq->write_idx >= txq->read_idx)
161 return txq->count + txq->read_idx - txq->write_idx - 1;
162 return txq->read_idx - txq->write_idx - 1;
163 }
164
alx_clean_tx_irq(struct alx_tx_queue * txq)165 static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
166 {
167 struct alx_priv *alx;
168 struct netdev_queue *tx_queue;
169 u16 hw_read_idx, sw_read_idx;
170 unsigned int total_bytes = 0, total_packets = 0;
171 int budget = ALX_DEFAULT_TX_WORK;
172
173 alx = netdev_priv(txq->netdev);
174 tx_queue = alx_get_tx_queue(txq);
175
176 sw_read_idx = txq->read_idx;
177 hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
178
179 if (sw_read_idx != hw_read_idx) {
180 while (sw_read_idx != hw_read_idx && budget > 0) {
181 struct sk_buff *skb;
182
183 skb = txq->bufs[sw_read_idx].skb;
184 if (skb) {
185 total_bytes += skb->len;
186 total_packets++;
187 budget--;
188 }
189
190 alx_free_txbuf(txq, sw_read_idx);
191
192 if (++sw_read_idx == txq->count)
193 sw_read_idx = 0;
194 }
195 txq->read_idx = sw_read_idx;
196
197 netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
198 }
199
200 if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
201 alx_tpd_avail(txq) > txq->count / 4)
202 netif_tx_wake_queue(tx_queue);
203
204 return sw_read_idx == hw_read_idx;
205 }
206
alx_schedule_link_check(struct alx_priv * alx)207 static void alx_schedule_link_check(struct alx_priv *alx)
208 {
209 schedule_work(&alx->link_check_wk);
210 }
211
alx_schedule_reset(struct alx_priv * alx)212 static void alx_schedule_reset(struct alx_priv *alx)
213 {
214 schedule_work(&alx->reset_wk);
215 }
216
alx_clean_rx_irq(struct alx_rx_queue * rxq,int budget)217 static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
218 {
219 struct alx_priv *alx;
220 struct alx_rrd *rrd;
221 struct alx_buffer *rxb;
222 struct sk_buff *skb;
223 u16 length, rfd_cleaned = 0;
224 int work = 0;
225
226 alx = netdev_priv(rxq->netdev);
227
228 while (work < budget) {
229 rrd = &rxq->rrd[rxq->rrd_read_idx];
230 if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
231 break;
232 rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
233
234 if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
235 RRD_SI) != rxq->read_idx ||
236 ALX_GET_FIELD(le32_to_cpu(rrd->word0),
237 RRD_NOR) != 1) {
238 alx_schedule_reset(alx);
239 return work;
240 }
241
242 rxb = &rxq->bufs[rxq->read_idx];
243 dma_unmap_single(rxq->dev,
244 dma_unmap_addr(rxb, dma),
245 dma_unmap_len(rxb, size),
246 DMA_FROM_DEVICE);
247 dma_unmap_len_set(rxb, size, 0);
248 skb = rxb->skb;
249 rxb->skb = NULL;
250
251 if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
252 rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
253 rrd->word3 = 0;
254 dev_kfree_skb_any(skb);
255 goto next_pkt;
256 }
257
258 length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
259 RRD_PKTLEN) - ETH_FCS_LEN;
260 skb_put(skb, length);
261 skb->protocol = eth_type_trans(skb, rxq->netdev);
262
263 skb_checksum_none_assert(skb);
264 if (alx->dev->features & NETIF_F_RXCSUM &&
265 !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
266 cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
267 switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
268 RRD_PID)) {
269 case RRD_PID_IPV6UDP:
270 case RRD_PID_IPV4UDP:
271 case RRD_PID_IPV4TCP:
272 case RRD_PID_IPV6TCP:
273 skb->ip_summed = CHECKSUM_UNNECESSARY;
274 break;
275 }
276 }
277
278 napi_gro_receive(&rxq->np->napi, skb);
279 work++;
280
281 next_pkt:
282 if (++rxq->read_idx == rxq->count)
283 rxq->read_idx = 0;
284 if (++rxq->rrd_read_idx == rxq->count)
285 rxq->rrd_read_idx = 0;
286
287 if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
288 rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
289 }
290
291 if (rfd_cleaned)
292 alx_refill_rx_ring(alx, GFP_ATOMIC);
293
294 return work;
295 }
296
alx_poll(struct napi_struct * napi,int budget)297 static int alx_poll(struct napi_struct *napi, int budget)
298 {
299 struct alx_napi *np = container_of(napi, struct alx_napi, napi);
300 struct alx_priv *alx = np->alx;
301 struct alx_hw *hw = &alx->hw;
302 unsigned long flags;
303 bool tx_complete = true;
304 int work = 0;
305
306 if (np->txq)
307 tx_complete = alx_clean_tx_irq(np->txq);
308 if (np->rxq)
309 work = alx_clean_rx_irq(np->rxq, budget);
310
311 if (!tx_complete || work == budget)
312 return budget;
313
314 napi_complete_done(&np->napi, work);
315
316 /* enable interrupt */
317 if (alx->hw.pdev->msix_enabled) {
318 alx_mask_msix(hw, np->vec_idx, false);
319 } else {
320 spin_lock_irqsave(&alx->irq_lock, flags);
321 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
322 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
323 spin_unlock_irqrestore(&alx->irq_lock, flags);
324 }
325
326 alx_post_write(hw);
327
328 return work;
329 }
330
alx_intr_handle_misc(struct alx_priv * alx,u32 intr)331 static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
332 {
333 struct alx_hw *hw = &alx->hw;
334
335 if (intr & ALX_ISR_FATAL) {
336 netif_warn(alx, hw, alx->dev,
337 "fatal interrupt 0x%x, resetting\n", intr);
338 alx_schedule_reset(alx);
339 return true;
340 }
341
342 if (intr & ALX_ISR_ALERT)
343 netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
344
345 if (intr & ALX_ISR_PHY) {
346 /* suppress PHY interrupt, because the source
347 * is from PHY internal. only the internal status
348 * is cleared, the interrupt status could be cleared.
349 */
350 alx->int_mask &= ~ALX_ISR_PHY;
351 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
352 alx_schedule_link_check(alx);
353 }
354
355 return false;
356 }
357
alx_intr_handle(struct alx_priv * alx,u32 intr)358 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
359 {
360 struct alx_hw *hw = &alx->hw;
361
362 spin_lock(&alx->irq_lock);
363
364 /* ACK interrupt */
365 alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
366 intr &= alx->int_mask;
367
368 if (alx_intr_handle_misc(alx, intr))
369 goto out;
370
371 if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
372 napi_schedule(&alx->qnapi[0]->napi);
373 /* mask rx/tx interrupt, enable them when napi complete */
374 alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
375 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
376 }
377
378 alx_write_mem32(hw, ALX_ISR, 0);
379
380 out:
381 spin_unlock(&alx->irq_lock);
382 return IRQ_HANDLED;
383 }
384
alx_intr_msix_ring(int irq,void * data)385 static irqreturn_t alx_intr_msix_ring(int irq, void *data)
386 {
387 struct alx_napi *np = data;
388 struct alx_hw *hw = &np->alx->hw;
389
390 /* mask interrupt to ACK chip */
391 alx_mask_msix(hw, np->vec_idx, true);
392 /* clear interrupt status */
393 alx_write_mem32(hw, ALX_ISR, np->vec_mask);
394
395 napi_schedule(&np->napi);
396
397 return IRQ_HANDLED;
398 }
399
alx_intr_msix_misc(int irq,void * data)400 static irqreturn_t alx_intr_msix_misc(int irq, void *data)
401 {
402 struct alx_priv *alx = data;
403 struct alx_hw *hw = &alx->hw;
404 u32 intr;
405
406 /* mask interrupt to ACK chip */
407 alx_mask_msix(hw, 0, true);
408
409 /* read interrupt status */
410 intr = alx_read_mem32(hw, ALX_ISR);
411 intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
412
413 if (alx_intr_handle_misc(alx, intr))
414 return IRQ_HANDLED;
415
416 /* clear interrupt status */
417 alx_write_mem32(hw, ALX_ISR, intr);
418
419 /* enable interrupt again */
420 alx_mask_msix(hw, 0, false);
421
422 return IRQ_HANDLED;
423 }
424
alx_intr_msi(int irq,void * data)425 static irqreturn_t alx_intr_msi(int irq, void *data)
426 {
427 struct alx_priv *alx = data;
428
429 return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
430 }
431
alx_intr_legacy(int irq,void * data)432 static irqreturn_t alx_intr_legacy(int irq, void *data)
433 {
434 struct alx_priv *alx = data;
435 struct alx_hw *hw = &alx->hw;
436 u32 intr;
437
438 intr = alx_read_mem32(hw, ALX_ISR);
439
440 if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
441 return IRQ_NONE;
442
443 return alx_intr_handle(alx, intr);
444 }
445
446 static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
447 ALX_TPD_PRI1_ADDR_LO,
448 ALX_TPD_PRI2_ADDR_LO,
449 ALX_TPD_PRI3_ADDR_LO};
450
alx_init_ring_ptrs(struct alx_priv * alx)451 static void alx_init_ring_ptrs(struct alx_priv *alx)
452 {
453 struct alx_hw *hw = &alx->hw;
454 u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
455 struct alx_napi *np;
456 int i;
457
458 for (i = 0; i < alx->num_napi; i++) {
459 np = alx->qnapi[i];
460 if (np->txq) {
461 np->txq->read_idx = 0;
462 np->txq->write_idx = 0;
463 alx_write_mem32(hw,
464 txring_header_reg[np->txq->queue_idx],
465 np->txq->tpd_dma);
466 }
467
468 if (np->rxq) {
469 np->rxq->read_idx = 0;
470 np->rxq->write_idx = 0;
471 np->rxq->rrd_read_idx = 0;
472 alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
473 alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
474 }
475 }
476
477 alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
478 alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
479
480 alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
481 alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
482 alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
483 alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
484
485 /* load these pointers into the chip */
486 alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
487 }
488
alx_free_txring_buf(struct alx_tx_queue * txq)489 static void alx_free_txring_buf(struct alx_tx_queue *txq)
490 {
491 int i;
492
493 if (!txq->bufs)
494 return;
495
496 for (i = 0; i < txq->count; i++)
497 alx_free_txbuf(txq, i);
498
499 memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
500 memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
501 txq->write_idx = 0;
502 txq->read_idx = 0;
503
504 netdev_tx_reset_queue(alx_get_tx_queue(txq));
505 }
506
alx_free_rxring_buf(struct alx_rx_queue * rxq)507 static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
508 {
509 struct alx_buffer *cur_buf;
510 u16 i;
511
512 if (!rxq->bufs)
513 return;
514
515 for (i = 0; i < rxq->count; i++) {
516 cur_buf = rxq->bufs + i;
517 if (cur_buf->skb) {
518 dma_unmap_single(rxq->dev,
519 dma_unmap_addr(cur_buf, dma),
520 dma_unmap_len(cur_buf, size),
521 DMA_FROM_DEVICE);
522 dev_kfree_skb(cur_buf->skb);
523 cur_buf->skb = NULL;
524 dma_unmap_len_set(cur_buf, size, 0);
525 dma_unmap_addr_set(cur_buf, dma, 0);
526 }
527 }
528
529 rxq->write_idx = 0;
530 rxq->read_idx = 0;
531 rxq->rrd_read_idx = 0;
532 }
533
alx_free_buffers(struct alx_priv * alx)534 static void alx_free_buffers(struct alx_priv *alx)
535 {
536 int i;
537
538 for (i = 0; i < alx->num_txq; i++)
539 if (alx->qnapi[i] && alx->qnapi[i]->txq)
540 alx_free_txring_buf(alx->qnapi[i]->txq);
541
542 if (alx->qnapi[0] && alx->qnapi[0]->rxq)
543 alx_free_rxring_buf(alx->qnapi[0]->rxq);
544 }
545
alx_reinit_rings(struct alx_priv * alx)546 static int alx_reinit_rings(struct alx_priv *alx)
547 {
548 alx_free_buffers(alx);
549
550 alx_init_ring_ptrs(alx);
551
552 if (!alx_refill_rx_ring(alx, GFP_KERNEL))
553 return -ENOMEM;
554
555 return 0;
556 }
557
alx_add_mc_addr(struct alx_hw * hw,const u8 * addr,u32 * mc_hash)558 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
559 {
560 u32 crc32, bit, reg;
561
562 crc32 = ether_crc(ETH_ALEN, addr);
563 reg = (crc32 >> 31) & 0x1;
564 bit = (crc32 >> 26) & 0x1F;
565
566 mc_hash[reg] |= BIT(bit);
567 }
568
__alx_set_rx_mode(struct net_device * netdev)569 static void __alx_set_rx_mode(struct net_device *netdev)
570 {
571 struct alx_priv *alx = netdev_priv(netdev);
572 struct alx_hw *hw = &alx->hw;
573 struct netdev_hw_addr *ha;
574 u32 mc_hash[2] = {};
575
576 if (!(netdev->flags & IFF_ALLMULTI)) {
577 netdev_for_each_mc_addr(ha, netdev)
578 alx_add_mc_addr(hw, ha->addr, mc_hash);
579
580 alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
581 alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
582 }
583
584 hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
585 if (netdev->flags & IFF_PROMISC)
586 hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
587 if (netdev->flags & IFF_ALLMULTI)
588 hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
589
590 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
591 }
592
alx_set_rx_mode(struct net_device * netdev)593 static void alx_set_rx_mode(struct net_device *netdev)
594 {
595 __alx_set_rx_mode(netdev);
596 }
597
alx_set_mac_address(struct net_device * netdev,void * data)598 static int alx_set_mac_address(struct net_device *netdev, void *data)
599 {
600 struct alx_priv *alx = netdev_priv(netdev);
601 struct alx_hw *hw = &alx->hw;
602 struct sockaddr *addr = data;
603
604 if (!is_valid_ether_addr(addr->sa_data))
605 return -EADDRNOTAVAIL;
606
607 if (netdev->addr_assign_type & NET_ADDR_RANDOM)
608 netdev->addr_assign_type ^= NET_ADDR_RANDOM;
609
610 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
611 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
612 alx_set_macaddr(hw, hw->mac_addr);
613
614 return 0;
615 }
616
alx_alloc_tx_ring(struct alx_priv * alx,struct alx_tx_queue * txq,int offset)617 static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
618 int offset)
619 {
620 txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
621 if (!txq->bufs)
622 return -ENOMEM;
623
624 txq->tpd = alx->descmem.virt + offset;
625 txq->tpd_dma = alx->descmem.dma + offset;
626 offset += sizeof(struct alx_txd) * txq->count;
627
628 return offset;
629 }
630
alx_alloc_rx_ring(struct alx_priv * alx,struct alx_rx_queue * rxq,int offset)631 static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
632 int offset)
633 {
634 rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
635 if (!rxq->bufs)
636 return -ENOMEM;
637
638 rxq->rrd = alx->descmem.virt + offset;
639 rxq->rrd_dma = alx->descmem.dma + offset;
640 offset += sizeof(struct alx_rrd) * rxq->count;
641
642 rxq->rfd = alx->descmem.virt + offset;
643 rxq->rfd_dma = alx->descmem.dma + offset;
644 offset += sizeof(struct alx_rfd) * rxq->count;
645
646 return offset;
647 }
648
alx_alloc_rings(struct alx_priv * alx)649 static int alx_alloc_rings(struct alx_priv *alx)
650 {
651 int i, offset = 0;
652
653 /* physical tx/rx ring descriptors
654 *
655 * Allocate them as a single chunk because they must not cross a
656 * 4G boundary (hardware has a single register for high 32 bits
657 * of addresses only)
658 */
659 alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
660 alx->num_txq +
661 sizeof(struct alx_rrd) * alx->rx_ringsz +
662 sizeof(struct alx_rfd) * alx->rx_ringsz;
663 alx->descmem.virt = dma_alloc_coherent(&alx->hw.pdev->dev,
664 alx->descmem.size,
665 &alx->descmem.dma, GFP_KERNEL);
666 if (!alx->descmem.virt)
667 return -ENOMEM;
668
669 /* alignment requirements */
670 BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
671 BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
672
673 for (i = 0; i < alx->num_txq; i++) {
674 offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
675 if (offset < 0) {
676 netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
677 return -ENOMEM;
678 }
679 }
680
681 offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
682 if (offset < 0) {
683 netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
684 return -ENOMEM;
685 }
686
687 return 0;
688 }
689
alx_free_rings(struct alx_priv * alx)690 static void alx_free_rings(struct alx_priv *alx)
691 {
692 int i;
693
694 alx_free_buffers(alx);
695
696 for (i = 0; i < alx->num_txq; i++)
697 if (alx->qnapi[i] && alx->qnapi[i]->txq)
698 kfree(alx->qnapi[i]->txq->bufs);
699
700 if (alx->qnapi[0] && alx->qnapi[0]->rxq)
701 kfree(alx->qnapi[0]->rxq->bufs);
702
703 if (alx->descmem.virt)
704 dma_free_coherent(&alx->hw.pdev->dev,
705 alx->descmem.size,
706 alx->descmem.virt,
707 alx->descmem.dma);
708 }
709
alx_free_napis(struct alx_priv * alx)710 static void alx_free_napis(struct alx_priv *alx)
711 {
712 struct alx_napi *np;
713 int i;
714
715 for (i = 0; i < alx->num_napi; i++) {
716 np = alx->qnapi[i];
717 if (!np)
718 continue;
719
720 netif_napi_del(&np->napi);
721 kfree(np->txq);
722 kfree(np->rxq);
723 kfree(np);
724 alx->qnapi[i] = NULL;
725 }
726 }
727
728 static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
729 ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
730 static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
731 ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
732 static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
733 ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
734 static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
735 ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
736 ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
737 ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
738
alx_alloc_napis(struct alx_priv * alx)739 static int alx_alloc_napis(struct alx_priv *alx)
740 {
741 struct alx_napi *np;
742 struct alx_rx_queue *rxq;
743 struct alx_tx_queue *txq;
744 int i;
745
746 alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
747
748 /* allocate alx_napi structures */
749 for (i = 0; i < alx->num_napi; i++) {
750 np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
751 if (!np)
752 goto err_out;
753
754 np->alx = alx;
755 netif_napi_add(alx->dev, &np->napi, alx_poll, 64);
756 alx->qnapi[i] = np;
757 }
758
759 /* allocate tx queues */
760 for (i = 0; i < alx->num_txq; i++) {
761 np = alx->qnapi[i];
762 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
763 if (!txq)
764 goto err_out;
765
766 np->txq = txq;
767 txq->p_reg = tx_pidx_reg[i];
768 txq->c_reg = tx_cidx_reg[i];
769 txq->queue_idx = i;
770 txq->count = alx->tx_ringsz;
771 txq->netdev = alx->dev;
772 txq->dev = &alx->hw.pdev->dev;
773 np->vec_mask |= tx_vect_mask[i];
774 alx->int_mask |= tx_vect_mask[i];
775 }
776
777 /* allocate rx queues */
778 np = alx->qnapi[0];
779 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
780 if (!rxq)
781 goto err_out;
782
783 np->rxq = rxq;
784 rxq->np = alx->qnapi[0];
785 rxq->queue_idx = 0;
786 rxq->count = alx->rx_ringsz;
787 rxq->netdev = alx->dev;
788 rxq->dev = &alx->hw.pdev->dev;
789 np->vec_mask |= rx_vect_mask[0];
790 alx->int_mask |= rx_vect_mask[0];
791
792 return 0;
793
794 err_out:
795 netdev_err(alx->dev, "error allocating internal structures\n");
796 alx_free_napis(alx);
797 return -ENOMEM;
798 }
799
800 static const int txq_vec_mapping_shift[] = {
801 0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
802 0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
803 1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
804 1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
805 };
806
alx_config_vector_mapping(struct alx_priv * alx)807 static void alx_config_vector_mapping(struct alx_priv *alx)
808 {
809 struct alx_hw *hw = &alx->hw;
810 u32 tbl[2] = {0, 0};
811 int i, vector, idx, shift;
812
813 if (alx->hw.pdev->msix_enabled) {
814 /* tx mappings */
815 for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
816 idx = txq_vec_mapping_shift[i * 2];
817 shift = txq_vec_mapping_shift[i * 2 + 1];
818 tbl[idx] |= vector << shift;
819 }
820
821 /* rx mapping */
822 tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
823 }
824
825 alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
826 alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
827 alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
828 }
829
alx_enable_msix(struct alx_priv * alx)830 static int alx_enable_msix(struct alx_priv *alx)
831 {
832 int err, num_vec, num_txq, num_rxq;
833
834 num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
835 num_rxq = 1;
836 num_vec = max_t(int, num_txq, num_rxq) + 1;
837
838 err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
839 PCI_IRQ_MSIX);
840 if (err < 0) {
841 netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
842 return err;
843 }
844
845 alx->num_vec = num_vec;
846 alx->num_napi = num_vec - 1;
847 alx->num_txq = num_txq;
848 alx->num_rxq = num_rxq;
849
850 return err;
851 }
852
alx_request_msix(struct alx_priv * alx)853 static int alx_request_msix(struct alx_priv *alx)
854 {
855 struct net_device *netdev = alx->dev;
856 int i, err, vector = 0, free_vector = 0;
857
858 err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
859 0, netdev->name, alx);
860 if (err)
861 goto out_err;
862
863 for (i = 0; i < alx->num_napi; i++) {
864 struct alx_napi *np = alx->qnapi[i];
865
866 vector++;
867
868 if (np->txq && np->rxq)
869 sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
870 np->txq->queue_idx);
871 else if (np->txq)
872 sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
873 np->txq->queue_idx);
874 else if (np->rxq)
875 sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
876 np->rxq->queue_idx);
877 else
878 sprintf(np->irq_lbl, "%s-unused", netdev->name);
879
880 np->vec_idx = vector;
881 err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
882 alx_intr_msix_ring, 0, np->irq_lbl, np);
883 if (err)
884 goto out_free;
885 }
886 return 0;
887
888 out_free:
889 free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
890
891 vector--;
892 for (i = 0; i < vector; i++)
893 free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
894 alx->qnapi[i]);
895
896 out_err:
897 return err;
898 }
899
alx_init_intr(struct alx_priv * alx)900 static int alx_init_intr(struct alx_priv *alx)
901 {
902 int ret;
903
904 ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
905 PCI_IRQ_MSI | PCI_IRQ_LEGACY);
906 if (ret < 0)
907 return ret;
908
909 alx->num_vec = 1;
910 alx->num_napi = 1;
911 alx->num_txq = 1;
912 alx->num_rxq = 1;
913 return 0;
914 }
915
alx_irq_enable(struct alx_priv * alx)916 static void alx_irq_enable(struct alx_priv *alx)
917 {
918 struct alx_hw *hw = &alx->hw;
919 int i;
920
921 /* level-1 interrupt switch */
922 alx_write_mem32(hw, ALX_ISR, 0);
923 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
924 alx_post_write(hw);
925
926 if (alx->hw.pdev->msix_enabled) {
927 /* enable all msix irqs */
928 for (i = 0; i < alx->num_vec; i++)
929 alx_mask_msix(hw, i, false);
930 }
931 }
932
alx_irq_disable(struct alx_priv * alx)933 static void alx_irq_disable(struct alx_priv *alx)
934 {
935 struct alx_hw *hw = &alx->hw;
936 int i;
937
938 alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
939 alx_write_mem32(hw, ALX_IMR, 0);
940 alx_post_write(hw);
941
942 if (alx->hw.pdev->msix_enabled) {
943 for (i = 0; i < alx->num_vec; i++) {
944 alx_mask_msix(hw, i, true);
945 synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
946 }
947 } else {
948 synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
949 }
950 }
951
alx_realloc_resources(struct alx_priv * alx)952 static int alx_realloc_resources(struct alx_priv *alx)
953 {
954 int err;
955
956 alx_free_rings(alx);
957 alx_free_napis(alx);
958 pci_free_irq_vectors(alx->hw.pdev);
959
960 err = alx_init_intr(alx);
961 if (err)
962 return err;
963
964 err = alx_alloc_napis(alx);
965 if (err)
966 return err;
967
968 err = alx_alloc_rings(alx);
969 if (err)
970 return err;
971
972 return 0;
973 }
974
alx_request_irq(struct alx_priv * alx)975 static int alx_request_irq(struct alx_priv *alx)
976 {
977 struct pci_dev *pdev = alx->hw.pdev;
978 struct alx_hw *hw = &alx->hw;
979 int err;
980 u32 msi_ctrl;
981
982 msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
983
984 if (alx->hw.pdev->msix_enabled) {
985 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
986 err = alx_request_msix(alx);
987 if (!err)
988 goto out;
989
990 /* msix request failed, realloc resources */
991 err = alx_realloc_resources(alx);
992 if (err)
993 goto out;
994 }
995
996 if (alx->hw.pdev->msi_enabled) {
997 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
998 msi_ctrl | ALX_MSI_MASK_SEL_LINE);
999 err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
1000 alx->dev->name, alx);
1001 if (!err)
1002 goto out;
1003
1004 /* fall back to legacy interrupt */
1005 pci_free_irq_vectors(alx->hw.pdev);
1006 }
1007
1008 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1009 err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
1010 alx->dev->name, alx);
1011 out:
1012 if (!err)
1013 alx_config_vector_mapping(alx);
1014 else
1015 netdev_err(alx->dev, "IRQ registration failed!\n");
1016 return err;
1017 }
1018
alx_free_irq(struct alx_priv * alx)1019 static void alx_free_irq(struct alx_priv *alx)
1020 {
1021 struct pci_dev *pdev = alx->hw.pdev;
1022 int i;
1023
1024 free_irq(pci_irq_vector(pdev, 0), alx);
1025 if (alx->hw.pdev->msix_enabled) {
1026 for (i = 0; i < alx->num_napi; i++)
1027 free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
1028 }
1029
1030 pci_free_irq_vectors(pdev);
1031 }
1032
alx_identify_hw(struct alx_priv * alx)1033 static int alx_identify_hw(struct alx_priv *alx)
1034 {
1035 struct alx_hw *hw = &alx->hw;
1036 int rev = alx_hw_revision(hw);
1037
1038 if (rev > ALX_REV_C0)
1039 return -EINVAL;
1040
1041 hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1042
1043 return 0;
1044 }
1045
alx_init_sw(struct alx_priv * alx)1046 static int alx_init_sw(struct alx_priv *alx)
1047 {
1048 struct pci_dev *pdev = alx->hw.pdev;
1049 struct alx_hw *hw = &alx->hw;
1050 int err;
1051
1052 err = alx_identify_hw(alx);
1053 if (err) {
1054 dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1055 return err;
1056 }
1057
1058 alx->hw.lnk_patch =
1059 pdev->device == ALX_DEV_ID_AR8161 &&
1060 pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1061 pdev->subsystem_device == 0x0091 &&
1062 pdev->revision == 0;
1063
1064 hw->smb_timer = 400;
1065 hw->mtu = alx->dev->mtu;
1066 alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1067 /* MTU range: 34 - 9256 */
1068 alx->dev->min_mtu = 34;
1069 alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1070 alx->tx_ringsz = 256;
1071 alx->rx_ringsz = 512;
1072 hw->imt = 200;
1073 alx->int_mask = ALX_ISR_MISC;
1074 hw->dma_chnl = hw->max_dma_chnl;
1075 hw->ith_tpd = alx->tx_ringsz / 3;
1076 hw->link_speed = SPEED_UNKNOWN;
1077 hw->duplex = DUPLEX_UNKNOWN;
1078 hw->adv_cfg = ADVERTISED_Autoneg |
1079 ADVERTISED_10baseT_Half |
1080 ADVERTISED_10baseT_Full |
1081 ADVERTISED_100baseT_Full |
1082 ADVERTISED_100baseT_Half |
1083 ADVERTISED_1000baseT_Full;
1084 hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1085
1086 hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1087 ALX_MAC_CTRL_MHASH_ALG_HI5B |
1088 ALX_MAC_CTRL_BRD_EN |
1089 ALX_MAC_CTRL_PCRCE |
1090 ALX_MAC_CTRL_CRCE |
1091 ALX_MAC_CTRL_RXFC_EN |
1092 ALX_MAC_CTRL_TXFC_EN |
1093 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1094
1095 return err;
1096 }
1097
1098
alx_fix_features(struct net_device * netdev,netdev_features_t features)1099 static netdev_features_t alx_fix_features(struct net_device *netdev,
1100 netdev_features_t features)
1101 {
1102 if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1103 features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1104
1105 return features;
1106 }
1107
alx_netif_stop(struct alx_priv * alx)1108 static void alx_netif_stop(struct alx_priv *alx)
1109 {
1110 int i;
1111
1112 netif_trans_update(alx->dev);
1113 if (netif_carrier_ok(alx->dev)) {
1114 netif_carrier_off(alx->dev);
1115 netif_tx_disable(alx->dev);
1116 for (i = 0; i < alx->num_napi; i++)
1117 napi_disable(&alx->qnapi[i]->napi);
1118 }
1119 }
1120
alx_halt(struct alx_priv * alx)1121 static void alx_halt(struct alx_priv *alx)
1122 {
1123 struct alx_hw *hw = &alx->hw;
1124
1125 alx_netif_stop(alx);
1126 hw->link_speed = SPEED_UNKNOWN;
1127 hw->duplex = DUPLEX_UNKNOWN;
1128
1129 alx_reset_mac(hw);
1130
1131 /* disable l0s/l1 */
1132 alx_enable_aspm(hw, false, false);
1133 alx_irq_disable(alx);
1134 alx_free_buffers(alx);
1135 }
1136
alx_configure(struct alx_priv * alx)1137 static void alx_configure(struct alx_priv *alx)
1138 {
1139 struct alx_hw *hw = &alx->hw;
1140
1141 alx_configure_basic(hw);
1142 alx_disable_rss(hw);
1143 __alx_set_rx_mode(alx->dev);
1144
1145 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1146 }
1147
alx_activate(struct alx_priv * alx)1148 static void alx_activate(struct alx_priv *alx)
1149 {
1150 /* hardware setting lost, restore it */
1151 alx_reinit_rings(alx);
1152 alx_configure(alx);
1153
1154 /* clear old interrupts */
1155 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1156
1157 alx_irq_enable(alx);
1158
1159 alx_schedule_link_check(alx);
1160 }
1161
alx_reinit(struct alx_priv * alx)1162 static void alx_reinit(struct alx_priv *alx)
1163 {
1164 ASSERT_RTNL();
1165
1166 alx_halt(alx);
1167 alx_activate(alx);
1168 }
1169
alx_change_mtu(struct net_device * netdev,int mtu)1170 static int alx_change_mtu(struct net_device *netdev, int mtu)
1171 {
1172 struct alx_priv *alx = netdev_priv(netdev);
1173 int max_frame = ALX_MAX_FRAME_LEN(mtu);
1174
1175 netdev->mtu = mtu;
1176 alx->hw.mtu = mtu;
1177 alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1178 netdev_update_features(netdev);
1179 if (netif_running(netdev))
1180 alx_reinit(alx);
1181 return 0;
1182 }
1183
alx_netif_start(struct alx_priv * alx)1184 static void alx_netif_start(struct alx_priv *alx)
1185 {
1186 int i;
1187
1188 netif_tx_wake_all_queues(alx->dev);
1189 for (i = 0; i < alx->num_napi; i++)
1190 napi_enable(&alx->qnapi[i]->napi);
1191 netif_carrier_on(alx->dev);
1192 }
1193
__alx_open(struct alx_priv * alx,bool resume)1194 static int __alx_open(struct alx_priv *alx, bool resume)
1195 {
1196 int err;
1197
1198 err = alx_enable_msix(alx);
1199 if (err < 0) {
1200 err = alx_init_intr(alx);
1201 if (err)
1202 return err;
1203 }
1204
1205 if (!resume)
1206 netif_carrier_off(alx->dev);
1207
1208 err = alx_alloc_napis(alx);
1209 if (err)
1210 goto out_disable_adv_intr;
1211
1212 err = alx_alloc_rings(alx);
1213 if (err)
1214 goto out_free_rings;
1215
1216 alx_configure(alx);
1217
1218 err = alx_request_irq(alx);
1219 if (err)
1220 goto out_free_rings;
1221
1222 /* must be called after alx_request_irq because the chip stops working
1223 * if we copy the dma addresses in alx_init_ring_ptrs twice when
1224 * requesting msi-x interrupts failed
1225 */
1226 alx_reinit_rings(alx);
1227
1228 netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1229 netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1230
1231 /* clear old interrupts */
1232 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1233
1234 alx_irq_enable(alx);
1235
1236 if (!resume)
1237 netif_tx_start_all_queues(alx->dev);
1238
1239 alx_schedule_link_check(alx);
1240 return 0;
1241
1242 out_free_rings:
1243 alx_free_rings(alx);
1244 alx_free_napis(alx);
1245 out_disable_adv_intr:
1246 pci_free_irq_vectors(alx->hw.pdev);
1247 return err;
1248 }
1249
__alx_stop(struct alx_priv * alx)1250 static void __alx_stop(struct alx_priv *alx)
1251 {
1252 alx_free_irq(alx);
1253
1254 cancel_work_sync(&alx->link_check_wk);
1255 cancel_work_sync(&alx->reset_wk);
1256
1257 alx_halt(alx);
1258 alx_free_rings(alx);
1259 alx_free_napis(alx);
1260 }
1261
alx_speed_desc(struct alx_hw * hw)1262 static const char *alx_speed_desc(struct alx_hw *hw)
1263 {
1264 switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1265 case ADVERTISED_1000baseT_Full:
1266 return "1 Gbps Full";
1267 case ADVERTISED_100baseT_Full:
1268 return "100 Mbps Full";
1269 case ADVERTISED_100baseT_Half:
1270 return "100 Mbps Half";
1271 case ADVERTISED_10baseT_Full:
1272 return "10 Mbps Full";
1273 case ADVERTISED_10baseT_Half:
1274 return "10 Mbps Half";
1275 default:
1276 return "Unknown speed";
1277 }
1278 }
1279
alx_check_link(struct alx_priv * alx)1280 static void alx_check_link(struct alx_priv *alx)
1281 {
1282 struct alx_hw *hw = &alx->hw;
1283 unsigned long flags;
1284 int old_speed;
1285 int err;
1286
1287 /* clear PHY internal interrupt status, otherwise the main
1288 * interrupt status will be asserted forever
1289 */
1290 alx_clear_phy_intr(hw);
1291
1292 old_speed = hw->link_speed;
1293 err = alx_read_phy_link(hw);
1294 if (err < 0)
1295 goto reset;
1296
1297 spin_lock_irqsave(&alx->irq_lock, flags);
1298 alx->int_mask |= ALX_ISR_PHY;
1299 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1300 spin_unlock_irqrestore(&alx->irq_lock, flags);
1301
1302 if (old_speed == hw->link_speed)
1303 return;
1304
1305 if (hw->link_speed != SPEED_UNKNOWN) {
1306 netif_info(alx, link, alx->dev,
1307 "NIC Up: %s\n", alx_speed_desc(hw));
1308 alx_post_phy_link(hw);
1309 alx_enable_aspm(hw, true, true);
1310 alx_start_mac(hw);
1311
1312 if (old_speed == SPEED_UNKNOWN)
1313 alx_netif_start(alx);
1314 } else {
1315 /* link is now down */
1316 alx_netif_stop(alx);
1317 netif_info(alx, link, alx->dev, "Link Down\n");
1318 err = alx_reset_mac(hw);
1319 if (err)
1320 goto reset;
1321 alx_irq_disable(alx);
1322
1323 /* MAC reset causes all HW settings to be lost, restore all */
1324 err = alx_reinit_rings(alx);
1325 if (err)
1326 goto reset;
1327 alx_configure(alx);
1328 alx_enable_aspm(hw, false, true);
1329 alx_post_phy_link(hw);
1330 alx_irq_enable(alx);
1331 }
1332
1333 return;
1334
1335 reset:
1336 alx_schedule_reset(alx);
1337 }
1338
alx_open(struct net_device * netdev)1339 static int alx_open(struct net_device *netdev)
1340 {
1341 return __alx_open(netdev_priv(netdev), false);
1342 }
1343
alx_stop(struct net_device * netdev)1344 static int alx_stop(struct net_device *netdev)
1345 {
1346 __alx_stop(netdev_priv(netdev));
1347 return 0;
1348 }
1349
alx_link_check(struct work_struct * work)1350 static void alx_link_check(struct work_struct *work)
1351 {
1352 struct alx_priv *alx;
1353
1354 alx = container_of(work, struct alx_priv, link_check_wk);
1355
1356 rtnl_lock();
1357 alx_check_link(alx);
1358 rtnl_unlock();
1359 }
1360
alx_reset(struct work_struct * work)1361 static void alx_reset(struct work_struct *work)
1362 {
1363 struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1364
1365 rtnl_lock();
1366 alx_reinit(alx);
1367 rtnl_unlock();
1368 }
1369
alx_tpd_req(struct sk_buff * skb)1370 static int alx_tpd_req(struct sk_buff *skb)
1371 {
1372 int num;
1373
1374 num = skb_shinfo(skb)->nr_frags + 1;
1375 /* we need one extra descriptor for LSOv2 */
1376 if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1377 num++;
1378
1379 return num;
1380 }
1381
alx_tx_csum(struct sk_buff * skb,struct alx_txd * first)1382 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1383 {
1384 u8 cso, css;
1385
1386 if (skb->ip_summed != CHECKSUM_PARTIAL)
1387 return 0;
1388
1389 cso = skb_checksum_start_offset(skb);
1390 if (cso & 1)
1391 return -EINVAL;
1392
1393 css = cso + skb->csum_offset;
1394 first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1395 first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1396 first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1397
1398 return 0;
1399 }
1400
alx_tso(struct sk_buff * skb,struct alx_txd * first)1401 static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1402 {
1403 int err;
1404
1405 if (skb->ip_summed != CHECKSUM_PARTIAL)
1406 return 0;
1407
1408 if (!skb_is_gso(skb))
1409 return 0;
1410
1411 err = skb_cow_head(skb, 0);
1412 if (err < 0)
1413 return err;
1414
1415 if (skb->protocol == htons(ETH_P_IP)) {
1416 struct iphdr *iph = ip_hdr(skb);
1417
1418 iph->check = 0;
1419 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1420 0, IPPROTO_TCP, 0);
1421 first->word1 |= 1 << TPD_IPV4_SHIFT;
1422 } else if (skb_is_gso_v6(skb)) {
1423 tcp_v6_gso_csum_prep(skb);
1424 /* LSOv2: the first TPD only provides the packet length */
1425 first->adrl.l.pkt_len = skb->len;
1426 first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1427 }
1428
1429 first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1430 first->word1 |= (skb_transport_offset(skb) &
1431 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1432 first->word1 |= (skb_shinfo(skb)->gso_size &
1433 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1434 return 1;
1435 }
1436
alx_map_tx_skb(struct alx_tx_queue * txq,struct sk_buff * skb)1437 static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1438 {
1439 struct alx_txd *tpd, *first_tpd;
1440 dma_addr_t dma;
1441 int maplen, f, first_idx = txq->write_idx;
1442
1443 first_tpd = &txq->tpd[txq->write_idx];
1444 tpd = first_tpd;
1445
1446 if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1447 if (++txq->write_idx == txq->count)
1448 txq->write_idx = 0;
1449
1450 tpd = &txq->tpd[txq->write_idx];
1451 tpd->len = first_tpd->len;
1452 tpd->vlan_tag = first_tpd->vlan_tag;
1453 tpd->word1 = first_tpd->word1;
1454 }
1455
1456 maplen = skb_headlen(skb);
1457 dma = dma_map_single(txq->dev, skb->data, maplen,
1458 DMA_TO_DEVICE);
1459 if (dma_mapping_error(txq->dev, dma))
1460 goto err_dma;
1461
1462 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1463 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1464
1465 tpd->adrl.addr = cpu_to_le64(dma);
1466 tpd->len = cpu_to_le16(maplen);
1467
1468 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1469 skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1470
1471 if (++txq->write_idx == txq->count)
1472 txq->write_idx = 0;
1473 tpd = &txq->tpd[txq->write_idx];
1474
1475 tpd->word1 = first_tpd->word1;
1476
1477 maplen = skb_frag_size(frag);
1478 dma = skb_frag_dma_map(txq->dev, frag, 0,
1479 maplen, DMA_TO_DEVICE);
1480 if (dma_mapping_error(txq->dev, dma))
1481 goto err_dma;
1482 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1483 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1484
1485 tpd->adrl.addr = cpu_to_le64(dma);
1486 tpd->len = cpu_to_le16(maplen);
1487 }
1488
1489 /* last TPD, set EOP flag and store skb */
1490 tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1491 txq->bufs[txq->write_idx].skb = skb;
1492
1493 if (++txq->write_idx == txq->count)
1494 txq->write_idx = 0;
1495
1496 return 0;
1497
1498 err_dma:
1499 f = first_idx;
1500 while (f != txq->write_idx) {
1501 alx_free_txbuf(txq, f);
1502 if (++f == txq->count)
1503 f = 0;
1504 }
1505 return -ENOMEM;
1506 }
1507
alx_start_xmit_ring(struct sk_buff * skb,struct alx_tx_queue * txq)1508 static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1509 struct alx_tx_queue *txq)
1510 {
1511 struct alx_priv *alx;
1512 struct alx_txd *first;
1513 int tso;
1514
1515 alx = netdev_priv(txq->netdev);
1516
1517 if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1518 netif_tx_stop_queue(alx_get_tx_queue(txq));
1519 goto drop;
1520 }
1521
1522 first = &txq->tpd[txq->write_idx];
1523 memset(first, 0, sizeof(*first));
1524
1525 tso = alx_tso(skb, first);
1526 if (tso < 0)
1527 goto drop;
1528 else if (!tso && alx_tx_csum(skb, first))
1529 goto drop;
1530
1531 if (alx_map_tx_skb(txq, skb) < 0)
1532 goto drop;
1533
1534 netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1535
1536 /* flush updates before updating hardware */
1537 wmb();
1538 alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1539
1540 if (alx_tpd_avail(txq) < txq->count / 8)
1541 netif_tx_stop_queue(alx_get_tx_queue(txq));
1542
1543 return NETDEV_TX_OK;
1544
1545 drop:
1546 dev_kfree_skb_any(skb);
1547 return NETDEV_TX_OK;
1548 }
1549
alx_start_xmit(struct sk_buff * skb,struct net_device * netdev)1550 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1551 struct net_device *netdev)
1552 {
1553 struct alx_priv *alx = netdev_priv(netdev);
1554 return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1555 }
1556
alx_tx_timeout(struct net_device * dev,unsigned int txqueue)1557 static void alx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1558 {
1559 struct alx_priv *alx = netdev_priv(dev);
1560
1561 alx_schedule_reset(alx);
1562 }
1563
alx_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)1564 static int alx_mdio_read(struct net_device *netdev,
1565 int prtad, int devad, u16 addr)
1566 {
1567 struct alx_priv *alx = netdev_priv(netdev);
1568 struct alx_hw *hw = &alx->hw;
1569 u16 val;
1570 int err;
1571
1572 if (prtad != hw->mdio.prtad)
1573 return -EINVAL;
1574
1575 if (devad == MDIO_DEVAD_NONE)
1576 err = alx_read_phy_reg(hw, addr, &val);
1577 else
1578 err = alx_read_phy_ext(hw, devad, addr, &val);
1579
1580 if (err)
1581 return err;
1582 return val;
1583 }
1584
alx_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 val)1585 static int alx_mdio_write(struct net_device *netdev,
1586 int prtad, int devad, u16 addr, u16 val)
1587 {
1588 struct alx_priv *alx = netdev_priv(netdev);
1589 struct alx_hw *hw = &alx->hw;
1590
1591 if (prtad != hw->mdio.prtad)
1592 return -EINVAL;
1593
1594 if (devad == MDIO_DEVAD_NONE)
1595 return alx_write_phy_reg(hw, addr, val);
1596
1597 return alx_write_phy_ext(hw, devad, addr, val);
1598 }
1599
alx_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1600 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1601 {
1602 struct alx_priv *alx = netdev_priv(netdev);
1603
1604 if (!netif_running(netdev))
1605 return -EAGAIN;
1606
1607 return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1608 }
1609
1610 #ifdef CONFIG_NET_POLL_CONTROLLER
alx_poll_controller(struct net_device * netdev)1611 static void alx_poll_controller(struct net_device *netdev)
1612 {
1613 struct alx_priv *alx = netdev_priv(netdev);
1614 int i;
1615
1616 if (alx->hw.pdev->msix_enabled) {
1617 alx_intr_msix_misc(0, alx);
1618 for (i = 0; i < alx->num_txq; i++)
1619 alx_intr_msix_ring(0, alx->qnapi[i]);
1620 } else if (alx->hw.pdev->msi_enabled)
1621 alx_intr_msi(0, alx);
1622 else
1623 alx_intr_legacy(0, alx);
1624 }
1625 #endif
1626
alx_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * net_stats)1627 static void alx_get_stats64(struct net_device *dev,
1628 struct rtnl_link_stats64 *net_stats)
1629 {
1630 struct alx_priv *alx = netdev_priv(dev);
1631 struct alx_hw_stats *hw_stats = &alx->hw.stats;
1632
1633 spin_lock(&alx->stats_lock);
1634
1635 alx_update_hw_stats(&alx->hw);
1636
1637 net_stats->tx_bytes = hw_stats->tx_byte_cnt;
1638 net_stats->rx_bytes = hw_stats->rx_byte_cnt;
1639 net_stats->multicast = hw_stats->rx_mcast;
1640 net_stats->collisions = hw_stats->tx_single_col +
1641 hw_stats->tx_multi_col +
1642 hw_stats->tx_late_col +
1643 hw_stats->tx_abort_col;
1644
1645 net_stats->rx_errors = hw_stats->rx_frag +
1646 hw_stats->rx_fcs_err +
1647 hw_stats->rx_len_err +
1648 hw_stats->rx_ov_sz +
1649 hw_stats->rx_ov_rrd +
1650 hw_stats->rx_align_err +
1651 hw_stats->rx_ov_rxf;
1652
1653 net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf;
1654 net_stats->rx_length_errors = hw_stats->rx_len_err;
1655 net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
1656 net_stats->rx_frame_errors = hw_stats->rx_align_err;
1657 net_stats->rx_dropped = hw_stats->rx_ov_rrd;
1658
1659 net_stats->tx_errors = hw_stats->tx_late_col +
1660 hw_stats->tx_abort_col +
1661 hw_stats->tx_underrun +
1662 hw_stats->tx_trunc;
1663
1664 net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1665 net_stats->tx_fifo_errors = hw_stats->tx_underrun;
1666 net_stats->tx_window_errors = hw_stats->tx_late_col;
1667
1668 net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1669 net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1670
1671 spin_unlock(&alx->stats_lock);
1672 }
1673
1674 static const struct net_device_ops alx_netdev_ops = {
1675 .ndo_open = alx_open,
1676 .ndo_stop = alx_stop,
1677 .ndo_start_xmit = alx_start_xmit,
1678 .ndo_get_stats64 = alx_get_stats64,
1679 .ndo_set_rx_mode = alx_set_rx_mode,
1680 .ndo_validate_addr = eth_validate_addr,
1681 .ndo_set_mac_address = alx_set_mac_address,
1682 .ndo_change_mtu = alx_change_mtu,
1683 .ndo_do_ioctl = alx_ioctl,
1684 .ndo_tx_timeout = alx_tx_timeout,
1685 .ndo_fix_features = alx_fix_features,
1686 #ifdef CONFIG_NET_POLL_CONTROLLER
1687 .ndo_poll_controller = alx_poll_controller,
1688 #endif
1689 };
1690
alx_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1691 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1692 {
1693 struct net_device *netdev;
1694 struct alx_priv *alx;
1695 struct alx_hw *hw;
1696 bool phy_configured;
1697 int err;
1698
1699 err = pci_enable_device_mem(pdev);
1700 if (err)
1701 return err;
1702
1703 /* The alx chip can DMA to 64-bit addresses, but it uses a single
1704 * shared register for the high 32 bits, so only a single, aligned,
1705 * 4 GB physical address range can be used for descriptors.
1706 */
1707 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1708 dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1709 } else {
1710 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1711 if (err) {
1712 dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1713 goto out_pci_disable;
1714 }
1715 }
1716
1717 err = pci_request_mem_regions(pdev, alx_drv_name);
1718 if (err) {
1719 dev_err(&pdev->dev,
1720 "pci_request_mem_regions failed\n");
1721 goto out_pci_disable;
1722 }
1723
1724 pci_enable_pcie_error_reporting(pdev);
1725 pci_set_master(pdev);
1726
1727 if (!pdev->pm_cap) {
1728 dev_err(&pdev->dev,
1729 "Can't find power management capability, aborting\n");
1730 err = -EIO;
1731 goto out_pci_release;
1732 }
1733
1734 netdev = alloc_etherdev_mqs(sizeof(*alx),
1735 ALX_MAX_TX_QUEUES, 1);
1736 if (!netdev) {
1737 err = -ENOMEM;
1738 goto out_pci_release;
1739 }
1740
1741 SET_NETDEV_DEV(netdev, &pdev->dev);
1742 alx = netdev_priv(netdev);
1743 spin_lock_init(&alx->hw.mdio_lock);
1744 spin_lock_init(&alx->irq_lock);
1745 spin_lock_init(&alx->stats_lock);
1746 alx->dev = netdev;
1747 alx->hw.pdev = pdev;
1748 alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1749 NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1750 hw = &alx->hw;
1751 pci_set_drvdata(pdev, alx);
1752
1753 hw->hw_addr = pci_ioremap_bar(pdev, 0);
1754 if (!hw->hw_addr) {
1755 dev_err(&pdev->dev, "cannot map device registers\n");
1756 err = -EIO;
1757 goto out_free_netdev;
1758 }
1759
1760 netdev->netdev_ops = &alx_netdev_ops;
1761 netdev->ethtool_ops = &alx_ethtool_ops;
1762 netdev->irq = pci_irq_vector(pdev, 0);
1763 netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1764
1765 if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1766 pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1767
1768 err = alx_init_sw(alx);
1769 if (err) {
1770 dev_err(&pdev->dev, "net device private data init failed\n");
1771 goto out_unmap;
1772 }
1773
1774 alx_reset_pcie(hw);
1775
1776 phy_configured = alx_phy_configured(hw);
1777
1778 if (!phy_configured)
1779 alx_reset_phy(hw);
1780
1781 err = alx_reset_mac(hw);
1782 if (err) {
1783 dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1784 goto out_unmap;
1785 }
1786
1787 /* setup link to put it in a known good starting state */
1788 if (!phy_configured) {
1789 err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1790 if (err) {
1791 dev_err(&pdev->dev,
1792 "failed to configure PHY speed/duplex (err=%d)\n",
1793 err);
1794 goto out_unmap;
1795 }
1796 }
1797
1798 netdev->hw_features = NETIF_F_SG |
1799 NETIF_F_HW_CSUM |
1800 NETIF_F_RXCSUM |
1801 NETIF_F_TSO |
1802 NETIF_F_TSO6;
1803
1804 if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1805 dev_warn(&pdev->dev,
1806 "Invalid permanent address programmed, using random one\n");
1807 eth_hw_addr_random(netdev);
1808 memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1809 }
1810
1811 memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1812 memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1813 memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1814
1815 hw->mdio.prtad = 0;
1816 hw->mdio.mmds = 0;
1817 hw->mdio.dev = netdev;
1818 hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1819 MDIO_SUPPORTS_C22 |
1820 MDIO_EMULATE_C22;
1821 hw->mdio.mdio_read = alx_mdio_read;
1822 hw->mdio.mdio_write = alx_mdio_write;
1823
1824 if (!alx_get_phy_info(hw)) {
1825 dev_err(&pdev->dev, "failed to identify PHY\n");
1826 err = -EIO;
1827 goto out_unmap;
1828 }
1829
1830 INIT_WORK(&alx->link_check_wk, alx_link_check);
1831 INIT_WORK(&alx->reset_wk, alx_reset);
1832 netif_carrier_off(netdev);
1833
1834 err = register_netdev(netdev);
1835 if (err) {
1836 dev_err(&pdev->dev, "register netdevice failed\n");
1837 goto out_unmap;
1838 }
1839
1840 netdev_info(netdev,
1841 "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1842 netdev->dev_addr);
1843
1844 return 0;
1845
1846 out_unmap:
1847 iounmap(hw->hw_addr);
1848 out_free_netdev:
1849 free_netdev(netdev);
1850 out_pci_release:
1851 pci_release_mem_regions(pdev);
1852 pci_disable_pcie_error_reporting(pdev);
1853 out_pci_disable:
1854 pci_disable_device(pdev);
1855 return err;
1856 }
1857
alx_remove(struct pci_dev * pdev)1858 static void alx_remove(struct pci_dev *pdev)
1859 {
1860 struct alx_priv *alx = pci_get_drvdata(pdev);
1861 struct alx_hw *hw = &alx->hw;
1862
1863 /* restore permanent mac address */
1864 alx_set_macaddr(hw, hw->perm_addr);
1865
1866 unregister_netdev(alx->dev);
1867 iounmap(hw->hw_addr);
1868 pci_release_mem_regions(pdev);
1869
1870 pci_disable_pcie_error_reporting(pdev);
1871 pci_disable_device(pdev);
1872
1873 free_netdev(alx->dev);
1874 }
1875
1876 #ifdef CONFIG_PM_SLEEP
alx_suspend(struct device * dev)1877 static int alx_suspend(struct device *dev)
1878 {
1879 struct alx_priv *alx = dev_get_drvdata(dev);
1880
1881 if (!netif_running(alx->dev))
1882 return 0;
1883 netif_device_detach(alx->dev);
1884 __alx_stop(alx);
1885 return 0;
1886 }
1887
alx_resume(struct device * dev)1888 static int alx_resume(struct device *dev)
1889 {
1890 struct alx_priv *alx = dev_get_drvdata(dev);
1891 struct alx_hw *hw = &alx->hw;
1892 int err;
1893
1894 alx_reset_phy(hw);
1895
1896 if (!netif_running(alx->dev))
1897 return 0;
1898
1899 rtnl_lock();
1900 err = __alx_open(alx, true);
1901 rtnl_unlock();
1902 if (err)
1903 return err;
1904
1905 netif_device_attach(alx->dev);
1906
1907 return 0;
1908 }
1909
1910 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1911 #define ALX_PM_OPS (&alx_pm_ops)
1912 #else
1913 #define ALX_PM_OPS NULL
1914 #endif
1915
1916
alx_pci_error_detected(struct pci_dev * pdev,pci_channel_state_t state)1917 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1918 pci_channel_state_t state)
1919 {
1920 struct alx_priv *alx = pci_get_drvdata(pdev);
1921 struct net_device *netdev = alx->dev;
1922 pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1923
1924 dev_info(&pdev->dev, "pci error detected\n");
1925
1926 rtnl_lock();
1927
1928 if (netif_running(netdev)) {
1929 netif_device_detach(netdev);
1930 alx_halt(alx);
1931 }
1932
1933 if (state == pci_channel_io_perm_failure)
1934 rc = PCI_ERS_RESULT_DISCONNECT;
1935 else
1936 pci_disable_device(pdev);
1937
1938 rtnl_unlock();
1939
1940 return rc;
1941 }
1942
alx_pci_error_slot_reset(struct pci_dev * pdev)1943 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1944 {
1945 struct alx_priv *alx = pci_get_drvdata(pdev);
1946 struct alx_hw *hw = &alx->hw;
1947 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1948
1949 dev_info(&pdev->dev, "pci error slot reset\n");
1950
1951 rtnl_lock();
1952
1953 if (pci_enable_device(pdev)) {
1954 dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1955 goto out;
1956 }
1957
1958 pci_set_master(pdev);
1959
1960 alx_reset_pcie(hw);
1961 if (!alx_reset_mac(hw))
1962 rc = PCI_ERS_RESULT_RECOVERED;
1963 out:
1964 rtnl_unlock();
1965
1966 return rc;
1967 }
1968
alx_pci_error_resume(struct pci_dev * pdev)1969 static void alx_pci_error_resume(struct pci_dev *pdev)
1970 {
1971 struct alx_priv *alx = pci_get_drvdata(pdev);
1972 struct net_device *netdev = alx->dev;
1973
1974 dev_info(&pdev->dev, "pci error resume\n");
1975
1976 rtnl_lock();
1977
1978 if (netif_running(netdev)) {
1979 alx_activate(alx);
1980 netif_device_attach(netdev);
1981 }
1982
1983 rtnl_unlock();
1984 }
1985
1986 static const struct pci_error_handlers alx_err_handlers = {
1987 .error_detected = alx_pci_error_detected,
1988 .slot_reset = alx_pci_error_slot_reset,
1989 .resume = alx_pci_error_resume,
1990 };
1991
1992 static const struct pci_device_id alx_pci_tbl[] = {
1993 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1994 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1995 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1996 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1997 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
1998 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1999 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
2000 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2001 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2002 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2003 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2004 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2005 {}
2006 };
2007
2008 static struct pci_driver alx_driver = {
2009 .name = alx_drv_name,
2010 .id_table = alx_pci_tbl,
2011 .probe = alx_probe,
2012 .remove = alx_remove,
2013 .err_handler = &alx_err_handlers,
2014 .driver.pm = ALX_PM_OPS,
2015 };
2016
2017 module_pci_driver(alx_driver);
2018 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2019 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2020 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
2021 MODULE_DESCRIPTION(
2022 "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2023 MODULE_LICENSE("GPL");
2024