1 /*****************************************************************************
2 * *
3 * File: pm3393.c *
4 * $Revision: 1.16 $ *
5 * $Date: 2005/05/14 00:59:32 $ *
6 * Description: *
7 * PMC/SIERRA (pm3393) MAC-PHY functionality. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, see <http://www.gnu.org/licenses/>. *
16 * *
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
20 * *
21 * http://www.chelsio.com *
22 * *
23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
24 * All rights reserved. *
25 * *
26 * Maintainers: maintainers@chelsio.com *
27 * *
28 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
29 * Tina Yang <tainay@chelsio.com> *
30 * Felix Marti <felix@chelsio.com> *
31 * Scott Bardone <sbardone@chelsio.com> *
32 * Kurt Ottaway <kottaway@chelsio.com> *
33 * Frank DiMambro <frank@chelsio.com> *
34 * *
35 * History: *
36 * *
37 ****************************************************************************/
38
39 #include "common.h"
40 #include "regs.h"
41 #include "gmac.h"
42 #include "elmer0.h"
43 #include "suni1x10gexp_regs.h"
44
45 #include <linux/crc32.h>
46 #include <linux/slab.h>
47
48 #define OFFSET(REG_ADDR) ((REG_ADDR) << 2)
49
50 #define IPG 12
51 #define TXXG_CONF1_VAL ((IPG << SUNI1x10GEXP_BITOFF_TXXG_IPGT) | \
52 SUNI1x10GEXP_BITMSK_TXXG_32BIT_ALIGN | SUNI1x10GEXP_BITMSK_TXXG_CRCEN | \
53 SUNI1x10GEXP_BITMSK_TXXG_PADEN)
54 #define RXXG_CONF1_VAL (SUNI1x10GEXP_BITMSK_RXXG_PUREP | 0x14 | \
55 SUNI1x10GEXP_BITMSK_RXXG_FLCHK | SUNI1x10GEXP_BITMSK_RXXG_CRC_STRIP)
56
57 /* Update statistics every 15 minutes */
58 #define STATS_TICK_SECS (15 * 60)
59
60 enum { /* RMON registers */
61 RxOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_1_LOW,
62 RxUnicastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_4_LOW,
63 RxMulticastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_5_LOW,
64 RxBroadcastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_6_LOW,
65 RxPAUSEMACCtrlFramesReceived = SUNI1x10GEXP_REG_MSTAT_COUNTER_8_LOW,
66 RxFrameCheckSequenceErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_10_LOW,
67 RxFramesLostDueToInternalMACErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_11_LOW,
68 RxSymbolErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_12_LOW,
69 RxInRangeLengthErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_13_LOW,
70 RxFramesTooLongErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_15_LOW,
71 RxJabbers = SUNI1x10GEXP_REG_MSTAT_COUNTER_16_LOW,
72 RxFragments = SUNI1x10GEXP_REG_MSTAT_COUNTER_17_LOW,
73 RxUndersizedFrames = SUNI1x10GEXP_REG_MSTAT_COUNTER_18_LOW,
74 RxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_25_LOW,
75 RxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_26_LOW,
76
77 TxOctetsTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_33_LOW,
78 TxFramesLostDueToInternalMACTransmissionError = SUNI1x10GEXP_REG_MSTAT_COUNTER_35_LOW,
79 TxTransmitSystemError = SUNI1x10GEXP_REG_MSTAT_COUNTER_36_LOW,
80 TxUnicastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_38_LOW,
81 TxMulticastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_40_LOW,
82 TxBroadcastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_42_LOW,
83 TxPAUSEMACCtrlFramesTransmitted = SUNI1x10GEXP_REG_MSTAT_COUNTER_43_LOW,
84 TxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_51_LOW,
85 TxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_52_LOW
86 };
87
88 struct _cmac_instance {
89 u8 enabled;
90 u8 fc;
91 u8 mac_addr[6];
92 };
93
pmread(struct cmac * cmac,u32 reg,u32 * data32)94 static int pmread(struct cmac *cmac, u32 reg, u32 * data32)
95 {
96 t1_tpi_read(cmac->adapter, OFFSET(reg), data32);
97 return 0;
98 }
99
pmwrite(struct cmac * cmac,u32 reg,u32 data32)100 static int pmwrite(struct cmac *cmac, u32 reg, u32 data32)
101 {
102 t1_tpi_write(cmac->adapter, OFFSET(reg), data32);
103 return 0;
104 }
105
106 /* Port reset. */
pm3393_reset(struct cmac * cmac)107 static int pm3393_reset(struct cmac *cmac)
108 {
109 return 0;
110 }
111
112 /*
113 * Enable interrupts for the PM3393
114 *
115 * 1. Enable PM3393 BLOCK interrupts.
116 * 2. Enable PM3393 Master Interrupt bit(INTE)
117 * 3. Enable ELMER's PM3393 bit.
118 * 4. Enable Terminator external interrupt.
119 */
pm3393_interrupt_enable(struct cmac * cmac)120 static int pm3393_interrupt_enable(struct cmac *cmac)
121 {
122 u32 pl_intr;
123
124 /* PM3393 - Enabling all hardware block interrupts.
125 */
126 pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0xffff);
127 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0xffff);
128 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0xffff);
129 pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0xffff);
130
131 /* Don't interrupt on statistics overflow, we are polling */
132 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0);
133 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0);
134 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0);
135 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0);
136
137 pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0xffff);
138 pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0xffff);
139 pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0xffff);
140 pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0xffff);
141 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0xffff);
142 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0xffff);
143 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0xffff);
144 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0xffff);
145 pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0xffff);
146
147 /* PM3393 - Global interrupt enable
148 */
149 /* TBD XXX Disable for now until we figure out why error interrupts keep asserting. */
150 pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE,
151 0 /*SUNI1x10GEXP_BITMSK_TOP_INTE */ );
152
153 /* TERMINATOR - PL_INTERUPTS_EXT */
154 pl_intr = readl(cmac->adapter->regs + A_PL_ENABLE);
155 pl_intr |= F_PL_INTR_EXT;
156 writel(pl_intr, cmac->adapter->regs + A_PL_ENABLE);
157 return 0;
158 }
159
pm3393_interrupt_disable(struct cmac * cmac)160 static int pm3393_interrupt_disable(struct cmac *cmac)
161 {
162 u32 elmer;
163
164 /* PM3393 - Enabling HW interrupt blocks. */
165 pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0);
166 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0);
167 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0);
168 pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0);
169 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0);
170 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0);
171 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0);
172 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0);
173 pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0);
174 pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0);
175 pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0);
176 pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0);
177 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0);
178 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0);
179 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0);
180 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0);
181 pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0);
182
183 /* PM3393 - Global interrupt enable */
184 pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE, 0);
185
186 /* ELMER - External chip interrupts. */
187 t1_tpi_read(cmac->adapter, A_ELMER0_INT_ENABLE, &elmer);
188 elmer &= ~ELMER0_GP_BIT1;
189 t1_tpi_write(cmac->adapter, A_ELMER0_INT_ENABLE, elmer);
190
191 /* TERMINATOR - PL_INTERUPTS_EXT */
192 /* DO NOT DISABLE TERMINATOR's EXTERNAL INTERRUPTS. ANOTHER CHIP
193 * COULD WANT THEM ENABLED. We disable PM3393 at the ELMER level.
194 */
195
196 return 0;
197 }
198
pm3393_interrupt_clear(struct cmac * cmac)199 static int pm3393_interrupt_clear(struct cmac *cmac)
200 {
201 u32 elmer;
202 u32 pl_intr;
203 u32 val32;
204
205 /* PM3393 - Clearing HW interrupt blocks. Note, this assumes
206 * bit WCIMODE=0 for a clear-on-read.
207 */
208 pmread(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_STATUS, &val32);
209 pmread(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_STATUS, &val32);
210 pmread(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_STATUS, &val32);
211 pmread(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_STATUS, &val32);
212 pmread(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT, &val32);
213 pmread(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_STATUS, &val32);
214 pmread(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_INTERRUPT, &val32);
215 pmread(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_STATUS, &val32);
216 pmread(cmac, SUNI1x10GEXP_REG_RXXG_INTERRUPT, &val32);
217 pmread(cmac, SUNI1x10GEXP_REG_TXXG_INTERRUPT, &val32);
218 pmread(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT, &val32);
219 pmread(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_INDICATION,
220 &val32);
221 pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_STATUS, &val32);
222 pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_CHANGE, &val32);
223
224 /* PM3393 - Global interrupt status
225 */
226 pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS, &val32);
227
228 /* ELMER - External chip interrupts.
229 */
230 t1_tpi_read(cmac->adapter, A_ELMER0_INT_CAUSE, &elmer);
231 elmer |= ELMER0_GP_BIT1;
232 t1_tpi_write(cmac->adapter, A_ELMER0_INT_CAUSE, elmer);
233
234 /* TERMINATOR - PL_INTERUPTS_EXT
235 */
236 pl_intr = readl(cmac->adapter->regs + A_PL_CAUSE);
237 pl_intr |= F_PL_INTR_EXT;
238 writel(pl_intr, cmac->adapter->regs + A_PL_CAUSE);
239
240 return 0;
241 }
242
243 /* Interrupt handler */
pm3393_interrupt_handler(struct cmac * cmac)244 static int pm3393_interrupt_handler(struct cmac *cmac)
245 {
246 u32 master_intr_status;
247
248 /* Read the master interrupt status register. */
249 pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS,
250 &master_intr_status);
251 if (netif_msg_intr(cmac->adapter))
252 dev_dbg(&cmac->adapter->pdev->dev, "PM3393 intr cause 0x%x\n",
253 master_intr_status);
254
255 /* TBD XXX Lets just clear everything for now */
256 pm3393_interrupt_clear(cmac);
257
258 return 0;
259 }
260
pm3393_enable(struct cmac * cmac,int which)261 static int pm3393_enable(struct cmac *cmac, int which)
262 {
263 if (which & MAC_DIRECTION_RX)
264 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1,
265 (RXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_RXXG_RXEN));
266
267 if (which & MAC_DIRECTION_TX) {
268 u32 val = TXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_TXXG_TXEN0;
269
270 if (cmac->instance->fc & PAUSE_RX)
271 val |= SUNI1x10GEXP_BITMSK_TXXG_FCRX;
272 if (cmac->instance->fc & PAUSE_TX)
273 val |= SUNI1x10GEXP_BITMSK_TXXG_FCTX;
274 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, val);
275 }
276
277 cmac->instance->enabled |= which;
278 return 0;
279 }
280
pm3393_enable_port(struct cmac * cmac,int which)281 static int pm3393_enable_port(struct cmac *cmac, int which)
282 {
283 /* Clear port statistics */
284 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_CONTROL,
285 SUNI1x10GEXP_BITMSK_MSTAT_CLEAR);
286 udelay(2);
287 memset(&cmac->stats, 0, sizeof(struct cmac_statistics));
288
289 pm3393_enable(cmac, which);
290
291 /*
292 * XXX This should be done by the PHY and preferably not at all.
293 * The PHY doesn't give us link status indication on its own so have
294 * the link management code query it instead.
295 */
296 t1_link_changed(cmac->adapter, 0);
297 return 0;
298 }
299
pm3393_disable(struct cmac * cmac,int which)300 static int pm3393_disable(struct cmac *cmac, int which)
301 {
302 if (which & MAC_DIRECTION_RX)
303 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1, RXXG_CONF1_VAL);
304 if (which & MAC_DIRECTION_TX)
305 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, TXXG_CONF1_VAL);
306
307 /*
308 * The disable is graceful. Give the PM3393 time. Can't wait very
309 * long here, we may be holding locks.
310 */
311 udelay(20);
312
313 cmac->instance->enabled &= ~which;
314 return 0;
315 }
316
pm3393_loopback_enable(struct cmac * cmac)317 static int pm3393_loopback_enable(struct cmac *cmac)
318 {
319 return 0;
320 }
321
pm3393_loopback_disable(struct cmac * cmac)322 static int pm3393_loopback_disable(struct cmac *cmac)
323 {
324 return 0;
325 }
326
pm3393_set_mtu(struct cmac * cmac,int mtu)327 static int pm3393_set_mtu(struct cmac *cmac, int mtu)
328 {
329 int enabled = cmac->instance->enabled;
330
331 mtu += ETH_HLEN + ETH_FCS_LEN;
332
333 /* Disable Rx/Tx MAC before configuring it. */
334 if (enabled)
335 pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
336
337 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MAX_FRAME_LENGTH, mtu);
338 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_MAX_FRAME_SIZE, mtu);
339
340 if (enabled)
341 pm3393_enable(cmac, enabled);
342 return 0;
343 }
344
pm3393_set_rx_mode(struct cmac * cmac,struct t1_rx_mode * rm)345 static int pm3393_set_rx_mode(struct cmac *cmac, struct t1_rx_mode *rm)
346 {
347 int enabled = cmac->instance->enabled & MAC_DIRECTION_RX;
348 u32 rx_mode;
349
350 /* Disable MAC RX before reconfiguring it */
351 if (enabled)
352 pm3393_disable(cmac, MAC_DIRECTION_RX);
353
354 pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, &rx_mode);
355 rx_mode &= ~(SUNI1x10GEXP_BITMSK_RXXG_PMODE |
356 SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN);
357 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2,
358 (u16)rx_mode);
359
360 if (t1_rx_mode_promisc(rm)) {
361 /* Promiscuous mode. */
362 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_PMODE;
363 }
364 if (t1_rx_mode_allmulti(rm)) {
365 /* Accept all multicast. */
366 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, 0xffff);
367 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, 0xffff);
368 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, 0xffff);
369 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, 0xffff);
370 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN;
371 } else if (t1_rx_mode_mc_cnt(rm)) {
372 /* Accept one or more multicast(s). */
373 struct netdev_hw_addr *ha;
374 int bit;
375 u16 mc_filter[4] = { 0, };
376
377 netdev_for_each_mc_addr(ha, t1_get_netdev(rm)) {
378 /* bit[23:28] */
379 bit = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x3f;
380 mc_filter[bit >> 4] |= 1 << (bit & 0xf);
381 }
382 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, mc_filter[0]);
383 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, mc_filter[1]);
384 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, mc_filter[2]);
385 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, mc_filter[3]);
386 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN;
387 }
388
389 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, (u16)rx_mode);
390
391 if (enabled)
392 pm3393_enable(cmac, MAC_DIRECTION_RX);
393
394 return 0;
395 }
396
pm3393_get_speed_duplex_fc(struct cmac * cmac,int * speed,int * duplex,int * fc)397 static int pm3393_get_speed_duplex_fc(struct cmac *cmac, int *speed,
398 int *duplex, int *fc)
399 {
400 if (speed)
401 *speed = SPEED_10000;
402 if (duplex)
403 *duplex = DUPLEX_FULL;
404 if (fc)
405 *fc = cmac->instance->fc;
406 return 0;
407 }
408
pm3393_set_speed_duplex_fc(struct cmac * cmac,int speed,int duplex,int fc)409 static int pm3393_set_speed_duplex_fc(struct cmac *cmac, int speed, int duplex,
410 int fc)
411 {
412 if (speed >= 0 && speed != SPEED_10000)
413 return -1;
414 if (duplex >= 0 && duplex != DUPLEX_FULL)
415 return -1;
416 if (fc & ~(PAUSE_TX | PAUSE_RX))
417 return -1;
418
419 if (fc != cmac->instance->fc) {
420 cmac->instance->fc = (u8) fc;
421 if (cmac->instance->enabled & MAC_DIRECTION_TX)
422 pm3393_enable(cmac, MAC_DIRECTION_TX);
423 }
424 return 0;
425 }
426
427 #define RMON_UPDATE(mac, name, stat_name) \
428 { \
429 t1_tpi_read((mac)->adapter, OFFSET(name), &val0); \
430 t1_tpi_read((mac)->adapter, OFFSET((name)+1), &val1); \
431 t1_tpi_read((mac)->adapter, OFFSET((name)+2), &val2); \
432 (mac)->stats.stat_name = (u64)(val0 & 0xffff) | \
433 ((u64)(val1 & 0xffff) << 16) | \
434 ((u64)(val2 & 0xff) << 32) | \
435 ((mac)->stats.stat_name & \
436 0xffffff0000000000ULL); \
437 if (ro & \
438 (1ULL << ((name - SUNI1x10GEXP_REG_MSTAT_COUNTER_0_LOW) >> 2))) \
439 (mac)->stats.stat_name += 1ULL << 40; \
440 }
441
pm3393_update_statistics(struct cmac * mac,int flag)442 static const struct cmac_statistics *pm3393_update_statistics(struct cmac *mac,
443 int flag)
444 {
445 u64 ro;
446 u32 val0, val1, val2, val3;
447
448 /* Snap the counters */
449 pmwrite(mac, SUNI1x10GEXP_REG_MSTAT_CONTROL,
450 SUNI1x10GEXP_BITMSK_MSTAT_SNAP);
451
452 /* Counter rollover, clear on read */
453 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_0, &val0);
454 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_1, &val1);
455 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_2, &val2);
456 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_3, &val3);
457 ro = ((u64)val0 & 0xffff) | (((u64)val1 & 0xffff) << 16) |
458 (((u64)val2 & 0xffff) << 32) | (((u64)val3 & 0xffff) << 48);
459
460 /* Rx stats */
461 RMON_UPDATE(mac, RxOctetsReceivedOK, RxOctetsOK);
462 RMON_UPDATE(mac, RxUnicastFramesReceivedOK, RxUnicastFramesOK);
463 RMON_UPDATE(mac, RxMulticastFramesReceivedOK, RxMulticastFramesOK);
464 RMON_UPDATE(mac, RxBroadcastFramesReceivedOK, RxBroadcastFramesOK);
465 RMON_UPDATE(mac, RxPAUSEMACCtrlFramesReceived, RxPauseFrames);
466 RMON_UPDATE(mac, RxFrameCheckSequenceErrors, RxFCSErrors);
467 RMON_UPDATE(mac, RxFramesLostDueToInternalMACErrors,
468 RxInternalMACRcvError);
469 RMON_UPDATE(mac, RxSymbolErrors, RxSymbolErrors);
470 RMON_UPDATE(mac, RxInRangeLengthErrors, RxInRangeLengthErrors);
471 RMON_UPDATE(mac, RxFramesTooLongErrors , RxFrameTooLongErrors);
472 RMON_UPDATE(mac, RxJabbers, RxJabberErrors);
473 RMON_UPDATE(mac, RxFragments, RxRuntErrors);
474 RMON_UPDATE(mac, RxUndersizedFrames, RxRuntErrors);
475 RMON_UPDATE(mac, RxJumboFramesReceivedOK, RxJumboFramesOK);
476 RMON_UPDATE(mac, RxJumboOctetsReceivedOK, RxJumboOctetsOK);
477
478 /* Tx stats */
479 RMON_UPDATE(mac, TxOctetsTransmittedOK, TxOctetsOK);
480 RMON_UPDATE(mac, TxFramesLostDueToInternalMACTransmissionError,
481 TxInternalMACXmitError);
482 RMON_UPDATE(mac, TxTransmitSystemError, TxFCSErrors);
483 RMON_UPDATE(mac, TxUnicastFramesTransmittedOK, TxUnicastFramesOK);
484 RMON_UPDATE(mac, TxMulticastFramesTransmittedOK, TxMulticastFramesOK);
485 RMON_UPDATE(mac, TxBroadcastFramesTransmittedOK, TxBroadcastFramesOK);
486 RMON_UPDATE(mac, TxPAUSEMACCtrlFramesTransmitted, TxPauseFrames);
487 RMON_UPDATE(mac, TxJumboFramesReceivedOK, TxJumboFramesOK);
488 RMON_UPDATE(mac, TxJumboOctetsReceivedOK, TxJumboOctetsOK);
489
490 return &mac->stats;
491 }
492
pm3393_macaddress_get(struct cmac * cmac,u8 mac_addr[6])493 static int pm3393_macaddress_get(struct cmac *cmac, u8 mac_addr[6])
494 {
495 memcpy(mac_addr, cmac->instance->mac_addr, ETH_ALEN);
496 return 0;
497 }
498
pm3393_macaddress_set(struct cmac * cmac,u8 ma[6])499 static int pm3393_macaddress_set(struct cmac *cmac, u8 ma[6])
500 {
501 u32 val, lo, mid, hi, enabled = cmac->instance->enabled;
502
503 /*
504 * MAC addr: 00:07:43:00:13:09
505 *
506 * ma[5] = 0x09
507 * ma[4] = 0x13
508 * ma[3] = 0x00
509 * ma[2] = 0x43
510 * ma[1] = 0x07
511 * ma[0] = 0x00
512 *
513 * The PM3393 requires byte swapping and reverse order entry
514 * when programming MAC addresses:
515 *
516 * low_bits[15:0] = ma[1]:ma[0]
517 * mid_bits[31:16] = ma[3]:ma[2]
518 * high_bits[47:32] = ma[5]:ma[4]
519 */
520
521 /* Store local copy */
522 memcpy(cmac->instance->mac_addr, ma, ETH_ALEN);
523
524 lo = ((u32) ma[1] << 8) | (u32) ma[0];
525 mid = ((u32) ma[3] << 8) | (u32) ma[2];
526 hi = ((u32) ma[5] << 8) | (u32) ma[4];
527
528 /* Disable Rx/Tx MAC before configuring it. */
529 if (enabled)
530 pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
531
532 /* Set RXXG Station Address */
533 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_15_0, lo);
534 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_31_16, mid);
535 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_47_32, hi);
536
537 /* Set TXXG Station Address */
538 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_15_0, lo);
539 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_31_16, mid);
540 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_47_32, hi);
541
542 /* Setup Exact Match Filter 1 with our MAC address
543 *
544 * Must disable exact match filter before configuring it.
545 */
546 pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, &val);
547 val &= 0xff0f;
548 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val);
549
550 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_LOW, lo);
551 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_MID, mid);
552 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_HIGH, hi);
553
554 val |= 0x0090;
555 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val);
556
557 if (enabled)
558 pm3393_enable(cmac, enabled);
559 return 0;
560 }
561
pm3393_destroy(struct cmac * cmac)562 static void pm3393_destroy(struct cmac *cmac)
563 {
564 kfree(cmac);
565 }
566
567 static const struct cmac_ops pm3393_ops = {
568 .destroy = pm3393_destroy,
569 .reset = pm3393_reset,
570 .interrupt_enable = pm3393_interrupt_enable,
571 .interrupt_disable = pm3393_interrupt_disable,
572 .interrupt_clear = pm3393_interrupt_clear,
573 .interrupt_handler = pm3393_interrupt_handler,
574 .enable = pm3393_enable_port,
575 .disable = pm3393_disable,
576 .loopback_enable = pm3393_loopback_enable,
577 .loopback_disable = pm3393_loopback_disable,
578 .set_mtu = pm3393_set_mtu,
579 .set_rx_mode = pm3393_set_rx_mode,
580 .get_speed_duplex_fc = pm3393_get_speed_duplex_fc,
581 .set_speed_duplex_fc = pm3393_set_speed_duplex_fc,
582 .statistics_update = pm3393_update_statistics,
583 .macaddress_get = pm3393_macaddress_get,
584 .macaddress_set = pm3393_macaddress_set
585 };
586
pm3393_mac_create(adapter_t * adapter,int index)587 static struct cmac *pm3393_mac_create(adapter_t *adapter, int index)
588 {
589 struct cmac *cmac;
590
591 cmac = kzalloc(sizeof(*cmac) + sizeof(cmac_instance), GFP_KERNEL);
592 if (!cmac)
593 return NULL;
594
595 cmac->ops = &pm3393_ops;
596 cmac->instance = (cmac_instance *) (cmac + 1);
597 cmac->adapter = adapter;
598 cmac->instance->fc = PAUSE_TX | PAUSE_RX;
599
600 t1_tpi_write(adapter, OFFSET(0x0001), 0x00008000);
601 t1_tpi_write(adapter, OFFSET(0x0001), 0x00000000);
602 t1_tpi_write(adapter, OFFSET(0x2308), 0x00009800);
603 t1_tpi_write(adapter, OFFSET(0x2305), 0x00001001); /* PL4IO Enable */
604 t1_tpi_write(adapter, OFFSET(0x2320), 0x00008800);
605 t1_tpi_write(adapter, OFFSET(0x2321), 0x00008800);
606 t1_tpi_write(adapter, OFFSET(0x2322), 0x00008800);
607 t1_tpi_write(adapter, OFFSET(0x2323), 0x00008800);
608 t1_tpi_write(adapter, OFFSET(0x2324), 0x00008800);
609 t1_tpi_write(adapter, OFFSET(0x2325), 0x00008800);
610 t1_tpi_write(adapter, OFFSET(0x2326), 0x00008800);
611 t1_tpi_write(adapter, OFFSET(0x2327), 0x00008800);
612 t1_tpi_write(adapter, OFFSET(0x2328), 0x00008800);
613 t1_tpi_write(adapter, OFFSET(0x2329), 0x00008800);
614 t1_tpi_write(adapter, OFFSET(0x232a), 0x00008800);
615 t1_tpi_write(adapter, OFFSET(0x232b), 0x00008800);
616 t1_tpi_write(adapter, OFFSET(0x232c), 0x00008800);
617 t1_tpi_write(adapter, OFFSET(0x232d), 0x00008800);
618 t1_tpi_write(adapter, OFFSET(0x232e), 0x00008800);
619 t1_tpi_write(adapter, OFFSET(0x232f), 0x00008800);
620 t1_tpi_write(adapter, OFFSET(0x230d), 0x00009c00);
621 t1_tpi_write(adapter, OFFSET(0x2304), 0x00000202); /* PL4IO Calendar Repetitions */
622
623 t1_tpi_write(adapter, OFFSET(0x3200), 0x00008080); /* EFLX Enable */
624 t1_tpi_write(adapter, OFFSET(0x3210), 0x00000000); /* EFLX Channel Deprovision */
625 t1_tpi_write(adapter, OFFSET(0x3203), 0x00000000); /* EFLX Low Limit */
626 t1_tpi_write(adapter, OFFSET(0x3204), 0x00000040); /* EFLX High Limit */
627 t1_tpi_write(adapter, OFFSET(0x3205), 0x000002cc); /* EFLX Almost Full */
628 t1_tpi_write(adapter, OFFSET(0x3206), 0x00000199); /* EFLX Almost Empty */
629 t1_tpi_write(adapter, OFFSET(0x3207), 0x00000240); /* EFLX Cut Through Threshold */
630 t1_tpi_write(adapter, OFFSET(0x3202), 0x00000000); /* EFLX Indirect Register Update */
631 t1_tpi_write(adapter, OFFSET(0x3210), 0x00000001); /* EFLX Channel Provision */
632 t1_tpi_write(adapter, OFFSET(0x3208), 0x0000ffff); /* EFLX Undocumented */
633 t1_tpi_write(adapter, OFFSET(0x320a), 0x0000ffff); /* EFLX Undocumented */
634 t1_tpi_write(adapter, OFFSET(0x320c), 0x0000ffff); /* EFLX enable overflow interrupt The other bit are undocumented */
635 t1_tpi_write(adapter, OFFSET(0x320e), 0x0000ffff); /* EFLX Undocumented */
636
637 t1_tpi_write(adapter, OFFSET(0x2200), 0x0000c000); /* IFLX Configuration - enable */
638 t1_tpi_write(adapter, OFFSET(0x2201), 0x00000000); /* IFLX Channel Deprovision */
639 t1_tpi_write(adapter, OFFSET(0x220e), 0x00000000); /* IFLX Low Limit */
640 t1_tpi_write(adapter, OFFSET(0x220f), 0x00000100); /* IFLX High Limit */
641 t1_tpi_write(adapter, OFFSET(0x2210), 0x00000c00); /* IFLX Almost Full Limit */
642 t1_tpi_write(adapter, OFFSET(0x2211), 0x00000599); /* IFLX Almost Empty Limit */
643 t1_tpi_write(adapter, OFFSET(0x220d), 0x00000000); /* IFLX Indirect Register Update */
644 t1_tpi_write(adapter, OFFSET(0x2201), 0x00000001); /* IFLX Channel Provision */
645 t1_tpi_write(adapter, OFFSET(0x2203), 0x0000ffff); /* IFLX Undocumented */
646 t1_tpi_write(adapter, OFFSET(0x2205), 0x0000ffff); /* IFLX Undocumented */
647 t1_tpi_write(adapter, OFFSET(0x2209), 0x0000ffff); /* IFLX Enable overflow interrupt. The other bit are undocumented */
648
649 t1_tpi_write(adapter, OFFSET(0x2241), 0xfffffffe); /* PL4MOS Undocumented */
650 t1_tpi_write(adapter, OFFSET(0x2242), 0x0000ffff); /* PL4MOS Undocumented */
651 t1_tpi_write(adapter, OFFSET(0x2243), 0x00000008); /* PL4MOS Starving Burst Size */
652 t1_tpi_write(adapter, OFFSET(0x2244), 0x00000008); /* PL4MOS Hungry Burst Size */
653 t1_tpi_write(adapter, OFFSET(0x2245), 0x00000008); /* PL4MOS Transfer Size */
654 t1_tpi_write(adapter, OFFSET(0x2240), 0x00000005); /* PL4MOS Disable */
655
656 t1_tpi_write(adapter, OFFSET(0x2280), 0x00002103); /* PL4ODP Training Repeat and SOP rule */
657 t1_tpi_write(adapter, OFFSET(0x2284), 0x00000000); /* PL4ODP MAX_T setting */
658
659 t1_tpi_write(adapter, OFFSET(0x3280), 0x00000087); /* PL4IDU Enable data forward, port state machine. Set ALLOW_NON_ZERO_OLB */
660 t1_tpi_write(adapter, OFFSET(0x3282), 0x0000001f); /* PL4IDU Enable Dip4 check error interrupts */
661
662 t1_tpi_write(adapter, OFFSET(0x3040), 0x0c32); /* # TXXG Config */
663 /* For T1 use timer based Mac flow control. */
664 t1_tpi_write(adapter, OFFSET(0x304d), 0x8000);
665 t1_tpi_write(adapter, OFFSET(0x2040), 0x059c); /* # RXXG Config */
666 t1_tpi_write(adapter, OFFSET(0x2049), 0x0001); /* # RXXG Cut Through */
667 t1_tpi_write(adapter, OFFSET(0x2070), 0x0000); /* # Disable promiscuous mode */
668
669 /* Setup Exact Match Filter 0 to allow broadcast packets.
670 */
671 t1_tpi_write(adapter, OFFSET(0x206e), 0x0000); /* # Disable Match Enable bit */
672 t1_tpi_write(adapter, OFFSET(0x204a), 0xffff); /* # low addr */
673 t1_tpi_write(adapter, OFFSET(0x204b), 0xffff); /* # mid addr */
674 t1_tpi_write(adapter, OFFSET(0x204c), 0xffff); /* # high addr */
675 t1_tpi_write(adapter, OFFSET(0x206e), 0x0009); /* # Enable Match Enable bit */
676
677 t1_tpi_write(adapter, OFFSET(0x0003), 0x0000); /* # NO SOP/ PAD_EN setup */
678 t1_tpi_write(adapter, OFFSET(0x0100), 0x0ff0); /* # RXEQB disabled */
679 t1_tpi_write(adapter, OFFSET(0x0101), 0x0f0f); /* # No Preemphasis */
680
681 return cmac;
682 }
683
pm3393_mac_reset(adapter_t * adapter)684 static int pm3393_mac_reset(adapter_t * adapter)
685 {
686 u32 val;
687 u32 x;
688 u32 is_pl4_reset_finished;
689 u32 is_pl4_outof_lock;
690 u32 is_xaui_mabc_pll_locked;
691 u32 successful_reset;
692 int i;
693
694 /* The following steps are required to properly reset
695 * the PM3393. This information is provided in the
696 * PM3393 datasheet (Issue 2: November 2002)
697 * section 13.1 -- Device Reset.
698 *
699 * The PM3393 has three types of components that are
700 * individually reset:
701 *
702 * DRESETB - Digital circuitry
703 * PL4_ARESETB - PL4 analog circuitry
704 * XAUI_ARESETB - XAUI bus analog circuitry
705 *
706 * Steps to reset PM3393 using RSTB pin:
707 *
708 * 1. Assert RSTB pin low ( write 0 )
709 * 2. Wait at least 1ms to initiate a complete initialization of device.
710 * 3. Wait until all external clocks and REFSEL are stable.
711 * 4. Wait minimum of 1ms. (after external clocks and REFEL are stable)
712 * 5. De-assert RSTB ( write 1 )
713 * 6. Wait until internal timers to expires after ~14ms.
714 * - Allows analog clock synthesizer(PL4CSU) to stabilize to
715 * selected reference frequency before allowing the digital
716 * portion of the device to operate.
717 * 7. Wait at least 200us for XAUI interface to stabilize.
718 * 8. Verify the PM3393 came out of reset successfully.
719 * Set successful reset flag if everything worked else try again
720 * a few more times.
721 */
722
723 successful_reset = 0;
724 for (i = 0; i < 3 && !successful_reset; i++) {
725 /* 1 */
726 t1_tpi_read(adapter, A_ELMER0_GPO, &val);
727 val &= ~1;
728 t1_tpi_write(adapter, A_ELMER0_GPO, val);
729
730 /* 2 */
731 msleep(1);
732
733 /* 3 */
734 msleep(1);
735
736 /* 4 */
737 msleep(2 /*1 extra ms for safety */ );
738
739 /* 5 */
740 val |= 1;
741 t1_tpi_write(adapter, A_ELMER0_GPO, val);
742
743 /* 6 */
744 msleep(15 /*1 extra ms for safety */ );
745
746 /* 7 */
747 msleep(1);
748
749 /* 8 */
750
751 /* Has PL4 analog block come out of reset correctly? */
752 t1_tpi_read(adapter, OFFSET(SUNI1x10GEXP_REG_DEVICE_STATUS), &val);
753 is_pl4_reset_finished = (val & SUNI1x10GEXP_BITMSK_TOP_EXPIRED);
754
755 /* TBD XXX SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL gets locked later in the init sequence
756 * figure out why? */
757
758 /* Have all PL4 block clocks locked? */
759 x = (SUNI1x10GEXP_BITMSK_TOP_PL4_ID_DOOL
760 /*| SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL */ |
761 SUNI1x10GEXP_BITMSK_TOP_PL4_ID_ROOL |
762 SUNI1x10GEXP_BITMSK_TOP_PL4_IS_ROOL |
763 SUNI1x10GEXP_BITMSK_TOP_PL4_OUT_ROOL);
764 is_pl4_outof_lock = (val & x);
765
766 /* ??? If this fails, might be able to software reset the XAUI part
767 * and try to recover... thus saving us from doing another HW reset */
768 /* Has the XAUI MABC PLL circuitry stablized? */
769 is_xaui_mabc_pll_locked =
770 (val & SUNI1x10GEXP_BITMSK_TOP_SXRA_EXPIRED);
771
772 successful_reset = (is_pl4_reset_finished && !is_pl4_outof_lock
773 && is_xaui_mabc_pll_locked);
774
775 if (netif_msg_hw(adapter))
776 dev_dbg(&adapter->pdev->dev,
777 "PM3393 HW reset %d: pl4_reset 0x%x, val 0x%x, "
778 "is_pl4_outof_lock 0x%x, xaui_locked 0x%x\n",
779 i, is_pl4_reset_finished, val,
780 is_pl4_outof_lock, is_xaui_mabc_pll_locked);
781 }
782 return successful_reset ? 0 : 1;
783 }
784
785 const struct gmac t1_pm3393_ops = {
786 .stats_update_period = STATS_TICK_SECS,
787 .create = pm3393_mac_create,
788 .reset = pm3393_mac_reset,
789 };
790