1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * Gianfar: AKA Lambda Draconis, "Dragon"
17 * RA 11 31 24.2
18 * Dec +69 19 52
19 * V 3.84
20 * B-V +1.62
21 *
22 * Theory of operation
23 *
24 * The driver is initialized through of_device. Configuration information
25 * is therefore conveyed through an OF-style device tree.
26 *
27 * The Gianfar Ethernet Controller uses a ring of buffer
28 * descriptors. The beginning is indicated by a register
29 * pointing to the physical address of the start of the ring.
30 * The end is determined by a "wrap" bit being set in the
31 * last descriptor of the ring.
32 *
33 * When a packet is received, the RXF bit in the
34 * IEVENT register is set, triggering an interrupt when the
35 * corresponding bit in the IMASK register is also set (if
36 * interrupt coalescing is active, then the interrupt may not
37 * happen immediately, but will wait until either a set number
38 * of frames or amount of time have passed). In NAPI, the
39 * interrupt handler will signal there is work to be done, and
40 * exit. This method will start at the last known empty
41 * descriptor, and process every subsequent descriptor until there
42 * are none left with data (NAPI will stop after a set number of
43 * packets to give time to other tasks, but will eventually
44 * process all the packets). The data arrives inside a
45 * pre-allocated skb, and so after the skb is passed up to the
46 * stack, a new skb must be allocated, and the address field in
47 * the buffer descriptor must be updated to indicate this new
48 * skb.
49 *
50 * When the kernel requests that a packet be transmitted, the
51 * driver starts where it left off last time, and points the
52 * descriptor at the buffer which was passed in. The driver
53 * then informs the DMA engine that there are packets ready to
54 * be transmitted. Once the controller is finished transmitting
55 * the packet, an interrupt may be triggered (under the same
56 * conditions as for reception, but depending on the TXF bit).
57 * The driver then cleans up the buffer.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT (5*HZ)
105
106 MODULE_AUTHOR("Freescale Semiconductor, Inc");
107 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
108 MODULE_LICENSE("GPL");
109
gfar_init_rxbdp(struct gfar_priv_rx_q * rx_queue,struct rxbd8 * bdp,dma_addr_t buf)110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
111 dma_addr_t buf)
112 {
113 u32 lstatus;
114
115 bdp->bufPtr = cpu_to_be32(buf);
116
117 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
118 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
119 lstatus |= BD_LFLAG(RXBD_WRAP);
120
121 gfar_wmb();
122
123 bdp->lstatus = cpu_to_be32(lstatus);
124 }
125
gfar_init_tx_rx_base(struct gfar_private * priv)126 static void gfar_init_tx_rx_base(struct gfar_private *priv)
127 {
128 struct gfar __iomem *regs = priv->gfargrp[0].regs;
129 u32 __iomem *baddr;
130 int i;
131
132 baddr = ®s->tbase0;
133 for (i = 0; i < priv->num_tx_queues; i++) {
134 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
135 baddr += 2;
136 }
137
138 baddr = ®s->rbase0;
139 for (i = 0; i < priv->num_rx_queues; i++) {
140 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
141 baddr += 2;
142 }
143 }
144
gfar_init_rqprm(struct gfar_private * priv)145 static void gfar_init_rqprm(struct gfar_private *priv)
146 {
147 struct gfar __iomem *regs = priv->gfargrp[0].regs;
148 u32 __iomem *baddr;
149 int i;
150
151 baddr = ®s->rqprm0;
152 for (i = 0; i < priv->num_rx_queues; i++) {
153 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
154 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
155 baddr++;
156 }
157 }
158
gfar_rx_offload_en(struct gfar_private * priv)159 static void gfar_rx_offload_en(struct gfar_private *priv)
160 {
161 /* set this when rx hw offload (TOE) functions are being used */
162 priv->uses_rxfcb = 0;
163
164 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
165 priv->uses_rxfcb = 1;
166
167 if (priv->hwts_rx_en || priv->rx_filer_enable)
168 priv->uses_rxfcb = 1;
169 }
170
gfar_mac_rx_config(struct gfar_private * priv)171 static void gfar_mac_rx_config(struct gfar_private *priv)
172 {
173 struct gfar __iomem *regs = priv->gfargrp[0].regs;
174 u32 rctrl = 0;
175
176 if (priv->rx_filer_enable) {
177 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
178 /* Program the RIR0 reg with the required distribution */
179 if (priv->poll_mode == GFAR_SQ_POLLING)
180 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0);
181 else /* GFAR_MQ_POLLING */
182 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0);
183 }
184
185 /* Restore PROMISC mode */
186 if (priv->ndev->flags & IFF_PROMISC)
187 rctrl |= RCTRL_PROM;
188
189 if (priv->ndev->features & NETIF_F_RXCSUM)
190 rctrl |= RCTRL_CHECKSUMMING;
191
192 if (priv->extended_hash)
193 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
194
195 if (priv->padding) {
196 rctrl &= ~RCTRL_PAL_MASK;
197 rctrl |= RCTRL_PADDING(priv->padding);
198 }
199
200 /* Enable HW time stamping if requested from user space */
201 if (priv->hwts_rx_en)
202 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
203
204 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
205 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
206
207 /* Clear the LFC bit */
208 gfar_write(®s->rctrl, rctrl);
209 /* Init flow control threshold values */
210 gfar_init_rqprm(priv);
211 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL);
212 rctrl |= RCTRL_LFC;
213
214 /* Init rctrl based on our settings */
215 gfar_write(®s->rctrl, rctrl);
216 }
217
gfar_mac_tx_config(struct gfar_private * priv)218 static void gfar_mac_tx_config(struct gfar_private *priv)
219 {
220 struct gfar __iomem *regs = priv->gfargrp[0].regs;
221 u32 tctrl = 0;
222
223 if (priv->ndev->features & NETIF_F_IP_CSUM)
224 tctrl |= TCTRL_INIT_CSUM;
225
226 if (priv->prio_sched_en)
227 tctrl |= TCTRL_TXSCHED_PRIO;
228 else {
229 tctrl |= TCTRL_TXSCHED_WRRS;
230 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT);
231 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT);
232 }
233
234 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
235 tctrl |= TCTRL_VLINS;
236
237 gfar_write(®s->tctrl, tctrl);
238 }
239
gfar_configure_coalescing(struct gfar_private * priv,unsigned long tx_mask,unsigned long rx_mask)240 static void gfar_configure_coalescing(struct gfar_private *priv,
241 unsigned long tx_mask, unsigned long rx_mask)
242 {
243 struct gfar __iomem *regs = priv->gfargrp[0].regs;
244 u32 __iomem *baddr;
245
246 if (priv->mode == MQ_MG_MODE) {
247 int i = 0;
248
249 baddr = ®s->txic0;
250 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
251 gfar_write(baddr + i, 0);
252 if (likely(priv->tx_queue[i]->txcoalescing))
253 gfar_write(baddr + i, priv->tx_queue[i]->txic);
254 }
255
256 baddr = ®s->rxic0;
257 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
258 gfar_write(baddr + i, 0);
259 if (likely(priv->rx_queue[i]->rxcoalescing))
260 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
261 }
262 } else {
263 /* Backward compatible case -- even if we enable
264 * multiple queues, there's only single reg to program
265 */
266 gfar_write(®s->txic, 0);
267 if (likely(priv->tx_queue[0]->txcoalescing))
268 gfar_write(®s->txic, priv->tx_queue[0]->txic);
269
270 gfar_write(®s->rxic, 0);
271 if (unlikely(priv->rx_queue[0]->rxcoalescing))
272 gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
273 }
274 }
275
gfar_configure_coalescing_all(struct gfar_private * priv)276 static void gfar_configure_coalescing_all(struct gfar_private *priv)
277 {
278 gfar_configure_coalescing(priv, 0xFF, 0xFF);
279 }
280
gfar_get_stats(struct net_device * dev)281 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
282 {
283 struct gfar_private *priv = netdev_priv(dev);
284 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
285 unsigned long tx_packets = 0, tx_bytes = 0;
286 int i;
287
288 for (i = 0; i < priv->num_rx_queues; i++) {
289 rx_packets += priv->rx_queue[i]->stats.rx_packets;
290 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
291 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
292 }
293
294 dev->stats.rx_packets = rx_packets;
295 dev->stats.rx_bytes = rx_bytes;
296 dev->stats.rx_dropped = rx_dropped;
297
298 for (i = 0; i < priv->num_tx_queues; i++) {
299 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
300 tx_packets += priv->tx_queue[i]->stats.tx_packets;
301 }
302
303 dev->stats.tx_bytes = tx_bytes;
304 dev->stats.tx_packets = tx_packets;
305
306 return &dev->stats;
307 }
308
309 /* Set the appropriate hash bit for the given addr */
310 /* The algorithm works like so:
311 * 1) Take the Destination Address (ie the multicast address), and
312 * do a CRC on it (little endian), and reverse the bits of the
313 * result.
314 * 2) Use the 8 most significant bits as a hash into a 256-entry
315 * table. The table is controlled through 8 32-bit registers:
316 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
317 * gaddr7. This means that the 3 most significant bits in the
318 * hash index which gaddr register to use, and the 5 other bits
319 * indicate which bit (assuming an IBM numbering scheme, which
320 * for PowerPC (tm) is usually the case) in the register holds
321 * the entry.
322 */
gfar_set_hash_for_addr(struct net_device * dev,u8 * addr)323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
324 {
325 u32 tempval;
326 struct gfar_private *priv = netdev_priv(dev);
327 u32 result = ether_crc(ETH_ALEN, addr);
328 int width = priv->hash_width;
329 u8 whichbit = (result >> (32 - width)) & 0x1f;
330 u8 whichreg = result >> (32 - width + 5);
331 u32 value = (1 << (31-whichbit));
332
333 tempval = gfar_read(priv->hash_regs[whichreg]);
334 tempval |= value;
335 gfar_write(priv->hash_regs[whichreg], tempval);
336 }
337
338 /* There are multiple MAC Address register pairs on some controllers
339 * This function sets the numth pair to a given address
340 */
gfar_set_mac_for_addr(struct net_device * dev,int num,const u8 * addr)341 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
342 const u8 *addr)
343 {
344 struct gfar_private *priv = netdev_priv(dev);
345 struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 u32 tempval;
347 u32 __iomem *macptr = ®s->macstnaddr1;
348
349 macptr += num*2;
350
351 /* For a station address of 0x12345678ABCD in transmission
352 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
353 * MACnADDR2 is set to 0x34120000.
354 */
355 tempval = (addr[5] << 24) | (addr[4] << 16) |
356 (addr[3] << 8) | addr[2];
357
358 gfar_write(macptr, tempval);
359
360 tempval = (addr[1] << 24) | (addr[0] << 16);
361
362 gfar_write(macptr+1, tempval);
363 }
364
gfar_set_mac_addr(struct net_device * dev,void * p)365 static int gfar_set_mac_addr(struct net_device *dev, void *p)
366 {
367 int ret;
368
369 ret = eth_mac_addr(dev, p);
370 if (ret)
371 return ret;
372
373 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
374
375 return 0;
376 }
377
gfar_ints_disable(struct gfar_private * priv)378 static void gfar_ints_disable(struct gfar_private *priv)
379 {
380 int i;
381 for (i = 0; i < priv->num_grps; i++) {
382 struct gfar __iomem *regs = priv->gfargrp[i].regs;
383 /* Clear IEVENT */
384 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
385
386 /* Initialize IMASK */
387 gfar_write(®s->imask, IMASK_INIT_CLEAR);
388 }
389 }
390
gfar_ints_enable(struct gfar_private * priv)391 static void gfar_ints_enable(struct gfar_private *priv)
392 {
393 int i;
394 for (i = 0; i < priv->num_grps; i++) {
395 struct gfar __iomem *regs = priv->gfargrp[i].regs;
396 /* Unmask the interrupts we look for */
397 gfar_write(®s->imask, IMASK_DEFAULT);
398 }
399 }
400
gfar_alloc_tx_queues(struct gfar_private * priv)401 static int gfar_alloc_tx_queues(struct gfar_private *priv)
402 {
403 int i;
404
405 for (i = 0; i < priv->num_tx_queues; i++) {
406 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
407 GFP_KERNEL);
408 if (!priv->tx_queue[i])
409 return -ENOMEM;
410
411 priv->tx_queue[i]->tx_skbuff = NULL;
412 priv->tx_queue[i]->qindex = i;
413 priv->tx_queue[i]->dev = priv->ndev;
414 spin_lock_init(&(priv->tx_queue[i]->txlock));
415 }
416 return 0;
417 }
418
gfar_alloc_rx_queues(struct gfar_private * priv)419 static int gfar_alloc_rx_queues(struct gfar_private *priv)
420 {
421 int i;
422
423 for (i = 0; i < priv->num_rx_queues; i++) {
424 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
425 GFP_KERNEL);
426 if (!priv->rx_queue[i])
427 return -ENOMEM;
428
429 priv->rx_queue[i]->qindex = i;
430 priv->rx_queue[i]->ndev = priv->ndev;
431 }
432 return 0;
433 }
434
gfar_free_tx_queues(struct gfar_private * priv)435 static void gfar_free_tx_queues(struct gfar_private *priv)
436 {
437 int i;
438
439 for (i = 0; i < priv->num_tx_queues; i++)
440 kfree(priv->tx_queue[i]);
441 }
442
gfar_free_rx_queues(struct gfar_private * priv)443 static void gfar_free_rx_queues(struct gfar_private *priv)
444 {
445 int i;
446
447 for (i = 0; i < priv->num_rx_queues; i++)
448 kfree(priv->rx_queue[i]);
449 }
450
unmap_group_regs(struct gfar_private * priv)451 static void unmap_group_regs(struct gfar_private *priv)
452 {
453 int i;
454
455 for (i = 0; i < MAXGROUPS; i++)
456 if (priv->gfargrp[i].regs)
457 iounmap(priv->gfargrp[i].regs);
458 }
459
free_gfar_dev(struct gfar_private * priv)460 static void free_gfar_dev(struct gfar_private *priv)
461 {
462 int i, j;
463
464 for (i = 0; i < priv->num_grps; i++)
465 for (j = 0; j < GFAR_NUM_IRQS; j++) {
466 kfree(priv->gfargrp[i].irqinfo[j]);
467 priv->gfargrp[i].irqinfo[j] = NULL;
468 }
469
470 free_netdev(priv->ndev);
471 }
472
disable_napi(struct gfar_private * priv)473 static void disable_napi(struct gfar_private *priv)
474 {
475 int i;
476
477 for (i = 0; i < priv->num_grps; i++) {
478 napi_disable(&priv->gfargrp[i].napi_rx);
479 napi_disable(&priv->gfargrp[i].napi_tx);
480 }
481 }
482
enable_napi(struct gfar_private * priv)483 static void enable_napi(struct gfar_private *priv)
484 {
485 int i;
486
487 for (i = 0; i < priv->num_grps; i++) {
488 napi_enable(&priv->gfargrp[i].napi_rx);
489 napi_enable(&priv->gfargrp[i].napi_tx);
490 }
491 }
492
gfar_parse_group(struct device_node * np,struct gfar_private * priv,const char * model)493 static int gfar_parse_group(struct device_node *np,
494 struct gfar_private *priv, const char *model)
495 {
496 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
497 int i;
498
499 for (i = 0; i < GFAR_NUM_IRQS; i++) {
500 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
501 GFP_KERNEL);
502 if (!grp->irqinfo[i])
503 return -ENOMEM;
504 }
505
506 grp->regs = of_iomap(np, 0);
507 if (!grp->regs)
508 return -ENOMEM;
509
510 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
511
512 /* If we aren't the FEC we have multiple interrupts */
513 if (model && strcasecmp(model, "FEC")) {
514 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
515 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
516 if (!gfar_irq(grp, TX)->irq ||
517 !gfar_irq(grp, RX)->irq ||
518 !gfar_irq(grp, ER)->irq)
519 return -EINVAL;
520 }
521
522 grp->priv = priv;
523 spin_lock_init(&grp->grplock);
524 if (priv->mode == MQ_MG_MODE) {
525 u32 rxq_mask, txq_mask;
526 int ret;
527
528 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
529 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
530
531 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
532 if (!ret) {
533 grp->rx_bit_map = rxq_mask ?
534 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
535 }
536
537 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
538 if (!ret) {
539 grp->tx_bit_map = txq_mask ?
540 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
541 }
542
543 if (priv->poll_mode == GFAR_SQ_POLLING) {
544 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
545 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
546 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
547 }
548 } else {
549 grp->rx_bit_map = 0xFF;
550 grp->tx_bit_map = 0xFF;
551 }
552
553 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
554 * right to left, so we need to revert the 8 bits to get the q index
555 */
556 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
557 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
558
559 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
560 * also assign queues to groups
561 */
562 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
563 if (!grp->rx_queue)
564 grp->rx_queue = priv->rx_queue[i];
565 grp->num_rx_queues++;
566 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
567 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
568 priv->rx_queue[i]->grp = grp;
569 }
570
571 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
572 if (!grp->tx_queue)
573 grp->tx_queue = priv->tx_queue[i];
574 grp->num_tx_queues++;
575 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
576 priv->tqueue |= (TQUEUE_EN0 >> i);
577 priv->tx_queue[i]->grp = grp;
578 }
579
580 priv->num_grps++;
581
582 return 0;
583 }
584
gfar_of_group_count(struct device_node * np)585 static int gfar_of_group_count(struct device_node *np)
586 {
587 struct device_node *child;
588 int num = 0;
589
590 for_each_available_child_of_node(np, child)
591 if (of_node_name_eq(child, "queue-group"))
592 num++;
593
594 return num;
595 }
596
597 /* Reads the controller's registers to determine what interface
598 * connects it to the PHY.
599 */
gfar_get_interface(struct net_device * dev)600 static phy_interface_t gfar_get_interface(struct net_device *dev)
601 {
602 struct gfar_private *priv = netdev_priv(dev);
603 struct gfar __iomem *regs = priv->gfargrp[0].regs;
604 u32 ecntrl;
605
606 ecntrl = gfar_read(®s->ecntrl);
607
608 if (ecntrl & ECNTRL_SGMII_MODE)
609 return PHY_INTERFACE_MODE_SGMII;
610
611 if (ecntrl & ECNTRL_TBI_MODE) {
612 if (ecntrl & ECNTRL_REDUCED_MODE)
613 return PHY_INTERFACE_MODE_RTBI;
614 else
615 return PHY_INTERFACE_MODE_TBI;
616 }
617
618 if (ecntrl & ECNTRL_REDUCED_MODE) {
619 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
620 return PHY_INTERFACE_MODE_RMII;
621 }
622 else {
623 phy_interface_t interface = priv->interface;
624
625 /* This isn't autodetected right now, so it must
626 * be set by the device tree or platform code.
627 */
628 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
629 return PHY_INTERFACE_MODE_RGMII_ID;
630
631 return PHY_INTERFACE_MODE_RGMII;
632 }
633 }
634
635 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
636 return PHY_INTERFACE_MODE_GMII;
637
638 return PHY_INTERFACE_MODE_MII;
639 }
640
gfar_of_init(struct platform_device * ofdev,struct net_device ** pdev)641 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
642 {
643 const char *model;
644 const void *mac_addr;
645 int err = 0, i;
646 phy_interface_t interface;
647 struct net_device *dev = NULL;
648 struct gfar_private *priv = NULL;
649 struct device_node *np = ofdev->dev.of_node;
650 struct device_node *child = NULL;
651 u32 stash_len = 0;
652 u32 stash_idx = 0;
653 unsigned int num_tx_qs, num_rx_qs;
654 unsigned short mode, poll_mode;
655
656 if (!np)
657 return -ENODEV;
658
659 if (of_device_is_compatible(np, "fsl,etsec2")) {
660 mode = MQ_MG_MODE;
661 poll_mode = GFAR_SQ_POLLING;
662 } else {
663 mode = SQ_SG_MODE;
664 poll_mode = GFAR_SQ_POLLING;
665 }
666
667 if (mode == SQ_SG_MODE) {
668 num_tx_qs = 1;
669 num_rx_qs = 1;
670 } else { /* MQ_MG_MODE */
671 /* get the actual number of supported groups */
672 unsigned int num_grps = gfar_of_group_count(np);
673
674 if (num_grps == 0 || num_grps > MAXGROUPS) {
675 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
676 num_grps);
677 pr_err("Cannot do alloc_etherdev, aborting\n");
678 return -EINVAL;
679 }
680
681 if (poll_mode == GFAR_SQ_POLLING) {
682 num_tx_qs = num_grps; /* one txq per int group */
683 num_rx_qs = num_grps; /* one rxq per int group */
684 } else { /* GFAR_MQ_POLLING */
685 u32 tx_queues, rx_queues;
686 int ret;
687
688 /* parse the num of HW tx and rx queues */
689 ret = of_property_read_u32(np, "fsl,num_tx_queues",
690 &tx_queues);
691 num_tx_qs = ret ? 1 : tx_queues;
692
693 ret = of_property_read_u32(np, "fsl,num_rx_queues",
694 &rx_queues);
695 num_rx_qs = ret ? 1 : rx_queues;
696 }
697 }
698
699 if (num_tx_qs > MAX_TX_QS) {
700 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
701 num_tx_qs, MAX_TX_QS);
702 pr_err("Cannot do alloc_etherdev, aborting\n");
703 return -EINVAL;
704 }
705
706 if (num_rx_qs > MAX_RX_QS) {
707 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
708 num_rx_qs, MAX_RX_QS);
709 pr_err("Cannot do alloc_etherdev, aborting\n");
710 return -EINVAL;
711 }
712
713 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
714 dev = *pdev;
715 if (NULL == dev)
716 return -ENOMEM;
717
718 priv = netdev_priv(dev);
719 priv->ndev = dev;
720
721 priv->mode = mode;
722 priv->poll_mode = poll_mode;
723
724 priv->num_tx_queues = num_tx_qs;
725 netif_set_real_num_rx_queues(dev, num_rx_qs);
726 priv->num_rx_queues = num_rx_qs;
727
728 err = gfar_alloc_tx_queues(priv);
729 if (err)
730 goto tx_alloc_failed;
731
732 err = gfar_alloc_rx_queues(priv);
733 if (err)
734 goto rx_alloc_failed;
735
736 err = of_property_read_string(np, "model", &model);
737 if (err) {
738 pr_err("Device model property missing, aborting\n");
739 goto rx_alloc_failed;
740 }
741
742 /* Init Rx queue filer rule set linked list */
743 INIT_LIST_HEAD(&priv->rx_list.list);
744 priv->rx_list.count = 0;
745 mutex_init(&priv->rx_queue_access);
746
747 for (i = 0; i < MAXGROUPS; i++)
748 priv->gfargrp[i].regs = NULL;
749
750 /* Parse and initialize group specific information */
751 if (priv->mode == MQ_MG_MODE) {
752 for_each_available_child_of_node(np, child) {
753 if (!of_node_name_eq(child, "queue-group"))
754 continue;
755
756 err = gfar_parse_group(child, priv, model);
757 if (err) {
758 of_node_put(child);
759 goto err_grp_init;
760 }
761 }
762 } else { /* SQ_SG_MODE */
763 err = gfar_parse_group(np, priv, model);
764 if (err)
765 goto err_grp_init;
766 }
767
768 if (of_property_read_bool(np, "bd-stash")) {
769 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
770 priv->bd_stash_en = 1;
771 }
772
773 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
774
775 if (err == 0)
776 priv->rx_stash_size = stash_len;
777
778 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
779
780 if (err == 0)
781 priv->rx_stash_index = stash_idx;
782
783 if (stash_len || stash_idx)
784 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
785
786 mac_addr = of_get_mac_address(np);
787
788 if (!IS_ERR(mac_addr)) {
789 ether_addr_copy(dev->dev_addr, mac_addr);
790 } else {
791 eth_hw_addr_random(dev);
792 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
793 }
794
795 if (model && !strcasecmp(model, "TSEC"))
796 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
797 FSL_GIANFAR_DEV_HAS_COALESCE |
798 FSL_GIANFAR_DEV_HAS_RMON |
799 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
800
801 if (model && !strcasecmp(model, "eTSEC"))
802 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
803 FSL_GIANFAR_DEV_HAS_COALESCE |
804 FSL_GIANFAR_DEV_HAS_RMON |
805 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
806 FSL_GIANFAR_DEV_HAS_CSUM |
807 FSL_GIANFAR_DEV_HAS_VLAN |
808 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
809 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
810 FSL_GIANFAR_DEV_HAS_TIMER |
811 FSL_GIANFAR_DEV_HAS_RX_FILER;
812
813 /* Use PHY connection type from the DT node if one is specified there.
814 * rgmii-id really needs to be specified. Other types can be
815 * detected by hardware
816 */
817 err = of_get_phy_mode(np, &interface);
818 if (!err)
819 priv->interface = interface;
820 else
821 priv->interface = gfar_get_interface(dev);
822
823 if (of_find_property(np, "fsl,magic-packet", NULL))
824 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
825
826 if (of_get_property(np, "fsl,wake-on-filer", NULL))
827 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
828
829 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
830
831 /* In the case of a fixed PHY, the DT node associated
832 * to the PHY is the Ethernet MAC DT node.
833 */
834 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
835 err = of_phy_register_fixed_link(np);
836 if (err)
837 goto err_grp_init;
838
839 priv->phy_node = of_node_get(np);
840 }
841
842 /* Find the TBI PHY. If it's not there, we don't support SGMII */
843 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
844
845 return 0;
846
847 err_grp_init:
848 unmap_group_regs(priv);
849 rx_alloc_failed:
850 gfar_free_rx_queues(priv);
851 tx_alloc_failed:
852 gfar_free_tx_queues(priv);
853 free_gfar_dev(priv);
854 return err;
855 }
856
cluster_entry_per_class(struct gfar_private * priv,u32 rqfar,u32 class)857 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
858 u32 class)
859 {
860 u32 rqfpr = FPR_FILER_MASK;
861 u32 rqfcr = 0x0;
862
863 rqfar--;
864 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
865 priv->ftp_rqfpr[rqfar] = rqfpr;
866 priv->ftp_rqfcr[rqfar] = rqfcr;
867 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
868
869 rqfar--;
870 rqfcr = RQFCR_CMP_NOMATCH;
871 priv->ftp_rqfpr[rqfar] = rqfpr;
872 priv->ftp_rqfcr[rqfar] = rqfcr;
873 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
874
875 rqfar--;
876 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
877 rqfpr = class;
878 priv->ftp_rqfcr[rqfar] = rqfcr;
879 priv->ftp_rqfpr[rqfar] = rqfpr;
880 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
881
882 rqfar--;
883 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
884 rqfpr = class;
885 priv->ftp_rqfcr[rqfar] = rqfcr;
886 priv->ftp_rqfpr[rqfar] = rqfpr;
887 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
888
889 return rqfar;
890 }
891
gfar_init_filer_table(struct gfar_private * priv)892 static void gfar_init_filer_table(struct gfar_private *priv)
893 {
894 int i = 0x0;
895 u32 rqfar = MAX_FILER_IDX;
896 u32 rqfcr = 0x0;
897 u32 rqfpr = FPR_FILER_MASK;
898
899 /* Default rule */
900 rqfcr = RQFCR_CMP_MATCH;
901 priv->ftp_rqfcr[rqfar] = rqfcr;
902 priv->ftp_rqfpr[rqfar] = rqfpr;
903 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
904
905 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
906 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
907 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
908 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
909 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
910 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
911
912 /* cur_filer_idx indicated the first non-masked rule */
913 priv->cur_filer_idx = rqfar;
914
915 /* Rest are masked rules */
916 rqfcr = RQFCR_CMP_NOMATCH;
917 for (i = 0; i < rqfar; i++) {
918 priv->ftp_rqfcr[i] = rqfcr;
919 priv->ftp_rqfpr[i] = rqfpr;
920 gfar_write_filer(priv, i, rqfcr, rqfpr);
921 }
922 }
923
924 #ifdef CONFIG_PPC
__gfar_detect_errata_83xx(struct gfar_private * priv)925 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
926 {
927 unsigned int pvr = mfspr(SPRN_PVR);
928 unsigned int svr = mfspr(SPRN_SVR);
929 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
930 unsigned int rev = svr & 0xffff;
931
932 /* MPC8313 Rev 2.0 and higher; All MPC837x */
933 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
934 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
935 priv->errata |= GFAR_ERRATA_74;
936
937 /* MPC8313 and MPC837x all rev */
938 if ((pvr == 0x80850010 && mod == 0x80b0) ||
939 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
940 priv->errata |= GFAR_ERRATA_76;
941
942 /* MPC8313 Rev < 2.0 */
943 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
944 priv->errata |= GFAR_ERRATA_12;
945 }
946
__gfar_detect_errata_85xx(struct gfar_private * priv)947 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
948 {
949 unsigned int svr = mfspr(SPRN_SVR);
950
951 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
952 priv->errata |= GFAR_ERRATA_12;
953 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
954 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
955 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
956 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
957 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
958 }
959 #endif
960
gfar_detect_errata(struct gfar_private * priv)961 static void gfar_detect_errata(struct gfar_private *priv)
962 {
963 struct device *dev = &priv->ofdev->dev;
964
965 /* no plans to fix */
966 priv->errata |= GFAR_ERRATA_A002;
967
968 #ifdef CONFIG_PPC
969 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
970 __gfar_detect_errata_85xx(priv);
971 else /* non-mpc85xx parts, i.e. e300 core based */
972 __gfar_detect_errata_83xx(priv);
973 #endif
974
975 if (priv->errata)
976 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
977 priv->errata);
978 }
979
gfar_init_addr_hash_table(struct gfar_private * priv)980 static void gfar_init_addr_hash_table(struct gfar_private *priv)
981 {
982 struct gfar __iomem *regs = priv->gfargrp[0].regs;
983
984 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
985 priv->extended_hash = 1;
986 priv->hash_width = 9;
987
988 priv->hash_regs[0] = ®s->igaddr0;
989 priv->hash_regs[1] = ®s->igaddr1;
990 priv->hash_regs[2] = ®s->igaddr2;
991 priv->hash_regs[3] = ®s->igaddr3;
992 priv->hash_regs[4] = ®s->igaddr4;
993 priv->hash_regs[5] = ®s->igaddr5;
994 priv->hash_regs[6] = ®s->igaddr6;
995 priv->hash_regs[7] = ®s->igaddr7;
996 priv->hash_regs[8] = ®s->gaddr0;
997 priv->hash_regs[9] = ®s->gaddr1;
998 priv->hash_regs[10] = ®s->gaddr2;
999 priv->hash_regs[11] = ®s->gaddr3;
1000 priv->hash_regs[12] = ®s->gaddr4;
1001 priv->hash_regs[13] = ®s->gaddr5;
1002 priv->hash_regs[14] = ®s->gaddr6;
1003 priv->hash_regs[15] = ®s->gaddr7;
1004
1005 } else {
1006 priv->extended_hash = 0;
1007 priv->hash_width = 8;
1008
1009 priv->hash_regs[0] = ®s->gaddr0;
1010 priv->hash_regs[1] = ®s->gaddr1;
1011 priv->hash_regs[2] = ®s->gaddr2;
1012 priv->hash_regs[3] = ®s->gaddr3;
1013 priv->hash_regs[4] = ®s->gaddr4;
1014 priv->hash_regs[5] = ®s->gaddr5;
1015 priv->hash_regs[6] = ®s->gaddr6;
1016 priv->hash_regs[7] = ®s->gaddr7;
1017 }
1018 }
1019
__gfar_is_rx_idle(struct gfar_private * priv)1020 static int __gfar_is_rx_idle(struct gfar_private *priv)
1021 {
1022 u32 res;
1023
1024 /* Normaly TSEC should not hang on GRS commands, so we should
1025 * actually wait for IEVENT_GRSC flag.
1026 */
1027 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1028 return 0;
1029
1030 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1031 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1032 * and the Rx can be safely reset.
1033 */
1034 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1035 res &= 0x7f807f80;
1036 if ((res & 0xffff) == (res >> 16))
1037 return 1;
1038
1039 return 0;
1040 }
1041
1042 /* Halt the receive and transmit queues */
gfar_halt_nodisable(struct gfar_private * priv)1043 static void gfar_halt_nodisable(struct gfar_private *priv)
1044 {
1045 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1046 u32 tempval;
1047 unsigned int timeout;
1048 int stopped;
1049
1050 gfar_ints_disable(priv);
1051
1052 if (gfar_is_dma_stopped(priv))
1053 return;
1054
1055 /* Stop the DMA, and wait for it to stop */
1056 tempval = gfar_read(®s->dmactrl);
1057 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1058 gfar_write(®s->dmactrl, tempval);
1059
1060 retry:
1061 timeout = 1000;
1062 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1063 cpu_relax();
1064 timeout--;
1065 }
1066
1067 if (!timeout)
1068 stopped = gfar_is_dma_stopped(priv);
1069
1070 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1071 !__gfar_is_rx_idle(priv))
1072 goto retry;
1073 }
1074
1075 /* Halt the receive and transmit queues */
gfar_halt(struct gfar_private * priv)1076 static void gfar_halt(struct gfar_private *priv)
1077 {
1078 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1079 u32 tempval;
1080
1081 /* Dissable the Rx/Tx hw queues */
1082 gfar_write(®s->rqueue, 0);
1083 gfar_write(®s->tqueue, 0);
1084
1085 mdelay(10);
1086
1087 gfar_halt_nodisable(priv);
1088
1089 /* Disable Rx/Tx DMA */
1090 tempval = gfar_read(®s->maccfg1);
1091 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1092 gfar_write(®s->maccfg1, tempval);
1093 }
1094
free_skb_tx_queue(struct gfar_priv_tx_q * tx_queue)1095 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1096 {
1097 struct txbd8 *txbdp;
1098 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1099 int i, j;
1100
1101 txbdp = tx_queue->tx_bd_base;
1102
1103 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1104 if (!tx_queue->tx_skbuff[i])
1105 continue;
1106
1107 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1108 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1109 txbdp->lstatus = 0;
1110 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1111 j++) {
1112 txbdp++;
1113 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1114 be16_to_cpu(txbdp->length),
1115 DMA_TO_DEVICE);
1116 }
1117 txbdp++;
1118 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1119 tx_queue->tx_skbuff[i] = NULL;
1120 }
1121 kfree(tx_queue->tx_skbuff);
1122 tx_queue->tx_skbuff = NULL;
1123 }
1124
free_skb_rx_queue(struct gfar_priv_rx_q * rx_queue)1125 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1126 {
1127 int i;
1128
1129 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1130
1131 dev_kfree_skb(rx_queue->skb);
1132
1133 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1134 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1135
1136 rxbdp->lstatus = 0;
1137 rxbdp->bufPtr = 0;
1138 rxbdp++;
1139
1140 if (!rxb->page)
1141 continue;
1142
1143 dma_unmap_page(rx_queue->dev, rxb->dma,
1144 PAGE_SIZE, DMA_FROM_DEVICE);
1145 __free_page(rxb->page);
1146
1147 rxb->page = NULL;
1148 }
1149
1150 kfree(rx_queue->rx_buff);
1151 rx_queue->rx_buff = NULL;
1152 }
1153
1154 /* If there are any tx skbs or rx skbs still around, free them.
1155 * Then free tx_skbuff and rx_skbuff
1156 */
free_skb_resources(struct gfar_private * priv)1157 static void free_skb_resources(struct gfar_private *priv)
1158 {
1159 struct gfar_priv_tx_q *tx_queue = NULL;
1160 struct gfar_priv_rx_q *rx_queue = NULL;
1161 int i;
1162
1163 /* Go through all the buffer descriptors and free their data buffers */
1164 for (i = 0; i < priv->num_tx_queues; i++) {
1165 struct netdev_queue *txq;
1166
1167 tx_queue = priv->tx_queue[i];
1168 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1169 if (tx_queue->tx_skbuff)
1170 free_skb_tx_queue(tx_queue);
1171 netdev_tx_reset_queue(txq);
1172 }
1173
1174 for (i = 0; i < priv->num_rx_queues; i++) {
1175 rx_queue = priv->rx_queue[i];
1176 if (rx_queue->rx_buff)
1177 free_skb_rx_queue(rx_queue);
1178 }
1179
1180 dma_free_coherent(priv->dev,
1181 sizeof(struct txbd8) * priv->total_tx_ring_size +
1182 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1183 priv->tx_queue[0]->tx_bd_base,
1184 priv->tx_queue[0]->tx_bd_dma_base);
1185 }
1186
stop_gfar(struct net_device * dev)1187 void stop_gfar(struct net_device *dev)
1188 {
1189 struct gfar_private *priv = netdev_priv(dev);
1190
1191 netif_tx_stop_all_queues(dev);
1192
1193 smp_mb__before_atomic();
1194 set_bit(GFAR_DOWN, &priv->state);
1195 smp_mb__after_atomic();
1196
1197 disable_napi(priv);
1198
1199 /* disable ints and gracefully shut down Rx/Tx DMA */
1200 gfar_halt(priv);
1201
1202 phy_stop(dev->phydev);
1203
1204 free_skb_resources(priv);
1205 }
1206
gfar_start(struct gfar_private * priv)1207 static void gfar_start(struct gfar_private *priv)
1208 {
1209 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1210 u32 tempval;
1211 int i = 0;
1212
1213 /* Enable Rx/Tx hw queues */
1214 gfar_write(®s->rqueue, priv->rqueue);
1215 gfar_write(®s->tqueue, priv->tqueue);
1216
1217 /* Initialize DMACTRL to have WWR and WOP */
1218 tempval = gfar_read(®s->dmactrl);
1219 tempval |= DMACTRL_INIT_SETTINGS;
1220 gfar_write(®s->dmactrl, tempval);
1221
1222 /* Make sure we aren't stopped */
1223 tempval = gfar_read(®s->dmactrl);
1224 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1225 gfar_write(®s->dmactrl, tempval);
1226
1227 for (i = 0; i < priv->num_grps; i++) {
1228 regs = priv->gfargrp[i].regs;
1229 /* Clear THLT/RHLT, so that the DMA starts polling now */
1230 gfar_write(®s->tstat, priv->gfargrp[i].tstat);
1231 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
1232 }
1233
1234 /* Enable Rx/Tx DMA */
1235 tempval = gfar_read(®s->maccfg1);
1236 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1237 gfar_write(®s->maccfg1, tempval);
1238
1239 gfar_ints_enable(priv);
1240
1241 netif_trans_update(priv->ndev); /* prevent tx timeout */
1242 }
1243
gfar_new_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * rxb)1244 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1245 {
1246 struct page *page;
1247 dma_addr_t addr;
1248
1249 page = dev_alloc_page();
1250 if (unlikely(!page))
1251 return false;
1252
1253 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1254 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1255 __free_page(page);
1256
1257 return false;
1258 }
1259
1260 rxb->dma = addr;
1261 rxb->page = page;
1262 rxb->page_offset = 0;
1263
1264 return true;
1265 }
1266
gfar_rx_alloc_err(struct gfar_priv_rx_q * rx_queue)1267 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1268 {
1269 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1270 struct gfar_extra_stats *estats = &priv->extra_stats;
1271
1272 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1273 atomic64_inc(&estats->rx_alloc_err);
1274 }
1275
gfar_alloc_rx_buffs(struct gfar_priv_rx_q * rx_queue,int alloc_cnt)1276 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1277 int alloc_cnt)
1278 {
1279 struct rxbd8 *bdp;
1280 struct gfar_rx_buff *rxb;
1281 int i;
1282
1283 i = rx_queue->next_to_use;
1284 bdp = &rx_queue->rx_bd_base[i];
1285 rxb = &rx_queue->rx_buff[i];
1286
1287 while (alloc_cnt--) {
1288 /* try reuse page */
1289 if (unlikely(!rxb->page)) {
1290 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1291 gfar_rx_alloc_err(rx_queue);
1292 break;
1293 }
1294 }
1295
1296 /* Setup the new RxBD */
1297 gfar_init_rxbdp(rx_queue, bdp,
1298 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1299
1300 /* Update to the next pointer */
1301 bdp++;
1302 rxb++;
1303
1304 if (unlikely(++i == rx_queue->rx_ring_size)) {
1305 i = 0;
1306 bdp = rx_queue->rx_bd_base;
1307 rxb = rx_queue->rx_buff;
1308 }
1309 }
1310
1311 rx_queue->next_to_use = i;
1312 rx_queue->next_to_alloc = i;
1313 }
1314
gfar_init_bds(struct net_device * ndev)1315 static void gfar_init_bds(struct net_device *ndev)
1316 {
1317 struct gfar_private *priv = netdev_priv(ndev);
1318 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1319 struct gfar_priv_tx_q *tx_queue = NULL;
1320 struct gfar_priv_rx_q *rx_queue = NULL;
1321 struct txbd8 *txbdp;
1322 u32 __iomem *rfbptr;
1323 int i, j;
1324
1325 for (i = 0; i < priv->num_tx_queues; i++) {
1326 tx_queue = priv->tx_queue[i];
1327 /* Initialize some variables in our dev structure */
1328 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1329 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1330 tx_queue->cur_tx = tx_queue->tx_bd_base;
1331 tx_queue->skb_curtx = 0;
1332 tx_queue->skb_dirtytx = 0;
1333
1334 /* Initialize Transmit Descriptor Ring */
1335 txbdp = tx_queue->tx_bd_base;
1336 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1337 txbdp->lstatus = 0;
1338 txbdp->bufPtr = 0;
1339 txbdp++;
1340 }
1341
1342 /* Set the last descriptor in the ring to indicate wrap */
1343 txbdp--;
1344 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1345 TXBD_WRAP);
1346 }
1347
1348 rfbptr = ®s->rfbptr0;
1349 for (i = 0; i < priv->num_rx_queues; i++) {
1350 rx_queue = priv->rx_queue[i];
1351
1352 rx_queue->next_to_clean = 0;
1353 rx_queue->next_to_use = 0;
1354 rx_queue->next_to_alloc = 0;
1355
1356 /* make sure next_to_clean != next_to_use after this
1357 * by leaving at least 1 unused descriptor
1358 */
1359 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1360
1361 rx_queue->rfbptr = rfbptr;
1362 rfbptr += 2;
1363 }
1364 }
1365
gfar_alloc_skb_resources(struct net_device * ndev)1366 static int gfar_alloc_skb_resources(struct net_device *ndev)
1367 {
1368 void *vaddr;
1369 dma_addr_t addr;
1370 int i, j;
1371 struct gfar_private *priv = netdev_priv(ndev);
1372 struct device *dev = priv->dev;
1373 struct gfar_priv_tx_q *tx_queue = NULL;
1374 struct gfar_priv_rx_q *rx_queue = NULL;
1375
1376 priv->total_tx_ring_size = 0;
1377 for (i = 0; i < priv->num_tx_queues; i++)
1378 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1379
1380 priv->total_rx_ring_size = 0;
1381 for (i = 0; i < priv->num_rx_queues; i++)
1382 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1383
1384 /* Allocate memory for the buffer descriptors */
1385 vaddr = dma_alloc_coherent(dev,
1386 (priv->total_tx_ring_size *
1387 sizeof(struct txbd8)) +
1388 (priv->total_rx_ring_size *
1389 sizeof(struct rxbd8)),
1390 &addr, GFP_KERNEL);
1391 if (!vaddr)
1392 return -ENOMEM;
1393
1394 for (i = 0; i < priv->num_tx_queues; i++) {
1395 tx_queue = priv->tx_queue[i];
1396 tx_queue->tx_bd_base = vaddr;
1397 tx_queue->tx_bd_dma_base = addr;
1398 tx_queue->dev = ndev;
1399 /* enet DMA only understands physical addresses */
1400 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1401 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1402 }
1403
1404 /* Start the rx descriptor ring where the tx ring leaves off */
1405 for (i = 0; i < priv->num_rx_queues; i++) {
1406 rx_queue = priv->rx_queue[i];
1407 rx_queue->rx_bd_base = vaddr;
1408 rx_queue->rx_bd_dma_base = addr;
1409 rx_queue->ndev = ndev;
1410 rx_queue->dev = dev;
1411 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1412 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1413 }
1414
1415 /* Setup the skbuff rings */
1416 for (i = 0; i < priv->num_tx_queues; i++) {
1417 tx_queue = priv->tx_queue[i];
1418 tx_queue->tx_skbuff =
1419 kmalloc_array(tx_queue->tx_ring_size,
1420 sizeof(*tx_queue->tx_skbuff),
1421 GFP_KERNEL);
1422 if (!tx_queue->tx_skbuff)
1423 goto cleanup;
1424
1425 for (j = 0; j < tx_queue->tx_ring_size; j++)
1426 tx_queue->tx_skbuff[j] = NULL;
1427 }
1428
1429 for (i = 0; i < priv->num_rx_queues; i++) {
1430 rx_queue = priv->rx_queue[i];
1431 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1432 sizeof(*rx_queue->rx_buff),
1433 GFP_KERNEL);
1434 if (!rx_queue->rx_buff)
1435 goto cleanup;
1436 }
1437
1438 gfar_init_bds(ndev);
1439
1440 return 0;
1441
1442 cleanup:
1443 free_skb_resources(priv);
1444 return -ENOMEM;
1445 }
1446
1447 /* Bring the controller up and running */
startup_gfar(struct net_device * ndev)1448 int startup_gfar(struct net_device *ndev)
1449 {
1450 struct gfar_private *priv = netdev_priv(ndev);
1451 int err;
1452
1453 gfar_mac_reset(priv);
1454
1455 err = gfar_alloc_skb_resources(ndev);
1456 if (err)
1457 return err;
1458
1459 gfar_init_tx_rx_base(priv);
1460
1461 smp_mb__before_atomic();
1462 clear_bit(GFAR_DOWN, &priv->state);
1463 smp_mb__after_atomic();
1464
1465 /* Start Rx/Tx DMA and enable the interrupts */
1466 gfar_start(priv);
1467
1468 /* force link state update after mac reset */
1469 priv->oldlink = 0;
1470 priv->oldspeed = 0;
1471 priv->oldduplex = -1;
1472
1473 phy_start(ndev->phydev);
1474
1475 enable_napi(priv);
1476
1477 netif_tx_wake_all_queues(ndev);
1478
1479 return 0;
1480 }
1481
gfar_get_flowctrl_cfg(struct gfar_private * priv)1482 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1483 {
1484 struct net_device *ndev = priv->ndev;
1485 struct phy_device *phydev = ndev->phydev;
1486 u32 val = 0;
1487
1488 if (!phydev->duplex)
1489 return val;
1490
1491 if (!priv->pause_aneg_en) {
1492 if (priv->tx_pause_en)
1493 val |= MACCFG1_TX_FLOW;
1494 if (priv->rx_pause_en)
1495 val |= MACCFG1_RX_FLOW;
1496 } else {
1497 u16 lcl_adv, rmt_adv;
1498 u8 flowctrl;
1499 /* get link partner capabilities */
1500 rmt_adv = 0;
1501 if (phydev->pause)
1502 rmt_adv = LPA_PAUSE_CAP;
1503 if (phydev->asym_pause)
1504 rmt_adv |= LPA_PAUSE_ASYM;
1505
1506 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1507 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1508 if (flowctrl & FLOW_CTRL_TX)
1509 val |= MACCFG1_TX_FLOW;
1510 if (flowctrl & FLOW_CTRL_RX)
1511 val |= MACCFG1_RX_FLOW;
1512 }
1513
1514 return val;
1515 }
1516
gfar_update_link_state(struct gfar_private * priv)1517 static noinline void gfar_update_link_state(struct gfar_private *priv)
1518 {
1519 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1520 struct net_device *ndev = priv->ndev;
1521 struct phy_device *phydev = ndev->phydev;
1522 struct gfar_priv_rx_q *rx_queue = NULL;
1523 int i;
1524
1525 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1526 return;
1527
1528 if (phydev->link) {
1529 u32 tempval1 = gfar_read(®s->maccfg1);
1530 u32 tempval = gfar_read(®s->maccfg2);
1531 u32 ecntrl = gfar_read(®s->ecntrl);
1532 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1533
1534 if (phydev->duplex != priv->oldduplex) {
1535 if (!(phydev->duplex))
1536 tempval &= ~(MACCFG2_FULL_DUPLEX);
1537 else
1538 tempval |= MACCFG2_FULL_DUPLEX;
1539
1540 priv->oldduplex = phydev->duplex;
1541 }
1542
1543 if (phydev->speed != priv->oldspeed) {
1544 switch (phydev->speed) {
1545 case 1000:
1546 tempval =
1547 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1548
1549 ecntrl &= ~(ECNTRL_R100);
1550 break;
1551 case 100:
1552 case 10:
1553 tempval =
1554 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1555
1556 /* Reduced mode distinguishes
1557 * between 10 and 100
1558 */
1559 if (phydev->speed == SPEED_100)
1560 ecntrl |= ECNTRL_R100;
1561 else
1562 ecntrl &= ~(ECNTRL_R100);
1563 break;
1564 default:
1565 netif_warn(priv, link, priv->ndev,
1566 "Ack! Speed (%d) is not 10/100/1000!\n",
1567 phydev->speed);
1568 break;
1569 }
1570
1571 priv->oldspeed = phydev->speed;
1572 }
1573
1574 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1575 tempval1 |= gfar_get_flowctrl_cfg(priv);
1576
1577 /* Turn last free buffer recording on */
1578 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1579 for (i = 0; i < priv->num_rx_queues; i++) {
1580 u32 bdp_dma;
1581
1582 rx_queue = priv->rx_queue[i];
1583 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1584 gfar_write(rx_queue->rfbptr, bdp_dma);
1585 }
1586
1587 priv->tx_actual_en = 1;
1588 }
1589
1590 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1591 priv->tx_actual_en = 0;
1592
1593 gfar_write(®s->maccfg1, tempval1);
1594 gfar_write(®s->maccfg2, tempval);
1595 gfar_write(®s->ecntrl, ecntrl);
1596
1597 if (!priv->oldlink)
1598 priv->oldlink = 1;
1599
1600 } else if (priv->oldlink) {
1601 priv->oldlink = 0;
1602 priv->oldspeed = 0;
1603 priv->oldduplex = -1;
1604 }
1605
1606 if (netif_msg_link(priv))
1607 phy_print_status(phydev);
1608 }
1609
1610 /* Called every time the controller might need to be made
1611 * aware of new link state. The PHY code conveys this
1612 * information through variables in the phydev structure, and this
1613 * function converts those variables into the appropriate
1614 * register values, and can bring down the device if needed.
1615 */
adjust_link(struct net_device * dev)1616 static void adjust_link(struct net_device *dev)
1617 {
1618 struct gfar_private *priv = netdev_priv(dev);
1619 struct phy_device *phydev = dev->phydev;
1620
1621 if (unlikely(phydev->link != priv->oldlink ||
1622 (phydev->link && (phydev->duplex != priv->oldduplex ||
1623 phydev->speed != priv->oldspeed))))
1624 gfar_update_link_state(priv);
1625 }
1626
1627 /* Initialize TBI PHY interface for communicating with the
1628 * SERDES lynx PHY on the chip. We communicate with this PHY
1629 * through the MDIO bus on each controller, treating it as a
1630 * "normal" PHY at the address found in the TBIPA register. We assume
1631 * that the TBIPA register is valid. Either the MDIO bus code will set
1632 * it to a value that doesn't conflict with other PHYs on the bus, or the
1633 * value doesn't matter, as there are no other PHYs on the bus.
1634 */
gfar_configure_serdes(struct net_device * dev)1635 static void gfar_configure_serdes(struct net_device *dev)
1636 {
1637 struct gfar_private *priv = netdev_priv(dev);
1638 struct phy_device *tbiphy;
1639
1640 if (!priv->tbi_node) {
1641 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1642 "device tree specify a tbi-handle\n");
1643 return;
1644 }
1645
1646 tbiphy = of_phy_find_device(priv->tbi_node);
1647 if (!tbiphy) {
1648 dev_err(&dev->dev, "error: Could not get TBI device\n");
1649 return;
1650 }
1651
1652 /* If the link is already up, we must already be ok, and don't need to
1653 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1654 * everything for us? Resetting it takes the link down and requires
1655 * several seconds for it to come back.
1656 */
1657 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1658 put_device(&tbiphy->mdio.dev);
1659 return;
1660 }
1661
1662 /* Single clk mode, mii mode off(for serdes communication) */
1663 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1664
1665 phy_write(tbiphy, MII_ADVERTISE,
1666 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1667 ADVERTISE_1000XPSE_ASYM);
1668
1669 phy_write(tbiphy, MII_BMCR,
1670 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1671 BMCR_SPEED1000);
1672
1673 put_device(&tbiphy->mdio.dev);
1674 }
1675
1676 /* Initializes driver's PHY state, and attaches to the PHY.
1677 * Returns 0 on success.
1678 */
init_phy(struct net_device * dev)1679 static int init_phy(struct net_device *dev)
1680 {
1681 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1682 struct gfar_private *priv = netdev_priv(dev);
1683 phy_interface_t interface = priv->interface;
1684 struct phy_device *phydev;
1685 struct ethtool_eee edata;
1686
1687 linkmode_set_bit_array(phy_10_100_features_array,
1688 ARRAY_SIZE(phy_10_100_features_array),
1689 mask);
1690 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1691 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1692 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1693 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1694
1695 priv->oldlink = 0;
1696 priv->oldspeed = 0;
1697 priv->oldduplex = -1;
1698
1699 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1700 interface);
1701 if (!phydev) {
1702 dev_err(&dev->dev, "could not attach to PHY\n");
1703 return -ENODEV;
1704 }
1705
1706 if (interface == PHY_INTERFACE_MODE_SGMII)
1707 gfar_configure_serdes(dev);
1708
1709 /* Remove any features not supported by the controller */
1710 linkmode_and(phydev->supported, phydev->supported, mask);
1711 linkmode_copy(phydev->advertising, phydev->supported);
1712
1713 /* Add support for flow control */
1714 phy_support_asym_pause(phydev);
1715
1716 /* disable EEE autoneg, EEE not supported by eTSEC */
1717 memset(&edata, 0, sizeof(struct ethtool_eee));
1718 phy_ethtool_set_eee(phydev, &edata);
1719
1720 return 0;
1721 }
1722
gfar_add_fcb(struct sk_buff * skb)1723 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1724 {
1725 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1726
1727 memset(fcb, 0, GMAC_FCB_LEN);
1728
1729 return fcb;
1730 }
1731
gfar_tx_checksum(struct sk_buff * skb,struct txfcb * fcb,int fcb_length)1732 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1733 int fcb_length)
1734 {
1735 /* If we're here, it's a IP packet with a TCP or UDP
1736 * payload. We set it to checksum, using a pseudo-header
1737 * we provide
1738 */
1739 u8 flags = TXFCB_DEFAULT;
1740
1741 /* Tell the controller what the protocol is
1742 * And provide the already calculated phcs
1743 */
1744 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1745 flags |= TXFCB_UDP;
1746 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1747 } else
1748 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1749
1750 /* l3os is the distance between the start of the
1751 * frame (skb->data) and the start of the IP hdr.
1752 * l4os is the distance between the start of the
1753 * l3 hdr and the l4 hdr
1754 */
1755 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1756 fcb->l4os = skb_network_header_len(skb);
1757
1758 fcb->flags = flags;
1759 }
1760
gfar_tx_vlan(struct sk_buff * skb,struct txfcb * fcb)1761 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1762 {
1763 fcb->flags |= TXFCB_VLN;
1764 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1765 }
1766
skip_txbd(struct txbd8 * bdp,int stride,struct txbd8 * base,int ring_size)1767 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1768 struct txbd8 *base, int ring_size)
1769 {
1770 struct txbd8 *new_bd = bdp + stride;
1771
1772 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1773 }
1774
next_txbd(struct txbd8 * bdp,struct txbd8 * base,int ring_size)1775 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1776 int ring_size)
1777 {
1778 return skip_txbd(bdp, 1, base, ring_size);
1779 }
1780
1781 /* eTSEC12: csum generation not supported for some fcb offsets */
gfar_csum_errata_12(struct gfar_private * priv,unsigned long fcb_addr)1782 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1783 unsigned long fcb_addr)
1784 {
1785 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1786 (fcb_addr % 0x20) > 0x18);
1787 }
1788
1789 /* eTSEC76: csum generation for frames larger than 2500 may
1790 * cause excess delays before start of transmission
1791 */
gfar_csum_errata_76(struct gfar_private * priv,unsigned int len)1792 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1793 unsigned int len)
1794 {
1795 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1796 (len > 2500));
1797 }
1798
1799 /* This is called by the kernel when a frame is ready for transmission.
1800 * It is pointed to by the dev->hard_start_xmit function pointer
1801 */
gfar_start_xmit(struct sk_buff * skb,struct net_device * dev)1802 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1803 {
1804 struct gfar_private *priv = netdev_priv(dev);
1805 struct gfar_priv_tx_q *tx_queue = NULL;
1806 struct netdev_queue *txq;
1807 struct gfar __iomem *regs = NULL;
1808 struct txfcb *fcb = NULL;
1809 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1810 u32 lstatus;
1811 skb_frag_t *frag;
1812 int i, rq = 0;
1813 int do_tstamp, do_csum, do_vlan;
1814 u32 bufaddr;
1815 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1816
1817 rq = skb->queue_mapping;
1818 tx_queue = priv->tx_queue[rq];
1819 txq = netdev_get_tx_queue(dev, rq);
1820 base = tx_queue->tx_bd_base;
1821 regs = tx_queue->grp->regs;
1822
1823 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1824 do_vlan = skb_vlan_tag_present(skb);
1825 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1826 priv->hwts_tx_en;
1827
1828 if (do_csum || do_vlan)
1829 fcb_len = GMAC_FCB_LEN;
1830
1831 /* check if time stamp should be generated */
1832 if (unlikely(do_tstamp))
1833 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1834
1835 /* make space for additional header when fcb is needed */
1836 if (fcb_len) {
1837 if (unlikely(skb_cow_head(skb, fcb_len))) {
1838 dev->stats.tx_errors++;
1839 dev_kfree_skb_any(skb);
1840 return NETDEV_TX_OK;
1841 }
1842 }
1843
1844 /* total number of fragments in the SKB */
1845 nr_frags = skb_shinfo(skb)->nr_frags;
1846
1847 /* calculate the required number of TxBDs for this skb */
1848 if (unlikely(do_tstamp))
1849 nr_txbds = nr_frags + 2;
1850 else
1851 nr_txbds = nr_frags + 1;
1852
1853 /* check if there is space to queue this packet */
1854 if (nr_txbds > tx_queue->num_txbdfree) {
1855 /* no space, stop the queue */
1856 netif_tx_stop_queue(txq);
1857 dev->stats.tx_fifo_errors++;
1858 return NETDEV_TX_BUSY;
1859 }
1860
1861 /* Update transmit stats */
1862 bytes_sent = skb->len;
1863 tx_queue->stats.tx_bytes += bytes_sent;
1864 /* keep Tx bytes on wire for BQL accounting */
1865 GFAR_CB(skb)->bytes_sent = bytes_sent;
1866 tx_queue->stats.tx_packets++;
1867
1868 txbdp = txbdp_start = tx_queue->cur_tx;
1869 lstatus = be32_to_cpu(txbdp->lstatus);
1870
1871 /* Add TxPAL between FCB and frame if required */
1872 if (unlikely(do_tstamp)) {
1873 skb_push(skb, GMAC_TXPAL_LEN);
1874 memset(skb->data, 0, GMAC_TXPAL_LEN);
1875 }
1876
1877 /* Add TxFCB if required */
1878 if (fcb_len) {
1879 fcb = gfar_add_fcb(skb);
1880 lstatus |= BD_LFLAG(TXBD_TOE);
1881 }
1882
1883 /* Set up checksumming */
1884 if (do_csum) {
1885 gfar_tx_checksum(skb, fcb, fcb_len);
1886
1887 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1888 unlikely(gfar_csum_errata_76(priv, skb->len))) {
1889 __skb_pull(skb, GMAC_FCB_LEN);
1890 skb_checksum_help(skb);
1891 if (do_vlan || do_tstamp) {
1892 /* put back a new fcb for vlan/tstamp TOE */
1893 fcb = gfar_add_fcb(skb);
1894 } else {
1895 /* Tx TOE not used */
1896 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1897 fcb = NULL;
1898 }
1899 }
1900 }
1901
1902 if (do_vlan)
1903 gfar_tx_vlan(skb, fcb);
1904
1905 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1906 DMA_TO_DEVICE);
1907 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1908 goto dma_map_err;
1909
1910 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1911
1912 /* Time stamp insertion requires one additional TxBD */
1913 if (unlikely(do_tstamp))
1914 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1915 tx_queue->tx_ring_size);
1916
1917 if (likely(!nr_frags)) {
1918 if (likely(!do_tstamp))
1919 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1920 } else {
1921 u32 lstatus_start = lstatus;
1922
1923 /* Place the fragment addresses and lengths into the TxBDs */
1924 frag = &skb_shinfo(skb)->frags[0];
1925 for (i = 0; i < nr_frags; i++, frag++) {
1926 unsigned int size;
1927
1928 /* Point at the next BD, wrapping as needed */
1929 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1930
1931 size = skb_frag_size(frag);
1932
1933 lstatus = be32_to_cpu(txbdp->lstatus) | size |
1934 BD_LFLAG(TXBD_READY);
1935
1936 /* Handle the last BD specially */
1937 if (i == nr_frags - 1)
1938 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1939
1940 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1941 size, DMA_TO_DEVICE);
1942 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1943 goto dma_map_err;
1944
1945 /* set the TxBD length and buffer pointer */
1946 txbdp->bufPtr = cpu_to_be32(bufaddr);
1947 txbdp->lstatus = cpu_to_be32(lstatus);
1948 }
1949
1950 lstatus = lstatus_start;
1951 }
1952
1953 /* If time stamping is requested one additional TxBD must be set up. The
1954 * first TxBD points to the FCB and must have a data length of
1955 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1956 * the full frame length.
1957 */
1958 if (unlikely(do_tstamp)) {
1959 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1960
1961 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1962 bufaddr += fcb_len;
1963
1964 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1965 (skb_headlen(skb) - fcb_len);
1966 if (!nr_frags)
1967 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1968
1969 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1970 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1971 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1972
1973 /* Setup tx hardware time stamping */
1974 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1975 fcb->ptp = 1;
1976 } else {
1977 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1978 }
1979
1980 netdev_tx_sent_queue(txq, bytes_sent);
1981
1982 gfar_wmb();
1983
1984 txbdp_start->lstatus = cpu_to_be32(lstatus);
1985
1986 gfar_wmb(); /* force lstatus write before tx_skbuff */
1987
1988 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1989
1990 /* Update the current skb pointer to the next entry we will use
1991 * (wrapping if necessary)
1992 */
1993 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1994 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1995
1996 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1997
1998 /* We can work in parallel with gfar_clean_tx_ring(), except
1999 * when modifying num_txbdfree. Note that we didn't grab the lock
2000 * when we were reading the num_txbdfree and checking for available
2001 * space, that's because outside of this function it can only grow.
2002 */
2003 spin_lock_bh(&tx_queue->txlock);
2004 /* reduce TxBD free count */
2005 tx_queue->num_txbdfree -= (nr_txbds);
2006 spin_unlock_bh(&tx_queue->txlock);
2007
2008 /* If the next BD still needs to be cleaned up, then the bds
2009 * are full. We need to tell the kernel to stop sending us stuff.
2010 */
2011 if (!tx_queue->num_txbdfree) {
2012 netif_tx_stop_queue(txq);
2013
2014 dev->stats.tx_fifo_errors++;
2015 }
2016
2017 /* Tell the DMA to go go go */
2018 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2019
2020 return NETDEV_TX_OK;
2021
2022 dma_map_err:
2023 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2024 if (do_tstamp)
2025 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2026 for (i = 0; i < nr_frags; i++) {
2027 lstatus = be32_to_cpu(txbdp->lstatus);
2028 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2029 break;
2030
2031 lstatus &= ~BD_LFLAG(TXBD_READY);
2032 txbdp->lstatus = cpu_to_be32(lstatus);
2033 bufaddr = be32_to_cpu(txbdp->bufPtr);
2034 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2035 DMA_TO_DEVICE);
2036 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2037 }
2038 gfar_wmb();
2039 dev_kfree_skb_any(skb);
2040 return NETDEV_TX_OK;
2041 }
2042
2043 /* Changes the mac address if the controller is not running. */
gfar_set_mac_address(struct net_device * dev)2044 static int gfar_set_mac_address(struct net_device *dev)
2045 {
2046 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2047
2048 return 0;
2049 }
2050
gfar_change_mtu(struct net_device * dev,int new_mtu)2051 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2052 {
2053 struct gfar_private *priv = netdev_priv(dev);
2054
2055 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2056 cpu_relax();
2057
2058 if (dev->flags & IFF_UP)
2059 stop_gfar(dev);
2060
2061 dev->mtu = new_mtu;
2062
2063 if (dev->flags & IFF_UP)
2064 startup_gfar(dev);
2065
2066 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2067
2068 return 0;
2069 }
2070
reset_gfar(struct net_device * ndev)2071 static void reset_gfar(struct net_device *ndev)
2072 {
2073 struct gfar_private *priv = netdev_priv(ndev);
2074
2075 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2076 cpu_relax();
2077
2078 stop_gfar(ndev);
2079 startup_gfar(ndev);
2080
2081 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2082 }
2083
2084 /* gfar_reset_task gets scheduled when a packet has not been
2085 * transmitted after a set amount of time.
2086 * For now, assume that clearing out all the structures, and
2087 * starting over will fix the problem.
2088 */
gfar_reset_task(struct work_struct * work)2089 static void gfar_reset_task(struct work_struct *work)
2090 {
2091 struct gfar_private *priv = container_of(work, struct gfar_private,
2092 reset_task);
2093 reset_gfar(priv->ndev);
2094 }
2095
gfar_timeout(struct net_device * dev,unsigned int txqueue)2096 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2097 {
2098 struct gfar_private *priv = netdev_priv(dev);
2099
2100 dev->stats.tx_errors++;
2101 schedule_work(&priv->reset_task);
2102 }
2103
gfar_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)2104 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2105 {
2106 struct hwtstamp_config config;
2107 struct gfar_private *priv = netdev_priv(netdev);
2108
2109 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2110 return -EFAULT;
2111
2112 /* reserved for future extensions */
2113 if (config.flags)
2114 return -EINVAL;
2115
2116 switch (config.tx_type) {
2117 case HWTSTAMP_TX_OFF:
2118 priv->hwts_tx_en = 0;
2119 break;
2120 case HWTSTAMP_TX_ON:
2121 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2122 return -ERANGE;
2123 priv->hwts_tx_en = 1;
2124 break;
2125 default:
2126 return -ERANGE;
2127 }
2128
2129 switch (config.rx_filter) {
2130 case HWTSTAMP_FILTER_NONE:
2131 if (priv->hwts_rx_en) {
2132 priv->hwts_rx_en = 0;
2133 reset_gfar(netdev);
2134 }
2135 break;
2136 default:
2137 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2138 return -ERANGE;
2139 if (!priv->hwts_rx_en) {
2140 priv->hwts_rx_en = 1;
2141 reset_gfar(netdev);
2142 }
2143 config.rx_filter = HWTSTAMP_FILTER_ALL;
2144 break;
2145 }
2146
2147 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2148 -EFAULT : 0;
2149 }
2150
gfar_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)2151 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2152 {
2153 struct hwtstamp_config config;
2154 struct gfar_private *priv = netdev_priv(netdev);
2155
2156 config.flags = 0;
2157 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2158 config.rx_filter = (priv->hwts_rx_en ?
2159 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2160
2161 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2162 -EFAULT : 0;
2163 }
2164
gfar_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2165 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2166 {
2167 struct phy_device *phydev = dev->phydev;
2168
2169 if (!netif_running(dev))
2170 return -EINVAL;
2171
2172 if (cmd == SIOCSHWTSTAMP)
2173 return gfar_hwtstamp_set(dev, rq);
2174 if (cmd == SIOCGHWTSTAMP)
2175 return gfar_hwtstamp_get(dev, rq);
2176
2177 if (!phydev)
2178 return -ENODEV;
2179
2180 return phy_mii_ioctl(phydev, rq, cmd);
2181 }
2182
2183 /* Interrupt Handler for Transmit complete */
gfar_clean_tx_ring(struct gfar_priv_tx_q * tx_queue)2184 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2185 {
2186 struct net_device *dev = tx_queue->dev;
2187 struct netdev_queue *txq;
2188 struct gfar_private *priv = netdev_priv(dev);
2189 struct txbd8 *bdp, *next = NULL;
2190 struct txbd8 *lbdp = NULL;
2191 struct txbd8 *base = tx_queue->tx_bd_base;
2192 struct sk_buff *skb;
2193 int skb_dirtytx;
2194 int tx_ring_size = tx_queue->tx_ring_size;
2195 int frags = 0, nr_txbds = 0;
2196 int i;
2197 int howmany = 0;
2198 int tqi = tx_queue->qindex;
2199 unsigned int bytes_sent = 0;
2200 u32 lstatus;
2201 size_t buflen;
2202
2203 txq = netdev_get_tx_queue(dev, tqi);
2204 bdp = tx_queue->dirty_tx;
2205 skb_dirtytx = tx_queue->skb_dirtytx;
2206
2207 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2208 bool do_tstamp;
2209
2210 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2211 priv->hwts_tx_en;
2212
2213 frags = skb_shinfo(skb)->nr_frags;
2214
2215 /* When time stamping, one additional TxBD must be freed.
2216 * Also, we need to dma_unmap_single() the TxPAL.
2217 */
2218 if (unlikely(do_tstamp))
2219 nr_txbds = frags + 2;
2220 else
2221 nr_txbds = frags + 1;
2222
2223 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2224
2225 lstatus = be32_to_cpu(lbdp->lstatus);
2226
2227 /* Only clean completed frames */
2228 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2229 (lstatus & BD_LENGTH_MASK))
2230 break;
2231
2232 if (unlikely(do_tstamp)) {
2233 next = next_txbd(bdp, base, tx_ring_size);
2234 buflen = be16_to_cpu(next->length) +
2235 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2236 } else
2237 buflen = be16_to_cpu(bdp->length);
2238
2239 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2240 buflen, DMA_TO_DEVICE);
2241
2242 if (unlikely(do_tstamp)) {
2243 struct skb_shared_hwtstamps shhwtstamps;
2244 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2245 ~0x7UL);
2246
2247 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2248 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2249 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2250 skb_tstamp_tx(skb, &shhwtstamps);
2251 gfar_clear_txbd_status(bdp);
2252 bdp = next;
2253 }
2254
2255 gfar_clear_txbd_status(bdp);
2256 bdp = next_txbd(bdp, base, tx_ring_size);
2257
2258 for (i = 0; i < frags; i++) {
2259 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2260 be16_to_cpu(bdp->length),
2261 DMA_TO_DEVICE);
2262 gfar_clear_txbd_status(bdp);
2263 bdp = next_txbd(bdp, base, tx_ring_size);
2264 }
2265
2266 bytes_sent += GFAR_CB(skb)->bytes_sent;
2267
2268 dev_kfree_skb_any(skb);
2269
2270 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2271
2272 skb_dirtytx = (skb_dirtytx + 1) &
2273 TX_RING_MOD_MASK(tx_ring_size);
2274
2275 howmany++;
2276 spin_lock(&tx_queue->txlock);
2277 tx_queue->num_txbdfree += nr_txbds;
2278 spin_unlock(&tx_queue->txlock);
2279 }
2280
2281 /* If we freed a buffer, we can restart transmission, if necessary */
2282 if (tx_queue->num_txbdfree &&
2283 netif_tx_queue_stopped(txq) &&
2284 !(test_bit(GFAR_DOWN, &priv->state)))
2285 netif_wake_subqueue(priv->ndev, tqi);
2286
2287 /* Update dirty indicators */
2288 tx_queue->skb_dirtytx = skb_dirtytx;
2289 tx_queue->dirty_tx = bdp;
2290
2291 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2292 }
2293
count_errors(u32 lstatus,struct net_device * ndev)2294 static void count_errors(u32 lstatus, struct net_device *ndev)
2295 {
2296 struct gfar_private *priv = netdev_priv(ndev);
2297 struct net_device_stats *stats = &ndev->stats;
2298 struct gfar_extra_stats *estats = &priv->extra_stats;
2299
2300 /* If the packet was truncated, none of the other errors matter */
2301 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2302 stats->rx_length_errors++;
2303
2304 atomic64_inc(&estats->rx_trunc);
2305
2306 return;
2307 }
2308 /* Count the errors, if there were any */
2309 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2310 stats->rx_length_errors++;
2311
2312 if (lstatus & BD_LFLAG(RXBD_LARGE))
2313 atomic64_inc(&estats->rx_large);
2314 else
2315 atomic64_inc(&estats->rx_short);
2316 }
2317 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2318 stats->rx_frame_errors++;
2319 atomic64_inc(&estats->rx_nonoctet);
2320 }
2321 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2322 atomic64_inc(&estats->rx_crcerr);
2323 stats->rx_crc_errors++;
2324 }
2325 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2326 atomic64_inc(&estats->rx_overrun);
2327 stats->rx_over_errors++;
2328 }
2329 }
2330
gfar_receive(int irq,void * grp_id)2331 static irqreturn_t gfar_receive(int irq, void *grp_id)
2332 {
2333 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2334 unsigned long flags;
2335 u32 imask, ievent;
2336
2337 ievent = gfar_read(&grp->regs->ievent);
2338
2339 if (unlikely(ievent & IEVENT_FGPI)) {
2340 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2341 return IRQ_HANDLED;
2342 }
2343
2344 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2345 spin_lock_irqsave(&grp->grplock, flags);
2346 imask = gfar_read(&grp->regs->imask);
2347 imask &= IMASK_RX_DISABLED;
2348 gfar_write(&grp->regs->imask, imask);
2349 spin_unlock_irqrestore(&grp->grplock, flags);
2350 __napi_schedule(&grp->napi_rx);
2351 } else {
2352 /* Clear IEVENT, so interrupts aren't called again
2353 * because of the packets that have already arrived.
2354 */
2355 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2356 }
2357
2358 return IRQ_HANDLED;
2359 }
2360
2361 /* Interrupt Handler for Transmit complete */
gfar_transmit(int irq,void * grp_id)2362 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2363 {
2364 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2365 unsigned long flags;
2366 u32 imask;
2367
2368 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2369 spin_lock_irqsave(&grp->grplock, flags);
2370 imask = gfar_read(&grp->regs->imask);
2371 imask &= IMASK_TX_DISABLED;
2372 gfar_write(&grp->regs->imask, imask);
2373 spin_unlock_irqrestore(&grp->grplock, flags);
2374 __napi_schedule(&grp->napi_tx);
2375 } else {
2376 /* Clear IEVENT, so interrupts aren't called again
2377 * because of the packets that have already arrived.
2378 */
2379 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2380 }
2381
2382 return IRQ_HANDLED;
2383 }
2384
gfar_add_rx_frag(struct gfar_rx_buff * rxb,u32 lstatus,struct sk_buff * skb,bool first)2385 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2386 struct sk_buff *skb, bool first)
2387 {
2388 int size = lstatus & BD_LENGTH_MASK;
2389 struct page *page = rxb->page;
2390
2391 if (likely(first)) {
2392 skb_put(skb, size);
2393 } else {
2394 /* the last fragments' length contains the full frame length */
2395 if (lstatus & BD_LFLAG(RXBD_LAST))
2396 size -= skb->len;
2397
2398 WARN(size < 0, "gianfar: rx fragment size underflow");
2399 if (size < 0)
2400 return false;
2401
2402 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2403 rxb->page_offset + RXBUF_ALIGNMENT,
2404 size, GFAR_RXB_TRUESIZE);
2405 }
2406
2407 /* try reuse page */
2408 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2409 return false;
2410
2411 /* change offset to the other half */
2412 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2413
2414 page_ref_inc(page);
2415
2416 return true;
2417 }
2418
gfar_reuse_rx_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * old_rxb)2419 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2420 struct gfar_rx_buff *old_rxb)
2421 {
2422 struct gfar_rx_buff *new_rxb;
2423 u16 nta = rxq->next_to_alloc;
2424
2425 new_rxb = &rxq->rx_buff[nta];
2426
2427 /* find next buf that can reuse a page */
2428 nta++;
2429 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2430
2431 /* copy page reference */
2432 *new_rxb = *old_rxb;
2433
2434 /* sync for use by the device */
2435 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2436 old_rxb->page_offset,
2437 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2438 }
2439
gfar_get_next_rxbuff(struct gfar_priv_rx_q * rx_queue,u32 lstatus,struct sk_buff * skb)2440 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2441 u32 lstatus, struct sk_buff *skb)
2442 {
2443 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2444 struct page *page = rxb->page;
2445 bool first = false;
2446
2447 if (likely(!skb)) {
2448 void *buff_addr = page_address(page) + rxb->page_offset;
2449
2450 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2451 if (unlikely(!skb)) {
2452 gfar_rx_alloc_err(rx_queue);
2453 return NULL;
2454 }
2455 skb_reserve(skb, RXBUF_ALIGNMENT);
2456 first = true;
2457 }
2458
2459 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2460 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2461
2462 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2463 /* reuse the free half of the page */
2464 gfar_reuse_rx_page(rx_queue, rxb);
2465 } else {
2466 /* page cannot be reused, unmap it */
2467 dma_unmap_page(rx_queue->dev, rxb->dma,
2468 PAGE_SIZE, DMA_FROM_DEVICE);
2469 }
2470
2471 /* clear rxb content */
2472 rxb->page = NULL;
2473
2474 return skb;
2475 }
2476
gfar_rx_checksum(struct sk_buff * skb,struct rxfcb * fcb)2477 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2478 {
2479 /* If valid headers were found, and valid sums
2480 * were verified, then we tell the kernel that no
2481 * checksumming is necessary. Otherwise, it is [FIXME]
2482 */
2483 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2484 (RXFCB_CIP | RXFCB_CTU))
2485 skb->ip_summed = CHECKSUM_UNNECESSARY;
2486 else
2487 skb_checksum_none_assert(skb);
2488 }
2489
2490 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
gfar_process_frame(struct net_device * ndev,struct sk_buff * skb)2491 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2492 {
2493 struct gfar_private *priv = netdev_priv(ndev);
2494 struct rxfcb *fcb = NULL;
2495
2496 /* fcb is at the beginning if exists */
2497 fcb = (struct rxfcb *)skb->data;
2498
2499 /* Remove the FCB from the skb
2500 * Remove the padded bytes, if there are any
2501 */
2502 if (priv->uses_rxfcb)
2503 skb_pull(skb, GMAC_FCB_LEN);
2504
2505 /* Get receive timestamp from the skb */
2506 if (priv->hwts_rx_en) {
2507 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2508 u64 *ns = (u64 *) skb->data;
2509
2510 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2511 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2512 }
2513
2514 if (priv->padding)
2515 skb_pull(skb, priv->padding);
2516
2517 /* Trim off the FCS */
2518 pskb_trim(skb, skb->len - ETH_FCS_LEN);
2519
2520 if (ndev->features & NETIF_F_RXCSUM)
2521 gfar_rx_checksum(skb, fcb);
2522
2523 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2524 * Even if vlan rx accel is disabled, on some chips
2525 * RXFCB_VLN is pseudo randomly set.
2526 */
2527 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2528 be16_to_cpu(fcb->flags) & RXFCB_VLN)
2529 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2530 be16_to_cpu(fcb->vlctl));
2531 }
2532
2533 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2534 * until the budget/quota has been reached. Returns the number
2535 * of frames handled
2536 */
gfar_clean_rx_ring(struct gfar_priv_rx_q * rx_queue,int rx_work_limit)2537 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2538 int rx_work_limit)
2539 {
2540 struct net_device *ndev = rx_queue->ndev;
2541 struct gfar_private *priv = netdev_priv(ndev);
2542 struct rxbd8 *bdp;
2543 int i, howmany = 0;
2544 struct sk_buff *skb = rx_queue->skb;
2545 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2546 unsigned int total_bytes = 0, total_pkts = 0;
2547
2548 /* Get the first full descriptor */
2549 i = rx_queue->next_to_clean;
2550
2551 while (rx_work_limit--) {
2552 u32 lstatus;
2553
2554 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2555 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2556 cleaned_cnt = 0;
2557 }
2558
2559 bdp = &rx_queue->rx_bd_base[i];
2560 lstatus = be32_to_cpu(bdp->lstatus);
2561 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2562 break;
2563
2564 /* lost RXBD_LAST descriptor due to overrun */
2565 if (skb &&
2566 (lstatus & BD_LFLAG(RXBD_FIRST))) {
2567 /* discard faulty buffer */
2568 dev_kfree_skb(skb);
2569 skb = NULL;
2570 rx_queue->stats.rx_dropped++;
2571
2572 /* can continue normally */
2573 }
2574
2575 /* order rx buffer descriptor reads */
2576 rmb();
2577
2578 /* fetch next to clean buffer from the ring */
2579 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2580 if (unlikely(!skb))
2581 break;
2582
2583 cleaned_cnt++;
2584 howmany++;
2585
2586 if (unlikely(++i == rx_queue->rx_ring_size))
2587 i = 0;
2588
2589 rx_queue->next_to_clean = i;
2590
2591 /* fetch next buffer if not the last in frame */
2592 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2593 continue;
2594
2595 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2596 count_errors(lstatus, ndev);
2597
2598 /* discard faulty buffer */
2599 dev_kfree_skb(skb);
2600 skb = NULL;
2601 rx_queue->stats.rx_dropped++;
2602 continue;
2603 }
2604
2605 gfar_process_frame(ndev, skb);
2606
2607 /* Increment the number of packets */
2608 total_pkts++;
2609 total_bytes += skb->len;
2610
2611 skb_record_rx_queue(skb, rx_queue->qindex);
2612
2613 skb->protocol = eth_type_trans(skb, ndev);
2614
2615 /* Send the packet up the stack */
2616 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2617
2618 skb = NULL;
2619 }
2620
2621 /* Store incomplete frames for completion */
2622 rx_queue->skb = skb;
2623
2624 rx_queue->stats.rx_packets += total_pkts;
2625 rx_queue->stats.rx_bytes += total_bytes;
2626
2627 if (cleaned_cnt)
2628 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2629
2630 /* Update Last Free RxBD pointer for LFC */
2631 if (unlikely(priv->tx_actual_en)) {
2632 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2633
2634 gfar_write(rx_queue->rfbptr, bdp_dma);
2635 }
2636
2637 return howmany;
2638 }
2639
gfar_poll_rx_sq(struct napi_struct * napi,int budget)2640 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2641 {
2642 struct gfar_priv_grp *gfargrp =
2643 container_of(napi, struct gfar_priv_grp, napi_rx);
2644 struct gfar __iomem *regs = gfargrp->regs;
2645 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2646 int work_done = 0;
2647
2648 /* Clear IEVENT, so interrupts aren't called again
2649 * because of the packets that have already arrived
2650 */
2651 gfar_write(®s->ievent, IEVENT_RX_MASK);
2652
2653 work_done = gfar_clean_rx_ring(rx_queue, budget);
2654
2655 if (work_done < budget) {
2656 u32 imask;
2657 napi_complete_done(napi, work_done);
2658 /* Clear the halt bit in RSTAT */
2659 gfar_write(®s->rstat, gfargrp->rstat);
2660
2661 spin_lock_irq(&gfargrp->grplock);
2662 imask = gfar_read(®s->imask);
2663 imask |= IMASK_RX_DEFAULT;
2664 gfar_write(®s->imask, imask);
2665 spin_unlock_irq(&gfargrp->grplock);
2666 }
2667
2668 return work_done;
2669 }
2670
gfar_poll_tx_sq(struct napi_struct * napi,int budget)2671 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2672 {
2673 struct gfar_priv_grp *gfargrp =
2674 container_of(napi, struct gfar_priv_grp, napi_tx);
2675 struct gfar __iomem *regs = gfargrp->regs;
2676 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2677 u32 imask;
2678
2679 /* Clear IEVENT, so interrupts aren't called again
2680 * because of the packets that have already arrived
2681 */
2682 gfar_write(®s->ievent, IEVENT_TX_MASK);
2683
2684 /* run Tx cleanup to completion */
2685 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2686 gfar_clean_tx_ring(tx_queue);
2687
2688 napi_complete(napi);
2689
2690 spin_lock_irq(&gfargrp->grplock);
2691 imask = gfar_read(®s->imask);
2692 imask |= IMASK_TX_DEFAULT;
2693 gfar_write(®s->imask, imask);
2694 spin_unlock_irq(&gfargrp->grplock);
2695
2696 return 0;
2697 }
2698
gfar_poll_rx(struct napi_struct * napi,int budget)2699 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2700 {
2701 struct gfar_priv_grp *gfargrp =
2702 container_of(napi, struct gfar_priv_grp, napi_rx);
2703 struct gfar_private *priv = gfargrp->priv;
2704 struct gfar __iomem *regs = gfargrp->regs;
2705 struct gfar_priv_rx_q *rx_queue = NULL;
2706 int work_done = 0, work_done_per_q = 0;
2707 int i, budget_per_q = 0;
2708 unsigned long rstat_rxf;
2709 int num_act_queues;
2710
2711 /* Clear IEVENT, so interrupts aren't called again
2712 * because of the packets that have already arrived
2713 */
2714 gfar_write(®s->ievent, IEVENT_RX_MASK);
2715
2716 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK;
2717
2718 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2719 if (num_act_queues)
2720 budget_per_q = budget/num_act_queues;
2721
2722 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2723 /* skip queue if not active */
2724 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2725 continue;
2726
2727 rx_queue = priv->rx_queue[i];
2728 work_done_per_q =
2729 gfar_clean_rx_ring(rx_queue, budget_per_q);
2730 work_done += work_done_per_q;
2731
2732 /* finished processing this queue */
2733 if (work_done_per_q < budget_per_q) {
2734 /* clear active queue hw indication */
2735 gfar_write(®s->rstat,
2736 RSTAT_CLEAR_RXF0 >> i);
2737 num_act_queues--;
2738
2739 if (!num_act_queues)
2740 break;
2741 }
2742 }
2743
2744 if (!num_act_queues) {
2745 u32 imask;
2746 napi_complete_done(napi, work_done);
2747
2748 /* Clear the halt bit in RSTAT */
2749 gfar_write(®s->rstat, gfargrp->rstat);
2750
2751 spin_lock_irq(&gfargrp->grplock);
2752 imask = gfar_read(®s->imask);
2753 imask |= IMASK_RX_DEFAULT;
2754 gfar_write(®s->imask, imask);
2755 spin_unlock_irq(&gfargrp->grplock);
2756 }
2757
2758 return work_done;
2759 }
2760
gfar_poll_tx(struct napi_struct * napi,int budget)2761 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2762 {
2763 struct gfar_priv_grp *gfargrp =
2764 container_of(napi, struct gfar_priv_grp, napi_tx);
2765 struct gfar_private *priv = gfargrp->priv;
2766 struct gfar __iomem *regs = gfargrp->regs;
2767 struct gfar_priv_tx_q *tx_queue = NULL;
2768 int has_tx_work = 0;
2769 int i;
2770
2771 /* Clear IEVENT, so interrupts aren't called again
2772 * because of the packets that have already arrived
2773 */
2774 gfar_write(®s->ievent, IEVENT_TX_MASK);
2775
2776 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2777 tx_queue = priv->tx_queue[i];
2778 /* run Tx cleanup to completion */
2779 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2780 gfar_clean_tx_ring(tx_queue);
2781 has_tx_work = 1;
2782 }
2783 }
2784
2785 if (!has_tx_work) {
2786 u32 imask;
2787 napi_complete(napi);
2788
2789 spin_lock_irq(&gfargrp->grplock);
2790 imask = gfar_read(®s->imask);
2791 imask |= IMASK_TX_DEFAULT;
2792 gfar_write(®s->imask, imask);
2793 spin_unlock_irq(&gfargrp->grplock);
2794 }
2795
2796 return 0;
2797 }
2798
2799 /* GFAR error interrupt handler */
gfar_error(int irq,void * grp_id)2800 static irqreturn_t gfar_error(int irq, void *grp_id)
2801 {
2802 struct gfar_priv_grp *gfargrp = grp_id;
2803 struct gfar __iomem *regs = gfargrp->regs;
2804 struct gfar_private *priv= gfargrp->priv;
2805 struct net_device *dev = priv->ndev;
2806
2807 /* Save ievent for future reference */
2808 u32 events = gfar_read(®s->ievent);
2809
2810 /* Clear IEVENT */
2811 gfar_write(®s->ievent, events & IEVENT_ERR_MASK);
2812
2813 /* Magic Packet is not an error. */
2814 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2815 (events & IEVENT_MAG))
2816 events &= ~IEVENT_MAG;
2817
2818 /* Hmm... */
2819 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2820 netdev_dbg(dev,
2821 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2822 events, gfar_read(®s->imask));
2823
2824 /* Update the error counters */
2825 if (events & IEVENT_TXE) {
2826 dev->stats.tx_errors++;
2827
2828 if (events & IEVENT_LC)
2829 dev->stats.tx_window_errors++;
2830 if (events & IEVENT_CRL)
2831 dev->stats.tx_aborted_errors++;
2832 if (events & IEVENT_XFUN) {
2833 netif_dbg(priv, tx_err, dev,
2834 "TX FIFO underrun, packet dropped\n");
2835 dev->stats.tx_dropped++;
2836 atomic64_inc(&priv->extra_stats.tx_underrun);
2837
2838 schedule_work(&priv->reset_task);
2839 }
2840 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2841 }
2842 if (events & IEVENT_BSY) {
2843 dev->stats.rx_over_errors++;
2844 atomic64_inc(&priv->extra_stats.rx_bsy);
2845
2846 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2847 gfar_read(®s->rstat));
2848 }
2849 if (events & IEVENT_BABR) {
2850 dev->stats.rx_errors++;
2851 atomic64_inc(&priv->extra_stats.rx_babr);
2852
2853 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2854 }
2855 if (events & IEVENT_EBERR) {
2856 atomic64_inc(&priv->extra_stats.eberr);
2857 netif_dbg(priv, rx_err, dev, "bus error\n");
2858 }
2859 if (events & IEVENT_RXC)
2860 netif_dbg(priv, rx_status, dev, "control frame\n");
2861
2862 if (events & IEVENT_BABT) {
2863 atomic64_inc(&priv->extra_stats.tx_babt);
2864 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2865 }
2866 return IRQ_HANDLED;
2867 }
2868
2869 /* The interrupt handler for devices with one interrupt */
gfar_interrupt(int irq,void * grp_id)2870 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2871 {
2872 struct gfar_priv_grp *gfargrp = grp_id;
2873
2874 /* Save ievent for future reference */
2875 u32 events = gfar_read(&gfargrp->regs->ievent);
2876
2877 /* Check for reception */
2878 if (events & IEVENT_RX_MASK)
2879 gfar_receive(irq, grp_id);
2880
2881 /* Check for transmit completion */
2882 if (events & IEVENT_TX_MASK)
2883 gfar_transmit(irq, grp_id);
2884
2885 /* Check for errors */
2886 if (events & IEVENT_ERR_MASK)
2887 gfar_error(irq, grp_id);
2888
2889 return IRQ_HANDLED;
2890 }
2891
2892 #ifdef CONFIG_NET_POLL_CONTROLLER
2893 /* Polling 'interrupt' - used by things like netconsole to send skbs
2894 * without having to re-enable interrupts. It's not called while
2895 * the interrupt routine is executing.
2896 */
gfar_netpoll(struct net_device * dev)2897 static void gfar_netpoll(struct net_device *dev)
2898 {
2899 struct gfar_private *priv = netdev_priv(dev);
2900 int i;
2901
2902 /* If the device has multiple interrupts, run tx/rx */
2903 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2904 for (i = 0; i < priv->num_grps; i++) {
2905 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2906
2907 disable_irq(gfar_irq(grp, TX)->irq);
2908 disable_irq(gfar_irq(grp, RX)->irq);
2909 disable_irq(gfar_irq(grp, ER)->irq);
2910 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2911 enable_irq(gfar_irq(grp, ER)->irq);
2912 enable_irq(gfar_irq(grp, RX)->irq);
2913 enable_irq(gfar_irq(grp, TX)->irq);
2914 }
2915 } else {
2916 for (i = 0; i < priv->num_grps; i++) {
2917 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2918
2919 disable_irq(gfar_irq(grp, TX)->irq);
2920 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2921 enable_irq(gfar_irq(grp, TX)->irq);
2922 }
2923 }
2924 }
2925 #endif
2926
free_grp_irqs(struct gfar_priv_grp * grp)2927 static void free_grp_irqs(struct gfar_priv_grp *grp)
2928 {
2929 free_irq(gfar_irq(grp, TX)->irq, grp);
2930 free_irq(gfar_irq(grp, RX)->irq, grp);
2931 free_irq(gfar_irq(grp, ER)->irq, grp);
2932 }
2933
register_grp_irqs(struct gfar_priv_grp * grp)2934 static int register_grp_irqs(struct gfar_priv_grp *grp)
2935 {
2936 struct gfar_private *priv = grp->priv;
2937 struct net_device *dev = priv->ndev;
2938 int err;
2939
2940 /* If the device has multiple interrupts, register for
2941 * them. Otherwise, only register for the one
2942 */
2943 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2944 /* Install our interrupt handlers for Error,
2945 * Transmit, and Receive
2946 */
2947 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2948 gfar_irq(grp, ER)->name, grp);
2949 if (err < 0) {
2950 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2951 gfar_irq(grp, ER)->irq);
2952
2953 goto err_irq_fail;
2954 }
2955 enable_irq_wake(gfar_irq(grp, ER)->irq);
2956
2957 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2958 gfar_irq(grp, TX)->name, grp);
2959 if (err < 0) {
2960 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2961 gfar_irq(grp, TX)->irq);
2962 goto tx_irq_fail;
2963 }
2964 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2965 gfar_irq(grp, RX)->name, grp);
2966 if (err < 0) {
2967 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2968 gfar_irq(grp, RX)->irq);
2969 goto rx_irq_fail;
2970 }
2971 enable_irq_wake(gfar_irq(grp, RX)->irq);
2972
2973 } else {
2974 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2975 gfar_irq(grp, TX)->name, grp);
2976 if (err < 0) {
2977 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2978 gfar_irq(grp, TX)->irq);
2979 goto err_irq_fail;
2980 }
2981 enable_irq_wake(gfar_irq(grp, TX)->irq);
2982 }
2983
2984 return 0;
2985
2986 rx_irq_fail:
2987 free_irq(gfar_irq(grp, TX)->irq, grp);
2988 tx_irq_fail:
2989 free_irq(gfar_irq(grp, ER)->irq, grp);
2990 err_irq_fail:
2991 return err;
2992
2993 }
2994
gfar_free_irq(struct gfar_private * priv)2995 static void gfar_free_irq(struct gfar_private *priv)
2996 {
2997 int i;
2998
2999 /* Free the IRQs */
3000 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3001 for (i = 0; i < priv->num_grps; i++)
3002 free_grp_irqs(&priv->gfargrp[i]);
3003 } else {
3004 for (i = 0; i < priv->num_grps; i++)
3005 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
3006 &priv->gfargrp[i]);
3007 }
3008 }
3009
gfar_request_irq(struct gfar_private * priv)3010 static int gfar_request_irq(struct gfar_private *priv)
3011 {
3012 int err, i, j;
3013
3014 for (i = 0; i < priv->num_grps; i++) {
3015 err = register_grp_irqs(&priv->gfargrp[i]);
3016 if (err) {
3017 for (j = 0; j < i; j++)
3018 free_grp_irqs(&priv->gfargrp[j]);
3019 return err;
3020 }
3021 }
3022
3023 return 0;
3024 }
3025
3026 /* Called when something needs to use the ethernet device
3027 * Returns 0 for success.
3028 */
gfar_enet_open(struct net_device * dev)3029 static int gfar_enet_open(struct net_device *dev)
3030 {
3031 struct gfar_private *priv = netdev_priv(dev);
3032 int err;
3033
3034 err = init_phy(dev);
3035 if (err)
3036 return err;
3037
3038 err = gfar_request_irq(priv);
3039 if (err)
3040 return err;
3041
3042 err = startup_gfar(dev);
3043 if (err)
3044 return err;
3045
3046 return err;
3047 }
3048
3049 /* Stops the kernel queue, and halts the controller */
gfar_close(struct net_device * dev)3050 static int gfar_close(struct net_device *dev)
3051 {
3052 struct gfar_private *priv = netdev_priv(dev);
3053
3054 cancel_work_sync(&priv->reset_task);
3055 stop_gfar(dev);
3056
3057 /* Disconnect from the PHY */
3058 phy_disconnect(dev->phydev);
3059
3060 gfar_free_irq(priv);
3061
3062 return 0;
3063 }
3064
3065 /* Clears each of the exact match registers to zero, so they
3066 * don't interfere with normal reception
3067 */
gfar_clear_exact_match(struct net_device * dev)3068 static void gfar_clear_exact_match(struct net_device *dev)
3069 {
3070 int idx;
3071 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3072
3073 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3074 gfar_set_mac_for_addr(dev, idx, zero_arr);
3075 }
3076
3077 /* Update the hash table based on the current list of multicast
3078 * addresses we subscribe to. Also, change the promiscuity of
3079 * the device based on the flags (this function is called
3080 * whenever dev->flags is changed
3081 */
gfar_set_multi(struct net_device * dev)3082 static void gfar_set_multi(struct net_device *dev)
3083 {
3084 struct netdev_hw_addr *ha;
3085 struct gfar_private *priv = netdev_priv(dev);
3086 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3087 u32 tempval;
3088
3089 if (dev->flags & IFF_PROMISC) {
3090 /* Set RCTRL to PROM */
3091 tempval = gfar_read(®s->rctrl);
3092 tempval |= RCTRL_PROM;
3093 gfar_write(®s->rctrl, tempval);
3094 } else {
3095 /* Set RCTRL to not PROM */
3096 tempval = gfar_read(®s->rctrl);
3097 tempval &= ~(RCTRL_PROM);
3098 gfar_write(®s->rctrl, tempval);
3099 }
3100
3101 if (dev->flags & IFF_ALLMULTI) {
3102 /* Set the hash to rx all multicast frames */
3103 gfar_write(®s->igaddr0, 0xffffffff);
3104 gfar_write(®s->igaddr1, 0xffffffff);
3105 gfar_write(®s->igaddr2, 0xffffffff);
3106 gfar_write(®s->igaddr3, 0xffffffff);
3107 gfar_write(®s->igaddr4, 0xffffffff);
3108 gfar_write(®s->igaddr5, 0xffffffff);
3109 gfar_write(®s->igaddr6, 0xffffffff);
3110 gfar_write(®s->igaddr7, 0xffffffff);
3111 gfar_write(®s->gaddr0, 0xffffffff);
3112 gfar_write(®s->gaddr1, 0xffffffff);
3113 gfar_write(®s->gaddr2, 0xffffffff);
3114 gfar_write(®s->gaddr3, 0xffffffff);
3115 gfar_write(®s->gaddr4, 0xffffffff);
3116 gfar_write(®s->gaddr5, 0xffffffff);
3117 gfar_write(®s->gaddr6, 0xffffffff);
3118 gfar_write(®s->gaddr7, 0xffffffff);
3119 } else {
3120 int em_num;
3121 int idx;
3122
3123 /* zero out the hash */
3124 gfar_write(®s->igaddr0, 0x0);
3125 gfar_write(®s->igaddr1, 0x0);
3126 gfar_write(®s->igaddr2, 0x0);
3127 gfar_write(®s->igaddr3, 0x0);
3128 gfar_write(®s->igaddr4, 0x0);
3129 gfar_write(®s->igaddr5, 0x0);
3130 gfar_write(®s->igaddr6, 0x0);
3131 gfar_write(®s->igaddr7, 0x0);
3132 gfar_write(®s->gaddr0, 0x0);
3133 gfar_write(®s->gaddr1, 0x0);
3134 gfar_write(®s->gaddr2, 0x0);
3135 gfar_write(®s->gaddr3, 0x0);
3136 gfar_write(®s->gaddr4, 0x0);
3137 gfar_write(®s->gaddr5, 0x0);
3138 gfar_write(®s->gaddr6, 0x0);
3139 gfar_write(®s->gaddr7, 0x0);
3140
3141 /* If we have extended hash tables, we need to
3142 * clear the exact match registers to prepare for
3143 * setting them
3144 */
3145 if (priv->extended_hash) {
3146 em_num = GFAR_EM_NUM + 1;
3147 gfar_clear_exact_match(dev);
3148 idx = 1;
3149 } else {
3150 idx = 0;
3151 em_num = 0;
3152 }
3153
3154 if (netdev_mc_empty(dev))
3155 return;
3156
3157 /* Parse the list, and set the appropriate bits */
3158 netdev_for_each_mc_addr(ha, dev) {
3159 if (idx < em_num) {
3160 gfar_set_mac_for_addr(dev, idx, ha->addr);
3161 idx++;
3162 } else
3163 gfar_set_hash_for_addr(dev, ha->addr);
3164 }
3165 }
3166 }
3167
gfar_mac_reset(struct gfar_private * priv)3168 void gfar_mac_reset(struct gfar_private *priv)
3169 {
3170 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3171 u32 tempval;
3172
3173 /* Reset MAC layer */
3174 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
3175
3176 /* We need to delay at least 3 TX clocks */
3177 udelay(3);
3178
3179 /* the soft reset bit is not self-resetting, so we need to
3180 * clear it before resuming normal operation
3181 */
3182 gfar_write(®s->maccfg1, 0);
3183
3184 udelay(3);
3185
3186 gfar_rx_offload_en(priv);
3187
3188 /* Initialize the max receive frame/buffer lengths */
3189 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3190 gfar_write(®s->mrblr, GFAR_RXB_SIZE);
3191
3192 /* Initialize the Minimum Frame Length Register */
3193 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
3194
3195 /* Initialize MACCFG2. */
3196 tempval = MACCFG2_INIT_SETTINGS;
3197
3198 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3199 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
3200 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3201 */
3202 if (gfar_has_errata(priv, GFAR_ERRATA_74))
3203 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3204
3205 gfar_write(®s->maccfg2, tempval);
3206
3207 /* Clear mac addr hash registers */
3208 gfar_write(®s->igaddr0, 0);
3209 gfar_write(®s->igaddr1, 0);
3210 gfar_write(®s->igaddr2, 0);
3211 gfar_write(®s->igaddr3, 0);
3212 gfar_write(®s->igaddr4, 0);
3213 gfar_write(®s->igaddr5, 0);
3214 gfar_write(®s->igaddr6, 0);
3215 gfar_write(®s->igaddr7, 0);
3216
3217 gfar_write(®s->gaddr0, 0);
3218 gfar_write(®s->gaddr1, 0);
3219 gfar_write(®s->gaddr2, 0);
3220 gfar_write(®s->gaddr3, 0);
3221 gfar_write(®s->gaddr4, 0);
3222 gfar_write(®s->gaddr5, 0);
3223 gfar_write(®s->gaddr6, 0);
3224 gfar_write(®s->gaddr7, 0);
3225
3226 if (priv->extended_hash)
3227 gfar_clear_exact_match(priv->ndev);
3228
3229 gfar_mac_rx_config(priv);
3230
3231 gfar_mac_tx_config(priv);
3232
3233 gfar_set_mac_address(priv->ndev);
3234
3235 gfar_set_multi(priv->ndev);
3236
3237 /* clear ievent and imask before configuring coalescing */
3238 gfar_ints_disable(priv);
3239
3240 /* Configure the coalescing support */
3241 gfar_configure_coalescing_all(priv);
3242 }
3243
gfar_hw_init(struct gfar_private * priv)3244 static void gfar_hw_init(struct gfar_private *priv)
3245 {
3246 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3247 u32 attrs;
3248
3249 /* Stop the DMA engine now, in case it was running before
3250 * (The firmware could have used it, and left it running).
3251 */
3252 gfar_halt(priv);
3253
3254 gfar_mac_reset(priv);
3255
3256 /* Zero out the rmon mib registers if it has them */
3257 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3258 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3259
3260 /* Mask off the CAM interrupts */
3261 gfar_write(®s->rmon.cam1, 0xffffffff);
3262 gfar_write(®s->rmon.cam2, 0xffffffff);
3263 }
3264
3265 /* Initialize ECNTRL */
3266 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
3267
3268 /* Set the extraction length and index */
3269 attrs = ATTRELI_EL(priv->rx_stash_size) |
3270 ATTRELI_EI(priv->rx_stash_index);
3271
3272 gfar_write(®s->attreli, attrs);
3273
3274 /* Start with defaults, and add stashing
3275 * depending on driver parameters
3276 */
3277 attrs = ATTR_INIT_SETTINGS;
3278
3279 if (priv->bd_stash_en)
3280 attrs |= ATTR_BDSTASH;
3281
3282 if (priv->rx_stash_size != 0)
3283 attrs |= ATTR_BUFSTASH;
3284
3285 gfar_write(®s->attr, attrs);
3286
3287 /* FIFO configs */
3288 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3289 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3290 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3291
3292 /* Program the interrupt steering regs, only for MG devices */
3293 if (priv->num_grps > 1)
3294 gfar_write_isrg(priv);
3295 }
3296
3297 static const struct net_device_ops gfar_netdev_ops = {
3298 .ndo_open = gfar_enet_open,
3299 .ndo_start_xmit = gfar_start_xmit,
3300 .ndo_stop = gfar_close,
3301 .ndo_change_mtu = gfar_change_mtu,
3302 .ndo_set_features = gfar_set_features,
3303 .ndo_set_rx_mode = gfar_set_multi,
3304 .ndo_tx_timeout = gfar_timeout,
3305 .ndo_do_ioctl = gfar_ioctl,
3306 .ndo_get_stats = gfar_get_stats,
3307 .ndo_change_carrier = fixed_phy_change_carrier,
3308 .ndo_set_mac_address = gfar_set_mac_addr,
3309 .ndo_validate_addr = eth_validate_addr,
3310 #ifdef CONFIG_NET_POLL_CONTROLLER
3311 .ndo_poll_controller = gfar_netpoll,
3312 #endif
3313 };
3314
3315 /* Set up the ethernet device structure, private data,
3316 * and anything else we need before we start
3317 */
gfar_probe(struct platform_device * ofdev)3318 static int gfar_probe(struct platform_device *ofdev)
3319 {
3320 struct device_node *np = ofdev->dev.of_node;
3321 struct net_device *dev = NULL;
3322 struct gfar_private *priv = NULL;
3323 int err = 0, i;
3324
3325 err = gfar_of_init(ofdev, &dev);
3326
3327 if (err)
3328 return err;
3329
3330 priv = netdev_priv(dev);
3331 priv->ndev = dev;
3332 priv->ofdev = ofdev;
3333 priv->dev = &ofdev->dev;
3334 SET_NETDEV_DEV(dev, &ofdev->dev);
3335
3336 INIT_WORK(&priv->reset_task, gfar_reset_task);
3337
3338 platform_set_drvdata(ofdev, priv);
3339
3340 gfar_detect_errata(priv);
3341
3342 /* Set the dev->base_addr to the gfar reg region */
3343 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3344
3345 /* Fill in the dev structure */
3346 dev->watchdog_timeo = TX_TIMEOUT;
3347 /* MTU range: 50 - 9586 */
3348 dev->mtu = 1500;
3349 dev->min_mtu = 50;
3350 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3351 dev->netdev_ops = &gfar_netdev_ops;
3352 dev->ethtool_ops = &gfar_ethtool_ops;
3353
3354 /* Register for napi ...We are registering NAPI for each grp */
3355 for (i = 0; i < priv->num_grps; i++) {
3356 if (priv->poll_mode == GFAR_SQ_POLLING) {
3357 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3358 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3359 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3360 gfar_poll_tx_sq, 2);
3361 } else {
3362 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3363 gfar_poll_rx, GFAR_DEV_WEIGHT);
3364 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3365 gfar_poll_tx, 2);
3366 }
3367 }
3368
3369 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3370 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3371 NETIF_F_RXCSUM;
3372 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3373 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3374 }
3375
3376 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3377 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3378 NETIF_F_HW_VLAN_CTAG_RX;
3379 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3380 }
3381
3382 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3383
3384 gfar_init_addr_hash_table(priv);
3385
3386 /* Insert receive time stamps into padding alignment bytes, and
3387 * plus 2 bytes padding to ensure the cpu alignment.
3388 */
3389 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3390 priv->padding = 8 + DEFAULT_PADDING;
3391
3392 if (dev->features & NETIF_F_IP_CSUM ||
3393 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3394 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3395
3396 /* Initializing some of the rx/tx queue level parameters */
3397 for (i = 0; i < priv->num_tx_queues; i++) {
3398 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3399 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3400 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3401 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3402 }
3403
3404 for (i = 0; i < priv->num_rx_queues; i++) {
3405 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3406 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3407 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3408 }
3409
3410 /* Always enable rx filer if available */
3411 priv->rx_filer_enable =
3412 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3413 /* Enable most messages by default */
3414 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3415 /* use pritority h/w tx queue scheduling for single queue devices */
3416 if (priv->num_tx_queues == 1)
3417 priv->prio_sched_en = 1;
3418
3419 set_bit(GFAR_DOWN, &priv->state);
3420
3421 gfar_hw_init(priv);
3422
3423 /* Carrier starts down, phylib will bring it up */
3424 netif_carrier_off(dev);
3425
3426 err = register_netdev(dev);
3427
3428 if (err) {
3429 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3430 goto register_fail;
3431 }
3432
3433 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3434 priv->wol_supported |= GFAR_WOL_MAGIC;
3435
3436 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3437 priv->rx_filer_enable)
3438 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3439
3440 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3441
3442 /* fill out IRQ number and name fields */
3443 for (i = 0; i < priv->num_grps; i++) {
3444 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3445 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3446 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3447 dev->name, "_g", '0' + i, "_tx");
3448 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3449 dev->name, "_g", '0' + i, "_rx");
3450 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3451 dev->name, "_g", '0' + i, "_er");
3452 } else
3453 strcpy(gfar_irq(grp, TX)->name, dev->name);
3454 }
3455
3456 /* Initialize the filer table */
3457 gfar_init_filer_table(priv);
3458
3459 /* Print out the device info */
3460 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3461
3462 /* Even more device info helps when determining which kernel
3463 * provided which set of benchmarks.
3464 */
3465 netdev_info(dev, "Running with NAPI enabled\n");
3466 for (i = 0; i < priv->num_rx_queues; i++)
3467 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3468 i, priv->rx_queue[i]->rx_ring_size);
3469 for (i = 0; i < priv->num_tx_queues; i++)
3470 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3471 i, priv->tx_queue[i]->tx_ring_size);
3472
3473 return 0;
3474
3475 register_fail:
3476 if (of_phy_is_fixed_link(np))
3477 of_phy_deregister_fixed_link(np);
3478 unmap_group_regs(priv);
3479 gfar_free_rx_queues(priv);
3480 gfar_free_tx_queues(priv);
3481 of_node_put(priv->phy_node);
3482 of_node_put(priv->tbi_node);
3483 free_gfar_dev(priv);
3484 return err;
3485 }
3486
gfar_remove(struct platform_device * ofdev)3487 static int gfar_remove(struct platform_device *ofdev)
3488 {
3489 struct gfar_private *priv = platform_get_drvdata(ofdev);
3490 struct device_node *np = ofdev->dev.of_node;
3491
3492 of_node_put(priv->phy_node);
3493 of_node_put(priv->tbi_node);
3494
3495 unregister_netdev(priv->ndev);
3496
3497 if (of_phy_is_fixed_link(np))
3498 of_phy_deregister_fixed_link(np);
3499
3500 unmap_group_regs(priv);
3501 gfar_free_rx_queues(priv);
3502 gfar_free_tx_queues(priv);
3503 free_gfar_dev(priv);
3504
3505 return 0;
3506 }
3507
3508 #ifdef CONFIG_PM
3509
__gfar_filer_disable(struct gfar_private * priv)3510 static void __gfar_filer_disable(struct gfar_private *priv)
3511 {
3512 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3513 u32 temp;
3514
3515 temp = gfar_read(®s->rctrl);
3516 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3517 gfar_write(®s->rctrl, temp);
3518 }
3519
__gfar_filer_enable(struct gfar_private * priv)3520 static void __gfar_filer_enable(struct gfar_private *priv)
3521 {
3522 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3523 u32 temp;
3524
3525 temp = gfar_read(®s->rctrl);
3526 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3527 gfar_write(®s->rctrl, temp);
3528 }
3529
3530 /* Filer rules implementing wol capabilities */
gfar_filer_config_wol(struct gfar_private * priv)3531 static void gfar_filer_config_wol(struct gfar_private *priv)
3532 {
3533 unsigned int i;
3534 u32 rqfcr;
3535
3536 __gfar_filer_disable(priv);
3537
3538 /* clear the filer table, reject any packet by default */
3539 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3540 for (i = 0; i <= MAX_FILER_IDX; i++)
3541 gfar_write_filer(priv, i, rqfcr, 0);
3542
3543 i = 0;
3544 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3545 /* unicast packet, accept it */
3546 struct net_device *ndev = priv->ndev;
3547 /* get the default rx queue index */
3548 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3549 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3550 (ndev->dev_addr[1] << 8) |
3551 ndev->dev_addr[2];
3552
3553 rqfcr = (qindex << 10) | RQFCR_AND |
3554 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3555
3556 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3557
3558 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3559 (ndev->dev_addr[4] << 8) |
3560 ndev->dev_addr[5];
3561 rqfcr = (qindex << 10) | RQFCR_GPI |
3562 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3563 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3564 }
3565
3566 __gfar_filer_enable(priv);
3567 }
3568
gfar_filer_restore_table(struct gfar_private * priv)3569 static void gfar_filer_restore_table(struct gfar_private *priv)
3570 {
3571 u32 rqfcr, rqfpr;
3572 unsigned int i;
3573
3574 __gfar_filer_disable(priv);
3575
3576 for (i = 0; i <= MAX_FILER_IDX; i++) {
3577 rqfcr = priv->ftp_rqfcr[i];
3578 rqfpr = priv->ftp_rqfpr[i];
3579 gfar_write_filer(priv, i, rqfcr, rqfpr);
3580 }
3581
3582 __gfar_filer_enable(priv);
3583 }
3584
3585 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
gfar_start_wol_filer(struct gfar_private * priv)3586 static void gfar_start_wol_filer(struct gfar_private *priv)
3587 {
3588 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3589 u32 tempval;
3590 int i = 0;
3591
3592 /* Enable Rx hw queues */
3593 gfar_write(®s->rqueue, priv->rqueue);
3594
3595 /* Initialize DMACTRL to have WWR and WOP */
3596 tempval = gfar_read(®s->dmactrl);
3597 tempval |= DMACTRL_INIT_SETTINGS;
3598 gfar_write(®s->dmactrl, tempval);
3599
3600 /* Make sure we aren't stopped */
3601 tempval = gfar_read(®s->dmactrl);
3602 tempval &= ~DMACTRL_GRS;
3603 gfar_write(®s->dmactrl, tempval);
3604
3605 for (i = 0; i < priv->num_grps; i++) {
3606 regs = priv->gfargrp[i].regs;
3607 /* Clear RHLT, so that the DMA starts polling now */
3608 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
3609 /* enable the Filer General Purpose Interrupt */
3610 gfar_write(®s->imask, IMASK_FGPI);
3611 }
3612
3613 /* Enable Rx DMA */
3614 tempval = gfar_read(®s->maccfg1);
3615 tempval |= MACCFG1_RX_EN;
3616 gfar_write(®s->maccfg1, tempval);
3617 }
3618
gfar_suspend(struct device * dev)3619 static int gfar_suspend(struct device *dev)
3620 {
3621 struct gfar_private *priv = dev_get_drvdata(dev);
3622 struct net_device *ndev = priv->ndev;
3623 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3624 u32 tempval;
3625 u16 wol = priv->wol_opts;
3626
3627 if (!netif_running(ndev))
3628 return 0;
3629
3630 disable_napi(priv);
3631 netif_tx_lock(ndev);
3632 netif_device_detach(ndev);
3633 netif_tx_unlock(ndev);
3634
3635 gfar_halt(priv);
3636
3637 if (wol & GFAR_WOL_MAGIC) {
3638 /* Enable interrupt on Magic Packet */
3639 gfar_write(®s->imask, IMASK_MAG);
3640
3641 /* Enable Magic Packet mode */
3642 tempval = gfar_read(®s->maccfg2);
3643 tempval |= MACCFG2_MPEN;
3644 gfar_write(®s->maccfg2, tempval);
3645
3646 /* re-enable the Rx block */
3647 tempval = gfar_read(®s->maccfg1);
3648 tempval |= MACCFG1_RX_EN;
3649 gfar_write(®s->maccfg1, tempval);
3650
3651 } else if (wol & GFAR_WOL_FILER_UCAST) {
3652 gfar_filer_config_wol(priv);
3653 gfar_start_wol_filer(priv);
3654
3655 } else {
3656 phy_stop(ndev->phydev);
3657 }
3658
3659 return 0;
3660 }
3661
gfar_resume(struct device * dev)3662 static int gfar_resume(struct device *dev)
3663 {
3664 struct gfar_private *priv = dev_get_drvdata(dev);
3665 struct net_device *ndev = priv->ndev;
3666 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3667 u32 tempval;
3668 u16 wol = priv->wol_opts;
3669
3670 if (!netif_running(ndev))
3671 return 0;
3672
3673 if (wol & GFAR_WOL_MAGIC) {
3674 /* Disable Magic Packet mode */
3675 tempval = gfar_read(®s->maccfg2);
3676 tempval &= ~MACCFG2_MPEN;
3677 gfar_write(®s->maccfg2, tempval);
3678
3679 } else if (wol & GFAR_WOL_FILER_UCAST) {
3680 /* need to stop rx only, tx is already down */
3681 gfar_halt(priv);
3682 gfar_filer_restore_table(priv);
3683
3684 } else {
3685 phy_start(ndev->phydev);
3686 }
3687
3688 gfar_start(priv);
3689
3690 netif_device_attach(ndev);
3691 enable_napi(priv);
3692
3693 return 0;
3694 }
3695
gfar_restore(struct device * dev)3696 static int gfar_restore(struct device *dev)
3697 {
3698 struct gfar_private *priv = dev_get_drvdata(dev);
3699 struct net_device *ndev = priv->ndev;
3700
3701 if (!netif_running(ndev)) {
3702 netif_device_attach(ndev);
3703
3704 return 0;
3705 }
3706
3707 gfar_init_bds(ndev);
3708
3709 gfar_mac_reset(priv);
3710
3711 gfar_init_tx_rx_base(priv);
3712
3713 gfar_start(priv);
3714
3715 priv->oldlink = 0;
3716 priv->oldspeed = 0;
3717 priv->oldduplex = -1;
3718
3719 if (ndev->phydev)
3720 phy_start(ndev->phydev);
3721
3722 netif_device_attach(ndev);
3723 enable_napi(priv);
3724
3725 return 0;
3726 }
3727
3728 static const struct dev_pm_ops gfar_pm_ops = {
3729 .suspend = gfar_suspend,
3730 .resume = gfar_resume,
3731 .freeze = gfar_suspend,
3732 .thaw = gfar_resume,
3733 .restore = gfar_restore,
3734 };
3735
3736 #define GFAR_PM_OPS (&gfar_pm_ops)
3737
3738 #else
3739
3740 #define GFAR_PM_OPS NULL
3741
3742 #endif
3743
3744 static const struct of_device_id gfar_match[] =
3745 {
3746 {
3747 .type = "network",
3748 .compatible = "gianfar",
3749 },
3750 {
3751 .compatible = "fsl,etsec2",
3752 },
3753 {},
3754 };
3755 MODULE_DEVICE_TABLE(of, gfar_match);
3756
3757 /* Structure for a device driver */
3758 static struct platform_driver gfar_driver = {
3759 .driver = {
3760 .name = "fsl-gianfar",
3761 .pm = GFAR_PM_OPS,
3762 .of_match_table = gfar_match,
3763 },
3764 .probe = gfar_probe,
3765 .remove = gfar_remove,
3766 };
3767
3768 module_platform_driver(gfar_driver);
3769