• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62 
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85 
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 
104 #define TX_TIMEOUT      (5*HZ)
105 
106 MODULE_AUTHOR("Freescale Semiconductor, Inc");
107 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
108 MODULE_LICENSE("GPL");
109 
gfar_init_rxbdp(struct gfar_priv_rx_q * rx_queue,struct rxbd8 * bdp,dma_addr_t buf)110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
111 			    dma_addr_t buf)
112 {
113 	u32 lstatus;
114 
115 	bdp->bufPtr = cpu_to_be32(buf);
116 
117 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
118 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
119 		lstatus |= BD_LFLAG(RXBD_WRAP);
120 
121 	gfar_wmb();
122 
123 	bdp->lstatus = cpu_to_be32(lstatus);
124 }
125 
gfar_init_tx_rx_base(struct gfar_private * priv)126 static void gfar_init_tx_rx_base(struct gfar_private *priv)
127 {
128 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
129 	u32 __iomem *baddr;
130 	int i;
131 
132 	baddr = &regs->tbase0;
133 	for (i = 0; i < priv->num_tx_queues; i++) {
134 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
135 		baddr += 2;
136 	}
137 
138 	baddr = &regs->rbase0;
139 	for (i = 0; i < priv->num_rx_queues; i++) {
140 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
141 		baddr += 2;
142 	}
143 }
144 
gfar_init_rqprm(struct gfar_private * priv)145 static void gfar_init_rqprm(struct gfar_private *priv)
146 {
147 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
148 	u32 __iomem *baddr;
149 	int i;
150 
151 	baddr = &regs->rqprm0;
152 	for (i = 0; i < priv->num_rx_queues; i++) {
153 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
154 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
155 		baddr++;
156 	}
157 }
158 
gfar_rx_offload_en(struct gfar_private * priv)159 static void gfar_rx_offload_en(struct gfar_private *priv)
160 {
161 	/* set this when rx hw offload (TOE) functions are being used */
162 	priv->uses_rxfcb = 0;
163 
164 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
165 		priv->uses_rxfcb = 1;
166 
167 	if (priv->hwts_rx_en || priv->rx_filer_enable)
168 		priv->uses_rxfcb = 1;
169 }
170 
gfar_mac_rx_config(struct gfar_private * priv)171 static void gfar_mac_rx_config(struct gfar_private *priv)
172 {
173 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
174 	u32 rctrl = 0;
175 
176 	if (priv->rx_filer_enable) {
177 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
178 		/* Program the RIR0 reg with the required distribution */
179 		if (priv->poll_mode == GFAR_SQ_POLLING)
180 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
181 		else /* GFAR_MQ_POLLING */
182 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
183 	}
184 
185 	/* Restore PROMISC mode */
186 	if (priv->ndev->flags & IFF_PROMISC)
187 		rctrl |= RCTRL_PROM;
188 
189 	if (priv->ndev->features & NETIF_F_RXCSUM)
190 		rctrl |= RCTRL_CHECKSUMMING;
191 
192 	if (priv->extended_hash)
193 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
194 
195 	if (priv->padding) {
196 		rctrl &= ~RCTRL_PAL_MASK;
197 		rctrl |= RCTRL_PADDING(priv->padding);
198 	}
199 
200 	/* Enable HW time stamping if requested from user space */
201 	if (priv->hwts_rx_en)
202 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
203 
204 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
205 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
206 
207 	/* Clear the LFC bit */
208 	gfar_write(&regs->rctrl, rctrl);
209 	/* Init flow control threshold values */
210 	gfar_init_rqprm(priv);
211 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
212 	rctrl |= RCTRL_LFC;
213 
214 	/* Init rctrl based on our settings */
215 	gfar_write(&regs->rctrl, rctrl);
216 }
217 
gfar_mac_tx_config(struct gfar_private * priv)218 static void gfar_mac_tx_config(struct gfar_private *priv)
219 {
220 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
221 	u32 tctrl = 0;
222 
223 	if (priv->ndev->features & NETIF_F_IP_CSUM)
224 		tctrl |= TCTRL_INIT_CSUM;
225 
226 	if (priv->prio_sched_en)
227 		tctrl |= TCTRL_TXSCHED_PRIO;
228 	else {
229 		tctrl |= TCTRL_TXSCHED_WRRS;
230 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
231 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
232 	}
233 
234 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
235 		tctrl |= TCTRL_VLINS;
236 
237 	gfar_write(&regs->tctrl, tctrl);
238 }
239 
gfar_configure_coalescing(struct gfar_private * priv,unsigned long tx_mask,unsigned long rx_mask)240 static void gfar_configure_coalescing(struct gfar_private *priv,
241 			       unsigned long tx_mask, unsigned long rx_mask)
242 {
243 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
244 	u32 __iomem *baddr;
245 
246 	if (priv->mode == MQ_MG_MODE) {
247 		int i = 0;
248 
249 		baddr = &regs->txic0;
250 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
251 			gfar_write(baddr + i, 0);
252 			if (likely(priv->tx_queue[i]->txcoalescing))
253 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
254 		}
255 
256 		baddr = &regs->rxic0;
257 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
258 			gfar_write(baddr + i, 0);
259 			if (likely(priv->rx_queue[i]->rxcoalescing))
260 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
261 		}
262 	} else {
263 		/* Backward compatible case -- even if we enable
264 		 * multiple queues, there's only single reg to program
265 		 */
266 		gfar_write(&regs->txic, 0);
267 		if (likely(priv->tx_queue[0]->txcoalescing))
268 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
269 
270 		gfar_write(&regs->rxic, 0);
271 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
272 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
273 	}
274 }
275 
gfar_configure_coalescing_all(struct gfar_private * priv)276 static void gfar_configure_coalescing_all(struct gfar_private *priv)
277 {
278 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
279 }
280 
gfar_get_stats(struct net_device * dev)281 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
282 {
283 	struct gfar_private *priv = netdev_priv(dev);
284 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
285 	unsigned long tx_packets = 0, tx_bytes = 0;
286 	int i;
287 
288 	for (i = 0; i < priv->num_rx_queues; i++) {
289 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
290 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
291 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
292 	}
293 
294 	dev->stats.rx_packets = rx_packets;
295 	dev->stats.rx_bytes   = rx_bytes;
296 	dev->stats.rx_dropped = rx_dropped;
297 
298 	for (i = 0; i < priv->num_tx_queues; i++) {
299 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
300 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
301 	}
302 
303 	dev->stats.tx_bytes   = tx_bytes;
304 	dev->stats.tx_packets = tx_packets;
305 
306 	return &dev->stats;
307 }
308 
309 /* Set the appropriate hash bit for the given addr */
310 /* The algorithm works like so:
311  * 1) Take the Destination Address (ie the multicast address), and
312  * do a CRC on it (little endian), and reverse the bits of the
313  * result.
314  * 2) Use the 8 most significant bits as a hash into a 256-entry
315  * table.  The table is controlled through 8 32-bit registers:
316  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
317  * gaddr7.  This means that the 3 most significant bits in the
318  * hash index which gaddr register to use, and the 5 other bits
319  * indicate which bit (assuming an IBM numbering scheme, which
320  * for PowerPC (tm) is usually the case) in the register holds
321  * the entry.
322  */
gfar_set_hash_for_addr(struct net_device * dev,u8 * addr)323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
324 {
325 	u32 tempval;
326 	struct gfar_private *priv = netdev_priv(dev);
327 	u32 result = ether_crc(ETH_ALEN, addr);
328 	int width = priv->hash_width;
329 	u8 whichbit = (result >> (32 - width)) & 0x1f;
330 	u8 whichreg = result >> (32 - width + 5);
331 	u32 value = (1 << (31-whichbit));
332 
333 	tempval = gfar_read(priv->hash_regs[whichreg]);
334 	tempval |= value;
335 	gfar_write(priv->hash_regs[whichreg], tempval);
336 }
337 
338 /* There are multiple MAC Address register pairs on some controllers
339  * This function sets the numth pair to a given address
340  */
gfar_set_mac_for_addr(struct net_device * dev,int num,const u8 * addr)341 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
342 				  const u8 *addr)
343 {
344 	struct gfar_private *priv = netdev_priv(dev);
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 tempval;
347 	u32 __iomem *macptr = &regs->macstnaddr1;
348 
349 	macptr += num*2;
350 
351 	/* For a station address of 0x12345678ABCD in transmission
352 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
353 	 * MACnADDR2 is set to 0x34120000.
354 	 */
355 	tempval = (addr[5] << 24) | (addr[4] << 16) |
356 		  (addr[3] << 8)  |  addr[2];
357 
358 	gfar_write(macptr, tempval);
359 
360 	tempval = (addr[1] << 24) | (addr[0] << 16);
361 
362 	gfar_write(macptr+1, tempval);
363 }
364 
gfar_set_mac_addr(struct net_device * dev,void * p)365 static int gfar_set_mac_addr(struct net_device *dev, void *p)
366 {
367 	int ret;
368 
369 	ret = eth_mac_addr(dev, p);
370 	if (ret)
371 		return ret;
372 
373 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
374 
375 	return 0;
376 }
377 
gfar_ints_disable(struct gfar_private * priv)378 static void gfar_ints_disable(struct gfar_private *priv)
379 {
380 	int i;
381 	for (i = 0; i < priv->num_grps; i++) {
382 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
383 		/* Clear IEVENT */
384 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
385 
386 		/* Initialize IMASK */
387 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
388 	}
389 }
390 
gfar_ints_enable(struct gfar_private * priv)391 static void gfar_ints_enable(struct gfar_private *priv)
392 {
393 	int i;
394 	for (i = 0; i < priv->num_grps; i++) {
395 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
396 		/* Unmask the interrupts we look for */
397 		gfar_write(&regs->imask, IMASK_DEFAULT);
398 	}
399 }
400 
gfar_alloc_tx_queues(struct gfar_private * priv)401 static int gfar_alloc_tx_queues(struct gfar_private *priv)
402 {
403 	int i;
404 
405 	for (i = 0; i < priv->num_tx_queues; i++) {
406 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
407 					    GFP_KERNEL);
408 		if (!priv->tx_queue[i])
409 			return -ENOMEM;
410 
411 		priv->tx_queue[i]->tx_skbuff = NULL;
412 		priv->tx_queue[i]->qindex = i;
413 		priv->tx_queue[i]->dev = priv->ndev;
414 		spin_lock_init(&(priv->tx_queue[i]->txlock));
415 	}
416 	return 0;
417 }
418 
gfar_alloc_rx_queues(struct gfar_private * priv)419 static int gfar_alloc_rx_queues(struct gfar_private *priv)
420 {
421 	int i;
422 
423 	for (i = 0; i < priv->num_rx_queues; i++) {
424 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
425 					    GFP_KERNEL);
426 		if (!priv->rx_queue[i])
427 			return -ENOMEM;
428 
429 		priv->rx_queue[i]->qindex = i;
430 		priv->rx_queue[i]->ndev = priv->ndev;
431 	}
432 	return 0;
433 }
434 
gfar_free_tx_queues(struct gfar_private * priv)435 static void gfar_free_tx_queues(struct gfar_private *priv)
436 {
437 	int i;
438 
439 	for (i = 0; i < priv->num_tx_queues; i++)
440 		kfree(priv->tx_queue[i]);
441 }
442 
gfar_free_rx_queues(struct gfar_private * priv)443 static void gfar_free_rx_queues(struct gfar_private *priv)
444 {
445 	int i;
446 
447 	for (i = 0; i < priv->num_rx_queues; i++)
448 		kfree(priv->rx_queue[i]);
449 }
450 
unmap_group_regs(struct gfar_private * priv)451 static void unmap_group_regs(struct gfar_private *priv)
452 {
453 	int i;
454 
455 	for (i = 0; i < MAXGROUPS; i++)
456 		if (priv->gfargrp[i].regs)
457 			iounmap(priv->gfargrp[i].regs);
458 }
459 
free_gfar_dev(struct gfar_private * priv)460 static void free_gfar_dev(struct gfar_private *priv)
461 {
462 	int i, j;
463 
464 	for (i = 0; i < priv->num_grps; i++)
465 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
466 			kfree(priv->gfargrp[i].irqinfo[j]);
467 			priv->gfargrp[i].irqinfo[j] = NULL;
468 		}
469 
470 	free_netdev(priv->ndev);
471 }
472 
disable_napi(struct gfar_private * priv)473 static void disable_napi(struct gfar_private *priv)
474 {
475 	int i;
476 
477 	for (i = 0; i < priv->num_grps; i++) {
478 		napi_disable(&priv->gfargrp[i].napi_rx);
479 		napi_disable(&priv->gfargrp[i].napi_tx);
480 	}
481 }
482 
enable_napi(struct gfar_private * priv)483 static void enable_napi(struct gfar_private *priv)
484 {
485 	int i;
486 
487 	for (i = 0; i < priv->num_grps; i++) {
488 		napi_enable(&priv->gfargrp[i].napi_rx);
489 		napi_enable(&priv->gfargrp[i].napi_tx);
490 	}
491 }
492 
gfar_parse_group(struct device_node * np,struct gfar_private * priv,const char * model)493 static int gfar_parse_group(struct device_node *np,
494 			    struct gfar_private *priv, const char *model)
495 {
496 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
497 	int i;
498 
499 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
500 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
501 					  GFP_KERNEL);
502 		if (!grp->irqinfo[i])
503 			return -ENOMEM;
504 	}
505 
506 	grp->regs = of_iomap(np, 0);
507 	if (!grp->regs)
508 		return -ENOMEM;
509 
510 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
511 
512 	/* If we aren't the FEC we have multiple interrupts */
513 	if (model && strcasecmp(model, "FEC")) {
514 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
515 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
516 		if (!gfar_irq(grp, TX)->irq ||
517 		    !gfar_irq(grp, RX)->irq ||
518 		    !gfar_irq(grp, ER)->irq)
519 			return -EINVAL;
520 	}
521 
522 	grp->priv = priv;
523 	spin_lock_init(&grp->grplock);
524 	if (priv->mode == MQ_MG_MODE) {
525 		u32 rxq_mask, txq_mask;
526 		int ret;
527 
528 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
529 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
530 
531 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
532 		if (!ret) {
533 			grp->rx_bit_map = rxq_mask ?
534 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
535 		}
536 
537 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
538 		if (!ret) {
539 			grp->tx_bit_map = txq_mask ?
540 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
541 		}
542 
543 		if (priv->poll_mode == GFAR_SQ_POLLING) {
544 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
545 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
546 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
547 		}
548 	} else {
549 		grp->rx_bit_map = 0xFF;
550 		grp->tx_bit_map = 0xFF;
551 	}
552 
553 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
554 	 * right to left, so we need to revert the 8 bits to get the q index
555 	 */
556 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
557 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
558 
559 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
560 	 * also assign queues to groups
561 	 */
562 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
563 		if (!grp->rx_queue)
564 			grp->rx_queue = priv->rx_queue[i];
565 		grp->num_rx_queues++;
566 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
567 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
568 		priv->rx_queue[i]->grp = grp;
569 	}
570 
571 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
572 		if (!grp->tx_queue)
573 			grp->tx_queue = priv->tx_queue[i];
574 		grp->num_tx_queues++;
575 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
576 		priv->tqueue |= (TQUEUE_EN0 >> i);
577 		priv->tx_queue[i]->grp = grp;
578 	}
579 
580 	priv->num_grps++;
581 
582 	return 0;
583 }
584 
gfar_of_group_count(struct device_node * np)585 static int gfar_of_group_count(struct device_node *np)
586 {
587 	struct device_node *child;
588 	int num = 0;
589 
590 	for_each_available_child_of_node(np, child)
591 		if (of_node_name_eq(child, "queue-group"))
592 			num++;
593 
594 	return num;
595 }
596 
597 /* Reads the controller's registers to determine what interface
598  * connects it to the PHY.
599  */
gfar_get_interface(struct net_device * dev)600 static phy_interface_t gfar_get_interface(struct net_device *dev)
601 {
602 	struct gfar_private *priv = netdev_priv(dev);
603 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
604 	u32 ecntrl;
605 
606 	ecntrl = gfar_read(&regs->ecntrl);
607 
608 	if (ecntrl & ECNTRL_SGMII_MODE)
609 		return PHY_INTERFACE_MODE_SGMII;
610 
611 	if (ecntrl & ECNTRL_TBI_MODE) {
612 		if (ecntrl & ECNTRL_REDUCED_MODE)
613 			return PHY_INTERFACE_MODE_RTBI;
614 		else
615 			return PHY_INTERFACE_MODE_TBI;
616 	}
617 
618 	if (ecntrl & ECNTRL_REDUCED_MODE) {
619 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
620 			return PHY_INTERFACE_MODE_RMII;
621 		}
622 		else {
623 			phy_interface_t interface = priv->interface;
624 
625 			/* This isn't autodetected right now, so it must
626 			 * be set by the device tree or platform code.
627 			 */
628 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
629 				return PHY_INTERFACE_MODE_RGMII_ID;
630 
631 			return PHY_INTERFACE_MODE_RGMII;
632 		}
633 	}
634 
635 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
636 		return PHY_INTERFACE_MODE_GMII;
637 
638 	return PHY_INTERFACE_MODE_MII;
639 }
640 
gfar_of_init(struct platform_device * ofdev,struct net_device ** pdev)641 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
642 {
643 	const char *model;
644 	const void *mac_addr;
645 	int err = 0, i;
646 	phy_interface_t interface;
647 	struct net_device *dev = NULL;
648 	struct gfar_private *priv = NULL;
649 	struct device_node *np = ofdev->dev.of_node;
650 	struct device_node *child = NULL;
651 	u32 stash_len = 0;
652 	u32 stash_idx = 0;
653 	unsigned int num_tx_qs, num_rx_qs;
654 	unsigned short mode, poll_mode;
655 
656 	if (!np)
657 		return -ENODEV;
658 
659 	if (of_device_is_compatible(np, "fsl,etsec2")) {
660 		mode = MQ_MG_MODE;
661 		poll_mode = GFAR_SQ_POLLING;
662 	} else {
663 		mode = SQ_SG_MODE;
664 		poll_mode = GFAR_SQ_POLLING;
665 	}
666 
667 	if (mode == SQ_SG_MODE) {
668 		num_tx_qs = 1;
669 		num_rx_qs = 1;
670 	} else { /* MQ_MG_MODE */
671 		/* get the actual number of supported groups */
672 		unsigned int num_grps = gfar_of_group_count(np);
673 
674 		if (num_grps == 0 || num_grps > MAXGROUPS) {
675 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
676 				num_grps);
677 			pr_err("Cannot do alloc_etherdev, aborting\n");
678 			return -EINVAL;
679 		}
680 
681 		if (poll_mode == GFAR_SQ_POLLING) {
682 			num_tx_qs = num_grps; /* one txq per int group */
683 			num_rx_qs = num_grps; /* one rxq per int group */
684 		} else { /* GFAR_MQ_POLLING */
685 			u32 tx_queues, rx_queues;
686 			int ret;
687 
688 			/* parse the num of HW tx and rx queues */
689 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
690 						   &tx_queues);
691 			num_tx_qs = ret ? 1 : tx_queues;
692 
693 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
694 						   &rx_queues);
695 			num_rx_qs = ret ? 1 : rx_queues;
696 		}
697 	}
698 
699 	if (num_tx_qs > MAX_TX_QS) {
700 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
701 		       num_tx_qs, MAX_TX_QS);
702 		pr_err("Cannot do alloc_etherdev, aborting\n");
703 		return -EINVAL;
704 	}
705 
706 	if (num_rx_qs > MAX_RX_QS) {
707 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
708 		       num_rx_qs, MAX_RX_QS);
709 		pr_err("Cannot do alloc_etherdev, aborting\n");
710 		return -EINVAL;
711 	}
712 
713 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
714 	dev = *pdev;
715 	if (NULL == dev)
716 		return -ENOMEM;
717 
718 	priv = netdev_priv(dev);
719 	priv->ndev = dev;
720 
721 	priv->mode = mode;
722 	priv->poll_mode = poll_mode;
723 
724 	priv->num_tx_queues = num_tx_qs;
725 	netif_set_real_num_rx_queues(dev, num_rx_qs);
726 	priv->num_rx_queues = num_rx_qs;
727 
728 	err = gfar_alloc_tx_queues(priv);
729 	if (err)
730 		goto tx_alloc_failed;
731 
732 	err = gfar_alloc_rx_queues(priv);
733 	if (err)
734 		goto rx_alloc_failed;
735 
736 	err = of_property_read_string(np, "model", &model);
737 	if (err) {
738 		pr_err("Device model property missing, aborting\n");
739 		goto rx_alloc_failed;
740 	}
741 
742 	/* Init Rx queue filer rule set linked list */
743 	INIT_LIST_HEAD(&priv->rx_list.list);
744 	priv->rx_list.count = 0;
745 	mutex_init(&priv->rx_queue_access);
746 
747 	for (i = 0; i < MAXGROUPS; i++)
748 		priv->gfargrp[i].regs = NULL;
749 
750 	/* Parse and initialize group specific information */
751 	if (priv->mode == MQ_MG_MODE) {
752 		for_each_available_child_of_node(np, child) {
753 			if (!of_node_name_eq(child, "queue-group"))
754 				continue;
755 
756 			err = gfar_parse_group(child, priv, model);
757 			if (err) {
758 				of_node_put(child);
759 				goto err_grp_init;
760 			}
761 		}
762 	} else { /* SQ_SG_MODE */
763 		err = gfar_parse_group(np, priv, model);
764 		if (err)
765 			goto err_grp_init;
766 	}
767 
768 	if (of_property_read_bool(np, "bd-stash")) {
769 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
770 		priv->bd_stash_en = 1;
771 	}
772 
773 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
774 
775 	if (err == 0)
776 		priv->rx_stash_size = stash_len;
777 
778 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
779 
780 	if (err == 0)
781 		priv->rx_stash_index = stash_idx;
782 
783 	if (stash_len || stash_idx)
784 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
785 
786 	mac_addr = of_get_mac_address(np);
787 
788 	if (!IS_ERR(mac_addr)) {
789 		ether_addr_copy(dev->dev_addr, mac_addr);
790 	} else {
791 		eth_hw_addr_random(dev);
792 		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
793 	}
794 
795 	if (model && !strcasecmp(model, "TSEC"))
796 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
797 				     FSL_GIANFAR_DEV_HAS_COALESCE |
798 				     FSL_GIANFAR_DEV_HAS_RMON |
799 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
800 
801 	if (model && !strcasecmp(model, "eTSEC"))
802 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
803 				     FSL_GIANFAR_DEV_HAS_COALESCE |
804 				     FSL_GIANFAR_DEV_HAS_RMON |
805 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
806 				     FSL_GIANFAR_DEV_HAS_CSUM |
807 				     FSL_GIANFAR_DEV_HAS_VLAN |
808 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
809 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
810 				     FSL_GIANFAR_DEV_HAS_TIMER |
811 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
812 
813 	/* Use PHY connection type from the DT node if one is specified there.
814 	 * rgmii-id really needs to be specified. Other types can be
815 	 * detected by hardware
816 	 */
817 	err = of_get_phy_mode(np, &interface);
818 	if (!err)
819 		priv->interface = interface;
820 	else
821 		priv->interface = gfar_get_interface(dev);
822 
823 	if (of_find_property(np, "fsl,magic-packet", NULL))
824 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
825 
826 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
827 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
828 
829 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
830 
831 	/* In the case of a fixed PHY, the DT node associated
832 	 * to the PHY is the Ethernet MAC DT node.
833 	 */
834 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
835 		err = of_phy_register_fixed_link(np);
836 		if (err)
837 			goto err_grp_init;
838 
839 		priv->phy_node = of_node_get(np);
840 	}
841 
842 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
843 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
844 
845 	return 0;
846 
847 err_grp_init:
848 	unmap_group_regs(priv);
849 rx_alloc_failed:
850 	gfar_free_rx_queues(priv);
851 tx_alloc_failed:
852 	gfar_free_tx_queues(priv);
853 	free_gfar_dev(priv);
854 	return err;
855 }
856 
cluster_entry_per_class(struct gfar_private * priv,u32 rqfar,u32 class)857 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
858 				   u32 class)
859 {
860 	u32 rqfpr = FPR_FILER_MASK;
861 	u32 rqfcr = 0x0;
862 
863 	rqfar--;
864 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
865 	priv->ftp_rqfpr[rqfar] = rqfpr;
866 	priv->ftp_rqfcr[rqfar] = rqfcr;
867 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
868 
869 	rqfar--;
870 	rqfcr = RQFCR_CMP_NOMATCH;
871 	priv->ftp_rqfpr[rqfar] = rqfpr;
872 	priv->ftp_rqfcr[rqfar] = rqfcr;
873 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
874 
875 	rqfar--;
876 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
877 	rqfpr = class;
878 	priv->ftp_rqfcr[rqfar] = rqfcr;
879 	priv->ftp_rqfpr[rqfar] = rqfpr;
880 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
881 
882 	rqfar--;
883 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
884 	rqfpr = class;
885 	priv->ftp_rqfcr[rqfar] = rqfcr;
886 	priv->ftp_rqfpr[rqfar] = rqfpr;
887 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
888 
889 	return rqfar;
890 }
891 
gfar_init_filer_table(struct gfar_private * priv)892 static void gfar_init_filer_table(struct gfar_private *priv)
893 {
894 	int i = 0x0;
895 	u32 rqfar = MAX_FILER_IDX;
896 	u32 rqfcr = 0x0;
897 	u32 rqfpr = FPR_FILER_MASK;
898 
899 	/* Default rule */
900 	rqfcr = RQFCR_CMP_MATCH;
901 	priv->ftp_rqfcr[rqfar] = rqfcr;
902 	priv->ftp_rqfpr[rqfar] = rqfpr;
903 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
904 
905 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
906 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
907 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
908 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
909 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
910 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
911 
912 	/* cur_filer_idx indicated the first non-masked rule */
913 	priv->cur_filer_idx = rqfar;
914 
915 	/* Rest are masked rules */
916 	rqfcr = RQFCR_CMP_NOMATCH;
917 	for (i = 0; i < rqfar; i++) {
918 		priv->ftp_rqfcr[i] = rqfcr;
919 		priv->ftp_rqfpr[i] = rqfpr;
920 		gfar_write_filer(priv, i, rqfcr, rqfpr);
921 	}
922 }
923 
924 #ifdef CONFIG_PPC
__gfar_detect_errata_83xx(struct gfar_private * priv)925 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
926 {
927 	unsigned int pvr = mfspr(SPRN_PVR);
928 	unsigned int svr = mfspr(SPRN_SVR);
929 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
930 	unsigned int rev = svr & 0xffff;
931 
932 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
933 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
934 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
935 		priv->errata |= GFAR_ERRATA_74;
936 
937 	/* MPC8313 and MPC837x all rev */
938 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
939 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
940 		priv->errata |= GFAR_ERRATA_76;
941 
942 	/* MPC8313 Rev < 2.0 */
943 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
944 		priv->errata |= GFAR_ERRATA_12;
945 }
946 
__gfar_detect_errata_85xx(struct gfar_private * priv)947 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
948 {
949 	unsigned int svr = mfspr(SPRN_SVR);
950 
951 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
952 		priv->errata |= GFAR_ERRATA_12;
953 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
954 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
955 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
956 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
957 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
958 }
959 #endif
960 
gfar_detect_errata(struct gfar_private * priv)961 static void gfar_detect_errata(struct gfar_private *priv)
962 {
963 	struct device *dev = &priv->ofdev->dev;
964 
965 	/* no plans to fix */
966 	priv->errata |= GFAR_ERRATA_A002;
967 
968 #ifdef CONFIG_PPC
969 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
970 		__gfar_detect_errata_85xx(priv);
971 	else /* non-mpc85xx parts, i.e. e300 core based */
972 		__gfar_detect_errata_83xx(priv);
973 #endif
974 
975 	if (priv->errata)
976 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
977 			 priv->errata);
978 }
979 
gfar_init_addr_hash_table(struct gfar_private * priv)980 static void gfar_init_addr_hash_table(struct gfar_private *priv)
981 {
982 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
983 
984 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
985 		priv->extended_hash = 1;
986 		priv->hash_width = 9;
987 
988 		priv->hash_regs[0] = &regs->igaddr0;
989 		priv->hash_regs[1] = &regs->igaddr1;
990 		priv->hash_regs[2] = &regs->igaddr2;
991 		priv->hash_regs[3] = &regs->igaddr3;
992 		priv->hash_regs[4] = &regs->igaddr4;
993 		priv->hash_regs[5] = &regs->igaddr5;
994 		priv->hash_regs[6] = &regs->igaddr6;
995 		priv->hash_regs[7] = &regs->igaddr7;
996 		priv->hash_regs[8] = &regs->gaddr0;
997 		priv->hash_regs[9] = &regs->gaddr1;
998 		priv->hash_regs[10] = &regs->gaddr2;
999 		priv->hash_regs[11] = &regs->gaddr3;
1000 		priv->hash_regs[12] = &regs->gaddr4;
1001 		priv->hash_regs[13] = &regs->gaddr5;
1002 		priv->hash_regs[14] = &regs->gaddr6;
1003 		priv->hash_regs[15] = &regs->gaddr7;
1004 
1005 	} else {
1006 		priv->extended_hash = 0;
1007 		priv->hash_width = 8;
1008 
1009 		priv->hash_regs[0] = &regs->gaddr0;
1010 		priv->hash_regs[1] = &regs->gaddr1;
1011 		priv->hash_regs[2] = &regs->gaddr2;
1012 		priv->hash_regs[3] = &regs->gaddr3;
1013 		priv->hash_regs[4] = &regs->gaddr4;
1014 		priv->hash_regs[5] = &regs->gaddr5;
1015 		priv->hash_regs[6] = &regs->gaddr6;
1016 		priv->hash_regs[7] = &regs->gaddr7;
1017 	}
1018 }
1019 
__gfar_is_rx_idle(struct gfar_private * priv)1020 static int __gfar_is_rx_idle(struct gfar_private *priv)
1021 {
1022 	u32 res;
1023 
1024 	/* Normaly TSEC should not hang on GRS commands, so we should
1025 	 * actually wait for IEVENT_GRSC flag.
1026 	 */
1027 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1028 		return 0;
1029 
1030 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1031 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1032 	 * and the Rx can be safely reset.
1033 	 */
1034 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1035 	res &= 0x7f807f80;
1036 	if ((res & 0xffff) == (res >> 16))
1037 		return 1;
1038 
1039 	return 0;
1040 }
1041 
1042 /* Halt the receive and transmit queues */
gfar_halt_nodisable(struct gfar_private * priv)1043 static void gfar_halt_nodisable(struct gfar_private *priv)
1044 {
1045 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1046 	u32 tempval;
1047 	unsigned int timeout;
1048 	int stopped;
1049 
1050 	gfar_ints_disable(priv);
1051 
1052 	if (gfar_is_dma_stopped(priv))
1053 		return;
1054 
1055 	/* Stop the DMA, and wait for it to stop */
1056 	tempval = gfar_read(&regs->dmactrl);
1057 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1058 	gfar_write(&regs->dmactrl, tempval);
1059 
1060 retry:
1061 	timeout = 1000;
1062 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1063 		cpu_relax();
1064 		timeout--;
1065 	}
1066 
1067 	if (!timeout)
1068 		stopped = gfar_is_dma_stopped(priv);
1069 
1070 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1071 	    !__gfar_is_rx_idle(priv))
1072 		goto retry;
1073 }
1074 
1075 /* Halt the receive and transmit queues */
gfar_halt(struct gfar_private * priv)1076 static void gfar_halt(struct gfar_private *priv)
1077 {
1078 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1079 	u32 tempval;
1080 
1081 	/* Dissable the Rx/Tx hw queues */
1082 	gfar_write(&regs->rqueue, 0);
1083 	gfar_write(&regs->tqueue, 0);
1084 
1085 	mdelay(10);
1086 
1087 	gfar_halt_nodisable(priv);
1088 
1089 	/* Disable Rx/Tx DMA */
1090 	tempval = gfar_read(&regs->maccfg1);
1091 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1092 	gfar_write(&regs->maccfg1, tempval);
1093 }
1094 
free_skb_tx_queue(struct gfar_priv_tx_q * tx_queue)1095 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1096 {
1097 	struct txbd8 *txbdp;
1098 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1099 	int i, j;
1100 
1101 	txbdp = tx_queue->tx_bd_base;
1102 
1103 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1104 		if (!tx_queue->tx_skbuff[i])
1105 			continue;
1106 
1107 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1108 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1109 		txbdp->lstatus = 0;
1110 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1111 		     j++) {
1112 			txbdp++;
1113 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1114 				       be16_to_cpu(txbdp->length),
1115 				       DMA_TO_DEVICE);
1116 		}
1117 		txbdp++;
1118 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1119 		tx_queue->tx_skbuff[i] = NULL;
1120 	}
1121 	kfree(tx_queue->tx_skbuff);
1122 	tx_queue->tx_skbuff = NULL;
1123 }
1124 
free_skb_rx_queue(struct gfar_priv_rx_q * rx_queue)1125 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1126 {
1127 	int i;
1128 
1129 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1130 
1131 	dev_kfree_skb(rx_queue->skb);
1132 
1133 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1134 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1135 
1136 		rxbdp->lstatus = 0;
1137 		rxbdp->bufPtr = 0;
1138 		rxbdp++;
1139 
1140 		if (!rxb->page)
1141 			continue;
1142 
1143 		dma_unmap_page(rx_queue->dev, rxb->dma,
1144 			       PAGE_SIZE, DMA_FROM_DEVICE);
1145 		__free_page(rxb->page);
1146 
1147 		rxb->page = NULL;
1148 	}
1149 
1150 	kfree(rx_queue->rx_buff);
1151 	rx_queue->rx_buff = NULL;
1152 }
1153 
1154 /* If there are any tx skbs or rx skbs still around, free them.
1155  * Then free tx_skbuff and rx_skbuff
1156  */
free_skb_resources(struct gfar_private * priv)1157 static void free_skb_resources(struct gfar_private *priv)
1158 {
1159 	struct gfar_priv_tx_q *tx_queue = NULL;
1160 	struct gfar_priv_rx_q *rx_queue = NULL;
1161 	int i;
1162 
1163 	/* Go through all the buffer descriptors and free their data buffers */
1164 	for (i = 0; i < priv->num_tx_queues; i++) {
1165 		struct netdev_queue *txq;
1166 
1167 		tx_queue = priv->tx_queue[i];
1168 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1169 		if (tx_queue->tx_skbuff)
1170 			free_skb_tx_queue(tx_queue);
1171 		netdev_tx_reset_queue(txq);
1172 	}
1173 
1174 	for (i = 0; i < priv->num_rx_queues; i++) {
1175 		rx_queue = priv->rx_queue[i];
1176 		if (rx_queue->rx_buff)
1177 			free_skb_rx_queue(rx_queue);
1178 	}
1179 
1180 	dma_free_coherent(priv->dev,
1181 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1182 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1183 			  priv->tx_queue[0]->tx_bd_base,
1184 			  priv->tx_queue[0]->tx_bd_dma_base);
1185 }
1186 
stop_gfar(struct net_device * dev)1187 void stop_gfar(struct net_device *dev)
1188 {
1189 	struct gfar_private *priv = netdev_priv(dev);
1190 
1191 	netif_tx_stop_all_queues(dev);
1192 
1193 	smp_mb__before_atomic();
1194 	set_bit(GFAR_DOWN, &priv->state);
1195 	smp_mb__after_atomic();
1196 
1197 	disable_napi(priv);
1198 
1199 	/* disable ints and gracefully shut down Rx/Tx DMA */
1200 	gfar_halt(priv);
1201 
1202 	phy_stop(dev->phydev);
1203 
1204 	free_skb_resources(priv);
1205 }
1206 
gfar_start(struct gfar_private * priv)1207 static void gfar_start(struct gfar_private *priv)
1208 {
1209 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1210 	u32 tempval;
1211 	int i = 0;
1212 
1213 	/* Enable Rx/Tx hw queues */
1214 	gfar_write(&regs->rqueue, priv->rqueue);
1215 	gfar_write(&regs->tqueue, priv->tqueue);
1216 
1217 	/* Initialize DMACTRL to have WWR and WOP */
1218 	tempval = gfar_read(&regs->dmactrl);
1219 	tempval |= DMACTRL_INIT_SETTINGS;
1220 	gfar_write(&regs->dmactrl, tempval);
1221 
1222 	/* Make sure we aren't stopped */
1223 	tempval = gfar_read(&regs->dmactrl);
1224 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1225 	gfar_write(&regs->dmactrl, tempval);
1226 
1227 	for (i = 0; i < priv->num_grps; i++) {
1228 		regs = priv->gfargrp[i].regs;
1229 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1230 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1231 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1232 	}
1233 
1234 	/* Enable Rx/Tx DMA */
1235 	tempval = gfar_read(&regs->maccfg1);
1236 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1237 	gfar_write(&regs->maccfg1, tempval);
1238 
1239 	gfar_ints_enable(priv);
1240 
1241 	netif_trans_update(priv->ndev); /* prevent tx timeout */
1242 }
1243 
gfar_new_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * rxb)1244 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1245 {
1246 	struct page *page;
1247 	dma_addr_t addr;
1248 
1249 	page = dev_alloc_page();
1250 	if (unlikely(!page))
1251 		return false;
1252 
1253 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1254 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1255 		__free_page(page);
1256 
1257 		return false;
1258 	}
1259 
1260 	rxb->dma = addr;
1261 	rxb->page = page;
1262 	rxb->page_offset = 0;
1263 
1264 	return true;
1265 }
1266 
gfar_rx_alloc_err(struct gfar_priv_rx_q * rx_queue)1267 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1268 {
1269 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1270 	struct gfar_extra_stats *estats = &priv->extra_stats;
1271 
1272 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1273 	atomic64_inc(&estats->rx_alloc_err);
1274 }
1275 
gfar_alloc_rx_buffs(struct gfar_priv_rx_q * rx_queue,int alloc_cnt)1276 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1277 				int alloc_cnt)
1278 {
1279 	struct rxbd8 *bdp;
1280 	struct gfar_rx_buff *rxb;
1281 	int i;
1282 
1283 	i = rx_queue->next_to_use;
1284 	bdp = &rx_queue->rx_bd_base[i];
1285 	rxb = &rx_queue->rx_buff[i];
1286 
1287 	while (alloc_cnt--) {
1288 		/* try reuse page */
1289 		if (unlikely(!rxb->page)) {
1290 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1291 				gfar_rx_alloc_err(rx_queue);
1292 				break;
1293 			}
1294 		}
1295 
1296 		/* Setup the new RxBD */
1297 		gfar_init_rxbdp(rx_queue, bdp,
1298 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1299 
1300 		/* Update to the next pointer */
1301 		bdp++;
1302 		rxb++;
1303 
1304 		if (unlikely(++i == rx_queue->rx_ring_size)) {
1305 			i = 0;
1306 			bdp = rx_queue->rx_bd_base;
1307 			rxb = rx_queue->rx_buff;
1308 		}
1309 	}
1310 
1311 	rx_queue->next_to_use = i;
1312 	rx_queue->next_to_alloc = i;
1313 }
1314 
gfar_init_bds(struct net_device * ndev)1315 static void gfar_init_bds(struct net_device *ndev)
1316 {
1317 	struct gfar_private *priv = netdev_priv(ndev);
1318 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1319 	struct gfar_priv_tx_q *tx_queue = NULL;
1320 	struct gfar_priv_rx_q *rx_queue = NULL;
1321 	struct txbd8 *txbdp;
1322 	u32 __iomem *rfbptr;
1323 	int i, j;
1324 
1325 	for (i = 0; i < priv->num_tx_queues; i++) {
1326 		tx_queue = priv->tx_queue[i];
1327 		/* Initialize some variables in our dev structure */
1328 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1329 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1330 		tx_queue->cur_tx = tx_queue->tx_bd_base;
1331 		tx_queue->skb_curtx = 0;
1332 		tx_queue->skb_dirtytx = 0;
1333 
1334 		/* Initialize Transmit Descriptor Ring */
1335 		txbdp = tx_queue->tx_bd_base;
1336 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1337 			txbdp->lstatus = 0;
1338 			txbdp->bufPtr = 0;
1339 			txbdp++;
1340 		}
1341 
1342 		/* Set the last descriptor in the ring to indicate wrap */
1343 		txbdp--;
1344 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1345 					    TXBD_WRAP);
1346 	}
1347 
1348 	rfbptr = &regs->rfbptr0;
1349 	for (i = 0; i < priv->num_rx_queues; i++) {
1350 		rx_queue = priv->rx_queue[i];
1351 
1352 		rx_queue->next_to_clean = 0;
1353 		rx_queue->next_to_use = 0;
1354 		rx_queue->next_to_alloc = 0;
1355 
1356 		/* make sure next_to_clean != next_to_use after this
1357 		 * by leaving at least 1 unused descriptor
1358 		 */
1359 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1360 
1361 		rx_queue->rfbptr = rfbptr;
1362 		rfbptr += 2;
1363 	}
1364 }
1365 
gfar_alloc_skb_resources(struct net_device * ndev)1366 static int gfar_alloc_skb_resources(struct net_device *ndev)
1367 {
1368 	void *vaddr;
1369 	dma_addr_t addr;
1370 	int i, j;
1371 	struct gfar_private *priv = netdev_priv(ndev);
1372 	struct device *dev = priv->dev;
1373 	struct gfar_priv_tx_q *tx_queue = NULL;
1374 	struct gfar_priv_rx_q *rx_queue = NULL;
1375 
1376 	priv->total_tx_ring_size = 0;
1377 	for (i = 0; i < priv->num_tx_queues; i++)
1378 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1379 
1380 	priv->total_rx_ring_size = 0;
1381 	for (i = 0; i < priv->num_rx_queues; i++)
1382 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1383 
1384 	/* Allocate memory for the buffer descriptors */
1385 	vaddr = dma_alloc_coherent(dev,
1386 				   (priv->total_tx_ring_size *
1387 				    sizeof(struct txbd8)) +
1388 				   (priv->total_rx_ring_size *
1389 				    sizeof(struct rxbd8)),
1390 				   &addr, GFP_KERNEL);
1391 	if (!vaddr)
1392 		return -ENOMEM;
1393 
1394 	for (i = 0; i < priv->num_tx_queues; i++) {
1395 		tx_queue = priv->tx_queue[i];
1396 		tx_queue->tx_bd_base = vaddr;
1397 		tx_queue->tx_bd_dma_base = addr;
1398 		tx_queue->dev = ndev;
1399 		/* enet DMA only understands physical addresses */
1400 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1401 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1402 	}
1403 
1404 	/* Start the rx descriptor ring where the tx ring leaves off */
1405 	for (i = 0; i < priv->num_rx_queues; i++) {
1406 		rx_queue = priv->rx_queue[i];
1407 		rx_queue->rx_bd_base = vaddr;
1408 		rx_queue->rx_bd_dma_base = addr;
1409 		rx_queue->ndev = ndev;
1410 		rx_queue->dev = dev;
1411 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1412 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1413 	}
1414 
1415 	/* Setup the skbuff rings */
1416 	for (i = 0; i < priv->num_tx_queues; i++) {
1417 		tx_queue = priv->tx_queue[i];
1418 		tx_queue->tx_skbuff =
1419 			kmalloc_array(tx_queue->tx_ring_size,
1420 				      sizeof(*tx_queue->tx_skbuff),
1421 				      GFP_KERNEL);
1422 		if (!tx_queue->tx_skbuff)
1423 			goto cleanup;
1424 
1425 		for (j = 0; j < tx_queue->tx_ring_size; j++)
1426 			tx_queue->tx_skbuff[j] = NULL;
1427 	}
1428 
1429 	for (i = 0; i < priv->num_rx_queues; i++) {
1430 		rx_queue = priv->rx_queue[i];
1431 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1432 					    sizeof(*rx_queue->rx_buff),
1433 					    GFP_KERNEL);
1434 		if (!rx_queue->rx_buff)
1435 			goto cleanup;
1436 	}
1437 
1438 	gfar_init_bds(ndev);
1439 
1440 	return 0;
1441 
1442 cleanup:
1443 	free_skb_resources(priv);
1444 	return -ENOMEM;
1445 }
1446 
1447 /* Bring the controller up and running */
startup_gfar(struct net_device * ndev)1448 int startup_gfar(struct net_device *ndev)
1449 {
1450 	struct gfar_private *priv = netdev_priv(ndev);
1451 	int err;
1452 
1453 	gfar_mac_reset(priv);
1454 
1455 	err = gfar_alloc_skb_resources(ndev);
1456 	if (err)
1457 		return err;
1458 
1459 	gfar_init_tx_rx_base(priv);
1460 
1461 	smp_mb__before_atomic();
1462 	clear_bit(GFAR_DOWN, &priv->state);
1463 	smp_mb__after_atomic();
1464 
1465 	/* Start Rx/Tx DMA and enable the interrupts */
1466 	gfar_start(priv);
1467 
1468 	/* force link state update after mac reset */
1469 	priv->oldlink = 0;
1470 	priv->oldspeed = 0;
1471 	priv->oldduplex = -1;
1472 
1473 	phy_start(ndev->phydev);
1474 
1475 	enable_napi(priv);
1476 
1477 	netif_tx_wake_all_queues(ndev);
1478 
1479 	return 0;
1480 }
1481 
gfar_get_flowctrl_cfg(struct gfar_private * priv)1482 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1483 {
1484 	struct net_device *ndev = priv->ndev;
1485 	struct phy_device *phydev = ndev->phydev;
1486 	u32 val = 0;
1487 
1488 	if (!phydev->duplex)
1489 		return val;
1490 
1491 	if (!priv->pause_aneg_en) {
1492 		if (priv->tx_pause_en)
1493 			val |= MACCFG1_TX_FLOW;
1494 		if (priv->rx_pause_en)
1495 			val |= MACCFG1_RX_FLOW;
1496 	} else {
1497 		u16 lcl_adv, rmt_adv;
1498 		u8 flowctrl;
1499 		/* get link partner capabilities */
1500 		rmt_adv = 0;
1501 		if (phydev->pause)
1502 			rmt_adv = LPA_PAUSE_CAP;
1503 		if (phydev->asym_pause)
1504 			rmt_adv |= LPA_PAUSE_ASYM;
1505 
1506 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1507 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1508 		if (flowctrl & FLOW_CTRL_TX)
1509 			val |= MACCFG1_TX_FLOW;
1510 		if (flowctrl & FLOW_CTRL_RX)
1511 			val |= MACCFG1_RX_FLOW;
1512 	}
1513 
1514 	return val;
1515 }
1516 
gfar_update_link_state(struct gfar_private * priv)1517 static noinline void gfar_update_link_state(struct gfar_private *priv)
1518 {
1519 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1520 	struct net_device *ndev = priv->ndev;
1521 	struct phy_device *phydev = ndev->phydev;
1522 	struct gfar_priv_rx_q *rx_queue = NULL;
1523 	int i;
1524 
1525 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1526 		return;
1527 
1528 	if (phydev->link) {
1529 		u32 tempval1 = gfar_read(&regs->maccfg1);
1530 		u32 tempval = gfar_read(&regs->maccfg2);
1531 		u32 ecntrl = gfar_read(&regs->ecntrl);
1532 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1533 
1534 		if (phydev->duplex != priv->oldduplex) {
1535 			if (!(phydev->duplex))
1536 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1537 			else
1538 				tempval |= MACCFG2_FULL_DUPLEX;
1539 
1540 			priv->oldduplex = phydev->duplex;
1541 		}
1542 
1543 		if (phydev->speed != priv->oldspeed) {
1544 			switch (phydev->speed) {
1545 			case 1000:
1546 				tempval =
1547 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1548 
1549 				ecntrl &= ~(ECNTRL_R100);
1550 				break;
1551 			case 100:
1552 			case 10:
1553 				tempval =
1554 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1555 
1556 				/* Reduced mode distinguishes
1557 				 * between 10 and 100
1558 				 */
1559 				if (phydev->speed == SPEED_100)
1560 					ecntrl |= ECNTRL_R100;
1561 				else
1562 					ecntrl &= ~(ECNTRL_R100);
1563 				break;
1564 			default:
1565 				netif_warn(priv, link, priv->ndev,
1566 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1567 					   phydev->speed);
1568 				break;
1569 			}
1570 
1571 			priv->oldspeed = phydev->speed;
1572 		}
1573 
1574 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1575 		tempval1 |= gfar_get_flowctrl_cfg(priv);
1576 
1577 		/* Turn last free buffer recording on */
1578 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1579 			for (i = 0; i < priv->num_rx_queues; i++) {
1580 				u32 bdp_dma;
1581 
1582 				rx_queue = priv->rx_queue[i];
1583 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1584 				gfar_write(rx_queue->rfbptr, bdp_dma);
1585 			}
1586 
1587 			priv->tx_actual_en = 1;
1588 		}
1589 
1590 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1591 			priv->tx_actual_en = 0;
1592 
1593 		gfar_write(&regs->maccfg1, tempval1);
1594 		gfar_write(&regs->maccfg2, tempval);
1595 		gfar_write(&regs->ecntrl, ecntrl);
1596 
1597 		if (!priv->oldlink)
1598 			priv->oldlink = 1;
1599 
1600 	} else if (priv->oldlink) {
1601 		priv->oldlink = 0;
1602 		priv->oldspeed = 0;
1603 		priv->oldduplex = -1;
1604 	}
1605 
1606 	if (netif_msg_link(priv))
1607 		phy_print_status(phydev);
1608 }
1609 
1610 /* Called every time the controller might need to be made
1611  * aware of new link state.  The PHY code conveys this
1612  * information through variables in the phydev structure, and this
1613  * function converts those variables into the appropriate
1614  * register values, and can bring down the device if needed.
1615  */
adjust_link(struct net_device * dev)1616 static void adjust_link(struct net_device *dev)
1617 {
1618 	struct gfar_private *priv = netdev_priv(dev);
1619 	struct phy_device *phydev = dev->phydev;
1620 
1621 	if (unlikely(phydev->link != priv->oldlink ||
1622 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1623 				       phydev->speed != priv->oldspeed))))
1624 		gfar_update_link_state(priv);
1625 }
1626 
1627 /* Initialize TBI PHY interface for communicating with the
1628  * SERDES lynx PHY on the chip.  We communicate with this PHY
1629  * through the MDIO bus on each controller, treating it as a
1630  * "normal" PHY at the address found in the TBIPA register.  We assume
1631  * that the TBIPA register is valid.  Either the MDIO bus code will set
1632  * it to a value that doesn't conflict with other PHYs on the bus, or the
1633  * value doesn't matter, as there are no other PHYs on the bus.
1634  */
gfar_configure_serdes(struct net_device * dev)1635 static void gfar_configure_serdes(struct net_device *dev)
1636 {
1637 	struct gfar_private *priv = netdev_priv(dev);
1638 	struct phy_device *tbiphy;
1639 
1640 	if (!priv->tbi_node) {
1641 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1642 				    "device tree specify a tbi-handle\n");
1643 		return;
1644 	}
1645 
1646 	tbiphy = of_phy_find_device(priv->tbi_node);
1647 	if (!tbiphy) {
1648 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1649 		return;
1650 	}
1651 
1652 	/* If the link is already up, we must already be ok, and don't need to
1653 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1654 	 * everything for us?  Resetting it takes the link down and requires
1655 	 * several seconds for it to come back.
1656 	 */
1657 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1658 		put_device(&tbiphy->mdio.dev);
1659 		return;
1660 	}
1661 
1662 	/* Single clk mode, mii mode off(for serdes communication) */
1663 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1664 
1665 	phy_write(tbiphy, MII_ADVERTISE,
1666 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1667 		  ADVERTISE_1000XPSE_ASYM);
1668 
1669 	phy_write(tbiphy, MII_BMCR,
1670 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1671 		  BMCR_SPEED1000);
1672 
1673 	put_device(&tbiphy->mdio.dev);
1674 }
1675 
1676 /* Initializes driver's PHY state, and attaches to the PHY.
1677  * Returns 0 on success.
1678  */
init_phy(struct net_device * dev)1679 static int init_phy(struct net_device *dev)
1680 {
1681 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1682 	struct gfar_private *priv = netdev_priv(dev);
1683 	phy_interface_t interface = priv->interface;
1684 	struct phy_device *phydev;
1685 	struct ethtool_eee edata;
1686 
1687 	linkmode_set_bit_array(phy_10_100_features_array,
1688 			       ARRAY_SIZE(phy_10_100_features_array),
1689 			       mask);
1690 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1691 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1692 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1693 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1694 
1695 	priv->oldlink = 0;
1696 	priv->oldspeed = 0;
1697 	priv->oldduplex = -1;
1698 
1699 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1700 				interface);
1701 	if (!phydev) {
1702 		dev_err(&dev->dev, "could not attach to PHY\n");
1703 		return -ENODEV;
1704 	}
1705 
1706 	if (interface == PHY_INTERFACE_MODE_SGMII)
1707 		gfar_configure_serdes(dev);
1708 
1709 	/* Remove any features not supported by the controller */
1710 	linkmode_and(phydev->supported, phydev->supported, mask);
1711 	linkmode_copy(phydev->advertising, phydev->supported);
1712 
1713 	/* Add support for flow control */
1714 	phy_support_asym_pause(phydev);
1715 
1716 	/* disable EEE autoneg, EEE not supported by eTSEC */
1717 	memset(&edata, 0, sizeof(struct ethtool_eee));
1718 	phy_ethtool_set_eee(phydev, &edata);
1719 
1720 	return 0;
1721 }
1722 
gfar_add_fcb(struct sk_buff * skb)1723 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1724 {
1725 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1726 
1727 	memset(fcb, 0, GMAC_FCB_LEN);
1728 
1729 	return fcb;
1730 }
1731 
gfar_tx_checksum(struct sk_buff * skb,struct txfcb * fcb,int fcb_length)1732 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1733 				    int fcb_length)
1734 {
1735 	/* If we're here, it's a IP packet with a TCP or UDP
1736 	 * payload.  We set it to checksum, using a pseudo-header
1737 	 * we provide
1738 	 */
1739 	u8 flags = TXFCB_DEFAULT;
1740 
1741 	/* Tell the controller what the protocol is
1742 	 * And provide the already calculated phcs
1743 	 */
1744 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1745 		flags |= TXFCB_UDP;
1746 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1747 	} else
1748 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1749 
1750 	/* l3os is the distance between the start of the
1751 	 * frame (skb->data) and the start of the IP hdr.
1752 	 * l4os is the distance between the start of the
1753 	 * l3 hdr and the l4 hdr
1754 	 */
1755 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1756 	fcb->l4os = skb_network_header_len(skb);
1757 
1758 	fcb->flags = flags;
1759 }
1760 
gfar_tx_vlan(struct sk_buff * skb,struct txfcb * fcb)1761 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1762 {
1763 	fcb->flags |= TXFCB_VLN;
1764 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1765 }
1766 
skip_txbd(struct txbd8 * bdp,int stride,struct txbd8 * base,int ring_size)1767 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1768 				      struct txbd8 *base, int ring_size)
1769 {
1770 	struct txbd8 *new_bd = bdp + stride;
1771 
1772 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1773 }
1774 
next_txbd(struct txbd8 * bdp,struct txbd8 * base,int ring_size)1775 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1776 				      int ring_size)
1777 {
1778 	return skip_txbd(bdp, 1, base, ring_size);
1779 }
1780 
1781 /* eTSEC12: csum generation not supported for some fcb offsets */
gfar_csum_errata_12(struct gfar_private * priv,unsigned long fcb_addr)1782 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1783 				       unsigned long fcb_addr)
1784 {
1785 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1786 	       (fcb_addr % 0x20) > 0x18);
1787 }
1788 
1789 /* eTSEC76: csum generation for frames larger than 2500 may
1790  * cause excess delays before start of transmission
1791  */
gfar_csum_errata_76(struct gfar_private * priv,unsigned int len)1792 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1793 				       unsigned int len)
1794 {
1795 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1796 	       (len > 2500));
1797 }
1798 
1799 /* This is called by the kernel when a frame is ready for transmission.
1800  * It is pointed to by the dev->hard_start_xmit function pointer
1801  */
gfar_start_xmit(struct sk_buff * skb,struct net_device * dev)1802 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1803 {
1804 	struct gfar_private *priv = netdev_priv(dev);
1805 	struct gfar_priv_tx_q *tx_queue = NULL;
1806 	struct netdev_queue *txq;
1807 	struct gfar __iomem *regs = NULL;
1808 	struct txfcb *fcb = NULL;
1809 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1810 	u32 lstatus;
1811 	skb_frag_t *frag;
1812 	int i, rq = 0;
1813 	int do_tstamp, do_csum, do_vlan;
1814 	u32 bufaddr;
1815 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1816 
1817 	rq = skb->queue_mapping;
1818 	tx_queue = priv->tx_queue[rq];
1819 	txq = netdev_get_tx_queue(dev, rq);
1820 	base = tx_queue->tx_bd_base;
1821 	regs = tx_queue->grp->regs;
1822 
1823 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1824 	do_vlan = skb_vlan_tag_present(skb);
1825 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1826 		    priv->hwts_tx_en;
1827 
1828 	if (do_csum || do_vlan)
1829 		fcb_len = GMAC_FCB_LEN;
1830 
1831 	/* check if time stamp should be generated */
1832 	if (unlikely(do_tstamp))
1833 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1834 
1835 	/* make space for additional header when fcb is needed */
1836 	if (fcb_len) {
1837 		if (unlikely(skb_cow_head(skb, fcb_len))) {
1838 			dev->stats.tx_errors++;
1839 			dev_kfree_skb_any(skb);
1840 			return NETDEV_TX_OK;
1841 		}
1842 	}
1843 
1844 	/* total number of fragments in the SKB */
1845 	nr_frags = skb_shinfo(skb)->nr_frags;
1846 
1847 	/* calculate the required number of TxBDs for this skb */
1848 	if (unlikely(do_tstamp))
1849 		nr_txbds = nr_frags + 2;
1850 	else
1851 		nr_txbds = nr_frags + 1;
1852 
1853 	/* check if there is space to queue this packet */
1854 	if (nr_txbds > tx_queue->num_txbdfree) {
1855 		/* no space, stop the queue */
1856 		netif_tx_stop_queue(txq);
1857 		dev->stats.tx_fifo_errors++;
1858 		return NETDEV_TX_BUSY;
1859 	}
1860 
1861 	/* Update transmit stats */
1862 	bytes_sent = skb->len;
1863 	tx_queue->stats.tx_bytes += bytes_sent;
1864 	/* keep Tx bytes on wire for BQL accounting */
1865 	GFAR_CB(skb)->bytes_sent = bytes_sent;
1866 	tx_queue->stats.tx_packets++;
1867 
1868 	txbdp = txbdp_start = tx_queue->cur_tx;
1869 	lstatus = be32_to_cpu(txbdp->lstatus);
1870 
1871 	/* Add TxPAL between FCB and frame if required */
1872 	if (unlikely(do_tstamp)) {
1873 		skb_push(skb, GMAC_TXPAL_LEN);
1874 		memset(skb->data, 0, GMAC_TXPAL_LEN);
1875 	}
1876 
1877 	/* Add TxFCB if required */
1878 	if (fcb_len) {
1879 		fcb = gfar_add_fcb(skb);
1880 		lstatus |= BD_LFLAG(TXBD_TOE);
1881 	}
1882 
1883 	/* Set up checksumming */
1884 	if (do_csum) {
1885 		gfar_tx_checksum(skb, fcb, fcb_len);
1886 
1887 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1888 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1889 			__skb_pull(skb, GMAC_FCB_LEN);
1890 			skb_checksum_help(skb);
1891 			if (do_vlan || do_tstamp) {
1892 				/* put back a new fcb for vlan/tstamp TOE */
1893 				fcb = gfar_add_fcb(skb);
1894 			} else {
1895 				/* Tx TOE not used */
1896 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1897 				fcb = NULL;
1898 			}
1899 		}
1900 	}
1901 
1902 	if (do_vlan)
1903 		gfar_tx_vlan(skb, fcb);
1904 
1905 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1906 				 DMA_TO_DEVICE);
1907 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1908 		goto dma_map_err;
1909 
1910 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1911 
1912 	/* Time stamp insertion requires one additional TxBD */
1913 	if (unlikely(do_tstamp))
1914 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1915 						 tx_queue->tx_ring_size);
1916 
1917 	if (likely(!nr_frags)) {
1918 		if (likely(!do_tstamp))
1919 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1920 	} else {
1921 		u32 lstatus_start = lstatus;
1922 
1923 		/* Place the fragment addresses and lengths into the TxBDs */
1924 		frag = &skb_shinfo(skb)->frags[0];
1925 		for (i = 0; i < nr_frags; i++, frag++) {
1926 			unsigned int size;
1927 
1928 			/* Point at the next BD, wrapping as needed */
1929 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1930 
1931 			size = skb_frag_size(frag);
1932 
1933 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1934 				  BD_LFLAG(TXBD_READY);
1935 
1936 			/* Handle the last BD specially */
1937 			if (i == nr_frags - 1)
1938 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1939 
1940 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1941 						   size, DMA_TO_DEVICE);
1942 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1943 				goto dma_map_err;
1944 
1945 			/* set the TxBD length and buffer pointer */
1946 			txbdp->bufPtr = cpu_to_be32(bufaddr);
1947 			txbdp->lstatus = cpu_to_be32(lstatus);
1948 		}
1949 
1950 		lstatus = lstatus_start;
1951 	}
1952 
1953 	/* If time stamping is requested one additional TxBD must be set up. The
1954 	 * first TxBD points to the FCB and must have a data length of
1955 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1956 	 * the full frame length.
1957 	 */
1958 	if (unlikely(do_tstamp)) {
1959 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1960 
1961 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1962 		bufaddr += fcb_len;
1963 
1964 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1965 			      (skb_headlen(skb) - fcb_len);
1966 		if (!nr_frags)
1967 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1968 
1969 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1970 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1971 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1972 
1973 		/* Setup tx hardware time stamping */
1974 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1975 		fcb->ptp = 1;
1976 	} else {
1977 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1978 	}
1979 
1980 	netdev_tx_sent_queue(txq, bytes_sent);
1981 
1982 	gfar_wmb();
1983 
1984 	txbdp_start->lstatus = cpu_to_be32(lstatus);
1985 
1986 	gfar_wmb(); /* force lstatus write before tx_skbuff */
1987 
1988 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1989 
1990 	/* Update the current skb pointer to the next entry we will use
1991 	 * (wrapping if necessary)
1992 	 */
1993 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1994 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1995 
1996 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1997 
1998 	/* We can work in parallel with gfar_clean_tx_ring(), except
1999 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2000 	 * when we were reading the num_txbdfree and checking for available
2001 	 * space, that's because outside of this function it can only grow.
2002 	 */
2003 	spin_lock_bh(&tx_queue->txlock);
2004 	/* reduce TxBD free count */
2005 	tx_queue->num_txbdfree -= (nr_txbds);
2006 	spin_unlock_bh(&tx_queue->txlock);
2007 
2008 	/* If the next BD still needs to be cleaned up, then the bds
2009 	 * are full.  We need to tell the kernel to stop sending us stuff.
2010 	 */
2011 	if (!tx_queue->num_txbdfree) {
2012 		netif_tx_stop_queue(txq);
2013 
2014 		dev->stats.tx_fifo_errors++;
2015 	}
2016 
2017 	/* Tell the DMA to go go go */
2018 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2019 
2020 	return NETDEV_TX_OK;
2021 
2022 dma_map_err:
2023 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2024 	if (do_tstamp)
2025 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2026 	for (i = 0; i < nr_frags; i++) {
2027 		lstatus = be32_to_cpu(txbdp->lstatus);
2028 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2029 			break;
2030 
2031 		lstatus &= ~BD_LFLAG(TXBD_READY);
2032 		txbdp->lstatus = cpu_to_be32(lstatus);
2033 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2034 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2035 			       DMA_TO_DEVICE);
2036 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2037 	}
2038 	gfar_wmb();
2039 	dev_kfree_skb_any(skb);
2040 	return NETDEV_TX_OK;
2041 }
2042 
2043 /* Changes the mac address if the controller is not running. */
gfar_set_mac_address(struct net_device * dev)2044 static int gfar_set_mac_address(struct net_device *dev)
2045 {
2046 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2047 
2048 	return 0;
2049 }
2050 
gfar_change_mtu(struct net_device * dev,int new_mtu)2051 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2052 {
2053 	struct gfar_private *priv = netdev_priv(dev);
2054 
2055 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2056 		cpu_relax();
2057 
2058 	if (dev->flags & IFF_UP)
2059 		stop_gfar(dev);
2060 
2061 	dev->mtu = new_mtu;
2062 
2063 	if (dev->flags & IFF_UP)
2064 		startup_gfar(dev);
2065 
2066 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2067 
2068 	return 0;
2069 }
2070 
reset_gfar(struct net_device * ndev)2071 static void reset_gfar(struct net_device *ndev)
2072 {
2073 	struct gfar_private *priv = netdev_priv(ndev);
2074 
2075 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2076 		cpu_relax();
2077 
2078 	stop_gfar(ndev);
2079 	startup_gfar(ndev);
2080 
2081 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2082 }
2083 
2084 /* gfar_reset_task gets scheduled when a packet has not been
2085  * transmitted after a set amount of time.
2086  * For now, assume that clearing out all the structures, and
2087  * starting over will fix the problem.
2088  */
gfar_reset_task(struct work_struct * work)2089 static void gfar_reset_task(struct work_struct *work)
2090 {
2091 	struct gfar_private *priv = container_of(work, struct gfar_private,
2092 						 reset_task);
2093 	reset_gfar(priv->ndev);
2094 }
2095 
gfar_timeout(struct net_device * dev,unsigned int txqueue)2096 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2097 {
2098 	struct gfar_private *priv = netdev_priv(dev);
2099 
2100 	dev->stats.tx_errors++;
2101 	schedule_work(&priv->reset_task);
2102 }
2103 
gfar_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)2104 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2105 {
2106 	struct hwtstamp_config config;
2107 	struct gfar_private *priv = netdev_priv(netdev);
2108 
2109 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2110 		return -EFAULT;
2111 
2112 	/* reserved for future extensions */
2113 	if (config.flags)
2114 		return -EINVAL;
2115 
2116 	switch (config.tx_type) {
2117 	case HWTSTAMP_TX_OFF:
2118 		priv->hwts_tx_en = 0;
2119 		break;
2120 	case HWTSTAMP_TX_ON:
2121 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2122 			return -ERANGE;
2123 		priv->hwts_tx_en = 1;
2124 		break;
2125 	default:
2126 		return -ERANGE;
2127 	}
2128 
2129 	switch (config.rx_filter) {
2130 	case HWTSTAMP_FILTER_NONE:
2131 		if (priv->hwts_rx_en) {
2132 			priv->hwts_rx_en = 0;
2133 			reset_gfar(netdev);
2134 		}
2135 		break;
2136 	default:
2137 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2138 			return -ERANGE;
2139 		if (!priv->hwts_rx_en) {
2140 			priv->hwts_rx_en = 1;
2141 			reset_gfar(netdev);
2142 		}
2143 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2144 		break;
2145 	}
2146 
2147 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2148 		-EFAULT : 0;
2149 }
2150 
gfar_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)2151 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2152 {
2153 	struct hwtstamp_config config;
2154 	struct gfar_private *priv = netdev_priv(netdev);
2155 
2156 	config.flags = 0;
2157 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2158 	config.rx_filter = (priv->hwts_rx_en ?
2159 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2160 
2161 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2162 		-EFAULT : 0;
2163 }
2164 
gfar_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2165 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2166 {
2167 	struct phy_device *phydev = dev->phydev;
2168 
2169 	if (!netif_running(dev))
2170 		return -EINVAL;
2171 
2172 	if (cmd == SIOCSHWTSTAMP)
2173 		return gfar_hwtstamp_set(dev, rq);
2174 	if (cmd == SIOCGHWTSTAMP)
2175 		return gfar_hwtstamp_get(dev, rq);
2176 
2177 	if (!phydev)
2178 		return -ENODEV;
2179 
2180 	return phy_mii_ioctl(phydev, rq, cmd);
2181 }
2182 
2183 /* Interrupt Handler for Transmit complete */
gfar_clean_tx_ring(struct gfar_priv_tx_q * tx_queue)2184 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2185 {
2186 	struct net_device *dev = tx_queue->dev;
2187 	struct netdev_queue *txq;
2188 	struct gfar_private *priv = netdev_priv(dev);
2189 	struct txbd8 *bdp, *next = NULL;
2190 	struct txbd8 *lbdp = NULL;
2191 	struct txbd8 *base = tx_queue->tx_bd_base;
2192 	struct sk_buff *skb;
2193 	int skb_dirtytx;
2194 	int tx_ring_size = tx_queue->tx_ring_size;
2195 	int frags = 0, nr_txbds = 0;
2196 	int i;
2197 	int howmany = 0;
2198 	int tqi = tx_queue->qindex;
2199 	unsigned int bytes_sent = 0;
2200 	u32 lstatus;
2201 	size_t buflen;
2202 
2203 	txq = netdev_get_tx_queue(dev, tqi);
2204 	bdp = tx_queue->dirty_tx;
2205 	skb_dirtytx = tx_queue->skb_dirtytx;
2206 
2207 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2208 		bool do_tstamp;
2209 
2210 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2211 			    priv->hwts_tx_en;
2212 
2213 		frags = skb_shinfo(skb)->nr_frags;
2214 
2215 		/* When time stamping, one additional TxBD must be freed.
2216 		 * Also, we need to dma_unmap_single() the TxPAL.
2217 		 */
2218 		if (unlikely(do_tstamp))
2219 			nr_txbds = frags + 2;
2220 		else
2221 			nr_txbds = frags + 1;
2222 
2223 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2224 
2225 		lstatus = be32_to_cpu(lbdp->lstatus);
2226 
2227 		/* Only clean completed frames */
2228 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2229 		    (lstatus & BD_LENGTH_MASK))
2230 			break;
2231 
2232 		if (unlikely(do_tstamp)) {
2233 			next = next_txbd(bdp, base, tx_ring_size);
2234 			buflen = be16_to_cpu(next->length) +
2235 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2236 		} else
2237 			buflen = be16_to_cpu(bdp->length);
2238 
2239 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2240 				 buflen, DMA_TO_DEVICE);
2241 
2242 		if (unlikely(do_tstamp)) {
2243 			struct skb_shared_hwtstamps shhwtstamps;
2244 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2245 					  ~0x7UL);
2246 
2247 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2248 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2249 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2250 			skb_tstamp_tx(skb, &shhwtstamps);
2251 			gfar_clear_txbd_status(bdp);
2252 			bdp = next;
2253 		}
2254 
2255 		gfar_clear_txbd_status(bdp);
2256 		bdp = next_txbd(bdp, base, tx_ring_size);
2257 
2258 		for (i = 0; i < frags; i++) {
2259 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2260 				       be16_to_cpu(bdp->length),
2261 				       DMA_TO_DEVICE);
2262 			gfar_clear_txbd_status(bdp);
2263 			bdp = next_txbd(bdp, base, tx_ring_size);
2264 		}
2265 
2266 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2267 
2268 		dev_kfree_skb_any(skb);
2269 
2270 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2271 
2272 		skb_dirtytx = (skb_dirtytx + 1) &
2273 			      TX_RING_MOD_MASK(tx_ring_size);
2274 
2275 		howmany++;
2276 		spin_lock(&tx_queue->txlock);
2277 		tx_queue->num_txbdfree += nr_txbds;
2278 		spin_unlock(&tx_queue->txlock);
2279 	}
2280 
2281 	/* If we freed a buffer, we can restart transmission, if necessary */
2282 	if (tx_queue->num_txbdfree &&
2283 	    netif_tx_queue_stopped(txq) &&
2284 	    !(test_bit(GFAR_DOWN, &priv->state)))
2285 		netif_wake_subqueue(priv->ndev, tqi);
2286 
2287 	/* Update dirty indicators */
2288 	tx_queue->skb_dirtytx = skb_dirtytx;
2289 	tx_queue->dirty_tx = bdp;
2290 
2291 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2292 }
2293 
count_errors(u32 lstatus,struct net_device * ndev)2294 static void count_errors(u32 lstatus, struct net_device *ndev)
2295 {
2296 	struct gfar_private *priv = netdev_priv(ndev);
2297 	struct net_device_stats *stats = &ndev->stats;
2298 	struct gfar_extra_stats *estats = &priv->extra_stats;
2299 
2300 	/* If the packet was truncated, none of the other errors matter */
2301 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2302 		stats->rx_length_errors++;
2303 
2304 		atomic64_inc(&estats->rx_trunc);
2305 
2306 		return;
2307 	}
2308 	/* Count the errors, if there were any */
2309 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2310 		stats->rx_length_errors++;
2311 
2312 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2313 			atomic64_inc(&estats->rx_large);
2314 		else
2315 			atomic64_inc(&estats->rx_short);
2316 	}
2317 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2318 		stats->rx_frame_errors++;
2319 		atomic64_inc(&estats->rx_nonoctet);
2320 	}
2321 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2322 		atomic64_inc(&estats->rx_crcerr);
2323 		stats->rx_crc_errors++;
2324 	}
2325 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2326 		atomic64_inc(&estats->rx_overrun);
2327 		stats->rx_over_errors++;
2328 	}
2329 }
2330 
gfar_receive(int irq,void * grp_id)2331 static irqreturn_t gfar_receive(int irq, void *grp_id)
2332 {
2333 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2334 	unsigned long flags;
2335 	u32 imask, ievent;
2336 
2337 	ievent = gfar_read(&grp->regs->ievent);
2338 
2339 	if (unlikely(ievent & IEVENT_FGPI)) {
2340 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2341 		return IRQ_HANDLED;
2342 	}
2343 
2344 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2345 		spin_lock_irqsave(&grp->grplock, flags);
2346 		imask = gfar_read(&grp->regs->imask);
2347 		imask &= IMASK_RX_DISABLED;
2348 		gfar_write(&grp->regs->imask, imask);
2349 		spin_unlock_irqrestore(&grp->grplock, flags);
2350 		__napi_schedule(&grp->napi_rx);
2351 	} else {
2352 		/* Clear IEVENT, so interrupts aren't called again
2353 		 * because of the packets that have already arrived.
2354 		 */
2355 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2356 	}
2357 
2358 	return IRQ_HANDLED;
2359 }
2360 
2361 /* Interrupt Handler for Transmit complete */
gfar_transmit(int irq,void * grp_id)2362 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2363 {
2364 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2365 	unsigned long flags;
2366 	u32 imask;
2367 
2368 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2369 		spin_lock_irqsave(&grp->grplock, flags);
2370 		imask = gfar_read(&grp->regs->imask);
2371 		imask &= IMASK_TX_DISABLED;
2372 		gfar_write(&grp->regs->imask, imask);
2373 		spin_unlock_irqrestore(&grp->grplock, flags);
2374 		__napi_schedule(&grp->napi_tx);
2375 	} else {
2376 		/* Clear IEVENT, so interrupts aren't called again
2377 		 * because of the packets that have already arrived.
2378 		 */
2379 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2380 	}
2381 
2382 	return IRQ_HANDLED;
2383 }
2384 
gfar_add_rx_frag(struct gfar_rx_buff * rxb,u32 lstatus,struct sk_buff * skb,bool first)2385 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2386 			     struct sk_buff *skb, bool first)
2387 {
2388 	int size = lstatus & BD_LENGTH_MASK;
2389 	struct page *page = rxb->page;
2390 
2391 	if (likely(first)) {
2392 		skb_put(skb, size);
2393 	} else {
2394 		/* the last fragments' length contains the full frame length */
2395 		if (lstatus & BD_LFLAG(RXBD_LAST))
2396 			size -= skb->len;
2397 
2398 		WARN(size < 0, "gianfar: rx fragment size underflow");
2399 		if (size < 0)
2400 			return false;
2401 
2402 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2403 				rxb->page_offset + RXBUF_ALIGNMENT,
2404 				size, GFAR_RXB_TRUESIZE);
2405 	}
2406 
2407 	/* try reuse page */
2408 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2409 		return false;
2410 
2411 	/* change offset to the other half */
2412 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2413 
2414 	page_ref_inc(page);
2415 
2416 	return true;
2417 }
2418 
gfar_reuse_rx_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * old_rxb)2419 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2420 			       struct gfar_rx_buff *old_rxb)
2421 {
2422 	struct gfar_rx_buff *new_rxb;
2423 	u16 nta = rxq->next_to_alloc;
2424 
2425 	new_rxb = &rxq->rx_buff[nta];
2426 
2427 	/* find next buf that can reuse a page */
2428 	nta++;
2429 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2430 
2431 	/* copy page reference */
2432 	*new_rxb = *old_rxb;
2433 
2434 	/* sync for use by the device */
2435 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2436 					 old_rxb->page_offset,
2437 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2438 }
2439 
gfar_get_next_rxbuff(struct gfar_priv_rx_q * rx_queue,u32 lstatus,struct sk_buff * skb)2440 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2441 					    u32 lstatus, struct sk_buff *skb)
2442 {
2443 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2444 	struct page *page = rxb->page;
2445 	bool first = false;
2446 
2447 	if (likely(!skb)) {
2448 		void *buff_addr = page_address(page) + rxb->page_offset;
2449 
2450 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2451 		if (unlikely(!skb)) {
2452 			gfar_rx_alloc_err(rx_queue);
2453 			return NULL;
2454 		}
2455 		skb_reserve(skb, RXBUF_ALIGNMENT);
2456 		first = true;
2457 	}
2458 
2459 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2460 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2461 
2462 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2463 		/* reuse the free half of the page */
2464 		gfar_reuse_rx_page(rx_queue, rxb);
2465 	} else {
2466 		/* page cannot be reused, unmap it */
2467 		dma_unmap_page(rx_queue->dev, rxb->dma,
2468 			       PAGE_SIZE, DMA_FROM_DEVICE);
2469 	}
2470 
2471 	/* clear rxb content */
2472 	rxb->page = NULL;
2473 
2474 	return skb;
2475 }
2476 
gfar_rx_checksum(struct sk_buff * skb,struct rxfcb * fcb)2477 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2478 {
2479 	/* If valid headers were found, and valid sums
2480 	 * were verified, then we tell the kernel that no
2481 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2482 	 */
2483 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2484 	    (RXFCB_CIP | RXFCB_CTU))
2485 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2486 	else
2487 		skb_checksum_none_assert(skb);
2488 }
2489 
2490 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
gfar_process_frame(struct net_device * ndev,struct sk_buff * skb)2491 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2492 {
2493 	struct gfar_private *priv = netdev_priv(ndev);
2494 	struct rxfcb *fcb = NULL;
2495 
2496 	/* fcb is at the beginning if exists */
2497 	fcb = (struct rxfcb *)skb->data;
2498 
2499 	/* Remove the FCB from the skb
2500 	 * Remove the padded bytes, if there are any
2501 	 */
2502 	if (priv->uses_rxfcb)
2503 		skb_pull(skb, GMAC_FCB_LEN);
2504 
2505 	/* Get receive timestamp from the skb */
2506 	if (priv->hwts_rx_en) {
2507 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2508 		u64 *ns = (u64 *) skb->data;
2509 
2510 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2511 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2512 	}
2513 
2514 	if (priv->padding)
2515 		skb_pull(skb, priv->padding);
2516 
2517 	/* Trim off the FCS */
2518 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2519 
2520 	if (ndev->features & NETIF_F_RXCSUM)
2521 		gfar_rx_checksum(skb, fcb);
2522 
2523 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2524 	 * Even if vlan rx accel is disabled, on some chips
2525 	 * RXFCB_VLN is pseudo randomly set.
2526 	 */
2527 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2528 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2529 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2530 				       be16_to_cpu(fcb->vlctl));
2531 }
2532 
2533 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2534  * until the budget/quota has been reached. Returns the number
2535  * of frames handled
2536  */
gfar_clean_rx_ring(struct gfar_priv_rx_q * rx_queue,int rx_work_limit)2537 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2538 			      int rx_work_limit)
2539 {
2540 	struct net_device *ndev = rx_queue->ndev;
2541 	struct gfar_private *priv = netdev_priv(ndev);
2542 	struct rxbd8 *bdp;
2543 	int i, howmany = 0;
2544 	struct sk_buff *skb = rx_queue->skb;
2545 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2546 	unsigned int total_bytes = 0, total_pkts = 0;
2547 
2548 	/* Get the first full descriptor */
2549 	i = rx_queue->next_to_clean;
2550 
2551 	while (rx_work_limit--) {
2552 		u32 lstatus;
2553 
2554 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2555 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2556 			cleaned_cnt = 0;
2557 		}
2558 
2559 		bdp = &rx_queue->rx_bd_base[i];
2560 		lstatus = be32_to_cpu(bdp->lstatus);
2561 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2562 			break;
2563 
2564 		/* lost RXBD_LAST descriptor due to overrun */
2565 		if (skb &&
2566 		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2567 			/* discard faulty buffer */
2568 			dev_kfree_skb(skb);
2569 			skb = NULL;
2570 			rx_queue->stats.rx_dropped++;
2571 
2572 			/* can continue normally */
2573 		}
2574 
2575 		/* order rx buffer descriptor reads */
2576 		rmb();
2577 
2578 		/* fetch next to clean buffer from the ring */
2579 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2580 		if (unlikely(!skb))
2581 			break;
2582 
2583 		cleaned_cnt++;
2584 		howmany++;
2585 
2586 		if (unlikely(++i == rx_queue->rx_ring_size))
2587 			i = 0;
2588 
2589 		rx_queue->next_to_clean = i;
2590 
2591 		/* fetch next buffer if not the last in frame */
2592 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2593 			continue;
2594 
2595 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2596 			count_errors(lstatus, ndev);
2597 
2598 			/* discard faulty buffer */
2599 			dev_kfree_skb(skb);
2600 			skb = NULL;
2601 			rx_queue->stats.rx_dropped++;
2602 			continue;
2603 		}
2604 
2605 		gfar_process_frame(ndev, skb);
2606 
2607 		/* Increment the number of packets */
2608 		total_pkts++;
2609 		total_bytes += skb->len;
2610 
2611 		skb_record_rx_queue(skb, rx_queue->qindex);
2612 
2613 		skb->protocol = eth_type_trans(skb, ndev);
2614 
2615 		/* Send the packet up the stack */
2616 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2617 
2618 		skb = NULL;
2619 	}
2620 
2621 	/* Store incomplete frames for completion */
2622 	rx_queue->skb = skb;
2623 
2624 	rx_queue->stats.rx_packets += total_pkts;
2625 	rx_queue->stats.rx_bytes += total_bytes;
2626 
2627 	if (cleaned_cnt)
2628 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2629 
2630 	/* Update Last Free RxBD pointer for LFC */
2631 	if (unlikely(priv->tx_actual_en)) {
2632 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2633 
2634 		gfar_write(rx_queue->rfbptr, bdp_dma);
2635 	}
2636 
2637 	return howmany;
2638 }
2639 
gfar_poll_rx_sq(struct napi_struct * napi,int budget)2640 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2641 {
2642 	struct gfar_priv_grp *gfargrp =
2643 		container_of(napi, struct gfar_priv_grp, napi_rx);
2644 	struct gfar __iomem *regs = gfargrp->regs;
2645 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2646 	int work_done = 0;
2647 
2648 	/* Clear IEVENT, so interrupts aren't called again
2649 	 * because of the packets that have already arrived
2650 	 */
2651 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2652 
2653 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2654 
2655 	if (work_done < budget) {
2656 		u32 imask;
2657 		napi_complete_done(napi, work_done);
2658 		/* Clear the halt bit in RSTAT */
2659 		gfar_write(&regs->rstat, gfargrp->rstat);
2660 
2661 		spin_lock_irq(&gfargrp->grplock);
2662 		imask = gfar_read(&regs->imask);
2663 		imask |= IMASK_RX_DEFAULT;
2664 		gfar_write(&regs->imask, imask);
2665 		spin_unlock_irq(&gfargrp->grplock);
2666 	}
2667 
2668 	return work_done;
2669 }
2670 
gfar_poll_tx_sq(struct napi_struct * napi,int budget)2671 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2672 {
2673 	struct gfar_priv_grp *gfargrp =
2674 		container_of(napi, struct gfar_priv_grp, napi_tx);
2675 	struct gfar __iomem *regs = gfargrp->regs;
2676 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2677 	u32 imask;
2678 
2679 	/* Clear IEVENT, so interrupts aren't called again
2680 	 * because of the packets that have already arrived
2681 	 */
2682 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2683 
2684 	/* run Tx cleanup to completion */
2685 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2686 		gfar_clean_tx_ring(tx_queue);
2687 
2688 	napi_complete(napi);
2689 
2690 	spin_lock_irq(&gfargrp->grplock);
2691 	imask = gfar_read(&regs->imask);
2692 	imask |= IMASK_TX_DEFAULT;
2693 	gfar_write(&regs->imask, imask);
2694 	spin_unlock_irq(&gfargrp->grplock);
2695 
2696 	return 0;
2697 }
2698 
gfar_poll_rx(struct napi_struct * napi,int budget)2699 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2700 {
2701 	struct gfar_priv_grp *gfargrp =
2702 		container_of(napi, struct gfar_priv_grp, napi_rx);
2703 	struct gfar_private *priv = gfargrp->priv;
2704 	struct gfar __iomem *regs = gfargrp->regs;
2705 	struct gfar_priv_rx_q *rx_queue = NULL;
2706 	int work_done = 0, work_done_per_q = 0;
2707 	int i, budget_per_q = 0;
2708 	unsigned long rstat_rxf;
2709 	int num_act_queues;
2710 
2711 	/* Clear IEVENT, so interrupts aren't called again
2712 	 * because of the packets that have already arrived
2713 	 */
2714 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2715 
2716 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2717 
2718 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2719 	if (num_act_queues)
2720 		budget_per_q = budget/num_act_queues;
2721 
2722 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2723 		/* skip queue if not active */
2724 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2725 			continue;
2726 
2727 		rx_queue = priv->rx_queue[i];
2728 		work_done_per_q =
2729 			gfar_clean_rx_ring(rx_queue, budget_per_q);
2730 		work_done += work_done_per_q;
2731 
2732 		/* finished processing this queue */
2733 		if (work_done_per_q < budget_per_q) {
2734 			/* clear active queue hw indication */
2735 			gfar_write(&regs->rstat,
2736 				   RSTAT_CLEAR_RXF0 >> i);
2737 			num_act_queues--;
2738 
2739 			if (!num_act_queues)
2740 				break;
2741 		}
2742 	}
2743 
2744 	if (!num_act_queues) {
2745 		u32 imask;
2746 		napi_complete_done(napi, work_done);
2747 
2748 		/* Clear the halt bit in RSTAT */
2749 		gfar_write(&regs->rstat, gfargrp->rstat);
2750 
2751 		spin_lock_irq(&gfargrp->grplock);
2752 		imask = gfar_read(&regs->imask);
2753 		imask |= IMASK_RX_DEFAULT;
2754 		gfar_write(&regs->imask, imask);
2755 		spin_unlock_irq(&gfargrp->grplock);
2756 	}
2757 
2758 	return work_done;
2759 }
2760 
gfar_poll_tx(struct napi_struct * napi,int budget)2761 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2762 {
2763 	struct gfar_priv_grp *gfargrp =
2764 		container_of(napi, struct gfar_priv_grp, napi_tx);
2765 	struct gfar_private *priv = gfargrp->priv;
2766 	struct gfar __iomem *regs = gfargrp->regs;
2767 	struct gfar_priv_tx_q *tx_queue = NULL;
2768 	int has_tx_work = 0;
2769 	int i;
2770 
2771 	/* Clear IEVENT, so interrupts aren't called again
2772 	 * because of the packets that have already arrived
2773 	 */
2774 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2775 
2776 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2777 		tx_queue = priv->tx_queue[i];
2778 		/* run Tx cleanup to completion */
2779 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2780 			gfar_clean_tx_ring(tx_queue);
2781 			has_tx_work = 1;
2782 		}
2783 	}
2784 
2785 	if (!has_tx_work) {
2786 		u32 imask;
2787 		napi_complete(napi);
2788 
2789 		spin_lock_irq(&gfargrp->grplock);
2790 		imask = gfar_read(&regs->imask);
2791 		imask |= IMASK_TX_DEFAULT;
2792 		gfar_write(&regs->imask, imask);
2793 		spin_unlock_irq(&gfargrp->grplock);
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 /* GFAR error interrupt handler */
gfar_error(int irq,void * grp_id)2800 static irqreturn_t gfar_error(int irq, void *grp_id)
2801 {
2802 	struct gfar_priv_grp *gfargrp = grp_id;
2803 	struct gfar __iomem *regs = gfargrp->regs;
2804 	struct gfar_private *priv= gfargrp->priv;
2805 	struct net_device *dev = priv->ndev;
2806 
2807 	/* Save ievent for future reference */
2808 	u32 events = gfar_read(&regs->ievent);
2809 
2810 	/* Clear IEVENT */
2811 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2812 
2813 	/* Magic Packet is not an error. */
2814 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2815 	    (events & IEVENT_MAG))
2816 		events &= ~IEVENT_MAG;
2817 
2818 	/* Hmm... */
2819 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2820 		netdev_dbg(dev,
2821 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2822 			   events, gfar_read(&regs->imask));
2823 
2824 	/* Update the error counters */
2825 	if (events & IEVENT_TXE) {
2826 		dev->stats.tx_errors++;
2827 
2828 		if (events & IEVENT_LC)
2829 			dev->stats.tx_window_errors++;
2830 		if (events & IEVENT_CRL)
2831 			dev->stats.tx_aborted_errors++;
2832 		if (events & IEVENT_XFUN) {
2833 			netif_dbg(priv, tx_err, dev,
2834 				  "TX FIFO underrun, packet dropped\n");
2835 			dev->stats.tx_dropped++;
2836 			atomic64_inc(&priv->extra_stats.tx_underrun);
2837 
2838 			schedule_work(&priv->reset_task);
2839 		}
2840 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2841 	}
2842 	if (events & IEVENT_BSY) {
2843 		dev->stats.rx_over_errors++;
2844 		atomic64_inc(&priv->extra_stats.rx_bsy);
2845 
2846 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2847 			  gfar_read(&regs->rstat));
2848 	}
2849 	if (events & IEVENT_BABR) {
2850 		dev->stats.rx_errors++;
2851 		atomic64_inc(&priv->extra_stats.rx_babr);
2852 
2853 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2854 	}
2855 	if (events & IEVENT_EBERR) {
2856 		atomic64_inc(&priv->extra_stats.eberr);
2857 		netif_dbg(priv, rx_err, dev, "bus error\n");
2858 	}
2859 	if (events & IEVENT_RXC)
2860 		netif_dbg(priv, rx_status, dev, "control frame\n");
2861 
2862 	if (events & IEVENT_BABT) {
2863 		atomic64_inc(&priv->extra_stats.tx_babt);
2864 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2865 	}
2866 	return IRQ_HANDLED;
2867 }
2868 
2869 /* The interrupt handler for devices with one interrupt */
gfar_interrupt(int irq,void * grp_id)2870 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2871 {
2872 	struct gfar_priv_grp *gfargrp = grp_id;
2873 
2874 	/* Save ievent for future reference */
2875 	u32 events = gfar_read(&gfargrp->regs->ievent);
2876 
2877 	/* Check for reception */
2878 	if (events & IEVENT_RX_MASK)
2879 		gfar_receive(irq, grp_id);
2880 
2881 	/* Check for transmit completion */
2882 	if (events & IEVENT_TX_MASK)
2883 		gfar_transmit(irq, grp_id);
2884 
2885 	/* Check for errors */
2886 	if (events & IEVENT_ERR_MASK)
2887 		gfar_error(irq, grp_id);
2888 
2889 	return IRQ_HANDLED;
2890 }
2891 
2892 #ifdef CONFIG_NET_POLL_CONTROLLER
2893 /* Polling 'interrupt' - used by things like netconsole to send skbs
2894  * without having to re-enable interrupts. It's not called while
2895  * the interrupt routine is executing.
2896  */
gfar_netpoll(struct net_device * dev)2897 static void gfar_netpoll(struct net_device *dev)
2898 {
2899 	struct gfar_private *priv = netdev_priv(dev);
2900 	int i;
2901 
2902 	/* If the device has multiple interrupts, run tx/rx */
2903 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2904 		for (i = 0; i < priv->num_grps; i++) {
2905 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2906 
2907 			disable_irq(gfar_irq(grp, TX)->irq);
2908 			disable_irq(gfar_irq(grp, RX)->irq);
2909 			disable_irq(gfar_irq(grp, ER)->irq);
2910 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2911 			enable_irq(gfar_irq(grp, ER)->irq);
2912 			enable_irq(gfar_irq(grp, RX)->irq);
2913 			enable_irq(gfar_irq(grp, TX)->irq);
2914 		}
2915 	} else {
2916 		for (i = 0; i < priv->num_grps; i++) {
2917 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2918 
2919 			disable_irq(gfar_irq(grp, TX)->irq);
2920 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2921 			enable_irq(gfar_irq(grp, TX)->irq);
2922 		}
2923 	}
2924 }
2925 #endif
2926 
free_grp_irqs(struct gfar_priv_grp * grp)2927 static void free_grp_irqs(struct gfar_priv_grp *grp)
2928 {
2929 	free_irq(gfar_irq(grp, TX)->irq, grp);
2930 	free_irq(gfar_irq(grp, RX)->irq, grp);
2931 	free_irq(gfar_irq(grp, ER)->irq, grp);
2932 }
2933 
register_grp_irqs(struct gfar_priv_grp * grp)2934 static int register_grp_irqs(struct gfar_priv_grp *grp)
2935 {
2936 	struct gfar_private *priv = grp->priv;
2937 	struct net_device *dev = priv->ndev;
2938 	int err;
2939 
2940 	/* If the device has multiple interrupts, register for
2941 	 * them.  Otherwise, only register for the one
2942 	 */
2943 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2944 		/* Install our interrupt handlers for Error,
2945 		 * Transmit, and Receive
2946 		 */
2947 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2948 				  gfar_irq(grp, ER)->name, grp);
2949 		if (err < 0) {
2950 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2951 				  gfar_irq(grp, ER)->irq);
2952 
2953 			goto err_irq_fail;
2954 		}
2955 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2956 
2957 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2958 				  gfar_irq(grp, TX)->name, grp);
2959 		if (err < 0) {
2960 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2961 				  gfar_irq(grp, TX)->irq);
2962 			goto tx_irq_fail;
2963 		}
2964 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2965 				  gfar_irq(grp, RX)->name, grp);
2966 		if (err < 0) {
2967 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2968 				  gfar_irq(grp, RX)->irq);
2969 			goto rx_irq_fail;
2970 		}
2971 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2972 
2973 	} else {
2974 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2975 				  gfar_irq(grp, TX)->name, grp);
2976 		if (err < 0) {
2977 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2978 				  gfar_irq(grp, TX)->irq);
2979 			goto err_irq_fail;
2980 		}
2981 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2982 	}
2983 
2984 	return 0;
2985 
2986 rx_irq_fail:
2987 	free_irq(gfar_irq(grp, TX)->irq, grp);
2988 tx_irq_fail:
2989 	free_irq(gfar_irq(grp, ER)->irq, grp);
2990 err_irq_fail:
2991 	return err;
2992 
2993 }
2994 
gfar_free_irq(struct gfar_private * priv)2995 static void gfar_free_irq(struct gfar_private *priv)
2996 {
2997 	int i;
2998 
2999 	/* Free the IRQs */
3000 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3001 		for (i = 0; i < priv->num_grps; i++)
3002 			free_grp_irqs(&priv->gfargrp[i]);
3003 	} else {
3004 		for (i = 0; i < priv->num_grps; i++)
3005 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
3006 				 &priv->gfargrp[i]);
3007 	}
3008 }
3009 
gfar_request_irq(struct gfar_private * priv)3010 static int gfar_request_irq(struct gfar_private *priv)
3011 {
3012 	int err, i, j;
3013 
3014 	for (i = 0; i < priv->num_grps; i++) {
3015 		err = register_grp_irqs(&priv->gfargrp[i]);
3016 		if (err) {
3017 			for (j = 0; j < i; j++)
3018 				free_grp_irqs(&priv->gfargrp[j]);
3019 			return err;
3020 		}
3021 	}
3022 
3023 	return 0;
3024 }
3025 
3026 /* Called when something needs to use the ethernet device
3027  * Returns 0 for success.
3028  */
gfar_enet_open(struct net_device * dev)3029 static int gfar_enet_open(struct net_device *dev)
3030 {
3031 	struct gfar_private *priv = netdev_priv(dev);
3032 	int err;
3033 
3034 	err = init_phy(dev);
3035 	if (err)
3036 		return err;
3037 
3038 	err = gfar_request_irq(priv);
3039 	if (err)
3040 		return err;
3041 
3042 	err = startup_gfar(dev);
3043 	if (err)
3044 		return err;
3045 
3046 	return err;
3047 }
3048 
3049 /* Stops the kernel queue, and halts the controller */
gfar_close(struct net_device * dev)3050 static int gfar_close(struct net_device *dev)
3051 {
3052 	struct gfar_private *priv = netdev_priv(dev);
3053 
3054 	cancel_work_sync(&priv->reset_task);
3055 	stop_gfar(dev);
3056 
3057 	/* Disconnect from the PHY */
3058 	phy_disconnect(dev->phydev);
3059 
3060 	gfar_free_irq(priv);
3061 
3062 	return 0;
3063 }
3064 
3065 /* Clears each of the exact match registers to zero, so they
3066  * don't interfere with normal reception
3067  */
gfar_clear_exact_match(struct net_device * dev)3068 static void gfar_clear_exact_match(struct net_device *dev)
3069 {
3070 	int idx;
3071 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3072 
3073 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3074 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3075 }
3076 
3077 /* Update the hash table based on the current list of multicast
3078  * addresses we subscribe to.  Also, change the promiscuity of
3079  * the device based on the flags (this function is called
3080  * whenever dev->flags is changed
3081  */
gfar_set_multi(struct net_device * dev)3082 static void gfar_set_multi(struct net_device *dev)
3083 {
3084 	struct netdev_hw_addr *ha;
3085 	struct gfar_private *priv = netdev_priv(dev);
3086 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3087 	u32 tempval;
3088 
3089 	if (dev->flags & IFF_PROMISC) {
3090 		/* Set RCTRL to PROM */
3091 		tempval = gfar_read(&regs->rctrl);
3092 		tempval |= RCTRL_PROM;
3093 		gfar_write(&regs->rctrl, tempval);
3094 	} else {
3095 		/* Set RCTRL to not PROM */
3096 		tempval = gfar_read(&regs->rctrl);
3097 		tempval &= ~(RCTRL_PROM);
3098 		gfar_write(&regs->rctrl, tempval);
3099 	}
3100 
3101 	if (dev->flags & IFF_ALLMULTI) {
3102 		/* Set the hash to rx all multicast frames */
3103 		gfar_write(&regs->igaddr0, 0xffffffff);
3104 		gfar_write(&regs->igaddr1, 0xffffffff);
3105 		gfar_write(&regs->igaddr2, 0xffffffff);
3106 		gfar_write(&regs->igaddr3, 0xffffffff);
3107 		gfar_write(&regs->igaddr4, 0xffffffff);
3108 		gfar_write(&regs->igaddr5, 0xffffffff);
3109 		gfar_write(&regs->igaddr6, 0xffffffff);
3110 		gfar_write(&regs->igaddr7, 0xffffffff);
3111 		gfar_write(&regs->gaddr0, 0xffffffff);
3112 		gfar_write(&regs->gaddr1, 0xffffffff);
3113 		gfar_write(&regs->gaddr2, 0xffffffff);
3114 		gfar_write(&regs->gaddr3, 0xffffffff);
3115 		gfar_write(&regs->gaddr4, 0xffffffff);
3116 		gfar_write(&regs->gaddr5, 0xffffffff);
3117 		gfar_write(&regs->gaddr6, 0xffffffff);
3118 		gfar_write(&regs->gaddr7, 0xffffffff);
3119 	} else {
3120 		int em_num;
3121 		int idx;
3122 
3123 		/* zero out the hash */
3124 		gfar_write(&regs->igaddr0, 0x0);
3125 		gfar_write(&regs->igaddr1, 0x0);
3126 		gfar_write(&regs->igaddr2, 0x0);
3127 		gfar_write(&regs->igaddr3, 0x0);
3128 		gfar_write(&regs->igaddr4, 0x0);
3129 		gfar_write(&regs->igaddr5, 0x0);
3130 		gfar_write(&regs->igaddr6, 0x0);
3131 		gfar_write(&regs->igaddr7, 0x0);
3132 		gfar_write(&regs->gaddr0, 0x0);
3133 		gfar_write(&regs->gaddr1, 0x0);
3134 		gfar_write(&regs->gaddr2, 0x0);
3135 		gfar_write(&regs->gaddr3, 0x0);
3136 		gfar_write(&regs->gaddr4, 0x0);
3137 		gfar_write(&regs->gaddr5, 0x0);
3138 		gfar_write(&regs->gaddr6, 0x0);
3139 		gfar_write(&regs->gaddr7, 0x0);
3140 
3141 		/* If we have extended hash tables, we need to
3142 		 * clear the exact match registers to prepare for
3143 		 * setting them
3144 		 */
3145 		if (priv->extended_hash) {
3146 			em_num = GFAR_EM_NUM + 1;
3147 			gfar_clear_exact_match(dev);
3148 			idx = 1;
3149 		} else {
3150 			idx = 0;
3151 			em_num = 0;
3152 		}
3153 
3154 		if (netdev_mc_empty(dev))
3155 			return;
3156 
3157 		/* Parse the list, and set the appropriate bits */
3158 		netdev_for_each_mc_addr(ha, dev) {
3159 			if (idx < em_num) {
3160 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3161 				idx++;
3162 			} else
3163 				gfar_set_hash_for_addr(dev, ha->addr);
3164 		}
3165 	}
3166 }
3167 
gfar_mac_reset(struct gfar_private * priv)3168 void gfar_mac_reset(struct gfar_private *priv)
3169 {
3170 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3171 	u32 tempval;
3172 
3173 	/* Reset MAC layer */
3174 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3175 
3176 	/* We need to delay at least 3 TX clocks */
3177 	udelay(3);
3178 
3179 	/* the soft reset bit is not self-resetting, so we need to
3180 	 * clear it before resuming normal operation
3181 	 */
3182 	gfar_write(&regs->maccfg1, 0);
3183 
3184 	udelay(3);
3185 
3186 	gfar_rx_offload_en(priv);
3187 
3188 	/* Initialize the max receive frame/buffer lengths */
3189 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3190 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3191 
3192 	/* Initialize the Minimum Frame Length Register */
3193 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3194 
3195 	/* Initialize MACCFG2. */
3196 	tempval = MACCFG2_INIT_SETTINGS;
3197 
3198 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3199 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3200 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3201 	 */
3202 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3203 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3204 
3205 	gfar_write(&regs->maccfg2, tempval);
3206 
3207 	/* Clear mac addr hash registers */
3208 	gfar_write(&regs->igaddr0, 0);
3209 	gfar_write(&regs->igaddr1, 0);
3210 	gfar_write(&regs->igaddr2, 0);
3211 	gfar_write(&regs->igaddr3, 0);
3212 	gfar_write(&regs->igaddr4, 0);
3213 	gfar_write(&regs->igaddr5, 0);
3214 	gfar_write(&regs->igaddr6, 0);
3215 	gfar_write(&regs->igaddr7, 0);
3216 
3217 	gfar_write(&regs->gaddr0, 0);
3218 	gfar_write(&regs->gaddr1, 0);
3219 	gfar_write(&regs->gaddr2, 0);
3220 	gfar_write(&regs->gaddr3, 0);
3221 	gfar_write(&regs->gaddr4, 0);
3222 	gfar_write(&regs->gaddr5, 0);
3223 	gfar_write(&regs->gaddr6, 0);
3224 	gfar_write(&regs->gaddr7, 0);
3225 
3226 	if (priv->extended_hash)
3227 		gfar_clear_exact_match(priv->ndev);
3228 
3229 	gfar_mac_rx_config(priv);
3230 
3231 	gfar_mac_tx_config(priv);
3232 
3233 	gfar_set_mac_address(priv->ndev);
3234 
3235 	gfar_set_multi(priv->ndev);
3236 
3237 	/* clear ievent and imask before configuring coalescing */
3238 	gfar_ints_disable(priv);
3239 
3240 	/* Configure the coalescing support */
3241 	gfar_configure_coalescing_all(priv);
3242 }
3243 
gfar_hw_init(struct gfar_private * priv)3244 static void gfar_hw_init(struct gfar_private *priv)
3245 {
3246 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3247 	u32 attrs;
3248 
3249 	/* Stop the DMA engine now, in case it was running before
3250 	 * (The firmware could have used it, and left it running).
3251 	 */
3252 	gfar_halt(priv);
3253 
3254 	gfar_mac_reset(priv);
3255 
3256 	/* Zero out the rmon mib registers if it has them */
3257 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3258 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3259 
3260 		/* Mask off the CAM interrupts */
3261 		gfar_write(&regs->rmon.cam1, 0xffffffff);
3262 		gfar_write(&regs->rmon.cam2, 0xffffffff);
3263 	}
3264 
3265 	/* Initialize ECNTRL */
3266 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3267 
3268 	/* Set the extraction length and index */
3269 	attrs = ATTRELI_EL(priv->rx_stash_size) |
3270 		ATTRELI_EI(priv->rx_stash_index);
3271 
3272 	gfar_write(&regs->attreli, attrs);
3273 
3274 	/* Start with defaults, and add stashing
3275 	 * depending on driver parameters
3276 	 */
3277 	attrs = ATTR_INIT_SETTINGS;
3278 
3279 	if (priv->bd_stash_en)
3280 		attrs |= ATTR_BDSTASH;
3281 
3282 	if (priv->rx_stash_size != 0)
3283 		attrs |= ATTR_BUFSTASH;
3284 
3285 	gfar_write(&regs->attr, attrs);
3286 
3287 	/* FIFO configs */
3288 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3289 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3290 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3291 
3292 	/* Program the interrupt steering regs, only for MG devices */
3293 	if (priv->num_grps > 1)
3294 		gfar_write_isrg(priv);
3295 }
3296 
3297 static const struct net_device_ops gfar_netdev_ops = {
3298 	.ndo_open = gfar_enet_open,
3299 	.ndo_start_xmit = gfar_start_xmit,
3300 	.ndo_stop = gfar_close,
3301 	.ndo_change_mtu = gfar_change_mtu,
3302 	.ndo_set_features = gfar_set_features,
3303 	.ndo_set_rx_mode = gfar_set_multi,
3304 	.ndo_tx_timeout = gfar_timeout,
3305 	.ndo_do_ioctl = gfar_ioctl,
3306 	.ndo_get_stats = gfar_get_stats,
3307 	.ndo_change_carrier = fixed_phy_change_carrier,
3308 	.ndo_set_mac_address = gfar_set_mac_addr,
3309 	.ndo_validate_addr = eth_validate_addr,
3310 #ifdef CONFIG_NET_POLL_CONTROLLER
3311 	.ndo_poll_controller = gfar_netpoll,
3312 #endif
3313 };
3314 
3315 /* Set up the ethernet device structure, private data,
3316  * and anything else we need before we start
3317  */
gfar_probe(struct platform_device * ofdev)3318 static int gfar_probe(struct platform_device *ofdev)
3319 {
3320 	struct device_node *np = ofdev->dev.of_node;
3321 	struct net_device *dev = NULL;
3322 	struct gfar_private *priv = NULL;
3323 	int err = 0, i;
3324 
3325 	err = gfar_of_init(ofdev, &dev);
3326 
3327 	if (err)
3328 		return err;
3329 
3330 	priv = netdev_priv(dev);
3331 	priv->ndev = dev;
3332 	priv->ofdev = ofdev;
3333 	priv->dev = &ofdev->dev;
3334 	SET_NETDEV_DEV(dev, &ofdev->dev);
3335 
3336 	INIT_WORK(&priv->reset_task, gfar_reset_task);
3337 
3338 	platform_set_drvdata(ofdev, priv);
3339 
3340 	gfar_detect_errata(priv);
3341 
3342 	/* Set the dev->base_addr to the gfar reg region */
3343 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3344 
3345 	/* Fill in the dev structure */
3346 	dev->watchdog_timeo = TX_TIMEOUT;
3347 	/* MTU range: 50 - 9586 */
3348 	dev->mtu = 1500;
3349 	dev->min_mtu = 50;
3350 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3351 	dev->netdev_ops = &gfar_netdev_ops;
3352 	dev->ethtool_ops = &gfar_ethtool_ops;
3353 
3354 	/* Register for napi ...We are registering NAPI for each grp */
3355 	for (i = 0; i < priv->num_grps; i++) {
3356 		if (priv->poll_mode == GFAR_SQ_POLLING) {
3357 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3358 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3359 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3360 				       gfar_poll_tx_sq, 2);
3361 		} else {
3362 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3363 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
3364 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3365 				       gfar_poll_tx, 2);
3366 		}
3367 	}
3368 
3369 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3370 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3371 				   NETIF_F_RXCSUM;
3372 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3373 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3374 	}
3375 
3376 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3377 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3378 				    NETIF_F_HW_VLAN_CTAG_RX;
3379 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3380 	}
3381 
3382 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3383 
3384 	gfar_init_addr_hash_table(priv);
3385 
3386 	/* Insert receive time stamps into padding alignment bytes, and
3387 	 * plus 2 bytes padding to ensure the cpu alignment.
3388 	 */
3389 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3390 		priv->padding = 8 + DEFAULT_PADDING;
3391 
3392 	if (dev->features & NETIF_F_IP_CSUM ||
3393 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3394 		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3395 
3396 	/* Initializing some of the rx/tx queue level parameters */
3397 	for (i = 0; i < priv->num_tx_queues; i++) {
3398 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3399 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3400 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3401 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3402 	}
3403 
3404 	for (i = 0; i < priv->num_rx_queues; i++) {
3405 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3406 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3407 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3408 	}
3409 
3410 	/* Always enable rx filer if available */
3411 	priv->rx_filer_enable =
3412 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3413 	/* Enable most messages by default */
3414 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3415 	/* use pritority h/w tx queue scheduling for single queue devices */
3416 	if (priv->num_tx_queues == 1)
3417 		priv->prio_sched_en = 1;
3418 
3419 	set_bit(GFAR_DOWN, &priv->state);
3420 
3421 	gfar_hw_init(priv);
3422 
3423 	/* Carrier starts down, phylib will bring it up */
3424 	netif_carrier_off(dev);
3425 
3426 	err = register_netdev(dev);
3427 
3428 	if (err) {
3429 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3430 		goto register_fail;
3431 	}
3432 
3433 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3434 		priv->wol_supported |= GFAR_WOL_MAGIC;
3435 
3436 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3437 	    priv->rx_filer_enable)
3438 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3439 
3440 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3441 
3442 	/* fill out IRQ number and name fields */
3443 	for (i = 0; i < priv->num_grps; i++) {
3444 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3445 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3446 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3447 				dev->name, "_g", '0' + i, "_tx");
3448 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3449 				dev->name, "_g", '0' + i, "_rx");
3450 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3451 				dev->name, "_g", '0' + i, "_er");
3452 		} else
3453 			strcpy(gfar_irq(grp, TX)->name, dev->name);
3454 	}
3455 
3456 	/* Initialize the filer table */
3457 	gfar_init_filer_table(priv);
3458 
3459 	/* Print out the device info */
3460 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3461 
3462 	/* Even more device info helps when determining which kernel
3463 	 * provided which set of benchmarks.
3464 	 */
3465 	netdev_info(dev, "Running with NAPI enabled\n");
3466 	for (i = 0; i < priv->num_rx_queues; i++)
3467 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3468 			    i, priv->rx_queue[i]->rx_ring_size);
3469 	for (i = 0; i < priv->num_tx_queues; i++)
3470 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3471 			    i, priv->tx_queue[i]->tx_ring_size);
3472 
3473 	return 0;
3474 
3475 register_fail:
3476 	if (of_phy_is_fixed_link(np))
3477 		of_phy_deregister_fixed_link(np);
3478 	unmap_group_regs(priv);
3479 	gfar_free_rx_queues(priv);
3480 	gfar_free_tx_queues(priv);
3481 	of_node_put(priv->phy_node);
3482 	of_node_put(priv->tbi_node);
3483 	free_gfar_dev(priv);
3484 	return err;
3485 }
3486 
gfar_remove(struct platform_device * ofdev)3487 static int gfar_remove(struct platform_device *ofdev)
3488 {
3489 	struct gfar_private *priv = platform_get_drvdata(ofdev);
3490 	struct device_node *np = ofdev->dev.of_node;
3491 
3492 	of_node_put(priv->phy_node);
3493 	of_node_put(priv->tbi_node);
3494 
3495 	unregister_netdev(priv->ndev);
3496 
3497 	if (of_phy_is_fixed_link(np))
3498 		of_phy_deregister_fixed_link(np);
3499 
3500 	unmap_group_regs(priv);
3501 	gfar_free_rx_queues(priv);
3502 	gfar_free_tx_queues(priv);
3503 	free_gfar_dev(priv);
3504 
3505 	return 0;
3506 }
3507 
3508 #ifdef CONFIG_PM
3509 
__gfar_filer_disable(struct gfar_private * priv)3510 static void __gfar_filer_disable(struct gfar_private *priv)
3511 {
3512 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3513 	u32 temp;
3514 
3515 	temp = gfar_read(&regs->rctrl);
3516 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3517 	gfar_write(&regs->rctrl, temp);
3518 }
3519 
__gfar_filer_enable(struct gfar_private * priv)3520 static void __gfar_filer_enable(struct gfar_private *priv)
3521 {
3522 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3523 	u32 temp;
3524 
3525 	temp = gfar_read(&regs->rctrl);
3526 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3527 	gfar_write(&regs->rctrl, temp);
3528 }
3529 
3530 /* Filer rules implementing wol capabilities */
gfar_filer_config_wol(struct gfar_private * priv)3531 static void gfar_filer_config_wol(struct gfar_private *priv)
3532 {
3533 	unsigned int i;
3534 	u32 rqfcr;
3535 
3536 	__gfar_filer_disable(priv);
3537 
3538 	/* clear the filer table, reject any packet by default */
3539 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3540 	for (i = 0; i <= MAX_FILER_IDX; i++)
3541 		gfar_write_filer(priv, i, rqfcr, 0);
3542 
3543 	i = 0;
3544 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3545 		/* unicast packet, accept it */
3546 		struct net_device *ndev = priv->ndev;
3547 		/* get the default rx queue index */
3548 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3549 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3550 				    (ndev->dev_addr[1] << 8) |
3551 				     ndev->dev_addr[2];
3552 
3553 		rqfcr = (qindex << 10) | RQFCR_AND |
3554 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3555 
3556 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3557 
3558 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3559 				(ndev->dev_addr[4] << 8) |
3560 				 ndev->dev_addr[5];
3561 		rqfcr = (qindex << 10) | RQFCR_GPI |
3562 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3563 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3564 	}
3565 
3566 	__gfar_filer_enable(priv);
3567 }
3568 
gfar_filer_restore_table(struct gfar_private * priv)3569 static void gfar_filer_restore_table(struct gfar_private *priv)
3570 {
3571 	u32 rqfcr, rqfpr;
3572 	unsigned int i;
3573 
3574 	__gfar_filer_disable(priv);
3575 
3576 	for (i = 0; i <= MAX_FILER_IDX; i++) {
3577 		rqfcr = priv->ftp_rqfcr[i];
3578 		rqfpr = priv->ftp_rqfpr[i];
3579 		gfar_write_filer(priv, i, rqfcr, rqfpr);
3580 	}
3581 
3582 	__gfar_filer_enable(priv);
3583 }
3584 
3585 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
gfar_start_wol_filer(struct gfar_private * priv)3586 static void gfar_start_wol_filer(struct gfar_private *priv)
3587 {
3588 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3589 	u32 tempval;
3590 	int i = 0;
3591 
3592 	/* Enable Rx hw queues */
3593 	gfar_write(&regs->rqueue, priv->rqueue);
3594 
3595 	/* Initialize DMACTRL to have WWR and WOP */
3596 	tempval = gfar_read(&regs->dmactrl);
3597 	tempval |= DMACTRL_INIT_SETTINGS;
3598 	gfar_write(&regs->dmactrl, tempval);
3599 
3600 	/* Make sure we aren't stopped */
3601 	tempval = gfar_read(&regs->dmactrl);
3602 	tempval &= ~DMACTRL_GRS;
3603 	gfar_write(&regs->dmactrl, tempval);
3604 
3605 	for (i = 0; i < priv->num_grps; i++) {
3606 		regs = priv->gfargrp[i].regs;
3607 		/* Clear RHLT, so that the DMA starts polling now */
3608 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3609 		/* enable the Filer General Purpose Interrupt */
3610 		gfar_write(&regs->imask, IMASK_FGPI);
3611 	}
3612 
3613 	/* Enable Rx DMA */
3614 	tempval = gfar_read(&regs->maccfg1);
3615 	tempval |= MACCFG1_RX_EN;
3616 	gfar_write(&regs->maccfg1, tempval);
3617 }
3618 
gfar_suspend(struct device * dev)3619 static int gfar_suspend(struct device *dev)
3620 {
3621 	struct gfar_private *priv = dev_get_drvdata(dev);
3622 	struct net_device *ndev = priv->ndev;
3623 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3624 	u32 tempval;
3625 	u16 wol = priv->wol_opts;
3626 
3627 	if (!netif_running(ndev))
3628 		return 0;
3629 
3630 	disable_napi(priv);
3631 	netif_tx_lock(ndev);
3632 	netif_device_detach(ndev);
3633 	netif_tx_unlock(ndev);
3634 
3635 	gfar_halt(priv);
3636 
3637 	if (wol & GFAR_WOL_MAGIC) {
3638 		/* Enable interrupt on Magic Packet */
3639 		gfar_write(&regs->imask, IMASK_MAG);
3640 
3641 		/* Enable Magic Packet mode */
3642 		tempval = gfar_read(&regs->maccfg2);
3643 		tempval |= MACCFG2_MPEN;
3644 		gfar_write(&regs->maccfg2, tempval);
3645 
3646 		/* re-enable the Rx block */
3647 		tempval = gfar_read(&regs->maccfg1);
3648 		tempval |= MACCFG1_RX_EN;
3649 		gfar_write(&regs->maccfg1, tempval);
3650 
3651 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3652 		gfar_filer_config_wol(priv);
3653 		gfar_start_wol_filer(priv);
3654 
3655 	} else {
3656 		phy_stop(ndev->phydev);
3657 	}
3658 
3659 	return 0;
3660 }
3661 
gfar_resume(struct device * dev)3662 static int gfar_resume(struct device *dev)
3663 {
3664 	struct gfar_private *priv = dev_get_drvdata(dev);
3665 	struct net_device *ndev = priv->ndev;
3666 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3667 	u32 tempval;
3668 	u16 wol = priv->wol_opts;
3669 
3670 	if (!netif_running(ndev))
3671 		return 0;
3672 
3673 	if (wol & GFAR_WOL_MAGIC) {
3674 		/* Disable Magic Packet mode */
3675 		tempval = gfar_read(&regs->maccfg2);
3676 		tempval &= ~MACCFG2_MPEN;
3677 		gfar_write(&regs->maccfg2, tempval);
3678 
3679 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3680 		/* need to stop rx only, tx is already down */
3681 		gfar_halt(priv);
3682 		gfar_filer_restore_table(priv);
3683 
3684 	} else {
3685 		phy_start(ndev->phydev);
3686 	}
3687 
3688 	gfar_start(priv);
3689 
3690 	netif_device_attach(ndev);
3691 	enable_napi(priv);
3692 
3693 	return 0;
3694 }
3695 
gfar_restore(struct device * dev)3696 static int gfar_restore(struct device *dev)
3697 {
3698 	struct gfar_private *priv = dev_get_drvdata(dev);
3699 	struct net_device *ndev = priv->ndev;
3700 
3701 	if (!netif_running(ndev)) {
3702 		netif_device_attach(ndev);
3703 
3704 		return 0;
3705 	}
3706 
3707 	gfar_init_bds(ndev);
3708 
3709 	gfar_mac_reset(priv);
3710 
3711 	gfar_init_tx_rx_base(priv);
3712 
3713 	gfar_start(priv);
3714 
3715 	priv->oldlink = 0;
3716 	priv->oldspeed = 0;
3717 	priv->oldduplex = -1;
3718 
3719 	if (ndev->phydev)
3720 		phy_start(ndev->phydev);
3721 
3722 	netif_device_attach(ndev);
3723 	enable_napi(priv);
3724 
3725 	return 0;
3726 }
3727 
3728 static const struct dev_pm_ops gfar_pm_ops = {
3729 	.suspend = gfar_suspend,
3730 	.resume = gfar_resume,
3731 	.freeze = gfar_suspend,
3732 	.thaw = gfar_resume,
3733 	.restore = gfar_restore,
3734 };
3735 
3736 #define GFAR_PM_OPS (&gfar_pm_ops)
3737 
3738 #else
3739 
3740 #define GFAR_PM_OPS NULL
3741 
3742 #endif
3743 
3744 static const struct of_device_id gfar_match[] =
3745 {
3746 	{
3747 		.type = "network",
3748 		.compatible = "gianfar",
3749 	},
3750 	{
3751 		.compatible = "fsl,etsec2",
3752 	},
3753 	{},
3754 };
3755 MODULE_DEVICE_TABLE(of, gfar_match);
3756 
3757 /* Structure for a device driver */
3758 static struct platform_driver gfar_driver = {
3759 	.driver = {
3760 		.name = "fsl-gianfar",
3761 		.pm = GFAR_PM_OPS,
3762 		.of_match_table = gfar_match,
3763 	},
3764 	.probe = gfar_probe,
3765 	.remove = gfar_remove,
3766 };
3767 
3768 module_platform_driver(gfar_driver);
3769