1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53
54 /**
55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56 * @hw: pointer to the HW structure
57 * @mem: ptr to mem struct to fill out
58 * @size: size of memory requested
59 * @alignment: what to align the allocation to
60 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 struct iavf_dma_mem *mem,
63 u64 size, u32 alignment)
64 {
65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66
67 if (!mem)
68 return IAVF_ERR_PARAM;
69
70 mem->size = ALIGN(size, alignment);
71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 if (mem->va)
74 return 0;
75 else
76 return IAVF_ERR_NO_MEMORY;
77 }
78
79 /**
80 * iavf_free_dma_mem_d - OS specific memory free for shared code
81 * @hw: pointer to the HW structure
82 * @mem: ptr to mem struct to free
83 **/
iavf_free_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem)84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 struct iavf_dma_mem *mem)
86 {
87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88
89 if (!mem || !mem->va)
90 return IAVF_ERR_PARAM;
91 dma_free_coherent(&adapter->pdev->dev, mem->size,
92 mem->va, (dma_addr_t)mem->pa);
93 return 0;
94 }
95
96 /**
97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98 * @hw: pointer to the HW structure
99 * @mem: ptr to mem struct to fill out
100 * @size: size of memory requested
101 **/
iavf_allocate_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 struct iavf_virt_mem *mem, u32 size)
104 {
105 if (!mem)
106 return IAVF_ERR_PARAM;
107
108 mem->size = size;
109 mem->va = kzalloc(size, GFP_KERNEL);
110
111 if (mem->va)
112 return 0;
113 else
114 return IAVF_ERR_NO_MEMORY;
115 }
116
117 /**
118 * iavf_free_virt_mem_d - OS specific memory free for shared code
119 * @hw: pointer to the HW structure
120 * @mem: ptr to mem struct to free
121 **/
iavf_free_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem)122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 struct iavf_virt_mem *mem)
124 {
125 if (!mem)
126 return IAVF_ERR_PARAM;
127
128 /* it's ok to kfree a NULL pointer */
129 kfree(mem->va);
130
131 return 0;
132 }
133
134 /**
135 * iavf_lock_timeout - try to set bit but give up after timeout
136 * @adapter: board private structure
137 * @bit: bit to set
138 * @msecs: timeout in msecs
139 *
140 * Returns 0 on success, negative on failure
141 **/
iavf_lock_timeout(struct iavf_adapter * adapter,enum iavf_critical_section_t bit,unsigned int msecs)142 static int iavf_lock_timeout(struct iavf_adapter *adapter,
143 enum iavf_critical_section_t bit,
144 unsigned int msecs)
145 {
146 unsigned int wait, delay = 10;
147
148 for (wait = 0; wait < msecs; wait += delay) {
149 if (!test_and_set_bit(bit, &adapter->crit_section))
150 return 0;
151
152 msleep(delay);
153 }
154
155 return -1;
156 }
157
158 /**
159 * iavf_schedule_reset - Set the flags and schedule a reset event
160 * @adapter: board private structure
161 **/
iavf_schedule_reset(struct iavf_adapter * adapter)162 void iavf_schedule_reset(struct iavf_adapter *adapter)
163 {
164 if (!(adapter->flags &
165 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
166 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
167 queue_work(iavf_wq, &adapter->reset_task);
168 }
169 }
170
171 /**
172 * iavf_tx_timeout - Respond to a Tx Hang
173 * @netdev: network interface device structure
174 * @txqueue: queue number that is timing out
175 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)176 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
177 {
178 struct iavf_adapter *adapter = netdev_priv(netdev);
179
180 adapter->tx_timeout_count++;
181 iavf_schedule_reset(adapter);
182 }
183
184 /**
185 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
186 * @adapter: board private structure
187 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)188 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
189 {
190 struct iavf_hw *hw = &adapter->hw;
191
192 if (!adapter->msix_entries)
193 return;
194
195 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
196
197 iavf_flush(hw);
198
199 synchronize_irq(adapter->msix_entries[0].vector);
200 }
201
202 /**
203 * iavf_misc_irq_enable - Enable default interrupt generation settings
204 * @adapter: board private structure
205 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)206 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
207 {
208 struct iavf_hw *hw = &adapter->hw;
209
210 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
211 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
212 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
213
214 iavf_flush(hw);
215 }
216
217 /**
218 * iavf_irq_disable - Mask off interrupt generation on the NIC
219 * @adapter: board private structure
220 **/
iavf_irq_disable(struct iavf_adapter * adapter)221 static void iavf_irq_disable(struct iavf_adapter *adapter)
222 {
223 int i;
224 struct iavf_hw *hw = &adapter->hw;
225
226 if (!adapter->msix_entries)
227 return;
228
229 for (i = 1; i < adapter->num_msix_vectors; i++) {
230 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
231 synchronize_irq(adapter->msix_entries[i].vector);
232 }
233 iavf_flush(hw);
234 }
235
236 /**
237 * iavf_irq_enable_queues - Enable interrupt for specified queues
238 * @adapter: board private structure
239 * @mask: bitmap of queues to enable
240 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter,u32 mask)241 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
242 {
243 struct iavf_hw *hw = &adapter->hw;
244 int i;
245
246 for (i = 1; i < adapter->num_msix_vectors; i++) {
247 if (mask & BIT(i - 1)) {
248 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
249 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
250 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
251 }
252 }
253 }
254
255 /**
256 * iavf_irq_enable - Enable default interrupt generation settings
257 * @adapter: board private structure
258 * @flush: boolean value whether to run rd32()
259 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)260 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
261 {
262 struct iavf_hw *hw = &adapter->hw;
263
264 iavf_misc_irq_enable(adapter);
265 iavf_irq_enable_queues(adapter, ~0);
266
267 if (flush)
268 iavf_flush(hw);
269 }
270
271 /**
272 * iavf_msix_aq - Interrupt handler for vector 0
273 * @irq: interrupt number
274 * @data: pointer to netdev
275 **/
iavf_msix_aq(int irq,void * data)276 static irqreturn_t iavf_msix_aq(int irq, void *data)
277 {
278 struct net_device *netdev = data;
279 struct iavf_adapter *adapter = netdev_priv(netdev);
280 struct iavf_hw *hw = &adapter->hw;
281
282 /* handle non-queue interrupts, these reads clear the registers */
283 rd32(hw, IAVF_VFINT_ICR01);
284 rd32(hw, IAVF_VFINT_ICR0_ENA1);
285
286 /* schedule work on the private workqueue */
287 queue_work(iavf_wq, &adapter->adminq_task);
288
289 return IRQ_HANDLED;
290 }
291
292 /**
293 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
294 * @irq: interrupt number
295 * @data: pointer to a q_vector
296 **/
iavf_msix_clean_rings(int irq,void * data)297 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
298 {
299 struct iavf_q_vector *q_vector = data;
300
301 if (!q_vector->tx.ring && !q_vector->rx.ring)
302 return IRQ_HANDLED;
303
304 napi_schedule_irqoff(&q_vector->napi);
305
306 return IRQ_HANDLED;
307 }
308
309 /**
310 * iavf_map_vector_to_rxq - associate irqs with rx queues
311 * @adapter: board private structure
312 * @v_idx: interrupt number
313 * @r_idx: queue number
314 **/
315 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)316 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
317 {
318 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
319 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
320 struct iavf_hw *hw = &adapter->hw;
321
322 rx_ring->q_vector = q_vector;
323 rx_ring->next = q_vector->rx.ring;
324 rx_ring->vsi = &adapter->vsi;
325 q_vector->rx.ring = rx_ring;
326 q_vector->rx.count++;
327 q_vector->rx.next_update = jiffies + 1;
328 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
329 q_vector->ring_mask |= BIT(r_idx);
330 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
331 q_vector->rx.current_itr >> 1);
332 q_vector->rx.current_itr = q_vector->rx.target_itr;
333 }
334
335 /**
336 * iavf_map_vector_to_txq - associate irqs with tx queues
337 * @adapter: board private structure
338 * @v_idx: interrupt number
339 * @t_idx: queue number
340 **/
341 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)342 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
343 {
344 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
345 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
346 struct iavf_hw *hw = &adapter->hw;
347
348 tx_ring->q_vector = q_vector;
349 tx_ring->next = q_vector->tx.ring;
350 tx_ring->vsi = &adapter->vsi;
351 q_vector->tx.ring = tx_ring;
352 q_vector->tx.count++;
353 q_vector->tx.next_update = jiffies + 1;
354 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
355 q_vector->num_ringpairs++;
356 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
357 q_vector->tx.target_itr >> 1);
358 q_vector->tx.current_itr = q_vector->tx.target_itr;
359 }
360
361 /**
362 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
363 * @adapter: board private structure to initialize
364 *
365 * This function maps descriptor rings to the queue-specific vectors
366 * we were allotted through the MSI-X enabling code. Ideally, we'd have
367 * one vector per ring/queue, but on a constrained vector budget, we
368 * group the rings as "efficiently" as possible. You would add new
369 * mapping configurations in here.
370 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)371 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
372 {
373 int rings_remaining = adapter->num_active_queues;
374 int ridx = 0, vidx = 0;
375 int q_vectors;
376
377 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
378
379 for (; ridx < rings_remaining; ridx++) {
380 iavf_map_vector_to_rxq(adapter, vidx, ridx);
381 iavf_map_vector_to_txq(adapter, vidx, ridx);
382
383 /* In the case where we have more queues than vectors, continue
384 * round-robin on vectors until all queues are mapped.
385 */
386 if (++vidx >= q_vectors)
387 vidx = 0;
388 }
389
390 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
391 }
392
393 /**
394 * iavf_irq_affinity_notify - Callback for affinity changes
395 * @notify: context as to what irq was changed
396 * @mask: the new affinity mask
397 *
398 * This is a callback function used by the irq_set_affinity_notifier function
399 * so that we may register to receive changes to the irq affinity masks.
400 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)401 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
402 const cpumask_t *mask)
403 {
404 struct iavf_q_vector *q_vector =
405 container_of(notify, struct iavf_q_vector, affinity_notify);
406
407 cpumask_copy(&q_vector->affinity_mask, mask);
408 }
409
410 /**
411 * iavf_irq_affinity_release - Callback for affinity notifier release
412 * @ref: internal core kernel usage
413 *
414 * This is a callback function used by the irq_set_affinity_notifier function
415 * to inform the current notification subscriber that they will no longer
416 * receive notifications.
417 **/
iavf_irq_affinity_release(struct kref * ref)418 static void iavf_irq_affinity_release(struct kref *ref) {}
419
420 /**
421 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
422 * @adapter: board private structure
423 * @basename: device basename
424 *
425 * Allocates MSI-X vectors for tx and rx handling, and requests
426 * interrupts from the kernel.
427 **/
428 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)429 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
430 {
431 unsigned int vector, q_vectors;
432 unsigned int rx_int_idx = 0, tx_int_idx = 0;
433 int irq_num, err;
434 int cpu;
435
436 iavf_irq_disable(adapter);
437 /* Decrement for Other and TCP Timer vectors */
438 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
439
440 for (vector = 0; vector < q_vectors; vector++) {
441 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
442
443 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
444
445 if (q_vector->tx.ring && q_vector->rx.ring) {
446 snprintf(q_vector->name, sizeof(q_vector->name),
447 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
448 tx_int_idx++;
449 } else if (q_vector->rx.ring) {
450 snprintf(q_vector->name, sizeof(q_vector->name),
451 "iavf-%s-rx-%d", basename, rx_int_idx++);
452 } else if (q_vector->tx.ring) {
453 snprintf(q_vector->name, sizeof(q_vector->name),
454 "iavf-%s-tx-%d", basename, tx_int_idx++);
455 } else {
456 /* skip this unused q_vector */
457 continue;
458 }
459 err = request_irq(irq_num,
460 iavf_msix_clean_rings,
461 0,
462 q_vector->name,
463 q_vector);
464 if (err) {
465 dev_info(&adapter->pdev->dev,
466 "Request_irq failed, error: %d\n", err);
467 goto free_queue_irqs;
468 }
469 /* register for affinity change notifications */
470 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
471 q_vector->affinity_notify.release =
472 iavf_irq_affinity_release;
473 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
474 /* Spread the IRQ affinity hints across online CPUs. Note that
475 * get_cpu_mask returns a mask with a permanent lifetime so
476 * it's safe to use as a hint for irq_set_affinity_hint.
477 */
478 cpu = cpumask_local_spread(q_vector->v_idx, -1);
479 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
480 }
481
482 return 0;
483
484 free_queue_irqs:
485 while (vector) {
486 vector--;
487 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
488 irq_set_affinity_notifier(irq_num, NULL);
489 irq_set_affinity_hint(irq_num, NULL);
490 free_irq(irq_num, &adapter->q_vectors[vector]);
491 }
492 return err;
493 }
494
495 /**
496 * iavf_request_misc_irq - Initialize MSI-X interrupts
497 * @adapter: board private structure
498 *
499 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
500 * vector is only for the admin queue, and stays active even when the netdev
501 * is closed.
502 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)503 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
504 {
505 struct net_device *netdev = adapter->netdev;
506 int err;
507
508 snprintf(adapter->misc_vector_name,
509 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
510 dev_name(&adapter->pdev->dev));
511 err = request_irq(adapter->msix_entries[0].vector,
512 &iavf_msix_aq, 0,
513 adapter->misc_vector_name, netdev);
514 if (err) {
515 dev_err(&adapter->pdev->dev,
516 "request_irq for %s failed: %d\n",
517 adapter->misc_vector_name, err);
518 free_irq(adapter->msix_entries[0].vector, netdev);
519 }
520 return err;
521 }
522
523 /**
524 * iavf_free_traffic_irqs - Free MSI-X interrupts
525 * @adapter: board private structure
526 *
527 * Frees all MSI-X vectors other than 0.
528 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)529 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
530 {
531 int vector, irq_num, q_vectors;
532
533 if (!adapter->msix_entries)
534 return;
535
536 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
537
538 for (vector = 0; vector < q_vectors; vector++) {
539 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
540 irq_set_affinity_notifier(irq_num, NULL);
541 irq_set_affinity_hint(irq_num, NULL);
542 free_irq(irq_num, &adapter->q_vectors[vector]);
543 }
544 }
545
546 /**
547 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
548 * @adapter: board private structure
549 *
550 * Frees MSI-X vector 0.
551 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)552 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
553 {
554 struct net_device *netdev = adapter->netdev;
555
556 if (!adapter->msix_entries)
557 return;
558
559 free_irq(adapter->msix_entries[0].vector, netdev);
560 }
561
562 /**
563 * iavf_configure_tx - Configure Transmit Unit after Reset
564 * @adapter: board private structure
565 *
566 * Configure the Tx unit of the MAC after a reset.
567 **/
iavf_configure_tx(struct iavf_adapter * adapter)568 static void iavf_configure_tx(struct iavf_adapter *adapter)
569 {
570 struct iavf_hw *hw = &adapter->hw;
571 int i;
572
573 for (i = 0; i < adapter->num_active_queues; i++)
574 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
575 }
576
577 /**
578 * iavf_configure_rx - Configure Receive Unit after Reset
579 * @adapter: board private structure
580 *
581 * Configure the Rx unit of the MAC after a reset.
582 **/
iavf_configure_rx(struct iavf_adapter * adapter)583 static void iavf_configure_rx(struct iavf_adapter *adapter)
584 {
585 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
586 struct iavf_hw *hw = &adapter->hw;
587 int i;
588
589 /* Legacy Rx will always default to a 2048 buffer size. */
590 #if (PAGE_SIZE < 8192)
591 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
592 struct net_device *netdev = adapter->netdev;
593
594 /* For jumbo frames on systems with 4K pages we have to use
595 * an order 1 page, so we might as well increase the size
596 * of our Rx buffer to make better use of the available space
597 */
598 rx_buf_len = IAVF_RXBUFFER_3072;
599
600 /* We use a 1536 buffer size for configurations with
601 * standard Ethernet mtu. On x86 this gives us enough room
602 * for shared info and 192 bytes of padding.
603 */
604 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
605 (netdev->mtu <= ETH_DATA_LEN))
606 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
607 }
608 #endif
609
610 for (i = 0; i < adapter->num_active_queues; i++) {
611 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
612 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
613
614 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
615 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
616 else
617 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
618 }
619 }
620
621 /**
622 * iavf_find_vlan - Search filter list for specific vlan filter
623 * @adapter: board private structure
624 * @vlan: vlan tag
625 *
626 * Returns ptr to the filter object or NULL. Must be called while holding the
627 * mac_vlan_list_lock.
628 **/
629 static struct
iavf_find_vlan(struct iavf_adapter * adapter,u16 vlan)630 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
631 {
632 struct iavf_vlan_filter *f;
633
634 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
635 if (vlan == f->vlan)
636 return f;
637 }
638 return NULL;
639 }
640
641 /**
642 * iavf_add_vlan - Add a vlan filter to the list
643 * @adapter: board private structure
644 * @vlan: VLAN tag
645 *
646 * Returns ptr to the filter object or NULL when no memory available.
647 **/
648 static struct
iavf_add_vlan(struct iavf_adapter * adapter,u16 vlan)649 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
650 {
651 struct iavf_vlan_filter *f = NULL;
652
653 spin_lock_bh(&adapter->mac_vlan_list_lock);
654
655 f = iavf_find_vlan(adapter, vlan);
656 if (!f) {
657 f = kzalloc(sizeof(*f), GFP_ATOMIC);
658 if (!f)
659 goto clearout;
660
661 f->vlan = vlan;
662
663 list_add_tail(&f->list, &adapter->vlan_filter_list);
664 f->add = true;
665 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
666 }
667
668 clearout:
669 spin_unlock_bh(&adapter->mac_vlan_list_lock);
670 return f;
671 }
672
673 /**
674 * iavf_del_vlan - Remove a vlan filter from the list
675 * @adapter: board private structure
676 * @vlan: VLAN tag
677 **/
iavf_del_vlan(struct iavf_adapter * adapter,u16 vlan)678 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
679 {
680 struct iavf_vlan_filter *f;
681
682 spin_lock_bh(&adapter->mac_vlan_list_lock);
683
684 f = iavf_find_vlan(adapter, vlan);
685 if (f) {
686 f->remove = true;
687 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
688 }
689
690 spin_unlock_bh(&adapter->mac_vlan_list_lock);
691 }
692
693 /**
694 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
695 * @netdev: network device struct
696 * @proto: unused protocol data
697 * @vid: VLAN tag
698 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)699 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
700 __always_unused __be16 proto, u16 vid)
701 {
702 struct iavf_adapter *adapter = netdev_priv(netdev);
703
704 if (!VLAN_ALLOWED(adapter))
705 return -EIO;
706 if (iavf_add_vlan(adapter, vid) == NULL)
707 return -ENOMEM;
708 return 0;
709 }
710
711 /**
712 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
713 * @netdev: network device struct
714 * @proto: unused protocol data
715 * @vid: VLAN tag
716 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)717 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
718 __always_unused __be16 proto, u16 vid)
719 {
720 struct iavf_adapter *adapter = netdev_priv(netdev);
721
722 if (VLAN_ALLOWED(adapter)) {
723 iavf_del_vlan(adapter, vid);
724 return 0;
725 }
726 return -EIO;
727 }
728
729 /**
730 * iavf_find_filter - Search filter list for specific mac filter
731 * @adapter: board private structure
732 * @macaddr: the MAC address
733 *
734 * Returns ptr to the filter object or NULL. Must be called while holding the
735 * mac_vlan_list_lock.
736 **/
737 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)738 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
739 const u8 *macaddr)
740 {
741 struct iavf_mac_filter *f;
742
743 if (!macaddr)
744 return NULL;
745
746 list_for_each_entry(f, &adapter->mac_filter_list, list) {
747 if (ether_addr_equal(macaddr, f->macaddr))
748 return f;
749 }
750 return NULL;
751 }
752
753 /**
754 * iavf_add_filter - Add a mac filter to the filter list
755 * @adapter: board private structure
756 * @macaddr: the MAC address
757 *
758 * Returns ptr to the filter object or NULL when no memory available.
759 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)760 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
761 const u8 *macaddr)
762 {
763 struct iavf_mac_filter *f;
764
765 if (!macaddr)
766 return NULL;
767
768 f = iavf_find_filter(adapter, macaddr);
769 if (!f) {
770 f = kzalloc(sizeof(*f), GFP_ATOMIC);
771 if (!f)
772 return f;
773
774 ether_addr_copy(f->macaddr, macaddr);
775
776 list_add_tail(&f->list, &adapter->mac_filter_list);
777 f->add = true;
778 f->is_new_mac = true;
779 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
780 } else {
781 f->remove = false;
782 }
783
784 return f;
785 }
786
787 /**
788 * iavf_set_mac - NDO callback to set port mac address
789 * @netdev: network interface device structure
790 * @p: pointer to an address structure
791 *
792 * Returns 0 on success, negative on failure
793 **/
iavf_set_mac(struct net_device * netdev,void * p)794 static int iavf_set_mac(struct net_device *netdev, void *p)
795 {
796 struct iavf_adapter *adapter = netdev_priv(netdev);
797 struct iavf_hw *hw = &adapter->hw;
798 struct iavf_mac_filter *f;
799 struct sockaddr *addr = p;
800
801 if (!is_valid_ether_addr(addr->sa_data))
802 return -EADDRNOTAVAIL;
803
804 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
805 return 0;
806
807 spin_lock_bh(&adapter->mac_vlan_list_lock);
808
809 f = iavf_find_filter(adapter, hw->mac.addr);
810 if (f) {
811 f->remove = true;
812 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
813 }
814
815 f = iavf_add_filter(adapter, addr->sa_data);
816
817 spin_unlock_bh(&adapter->mac_vlan_list_lock);
818
819 if (f) {
820 ether_addr_copy(hw->mac.addr, addr->sa_data);
821 }
822
823 return (f == NULL) ? -ENOMEM : 0;
824 }
825
826 /**
827 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
828 * @netdev: the netdevice
829 * @addr: address to add
830 *
831 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
832 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
833 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)834 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
835 {
836 struct iavf_adapter *adapter = netdev_priv(netdev);
837
838 if (iavf_add_filter(adapter, addr))
839 return 0;
840 else
841 return -ENOMEM;
842 }
843
844 /**
845 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
846 * @netdev: the netdevice
847 * @addr: address to add
848 *
849 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
850 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
851 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)852 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
853 {
854 struct iavf_adapter *adapter = netdev_priv(netdev);
855 struct iavf_mac_filter *f;
856
857 /* Under some circumstances, we might receive a request to delete
858 * our own device address from our uc list. Because we store the
859 * device address in the VSI's MAC/VLAN filter list, we need to ignore
860 * such requests and not delete our device address from this list.
861 */
862 if (ether_addr_equal(addr, netdev->dev_addr))
863 return 0;
864
865 f = iavf_find_filter(adapter, addr);
866 if (f) {
867 f->remove = true;
868 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
869 }
870 return 0;
871 }
872
873 /**
874 * iavf_set_rx_mode - NDO callback to set the netdev filters
875 * @netdev: network interface device structure
876 **/
iavf_set_rx_mode(struct net_device * netdev)877 static void iavf_set_rx_mode(struct net_device *netdev)
878 {
879 struct iavf_adapter *adapter = netdev_priv(netdev);
880
881 spin_lock_bh(&adapter->mac_vlan_list_lock);
882 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
883 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
884 spin_unlock_bh(&adapter->mac_vlan_list_lock);
885
886 if (netdev->flags & IFF_PROMISC &&
887 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
888 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
889 else if (!(netdev->flags & IFF_PROMISC) &&
890 adapter->flags & IAVF_FLAG_PROMISC_ON)
891 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
892
893 if (netdev->flags & IFF_ALLMULTI &&
894 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
895 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
896 else if (!(netdev->flags & IFF_ALLMULTI) &&
897 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
898 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
899 }
900
901 /**
902 * iavf_napi_enable_all - enable NAPI on all queue vectors
903 * @adapter: board private structure
904 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)905 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
906 {
907 int q_idx;
908 struct iavf_q_vector *q_vector;
909 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
910
911 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
912 struct napi_struct *napi;
913
914 q_vector = &adapter->q_vectors[q_idx];
915 napi = &q_vector->napi;
916 napi_enable(napi);
917 }
918 }
919
920 /**
921 * iavf_napi_disable_all - disable NAPI on all queue vectors
922 * @adapter: board private structure
923 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)924 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
925 {
926 int q_idx;
927 struct iavf_q_vector *q_vector;
928 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
929
930 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
931 q_vector = &adapter->q_vectors[q_idx];
932 napi_disable(&q_vector->napi);
933 }
934 }
935
936 /**
937 * iavf_configure - set up transmit and receive data structures
938 * @adapter: board private structure
939 **/
iavf_configure(struct iavf_adapter * adapter)940 static void iavf_configure(struct iavf_adapter *adapter)
941 {
942 struct net_device *netdev = adapter->netdev;
943 int i;
944
945 iavf_set_rx_mode(netdev);
946
947 iavf_configure_tx(adapter);
948 iavf_configure_rx(adapter);
949 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
950
951 for (i = 0; i < adapter->num_active_queues; i++) {
952 struct iavf_ring *ring = &adapter->rx_rings[i];
953
954 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
955 }
956 }
957
958 /**
959 * iavf_up_complete - Finish the last steps of bringing up a connection
960 * @adapter: board private structure
961 *
962 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
963 **/
iavf_up_complete(struct iavf_adapter * adapter)964 static void iavf_up_complete(struct iavf_adapter *adapter)
965 {
966 iavf_change_state(adapter, __IAVF_RUNNING);
967 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
968
969 iavf_napi_enable_all(adapter);
970
971 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
972 if (CLIENT_ENABLED(adapter))
973 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
974 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
975 }
976
977 /**
978 * iavf_down - Shutdown the connection processing
979 * @adapter: board private structure
980 *
981 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
982 **/
iavf_down(struct iavf_adapter * adapter)983 void iavf_down(struct iavf_adapter *adapter)
984 {
985 struct net_device *netdev = adapter->netdev;
986 struct iavf_vlan_filter *vlf;
987 struct iavf_mac_filter *f;
988 struct iavf_cloud_filter *cf;
989
990 if (adapter->state <= __IAVF_DOWN_PENDING)
991 return;
992
993 netif_carrier_off(netdev);
994 netif_tx_disable(netdev);
995 adapter->link_up = false;
996 iavf_napi_disable_all(adapter);
997 iavf_irq_disable(adapter);
998
999 spin_lock_bh(&adapter->mac_vlan_list_lock);
1000
1001 /* clear the sync flag on all filters */
1002 __dev_uc_unsync(adapter->netdev, NULL);
1003 __dev_mc_unsync(adapter->netdev, NULL);
1004
1005 /* remove all MAC filters */
1006 list_for_each_entry(f, &adapter->mac_filter_list, list) {
1007 f->remove = true;
1008 }
1009
1010 /* remove all VLAN filters */
1011 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1012 vlf->remove = true;
1013 }
1014
1015 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1016
1017 /* remove all cloud filters */
1018 spin_lock_bh(&adapter->cloud_filter_list_lock);
1019 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1020 cf->del = true;
1021 }
1022 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1023
1024 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1025 adapter->state != __IAVF_RESETTING) {
1026 /* cancel any current operation */
1027 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1028 /* Schedule operations to close down the HW. Don't wait
1029 * here for this to complete. The watchdog is still running
1030 * and it will take care of this.
1031 */
1032 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1033 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1034 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1035 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1036 }
1037
1038 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1039 }
1040
1041 /**
1042 * iavf_acquire_msix_vectors - Setup the MSIX capability
1043 * @adapter: board private structure
1044 * @vectors: number of vectors to request
1045 *
1046 * Work with the OS to set up the MSIX vectors needed.
1047 *
1048 * Returns 0 on success, negative on failure
1049 **/
1050 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1051 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1052 {
1053 int err, vector_threshold;
1054
1055 /* We'll want at least 3 (vector_threshold):
1056 * 0) Other (Admin Queue and link, mostly)
1057 * 1) TxQ[0] Cleanup
1058 * 2) RxQ[0] Cleanup
1059 */
1060 vector_threshold = MIN_MSIX_COUNT;
1061
1062 /* The more we get, the more we will assign to Tx/Rx Cleanup
1063 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1064 * Right now, we simply care about how many we'll get; we'll
1065 * set them up later while requesting irq's.
1066 */
1067 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1068 vector_threshold, vectors);
1069 if (err < 0) {
1070 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1071 kfree(adapter->msix_entries);
1072 adapter->msix_entries = NULL;
1073 return err;
1074 }
1075
1076 /* Adjust for only the vectors we'll use, which is minimum
1077 * of max_msix_q_vectors + NONQ_VECS, or the number of
1078 * vectors we were allocated.
1079 */
1080 adapter->num_msix_vectors = err;
1081 return 0;
1082 }
1083
1084 /**
1085 * iavf_free_queues - Free memory for all rings
1086 * @adapter: board private structure to initialize
1087 *
1088 * Free all of the memory associated with queue pairs.
1089 **/
iavf_free_queues(struct iavf_adapter * adapter)1090 static void iavf_free_queues(struct iavf_adapter *adapter)
1091 {
1092 if (!adapter->vsi_res)
1093 return;
1094 adapter->num_active_queues = 0;
1095 kfree(adapter->tx_rings);
1096 adapter->tx_rings = NULL;
1097 kfree(adapter->rx_rings);
1098 adapter->rx_rings = NULL;
1099 }
1100
1101 /**
1102 * iavf_alloc_queues - Allocate memory for all rings
1103 * @adapter: board private structure to initialize
1104 *
1105 * We allocate one ring per queue at run-time since we don't know the
1106 * number of queues at compile-time. The polling_netdev array is
1107 * intended for Multiqueue, but should work fine with a single queue.
1108 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1109 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1110 {
1111 int i, num_active_queues;
1112
1113 /* If we're in reset reallocating queues we don't actually know yet for
1114 * certain the PF gave us the number of queues we asked for but we'll
1115 * assume it did. Once basic reset is finished we'll confirm once we
1116 * start negotiating config with PF.
1117 */
1118 if (adapter->num_req_queues)
1119 num_active_queues = adapter->num_req_queues;
1120 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1121 adapter->num_tc)
1122 num_active_queues = adapter->ch_config.total_qps;
1123 else
1124 num_active_queues = min_t(int,
1125 adapter->vsi_res->num_queue_pairs,
1126 (int)(num_online_cpus()));
1127
1128
1129 adapter->tx_rings = kcalloc(num_active_queues,
1130 sizeof(struct iavf_ring), GFP_KERNEL);
1131 if (!adapter->tx_rings)
1132 goto err_out;
1133 adapter->rx_rings = kcalloc(num_active_queues,
1134 sizeof(struct iavf_ring), GFP_KERNEL);
1135 if (!adapter->rx_rings)
1136 goto err_out;
1137
1138 for (i = 0; i < num_active_queues; i++) {
1139 struct iavf_ring *tx_ring;
1140 struct iavf_ring *rx_ring;
1141
1142 tx_ring = &adapter->tx_rings[i];
1143
1144 tx_ring->queue_index = i;
1145 tx_ring->netdev = adapter->netdev;
1146 tx_ring->dev = &adapter->pdev->dev;
1147 tx_ring->count = adapter->tx_desc_count;
1148 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1149 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1150 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1151
1152 rx_ring = &adapter->rx_rings[i];
1153 rx_ring->queue_index = i;
1154 rx_ring->netdev = adapter->netdev;
1155 rx_ring->dev = &adapter->pdev->dev;
1156 rx_ring->count = adapter->rx_desc_count;
1157 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1158 }
1159
1160 adapter->num_active_queues = num_active_queues;
1161
1162 return 0;
1163
1164 err_out:
1165 iavf_free_queues(adapter);
1166 return -ENOMEM;
1167 }
1168
1169 /**
1170 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1171 * @adapter: board private structure to initialize
1172 *
1173 * Attempt to configure the interrupts using the best available
1174 * capabilities of the hardware and the kernel.
1175 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1176 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1177 {
1178 int vector, v_budget;
1179 int pairs = 0;
1180 int err = 0;
1181
1182 if (!adapter->vsi_res) {
1183 err = -EIO;
1184 goto out;
1185 }
1186 pairs = adapter->num_active_queues;
1187
1188 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1189 * us much good if we have more vectors than CPUs. However, we already
1190 * limit the total number of queues by the number of CPUs so we do not
1191 * need any further limiting here.
1192 */
1193 v_budget = min_t(int, pairs + NONQ_VECS,
1194 (int)adapter->vf_res->max_vectors);
1195
1196 adapter->msix_entries = kcalloc(v_budget,
1197 sizeof(struct msix_entry), GFP_KERNEL);
1198 if (!adapter->msix_entries) {
1199 err = -ENOMEM;
1200 goto out;
1201 }
1202
1203 for (vector = 0; vector < v_budget; vector++)
1204 adapter->msix_entries[vector].entry = vector;
1205
1206 err = iavf_acquire_msix_vectors(adapter, v_budget);
1207
1208 out:
1209 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1210 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1211 return err;
1212 }
1213
1214 /**
1215 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1216 * @adapter: board private structure
1217 *
1218 * Return 0 on success, negative on failure
1219 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1220 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1221 {
1222 struct iavf_aqc_get_set_rss_key_data *rss_key =
1223 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1224 struct iavf_hw *hw = &adapter->hw;
1225 int ret = 0;
1226
1227 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1228 /* bail because we already have a command pending */
1229 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1230 adapter->current_op);
1231 return -EBUSY;
1232 }
1233
1234 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1235 if (ret) {
1236 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1237 iavf_stat_str(hw, ret),
1238 iavf_aq_str(hw, hw->aq.asq_last_status));
1239 return ret;
1240
1241 }
1242
1243 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1244 adapter->rss_lut, adapter->rss_lut_size);
1245 if (ret) {
1246 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1247 iavf_stat_str(hw, ret),
1248 iavf_aq_str(hw, hw->aq.asq_last_status));
1249 }
1250
1251 return ret;
1252
1253 }
1254
1255 /**
1256 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1257 * @adapter: board private structure
1258 *
1259 * Returns 0 on success, negative on failure
1260 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1261 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1262 {
1263 struct iavf_hw *hw = &adapter->hw;
1264 u32 *dw;
1265 u16 i;
1266
1267 dw = (u32 *)adapter->rss_key;
1268 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1269 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1270
1271 dw = (u32 *)adapter->rss_lut;
1272 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1273 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1274
1275 iavf_flush(hw);
1276
1277 return 0;
1278 }
1279
1280 /**
1281 * iavf_config_rss - Configure RSS keys and lut
1282 * @adapter: board private structure
1283 *
1284 * Returns 0 on success, negative on failure
1285 **/
iavf_config_rss(struct iavf_adapter * adapter)1286 int iavf_config_rss(struct iavf_adapter *adapter)
1287 {
1288
1289 if (RSS_PF(adapter)) {
1290 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1291 IAVF_FLAG_AQ_SET_RSS_KEY;
1292 return 0;
1293 } else if (RSS_AQ(adapter)) {
1294 return iavf_config_rss_aq(adapter);
1295 } else {
1296 return iavf_config_rss_reg(adapter);
1297 }
1298 }
1299
1300 /**
1301 * iavf_fill_rss_lut - Fill the lut with default values
1302 * @adapter: board private structure
1303 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1304 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1305 {
1306 u16 i;
1307
1308 for (i = 0; i < adapter->rss_lut_size; i++)
1309 adapter->rss_lut[i] = i % adapter->num_active_queues;
1310 }
1311
1312 /**
1313 * iavf_init_rss - Prepare for RSS
1314 * @adapter: board private structure
1315 *
1316 * Return 0 on success, negative on failure
1317 **/
iavf_init_rss(struct iavf_adapter * adapter)1318 static int iavf_init_rss(struct iavf_adapter *adapter)
1319 {
1320 struct iavf_hw *hw = &adapter->hw;
1321
1322 if (!RSS_PF(adapter)) {
1323 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1324 if (adapter->vf_res->vf_cap_flags &
1325 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1326 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1327 else
1328 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1329
1330 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1331 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1332 }
1333
1334 iavf_fill_rss_lut(adapter);
1335 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1336
1337 return iavf_config_rss(adapter);
1338 }
1339
1340 /**
1341 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1342 * @adapter: board private structure to initialize
1343 *
1344 * We allocate one q_vector per queue interrupt. If allocation fails we
1345 * return -ENOMEM.
1346 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1347 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1348 {
1349 int q_idx = 0, num_q_vectors;
1350 struct iavf_q_vector *q_vector;
1351
1352 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1353 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1354 GFP_KERNEL);
1355 if (!adapter->q_vectors)
1356 return -ENOMEM;
1357
1358 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1359 q_vector = &adapter->q_vectors[q_idx];
1360 q_vector->adapter = adapter;
1361 q_vector->vsi = &adapter->vsi;
1362 q_vector->v_idx = q_idx;
1363 q_vector->reg_idx = q_idx;
1364 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1365 netif_napi_add(adapter->netdev, &q_vector->napi,
1366 iavf_napi_poll, NAPI_POLL_WEIGHT);
1367 }
1368
1369 return 0;
1370 }
1371
1372 /**
1373 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1374 * @adapter: board private structure to initialize
1375 *
1376 * This function frees the memory allocated to the q_vectors. In addition if
1377 * NAPI is enabled it will delete any references to the NAPI struct prior
1378 * to freeing the q_vector.
1379 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1380 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1381 {
1382 int q_idx, num_q_vectors;
1383 int napi_vectors;
1384
1385 if (!adapter->q_vectors)
1386 return;
1387
1388 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1389 napi_vectors = adapter->num_active_queues;
1390
1391 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1392 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1393
1394 if (q_idx < napi_vectors)
1395 netif_napi_del(&q_vector->napi);
1396 }
1397 kfree(adapter->q_vectors);
1398 adapter->q_vectors = NULL;
1399 }
1400
1401 /**
1402 * iavf_reset_interrupt_capability - Reset MSIX setup
1403 * @adapter: board private structure
1404 *
1405 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1406 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1407 {
1408 if (!adapter->msix_entries)
1409 return;
1410
1411 pci_disable_msix(adapter->pdev);
1412 kfree(adapter->msix_entries);
1413 adapter->msix_entries = NULL;
1414 }
1415
1416 /**
1417 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1418 * @adapter: board private structure to initialize
1419 *
1420 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1421 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1422 {
1423 int err;
1424
1425 err = iavf_alloc_queues(adapter);
1426 if (err) {
1427 dev_err(&adapter->pdev->dev,
1428 "Unable to allocate memory for queues\n");
1429 goto err_alloc_queues;
1430 }
1431
1432 rtnl_lock();
1433 err = iavf_set_interrupt_capability(adapter);
1434 rtnl_unlock();
1435 if (err) {
1436 dev_err(&adapter->pdev->dev,
1437 "Unable to setup interrupt capabilities\n");
1438 goto err_set_interrupt;
1439 }
1440
1441 err = iavf_alloc_q_vectors(adapter);
1442 if (err) {
1443 dev_err(&adapter->pdev->dev,
1444 "Unable to allocate memory for queue vectors\n");
1445 goto err_alloc_q_vectors;
1446 }
1447
1448 /* If we've made it so far while ADq flag being ON, then we haven't
1449 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1450 * resources have been allocated in the reset path.
1451 * Now we can truly claim that ADq is enabled.
1452 */
1453 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1454 adapter->num_tc)
1455 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1456 adapter->num_tc);
1457
1458 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1459 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1460 adapter->num_active_queues);
1461
1462 return 0;
1463 err_alloc_q_vectors:
1464 iavf_reset_interrupt_capability(adapter);
1465 err_set_interrupt:
1466 iavf_free_queues(adapter);
1467 err_alloc_queues:
1468 return err;
1469 }
1470
1471 /**
1472 * iavf_free_rss - Free memory used by RSS structs
1473 * @adapter: board private structure
1474 **/
iavf_free_rss(struct iavf_adapter * adapter)1475 static void iavf_free_rss(struct iavf_adapter *adapter)
1476 {
1477 kfree(adapter->rss_key);
1478 adapter->rss_key = NULL;
1479
1480 kfree(adapter->rss_lut);
1481 adapter->rss_lut = NULL;
1482 }
1483
1484 /**
1485 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1486 * @adapter: board private structure
1487 *
1488 * Returns 0 on success, negative on failure
1489 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter)1490 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1491 {
1492 struct net_device *netdev = adapter->netdev;
1493 int err;
1494
1495 if (netif_running(netdev))
1496 iavf_free_traffic_irqs(adapter);
1497 iavf_free_misc_irq(adapter);
1498 iavf_reset_interrupt_capability(adapter);
1499 iavf_free_q_vectors(adapter);
1500 iavf_free_queues(adapter);
1501
1502 err = iavf_init_interrupt_scheme(adapter);
1503 if (err)
1504 goto err;
1505
1506 netif_tx_stop_all_queues(netdev);
1507
1508 err = iavf_request_misc_irq(adapter);
1509 if (err)
1510 goto err;
1511
1512 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1513
1514 iavf_map_rings_to_vectors(adapter);
1515 err:
1516 return err;
1517 }
1518
1519 /**
1520 * iavf_process_aq_command - process aq_required flags
1521 * and sends aq command
1522 * @adapter: pointer to iavf adapter structure
1523 *
1524 * Returns 0 on success
1525 * Returns error code if no command was sent
1526 * or error code if the command failed.
1527 **/
iavf_process_aq_command(struct iavf_adapter * adapter)1528 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1529 {
1530 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1531 return iavf_send_vf_config_msg(adapter);
1532 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1533 iavf_disable_queues(adapter);
1534 return 0;
1535 }
1536
1537 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1538 iavf_map_queues(adapter);
1539 return 0;
1540 }
1541
1542 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1543 iavf_add_ether_addrs(adapter);
1544 return 0;
1545 }
1546
1547 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1548 iavf_add_vlans(adapter);
1549 return 0;
1550 }
1551
1552 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1553 iavf_del_ether_addrs(adapter);
1554 return 0;
1555 }
1556
1557 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1558 iavf_del_vlans(adapter);
1559 return 0;
1560 }
1561
1562 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1563 iavf_enable_vlan_stripping(adapter);
1564 return 0;
1565 }
1566
1567 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1568 iavf_disable_vlan_stripping(adapter);
1569 return 0;
1570 }
1571
1572 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1573 iavf_configure_queues(adapter);
1574 return 0;
1575 }
1576
1577 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1578 iavf_enable_queues(adapter);
1579 return 0;
1580 }
1581
1582 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1583 /* This message goes straight to the firmware, not the
1584 * PF, so we don't have to set current_op as we will
1585 * not get a response through the ARQ.
1586 */
1587 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1588 return 0;
1589 }
1590 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1591 iavf_get_hena(adapter);
1592 return 0;
1593 }
1594 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1595 iavf_set_hena(adapter);
1596 return 0;
1597 }
1598 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1599 iavf_set_rss_key(adapter);
1600 return 0;
1601 }
1602 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1603 iavf_set_rss_lut(adapter);
1604 return 0;
1605 }
1606
1607 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1608 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1609 FLAG_VF_MULTICAST_PROMISC);
1610 return 0;
1611 }
1612
1613 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1614 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1615 return 0;
1616 }
1617 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1618 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1619 iavf_set_promiscuous(adapter, 0);
1620 return 0;
1621 }
1622
1623 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1624 iavf_enable_channels(adapter);
1625 return 0;
1626 }
1627
1628 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1629 iavf_disable_channels(adapter);
1630 return 0;
1631 }
1632 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1633 iavf_add_cloud_filter(adapter);
1634 return 0;
1635 }
1636
1637 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1638 iavf_del_cloud_filter(adapter);
1639 return 0;
1640 }
1641 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1642 iavf_del_cloud_filter(adapter);
1643 return 0;
1644 }
1645 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1646 iavf_add_cloud_filter(adapter);
1647 return 0;
1648 }
1649 return -EAGAIN;
1650 }
1651
1652 /**
1653 * iavf_startup - first step of driver startup
1654 * @adapter: board private structure
1655 *
1656 * Function process __IAVF_STARTUP driver state.
1657 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1658 * when fails it returns -EAGAIN
1659 **/
iavf_startup(struct iavf_adapter * adapter)1660 static int iavf_startup(struct iavf_adapter *adapter)
1661 {
1662 struct pci_dev *pdev = adapter->pdev;
1663 struct iavf_hw *hw = &adapter->hw;
1664 int err;
1665
1666 WARN_ON(adapter->state != __IAVF_STARTUP);
1667
1668 /* driver loaded, probe complete */
1669 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1670 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1671 err = iavf_set_mac_type(hw);
1672 if (err) {
1673 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1674 goto err;
1675 }
1676
1677 err = iavf_check_reset_complete(hw);
1678 if (err) {
1679 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1680 err);
1681 goto err;
1682 }
1683 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1684 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1685 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1686 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1687
1688 err = iavf_init_adminq(hw);
1689 if (err) {
1690 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1691 goto err;
1692 }
1693 err = iavf_send_api_ver(adapter);
1694 if (err) {
1695 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1696 iavf_shutdown_adminq(hw);
1697 goto err;
1698 }
1699 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
1700 err:
1701 return err;
1702 }
1703
1704 /**
1705 * iavf_init_version_check - second step of driver startup
1706 * @adapter: board private structure
1707 *
1708 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1709 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1710 * when fails it returns -EAGAIN
1711 **/
iavf_init_version_check(struct iavf_adapter * adapter)1712 static int iavf_init_version_check(struct iavf_adapter *adapter)
1713 {
1714 struct pci_dev *pdev = adapter->pdev;
1715 struct iavf_hw *hw = &adapter->hw;
1716 int err = -EAGAIN;
1717
1718 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1719
1720 if (!iavf_asq_done(hw)) {
1721 dev_err(&pdev->dev, "Admin queue command never completed\n");
1722 iavf_shutdown_adminq(hw);
1723 iavf_change_state(adapter, __IAVF_STARTUP);
1724 goto err;
1725 }
1726
1727 /* aq msg sent, awaiting reply */
1728 err = iavf_verify_api_ver(adapter);
1729 if (err) {
1730 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1731 err = iavf_send_api_ver(adapter);
1732 else
1733 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1734 adapter->pf_version.major,
1735 adapter->pf_version.minor,
1736 VIRTCHNL_VERSION_MAJOR,
1737 VIRTCHNL_VERSION_MINOR);
1738 goto err;
1739 }
1740 err = iavf_send_vf_config_msg(adapter);
1741 if (err) {
1742 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1743 err);
1744 goto err;
1745 }
1746 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
1747 err:
1748 return err;
1749 }
1750
1751 /**
1752 * iavf_init_get_resources - third step of driver startup
1753 * @adapter: board private structure
1754 *
1755 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1756 * finishes driver initialization procedure.
1757 * When success the state is changed to __IAVF_DOWN
1758 * when fails it returns -EAGAIN
1759 **/
iavf_init_get_resources(struct iavf_adapter * adapter)1760 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1761 {
1762 struct net_device *netdev = adapter->netdev;
1763 struct pci_dev *pdev = adapter->pdev;
1764 struct iavf_hw *hw = &adapter->hw;
1765 int err;
1766
1767 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1768 /* aq msg sent, awaiting reply */
1769 if (!adapter->vf_res) {
1770 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1771 GFP_KERNEL);
1772 if (!adapter->vf_res) {
1773 err = -ENOMEM;
1774 goto err;
1775 }
1776 }
1777 err = iavf_get_vf_config(adapter);
1778 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1779 err = iavf_send_vf_config_msg(adapter);
1780 goto err;
1781 } else if (err == IAVF_ERR_PARAM) {
1782 /* We only get ERR_PARAM if the device is in a very bad
1783 * state or if we've been disabled for previous bad
1784 * behavior. Either way, we're done now.
1785 */
1786 iavf_shutdown_adminq(hw);
1787 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1788 return 0;
1789 }
1790 if (err) {
1791 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1792 goto err_alloc;
1793 }
1794
1795 err = iavf_process_config(adapter);
1796 if (err)
1797 goto err_alloc;
1798 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1799
1800 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1801
1802 netdev->netdev_ops = &iavf_netdev_ops;
1803 iavf_set_ethtool_ops(netdev);
1804 netdev->watchdog_timeo = 5 * HZ;
1805
1806 /* MTU range: 68 - 9710 */
1807 netdev->min_mtu = ETH_MIN_MTU;
1808 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1809
1810 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1811 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1812 adapter->hw.mac.addr);
1813 eth_hw_addr_random(netdev);
1814 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1815 } else {
1816 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1817 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1818 }
1819
1820 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1821 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1822 err = iavf_init_interrupt_scheme(adapter);
1823 if (err)
1824 goto err_sw_init;
1825 iavf_map_rings_to_vectors(adapter);
1826 if (adapter->vf_res->vf_cap_flags &
1827 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1828 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1829
1830 err = iavf_request_misc_irq(adapter);
1831 if (err)
1832 goto err_sw_init;
1833
1834 netif_carrier_off(netdev);
1835 adapter->link_up = false;
1836
1837 /* set the semaphore to prevent any callbacks after device registration
1838 * up to time when state of driver will be set to __IAVF_DOWN
1839 */
1840 rtnl_lock();
1841 if (!adapter->netdev_registered) {
1842 err = register_netdevice(netdev);
1843 if (err) {
1844 rtnl_unlock();
1845 goto err_register;
1846 }
1847 }
1848
1849 adapter->netdev_registered = true;
1850
1851 netif_tx_stop_all_queues(netdev);
1852 if (CLIENT_ALLOWED(adapter)) {
1853 err = iavf_lan_add_device(adapter);
1854 if (err)
1855 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1856 err);
1857 }
1858 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1859 if (netdev->features & NETIF_F_GRO)
1860 dev_info(&pdev->dev, "GRO is enabled\n");
1861
1862 iavf_change_state(adapter, __IAVF_DOWN);
1863 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1864 rtnl_unlock();
1865
1866 iavf_misc_irq_enable(adapter);
1867 wake_up(&adapter->down_waitqueue);
1868
1869 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1870 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1871 if (!adapter->rss_key || !adapter->rss_lut) {
1872 err = -ENOMEM;
1873 goto err_mem;
1874 }
1875 if (RSS_AQ(adapter))
1876 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1877 else
1878 iavf_init_rss(adapter);
1879
1880 return err;
1881 err_mem:
1882 iavf_free_rss(adapter);
1883 err_register:
1884 iavf_free_misc_irq(adapter);
1885 err_sw_init:
1886 iavf_reset_interrupt_capability(adapter);
1887 err_alloc:
1888 kfree(adapter->vf_res);
1889 adapter->vf_res = NULL;
1890 err:
1891 return err;
1892 }
1893
1894 /**
1895 * iavf_watchdog_task - Periodic call-back task
1896 * @work: pointer to work_struct
1897 **/
iavf_watchdog_task(struct work_struct * work)1898 static void iavf_watchdog_task(struct work_struct *work)
1899 {
1900 struct iavf_adapter *adapter = container_of(work,
1901 struct iavf_adapter,
1902 watchdog_task.work);
1903 struct iavf_hw *hw = &adapter->hw;
1904 u32 reg_val;
1905
1906 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1907 goto restart_watchdog;
1908
1909 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1910 iavf_change_state(adapter, __IAVF_COMM_FAILED);
1911
1912 switch (adapter->state) {
1913 case __IAVF_COMM_FAILED:
1914 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1915 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1916 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1917 reg_val == VIRTCHNL_VFR_COMPLETED) {
1918 /* A chance for redemption! */
1919 dev_err(&adapter->pdev->dev,
1920 "Hardware came out of reset. Attempting reinit.\n");
1921 iavf_change_state(adapter, __IAVF_STARTUP);
1922 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1923 queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1924 clear_bit(__IAVF_IN_CRITICAL_TASK,
1925 &adapter->crit_section);
1926 /* Don't reschedule the watchdog, since we've restarted
1927 * the init task. When init_task contacts the PF and
1928 * gets everything set up again, it'll restart the
1929 * watchdog for us. Down, boy. Sit. Stay. Woof.
1930 */
1931 return;
1932 }
1933 adapter->aq_required = 0;
1934 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1935 clear_bit(__IAVF_IN_CRITICAL_TASK,
1936 &adapter->crit_section);
1937 queue_delayed_work(iavf_wq,
1938 &adapter->watchdog_task,
1939 msecs_to_jiffies(10));
1940 goto watchdog_done;
1941 case __IAVF_RESETTING:
1942 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1943 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1944 return;
1945 case __IAVF_DOWN:
1946 case __IAVF_DOWN_PENDING:
1947 case __IAVF_TESTING:
1948 case __IAVF_RUNNING:
1949 if (adapter->current_op) {
1950 if (!iavf_asq_done(hw)) {
1951 dev_dbg(&adapter->pdev->dev,
1952 "Admin queue timeout\n");
1953 iavf_send_api_ver(adapter);
1954 }
1955 } else {
1956 /* An error will be returned if no commands were
1957 * processed; use this opportunity to update stats
1958 */
1959 if (iavf_process_aq_command(adapter) &&
1960 adapter->state == __IAVF_RUNNING)
1961 iavf_request_stats(adapter);
1962 }
1963 break;
1964 case __IAVF_REMOVE:
1965 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1966 return;
1967 default:
1968 goto restart_watchdog;
1969 }
1970
1971 /* check for hw reset */
1972 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1973 if (!reg_val) {
1974 iavf_change_state(adapter, __IAVF_RESETTING);
1975 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1976 adapter->aq_required = 0;
1977 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1978 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1979 queue_work(iavf_wq, &adapter->reset_task);
1980 goto watchdog_done;
1981 }
1982
1983 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1984 watchdog_done:
1985 if (adapter->state == __IAVF_RUNNING ||
1986 adapter->state == __IAVF_COMM_FAILED)
1987 iavf_detect_recover_hung(&adapter->vsi);
1988 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1989 restart_watchdog:
1990 if (adapter->aq_required)
1991 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1992 msecs_to_jiffies(20));
1993 else
1994 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1995 queue_work(iavf_wq, &adapter->adminq_task);
1996 }
1997
iavf_disable_vf(struct iavf_adapter * adapter)1998 static void iavf_disable_vf(struct iavf_adapter *adapter)
1999 {
2000 struct iavf_mac_filter *f, *ftmp;
2001 struct iavf_vlan_filter *fv, *fvtmp;
2002 struct iavf_cloud_filter *cf, *cftmp;
2003
2004 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2005
2006 /* We don't use netif_running() because it may be true prior to
2007 * ndo_open() returning, so we can't assume it means all our open
2008 * tasks have finished, since we're not holding the rtnl_lock here.
2009 */
2010 if (adapter->state == __IAVF_RUNNING) {
2011 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2012 netif_carrier_off(adapter->netdev);
2013 netif_tx_disable(adapter->netdev);
2014 adapter->link_up = false;
2015 iavf_napi_disable_all(adapter);
2016 iavf_irq_disable(adapter);
2017 iavf_free_traffic_irqs(adapter);
2018 iavf_free_all_tx_resources(adapter);
2019 iavf_free_all_rx_resources(adapter);
2020 }
2021
2022 spin_lock_bh(&adapter->mac_vlan_list_lock);
2023
2024 /* Delete all of the filters */
2025 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2026 list_del(&f->list);
2027 kfree(f);
2028 }
2029
2030 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2031 list_del(&fv->list);
2032 kfree(fv);
2033 }
2034
2035 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2036
2037 spin_lock_bh(&adapter->cloud_filter_list_lock);
2038 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2039 list_del(&cf->list);
2040 kfree(cf);
2041 adapter->num_cloud_filters--;
2042 }
2043 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2044
2045 iavf_free_misc_irq(adapter);
2046 iavf_reset_interrupt_capability(adapter);
2047 iavf_free_q_vectors(adapter);
2048 iavf_free_queues(adapter);
2049 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2050 iavf_shutdown_adminq(&adapter->hw);
2051 adapter->netdev->flags &= ~IFF_UP;
2052 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2053 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2054 iavf_change_state(adapter, __IAVF_DOWN);
2055 wake_up(&adapter->down_waitqueue);
2056 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2057 }
2058
2059 /**
2060 * iavf_reset_task - Call-back task to handle hardware reset
2061 * @work: pointer to work_struct
2062 *
2063 * During reset we need to shut down and reinitialize the admin queue
2064 * before we can use it to communicate with the PF again. We also clear
2065 * and reinit the rings because that context is lost as well.
2066 **/
iavf_reset_task(struct work_struct * work)2067 static void iavf_reset_task(struct work_struct *work)
2068 {
2069 struct iavf_adapter *adapter = container_of(work,
2070 struct iavf_adapter,
2071 reset_task);
2072 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2073 struct net_device *netdev = adapter->netdev;
2074 struct iavf_hw *hw = &adapter->hw;
2075 struct iavf_mac_filter *f, *ftmp;
2076 struct iavf_vlan_filter *vlf;
2077 struct iavf_cloud_filter *cf;
2078 u32 reg_val;
2079 int i = 0, err;
2080 bool running;
2081
2082 /* When device is being removed it doesn't make sense to run the reset
2083 * task, just return in such a case.
2084 */
2085 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2086 return;
2087
2088 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200)) {
2089 schedule_work(&adapter->reset_task);
2090 return;
2091 }
2092 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2093 &adapter->crit_section))
2094 usleep_range(500, 1000);
2095 if (CLIENT_ENABLED(adapter)) {
2096 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2097 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2098 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2099 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2100 cancel_delayed_work_sync(&adapter->client_task);
2101 iavf_notify_client_close(&adapter->vsi, true);
2102 }
2103 iavf_misc_irq_disable(adapter);
2104 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2105 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2106 /* Restart the AQ here. If we have been reset but didn't
2107 * detect it, or if the PF had to reinit, our AQ will be hosed.
2108 */
2109 iavf_shutdown_adminq(hw);
2110 iavf_init_adminq(hw);
2111 iavf_request_reset(adapter);
2112 }
2113 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2114
2115 /* poll until we see the reset actually happen */
2116 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2117 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2118 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2119 if (!reg_val)
2120 break;
2121 usleep_range(5000, 10000);
2122 }
2123 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2124 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2125 goto continue_reset; /* act like the reset happened */
2126 }
2127
2128 /* wait until the reset is complete and the PF is responding to us */
2129 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2130 /* sleep first to make sure a minimum wait time is met */
2131 msleep(IAVF_RESET_WAIT_MS);
2132
2133 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2134 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2135 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2136 break;
2137 }
2138
2139 pci_set_master(adapter->pdev);
2140 pci_restore_msi_state(adapter->pdev);
2141
2142 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2143 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2144 reg_val);
2145 iavf_disable_vf(adapter);
2146 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2147 return; /* Do not attempt to reinit. It's dead, Jim. */
2148 }
2149
2150 continue_reset:
2151 /* We don't use netif_running() because it may be true prior to
2152 * ndo_open() returning, so we can't assume it means all our open
2153 * tasks have finished, since we're not holding the rtnl_lock here.
2154 */
2155 running = ((adapter->state == __IAVF_RUNNING) ||
2156 (adapter->state == __IAVF_RESETTING));
2157
2158 if (running) {
2159 netif_carrier_off(netdev);
2160 netif_tx_stop_all_queues(netdev);
2161 adapter->link_up = false;
2162 iavf_napi_disable_all(adapter);
2163 }
2164 iavf_irq_disable(adapter);
2165
2166 iavf_change_state(adapter, __IAVF_RESETTING);
2167 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2168
2169 /* free the Tx/Rx rings and descriptors, might be better to just
2170 * re-use them sometime in the future
2171 */
2172 iavf_free_all_rx_resources(adapter);
2173 iavf_free_all_tx_resources(adapter);
2174
2175 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2176 /* kill and reinit the admin queue */
2177 iavf_shutdown_adminq(hw);
2178 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2179 err = iavf_init_adminq(hw);
2180 if (err)
2181 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2182 err);
2183 adapter->aq_required = 0;
2184
2185 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2186 err = iavf_reinit_interrupt_scheme(adapter);
2187 if (err)
2188 goto reset_err;
2189 }
2190
2191 if (RSS_AQ(adapter)) {
2192 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2193 } else {
2194 err = iavf_init_rss(adapter);
2195 if (err)
2196 goto reset_err;
2197 }
2198
2199 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2200 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2201
2202 spin_lock_bh(&adapter->mac_vlan_list_lock);
2203
2204 /* Delete filter for the current MAC address, it could have
2205 * been changed by the PF via administratively set MAC.
2206 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2207 */
2208 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2209 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2210 list_del(&f->list);
2211 kfree(f);
2212 }
2213 }
2214 /* re-add all MAC filters */
2215 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2216 f->add = true;
2217 }
2218 /* re-add all VLAN filters */
2219 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2220 vlf->add = true;
2221 }
2222
2223 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2224
2225 /* check if TCs are running and re-add all cloud filters */
2226 spin_lock_bh(&adapter->cloud_filter_list_lock);
2227 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2228 adapter->num_tc) {
2229 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2230 cf->add = true;
2231 }
2232 }
2233 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2234
2235 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2236 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2237 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2238 iavf_misc_irq_enable(adapter);
2239
2240 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2241
2242 /* We were running when the reset started, so we need to restore some
2243 * state here.
2244 */
2245 if (running) {
2246 /* allocate transmit descriptors */
2247 err = iavf_setup_all_tx_resources(adapter);
2248 if (err)
2249 goto reset_err;
2250
2251 /* allocate receive descriptors */
2252 err = iavf_setup_all_rx_resources(adapter);
2253 if (err)
2254 goto reset_err;
2255
2256 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2257 err = iavf_request_traffic_irqs(adapter, netdev->name);
2258 if (err)
2259 goto reset_err;
2260
2261 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2262 }
2263
2264 iavf_configure(adapter);
2265
2266 /* iavf_up_complete() will switch device back
2267 * to __IAVF_RUNNING
2268 */
2269 iavf_up_complete(adapter);
2270
2271 iavf_irq_enable(adapter, true);
2272 } else {
2273 iavf_change_state(adapter, __IAVF_DOWN);
2274 wake_up(&adapter->down_waitqueue);
2275 }
2276 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2277 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2278
2279 return;
2280 reset_err:
2281 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2282 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2283 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2284 iavf_close(netdev);
2285 }
2286
2287 /**
2288 * iavf_adminq_task - worker thread to clean the admin queue
2289 * @work: pointer to work_struct containing our data
2290 **/
iavf_adminq_task(struct work_struct * work)2291 static void iavf_adminq_task(struct work_struct *work)
2292 {
2293 struct iavf_adapter *adapter =
2294 container_of(work, struct iavf_adapter, adminq_task);
2295 struct iavf_hw *hw = &adapter->hw;
2296 struct iavf_arq_event_info event;
2297 enum virtchnl_ops v_op;
2298 enum iavf_status ret, v_ret;
2299 u32 val, oldval;
2300 u16 pending;
2301
2302 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2303 goto out;
2304
2305 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2306 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2307 if (!event.msg_buf)
2308 goto out;
2309
2310 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200))
2311 goto freedom;
2312 do {
2313 ret = iavf_clean_arq_element(hw, &event, &pending);
2314 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2315 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2316
2317 if (ret || !v_op)
2318 break; /* No event to process or error cleaning ARQ */
2319
2320 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2321 event.msg_len);
2322 if (pending != 0)
2323 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2324 } while (pending);
2325 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2326
2327 if ((adapter->flags &
2328 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2329 adapter->state == __IAVF_RESETTING)
2330 goto freedom;
2331
2332 /* check for error indications */
2333 val = rd32(hw, hw->aq.arq.len);
2334 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
2335 goto freedom;
2336 oldval = val;
2337 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2338 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2339 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2340 }
2341 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2342 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2343 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2344 }
2345 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2346 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2347 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2348 }
2349 if (oldval != val)
2350 wr32(hw, hw->aq.arq.len, val);
2351
2352 val = rd32(hw, hw->aq.asq.len);
2353 oldval = val;
2354 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2355 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2356 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2357 }
2358 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2359 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2360 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2361 }
2362 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2363 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2364 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2365 }
2366 if (oldval != val)
2367 wr32(hw, hw->aq.asq.len, val);
2368
2369 freedom:
2370 kfree(event.msg_buf);
2371 out:
2372 /* re-enable Admin queue interrupt cause */
2373 iavf_misc_irq_enable(adapter);
2374 }
2375
2376 /**
2377 * iavf_client_task - worker thread to perform client work
2378 * @work: pointer to work_struct containing our data
2379 *
2380 * This task handles client interactions. Because client calls can be
2381 * reentrant, we can't handle them in the watchdog.
2382 **/
iavf_client_task(struct work_struct * work)2383 static void iavf_client_task(struct work_struct *work)
2384 {
2385 struct iavf_adapter *adapter =
2386 container_of(work, struct iavf_adapter, client_task.work);
2387
2388 /* If we can't get the client bit, just give up. We'll be rescheduled
2389 * later.
2390 */
2391
2392 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2393 return;
2394
2395 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2396 iavf_client_subtask(adapter);
2397 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2398 goto out;
2399 }
2400 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2401 iavf_notify_client_l2_params(&adapter->vsi);
2402 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2403 goto out;
2404 }
2405 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2406 iavf_notify_client_close(&adapter->vsi, false);
2407 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2408 goto out;
2409 }
2410 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2411 iavf_notify_client_open(&adapter->vsi);
2412 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2413 }
2414 out:
2415 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2416 }
2417
2418 /**
2419 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2420 * @adapter: board private structure
2421 *
2422 * Free all transmit software resources
2423 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)2424 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2425 {
2426 int i;
2427
2428 if (!adapter->tx_rings)
2429 return;
2430
2431 for (i = 0; i < adapter->num_active_queues; i++)
2432 if (adapter->tx_rings[i].desc)
2433 iavf_free_tx_resources(&adapter->tx_rings[i]);
2434 }
2435
2436 /**
2437 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2438 * @adapter: board private structure
2439 *
2440 * If this function returns with an error, then it's possible one or
2441 * more of the rings is populated (while the rest are not). It is the
2442 * callers duty to clean those orphaned rings.
2443 *
2444 * Return 0 on success, negative on failure
2445 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)2446 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2447 {
2448 int i, err = 0;
2449
2450 for (i = 0; i < adapter->num_active_queues; i++) {
2451 adapter->tx_rings[i].count = adapter->tx_desc_count;
2452 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2453 if (!err)
2454 continue;
2455 dev_err(&adapter->pdev->dev,
2456 "Allocation for Tx Queue %u failed\n", i);
2457 break;
2458 }
2459
2460 return err;
2461 }
2462
2463 /**
2464 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2465 * @adapter: board private structure
2466 *
2467 * If this function returns with an error, then it's possible one or
2468 * more of the rings is populated (while the rest are not). It is the
2469 * callers duty to clean those orphaned rings.
2470 *
2471 * Return 0 on success, negative on failure
2472 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)2473 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2474 {
2475 int i, err = 0;
2476
2477 for (i = 0; i < adapter->num_active_queues; i++) {
2478 adapter->rx_rings[i].count = adapter->rx_desc_count;
2479 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2480 if (!err)
2481 continue;
2482 dev_err(&adapter->pdev->dev,
2483 "Allocation for Rx Queue %u failed\n", i);
2484 break;
2485 }
2486 return err;
2487 }
2488
2489 /**
2490 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2491 * @adapter: board private structure
2492 *
2493 * Free all receive software resources
2494 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)2495 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2496 {
2497 int i;
2498
2499 if (!adapter->rx_rings)
2500 return;
2501
2502 for (i = 0; i < adapter->num_active_queues; i++)
2503 if (adapter->rx_rings[i].desc)
2504 iavf_free_rx_resources(&adapter->rx_rings[i]);
2505 }
2506
2507 /**
2508 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2509 * @adapter: board private structure
2510 * @max_tx_rate: max Tx bw for a tc
2511 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)2512 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2513 u64 max_tx_rate)
2514 {
2515 int speed = 0, ret = 0;
2516
2517 if (ADV_LINK_SUPPORT(adapter)) {
2518 if (adapter->link_speed_mbps < U32_MAX) {
2519 speed = adapter->link_speed_mbps;
2520 goto validate_bw;
2521 } else {
2522 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2523 return -EINVAL;
2524 }
2525 }
2526
2527 switch (adapter->link_speed) {
2528 case VIRTCHNL_LINK_SPEED_40GB:
2529 speed = SPEED_40000;
2530 break;
2531 case VIRTCHNL_LINK_SPEED_25GB:
2532 speed = SPEED_25000;
2533 break;
2534 case VIRTCHNL_LINK_SPEED_20GB:
2535 speed = SPEED_20000;
2536 break;
2537 case VIRTCHNL_LINK_SPEED_10GB:
2538 speed = SPEED_10000;
2539 break;
2540 case VIRTCHNL_LINK_SPEED_5GB:
2541 speed = SPEED_5000;
2542 break;
2543 case VIRTCHNL_LINK_SPEED_2_5GB:
2544 speed = SPEED_2500;
2545 break;
2546 case VIRTCHNL_LINK_SPEED_1GB:
2547 speed = SPEED_1000;
2548 break;
2549 case VIRTCHNL_LINK_SPEED_100MB:
2550 speed = SPEED_100;
2551 break;
2552 default:
2553 break;
2554 }
2555
2556 validate_bw:
2557 if (max_tx_rate > speed) {
2558 dev_err(&adapter->pdev->dev,
2559 "Invalid tx rate specified\n");
2560 ret = -EINVAL;
2561 }
2562
2563 return ret;
2564 }
2565
2566 /**
2567 * iavf_validate_channel_config - validate queue mapping info
2568 * @adapter: board private structure
2569 * @mqprio_qopt: queue parameters
2570 *
2571 * This function validates if the config provided by the user to
2572 * configure queue channels is valid or not. Returns 0 on a valid
2573 * config.
2574 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)2575 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2576 struct tc_mqprio_qopt_offload *mqprio_qopt)
2577 {
2578 u64 total_max_rate = 0;
2579 u32 tx_rate_rem = 0;
2580 int i, num_qps = 0;
2581 u64 tx_rate = 0;
2582 int ret = 0;
2583
2584 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2585 mqprio_qopt->qopt.num_tc < 1)
2586 return -EINVAL;
2587
2588 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2589 if (!mqprio_qopt->qopt.count[i] ||
2590 mqprio_qopt->qopt.offset[i] != num_qps)
2591 return -EINVAL;
2592 if (mqprio_qopt->min_rate[i]) {
2593 dev_err(&adapter->pdev->dev,
2594 "Invalid min tx rate (greater than 0) specified for TC%d\n",
2595 i);
2596 return -EINVAL;
2597 }
2598
2599 /* convert to Mbps */
2600 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2601 IAVF_MBPS_DIVISOR);
2602
2603 if (mqprio_qopt->max_rate[i] &&
2604 tx_rate < IAVF_MBPS_QUANTA) {
2605 dev_err(&adapter->pdev->dev,
2606 "Invalid max tx rate for TC%d, minimum %dMbps\n",
2607 i, IAVF_MBPS_QUANTA);
2608 return -EINVAL;
2609 }
2610
2611 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
2612
2613 if (tx_rate_rem != 0) {
2614 dev_err(&adapter->pdev->dev,
2615 "Invalid max tx rate for TC%d, not divisible by %d\n",
2616 i, IAVF_MBPS_QUANTA);
2617 return -EINVAL;
2618 }
2619
2620 total_max_rate += tx_rate;
2621 num_qps += mqprio_qopt->qopt.count[i];
2622 }
2623 if (num_qps > adapter->num_active_queues) {
2624 dev_err(&adapter->pdev->dev,
2625 "Cannot support requested number of queues\n");
2626 return -EINVAL;
2627 }
2628
2629 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2630 return ret;
2631 }
2632
2633 /**
2634 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2635 * @adapter: board private structure
2636 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)2637 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2638 {
2639 struct iavf_cloud_filter *cf, *cftmp;
2640
2641 spin_lock_bh(&adapter->cloud_filter_list_lock);
2642 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2643 list) {
2644 list_del(&cf->list);
2645 kfree(cf);
2646 adapter->num_cloud_filters--;
2647 }
2648 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2649 }
2650
2651 /**
2652 * __iavf_setup_tc - configure multiple traffic classes
2653 * @netdev: network interface device structure
2654 * @type_data: tc offload data
2655 *
2656 * This function processes the config information provided by the
2657 * user to configure traffic classes/queue channels and packages the
2658 * information to request the PF to setup traffic classes.
2659 *
2660 * Returns 0 on success.
2661 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)2662 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2663 {
2664 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2665 struct iavf_adapter *adapter = netdev_priv(netdev);
2666 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2667 u8 num_tc = 0, total_qps = 0;
2668 int ret = 0, netdev_tc = 0;
2669 u64 max_tx_rate;
2670 u16 mode;
2671 int i;
2672
2673 num_tc = mqprio_qopt->qopt.num_tc;
2674 mode = mqprio_qopt->mode;
2675
2676 /* delete queue_channel */
2677 if (!mqprio_qopt->qopt.hw) {
2678 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2679 /* reset the tc configuration */
2680 netdev_reset_tc(netdev);
2681 adapter->num_tc = 0;
2682 netif_tx_stop_all_queues(netdev);
2683 netif_tx_disable(netdev);
2684 iavf_del_all_cloud_filters(adapter);
2685 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2686 goto exit;
2687 } else {
2688 return -EINVAL;
2689 }
2690 }
2691
2692 /* add queue channel */
2693 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2694 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2695 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2696 return -EOPNOTSUPP;
2697 }
2698 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2699 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2700 return -EINVAL;
2701 }
2702
2703 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2704 if (ret)
2705 return ret;
2706 /* Return if same TC config is requested */
2707 if (adapter->num_tc == num_tc)
2708 return 0;
2709 adapter->num_tc = num_tc;
2710
2711 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2712 if (i < num_tc) {
2713 adapter->ch_config.ch_info[i].count =
2714 mqprio_qopt->qopt.count[i];
2715 adapter->ch_config.ch_info[i].offset =
2716 mqprio_qopt->qopt.offset[i];
2717 total_qps += mqprio_qopt->qopt.count[i];
2718 max_tx_rate = mqprio_qopt->max_rate[i];
2719 /* convert to Mbps */
2720 max_tx_rate = div_u64(max_tx_rate,
2721 IAVF_MBPS_DIVISOR);
2722 adapter->ch_config.ch_info[i].max_tx_rate =
2723 max_tx_rate;
2724 } else {
2725 adapter->ch_config.ch_info[i].count = 1;
2726 adapter->ch_config.ch_info[i].offset = 0;
2727 }
2728 }
2729 adapter->ch_config.total_qps = total_qps;
2730 netif_tx_stop_all_queues(netdev);
2731 netif_tx_disable(netdev);
2732 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2733 netdev_reset_tc(netdev);
2734 /* Report the tc mapping up the stack */
2735 netdev_set_num_tc(adapter->netdev, num_tc);
2736 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2737 u16 qcount = mqprio_qopt->qopt.count[i];
2738 u16 qoffset = mqprio_qopt->qopt.offset[i];
2739
2740 if (i < num_tc)
2741 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2742 qoffset);
2743 }
2744 }
2745 exit:
2746 return ret;
2747 }
2748
2749 /**
2750 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2751 * @adapter: board private structure
2752 * @f: pointer to struct flow_cls_offload
2753 * @filter: pointer to cloud filter structure
2754 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)2755 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2756 struct flow_cls_offload *f,
2757 struct iavf_cloud_filter *filter)
2758 {
2759 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2760 struct flow_dissector *dissector = rule->match.dissector;
2761 u16 n_proto_mask = 0;
2762 u16 n_proto_key = 0;
2763 u8 field_flags = 0;
2764 u16 addr_type = 0;
2765 u16 n_proto = 0;
2766 int i = 0;
2767 struct virtchnl_filter *vf = &filter->f;
2768
2769 if (dissector->used_keys &
2770 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2771 BIT(FLOW_DISSECTOR_KEY_BASIC) |
2772 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2773 BIT(FLOW_DISSECTOR_KEY_VLAN) |
2774 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2775 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2776 BIT(FLOW_DISSECTOR_KEY_PORTS) |
2777 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2778 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2779 dissector->used_keys);
2780 return -EOPNOTSUPP;
2781 }
2782
2783 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2784 struct flow_match_enc_keyid match;
2785
2786 flow_rule_match_enc_keyid(rule, &match);
2787 if (match.mask->keyid != 0)
2788 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2789 }
2790
2791 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2792 struct flow_match_basic match;
2793
2794 flow_rule_match_basic(rule, &match);
2795 n_proto_key = ntohs(match.key->n_proto);
2796 n_proto_mask = ntohs(match.mask->n_proto);
2797
2798 if (n_proto_key == ETH_P_ALL) {
2799 n_proto_key = 0;
2800 n_proto_mask = 0;
2801 }
2802 n_proto = n_proto_key & n_proto_mask;
2803 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2804 return -EINVAL;
2805 if (n_proto == ETH_P_IPV6) {
2806 /* specify flow type as TCP IPv6 */
2807 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2808 }
2809
2810 if (match.key->ip_proto != IPPROTO_TCP) {
2811 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2812 return -EINVAL;
2813 }
2814 }
2815
2816 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2817 struct flow_match_eth_addrs match;
2818
2819 flow_rule_match_eth_addrs(rule, &match);
2820
2821 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2822 if (!is_zero_ether_addr(match.mask->dst)) {
2823 if (is_broadcast_ether_addr(match.mask->dst)) {
2824 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2825 } else {
2826 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2827 match.mask->dst);
2828 return IAVF_ERR_CONFIG;
2829 }
2830 }
2831
2832 if (!is_zero_ether_addr(match.mask->src)) {
2833 if (is_broadcast_ether_addr(match.mask->src)) {
2834 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2835 } else {
2836 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2837 match.mask->src);
2838 return IAVF_ERR_CONFIG;
2839 }
2840 }
2841
2842 if (!is_zero_ether_addr(match.key->dst))
2843 if (is_valid_ether_addr(match.key->dst) ||
2844 is_multicast_ether_addr(match.key->dst)) {
2845 /* set the mask if a valid dst_mac address */
2846 for (i = 0; i < ETH_ALEN; i++)
2847 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2848 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2849 match.key->dst);
2850 }
2851
2852 if (!is_zero_ether_addr(match.key->src))
2853 if (is_valid_ether_addr(match.key->src) ||
2854 is_multicast_ether_addr(match.key->src)) {
2855 /* set the mask if a valid dst_mac address */
2856 for (i = 0; i < ETH_ALEN; i++)
2857 vf->mask.tcp_spec.src_mac[i] |= 0xff;
2858 ether_addr_copy(vf->data.tcp_spec.src_mac,
2859 match.key->src);
2860 }
2861 }
2862
2863 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2864 struct flow_match_vlan match;
2865
2866 flow_rule_match_vlan(rule, &match);
2867 if (match.mask->vlan_id) {
2868 if (match.mask->vlan_id == VLAN_VID_MASK) {
2869 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2870 } else {
2871 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2872 match.mask->vlan_id);
2873 return IAVF_ERR_CONFIG;
2874 }
2875 }
2876 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2877 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2878 }
2879
2880 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2881 struct flow_match_control match;
2882
2883 flow_rule_match_control(rule, &match);
2884 addr_type = match.key->addr_type;
2885 }
2886
2887 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2888 struct flow_match_ipv4_addrs match;
2889
2890 flow_rule_match_ipv4_addrs(rule, &match);
2891 if (match.mask->dst) {
2892 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2893 field_flags |= IAVF_CLOUD_FIELD_IIP;
2894 } else {
2895 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2896 be32_to_cpu(match.mask->dst));
2897 return IAVF_ERR_CONFIG;
2898 }
2899 }
2900
2901 if (match.mask->src) {
2902 if (match.mask->src == cpu_to_be32(0xffffffff)) {
2903 field_flags |= IAVF_CLOUD_FIELD_IIP;
2904 } else {
2905 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2906 be32_to_cpu(match.mask->dst));
2907 return IAVF_ERR_CONFIG;
2908 }
2909 }
2910
2911 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2912 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2913 return IAVF_ERR_CONFIG;
2914 }
2915 if (match.key->dst) {
2916 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2917 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2918 }
2919 if (match.key->src) {
2920 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2921 vf->data.tcp_spec.src_ip[0] = match.key->src;
2922 }
2923 }
2924
2925 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2926 struct flow_match_ipv6_addrs match;
2927
2928 flow_rule_match_ipv6_addrs(rule, &match);
2929
2930 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2931 if (ipv6_addr_any(&match.mask->dst)) {
2932 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2933 IPV6_ADDR_ANY);
2934 return IAVF_ERR_CONFIG;
2935 }
2936
2937 /* src and dest IPv6 address should not be LOOPBACK
2938 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2939 */
2940 if (ipv6_addr_loopback(&match.key->dst) ||
2941 ipv6_addr_loopback(&match.key->src)) {
2942 dev_err(&adapter->pdev->dev,
2943 "ipv6 addr should not be loopback\n");
2944 return IAVF_ERR_CONFIG;
2945 }
2946 if (!ipv6_addr_any(&match.mask->dst) ||
2947 !ipv6_addr_any(&match.mask->src))
2948 field_flags |= IAVF_CLOUD_FIELD_IIP;
2949
2950 for (i = 0; i < 4; i++)
2951 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2952 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2953 sizeof(vf->data.tcp_spec.dst_ip));
2954 for (i = 0; i < 4; i++)
2955 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2956 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2957 sizeof(vf->data.tcp_spec.src_ip));
2958 }
2959 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2960 struct flow_match_ports match;
2961
2962 flow_rule_match_ports(rule, &match);
2963 if (match.mask->src) {
2964 if (match.mask->src == cpu_to_be16(0xffff)) {
2965 field_flags |= IAVF_CLOUD_FIELD_IIP;
2966 } else {
2967 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2968 be16_to_cpu(match.mask->src));
2969 return IAVF_ERR_CONFIG;
2970 }
2971 }
2972
2973 if (match.mask->dst) {
2974 if (match.mask->dst == cpu_to_be16(0xffff)) {
2975 field_flags |= IAVF_CLOUD_FIELD_IIP;
2976 } else {
2977 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2978 be16_to_cpu(match.mask->dst));
2979 return IAVF_ERR_CONFIG;
2980 }
2981 }
2982 if (match.key->dst) {
2983 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2984 vf->data.tcp_spec.dst_port = match.key->dst;
2985 }
2986
2987 if (match.key->src) {
2988 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2989 vf->data.tcp_spec.src_port = match.key->src;
2990 }
2991 }
2992 vf->field_flags = field_flags;
2993
2994 return 0;
2995 }
2996
2997 /**
2998 * iavf_handle_tclass - Forward to a traffic class on the device
2999 * @adapter: board private structure
3000 * @tc: traffic class index on the device
3001 * @filter: pointer to cloud filter structure
3002 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)3003 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3004 struct iavf_cloud_filter *filter)
3005 {
3006 if (tc == 0)
3007 return 0;
3008 if (tc < adapter->num_tc) {
3009 if (!filter->f.data.tcp_spec.dst_port) {
3010 dev_err(&adapter->pdev->dev,
3011 "Specify destination port to redirect to traffic class other than TC0\n");
3012 return -EINVAL;
3013 }
3014 }
3015 /* redirect to a traffic class on the same device */
3016 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3017 filter->f.action_meta = tc;
3018 return 0;
3019 }
3020
3021 /**
3022 * iavf_configure_clsflower - Add tc flower filters
3023 * @adapter: board private structure
3024 * @cls_flower: Pointer to struct flow_cls_offload
3025 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3026 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3027 struct flow_cls_offload *cls_flower)
3028 {
3029 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3030 struct iavf_cloud_filter *filter = NULL;
3031 int err = -EINVAL, count = 50;
3032
3033 if (tc < 0) {
3034 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3035 return -EINVAL;
3036 }
3037
3038 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3039 if (!filter)
3040 return -ENOMEM;
3041
3042 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3043 &adapter->crit_section)) {
3044 if (--count == 0)
3045 goto err;
3046 udelay(1);
3047 }
3048
3049 filter->cookie = cls_flower->cookie;
3050
3051 /* set the mask to all zeroes to begin with */
3052 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3053 /* start out with flow type and eth type IPv4 to begin with */
3054 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3055 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3056 if (err)
3057 goto err;
3058
3059 err = iavf_handle_tclass(adapter, tc, filter);
3060 if (err)
3061 goto err;
3062
3063 /* add filter to the list */
3064 spin_lock_bh(&adapter->cloud_filter_list_lock);
3065 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3066 adapter->num_cloud_filters++;
3067 filter->add = true;
3068 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3069 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3070 err:
3071 if (err)
3072 kfree(filter);
3073
3074 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3075 return err;
3076 }
3077
3078 /* iavf_find_cf - Find the cloud filter in the list
3079 * @adapter: Board private structure
3080 * @cookie: filter specific cookie
3081 *
3082 * Returns ptr to the filter object or NULL. Must be called while holding the
3083 * cloud_filter_list_lock.
3084 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3085 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3086 unsigned long *cookie)
3087 {
3088 struct iavf_cloud_filter *filter = NULL;
3089
3090 if (!cookie)
3091 return NULL;
3092
3093 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3094 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3095 return filter;
3096 }
3097 return NULL;
3098 }
3099
3100 /**
3101 * iavf_delete_clsflower - Remove tc flower filters
3102 * @adapter: board private structure
3103 * @cls_flower: Pointer to struct flow_cls_offload
3104 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3105 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3106 struct flow_cls_offload *cls_flower)
3107 {
3108 struct iavf_cloud_filter *filter = NULL;
3109 int err = 0;
3110
3111 spin_lock_bh(&adapter->cloud_filter_list_lock);
3112 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3113 if (filter) {
3114 filter->del = true;
3115 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3116 } else {
3117 err = -EINVAL;
3118 }
3119 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3120
3121 return err;
3122 }
3123
3124 /**
3125 * iavf_setup_tc_cls_flower - flower classifier offloads
3126 * @adapter: board private structure
3127 * @cls_flower: pointer to flow_cls_offload struct with flow info
3128 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3129 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3130 struct flow_cls_offload *cls_flower)
3131 {
3132 switch (cls_flower->command) {
3133 case FLOW_CLS_REPLACE:
3134 return iavf_configure_clsflower(adapter, cls_flower);
3135 case FLOW_CLS_DESTROY:
3136 return iavf_delete_clsflower(adapter, cls_flower);
3137 case FLOW_CLS_STATS:
3138 return -EOPNOTSUPP;
3139 default:
3140 return -EOPNOTSUPP;
3141 }
3142 }
3143
3144 /**
3145 * iavf_setup_tc_block_cb - block callback for tc
3146 * @type: type of offload
3147 * @type_data: offload data
3148 * @cb_priv:
3149 *
3150 * This function is the block callback for traffic classes
3151 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3152 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3153 void *cb_priv)
3154 {
3155 struct iavf_adapter *adapter = cb_priv;
3156
3157 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3158 return -EOPNOTSUPP;
3159
3160 switch (type) {
3161 case TC_SETUP_CLSFLOWER:
3162 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3163 default:
3164 return -EOPNOTSUPP;
3165 }
3166 }
3167
3168 static LIST_HEAD(iavf_block_cb_list);
3169
3170 /**
3171 * iavf_setup_tc - configure multiple traffic classes
3172 * @netdev: network interface device structure
3173 * @type: type of offload
3174 * @type_data: tc offload data
3175 *
3176 * This function is the callback to ndo_setup_tc in the
3177 * netdev_ops.
3178 *
3179 * Returns 0 on success
3180 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)3181 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3182 void *type_data)
3183 {
3184 struct iavf_adapter *adapter = netdev_priv(netdev);
3185
3186 switch (type) {
3187 case TC_SETUP_QDISC_MQPRIO:
3188 return __iavf_setup_tc(netdev, type_data);
3189 case TC_SETUP_BLOCK:
3190 return flow_block_cb_setup_simple(type_data,
3191 &iavf_block_cb_list,
3192 iavf_setup_tc_block_cb,
3193 adapter, adapter, true);
3194 default:
3195 return -EOPNOTSUPP;
3196 }
3197 }
3198
3199 /**
3200 * iavf_open - Called when a network interface is made active
3201 * @netdev: network interface device structure
3202 *
3203 * Returns 0 on success, negative value on failure
3204 *
3205 * The open entry point is called when a network interface is made
3206 * active by the system (IFF_UP). At this point all resources needed
3207 * for transmit and receive operations are allocated, the interrupt
3208 * handler is registered with the OS, the watchdog is started,
3209 * and the stack is notified that the interface is ready.
3210 **/
iavf_open(struct net_device * netdev)3211 static int iavf_open(struct net_device *netdev)
3212 {
3213 struct iavf_adapter *adapter = netdev_priv(netdev);
3214 int err;
3215
3216 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3217 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3218 return -EIO;
3219 }
3220
3221 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3222 &adapter->crit_section))
3223 usleep_range(500, 1000);
3224
3225 if (adapter->state != __IAVF_DOWN) {
3226 err = -EBUSY;
3227 goto err_unlock;
3228 }
3229
3230 /* allocate transmit descriptors */
3231 err = iavf_setup_all_tx_resources(adapter);
3232 if (err)
3233 goto err_setup_tx;
3234
3235 /* allocate receive descriptors */
3236 err = iavf_setup_all_rx_resources(adapter);
3237 if (err)
3238 goto err_setup_rx;
3239
3240 /* clear any pending interrupts, may auto mask */
3241 err = iavf_request_traffic_irqs(adapter, netdev->name);
3242 if (err)
3243 goto err_req_irq;
3244
3245 spin_lock_bh(&adapter->mac_vlan_list_lock);
3246
3247 iavf_add_filter(adapter, adapter->hw.mac.addr);
3248
3249 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3250
3251 iavf_configure(adapter);
3252
3253 iavf_up_complete(adapter);
3254
3255 iavf_irq_enable(adapter, true);
3256
3257 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3258
3259 return 0;
3260
3261 err_req_irq:
3262 iavf_down(adapter);
3263 iavf_free_traffic_irqs(adapter);
3264 err_setup_rx:
3265 iavf_free_all_rx_resources(adapter);
3266 err_setup_tx:
3267 iavf_free_all_tx_resources(adapter);
3268 err_unlock:
3269 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3270
3271 return err;
3272 }
3273
3274 /**
3275 * iavf_close - Disables a network interface
3276 * @netdev: network interface device structure
3277 *
3278 * Returns 0, this is not allowed to fail
3279 *
3280 * The close entry point is called when an interface is de-activated
3281 * by the OS. The hardware is still under the drivers control, but
3282 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3283 * are freed, along with all transmit and receive resources.
3284 **/
iavf_close(struct net_device * netdev)3285 static int iavf_close(struct net_device *netdev)
3286 {
3287 struct iavf_adapter *adapter = netdev_priv(netdev);
3288 int status;
3289
3290 if (adapter->state <= __IAVF_DOWN_PENDING)
3291 return 0;
3292
3293 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3294 &adapter->crit_section))
3295 usleep_range(500, 1000);
3296
3297 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3298 if (CLIENT_ENABLED(adapter))
3299 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3300
3301 iavf_down(adapter);
3302 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
3303 iavf_free_traffic_irqs(adapter);
3304
3305 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3306
3307 /* We explicitly don't free resources here because the hardware is
3308 * still active and can DMA into memory. Resources are cleared in
3309 * iavf_virtchnl_completion() after we get confirmation from the PF
3310 * driver that the rings have been stopped.
3311 *
3312 * Also, we wait for state to transition to __IAVF_DOWN before
3313 * returning. State change occurs in iavf_virtchnl_completion() after
3314 * VF resources are released (which occurs after PF driver processes and
3315 * responds to admin queue commands).
3316 */
3317
3318 status = wait_event_timeout(adapter->down_waitqueue,
3319 adapter->state == __IAVF_DOWN,
3320 msecs_to_jiffies(500));
3321 if (!status)
3322 netdev_warn(netdev, "Device resources not yet released\n");
3323 return 0;
3324 }
3325
3326 /**
3327 * iavf_change_mtu - Change the Maximum Transfer Unit
3328 * @netdev: network interface device structure
3329 * @new_mtu: new value for maximum frame size
3330 *
3331 * Returns 0 on success, negative on failure
3332 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)3333 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3334 {
3335 struct iavf_adapter *adapter = netdev_priv(netdev);
3336
3337 netdev->mtu = new_mtu;
3338 if (CLIENT_ENABLED(adapter)) {
3339 iavf_notify_client_l2_params(&adapter->vsi);
3340 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3341 }
3342
3343 if (netif_running(netdev)) {
3344 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3345 queue_work(iavf_wq, &adapter->reset_task);
3346 }
3347
3348 return 0;
3349 }
3350
3351 /**
3352 * iavf_set_features - set the netdev feature flags
3353 * @netdev: ptr to the netdev being adjusted
3354 * @features: the feature set that the stack is suggesting
3355 * Note: expects to be called while under rtnl_lock()
3356 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)3357 static int iavf_set_features(struct net_device *netdev,
3358 netdev_features_t features)
3359 {
3360 struct iavf_adapter *adapter = netdev_priv(netdev);
3361
3362 /* Don't allow changing VLAN_RX flag when adapter is not capable
3363 * of VLAN offload
3364 */
3365 if (!VLAN_ALLOWED(adapter)) {
3366 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3367 return -EINVAL;
3368 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3369 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3370 adapter->aq_required |=
3371 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3372 else
3373 adapter->aq_required |=
3374 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3375 }
3376
3377 return 0;
3378 }
3379
3380 /**
3381 * iavf_features_check - Validate encapsulated packet conforms to limits
3382 * @skb: skb buff
3383 * @dev: This physical port's netdev
3384 * @features: Offload features that the stack believes apply
3385 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3386 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3387 struct net_device *dev,
3388 netdev_features_t features)
3389 {
3390 size_t len;
3391
3392 /* No point in doing any of this if neither checksum nor GSO are
3393 * being requested for this frame. We can rule out both by just
3394 * checking for CHECKSUM_PARTIAL
3395 */
3396 if (skb->ip_summed != CHECKSUM_PARTIAL)
3397 return features;
3398
3399 /* We cannot support GSO if the MSS is going to be less than
3400 * 64 bytes. If it is then we need to drop support for GSO.
3401 */
3402 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3403 features &= ~NETIF_F_GSO_MASK;
3404
3405 /* MACLEN can support at most 63 words */
3406 len = skb_network_header(skb) - skb->data;
3407 if (len & ~(63 * 2))
3408 goto out_err;
3409
3410 /* IPLEN and EIPLEN can support at most 127 dwords */
3411 len = skb_transport_header(skb) - skb_network_header(skb);
3412 if (len & ~(127 * 4))
3413 goto out_err;
3414
3415 if (skb->encapsulation) {
3416 /* L4TUNLEN can support 127 words */
3417 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3418 if (len & ~(127 * 2))
3419 goto out_err;
3420
3421 /* IPLEN can support at most 127 dwords */
3422 len = skb_inner_transport_header(skb) -
3423 skb_inner_network_header(skb);
3424 if (len & ~(127 * 4))
3425 goto out_err;
3426 }
3427
3428 /* No need to validate L4LEN as TCP is the only protocol with a
3429 * a flexible value and we support all possible values supported
3430 * by TCP, which is at most 15 dwords
3431 */
3432
3433 return features;
3434 out_err:
3435 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3436 }
3437
3438 /**
3439 * iavf_fix_features - fix up the netdev feature bits
3440 * @netdev: our net device
3441 * @features: desired feature bits
3442 *
3443 * Returns fixed-up features bits
3444 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)3445 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3446 netdev_features_t features)
3447 {
3448 struct iavf_adapter *adapter = netdev_priv(netdev);
3449
3450 if (adapter->vf_res &&
3451 !(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3452 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3453 NETIF_F_HW_VLAN_CTAG_RX |
3454 NETIF_F_HW_VLAN_CTAG_FILTER);
3455
3456 return features;
3457 }
3458
3459 static const struct net_device_ops iavf_netdev_ops = {
3460 .ndo_open = iavf_open,
3461 .ndo_stop = iavf_close,
3462 .ndo_start_xmit = iavf_xmit_frame,
3463 .ndo_set_rx_mode = iavf_set_rx_mode,
3464 .ndo_validate_addr = eth_validate_addr,
3465 .ndo_set_mac_address = iavf_set_mac,
3466 .ndo_change_mtu = iavf_change_mtu,
3467 .ndo_tx_timeout = iavf_tx_timeout,
3468 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3469 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3470 .ndo_features_check = iavf_features_check,
3471 .ndo_fix_features = iavf_fix_features,
3472 .ndo_set_features = iavf_set_features,
3473 .ndo_setup_tc = iavf_setup_tc,
3474 };
3475
3476 /**
3477 * iavf_check_reset_complete - check that VF reset is complete
3478 * @hw: pointer to hw struct
3479 *
3480 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3481 **/
iavf_check_reset_complete(struct iavf_hw * hw)3482 static int iavf_check_reset_complete(struct iavf_hw *hw)
3483 {
3484 u32 rstat;
3485 int i;
3486
3487 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3488 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3489 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3490 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3491 (rstat == VIRTCHNL_VFR_COMPLETED))
3492 return 0;
3493 usleep_range(10, 20);
3494 }
3495 return -EBUSY;
3496 }
3497
3498 /**
3499 * iavf_process_config - Process the config information we got from the PF
3500 * @adapter: board private structure
3501 *
3502 * Verify that we have a valid config struct, and set up our netdev features
3503 * and our VSI struct.
3504 **/
iavf_process_config(struct iavf_adapter * adapter)3505 int iavf_process_config(struct iavf_adapter *adapter)
3506 {
3507 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3508 int i, num_req_queues = adapter->num_req_queues;
3509 struct net_device *netdev = adapter->netdev;
3510 struct iavf_vsi *vsi = &adapter->vsi;
3511 netdev_features_t hw_enc_features;
3512 netdev_features_t hw_features;
3513
3514 /* got VF config message back from PF, now we can parse it */
3515 for (i = 0; i < vfres->num_vsis; i++) {
3516 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3517 adapter->vsi_res = &vfres->vsi_res[i];
3518 }
3519 if (!adapter->vsi_res) {
3520 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3521 return -ENODEV;
3522 }
3523
3524 if (num_req_queues &&
3525 num_req_queues > adapter->vsi_res->num_queue_pairs) {
3526 /* Problem. The PF gave us fewer queues than what we had
3527 * negotiated in our request. Need a reset to see if we can't
3528 * get back to a working state.
3529 */
3530 dev_err(&adapter->pdev->dev,
3531 "Requested %d queues, but PF only gave us %d.\n",
3532 num_req_queues,
3533 adapter->vsi_res->num_queue_pairs);
3534 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3535 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3536 iavf_schedule_reset(adapter);
3537 return -ENODEV;
3538 }
3539 adapter->num_req_queues = 0;
3540
3541 hw_enc_features = NETIF_F_SG |
3542 NETIF_F_IP_CSUM |
3543 NETIF_F_IPV6_CSUM |
3544 NETIF_F_HIGHDMA |
3545 NETIF_F_SOFT_FEATURES |
3546 NETIF_F_TSO |
3547 NETIF_F_TSO_ECN |
3548 NETIF_F_TSO6 |
3549 NETIF_F_SCTP_CRC |
3550 NETIF_F_RXHASH |
3551 NETIF_F_RXCSUM |
3552 0;
3553
3554 /* advertise to stack only if offloads for encapsulated packets is
3555 * supported
3556 */
3557 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3558 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3559 NETIF_F_GSO_GRE |
3560 NETIF_F_GSO_GRE_CSUM |
3561 NETIF_F_GSO_IPXIP4 |
3562 NETIF_F_GSO_IPXIP6 |
3563 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3564 NETIF_F_GSO_PARTIAL |
3565 0;
3566
3567 if (!(vfres->vf_cap_flags &
3568 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3569 netdev->gso_partial_features |=
3570 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3571
3572 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3573 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3574 netdev->hw_enc_features |= hw_enc_features;
3575 }
3576 /* record features VLANs can make use of */
3577 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3578
3579 /* Write features and hw_features separately to avoid polluting
3580 * with, or dropping, features that are set when we registered.
3581 */
3582 hw_features = hw_enc_features;
3583
3584 /* Enable VLAN features if supported */
3585 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3586 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3587 NETIF_F_HW_VLAN_CTAG_RX);
3588 /* Enable cloud filter if ADQ is supported */
3589 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3590 hw_features |= NETIF_F_HW_TC;
3591
3592 netdev->hw_features |= hw_features;
3593
3594 netdev->features |= hw_features;
3595
3596 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3597 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3598
3599 netdev->priv_flags |= IFF_UNICAST_FLT;
3600
3601 /* Do not turn on offloads when they are requested to be turned off.
3602 * TSO needs minimum 576 bytes to work correctly.
3603 */
3604 if (netdev->wanted_features) {
3605 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3606 netdev->mtu < 576)
3607 netdev->features &= ~NETIF_F_TSO;
3608 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3609 netdev->mtu < 576)
3610 netdev->features &= ~NETIF_F_TSO6;
3611 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3612 netdev->features &= ~NETIF_F_TSO_ECN;
3613 if (!(netdev->wanted_features & NETIF_F_GRO))
3614 netdev->features &= ~NETIF_F_GRO;
3615 if (!(netdev->wanted_features & NETIF_F_GSO))
3616 netdev->features &= ~NETIF_F_GSO;
3617 }
3618
3619 adapter->vsi.id = adapter->vsi_res->vsi_id;
3620
3621 adapter->vsi.back = adapter;
3622 adapter->vsi.base_vector = 1;
3623 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3624 vsi->netdev = adapter->netdev;
3625 vsi->qs_handle = adapter->vsi_res->qset_handle;
3626 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3627 adapter->rss_key_size = vfres->rss_key_size;
3628 adapter->rss_lut_size = vfres->rss_lut_size;
3629 } else {
3630 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3631 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3632 }
3633
3634 return 0;
3635 }
3636
3637 /**
3638 * iavf_init_task - worker thread to perform delayed initialization
3639 * @work: pointer to work_struct containing our data
3640 *
3641 * This task completes the work that was begun in probe. Due to the nature
3642 * of VF-PF communications, we may need to wait tens of milliseconds to get
3643 * responses back from the PF. Rather than busy-wait in probe and bog down the
3644 * whole system, we'll do it in a task so we can sleep.
3645 * This task only runs during driver init. Once we've established
3646 * communications with the PF driver and set up our netdev, the watchdog
3647 * takes over.
3648 **/
iavf_init_task(struct work_struct * work)3649 static void iavf_init_task(struct work_struct *work)
3650 {
3651 struct iavf_adapter *adapter = container_of(work,
3652 struct iavf_adapter,
3653 init_task.work);
3654 struct iavf_hw *hw = &adapter->hw;
3655
3656 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000)) {
3657 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3658 return;
3659 }
3660 switch (adapter->state) {
3661 case __IAVF_STARTUP:
3662 if (iavf_startup(adapter) < 0)
3663 goto init_failed;
3664 break;
3665 case __IAVF_INIT_VERSION_CHECK:
3666 if (iavf_init_version_check(adapter) < 0)
3667 goto init_failed;
3668 break;
3669 case __IAVF_INIT_GET_RESOURCES:
3670 if (iavf_init_get_resources(adapter) < 0)
3671 goto init_failed;
3672 goto out;
3673 default:
3674 goto init_failed;
3675 }
3676
3677 queue_delayed_work(iavf_wq, &adapter->init_task,
3678 msecs_to_jiffies(30));
3679 goto out;
3680 init_failed:
3681 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3682 dev_err(&adapter->pdev->dev,
3683 "Failed to communicate with PF; waiting before retry\n");
3684 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3685 iavf_shutdown_adminq(hw);
3686 iavf_change_state(adapter, __IAVF_STARTUP);
3687 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3688 goto out;
3689 }
3690 queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3691 out:
3692 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3693 }
3694
3695 /**
3696 * iavf_shutdown - Shutdown the device in preparation for a reboot
3697 * @pdev: pci device structure
3698 **/
iavf_shutdown(struct pci_dev * pdev)3699 static void iavf_shutdown(struct pci_dev *pdev)
3700 {
3701 struct net_device *netdev = pci_get_drvdata(pdev);
3702 struct iavf_adapter *adapter = netdev_priv(netdev);
3703
3704 netif_device_detach(netdev);
3705
3706 if (netif_running(netdev))
3707 iavf_close(netdev);
3708
3709 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3710 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3711 /* Prevent the watchdog from running. */
3712 iavf_change_state(adapter, __IAVF_REMOVE);
3713 adapter->aq_required = 0;
3714 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3715
3716 #ifdef CONFIG_PM
3717 pci_save_state(pdev);
3718
3719 #endif
3720 pci_disable_device(pdev);
3721 }
3722
3723 /**
3724 * iavf_probe - Device Initialization Routine
3725 * @pdev: PCI device information struct
3726 * @ent: entry in iavf_pci_tbl
3727 *
3728 * Returns 0 on success, negative on failure
3729 *
3730 * iavf_probe initializes an adapter identified by a pci_dev structure.
3731 * The OS initialization, configuring of the adapter private structure,
3732 * and a hardware reset occur.
3733 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3734 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3735 {
3736 struct net_device *netdev;
3737 struct iavf_adapter *adapter = NULL;
3738 struct iavf_hw *hw = NULL;
3739 int err;
3740
3741 err = pci_enable_device(pdev);
3742 if (err)
3743 return err;
3744
3745 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3746 if (err) {
3747 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3748 if (err) {
3749 dev_err(&pdev->dev,
3750 "DMA configuration failed: 0x%x\n", err);
3751 goto err_dma;
3752 }
3753 }
3754
3755 err = pci_request_regions(pdev, iavf_driver_name);
3756 if (err) {
3757 dev_err(&pdev->dev,
3758 "pci_request_regions failed 0x%x\n", err);
3759 goto err_pci_reg;
3760 }
3761
3762 pci_enable_pcie_error_reporting(pdev);
3763
3764 pci_set_master(pdev);
3765
3766 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3767 IAVF_MAX_REQ_QUEUES);
3768 if (!netdev) {
3769 err = -ENOMEM;
3770 goto err_alloc_etherdev;
3771 }
3772
3773 SET_NETDEV_DEV(netdev, &pdev->dev);
3774
3775 pci_set_drvdata(pdev, netdev);
3776 adapter = netdev_priv(netdev);
3777
3778 adapter->netdev = netdev;
3779 adapter->pdev = pdev;
3780
3781 hw = &adapter->hw;
3782 hw->back = adapter;
3783
3784 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3785 iavf_change_state(adapter, __IAVF_STARTUP);
3786
3787 /* Call save state here because it relies on the adapter struct. */
3788 pci_save_state(pdev);
3789
3790 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3791 pci_resource_len(pdev, 0));
3792 if (!hw->hw_addr) {
3793 err = -EIO;
3794 goto err_ioremap;
3795 }
3796 hw->vendor_id = pdev->vendor;
3797 hw->device_id = pdev->device;
3798 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3799 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3800 hw->subsystem_device_id = pdev->subsystem_device;
3801 hw->bus.device = PCI_SLOT(pdev->devfn);
3802 hw->bus.func = PCI_FUNC(pdev->devfn);
3803 hw->bus.bus_id = pdev->bus->number;
3804
3805 /* set up the locks for the AQ, do this only once in probe
3806 * and destroy them only once in remove
3807 */
3808 mutex_init(&hw->aq.asq_mutex);
3809 mutex_init(&hw->aq.arq_mutex);
3810
3811 spin_lock_init(&adapter->mac_vlan_list_lock);
3812 spin_lock_init(&adapter->cloud_filter_list_lock);
3813
3814 INIT_LIST_HEAD(&adapter->mac_filter_list);
3815 INIT_LIST_HEAD(&adapter->vlan_filter_list);
3816 INIT_LIST_HEAD(&adapter->cloud_filter_list);
3817
3818 INIT_WORK(&adapter->reset_task, iavf_reset_task);
3819 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3820 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3821 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3822 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3823 queue_delayed_work(iavf_wq, &adapter->init_task,
3824 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3825
3826 /* Setup the wait queue for indicating transition to down status */
3827 init_waitqueue_head(&adapter->down_waitqueue);
3828
3829 return 0;
3830
3831 err_ioremap:
3832 free_netdev(netdev);
3833 err_alloc_etherdev:
3834 pci_disable_pcie_error_reporting(pdev);
3835 pci_release_regions(pdev);
3836 err_pci_reg:
3837 err_dma:
3838 pci_disable_device(pdev);
3839 return err;
3840 }
3841
3842 /**
3843 * iavf_suspend - Power management suspend routine
3844 * @dev_d: device info pointer
3845 *
3846 * Called when the system (VM) is entering sleep/suspend.
3847 **/
iavf_suspend(struct device * dev_d)3848 static int __maybe_unused iavf_suspend(struct device *dev_d)
3849 {
3850 struct net_device *netdev = dev_get_drvdata(dev_d);
3851 struct iavf_adapter *adapter = netdev_priv(netdev);
3852
3853 netif_device_detach(netdev);
3854
3855 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3856 &adapter->crit_section))
3857 usleep_range(500, 1000);
3858
3859 if (netif_running(netdev)) {
3860 rtnl_lock();
3861 iavf_down(adapter);
3862 rtnl_unlock();
3863 }
3864 iavf_free_misc_irq(adapter);
3865 iavf_reset_interrupt_capability(adapter);
3866
3867 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3868
3869 return 0;
3870 }
3871
3872 /**
3873 * iavf_resume - Power management resume routine
3874 * @dev_d: device info pointer
3875 *
3876 * Called when the system (VM) is resumed from sleep/suspend.
3877 **/
iavf_resume(struct device * dev_d)3878 static int __maybe_unused iavf_resume(struct device *dev_d)
3879 {
3880 struct pci_dev *pdev = to_pci_dev(dev_d);
3881 struct net_device *netdev = pci_get_drvdata(pdev);
3882 struct iavf_adapter *adapter = netdev_priv(netdev);
3883 u32 err;
3884
3885 pci_set_master(pdev);
3886
3887 rtnl_lock();
3888 err = iavf_set_interrupt_capability(adapter);
3889 if (err) {
3890 rtnl_unlock();
3891 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3892 return err;
3893 }
3894 err = iavf_request_misc_irq(adapter);
3895 rtnl_unlock();
3896 if (err) {
3897 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3898 return err;
3899 }
3900
3901 queue_work(iavf_wq, &adapter->reset_task);
3902
3903 netif_device_attach(netdev);
3904
3905 return err;
3906 }
3907
3908 /**
3909 * iavf_remove - Device Removal Routine
3910 * @pdev: PCI device information struct
3911 *
3912 * iavf_remove is called by the PCI subsystem to alert the driver
3913 * that it should release a PCI device. The could be caused by a
3914 * Hot-Plug event, or because the driver is going to be removed from
3915 * memory.
3916 **/
iavf_remove(struct pci_dev * pdev)3917 static void iavf_remove(struct pci_dev *pdev)
3918 {
3919 struct net_device *netdev = pci_get_drvdata(pdev);
3920 struct iavf_adapter *adapter = netdev_priv(netdev);
3921 struct iavf_vlan_filter *vlf, *vlftmp;
3922 struct iavf_mac_filter *f, *ftmp;
3923 struct iavf_cloud_filter *cf, *cftmp;
3924 struct iavf_hw *hw = &adapter->hw;
3925 int err;
3926 /* Indicate we are in remove and not to run reset_task */
3927 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3928 cancel_delayed_work_sync(&adapter->init_task);
3929 cancel_work_sync(&adapter->reset_task);
3930 cancel_delayed_work_sync(&adapter->client_task);
3931 if (adapter->netdev_registered) {
3932 unregister_netdev(netdev);
3933 adapter->netdev_registered = false;
3934 }
3935 if (CLIENT_ALLOWED(adapter)) {
3936 err = iavf_lan_del_device(adapter);
3937 if (err)
3938 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3939 err);
3940 }
3941
3942 iavf_request_reset(adapter);
3943 msleep(50);
3944 /* If the FW isn't responding, kick it once, but only once. */
3945 if (!iavf_asq_done(hw)) {
3946 iavf_request_reset(adapter);
3947 msleep(50);
3948 }
3949 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3950 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3951
3952 /* Shut down all the garbage mashers on the detention level */
3953 iavf_change_state(adapter, __IAVF_REMOVE);
3954 adapter->aq_required = 0;
3955 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3956 iavf_free_all_tx_resources(adapter);
3957 iavf_free_all_rx_resources(adapter);
3958 iavf_misc_irq_disable(adapter);
3959 iavf_free_misc_irq(adapter);
3960 iavf_reset_interrupt_capability(adapter);
3961 iavf_free_q_vectors(adapter);
3962
3963 cancel_delayed_work_sync(&adapter->watchdog_task);
3964
3965 cancel_work_sync(&adapter->adminq_task);
3966
3967 iavf_free_rss(adapter);
3968
3969 if (hw->aq.asq.count)
3970 iavf_shutdown_adminq(hw);
3971
3972 /* destroy the locks only once, here */
3973 mutex_destroy(&hw->aq.arq_mutex);
3974 mutex_destroy(&hw->aq.asq_mutex);
3975
3976 iounmap(hw->hw_addr);
3977 pci_release_regions(pdev);
3978 iavf_free_queues(adapter);
3979 kfree(adapter->vf_res);
3980 spin_lock_bh(&adapter->mac_vlan_list_lock);
3981 /* If we got removed before an up/down sequence, we've got a filter
3982 * hanging out there that we need to get rid of.
3983 */
3984 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3985 list_del(&f->list);
3986 kfree(f);
3987 }
3988 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3989 list) {
3990 list_del(&vlf->list);
3991 kfree(vlf);
3992 }
3993
3994 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3995
3996 spin_lock_bh(&adapter->cloud_filter_list_lock);
3997 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3998 list_del(&cf->list);
3999 kfree(cf);
4000 }
4001 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4002
4003 free_netdev(netdev);
4004
4005 pci_disable_pcie_error_reporting(pdev);
4006
4007 pci_disable_device(pdev);
4008 }
4009
4010 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4011
4012 static struct pci_driver iavf_driver = {
4013 .name = iavf_driver_name,
4014 .id_table = iavf_pci_tbl,
4015 .probe = iavf_probe,
4016 .remove = iavf_remove,
4017 .driver.pm = &iavf_pm_ops,
4018 .shutdown = iavf_shutdown,
4019 };
4020
4021 /**
4022 * iavf_init_module - Driver Registration Routine
4023 *
4024 * iavf_init_module is the first routine called when the driver is
4025 * loaded. All it does is register with the PCI subsystem.
4026 **/
iavf_init_module(void)4027 static int __init iavf_init_module(void)
4028 {
4029 int ret;
4030
4031 pr_info("iavf: %s\n", iavf_driver_string);
4032
4033 pr_info("%s\n", iavf_copyright);
4034
4035 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4036 iavf_driver_name);
4037 if (!iavf_wq) {
4038 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4039 return -ENOMEM;
4040 }
4041
4042 ret = pci_register_driver(&iavf_driver);
4043 if (ret)
4044 destroy_workqueue(iavf_wq);
4045
4046 return ret;
4047 }
4048
4049 module_init(iavf_init_module);
4050
4051 /**
4052 * iavf_exit_module - Driver Exit Cleanup Routine
4053 *
4054 * iavf_exit_module is called just before the driver is removed
4055 * from memory.
4056 **/
iavf_exit_module(void)4057 static void __exit iavf_exit_module(void)
4058 {
4059 pci_unregister_driver(&iavf_driver);
4060 destroy_workqueue(iavf_wq);
4061 }
4062
4063 module_exit(iavf_exit_module);
4064
4065 /* iavf_main.c */
4066