• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/pci.h>
13 #include <net/pkt_sched.h>
14 
15 #include <net/ipv6.h>
16 
17 #include "igc.h"
18 #include "igc_hw.h"
19 #include "igc_tsn.h"
20 
21 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
22 
23 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
24 
25 static int debug = -1;
26 
27 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
28 MODULE_DESCRIPTION(DRV_SUMMARY);
29 MODULE_LICENSE("GPL v2");
30 module_param(debug, int, 0);
31 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
32 
33 char igc_driver_name[] = "igc";
34 static const char igc_driver_string[] = DRV_SUMMARY;
35 static const char igc_copyright[] =
36 	"Copyright(c) 2018 Intel Corporation.";
37 
38 static const struct igc_info *igc_info_tbl[] = {
39 	[board_base] = &igc_base_info,
40 };
41 
42 static const struct pci_device_id igc_pci_tbl[] = {
43 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
44 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
45 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
46 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
47 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
48 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
49 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
50 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
57 	/* required last entry */
58 	{0, }
59 };
60 
61 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
62 
63 enum latency_range {
64 	lowest_latency = 0,
65 	low_latency = 1,
66 	bulk_latency = 2,
67 	latency_invalid = 255
68 };
69 
igc_reset(struct igc_adapter * adapter)70 void igc_reset(struct igc_adapter *adapter)
71 {
72 	struct net_device *dev = adapter->netdev;
73 	struct igc_hw *hw = &adapter->hw;
74 	struct igc_fc_info *fc = &hw->fc;
75 	u32 pba, hwm;
76 
77 	/* Repartition PBA for greater than 9k MTU if required */
78 	pba = IGC_PBA_34K;
79 
80 	/* flow control settings
81 	 * The high water mark must be low enough to fit one full frame
82 	 * after transmitting the pause frame.  As such we must have enough
83 	 * space to allow for us to complete our current transmit and then
84 	 * receive the frame that is in progress from the link partner.
85 	 * Set it to:
86 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
87 	 */
88 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
89 
90 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
91 	fc->low_water = fc->high_water - 16;
92 	fc->pause_time = 0xFFFF;
93 	fc->send_xon = 1;
94 	fc->current_mode = fc->requested_mode;
95 
96 	hw->mac.ops.reset_hw(hw);
97 
98 	if (hw->mac.ops.init_hw(hw))
99 		netdev_err(dev, "Error on hardware initialization\n");
100 
101 	/* Re-establish EEE setting */
102 	igc_set_eee_i225(hw, true, true, true);
103 
104 	if (!netif_running(adapter->netdev))
105 		igc_power_down_phy_copper_base(&adapter->hw);
106 
107 	/* Re-enable PTP, where applicable. */
108 	igc_ptp_reset(adapter);
109 
110 	/* Re-enable TSN offloading, where applicable. */
111 	igc_tsn_offload_apply(adapter);
112 
113 	igc_get_phy_info(hw);
114 }
115 
116 /**
117  * igc_power_up_link - Power up the phy link
118  * @adapter: address of board private structure
119  */
igc_power_up_link(struct igc_adapter * adapter)120 static void igc_power_up_link(struct igc_adapter *adapter)
121 {
122 	igc_reset_phy(&adapter->hw);
123 
124 	igc_power_up_phy_copper(&adapter->hw);
125 
126 	igc_setup_link(&adapter->hw);
127 }
128 
129 /**
130  * igc_release_hw_control - release control of the h/w to f/w
131  * @adapter: address of board private structure
132  *
133  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
134  * For ASF and Pass Through versions of f/w this means that the
135  * driver is no longer loaded.
136  */
igc_release_hw_control(struct igc_adapter * adapter)137 static void igc_release_hw_control(struct igc_adapter *adapter)
138 {
139 	struct igc_hw *hw = &adapter->hw;
140 	u32 ctrl_ext;
141 
142 	if (!pci_device_is_present(adapter->pdev))
143 		return;
144 
145 	/* Let firmware take over control of h/w */
146 	ctrl_ext = rd32(IGC_CTRL_EXT);
147 	wr32(IGC_CTRL_EXT,
148 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
149 }
150 
151 /**
152  * igc_get_hw_control - get control of the h/w from f/w
153  * @adapter: address of board private structure
154  *
155  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
156  * For ASF and Pass Through versions of f/w this means that
157  * the driver is loaded.
158  */
igc_get_hw_control(struct igc_adapter * adapter)159 static void igc_get_hw_control(struct igc_adapter *adapter)
160 {
161 	struct igc_hw *hw = &adapter->hw;
162 	u32 ctrl_ext;
163 
164 	/* Let firmware know the driver has taken over */
165 	ctrl_ext = rd32(IGC_CTRL_EXT);
166 	wr32(IGC_CTRL_EXT,
167 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
168 }
169 
170 /**
171  * igc_clean_tx_ring - Free Tx Buffers
172  * @tx_ring: ring to be cleaned
173  */
igc_clean_tx_ring(struct igc_ring * tx_ring)174 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
175 {
176 	u16 i = tx_ring->next_to_clean;
177 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
178 
179 	while (i != tx_ring->next_to_use) {
180 		union igc_adv_tx_desc *eop_desc, *tx_desc;
181 
182 		/* Free all the Tx ring sk_buffs */
183 		dev_kfree_skb_any(tx_buffer->skb);
184 
185 		/* unmap skb header data */
186 		dma_unmap_single(tx_ring->dev,
187 				 dma_unmap_addr(tx_buffer, dma),
188 				 dma_unmap_len(tx_buffer, len),
189 				 DMA_TO_DEVICE);
190 
191 		/* check for eop_desc to determine the end of the packet */
192 		eop_desc = tx_buffer->next_to_watch;
193 		tx_desc = IGC_TX_DESC(tx_ring, i);
194 
195 		/* unmap remaining buffers */
196 		while (tx_desc != eop_desc) {
197 			tx_buffer++;
198 			tx_desc++;
199 			i++;
200 			if (unlikely(i == tx_ring->count)) {
201 				i = 0;
202 				tx_buffer = tx_ring->tx_buffer_info;
203 				tx_desc = IGC_TX_DESC(tx_ring, 0);
204 			}
205 
206 			/* unmap any remaining paged data */
207 			if (dma_unmap_len(tx_buffer, len))
208 				dma_unmap_page(tx_ring->dev,
209 					       dma_unmap_addr(tx_buffer, dma),
210 					       dma_unmap_len(tx_buffer, len),
211 					       DMA_TO_DEVICE);
212 		}
213 
214 		tx_buffer->next_to_watch = NULL;
215 
216 		/* move us one more past the eop_desc for start of next pkt */
217 		tx_buffer++;
218 		i++;
219 		if (unlikely(i == tx_ring->count)) {
220 			i = 0;
221 			tx_buffer = tx_ring->tx_buffer_info;
222 		}
223 	}
224 
225 	/* reset BQL for queue */
226 	netdev_tx_reset_queue(txring_txq(tx_ring));
227 
228 	/* reset next_to_use and next_to_clean */
229 	tx_ring->next_to_use = 0;
230 	tx_ring->next_to_clean = 0;
231 }
232 
233 /**
234  * igc_free_tx_resources - Free Tx Resources per Queue
235  * @tx_ring: Tx descriptor ring for a specific queue
236  *
237  * Free all transmit software resources
238  */
igc_free_tx_resources(struct igc_ring * tx_ring)239 void igc_free_tx_resources(struct igc_ring *tx_ring)
240 {
241 	igc_clean_tx_ring(tx_ring);
242 
243 	vfree(tx_ring->tx_buffer_info);
244 	tx_ring->tx_buffer_info = NULL;
245 
246 	/* if not set, then don't free */
247 	if (!tx_ring->desc)
248 		return;
249 
250 	dma_free_coherent(tx_ring->dev, tx_ring->size,
251 			  tx_ring->desc, tx_ring->dma);
252 
253 	tx_ring->desc = NULL;
254 }
255 
256 /**
257  * igc_free_all_tx_resources - Free Tx Resources for All Queues
258  * @adapter: board private structure
259  *
260  * Free all transmit software resources
261  */
igc_free_all_tx_resources(struct igc_adapter * adapter)262 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
263 {
264 	int i;
265 
266 	for (i = 0; i < adapter->num_tx_queues; i++)
267 		igc_free_tx_resources(adapter->tx_ring[i]);
268 }
269 
270 /**
271  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
272  * @adapter: board private structure
273  */
igc_clean_all_tx_rings(struct igc_adapter * adapter)274 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
275 {
276 	int i;
277 
278 	for (i = 0; i < adapter->num_tx_queues; i++)
279 		if (adapter->tx_ring[i])
280 			igc_clean_tx_ring(adapter->tx_ring[i]);
281 }
282 
283 /**
284  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
285  * @tx_ring: tx descriptor ring (for a specific queue) to setup
286  *
287  * Return 0 on success, negative on failure
288  */
igc_setup_tx_resources(struct igc_ring * tx_ring)289 int igc_setup_tx_resources(struct igc_ring *tx_ring)
290 {
291 	struct net_device *ndev = tx_ring->netdev;
292 	struct device *dev = tx_ring->dev;
293 	int size = 0;
294 
295 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
296 	tx_ring->tx_buffer_info = vzalloc(size);
297 	if (!tx_ring->tx_buffer_info)
298 		goto err;
299 
300 	/* round up to nearest 4K */
301 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
302 	tx_ring->size = ALIGN(tx_ring->size, 4096);
303 
304 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
305 					   &tx_ring->dma, GFP_KERNEL);
306 
307 	if (!tx_ring->desc)
308 		goto err;
309 
310 	tx_ring->next_to_use = 0;
311 	tx_ring->next_to_clean = 0;
312 
313 	return 0;
314 
315 err:
316 	vfree(tx_ring->tx_buffer_info);
317 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
318 	return -ENOMEM;
319 }
320 
321 /**
322  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
323  * @adapter: board private structure
324  *
325  * Return 0 on success, negative on failure
326  */
igc_setup_all_tx_resources(struct igc_adapter * adapter)327 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
328 {
329 	struct net_device *dev = adapter->netdev;
330 	int i, err = 0;
331 
332 	for (i = 0; i < adapter->num_tx_queues; i++) {
333 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
334 		if (err) {
335 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
336 			for (i--; i >= 0; i--)
337 				igc_free_tx_resources(adapter->tx_ring[i]);
338 			break;
339 		}
340 	}
341 
342 	return err;
343 }
344 
345 /**
346  * igc_clean_rx_ring - Free Rx Buffers per Queue
347  * @rx_ring: ring to free buffers from
348  */
igc_clean_rx_ring(struct igc_ring * rx_ring)349 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
350 {
351 	u16 i = rx_ring->next_to_clean;
352 
353 	dev_kfree_skb(rx_ring->skb);
354 	rx_ring->skb = NULL;
355 
356 	/* Free all the Rx ring sk_buffs */
357 	while (i != rx_ring->next_to_alloc) {
358 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
359 
360 		/* Invalidate cache lines that may have been written to by
361 		 * device so that we avoid corrupting memory.
362 		 */
363 		dma_sync_single_range_for_cpu(rx_ring->dev,
364 					      buffer_info->dma,
365 					      buffer_info->page_offset,
366 					      igc_rx_bufsz(rx_ring),
367 					      DMA_FROM_DEVICE);
368 
369 		/* free resources associated with mapping */
370 		dma_unmap_page_attrs(rx_ring->dev,
371 				     buffer_info->dma,
372 				     igc_rx_pg_size(rx_ring),
373 				     DMA_FROM_DEVICE,
374 				     IGC_RX_DMA_ATTR);
375 		__page_frag_cache_drain(buffer_info->page,
376 					buffer_info->pagecnt_bias);
377 
378 		i++;
379 		if (i == rx_ring->count)
380 			i = 0;
381 	}
382 
383 	rx_ring->next_to_alloc = 0;
384 	rx_ring->next_to_clean = 0;
385 	rx_ring->next_to_use = 0;
386 }
387 
388 /**
389  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
390  * @adapter: board private structure
391  */
igc_clean_all_rx_rings(struct igc_adapter * adapter)392 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
393 {
394 	int i;
395 
396 	for (i = 0; i < adapter->num_rx_queues; i++)
397 		if (adapter->rx_ring[i])
398 			igc_clean_rx_ring(adapter->rx_ring[i]);
399 }
400 
401 /**
402  * igc_free_rx_resources - Free Rx Resources
403  * @rx_ring: ring to clean the resources from
404  *
405  * Free all receive software resources
406  */
igc_free_rx_resources(struct igc_ring * rx_ring)407 void igc_free_rx_resources(struct igc_ring *rx_ring)
408 {
409 	igc_clean_rx_ring(rx_ring);
410 
411 	vfree(rx_ring->rx_buffer_info);
412 	rx_ring->rx_buffer_info = NULL;
413 
414 	/* if not set, then don't free */
415 	if (!rx_ring->desc)
416 		return;
417 
418 	dma_free_coherent(rx_ring->dev, rx_ring->size,
419 			  rx_ring->desc, rx_ring->dma);
420 
421 	rx_ring->desc = NULL;
422 }
423 
424 /**
425  * igc_free_all_rx_resources - Free Rx Resources for All Queues
426  * @adapter: board private structure
427  *
428  * Free all receive software resources
429  */
igc_free_all_rx_resources(struct igc_adapter * adapter)430 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
431 {
432 	int i;
433 
434 	for (i = 0; i < adapter->num_rx_queues; i++)
435 		igc_free_rx_resources(adapter->rx_ring[i]);
436 }
437 
438 /**
439  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
440  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
441  *
442  * Returns 0 on success, negative on failure
443  */
igc_setup_rx_resources(struct igc_ring * rx_ring)444 int igc_setup_rx_resources(struct igc_ring *rx_ring)
445 {
446 	struct net_device *ndev = rx_ring->netdev;
447 	struct device *dev = rx_ring->dev;
448 	int size, desc_len;
449 
450 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
451 	rx_ring->rx_buffer_info = vzalloc(size);
452 	if (!rx_ring->rx_buffer_info)
453 		goto err;
454 
455 	desc_len = sizeof(union igc_adv_rx_desc);
456 
457 	/* Round up to nearest 4K */
458 	rx_ring->size = rx_ring->count * desc_len;
459 	rx_ring->size = ALIGN(rx_ring->size, 4096);
460 
461 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
462 					   &rx_ring->dma, GFP_KERNEL);
463 
464 	if (!rx_ring->desc)
465 		goto err;
466 
467 	rx_ring->next_to_alloc = 0;
468 	rx_ring->next_to_clean = 0;
469 	rx_ring->next_to_use = 0;
470 
471 	return 0;
472 
473 err:
474 	vfree(rx_ring->rx_buffer_info);
475 	rx_ring->rx_buffer_info = NULL;
476 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
477 	return -ENOMEM;
478 }
479 
480 /**
481  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
482  *                                (Descriptors) for all queues
483  * @adapter: board private structure
484  *
485  * Return 0 on success, negative on failure
486  */
igc_setup_all_rx_resources(struct igc_adapter * adapter)487 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
488 {
489 	struct net_device *dev = adapter->netdev;
490 	int i, err = 0;
491 
492 	for (i = 0; i < adapter->num_rx_queues; i++) {
493 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
494 		if (err) {
495 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
496 			for (i--; i >= 0; i--)
497 				igc_free_rx_resources(adapter->rx_ring[i]);
498 			break;
499 		}
500 	}
501 
502 	return err;
503 }
504 
505 /**
506  * igc_configure_rx_ring - Configure a receive ring after Reset
507  * @adapter: board private structure
508  * @ring: receive ring to be configured
509  *
510  * Configure the Rx unit of the MAC after a reset.
511  */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)512 static void igc_configure_rx_ring(struct igc_adapter *adapter,
513 				  struct igc_ring *ring)
514 {
515 	struct igc_hw *hw = &adapter->hw;
516 	union igc_adv_rx_desc *rx_desc;
517 	int reg_idx = ring->reg_idx;
518 	u32 srrctl = 0, rxdctl = 0;
519 	u64 rdba = ring->dma;
520 
521 	/* disable the queue */
522 	wr32(IGC_RXDCTL(reg_idx), 0);
523 
524 	/* Set DMA base address registers */
525 	wr32(IGC_RDBAL(reg_idx),
526 	     rdba & 0x00000000ffffffffULL);
527 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
528 	wr32(IGC_RDLEN(reg_idx),
529 	     ring->count * sizeof(union igc_adv_rx_desc));
530 
531 	/* initialize head and tail */
532 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
533 	wr32(IGC_RDH(reg_idx), 0);
534 	writel(0, ring->tail);
535 
536 	/* reset next-to- use/clean to place SW in sync with hardware */
537 	ring->next_to_clean = 0;
538 	ring->next_to_use = 0;
539 
540 	/* set descriptor configuration */
541 	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
542 	if (ring_uses_large_buffer(ring))
543 		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
544 	else
545 		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
546 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
547 
548 	wr32(IGC_SRRCTL(reg_idx), srrctl);
549 
550 	rxdctl |= IGC_RX_PTHRESH;
551 	rxdctl |= IGC_RX_HTHRESH << 8;
552 	rxdctl |= IGC_RX_WTHRESH << 16;
553 
554 	/* initialize rx_buffer_info */
555 	memset(ring->rx_buffer_info, 0,
556 	       sizeof(struct igc_rx_buffer) * ring->count);
557 
558 	/* initialize Rx descriptor 0 */
559 	rx_desc = IGC_RX_DESC(ring, 0);
560 	rx_desc->wb.upper.length = 0;
561 
562 	/* enable receive descriptor fetching */
563 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
564 
565 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
566 }
567 
568 /**
569  * igc_configure_rx - Configure receive Unit after Reset
570  * @adapter: board private structure
571  *
572  * Configure the Rx unit of the MAC after a reset.
573  */
igc_configure_rx(struct igc_adapter * adapter)574 static void igc_configure_rx(struct igc_adapter *adapter)
575 {
576 	int i;
577 
578 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
579 	 * the Base and Length of the Rx Descriptor Ring
580 	 */
581 	for (i = 0; i < adapter->num_rx_queues; i++)
582 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
583 }
584 
585 /**
586  * igc_configure_tx_ring - Configure transmit ring after Reset
587  * @adapter: board private structure
588  * @ring: tx ring to configure
589  *
590  * Configure a transmit ring after a reset.
591  */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)592 static void igc_configure_tx_ring(struct igc_adapter *adapter,
593 				  struct igc_ring *ring)
594 {
595 	struct igc_hw *hw = &adapter->hw;
596 	int reg_idx = ring->reg_idx;
597 	u64 tdba = ring->dma;
598 	u32 txdctl = 0;
599 
600 	/* disable the queue */
601 	wr32(IGC_TXDCTL(reg_idx), 0);
602 	wrfl();
603 	mdelay(10);
604 
605 	wr32(IGC_TDLEN(reg_idx),
606 	     ring->count * sizeof(union igc_adv_tx_desc));
607 	wr32(IGC_TDBAL(reg_idx),
608 	     tdba & 0x00000000ffffffffULL);
609 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
610 
611 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
612 	wr32(IGC_TDH(reg_idx), 0);
613 	writel(0, ring->tail);
614 
615 	txdctl |= IGC_TX_PTHRESH;
616 	txdctl |= IGC_TX_HTHRESH << 8;
617 	txdctl |= IGC_TX_WTHRESH << 16;
618 
619 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
620 	wr32(IGC_TXDCTL(reg_idx), txdctl);
621 }
622 
623 /**
624  * igc_configure_tx - Configure transmit Unit after Reset
625  * @adapter: board private structure
626  *
627  * Configure the Tx unit of the MAC after a reset.
628  */
igc_configure_tx(struct igc_adapter * adapter)629 static void igc_configure_tx(struct igc_adapter *adapter)
630 {
631 	int i;
632 
633 	for (i = 0; i < adapter->num_tx_queues; i++)
634 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
635 }
636 
637 /**
638  * igc_setup_mrqc - configure the multiple receive queue control registers
639  * @adapter: Board private structure
640  */
igc_setup_mrqc(struct igc_adapter * adapter)641 static void igc_setup_mrqc(struct igc_adapter *adapter)
642 {
643 	struct igc_hw *hw = &adapter->hw;
644 	u32 j, num_rx_queues;
645 	u32 mrqc, rxcsum;
646 	u32 rss_key[10];
647 
648 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
649 	for (j = 0; j < 10; j++)
650 		wr32(IGC_RSSRK(j), rss_key[j]);
651 
652 	num_rx_queues = adapter->rss_queues;
653 
654 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
655 		for (j = 0; j < IGC_RETA_SIZE; j++)
656 			adapter->rss_indir_tbl[j] =
657 			(j * num_rx_queues) / IGC_RETA_SIZE;
658 		adapter->rss_indir_tbl_init = num_rx_queues;
659 	}
660 	igc_write_rss_indir_tbl(adapter);
661 
662 	/* Disable raw packet checksumming so that RSS hash is placed in
663 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
664 	 * offloads as they are enabled by default
665 	 */
666 	rxcsum = rd32(IGC_RXCSUM);
667 	rxcsum |= IGC_RXCSUM_PCSD;
668 
669 	/* Enable Receive Checksum Offload for SCTP */
670 	rxcsum |= IGC_RXCSUM_CRCOFL;
671 
672 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
673 	wr32(IGC_RXCSUM, rxcsum);
674 
675 	/* Generate RSS hash based on packet types, TCP/UDP
676 	 * port numbers and/or IPv4/v6 src and dst addresses
677 	 */
678 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
679 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
680 	       IGC_MRQC_RSS_FIELD_IPV6 |
681 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
682 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
683 
684 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
685 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
686 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
687 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
688 
689 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
690 
691 	wr32(IGC_MRQC, mrqc);
692 }
693 
694 /**
695  * igc_setup_rctl - configure the receive control registers
696  * @adapter: Board private structure
697  */
igc_setup_rctl(struct igc_adapter * adapter)698 static void igc_setup_rctl(struct igc_adapter *adapter)
699 {
700 	struct igc_hw *hw = &adapter->hw;
701 	u32 rctl;
702 
703 	rctl = rd32(IGC_RCTL);
704 
705 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
706 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
707 
708 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
709 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
710 
711 	/* enable stripping of CRC. Newer features require
712 	 * that the HW strips the CRC.
713 	 */
714 	rctl |= IGC_RCTL_SECRC;
715 
716 	/* disable store bad packets and clear size bits. */
717 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
718 
719 	/* enable LPE to allow for reception of jumbo frames */
720 	rctl |= IGC_RCTL_LPE;
721 
722 	/* disable queue 0 to prevent tail write w/o re-config */
723 	wr32(IGC_RXDCTL(0), 0);
724 
725 	/* This is useful for sniffing bad packets. */
726 	if (adapter->netdev->features & NETIF_F_RXALL) {
727 		/* UPE and MPE will be handled by normal PROMISC logic
728 		 * in set_rx_mode
729 		 */
730 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
731 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
732 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
733 
734 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
735 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
736 	}
737 
738 	wr32(IGC_RCTL, rctl);
739 }
740 
741 /**
742  * igc_setup_tctl - configure the transmit control registers
743  * @adapter: Board private structure
744  */
igc_setup_tctl(struct igc_adapter * adapter)745 static void igc_setup_tctl(struct igc_adapter *adapter)
746 {
747 	struct igc_hw *hw = &adapter->hw;
748 	u32 tctl;
749 
750 	/* disable queue 0 which icould be enabled by default */
751 	wr32(IGC_TXDCTL(0), 0);
752 
753 	/* Program the Transmit Control Register */
754 	tctl = rd32(IGC_TCTL);
755 	tctl &= ~IGC_TCTL_CT;
756 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
757 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
758 
759 	/* Enable transmits */
760 	tctl |= IGC_TCTL_EN;
761 
762 	wr32(IGC_TCTL, tctl);
763 }
764 
765 /**
766  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
767  * @adapter: Pointer to adapter where the filter should be set
768  * @index: Filter index
769  * @type: MAC address filter type (source or destination)
770  * @addr: MAC address
771  * @queue: If non-negative, queue assignment feature is enabled and frames
772  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
773  *         assignment is disabled.
774  */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)775 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
776 				  enum igc_mac_filter_type type,
777 				  const u8 *addr, int queue)
778 {
779 	struct net_device *dev = adapter->netdev;
780 	struct igc_hw *hw = &adapter->hw;
781 	u32 ral, rah;
782 
783 	if (WARN_ON(index >= hw->mac.rar_entry_count))
784 		return;
785 
786 	ral = le32_to_cpup((__le32 *)(addr));
787 	rah = le16_to_cpup((__le16 *)(addr + 4));
788 
789 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
790 		rah &= ~IGC_RAH_ASEL_MASK;
791 		rah |= IGC_RAH_ASEL_SRC_ADDR;
792 	}
793 
794 	if (queue >= 0) {
795 		rah &= ~IGC_RAH_QSEL_MASK;
796 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
797 		rah |= IGC_RAH_QSEL_ENABLE;
798 	}
799 
800 	rah |= IGC_RAH_AV;
801 
802 	wr32(IGC_RAL(index), ral);
803 	wr32(IGC_RAH(index), rah);
804 
805 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
806 }
807 
808 /**
809  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
810  * @adapter: Pointer to adapter where the filter should be cleared
811  * @index: Filter index
812  */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)813 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
814 {
815 	struct net_device *dev = adapter->netdev;
816 	struct igc_hw *hw = &adapter->hw;
817 
818 	if (WARN_ON(index >= hw->mac.rar_entry_count))
819 		return;
820 
821 	wr32(IGC_RAL(index), 0);
822 	wr32(IGC_RAH(index), 0);
823 
824 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
825 }
826 
827 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)828 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
829 {
830 	struct net_device *dev = adapter->netdev;
831 	u8 *addr = adapter->hw.mac.addr;
832 
833 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
834 
835 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
836 }
837 
838 /**
839  * igc_set_mac - Change the Ethernet Address of the NIC
840  * @netdev: network interface device structure
841  * @p: pointer to an address structure
842  *
843  * Returns 0 on success, negative on failure
844  */
igc_set_mac(struct net_device * netdev,void * p)845 static int igc_set_mac(struct net_device *netdev, void *p)
846 {
847 	struct igc_adapter *adapter = netdev_priv(netdev);
848 	struct igc_hw *hw = &adapter->hw;
849 	struct sockaddr *addr = p;
850 
851 	if (!is_valid_ether_addr(addr->sa_data))
852 		return -EADDRNOTAVAIL;
853 
854 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
855 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
856 
857 	/* set the correct pool for the new PF MAC address in entry 0 */
858 	igc_set_default_mac_filter(adapter);
859 
860 	return 0;
861 }
862 
863 /**
864  *  igc_write_mc_addr_list - write multicast addresses to MTA
865  *  @netdev: network interface device structure
866  *
867  *  Writes multicast address list to the MTA hash table.
868  *  Returns: -ENOMEM on failure
869  *           0 on no addresses written
870  *           X on writing X addresses to MTA
871  **/
igc_write_mc_addr_list(struct net_device * netdev)872 static int igc_write_mc_addr_list(struct net_device *netdev)
873 {
874 	struct igc_adapter *adapter = netdev_priv(netdev);
875 	struct igc_hw *hw = &adapter->hw;
876 	struct netdev_hw_addr *ha;
877 	u8  *mta_list;
878 	int i;
879 
880 	if (netdev_mc_empty(netdev)) {
881 		/* nothing to program, so clear mc list */
882 		igc_update_mc_addr_list(hw, NULL, 0);
883 		return 0;
884 	}
885 
886 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
887 	if (!mta_list)
888 		return -ENOMEM;
889 
890 	/* The shared function expects a packed array of only addresses. */
891 	i = 0;
892 	netdev_for_each_mc_addr(ha, netdev)
893 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
894 
895 	igc_update_mc_addr_list(hw, mta_list, i);
896 	kfree(mta_list);
897 
898 	return netdev_mc_count(netdev);
899 }
900 
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)901 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
902 				bool *first_flag, bool *insert_empty)
903 {
904 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
905 	ktime_t cycle_time = adapter->cycle_time;
906 	ktime_t base_time = adapter->base_time;
907 	ktime_t now = ktime_get_clocktai();
908 	ktime_t baset_est, end_of_cycle;
909 	u32 launchtime;
910 	s64 n;
911 
912 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
913 
914 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
915 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
916 
917 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
918 		if (baset_est != ring->last_ff_cycle) {
919 			*first_flag = true;
920 			ring->last_ff_cycle = baset_est;
921 
922 			if (ktime_compare(txtime, ring->last_tx_cycle) > 0)
923 				*insert_empty = true;
924 		}
925 	}
926 
927 	/* Introducing a window at end of cycle on which packets
928 	 * potentially not honor launchtime. Window of 5us chosen
929 	 * considering software update the tail pointer and packets
930 	 * are dma'ed to packet buffer.
931 	 */
932 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
933 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
934 			    txtime);
935 
936 	ring->last_tx_cycle = end_of_cycle;
937 
938 	launchtime = ktime_sub_ns(txtime, baset_est);
939 	if (launchtime > 0)
940 		div_s64_rem(launchtime, cycle_time, &launchtime);
941 	else
942 		launchtime = 0;
943 
944 	return cpu_to_le32(launchtime);
945 }
946 
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)947 static int igc_init_empty_frame(struct igc_ring *ring,
948 				struct igc_tx_buffer *buffer,
949 				struct sk_buff *skb)
950 {
951 	unsigned int size;
952 	dma_addr_t dma;
953 
954 	size = skb_headlen(skb);
955 
956 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
957 	if (dma_mapping_error(ring->dev, dma)) {
958 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
959 		return -ENOMEM;
960 	}
961 
962 	buffer->skb = skb;
963 	buffer->protocol = 0;
964 	buffer->bytecount = skb->len;
965 	buffer->gso_segs = 1;
966 	buffer->time_stamp = jiffies;
967 	dma_unmap_len_set(buffer, len, skb->len);
968 	dma_unmap_addr_set(buffer, dma, dma);
969 
970 	return 0;
971 }
972 
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)973 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
974 					struct sk_buff *skb,
975 					struct igc_tx_buffer *first)
976 {
977 	union igc_adv_tx_desc *desc;
978 	u32 cmd_type, olinfo_status;
979 	int err;
980 
981 	if (!igc_desc_unused(ring))
982 		return -EBUSY;
983 
984 	err = igc_init_empty_frame(ring, first, skb);
985 	if (err)
986 		return err;
987 
988 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
989 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
990 		   first->bytecount;
991 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
992 
993 	desc = IGC_TX_DESC(ring, ring->next_to_use);
994 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
995 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
996 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
997 
998 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
999 
1000 	first->next_to_watch = desc;
1001 
1002 	ring->next_to_use++;
1003 	if (ring->next_to_use == ring->count)
1004 		ring->next_to_use = 0;
1005 
1006 	return 0;
1007 }
1008 
1009 #define IGC_EMPTY_FRAME_SIZE 60
1010 
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1011 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1012 			    __le32 launch_time, bool first_flag,
1013 			    u32 vlan_macip_lens, u32 type_tucmd,
1014 			    u32 mss_l4len_idx)
1015 {
1016 	struct igc_adv_tx_context_desc *context_desc;
1017 	u16 i = tx_ring->next_to_use;
1018 
1019 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1020 
1021 	i++;
1022 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1023 
1024 	/* set bits to identify this as an advanced context descriptor */
1025 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1026 
1027 	/* For i225, context index must be unique per ring. */
1028 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1029 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1030 
1031 	if (first_flag)
1032 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1033 
1034 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1035 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1036 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1037 	context_desc->launch_time	= launch_time;
1038 }
1039 
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1040 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1041 			__le32 launch_time, bool first_flag)
1042 {
1043 	struct sk_buff *skb = first->skb;
1044 	u32 vlan_macip_lens = 0;
1045 	u32 type_tucmd = 0;
1046 
1047 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1048 csum_failed:
1049 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1050 		    !tx_ring->launchtime_enable)
1051 			return;
1052 		goto no_csum;
1053 	}
1054 
1055 	switch (skb->csum_offset) {
1056 	case offsetof(struct tcphdr, check):
1057 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1058 		fallthrough;
1059 	case offsetof(struct udphdr, check):
1060 		break;
1061 	case offsetof(struct sctphdr, checksum):
1062 		/* validate that this is actually an SCTP request */
1063 		if (skb_csum_is_sctp(skb)) {
1064 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1065 			break;
1066 		}
1067 		fallthrough;
1068 	default:
1069 		skb_checksum_help(skb);
1070 		goto csum_failed;
1071 	}
1072 
1073 	/* update TX checksum flag */
1074 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1075 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1076 			  skb_network_offset(skb);
1077 no_csum:
1078 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1079 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1080 
1081 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1082 			vlan_macip_lens, type_tucmd, 0);
1083 }
1084 
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1085 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1086 {
1087 	struct net_device *netdev = tx_ring->netdev;
1088 
1089 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1090 
1091 	/* memory barriier comment */
1092 	smp_mb();
1093 
1094 	/* We need to check again in a case another CPU has just
1095 	 * made room available.
1096 	 */
1097 	if (igc_desc_unused(tx_ring) < size)
1098 		return -EBUSY;
1099 
1100 	/* A reprieve! */
1101 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1102 
1103 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1104 	tx_ring->tx_stats.restart_queue2++;
1105 	u64_stats_update_end(&tx_ring->tx_syncp2);
1106 
1107 	return 0;
1108 }
1109 
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1110 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1111 {
1112 	if (igc_desc_unused(tx_ring) >= size)
1113 		return 0;
1114 	return __igc_maybe_stop_tx(tx_ring, size);
1115 }
1116 
1117 #define IGC_SET_FLAG(_input, _flag, _result) \
1118 	(((_flag) <= (_result)) ?				\
1119 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1120 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1121 
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1122 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1123 {
1124 	/* set type for advanced descriptor with frame checksum insertion */
1125 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1126 		       IGC_ADVTXD_DCMD_DEXT |
1127 		       IGC_ADVTXD_DCMD_IFCS;
1128 
1129 	/* set segmentation bits for TSO */
1130 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1131 				 (IGC_ADVTXD_DCMD_TSE));
1132 
1133 	/* set timestamp bit if present */
1134 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1135 				 (IGC_ADVTXD_MAC_TSTAMP));
1136 
1137 	return cmd_type;
1138 }
1139 
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1140 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1141 				 union igc_adv_tx_desc *tx_desc,
1142 				 u32 tx_flags, unsigned int paylen)
1143 {
1144 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1145 
1146 	/* insert L4 checksum */
1147 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1148 			  ((IGC_TXD_POPTS_TXSM << 8) /
1149 			  IGC_TX_FLAGS_CSUM);
1150 
1151 	/* insert IPv4 checksum */
1152 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1153 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1154 			  IGC_TX_FLAGS_IPV4);
1155 
1156 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1157 }
1158 
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1159 static int igc_tx_map(struct igc_ring *tx_ring,
1160 		      struct igc_tx_buffer *first,
1161 		      const u8 hdr_len)
1162 {
1163 	struct sk_buff *skb = first->skb;
1164 	struct igc_tx_buffer *tx_buffer;
1165 	union igc_adv_tx_desc *tx_desc;
1166 	u32 tx_flags = first->tx_flags;
1167 	skb_frag_t *frag;
1168 	u16 i = tx_ring->next_to_use;
1169 	unsigned int data_len, size;
1170 	dma_addr_t dma;
1171 	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1172 
1173 	tx_desc = IGC_TX_DESC(tx_ring, i);
1174 
1175 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1176 
1177 	size = skb_headlen(skb);
1178 	data_len = skb->data_len;
1179 
1180 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1181 
1182 	tx_buffer = first;
1183 
1184 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1185 		if (dma_mapping_error(tx_ring->dev, dma))
1186 			goto dma_error;
1187 
1188 		/* record length, and DMA address */
1189 		dma_unmap_len_set(tx_buffer, len, size);
1190 		dma_unmap_addr_set(tx_buffer, dma, dma);
1191 
1192 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1193 
1194 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1195 			tx_desc->read.cmd_type_len =
1196 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1197 
1198 			i++;
1199 			tx_desc++;
1200 			if (i == tx_ring->count) {
1201 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1202 				i = 0;
1203 			}
1204 			tx_desc->read.olinfo_status = 0;
1205 
1206 			dma += IGC_MAX_DATA_PER_TXD;
1207 			size -= IGC_MAX_DATA_PER_TXD;
1208 
1209 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1210 		}
1211 
1212 		if (likely(!data_len))
1213 			break;
1214 
1215 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1216 
1217 		i++;
1218 		tx_desc++;
1219 		if (i == tx_ring->count) {
1220 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1221 			i = 0;
1222 		}
1223 		tx_desc->read.olinfo_status = 0;
1224 
1225 		size = skb_frag_size(frag);
1226 		data_len -= size;
1227 
1228 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1229 				       size, DMA_TO_DEVICE);
1230 
1231 		tx_buffer = &tx_ring->tx_buffer_info[i];
1232 	}
1233 
1234 	/* write last descriptor with RS and EOP bits */
1235 	cmd_type |= size | IGC_TXD_DCMD;
1236 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1237 
1238 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1239 
1240 	/* set the timestamp */
1241 	first->time_stamp = jiffies;
1242 
1243 	skb_tx_timestamp(skb);
1244 
1245 	/* Force memory writes to complete before letting h/w know there
1246 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1247 	 * memory model archs, such as IA-64).
1248 	 *
1249 	 * We also need this memory barrier to make certain all of the
1250 	 * status bits have been updated before next_to_watch is written.
1251 	 */
1252 	wmb();
1253 
1254 	/* set next_to_watch value indicating a packet is present */
1255 	first->next_to_watch = tx_desc;
1256 
1257 	i++;
1258 	if (i == tx_ring->count)
1259 		i = 0;
1260 
1261 	tx_ring->next_to_use = i;
1262 
1263 	/* Make sure there is space in the ring for the next send. */
1264 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1265 
1266 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1267 		writel(i, tx_ring->tail);
1268 	}
1269 
1270 	return 0;
1271 dma_error:
1272 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1273 	tx_buffer = &tx_ring->tx_buffer_info[i];
1274 
1275 	/* clear dma mappings for failed tx_buffer_info map */
1276 	while (tx_buffer != first) {
1277 		if (dma_unmap_len(tx_buffer, len))
1278 			dma_unmap_page(tx_ring->dev,
1279 				       dma_unmap_addr(tx_buffer, dma),
1280 				       dma_unmap_len(tx_buffer, len),
1281 				       DMA_TO_DEVICE);
1282 		dma_unmap_len_set(tx_buffer, len, 0);
1283 
1284 		if (i-- == 0)
1285 			i += tx_ring->count;
1286 		tx_buffer = &tx_ring->tx_buffer_info[i];
1287 	}
1288 
1289 	if (dma_unmap_len(tx_buffer, len))
1290 		dma_unmap_single(tx_ring->dev,
1291 				 dma_unmap_addr(tx_buffer, dma),
1292 				 dma_unmap_len(tx_buffer, len),
1293 				 DMA_TO_DEVICE);
1294 	dma_unmap_len_set(tx_buffer, len, 0);
1295 
1296 	dev_kfree_skb_any(tx_buffer->skb);
1297 	tx_buffer->skb = NULL;
1298 
1299 	tx_ring->next_to_use = i;
1300 
1301 	return -1;
1302 }
1303 
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1304 static int igc_tso(struct igc_ring *tx_ring,
1305 		   struct igc_tx_buffer *first,
1306 		   __le32 launch_time, bool first_flag,
1307 		   u8 *hdr_len)
1308 {
1309 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1310 	struct sk_buff *skb = first->skb;
1311 	union {
1312 		struct iphdr *v4;
1313 		struct ipv6hdr *v6;
1314 		unsigned char *hdr;
1315 	} ip;
1316 	union {
1317 		struct tcphdr *tcp;
1318 		struct udphdr *udp;
1319 		unsigned char *hdr;
1320 	} l4;
1321 	u32 paylen, l4_offset;
1322 	int err;
1323 
1324 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1325 		return 0;
1326 
1327 	if (!skb_is_gso(skb))
1328 		return 0;
1329 
1330 	err = skb_cow_head(skb, 0);
1331 	if (err < 0)
1332 		return err;
1333 
1334 	ip.hdr = skb_network_header(skb);
1335 	l4.hdr = skb_checksum_start(skb);
1336 
1337 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1338 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1339 
1340 	/* initialize outer IP header fields */
1341 	if (ip.v4->version == 4) {
1342 		unsigned char *csum_start = skb_checksum_start(skb);
1343 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1344 
1345 		/* IP header will have to cancel out any data that
1346 		 * is not a part of the outer IP header
1347 		 */
1348 		ip.v4->check = csum_fold(csum_partial(trans_start,
1349 						      csum_start - trans_start,
1350 						      0));
1351 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1352 
1353 		ip.v4->tot_len = 0;
1354 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1355 				   IGC_TX_FLAGS_CSUM |
1356 				   IGC_TX_FLAGS_IPV4;
1357 	} else {
1358 		ip.v6->payload_len = 0;
1359 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1360 				   IGC_TX_FLAGS_CSUM;
1361 	}
1362 
1363 	/* determine offset of inner transport header */
1364 	l4_offset = l4.hdr - skb->data;
1365 
1366 	/* remove payload length from inner checksum */
1367 	paylen = skb->len - l4_offset;
1368 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1369 		/* compute length of segmentation header */
1370 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1371 		csum_replace_by_diff(&l4.tcp->check,
1372 				     (__force __wsum)htonl(paylen));
1373 	} else {
1374 		/* compute length of segmentation header */
1375 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1376 		csum_replace_by_diff(&l4.udp->check,
1377 				     (__force __wsum)htonl(paylen));
1378 	}
1379 
1380 	/* update gso size and bytecount with header size */
1381 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1382 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1383 
1384 	/* MSS L4LEN IDX */
1385 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1386 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1387 
1388 	/* VLAN MACLEN IPLEN */
1389 	vlan_macip_lens = l4.hdr - ip.hdr;
1390 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1391 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1392 
1393 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1394 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1395 
1396 	return 1;
1397 }
1398 
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1399 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1400 				       struct igc_ring *tx_ring)
1401 {
1402 	bool first_flag = false, insert_empty = false;
1403 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1404 	__be16 protocol = vlan_get_protocol(skb);
1405 	struct igc_tx_buffer *first;
1406 	__le32 launch_time = 0;
1407 	u32 tx_flags = 0;
1408 	unsigned short f;
1409 	ktime_t txtime;
1410 	u8 hdr_len = 0;
1411 	int tso = 0;
1412 
1413 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1414 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1415 	 *	+ 2 desc gap to keep tail from touching head,
1416 	 *	+ 1 desc for context descriptor,
1417 	 * otherwise try next time
1418 	 */
1419 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1420 		count += TXD_USE_COUNT(skb_frag_size(
1421 						&skb_shinfo(skb)->frags[f]));
1422 
1423 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1424 		/* this is a hard error */
1425 		return NETDEV_TX_BUSY;
1426 	}
1427 
1428 	if (!tx_ring->launchtime_enable)
1429 		goto done;
1430 
1431 	txtime = skb->tstamp;
1432 	skb->tstamp = ktime_set(0, 0);
1433 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1434 
1435 	if (insert_empty) {
1436 		struct igc_tx_buffer *empty_info;
1437 		struct sk_buff *empty;
1438 		void *data;
1439 
1440 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1441 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1442 		if (!empty)
1443 			goto done;
1444 
1445 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1446 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1447 
1448 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1449 
1450 		if (igc_init_tx_empty_descriptor(tx_ring,
1451 						 empty,
1452 						 empty_info) < 0)
1453 			dev_kfree_skb_any(empty);
1454 	}
1455 
1456 done:
1457 	/* record the location of the first descriptor for this packet */
1458 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1459 	first->skb = skb;
1460 	first->bytecount = skb->len;
1461 	first->gso_segs = 1;
1462 
1463 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1464 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1465 
1466 		/* FIXME: add support for retrieving timestamps from
1467 		 * the other timer registers before skipping the
1468 		 * timestamping request.
1469 		 */
1470 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1471 		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1472 					   &adapter->state)) {
1473 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1474 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1475 
1476 			adapter->ptp_tx_skb = skb_get(skb);
1477 			adapter->ptp_tx_start = jiffies;
1478 		} else {
1479 			adapter->tx_hwtstamp_skipped++;
1480 		}
1481 	}
1482 
1483 	/* record initial flags and protocol */
1484 	first->tx_flags = tx_flags;
1485 	first->protocol = protocol;
1486 
1487 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1488 	if (tso < 0)
1489 		goto out_drop;
1490 	else if (!tso)
1491 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1492 
1493 	igc_tx_map(tx_ring, first, hdr_len);
1494 
1495 	return NETDEV_TX_OK;
1496 
1497 out_drop:
1498 	dev_kfree_skb_any(first->skb);
1499 	first->skb = NULL;
1500 
1501 	return NETDEV_TX_OK;
1502 }
1503 
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1504 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1505 						    struct sk_buff *skb)
1506 {
1507 	unsigned int r_idx = skb->queue_mapping;
1508 
1509 	if (r_idx >= adapter->num_tx_queues)
1510 		r_idx = r_idx % adapter->num_tx_queues;
1511 
1512 	return adapter->tx_ring[r_idx];
1513 }
1514 
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1515 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1516 				  struct net_device *netdev)
1517 {
1518 	struct igc_adapter *adapter = netdev_priv(netdev);
1519 
1520 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1521 	 * in order to meet this minimum size requirement.
1522 	 */
1523 	if (skb->len < 17) {
1524 		if (skb_padto(skb, 17))
1525 			return NETDEV_TX_OK;
1526 		skb->len = 17;
1527 	}
1528 
1529 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1530 }
1531 
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1532 static void igc_rx_checksum(struct igc_ring *ring,
1533 			    union igc_adv_rx_desc *rx_desc,
1534 			    struct sk_buff *skb)
1535 {
1536 	skb_checksum_none_assert(skb);
1537 
1538 	/* Ignore Checksum bit is set */
1539 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1540 		return;
1541 
1542 	/* Rx checksum disabled via ethtool */
1543 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1544 		return;
1545 
1546 	/* TCP/UDP checksum error bit is set */
1547 	if (igc_test_staterr(rx_desc,
1548 			     IGC_RXDEXT_STATERR_L4E |
1549 			     IGC_RXDEXT_STATERR_IPE)) {
1550 		/* work around errata with sctp packets where the TCPE aka
1551 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1552 		 * packets (aka let the stack check the crc32c)
1553 		 */
1554 		if (!(skb->len == 60 &&
1555 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1556 			u64_stats_update_begin(&ring->rx_syncp);
1557 			ring->rx_stats.csum_err++;
1558 			u64_stats_update_end(&ring->rx_syncp);
1559 		}
1560 		/* let the stack verify checksum errors */
1561 		return;
1562 	}
1563 	/* It must be a TCP or UDP packet with a valid checksum */
1564 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1565 				      IGC_RXD_STAT_UDPCS))
1566 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1567 
1568 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1569 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1570 }
1571 
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1572 static inline void igc_rx_hash(struct igc_ring *ring,
1573 			       union igc_adv_rx_desc *rx_desc,
1574 			       struct sk_buff *skb)
1575 {
1576 	if (ring->netdev->features & NETIF_F_RXHASH)
1577 		skb_set_hash(skb,
1578 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1579 			     PKT_HASH_TYPE_L3);
1580 }
1581 
1582 /**
1583  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1584  * @rx_ring: rx descriptor ring packet is being transacted on
1585  * @rx_desc: pointer to the EOP Rx descriptor
1586  * @skb: pointer to current skb being populated
1587  *
1588  * This function checks the ring, descriptor, and packet information in order
1589  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1590  * skb.
1591  */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1592 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1593 				   union igc_adv_rx_desc *rx_desc,
1594 				   struct sk_buff *skb)
1595 {
1596 	igc_rx_hash(rx_ring, rx_desc, skb);
1597 
1598 	igc_rx_checksum(rx_ring, rx_desc, skb);
1599 
1600 	skb_record_rx_queue(skb, rx_ring->queue_index);
1601 
1602 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1603 }
1604 
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size)1605 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1606 					       const unsigned int size)
1607 {
1608 	struct igc_rx_buffer *rx_buffer;
1609 
1610 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1611 	prefetchw(rx_buffer->page);
1612 
1613 	/* we are reusing so sync this buffer for CPU use */
1614 	dma_sync_single_range_for_cpu(rx_ring->dev,
1615 				      rx_buffer->dma,
1616 				      rx_buffer->page_offset,
1617 				      size,
1618 				      DMA_FROM_DEVICE);
1619 
1620 	rx_buffer->pagecnt_bias--;
1621 
1622 	return rx_buffer;
1623 }
1624 
1625 /**
1626  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1627  * @rx_ring: rx descriptor ring to transact packets on
1628  * @rx_buffer: buffer containing page to add
1629  * @skb: sk_buff to place the data into
1630  * @size: size of buffer to be added
1631  *
1632  * This function will add the data contained in rx_buffer->page to the skb.
1633  */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1634 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1635 			    struct igc_rx_buffer *rx_buffer,
1636 			    struct sk_buff *skb,
1637 			    unsigned int size)
1638 {
1639 #if (PAGE_SIZE < 8192)
1640 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1641 
1642 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1643 			rx_buffer->page_offset, size, truesize);
1644 	rx_buffer->page_offset ^= truesize;
1645 #else
1646 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1647 				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1648 				SKB_DATA_ALIGN(size);
1649 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1650 			rx_buffer->page_offset, size, truesize);
1651 	rx_buffer->page_offset += truesize;
1652 #endif
1653 }
1654 
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1655 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1656 				     struct igc_rx_buffer *rx_buffer,
1657 				     union igc_adv_rx_desc *rx_desc,
1658 				     unsigned int size)
1659 {
1660 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1661 #if (PAGE_SIZE < 8192)
1662 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1663 #else
1664 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1665 				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1666 #endif
1667 	struct sk_buff *skb;
1668 
1669 	/* prefetch first cache line of first page */
1670 	net_prefetch(va);
1671 
1672 	/* build an skb around the page buffer */
1673 	skb = build_skb(va - IGC_SKB_PAD, truesize);
1674 	if (unlikely(!skb))
1675 		return NULL;
1676 
1677 	/* update pointers within the skb to store the data */
1678 	skb_reserve(skb, IGC_SKB_PAD);
1679 	__skb_put(skb, size);
1680 
1681 	/* update buffer offset */
1682 #if (PAGE_SIZE < 8192)
1683 	rx_buffer->page_offset ^= truesize;
1684 #else
1685 	rx_buffer->page_offset += truesize;
1686 #endif
1687 
1688 	return skb;
1689 }
1690 
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1691 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1692 					 struct igc_rx_buffer *rx_buffer,
1693 					 union igc_adv_rx_desc *rx_desc,
1694 					 unsigned int size)
1695 {
1696 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1697 #if (PAGE_SIZE < 8192)
1698 	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1699 #else
1700 	unsigned int truesize = SKB_DATA_ALIGN(size);
1701 #endif
1702 	unsigned int headlen;
1703 	struct sk_buff *skb;
1704 
1705 	/* prefetch first cache line of first page */
1706 	net_prefetch(va);
1707 
1708 	/* allocate a skb to store the frags */
1709 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1710 	if (unlikely(!skb))
1711 		return NULL;
1712 
1713 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1714 		igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1715 		va += IGC_TS_HDR_LEN;
1716 		size -= IGC_TS_HDR_LEN;
1717 	}
1718 
1719 	/* Determine available headroom for copy */
1720 	headlen = size;
1721 	if (headlen > IGC_RX_HDR_LEN)
1722 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1723 
1724 	/* align pull length to size of long to optimize memcpy performance */
1725 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1726 
1727 	/* update all of the pointers */
1728 	size -= headlen;
1729 	if (size) {
1730 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1731 				(va + headlen) - page_address(rx_buffer->page),
1732 				size, truesize);
1733 #if (PAGE_SIZE < 8192)
1734 		rx_buffer->page_offset ^= truesize;
1735 #else
1736 		rx_buffer->page_offset += truesize;
1737 #endif
1738 	} else {
1739 		rx_buffer->pagecnt_bias++;
1740 	}
1741 
1742 	return skb;
1743 }
1744 
1745 /**
1746  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1747  * @rx_ring: rx descriptor ring to store buffers on
1748  * @old_buff: donor buffer to have page reused
1749  *
1750  * Synchronizes page for reuse by the adapter
1751  */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)1752 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1753 			      struct igc_rx_buffer *old_buff)
1754 {
1755 	u16 nta = rx_ring->next_to_alloc;
1756 	struct igc_rx_buffer *new_buff;
1757 
1758 	new_buff = &rx_ring->rx_buffer_info[nta];
1759 
1760 	/* update, and store next to alloc */
1761 	nta++;
1762 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1763 
1764 	/* Transfer page from old buffer to new buffer.
1765 	 * Move each member individually to avoid possible store
1766 	 * forwarding stalls.
1767 	 */
1768 	new_buff->dma		= old_buff->dma;
1769 	new_buff->page		= old_buff->page;
1770 	new_buff->page_offset	= old_buff->page_offset;
1771 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1772 }
1773 
igc_page_is_reserved(struct page * page)1774 static inline bool igc_page_is_reserved(struct page *page)
1775 {
1776 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1777 }
1778 
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer)1779 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1780 {
1781 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1782 	struct page *page = rx_buffer->page;
1783 
1784 	/* avoid re-using remote pages */
1785 	if (unlikely(igc_page_is_reserved(page)))
1786 		return false;
1787 
1788 #if (PAGE_SIZE < 8192)
1789 	/* if we are only owner of page we can reuse it */
1790 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1791 		return false;
1792 #else
1793 #define IGC_LAST_OFFSET \
1794 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1795 
1796 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1797 		return false;
1798 #endif
1799 
1800 	/* If we have drained the page fragment pool we need to update
1801 	 * the pagecnt_bias and page count so that we fully restock the
1802 	 * number of references the driver holds.
1803 	 */
1804 	if (unlikely(!pagecnt_bias)) {
1805 		page_ref_add(page, USHRT_MAX);
1806 		rx_buffer->pagecnt_bias = USHRT_MAX;
1807 	}
1808 
1809 	return true;
1810 }
1811 
1812 /**
1813  * igc_is_non_eop - process handling of non-EOP buffers
1814  * @rx_ring: Rx ring being processed
1815  * @rx_desc: Rx descriptor for current buffer
1816  *
1817  * This function updates next to clean.  If the buffer is an EOP buffer
1818  * this function exits returning false, otherwise it will place the
1819  * sk_buff in the next buffer to be chained and return true indicating
1820  * that this is in fact a non-EOP buffer.
1821  */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)1822 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1823 			   union igc_adv_rx_desc *rx_desc)
1824 {
1825 	u32 ntc = rx_ring->next_to_clean + 1;
1826 
1827 	/* fetch, update, and store next to clean */
1828 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1829 	rx_ring->next_to_clean = ntc;
1830 
1831 	prefetch(IGC_RX_DESC(rx_ring, ntc));
1832 
1833 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1834 		return false;
1835 
1836 	return true;
1837 }
1838 
1839 /**
1840  * igc_cleanup_headers - Correct corrupted or empty headers
1841  * @rx_ring: rx descriptor ring packet is being transacted on
1842  * @rx_desc: pointer to the EOP Rx descriptor
1843  * @skb: pointer to current skb being fixed
1844  *
1845  * Address the case where we are pulling data in on pages only
1846  * and as such no data is present in the skb header.
1847  *
1848  * In addition if skb is not at least 60 bytes we need to pad it so that
1849  * it is large enough to qualify as a valid Ethernet frame.
1850  *
1851  * Returns true if an error was encountered and skb was freed.
1852  */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1853 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1854 				union igc_adv_rx_desc *rx_desc,
1855 				struct sk_buff *skb)
1856 {
1857 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1858 		struct net_device *netdev = rx_ring->netdev;
1859 
1860 		if (!(netdev->features & NETIF_F_RXALL)) {
1861 			dev_kfree_skb_any(skb);
1862 			return true;
1863 		}
1864 	}
1865 
1866 	/* if eth_skb_pad returns an error the skb was freed */
1867 	if (eth_skb_pad(skb))
1868 		return true;
1869 
1870 	return false;
1871 }
1872 
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer)1873 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1874 			      struct igc_rx_buffer *rx_buffer)
1875 {
1876 	if (igc_can_reuse_rx_page(rx_buffer)) {
1877 		/* hand second half of page back to the ring */
1878 		igc_reuse_rx_page(rx_ring, rx_buffer);
1879 	} else {
1880 		/* We are not reusing the buffer so unmap it and free
1881 		 * any references we are holding to it
1882 		 */
1883 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1884 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1885 				     IGC_RX_DMA_ATTR);
1886 		__page_frag_cache_drain(rx_buffer->page,
1887 					rx_buffer->pagecnt_bias);
1888 	}
1889 
1890 	/* clear contents of rx_buffer */
1891 	rx_buffer->page = NULL;
1892 }
1893 
igc_rx_offset(struct igc_ring * rx_ring)1894 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1895 {
1896 	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1897 }
1898 
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)1899 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1900 				  struct igc_rx_buffer *bi)
1901 {
1902 	struct page *page = bi->page;
1903 	dma_addr_t dma;
1904 
1905 	/* since we are recycling buffers we should seldom need to alloc */
1906 	if (likely(page))
1907 		return true;
1908 
1909 	/* alloc new page for storage */
1910 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1911 	if (unlikely(!page)) {
1912 		rx_ring->rx_stats.alloc_failed++;
1913 		return false;
1914 	}
1915 
1916 	/* map page for use */
1917 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1918 				 igc_rx_pg_size(rx_ring),
1919 				 DMA_FROM_DEVICE,
1920 				 IGC_RX_DMA_ATTR);
1921 
1922 	/* if mapping failed free memory back to system since
1923 	 * there isn't much point in holding memory we can't use
1924 	 */
1925 	if (dma_mapping_error(rx_ring->dev, dma)) {
1926 		__free_page(page);
1927 
1928 		rx_ring->rx_stats.alloc_failed++;
1929 		return false;
1930 	}
1931 
1932 	bi->dma = dma;
1933 	bi->page = page;
1934 	bi->page_offset = igc_rx_offset(rx_ring);
1935 	bi->pagecnt_bias = 1;
1936 
1937 	return true;
1938 }
1939 
1940 /**
1941  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1942  * @rx_ring: rx descriptor ring
1943  * @cleaned_count: number of buffers to clean
1944  */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)1945 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1946 {
1947 	union igc_adv_rx_desc *rx_desc;
1948 	u16 i = rx_ring->next_to_use;
1949 	struct igc_rx_buffer *bi;
1950 	u16 bufsz;
1951 
1952 	/* nothing to do */
1953 	if (!cleaned_count)
1954 		return;
1955 
1956 	rx_desc = IGC_RX_DESC(rx_ring, i);
1957 	bi = &rx_ring->rx_buffer_info[i];
1958 	i -= rx_ring->count;
1959 
1960 	bufsz = igc_rx_bufsz(rx_ring);
1961 
1962 	do {
1963 		if (!igc_alloc_mapped_page(rx_ring, bi))
1964 			break;
1965 
1966 		/* sync the buffer for use by the device */
1967 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1968 						 bi->page_offset, bufsz,
1969 						 DMA_FROM_DEVICE);
1970 
1971 		/* Refresh the desc even if buffer_addrs didn't change
1972 		 * because each write-back erases this info.
1973 		 */
1974 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1975 
1976 		rx_desc++;
1977 		bi++;
1978 		i++;
1979 		if (unlikely(!i)) {
1980 			rx_desc = IGC_RX_DESC(rx_ring, 0);
1981 			bi = rx_ring->rx_buffer_info;
1982 			i -= rx_ring->count;
1983 		}
1984 
1985 		/* clear the length for the next_to_use descriptor */
1986 		rx_desc->wb.upper.length = 0;
1987 
1988 		cleaned_count--;
1989 	} while (cleaned_count);
1990 
1991 	i += rx_ring->count;
1992 
1993 	if (rx_ring->next_to_use != i) {
1994 		/* record the next descriptor to use */
1995 		rx_ring->next_to_use = i;
1996 
1997 		/* update next to alloc since we have filled the ring */
1998 		rx_ring->next_to_alloc = i;
1999 
2000 		/* Force memory writes to complete before letting h/w
2001 		 * know there are new descriptors to fetch.  (Only
2002 		 * applicable for weak-ordered memory model archs,
2003 		 * such as IA-64).
2004 		 */
2005 		wmb();
2006 		writel(i, rx_ring->tail);
2007 	}
2008 }
2009 
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2010 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2011 {
2012 	unsigned int total_bytes = 0, total_packets = 0;
2013 	struct igc_ring *rx_ring = q_vector->rx.ring;
2014 	struct sk_buff *skb = rx_ring->skb;
2015 	u16 cleaned_count = igc_desc_unused(rx_ring);
2016 
2017 	while (likely(total_packets < budget)) {
2018 		union igc_adv_rx_desc *rx_desc;
2019 		struct igc_rx_buffer *rx_buffer;
2020 		unsigned int size;
2021 
2022 		/* return some buffers to hardware, one at a time is too slow */
2023 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2024 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2025 			cleaned_count = 0;
2026 		}
2027 
2028 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2029 		size = le16_to_cpu(rx_desc->wb.upper.length);
2030 		if (!size)
2031 			break;
2032 
2033 		/* This memory barrier is needed to keep us from reading
2034 		 * any other fields out of the rx_desc until we know the
2035 		 * descriptor has been written back
2036 		 */
2037 		dma_rmb();
2038 
2039 		rx_buffer = igc_get_rx_buffer(rx_ring, size);
2040 
2041 		/* retrieve a buffer from the ring */
2042 		if (skb)
2043 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2044 		else if (ring_uses_build_skb(rx_ring))
2045 			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2046 		else
2047 			skb = igc_construct_skb(rx_ring, rx_buffer,
2048 						rx_desc, size);
2049 
2050 		/* exit if we failed to retrieve a buffer */
2051 		if (!skb) {
2052 			rx_ring->rx_stats.alloc_failed++;
2053 			rx_buffer->pagecnt_bias++;
2054 			break;
2055 		}
2056 
2057 		igc_put_rx_buffer(rx_ring, rx_buffer);
2058 		cleaned_count++;
2059 
2060 		/* fetch next buffer in frame if non-eop */
2061 		if (igc_is_non_eop(rx_ring, rx_desc))
2062 			continue;
2063 
2064 		/* verify the packet layout is correct */
2065 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2066 			skb = NULL;
2067 			continue;
2068 		}
2069 
2070 		/* probably a little skewed due to removing CRC */
2071 		total_bytes += skb->len;
2072 
2073 		/* populate checksum, VLAN, and protocol */
2074 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2075 
2076 		napi_gro_receive(&q_vector->napi, skb);
2077 
2078 		/* reset skb pointer */
2079 		skb = NULL;
2080 
2081 		/* update budget accounting */
2082 		total_packets++;
2083 	}
2084 
2085 	/* place incomplete frames back on ring for completion */
2086 	rx_ring->skb = skb;
2087 
2088 	u64_stats_update_begin(&rx_ring->rx_syncp);
2089 	rx_ring->rx_stats.packets += total_packets;
2090 	rx_ring->rx_stats.bytes += total_bytes;
2091 	u64_stats_update_end(&rx_ring->rx_syncp);
2092 	q_vector->rx.total_packets += total_packets;
2093 	q_vector->rx.total_bytes += total_bytes;
2094 
2095 	if (cleaned_count)
2096 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2097 
2098 	return total_packets;
2099 }
2100 
2101 /**
2102  * igc_clean_tx_irq - Reclaim resources after transmit completes
2103  * @q_vector: pointer to q_vector containing needed info
2104  * @napi_budget: Used to determine if we are in netpoll
2105  *
2106  * returns true if ring is completely cleaned
2107  */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)2108 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2109 {
2110 	struct igc_adapter *adapter = q_vector->adapter;
2111 	unsigned int total_bytes = 0, total_packets = 0;
2112 	unsigned int budget = q_vector->tx.work_limit;
2113 	struct igc_ring *tx_ring = q_vector->tx.ring;
2114 	unsigned int i = tx_ring->next_to_clean;
2115 	struct igc_tx_buffer *tx_buffer;
2116 	union igc_adv_tx_desc *tx_desc;
2117 
2118 	if (test_bit(__IGC_DOWN, &adapter->state))
2119 		return true;
2120 
2121 	tx_buffer = &tx_ring->tx_buffer_info[i];
2122 	tx_desc = IGC_TX_DESC(tx_ring, i);
2123 	i -= tx_ring->count;
2124 
2125 	do {
2126 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2127 
2128 		/* if next_to_watch is not set then there is no work pending */
2129 		if (!eop_desc)
2130 			break;
2131 
2132 		/* prevent any other reads prior to eop_desc */
2133 		smp_rmb();
2134 
2135 		/* if DD is not set pending work has not been completed */
2136 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2137 			break;
2138 
2139 		/* clear next_to_watch to prevent false hangs */
2140 		tx_buffer->next_to_watch = NULL;
2141 
2142 		/* update the statistics for this packet */
2143 		total_bytes += tx_buffer->bytecount;
2144 		total_packets += tx_buffer->gso_segs;
2145 
2146 		/* free the skb */
2147 		napi_consume_skb(tx_buffer->skb, napi_budget);
2148 
2149 		/* unmap skb header data */
2150 		dma_unmap_single(tx_ring->dev,
2151 				 dma_unmap_addr(tx_buffer, dma),
2152 				 dma_unmap_len(tx_buffer, len),
2153 				 DMA_TO_DEVICE);
2154 
2155 		/* clear tx_buffer data */
2156 		dma_unmap_len_set(tx_buffer, len, 0);
2157 
2158 		/* clear last DMA location and unmap remaining buffers */
2159 		while (tx_desc != eop_desc) {
2160 			tx_buffer++;
2161 			tx_desc++;
2162 			i++;
2163 			if (unlikely(!i)) {
2164 				i -= tx_ring->count;
2165 				tx_buffer = tx_ring->tx_buffer_info;
2166 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2167 			}
2168 
2169 			/* unmap any remaining paged data */
2170 			if (dma_unmap_len(tx_buffer, len)) {
2171 				dma_unmap_page(tx_ring->dev,
2172 					       dma_unmap_addr(tx_buffer, dma),
2173 					       dma_unmap_len(tx_buffer, len),
2174 					       DMA_TO_DEVICE);
2175 				dma_unmap_len_set(tx_buffer, len, 0);
2176 			}
2177 		}
2178 
2179 		/* move us one more past the eop_desc for start of next pkt */
2180 		tx_buffer++;
2181 		tx_desc++;
2182 		i++;
2183 		if (unlikely(!i)) {
2184 			i -= tx_ring->count;
2185 			tx_buffer = tx_ring->tx_buffer_info;
2186 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2187 		}
2188 
2189 		/* issue prefetch for next Tx descriptor */
2190 		prefetch(tx_desc);
2191 
2192 		/* update budget accounting */
2193 		budget--;
2194 	} while (likely(budget));
2195 
2196 	netdev_tx_completed_queue(txring_txq(tx_ring),
2197 				  total_packets, total_bytes);
2198 
2199 	i += tx_ring->count;
2200 	tx_ring->next_to_clean = i;
2201 	u64_stats_update_begin(&tx_ring->tx_syncp);
2202 	tx_ring->tx_stats.bytes += total_bytes;
2203 	tx_ring->tx_stats.packets += total_packets;
2204 	u64_stats_update_end(&tx_ring->tx_syncp);
2205 	q_vector->tx.total_bytes += total_bytes;
2206 	q_vector->tx.total_packets += total_packets;
2207 
2208 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2209 		struct igc_hw *hw = &adapter->hw;
2210 
2211 		/* Detect a transmit hang in hardware, this serializes the
2212 		 * check with the clearing of time_stamp and movement of i
2213 		 */
2214 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2215 		if (tx_buffer->next_to_watch &&
2216 		    time_after(jiffies, tx_buffer->time_stamp +
2217 		    (adapter->tx_timeout_factor * HZ)) &&
2218 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2219 			/* detected Tx unit hang */
2220 			netdev_err(tx_ring->netdev,
2221 				   "Detected Tx Unit Hang\n"
2222 				   "  Tx Queue             <%d>\n"
2223 				   "  TDH                  <%x>\n"
2224 				   "  TDT                  <%x>\n"
2225 				   "  next_to_use          <%x>\n"
2226 				   "  next_to_clean        <%x>\n"
2227 				   "buffer_info[next_to_clean]\n"
2228 				   "  time_stamp           <%lx>\n"
2229 				   "  next_to_watch        <%p>\n"
2230 				   "  jiffies              <%lx>\n"
2231 				   "  desc.status          <%x>\n",
2232 				   tx_ring->queue_index,
2233 				   rd32(IGC_TDH(tx_ring->reg_idx)),
2234 				   readl(tx_ring->tail),
2235 				   tx_ring->next_to_use,
2236 				   tx_ring->next_to_clean,
2237 				   tx_buffer->time_stamp,
2238 				   tx_buffer->next_to_watch,
2239 				   jiffies,
2240 				   tx_buffer->next_to_watch->wb.status);
2241 			netif_stop_subqueue(tx_ring->netdev,
2242 					    tx_ring->queue_index);
2243 
2244 			/* we are about to reset, no point in enabling stuff */
2245 			return true;
2246 		}
2247 	}
2248 
2249 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2250 	if (unlikely(total_packets &&
2251 		     netif_carrier_ok(tx_ring->netdev) &&
2252 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2253 		/* Make sure that anybody stopping the queue after this
2254 		 * sees the new next_to_clean.
2255 		 */
2256 		smp_mb();
2257 		if (__netif_subqueue_stopped(tx_ring->netdev,
2258 					     tx_ring->queue_index) &&
2259 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2260 			netif_wake_subqueue(tx_ring->netdev,
2261 					    tx_ring->queue_index);
2262 
2263 			u64_stats_update_begin(&tx_ring->tx_syncp);
2264 			tx_ring->tx_stats.restart_queue++;
2265 			u64_stats_update_end(&tx_ring->tx_syncp);
2266 		}
2267 	}
2268 
2269 	return !!budget;
2270 }
2271 
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2272 static int igc_find_mac_filter(struct igc_adapter *adapter,
2273 			       enum igc_mac_filter_type type, const u8 *addr)
2274 {
2275 	struct igc_hw *hw = &adapter->hw;
2276 	int max_entries = hw->mac.rar_entry_count;
2277 	u32 ral, rah;
2278 	int i;
2279 
2280 	for (i = 0; i < max_entries; i++) {
2281 		ral = rd32(IGC_RAL(i));
2282 		rah = rd32(IGC_RAH(i));
2283 
2284 		if (!(rah & IGC_RAH_AV))
2285 			continue;
2286 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2287 			continue;
2288 		if ((rah & IGC_RAH_RAH_MASK) !=
2289 		    le16_to_cpup((__le16 *)(addr + 4)))
2290 			continue;
2291 		if (ral != le32_to_cpup((__le32 *)(addr)))
2292 			continue;
2293 
2294 		return i;
2295 	}
2296 
2297 	return -1;
2298 }
2299 
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)2300 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2301 {
2302 	struct igc_hw *hw = &adapter->hw;
2303 	int max_entries = hw->mac.rar_entry_count;
2304 	u32 rah;
2305 	int i;
2306 
2307 	for (i = 0; i < max_entries; i++) {
2308 		rah = rd32(IGC_RAH(i));
2309 
2310 		if (!(rah & IGC_RAH_AV))
2311 			return i;
2312 	}
2313 
2314 	return -1;
2315 }
2316 
2317 /**
2318  * igc_add_mac_filter() - Add MAC address filter
2319  * @adapter: Pointer to adapter where the filter should be added
2320  * @type: MAC address filter type (source or destination)
2321  * @addr: MAC address
2322  * @queue: If non-negative, queue assignment feature is enabled and frames
2323  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2324  *         assignment is disabled.
2325  *
2326  * Return: 0 in case of success, negative errno code otherwise.
2327  */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)2328 static int igc_add_mac_filter(struct igc_adapter *adapter,
2329 			      enum igc_mac_filter_type type, const u8 *addr,
2330 			      int queue)
2331 {
2332 	struct net_device *dev = adapter->netdev;
2333 	int index;
2334 
2335 	index = igc_find_mac_filter(adapter, type, addr);
2336 	if (index >= 0)
2337 		goto update_filter;
2338 
2339 	index = igc_get_avail_mac_filter_slot(adapter);
2340 	if (index < 0)
2341 		return -ENOSPC;
2342 
2343 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2344 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2345 		   addr, queue);
2346 
2347 update_filter:
2348 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2349 	return 0;
2350 }
2351 
2352 /**
2353  * igc_del_mac_filter() - Delete MAC address filter
2354  * @adapter: Pointer to adapter where the filter should be deleted from
2355  * @type: MAC address filter type (source or destination)
2356  * @addr: MAC address
2357  */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2358 static void igc_del_mac_filter(struct igc_adapter *adapter,
2359 			       enum igc_mac_filter_type type, const u8 *addr)
2360 {
2361 	struct net_device *dev = adapter->netdev;
2362 	int index;
2363 
2364 	index = igc_find_mac_filter(adapter, type, addr);
2365 	if (index < 0)
2366 		return;
2367 
2368 	if (index == 0) {
2369 		/* If this is the default filter, we don't actually delete it.
2370 		 * We just reset to its default value i.e. disable queue
2371 		 * assignment.
2372 		 */
2373 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2374 
2375 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2376 	} else {
2377 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2378 			   index,
2379 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2380 			   addr);
2381 
2382 		igc_clear_mac_filter_hw(adapter, index);
2383 	}
2384 }
2385 
2386 /**
2387  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2388  * @adapter: Pointer to adapter where the filter should be added
2389  * @prio: VLAN priority value
2390  * @queue: Queue number which matching frames are assigned to
2391  *
2392  * Return: 0 in case of success, negative errno code otherwise.
2393  */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)2394 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2395 				    int queue)
2396 {
2397 	struct net_device *dev = adapter->netdev;
2398 	struct igc_hw *hw = &adapter->hw;
2399 	u32 vlanpqf;
2400 
2401 	vlanpqf = rd32(IGC_VLANPQF);
2402 
2403 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2404 		netdev_dbg(dev, "VLAN priority filter already in use\n");
2405 		return -EEXIST;
2406 	}
2407 
2408 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2409 	vlanpqf |= IGC_VLANPQF_VALID(prio);
2410 
2411 	wr32(IGC_VLANPQF, vlanpqf);
2412 
2413 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2414 		   prio, queue);
2415 	return 0;
2416 }
2417 
2418 /**
2419  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2420  * @adapter: Pointer to adapter where the filter should be deleted from
2421  * @prio: VLAN priority value
2422  */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)2423 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2424 {
2425 	struct igc_hw *hw = &adapter->hw;
2426 	u32 vlanpqf;
2427 
2428 	vlanpqf = rd32(IGC_VLANPQF);
2429 
2430 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2431 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2432 
2433 	wr32(IGC_VLANPQF, vlanpqf);
2434 
2435 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2436 		   prio);
2437 }
2438 
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)2439 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2440 {
2441 	struct igc_hw *hw = &adapter->hw;
2442 	int i;
2443 
2444 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2445 		u32 etqf = rd32(IGC_ETQF(i));
2446 
2447 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2448 			return i;
2449 	}
2450 
2451 	return -1;
2452 }
2453 
2454 /**
2455  * igc_add_etype_filter() - Add ethertype filter
2456  * @adapter: Pointer to adapter where the filter should be added
2457  * @etype: Ethertype value
2458  * @queue: If non-negative, queue assignment feature is enabled and frames
2459  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2460  *         assignment is disabled.
2461  *
2462  * Return: 0 in case of success, negative errno code otherwise.
2463  */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)2464 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2465 				int queue)
2466 {
2467 	struct igc_hw *hw = &adapter->hw;
2468 	int index;
2469 	u32 etqf;
2470 
2471 	index = igc_get_avail_etype_filter_slot(adapter);
2472 	if (index < 0)
2473 		return -ENOSPC;
2474 
2475 	etqf = rd32(IGC_ETQF(index));
2476 
2477 	etqf &= ~IGC_ETQF_ETYPE_MASK;
2478 	etqf |= etype;
2479 
2480 	if (queue >= 0) {
2481 		etqf &= ~IGC_ETQF_QUEUE_MASK;
2482 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2483 		etqf |= IGC_ETQF_QUEUE_ENABLE;
2484 	}
2485 
2486 	etqf |= IGC_ETQF_FILTER_ENABLE;
2487 
2488 	wr32(IGC_ETQF(index), etqf);
2489 
2490 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2491 		   etype, queue);
2492 	return 0;
2493 }
2494 
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)2495 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2496 {
2497 	struct igc_hw *hw = &adapter->hw;
2498 	int i;
2499 
2500 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2501 		u32 etqf = rd32(IGC_ETQF(i));
2502 
2503 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2504 			return i;
2505 	}
2506 
2507 	return -1;
2508 }
2509 
2510 /**
2511  * igc_del_etype_filter() - Delete ethertype filter
2512  * @adapter: Pointer to adapter where the filter should be deleted from
2513  * @etype: Ethertype value
2514  */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)2515 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2516 {
2517 	struct igc_hw *hw = &adapter->hw;
2518 	int index;
2519 
2520 	index = igc_find_etype_filter(adapter, etype);
2521 	if (index < 0)
2522 		return;
2523 
2524 	wr32(IGC_ETQF(index), 0);
2525 
2526 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2527 		   etype);
2528 }
2529 
igc_enable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)2530 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2531 			       const struct igc_nfc_rule *rule)
2532 {
2533 	int err;
2534 
2535 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2536 		err = igc_add_etype_filter(adapter, rule->filter.etype,
2537 					   rule->action);
2538 		if (err)
2539 			return err;
2540 	}
2541 
2542 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2543 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2544 					 rule->filter.src_addr, rule->action);
2545 		if (err)
2546 			return err;
2547 	}
2548 
2549 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2550 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2551 					 rule->filter.dst_addr, rule->action);
2552 		if (err)
2553 			return err;
2554 	}
2555 
2556 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2557 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2558 			   VLAN_PRIO_SHIFT;
2559 
2560 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2561 		if (err)
2562 			return err;
2563 	}
2564 
2565 	return 0;
2566 }
2567 
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)2568 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2569 				 const struct igc_nfc_rule *rule)
2570 {
2571 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2572 		igc_del_etype_filter(adapter, rule->filter.etype);
2573 
2574 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2575 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2576 			   VLAN_PRIO_SHIFT;
2577 
2578 		igc_del_vlan_prio_filter(adapter, prio);
2579 	}
2580 
2581 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2582 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2583 				   rule->filter.src_addr);
2584 
2585 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2586 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2587 				   rule->filter.dst_addr);
2588 }
2589 
2590 /**
2591  * igc_get_nfc_rule() - Get NFC rule
2592  * @adapter: Pointer to adapter
2593  * @location: Rule location
2594  *
2595  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2596  *
2597  * Return: Pointer to NFC rule at @location. If not found, NULL.
2598  */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)2599 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2600 				      u32 location)
2601 {
2602 	struct igc_nfc_rule *rule;
2603 
2604 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2605 		if (rule->location == location)
2606 			return rule;
2607 		if (rule->location > location)
2608 			break;
2609 	}
2610 
2611 	return NULL;
2612 }
2613 
2614 /**
2615  * igc_del_nfc_rule() - Delete NFC rule
2616  * @adapter: Pointer to adapter
2617  * @rule: Pointer to rule to be deleted
2618  *
2619  * Disable NFC rule in hardware and delete it from adapter.
2620  *
2621  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2622  */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)2623 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2624 {
2625 	igc_disable_nfc_rule(adapter, rule);
2626 
2627 	list_del(&rule->list);
2628 	adapter->nfc_rule_count--;
2629 
2630 	kfree(rule);
2631 }
2632 
igc_flush_nfc_rules(struct igc_adapter * adapter)2633 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2634 {
2635 	struct igc_nfc_rule *rule, *tmp;
2636 
2637 	mutex_lock(&adapter->nfc_rule_lock);
2638 
2639 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2640 		igc_del_nfc_rule(adapter, rule);
2641 
2642 	mutex_unlock(&adapter->nfc_rule_lock);
2643 }
2644 
2645 /**
2646  * igc_add_nfc_rule() - Add NFC rule
2647  * @adapter: Pointer to adapter
2648  * @rule: Pointer to rule to be added
2649  *
2650  * Enable NFC rule in hardware and add it to adapter.
2651  *
2652  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2653  *
2654  * Return: 0 on success, negative errno on failure.
2655  */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)2656 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2657 {
2658 	struct igc_nfc_rule *pred, *cur;
2659 	int err;
2660 
2661 	err = igc_enable_nfc_rule(adapter, rule);
2662 	if (err)
2663 		return err;
2664 
2665 	pred = NULL;
2666 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2667 		if (cur->location >= rule->location)
2668 			break;
2669 		pred = cur;
2670 	}
2671 
2672 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2673 	adapter->nfc_rule_count++;
2674 	return 0;
2675 }
2676 
igc_restore_nfc_rules(struct igc_adapter * adapter)2677 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2678 {
2679 	struct igc_nfc_rule *rule;
2680 
2681 	mutex_lock(&adapter->nfc_rule_lock);
2682 
2683 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2684 		igc_enable_nfc_rule(adapter, rule);
2685 
2686 	mutex_unlock(&adapter->nfc_rule_lock);
2687 }
2688 
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)2689 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2690 {
2691 	struct igc_adapter *adapter = netdev_priv(netdev);
2692 
2693 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2694 }
2695 
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)2696 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2697 {
2698 	struct igc_adapter *adapter = netdev_priv(netdev);
2699 
2700 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2701 	return 0;
2702 }
2703 
2704 /**
2705  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2706  * @netdev: network interface device structure
2707  *
2708  * The set_rx_mode entry point is called whenever the unicast or multicast
2709  * address lists or the network interface flags are updated.  This routine is
2710  * responsible for configuring the hardware for proper unicast, multicast,
2711  * promiscuous mode, and all-multi behavior.
2712  */
igc_set_rx_mode(struct net_device * netdev)2713 static void igc_set_rx_mode(struct net_device *netdev)
2714 {
2715 	struct igc_adapter *adapter = netdev_priv(netdev);
2716 	struct igc_hw *hw = &adapter->hw;
2717 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2718 	int count;
2719 
2720 	/* Check for Promiscuous and All Multicast modes */
2721 	if (netdev->flags & IFF_PROMISC) {
2722 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2723 	} else {
2724 		if (netdev->flags & IFF_ALLMULTI) {
2725 			rctl |= IGC_RCTL_MPE;
2726 		} else {
2727 			/* Write addresses to the MTA, if the attempt fails
2728 			 * then we should just turn on promiscuous mode so
2729 			 * that we can at least receive multicast traffic
2730 			 */
2731 			count = igc_write_mc_addr_list(netdev);
2732 			if (count < 0)
2733 				rctl |= IGC_RCTL_MPE;
2734 		}
2735 	}
2736 
2737 	/* Write addresses to available RAR registers, if there is not
2738 	 * sufficient space to store all the addresses then enable
2739 	 * unicast promiscuous mode
2740 	 */
2741 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2742 		rctl |= IGC_RCTL_UPE;
2743 
2744 	/* update state of unicast and multicast */
2745 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2746 	wr32(IGC_RCTL, rctl);
2747 
2748 #if (PAGE_SIZE < 8192)
2749 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2750 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
2751 #endif
2752 	wr32(IGC_RLPML, rlpml);
2753 }
2754 
2755 /**
2756  * igc_configure - configure the hardware for RX and TX
2757  * @adapter: private board structure
2758  */
igc_configure(struct igc_adapter * adapter)2759 static void igc_configure(struct igc_adapter *adapter)
2760 {
2761 	struct net_device *netdev = adapter->netdev;
2762 	int i = 0;
2763 
2764 	igc_get_hw_control(adapter);
2765 	igc_set_rx_mode(netdev);
2766 
2767 	igc_setup_tctl(adapter);
2768 	igc_setup_mrqc(adapter);
2769 	igc_setup_rctl(adapter);
2770 
2771 	igc_set_default_mac_filter(adapter);
2772 	igc_restore_nfc_rules(adapter);
2773 
2774 	igc_configure_tx(adapter);
2775 	igc_configure_rx(adapter);
2776 
2777 	igc_rx_fifo_flush_base(&adapter->hw);
2778 
2779 	/* call igc_desc_unused which always leaves
2780 	 * at least 1 descriptor unused to make sure
2781 	 * next_to_use != next_to_clean
2782 	 */
2783 	for (i = 0; i < adapter->num_rx_queues; i++) {
2784 		struct igc_ring *ring = adapter->rx_ring[i];
2785 
2786 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2787 	}
2788 }
2789 
2790 /**
2791  * igc_write_ivar - configure ivar for given MSI-X vector
2792  * @hw: pointer to the HW structure
2793  * @msix_vector: vector number we are allocating to a given ring
2794  * @index: row index of IVAR register to write within IVAR table
2795  * @offset: column offset of in IVAR, should be multiple of 8
2796  *
2797  * The IVAR table consists of 2 columns,
2798  * each containing an cause allocation for an Rx and Tx ring, and a
2799  * variable number of rows depending on the number of queues supported.
2800  */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)2801 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2802 			   int index, int offset)
2803 {
2804 	u32 ivar = array_rd32(IGC_IVAR0, index);
2805 
2806 	/* clear any bits that are currently set */
2807 	ivar &= ~((u32)0xFF << offset);
2808 
2809 	/* write vector and valid bit */
2810 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2811 
2812 	array_wr32(IGC_IVAR0, index, ivar);
2813 }
2814 
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)2815 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2816 {
2817 	struct igc_adapter *adapter = q_vector->adapter;
2818 	struct igc_hw *hw = &adapter->hw;
2819 	int rx_queue = IGC_N0_QUEUE;
2820 	int tx_queue = IGC_N0_QUEUE;
2821 
2822 	if (q_vector->rx.ring)
2823 		rx_queue = q_vector->rx.ring->reg_idx;
2824 	if (q_vector->tx.ring)
2825 		tx_queue = q_vector->tx.ring->reg_idx;
2826 
2827 	switch (hw->mac.type) {
2828 	case igc_i225:
2829 		if (rx_queue > IGC_N0_QUEUE)
2830 			igc_write_ivar(hw, msix_vector,
2831 				       rx_queue >> 1,
2832 				       (rx_queue & 0x1) << 4);
2833 		if (tx_queue > IGC_N0_QUEUE)
2834 			igc_write_ivar(hw, msix_vector,
2835 				       tx_queue >> 1,
2836 				       ((tx_queue & 0x1) << 4) + 8);
2837 		q_vector->eims_value = BIT(msix_vector);
2838 		break;
2839 	default:
2840 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2841 		break;
2842 	}
2843 
2844 	/* add q_vector eims value to global eims_enable_mask */
2845 	adapter->eims_enable_mask |= q_vector->eims_value;
2846 
2847 	/* configure q_vector to set itr on first interrupt */
2848 	q_vector->set_itr = 1;
2849 }
2850 
2851 /**
2852  * igc_configure_msix - Configure MSI-X hardware
2853  * @adapter: Pointer to adapter structure
2854  *
2855  * igc_configure_msix sets up the hardware to properly
2856  * generate MSI-X interrupts.
2857  */
igc_configure_msix(struct igc_adapter * adapter)2858 static void igc_configure_msix(struct igc_adapter *adapter)
2859 {
2860 	struct igc_hw *hw = &adapter->hw;
2861 	int i, vector = 0;
2862 	u32 tmp;
2863 
2864 	adapter->eims_enable_mask = 0;
2865 
2866 	/* set vector for other causes, i.e. link changes */
2867 	switch (hw->mac.type) {
2868 	case igc_i225:
2869 		/* Turn on MSI-X capability first, or our settings
2870 		 * won't stick.  And it will take days to debug.
2871 		 */
2872 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2873 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2874 		     IGC_GPIE_NSICR);
2875 
2876 		/* enable msix_other interrupt */
2877 		adapter->eims_other = BIT(vector);
2878 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2879 
2880 		wr32(IGC_IVAR_MISC, tmp);
2881 		break;
2882 	default:
2883 		/* do nothing, since nothing else supports MSI-X */
2884 		break;
2885 	} /* switch (hw->mac.type) */
2886 
2887 	adapter->eims_enable_mask |= adapter->eims_other;
2888 
2889 	for (i = 0; i < adapter->num_q_vectors; i++)
2890 		igc_assign_vector(adapter->q_vector[i], vector++);
2891 
2892 	wrfl();
2893 }
2894 
2895 /**
2896  * igc_irq_enable - Enable default interrupt generation settings
2897  * @adapter: board private structure
2898  */
igc_irq_enable(struct igc_adapter * adapter)2899 static void igc_irq_enable(struct igc_adapter *adapter)
2900 {
2901 	struct igc_hw *hw = &adapter->hw;
2902 
2903 	if (adapter->msix_entries) {
2904 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2905 		u32 regval = rd32(IGC_EIAC);
2906 
2907 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2908 		regval = rd32(IGC_EIAM);
2909 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2910 		wr32(IGC_EIMS, adapter->eims_enable_mask);
2911 		wr32(IGC_IMS, ims);
2912 	} else {
2913 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2914 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2915 	}
2916 }
2917 
2918 /**
2919  * igc_irq_disable - Mask off interrupt generation on the NIC
2920  * @adapter: board private structure
2921  */
igc_irq_disable(struct igc_adapter * adapter)2922 static void igc_irq_disable(struct igc_adapter *adapter)
2923 {
2924 	struct igc_hw *hw = &adapter->hw;
2925 
2926 	if (adapter->msix_entries) {
2927 		u32 regval = rd32(IGC_EIAM);
2928 
2929 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2930 		wr32(IGC_EIMC, adapter->eims_enable_mask);
2931 		regval = rd32(IGC_EIAC);
2932 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2933 	}
2934 
2935 	wr32(IGC_IAM, 0);
2936 	wr32(IGC_IMC, ~0);
2937 	wrfl();
2938 
2939 	if (adapter->msix_entries) {
2940 		int vector = 0, i;
2941 
2942 		synchronize_irq(adapter->msix_entries[vector++].vector);
2943 
2944 		for (i = 0; i < adapter->num_q_vectors; i++)
2945 			synchronize_irq(adapter->msix_entries[vector++].vector);
2946 	} else {
2947 		synchronize_irq(adapter->pdev->irq);
2948 	}
2949 }
2950 
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)2951 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2952 			      const u32 max_rss_queues)
2953 {
2954 	/* Determine if we need to pair queues. */
2955 	/* If rss_queues > half of max_rss_queues, pair the queues in
2956 	 * order to conserve interrupts due to limited supply.
2957 	 */
2958 	if (adapter->rss_queues > (max_rss_queues / 2))
2959 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2960 	else
2961 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2962 }
2963 
igc_get_max_rss_queues(struct igc_adapter * adapter)2964 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2965 {
2966 	return IGC_MAX_RX_QUEUES;
2967 }
2968 
igc_init_queue_configuration(struct igc_adapter * adapter)2969 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2970 {
2971 	u32 max_rss_queues;
2972 
2973 	max_rss_queues = igc_get_max_rss_queues(adapter);
2974 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2975 
2976 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
2977 }
2978 
2979 /**
2980  * igc_reset_q_vector - Reset config for interrupt vector
2981  * @adapter: board private structure to initialize
2982  * @v_idx: Index of vector to be reset
2983  *
2984  * If NAPI is enabled it will delete any references to the
2985  * NAPI struct. This is preparation for igc_free_q_vector.
2986  */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)2987 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2988 {
2989 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2990 
2991 	/* if we're coming from igc_set_interrupt_capability, the vectors are
2992 	 * not yet allocated
2993 	 */
2994 	if (!q_vector)
2995 		return;
2996 
2997 	if (q_vector->tx.ring)
2998 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2999 
3000 	if (q_vector->rx.ring)
3001 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3002 
3003 	netif_napi_del(&q_vector->napi);
3004 }
3005 
3006 /**
3007  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3008  * @adapter: board private structure to initialize
3009  * @v_idx: Index of vector to be freed
3010  *
3011  * This function frees the memory allocated to the q_vector.
3012  */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)3013 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3014 {
3015 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3016 
3017 	adapter->q_vector[v_idx] = NULL;
3018 
3019 	/* igc_get_stats64() might access the rings on this vector,
3020 	 * we must wait a grace period before freeing it.
3021 	 */
3022 	if (q_vector)
3023 		kfree_rcu(q_vector, rcu);
3024 }
3025 
3026 /**
3027  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3028  * @adapter: board private structure to initialize
3029  *
3030  * This function frees the memory allocated to the q_vectors.  In addition if
3031  * NAPI is enabled it will delete any references to the NAPI struct prior
3032  * to freeing the q_vector.
3033  */
igc_free_q_vectors(struct igc_adapter * adapter)3034 static void igc_free_q_vectors(struct igc_adapter *adapter)
3035 {
3036 	int v_idx = adapter->num_q_vectors;
3037 
3038 	adapter->num_tx_queues = 0;
3039 	adapter->num_rx_queues = 0;
3040 	adapter->num_q_vectors = 0;
3041 
3042 	while (v_idx--) {
3043 		igc_reset_q_vector(adapter, v_idx);
3044 		igc_free_q_vector(adapter, v_idx);
3045 	}
3046 }
3047 
3048 /**
3049  * igc_update_itr - update the dynamic ITR value based on statistics
3050  * @q_vector: pointer to q_vector
3051  * @ring_container: ring info to update the itr for
3052  *
3053  * Stores a new ITR value based on packets and byte
3054  * counts during the last interrupt.  The advantage of per interrupt
3055  * computation is faster updates and more accurate ITR for the current
3056  * traffic pattern.  Constants in this function were computed
3057  * based on theoretical maximum wire speed and thresholds were set based
3058  * on testing data as well as attempting to minimize response time
3059  * while increasing bulk throughput.
3060  * NOTE: These calculations are only valid when operating in a single-
3061  * queue environment.
3062  */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)3063 static void igc_update_itr(struct igc_q_vector *q_vector,
3064 			   struct igc_ring_container *ring_container)
3065 {
3066 	unsigned int packets = ring_container->total_packets;
3067 	unsigned int bytes = ring_container->total_bytes;
3068 	u8 itrval = ring_container->itr;
3069 
3070 	/* no packets, exit with status unchanged */
3071 	if (packets == 0)
3072 		return;
3073 
3074 	switch (itrval) {
3075 	case lowest_latency:
3076 		/* handle TSO and jumbo frames */
3077 		if (bytes / packets > 8000)
3078 			itrval = bulk_latency;
3079 		else if ((packets < 5) && (bytes > 512))
3080 			itrval = low_latency;
3081 		break;
3082 	case low_latency:  /* 50 usec aka 20000 ints/s */
3083 		if (bytes > 10000) {
3084 			/* this if handles the TSO accounting */
3085 			if (bytes / packets > 8000)
3086 				itrval = bulk_latency;
3087 			else if ((packets < 10) || ((bytes / packets) > 1200))
3088 				itrval = bulk_latency;
3089 			else if ((packets > 35))
3090 				itrval = lowest_latency;
3091 		} else if (bytes / packets > 2000) {
3092 			itrval = bulk_latency;
3093 		} else if (packets <= 2 && bytes < 512) {
3094 			itrval = lowest_latency;
3095 		}
3096 		break;
3097 	case bulk_latency: /* 250 usec aka 4000 ints/s */
3098 		if (bytes > 25000) {
3099 			if (packets > 35)
3100 				itrval = low_latency;
3101 		} else if (bytes < 1500) {
3102 			itrval = low_latency;
3103 		}
3104 		break;
3105 	}
3106 
3107 	/* clear work counters since we have the values we need */
3108 	ring_container->total_bytes = 0;
3109 	ring_container->total_packets = 0;
3110 
3111 	/* write updated itr to ring container */
3112 	ring_container->itr = itrval;
3113 }
3114 
igc_set_itr(struct igc_q_vector * q_vector)3115 static void igc_set_itr(struct igc_q_vector *q_vector)
3116 {
3117 	struct igc_adapter *adapter = q_vector->adapter;
3118 	u32 new_itr = q_vector->itr_val;
3119 	u8 current_itr = 0;
3120 
3121 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3122 	switch (adapter->link_speed) {
3123 	case SPEED_10:
3124 	case SPEED_100:
3125 		current_itr = 0;
3126 		new_itr = IGC_4K_ITR;
3127 		goto set_itr_now;
3128 	default:
3129 		break;
3130 	}
3131 
3132 	igc_update_itr(q_vector, &q_vector->tx);
3133 	igc_update_itr(q_vector, &q_vector->rx);
3134 
3135 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3136 
3137 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3138 	if (current_itr == lowest_latency &&
3139 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3140 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3141 		current_itr = low_latency;
3142 
3143 	switch (current_itr) {
3144 	/* counts and packets in update_itr are dependent on these numbers */
3145 	case lowest_latency:
3146 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3147 		break;
3148 	case low_latency:
3149 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3150 		break;
3151 	case bulk_latency:
3152 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3153 		break;
3154 	default:
3155 		break;
3156 	}
3157 
3158 set_itr_now:
3159 	if (new_itr != q_vector->itr_val) {
3160 		/* this attempts to bias the interrupt rate towards Bulk
3161 		 * by adding intermediate steps when interrupt rate is
3162 		 * increasing
3163 		 */
3164 		new_itr = new_itr > q_vector->itr_val ?
3165 			  max((new_itr * q_vector->itr_val) /
3166 			  (new_itr + (q_vector->itr_val >> 2)),
3167 			  new_itr) : new_itr;
3168 		/* Don't write the value here; it resets the adapter's
3169 		 * internal timer, and causes us to delay far longer than
3170 		 * we should between interrupts.  Instead, we write the ITR
3171 		 * value at the beginning of the next interrupt so the timing
3172 		 * ends up being correct.
3173 		 */
3174 		q_vector->itr_val = new_itr;
3175 		q_vector->set_itr = 1;
3176 	}
3177 }
3178 
igc_reset_interrupt_capability(struct igc_adapter * adapter)3179 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3180 {
3181 	int v_idx = adapter->num_q_vectors;
3182 
3183 	if (adapter->msix_entries) {
3184 		pci_disable_msix(adapter->pdev);
3185 		kfree(adapter->msix_entries);
3186 		adapter->msix_entries = NULL;
3187 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3188 		pci_disable_msi(adapter->pdev);
3189 	}
3190 
3191 	while (v_idx--)
3192 		igc_reset_q_vector(adapter, v_idx);
3193 }
3194 
3195 /**
3196  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3197  * @adapter: Pointer to adapter structure
3198  * @msix: boolean value for MSI-X capability
3199  *
3200  * Attempt to configure interrupts using the best available
3201  * capabilities of the hardware and kernel.
3202  */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)3203 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3204 					 bool msix)
3205 {
3206 	int numvecs, i;
3207 	int err;
3208 
3209 	if (!msix)
3210 		goto msi_only;
3211 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3212 
3213 	/* Number of supported queues. */
3214 	adapter->num_rx_queues = adapter->rss_queues;
3215 
3216 	adapter->num_tx_queues = adapter->rss_queues;
3217 
3218 	/* start with one vector for every Rx queue */
3219 	numvecs = adapter->num_rx_queues;
3220 
3221 	/* if Tx handler is separate add 1 for every Tx queue */
3222 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3223 		numvecs += adapter->num_tx_queues;
3224 
3225 	/* store the number of vectors reserved for queues */
3226 	adapter->num_q_vectors = numvecs;
3227 
3228 	/* add 1 vector for link status interrupts */
3229 	numvecs++;
3230 
3231 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3232 					GFP_KERNEL);
3233 
3234 	if (!adapter->msix_entries)
3235 		return;
3236 
3237 	/* populate entry values */
3238 	for (i = 0; i < numvecs; i++)
3239 		adapter->msix_entries[i].entry = i;
3240 
3241 	err = pci_enable_msix_range(adapter->pdev,
3242 				    adapter->msix_entries,
3243 				    numvecs,
3244 				    numvecs);
3245 	if (err > 0)
3246 		return;
3247 
3248 	kfree(adapter->msix_entries);
3249 	adapter->msix_entries = NULL;
3250 
3251 	igc_reset_interrupt_capability(adapter);
3252 
3253 msi_only:
3254 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3255 
3256 	adapter->rss_queues = 1;
3257 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3258 	adapter->num_rx_queues = 1;
3259 	adapter->num_tx_queues = 1;
3260 	adapter->num_q_vectors = 1;
3261 	if (!pci_enable_msi(adapter->pdev))
3262 		adapter->flags |= IGC_FLAG_HAS_MSI;
3263 }
3264 
3265 /**
3266  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3267  * @q_vector: pointer to q_vector
3268  *
3269  * Stores a new ITR value based on strictly on packet size.  This
3270  * algorithm is less sophisticated than that used in igc_update_itr,
3271  * due to the difficulty of synchronizing statistics across multiple
3272  * receive rings.  The divisors and thresholds used by this function
3273  * were determined based on theoretical maximum wire speed and testing
3274  * data, in order to minimize response time while increasing bulk
3275  * throughput.
3276  * NOTE: This function is called only when operating in a multiqueue
3277  * receive environment.
3278  */
igc_update_ring_itr(struct igc_q_vector * q_vector)3279 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3280 {
3281 	struct igc_adapter *adapter = q_vector->adapter;
3282 	int new_val = q_vector->itr_val;
3283 	int avg_wire_size = 0;
3284 	unsigned int packets;
3285 
3286 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3287 	 * ints/sec - ITR timer value of 120 ticks.
3288 	 */
3289 	switch (adapter->link_speed) {
3290 	case SPEED_10:
3291 	case SPEED_100:
3292 		new_val = IGC_4K_ITR;
3293 		goto set_itr_val;
3294 	default:
3295 		break;
3296 	}
3297 
3298 	packets = q_vector->rx.total_packets;
3299 	if (packets)
3300 		avg_wire_size = q_vector->rx.total_bytes / packets;
3301 
3302 	packets = q_vector->tx.total_packets;
3303 	if (packets)
3304 		avg_wire_size = max_t(u32, avg_wire_size,
3305 				      q_vector->tx.total_bytes / packets);
3306 
3307 	/* if avg_wire_size isn't set no work was done */
3308 	if (!avg_wire_size)
3309 		goto clear_counts;
3310 
3311 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3312 	avg_wire_size += 24;
3313 
3314 	/* Don't starve jumbo frames */
3315 	avg_wire_size = min(avg_wire_size, 3000);
3316 
3317 	/* Give a little boost to mid-size frames */
3318 	if (avg_wire_size > 300 && avg_wire_size < 1200)
3319 		new_val = avg_wire_size / 3;
3320 	else
3321 		new_val = avg_wire_size / 2;
3322 
3323 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3324 	if (new_val < IGC_20K_ITR &&
3325 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3326 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3327 		new_val = IGC_20K_ITR;
3328 
3329 set_itr_val:
3330 	if (new_val != q_vector->itr_val) {
3331 		q_vector->itr_val = new_val;
3332 		q_vector->set_itr = 1;
3333 	}
3334 clear_counts:
3335 	q_vector->rx.total_bytes = 0;
3336 	q_vector->rx.total_packets = 0;
3337 	q_vector->tx.total_bytes = 0;
3338 	q_vector->tx.total_packets = 0;
3339 }
3340 
igc_ring_irq_enable(struct igc_q_vector * q_vector)3341 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3342 {
3343 	struct igc_adapter *adapter = q_vector->adapter;
3344 	struct igc_hw *hw = &adapter->hw;
3345 
3346 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3347 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3348 		if (adapter->num_q_vectors == 1)
3349 			igc_set_itr(q_vector);
3350 		else
3351 			igc_update_ring_itr(q_vector);
3352 	}
3353 
3354 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3355 		if (adapter->msix_entries)
3356 			wr32(IGC_EIMS, q_vector->eims_value);
3357 		else
3358 			igc_irq_enable(adapter);
3359 	}
3360 }
3361 
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)3362 static void igc_add_ring(struct igc_ring *ring,
3363 			 struct igc_ring_container *head)
3364 {
3365 	head->ring = ring;
3366 	head->count++;
3367 }
3368 
3369 /**
3370  * igc_cache_ring_register - Descriptor ring to register mapping
3371  * @adapter: board private structure to initialize
3372  *
3373  * Once we know the feature-set enabled for the device, we'll cache
3374  * the register offset the descriptor ring is assigned to.
3375  */
igc_cache_ring_register(struct igc_adapter * adapter)3376 static void igc_cache_ring_register(struct igc_adapter *adapter)
3377 {
3378 	int i = 0, j = 0;
3379 
3380 	switch (adapter->hw.mac.type) {
3381 	case igc_i225:
3382 	default:
3383 		for (; i < adapter->num_rx_queues; i++)
3384 			adapter->rx_ring[i]->reg_idx = i;
3385 		for (; j < adapter->num_tx_queues; j++)
3386 			adapter->tx_ring[j]->reg_idx = j;
3387 		break;
3388 	}
3389 }
3390 
3391 /**
3392  * igc_poll - NAPI Rx polling callback
3393  * @napi: napi polling structure
3394  * @budget: count of how many packets we should handle
3395  */
igc_poll(struct napi_struct * napi,int budget)3396 static int igc_poll(struct napi_struct *napi, int budget)
3397 {
3398 	struct igc_q_vector *q_vector = container_of(napi,
3399 						     struct igc_q_vector,
3400 						     napi);
3401 	bool clean_complete = true;
3402 	int work_done = 0;
3403 
3404 	if (q_vector->tx.ring)
3405 		clean_complete = igc_clean_tx_irq(q_vector, budget);
3406 
3407 	if (q_vector->rx.ring) {
3408 		int cleaned = igc_clean_rx_irq(q_vector, budget);
3409 
3410 		work_done += cleaned;
3411 		if (cleaned >= budget)
3412 			clean_complete = false;
3413 	}
3414 
3415 	/* If all work not completed, return budget and keep polling */
3416 	if (!clean_complete)
3417 		return budget;
3418 
3419 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3420 	 * poll us due to busy-polling
3421 	 */
3422 	if (likely(napi_complete_done(napi, work_done)))
3423 		igc_ring_irq_enable(q_vector);
3424 
3425 	return min(work_done, budget - 1);
3426 }
3427 
3428 /**
3429  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3430  * @adapter: board private structure to initialize
3431  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3432  * @v_idx: index of vector in adapter struct
3433  * @txr_count: total number of Tx rings to allocate
3434  * @txr_idx: index of first Tx ring to allocate
3435  * @rxr_count: total number of Rx rings to allocate
3436  * @rxr_idx: index of first Rx ring to allocate
3437  *
3438  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3439  */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)3440 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3441 			      unsigned int v_count, unsigned int v_idx,
3442 			      unsigned int txr_count, unsigned int txr_idx,
3443 			      unsigned int rxr_count, unsigned int rxr_idx)
3444 {
3445 	struct igc_q_vector *q_vector;
3446 	struct igc_ring *ring;
3447 	int ring_count;
3448 
3449 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3450 	if (txr_count > 1 || rxr_count > 1)
3451 		return -ENOMEM;
3452 
3453 	ring_count = txr_count + rxr_count;
3454 
3455 	/* allocate q_vector and rings */
3456 	q_vector = adapter->q_vector[v_idx];
3457 	if (!q_vector)
3458 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3459 				   GFP_KERNEL);
3460 	else
3461 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3462 	if (!q_vector)
3463 		return -ENOMEM;
3464 
3465 	/* initialize NAPI */
3466 	netif_napi_add(adapter->netdev, &q_vector->napi,
3467 		       igc_poll, 64);
3468 
3469 	/* tie q_vector and adapter together */
3470 	adapter->q_vector[v_idx] = q_vector;
3471 	q_vector->adapter = adapter;
3472 
3473 	/* initialize work limits */
3474 	q_vector->tx.work_limit = adapter->tx_work_limit;
3475 
3476 	/* initialize ITR configuration */
3477 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3478 	q_vector->itr_val = IGC_START_ITR;
3479 
3480 	/* initialize pointer to rings */
3481 	ring = q_vector->ring;
3482 
3483 	/* initialize ITR */
3484 	if (rxr_count) {
3485 		/* rx or rx/tx vector */
3486 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3487 			q_vector->itr_val = adapter->rx_itr_setting;
3488 	} else {
3489 		/* tx only vector */
3490 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3491 			q_vector->itr_val = adapter->tx_itr_setting;
3492 	}
3493 
3494 	if (txr_count) {
3495 		/* assign generic ring traits */
3496 		ring->dev = &adapter->pdev->dev;
3497 		ring->netdev = adapter->netdev;
3498 
3499 		/* configure backlink on ring */
3500 		ring->q_vector = q_vector;
3501 
3502 		/* update q_vector Tx values */
3503 		igc_add_ring(ring, &q_vector->tx);
3504 
3505 		/* apply Tx specific ring traits */
3506 		ring->count = adapter->tx_ring_count;
3507 		ring->queue_index = txr_idx;
3508 
3509 		/* assign ring to adapter */
3510 		adapter->tx_ring[txr_idx] = ring;
3511 
3512 		/* push pointer to next ring */
3513 		ring++;
3514 	}
3515 
3516 	if (rxr_count) {
3517 		/* assign generic ring traits */
3518 		ring->dev = &adapter->pdev->dev;
3519 		ring->netdev = adapter->netdev;
3520 
3521 		/* configure backlink on ring */
3522 		ring->q_vector = q_vector;
3523 
3524 		/* update q_vector Rx values */
3525 		igc_add_ring(ring, &q_vector->rx);
3526 
3527 		/* apply Rx specific ring traits */
3528 		ring->count = adapter->rx_ring_count;
3529 		ring->queue_index = rxr_idx;
3530 
3531 		/* assign ring to adapter */
3532 		adapter->rx_ring[rxr_idx] = ring;
3533 	}
3534 
3535 	return 0;
3536 }
3537 
3538 /**
3539  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3540  * @adapter: board private structure to initialize
3541  *
3542  * We allocate one q_vector per queue interrupt.  If allocation fails we
3543  * return -ENOMEM.
3544  */
igc_alloc_q_vectors(struct igc_adapter * adapter)3545 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3546 {
3547 	int rxr_remaining = adapter->num_rx_queues;
3548 	int txr_remaining = adapter->num_tx_queues;
3549 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3550 	int q_vectors = adapter->num_q_vectors;
3551 	int err;
3552 
3553 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3554 		for (; rxr_remaining; v_idx++) {
3555 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3556 						 0, 0, 1, rxr_idx);
3557 
3558 			if (err)
3559 				goto err_out;
3560 
3561 			/* update counts and index */
3562 			rxr_remaining--;
3563 			rxr_idx++;
3564 		}
3565 	}
3566 
3567 	for (; v_idx < q_vectors; v_idx++) {
3568 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3569 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3570 
3571 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3572 					 tqpv, txr_idx, rqpv, rxr_idx);
3573 
3574 		if (err)
3575 			goto err_out;
3576 
3577 		/* update counts and index */
3578 		rxr_remaining -= rqpv;
3579 		txr_remaining -= tqpv;
3580 		rxr_idx++;
3581 		txr_idx++;
3582 	}
3583 
3584 	return 0;
3585 
3586 err_out:
3587 	adapter->num_tx_queues = 0;
3588 	adapter->num_rx_queues = 0;
3589 	adapter->num_q_vectors = 0;
3590 
3591 	while (v_idx--)
3592 		igc_free_q_vector(adapter, v_idx);
3593 
3594 	return -ENOMEM;
3595 }
3596 
3597 /**
3598  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3599  * @adapter: Pointer to adapter structure
3600  * @msix: boolean for MSI-X capability
3601  *
3602  * This function initializes the interrupts and allocates all of the queues.
3603  */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)3604 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3605 {
3606 	struct net_device *dev = adapter->netdev;
3607 	int err = 0;
3608 
3609 	igc_set_interrupt_capability(adapter, msix);
3610 
3611 	err = igc_alloc_q_vectors(adapter);
3612 	if (err) {
3613 		netdev_err(dev, "Unable to allocate memory for vectors\n");
3614 		goto err_alloc_q_vectors;
3615 	}
3616 
3617 	igc_cache_ring_register(adapter);
3618 
3619 	return 0;
3620 
3621 err_alloc_q_vectors:
3622 	igc_reset_interrupt_capability(adapter);
3623 	return err;
3624 }
3625 
3626 /**
3627  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3628  * @adapter: board private structure to initialize
3629  *
3630  * igc_sw_init initializes the Adapter private data structure.
3631  * Fields are initialized based on PCI device information and
3632  * OS network device settings (MTU size).
3633  */
igc_sw_init(struct igc_adapter * adapter)3634 static int igc_sw_init(struct igc_adapter *adapter)
3635 {
3636 	struct net_device *netdev = adapter->netdev;
3637 	struct pci_dev *pdev = adapter->pdev;
3638 	struct igc_hw *hw = &adapter->hw;
3639 
3640 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3641 
3642 	/* set default ring sizes */
3643 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
3644 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
3645 
3646 	/* set default ITR values */
3647 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3648 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3649 
3650 	/* set default work limits */
3651 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3652 
3653 	/* adjust max frame to be at least the size of a standard frame */
3654 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3655 				VLAN_HLEN;
3656 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3657 
3658 	mutex_init(&adapter->nfc_rule_lock);
3659 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
3660 	adapter->nfc_rule_count = 0;
3661 
3662 	spin_lock_init(&adapter->stats64_lock);
3663 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3664 	adapter->flags |= IGC_FLAG_HAS_MSIX;
3665 
3666 	igc_init_queue_configuration(adapter);
3667 
3668 	/* This call may decrease the number of queues */
3669 	if (igc_init_interrupt_scheme(adapter, true)) {
3670 		netdev_err(netdev, "Unable to allocate memory for queues\n");
3671 		return -ENOMEM;
3672 	}
3673 
3674 	/* Explicitly disable IRQ since the NIC can be in any state. */
3675 	igc_irq_disable(adapter);
3676 
3677 	set_bit(__IGC_DOWN, &adapter->state);
3678 
3679 	return 0;
3680 }
3681 
3682 /**
3683  * igc_up - Open the interface and prepare it to handle traffic
3684  * @adapter: board private structure
3685  */
igc_up(struct igc_adapter * adapter)3686 void igc_up(struct igc_adapter *adapter)
3687 {
3688 	struct igc_hw *hw = &adapter->hw;
3689 	int i = 0;
3690 
3691 	/* hardware has been reset, we need to reload some things */
3692 	igc_configure(adapter);
3693 
3694 	clear_bit(__IGC_DOWN, &adapter->state);
3695 
3696 	for (i = 0; i < adapter->num_q_vectors; i++)
3697 		napi_enable(&adapter->q_vector[i]->napi);
3698 
3699 	if (adapter->msix_entries)
3700 		igc_configure_msix(adapter);
3701 	else
3702 		igc_assign_vector(adapter->q_vector[0], 0);
3703 
3704 	/* Clear any pending interrupts. */
3705 	rd32(IGC_ICR);
3706 	igc_irq_enable(adapter);
3707 
3708 	netif_tx_start_all_queues(adapter->netdev);
3709 
3710 	/* start the watchdog. */
3711 	hw->mac.get_link_status = 1;
3712 	schedule_work(&adapter->watchdog_task);
3713 }
3714 
3715 /**
3716  * igc_update_stats - Update the board statistics counters
3717  * @adapter: board private structure
3718  */
igc_update_stats(struct igc_adapter * adapter)3719 void igc_update_stats(struct igc_adapter *adapter)
3720 {
3721 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3722 	struct pci_dev *pdev = adapter->pdev;
3723 	struct igc_hw *hw = &adapter->hw;
3724 	u64 _bytes, _packets;
3725 	u64 bytes, packets;
3726 	unsigned int start;
3727 	u32 mpc;
3728 	int i;
3729 
3730 	/* Prevent stats update while adapter is being reset, or if the pci
3731 	 * connection is down.
3732 	 */
3733 	if (adapter->link_speed == 0)
3734 		return;
3735 	if (pci_channel_offline(pdev))
3736 		return;
3737 
3738 	packets = 0;
3739 	bytes = 0;
3740 
3741 	rcu_read_lock();
3742 	for (i = 0; i < adapter->num_rx_queues; i++) {
3743 		struct igc_ring *ring = adapter->rx_ring[i];
3744 		u32 rqdpc = rd32(IGC_RQDPC(i));
3745 
3746 		if (hw->mac.type >= igc_i225)
3747 			wr32(IGC_RQDPC(i), 0);
3748 
3749 		if (rqdpc) {
3750 			ring->rx_stats.drops += rqdpc;
3751 			net_stats->rx_fifo_errors += rqdpc;
3752 		}
3753 
3754 		do {
3755 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3756 			_bytes = ring->rx_stats.bytes;
3757 			_packets = ring->rx_stats.packets;
3758 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3759 		bytes += _bytes;
3760 		packets += _packets;
3761 	}
3762 
3763 	net_stats->rx_bytes = bytes;
3764 	net_stats->rx_packets = packets;
3765 
3766 	packets = 0;
3767 	bytes = 0;
3768 	for (i = 0; i < adapter->num_tx_queues; i++) {
3769 		struct igc_ring *ring = adapter->tx_ring[i];
3770 
3771 		do {
3772 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3773 			_bytes = ring->tx_stats.bytes;
3774 			_packets = ring->tx_stats.packets;
3775 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3776 		bytes += _bytes;
3777 		packets += _packets;
3778 	}
3779 	net_stats->tx_bytes = bytes;
3780 	net_stats->tx_packets = packets;
3781 	rcu_read_unlock();
3782 
3783 	/* read stats registers */
3784 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3785 	adapter->stats.gprc += rd32(IGC_GPRC);
3786 	adapter->stats.gorc += rd32(IGC_GORCL);
3787 	rd32(IGC_GORCH); /* clear GORCL */
3788 	adapter->stats.bprc += rd32(IGC_BPRC);
3789 	adapter->stats.mprc += rd32(IGC_MPRC);
3790 	adapter->stats.roc += rd32(IGC_ROC);
3791 
3792 	adapter->stats.prc64 += rd32(IGC_PRC64);
3793 	adapter->stats.prc127 += rd32(IGC_PRC127);
3794 	adapter->stats.prc255 += rd32(IGC_PRC255);
3795 	adapter->stats.prc511 += rd32(IGC_PRC511);
3796 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
3797 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
3798 	adapter->stats.tlpic += rd32(IGC_TLPIC);
3799 	adapter->stats.rlpic += rd32(IGC_RLPIC);
3800 
3801 	mpc = rd32(IGC_MPC);
3802 	adapter->stats.mpc += mpc;
3803 	net_stats->rx_fifo_errors += mpc;
3804 	adapter->stats.scc += rd32(IGC_SCC);
3805 	adapter->stats.ecol += rd32(IGC_ECOL);
3806 	adapter->stats.mcc += rd32(IGC_MCC);
3807 	adapter->stats.latecol += rd32(IGC_LATECOL);
3808 	adapter->stats.dc += rd32(IGC_DC);
3809 	adapter->stats.rlec += rd32(IGC_RLEC);
3810 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
3811 	adapter->stats.xontxc += rd32(IGC_XONTXC);
3812 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3813 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3814 	adapter->stats.fcruc += rd32(IGC_FCRUC);
3815 	adapter->stats.gptc += rd32(IGC_GPTC);
3816 	adapter->stats.gotc += rd32(IGC_GOTCL);
3817 	rd32(IGC_GOTCH); /* clear GOTCL */
3818 	adapter->stats.rnbc += rd32(IGC_RNBC);
3819 	adapter->stats.ruc += rd32(IGC_RUC);
3820 	adapter->stats.rfc += rd32(IGC_RFC);
3821 	adapter->stats.rjc += rd32(IGC_RJC);
3822 	adapter->stats.tor += rd32(IGC_TORH);
3823 	adapter->stats.tot += rd32(IGC_TOTH);
3824 	adapter->stats.tpr += rd32(IGC_TPR);
3825 
3826 	adapter->stats.ptc64 += rd32(IGC_PTC64);
3827 	adapter->stats.ptc127 += rd32(IGC_PTC127);
3828 	adapter->stats.ptc255 += rd32(IGC_PTC255);
3829 	adapter->stats.ptc511 += rd32(IGC_PTC511);
3830 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3831 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3832 
3833 	adapter->stats.mptc += rd32(IGC_MPTC);
3834 	adapter->stats.bptc += rd32(IGC_BPTC);
3835 
3836 	adapter->stats.tpt += rd32(IGC_TPT);
3837 	adapter->stats.colc += rd32(IGC_COLC);
3838 	adapter->stats.colc += rd32(IGC_RERC);
3839 
3840 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3841 
3842 	adapter->stats.tsctc += rd32(IGC_TSCTC);
3843 
3844 	adapter->stats.iac += rd32(IGC_IAC);
3845 
3846 	/* Fill out the OS statistics structure */
3847 	net_stats->multicast = adapter->stats.mprc;
3848 	net_stats->collisions = adapter->stats.colc;
3849 
3850 	/* Rx Errors */
3851 
3852 	/* RLEC on some newer hardware can be incorrect so build
3853 	 * our own version based on RUC and ROC
3854 	 */
3855 	net_stats->rx_errors = adapter->stats.rxerrc +
3856 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3857 		adapter->stats.ruc + adapter->stats.roc +
3858 		adapter->stats.cexterr;
3859 	net_stats->rx_length_errors = adapter->stats.ruc +
3860 				      adapter->stats.roc;
3861 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
3862 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
3863 	net_stats->rx_missed_errors = adapter->stats.mpc;
3864 
3865 	/* Tx Errors */
3866 	net_stats->tx_errors = adapter->stats.ecol +
3867 			       adapter->stats.latecol;
3868 	net_stats->tx_aborted_errors = adapter->stats.ecol;
3869 	net_stats->tx_window_errors = adapter->stats.latecol;
3870 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
3871 
3872 	/* Tx Dropped needs to be maintained elsewhere */
3873 
3874 	/* Management Stats */
3875 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
3876 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
3877 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3878 }
3879 
3880 /**
3881  * igc_down - Close the interface
3882  * @adapter: board private structure
3883  */
igc_down(struct igc_adapter * adapter)3884 void igc_down(struct igc_adapter *adapter)
3885 {
3886 	struct net_device *netdev = adapter->netdev;
3887 	struct igc_hw *hw = &adapter->hw;
3888 	u32 tctl, rctl;
3889 	int i = 0;
3890 
3891 	set_bit(__IGC_DOWN, &adapter->state);
3892 
3893 	igc_ptp_suspend(adapter);
3894 
3895 	if (pci_device_is_present(adapter->pdev)) {
3896 		/* disable receives in the hardware */
3897 		rctl = rd32(IGC_RCTL);
3898 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3899 		/* flush and sleep below */
3900 	}
3901 	/* set trans_start so we don't get spurious watchdogs during reset */
3902 	netif_trans_update(netdev);
3903 
3904 	netif_carrier_off(netdev);
3905 	netif_tx_stop_all_queues(netdev);
3906 
3907 	if (pci_device_is_present(adapter->pdev)) {
3908 		/* disable transmits in the hardware */
3909 		tctl = rd32(IGC_TCTL);
3910 		tctl &= ~IGC_TCTL_EN;
3911 		wr32(IGC_TCTL, tctl);
3912 		/* flush both disables and wait for them to finish */
3913 		wrfl();
3914 		usleep_range(10000, 20000);
3915 
3916 		igc_irq_disable(adapter);
3917 	}
3918 
3919 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3920 
3921 	for (i = 0; i < adapter->num_q_vectors; i++) {
3922 		if (adapter->q_vector[i]) {
3923 			napi_synchronize(&adapter->q_vector[i]->napi);
3924 			napi_disable(&adapter->q_vector[i]->napi);
3925 		}
3926 	}
3927 
3928 	del_timer_sync(&adapter->watchdog_timer);
3929 	del_timer_sync(&adapter->phy_info_timer);
3930 
3931 	/* record the stats before reset*/
3932 	spin_lock(&adapter->stats64_lock);
3933 	igc_update_stats(adapter);
3934 	spin_unlock(&adapter->stats64_lock);
3935 
3936 	adapter->link_speed = 0;
3937 	adapter->link_duplex = 0;
3938 
3939 	if (!pci_channel_offline(adapter->pdev))
3940 		igc_reset(adapter);
3941 
3942 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
3943 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3944 
3945 	igc_clean_all_tx_rings(adapter);
3946 	igc_clean_all_rx_rings(adapter);
3947 }
3948 
igc_reinit_locked(struct igc_adapter * adapter)3949 void igc_reinit_locked(struct igc_adapter *adapter)
3950 {
3951 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3952 		usleep_range(1000, 2000);
3953 	igc_down(adapter);
3954 	igc_up(adapter);
3955 	clear_bit(__IGC_RESETTING, &adapter->state);
3956 }
3957 
igc_reset_task(struct work_struct * work)3958 static void igc_reset_task(struct work_struct *work)
3959 {
3960 	struct igc_adapter *adapter;
3961 
3962 	adapter = container_of(work, struct igc_adapter, reset_task);
3963 
3964 	rtnl_lock();
3965 	/* If we're already down or resetting, just bail */
3966 	if (test_bit(__IGC_DOWN, &adapter->state) ||
3967 	    test_bit(__IGC_RESETTING, &adapter->state)) {
3968 		rtnl_unlock();
3969 		return;
3970 	}
3971 
3972 	igc_rings_dump(adapter);
3973 	igc_regs_dump(adapter);
3974 	netdev_err(adapter->netdev, "Reset adapter\n");
3975 	igc_reinit_locked(adapter);
3976 	rtnl_unlock();
3977 }
3978 
3979 /**
3980  * igc_change_mtu - Change the Maximum Transfer Unit
3981  * @netdev: network interface device structure
3982  * @new_mtu: new value for maximum frame size
3983  *
3984  * Returns 0 on success, negative on failure
3985  */
igc_change_mtu(struct net_device * netdev,int new_mtu)3986 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3987 {
3988 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3989 	struct igc_adapter *adapter = netdev_priv(netdev);
3990 
3991 	/* adjust max frame to be at least the size of a standard frame */
3992 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3993 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3994 
3995 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3996 		usleep_range(1000, 2000);
3997 
3998 	/* igc_down has a dependency on max_frame_size */
3999 	adapter->max_frame_size = max_frame;
4000 
4001 	if (netif_running(netdev))
4002 		igc_down(adapter);
4003 
4004 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4005 	netdev->mtu = new_mtu;
4006 
4007 	if (netif_running(netdev))
4008 		igc_up(adapter);
4009 	else
4010 		igc_reset(adapter);
4011 
4012 	clear_bit(__IGC_RESETTING, &adapter->state);
4013 
4014 	return 0;
4015 }
4016 
4017 /**
4018  * igc_get_stats64 - Get System Network Statistics
4019  * @netdev: network interface device structure
4020  * @stats: rtnl_link_stats64 pointer
4021  *
4022  * Returns the address of the device statistics structure.
4023  * The statistics are updated here and also from the timer callback.
4024  */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)4025 static void igc_get_stats64(struct net_device *netdev,
4026 			    struct rtnl_link_stats64 *stats)
4027 {
4028 	struct igc_adapter *adapter = netdev_priv(netdev);
4029 
4030 	spin_lock(&adapter->stats64_lock);
4031 	if (!test_bit(__IGC_RESETTING, &adapter->state))
4032 		igc_update_stats(adapter);
4033 	memcpy(stats, &adapter->stats64, sizeof(*stats));
4034 	spin_unlock(&adapter->stats64_lock);
4035 }
4036 
igc_fix_features(struct net_device * netdev,netdev_features_t features)4037 static netdev_features_t igc_fix_features(struct net_device *netdev,
4038 					  netdev_features_t features)
4039 {
4040 	/* Since there is no support for separate Rx/Tx vlan accel
4041 	 * enable/disable make sure Tx flag is always in same state as Rx.
4042 	 */
4043 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4044 		features |= NETIF_F_HW_VLAN_CTAG_TX;
4045 	else
4046 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4047 
4048 	return features;
4049 }
4050 
igc_set_features(struct net_device * netdev,netdev_features_t features)4051 static int igc_set_features(struct net_device *netdev,
4052 			    netdev_features_t features)
4053 {
4054 	netdev_features_t changed = netdev->features ^ features;
4055 	struct igc_adapter *adapter = netdev_priv(netdev);
4056 
4057 	/* Add VLAN support */
4058 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4059 		return 0;
4060 
4061 	if (!(features & NETIF_F_NTUPLE))
4062 		igc_flush_nfc_rules(adapter);
4063 
4064 	netdev->features = features;
4065 
4066 	if (netif_running(netdev))
4067 		igc_reinit_locked(adapter);
4068 	else
4069 		igc_reset(adapter);
4070 
4071 	return 1;
4072 }
4073 
4074 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4075 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4076 		   netdev_features_t features)
4077 {
4078 	unsigned int network_hdr_len, mac_hdr_len;
4079 
4080 	/* Make certain the headers can be described by a context descriptor */
4081 	mac_hdr_len = skb_network_header(skb) - skb->data;
4082 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4083 		return features & ~(NETIF_F_HW_CSUM |
4084 				    NETIF_F_SCTP_CRC |
4085 				    NETIF_F_HW_VLAN_CTAG_TX |
4086 				    NETIF_F_TSO |
4087 				    NETIF_F_TSO6);
4088 
4089 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4090 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4091 		return features & ~(NETIF_F_HW_CSUM |
4092 				    NETIF_F_SCTP_CRC |
4093 				    NETIF_F_TSO |
4094 				    NETIF_F_TSO6);
4095 
4096 	/* We can only support IPv4 TSO in tunnels if we can mangle the
4097 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4098 	 */
4099 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4100 		features &= ~NETIF_F_TSO;
4101 
4102 	return features;
4103 }
4104 
igc_tsync_interrupt(struct igc_adapter * adapter)4105 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4106 {
4107 	struct igc_hw *hw = &adapter->hw;
4108 	u32 tsicr = rd32(IGC_TSICR);
4109 	u32 ack = 0;
4110 
4111 	if (tsicr & IGC_TSICR_TXTS) {
4112 		/* retrieve hardware timestamp */
4113 		schedule_work(&adapter->ptp_tx_work);
4114 		ack |= IGC_TSICR_TXTS;
4115 	}
4116 
4117 	/* acknowledge the interrupts */
4118 	wr32(IGC_TSICR, ack);
4119 }
4120 
4121 /**
4122  * igc_msix_other - msix other interrupt handler
4123  * @irq: interrupt number
4124  * @data: pointer to a q_vector
4125  */
igc_msix_other(int irq,void * data)4126 static irqreturn_t igc_msix_other(int irq, void *data)
4127 {
4128 	struct igc_adapter *adapter = data;
4129 	struct igc_hw *hw = &adapter->hw;
4130 	u32 icr = rd32(IGC_ICR);
4131 
4132 	/* reading ICR causes bit 31 of EICR to be cleared */
4133 	if (icr & IGC_ICR_DRSTA)
4134 		schedule_work(&adapter->reset_task);
4135 
4136 	if (icr & IGC_ICR_DOUTSYNC) {
4137 		/* HW is reporting DMA is out of sync */
4138 		adapter->stats.doosync++;
4139 	}
4140 
4141 	if (icr & IGC_ICR_LSC) {
4142 		hw->mac.get_link_status = 1;
4143 		/* guard against interrupt when we're going down */
4144 		if (!test_bit(__IGC_DOWN, &adapter->state))
4145 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4146 	}
4147 
4148 	if (icr & IGC_ICR_TS)
4149 		igc_tsync_interrupt(adapter);
4150 
4151 	wr32(IGC_EIMS, adapter->eims_other);
4152 
4153 	return IRQ_HANDLED;
4154 }
4155 
igc_write_itr(struct igc_q_vector * q_vector)4156 static void igc_write_itr(struct igc_q_vector *q_vector)
4157 {
4158 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4159 
4160 	if (!q_vector->set_itr)
4161 		return;
4162 
4163 	if (!itr_val)
4164 		itr_val = IGC_ITR_VAL_MASK;
4165 
4166 	itr_val |= IGC_EITR_CNT_IGNR;
4167 
4168 	writel(itr_val, q_vector->itr_register);
4169 	q_vector->set_itr = 0;
4170 }
4171 
igc_msix_ring(int irq,void * data)4172 static irqreturn_t igc_msix_ring(int irq, void *data)
4173 {
4174 	struct igc_q_vector *q_vector = data;
4175 
4176 	/* Write the ITR value calculated from the previous interrupt. */
4177 	igc_write_itr(q_vector);
4178 
4179 	napi_schedule(&q_vector->napi);
4180 
4181 	return IRQ_HANDLED;
4182 }
4183 
4184 /**
4185  * igc_request_msix - Initialize MSI-X interrupts
4186  * @adapter: Pointer to adapter structure
4187  *
4188  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4189  * kernel.
4190  */
igc_request_msix(struct igc_adapter * adapter)4191 static int igc_request_msix(struct igc_adapter *adapter)
4192 {
4193 	unsigned int num_q_vectors = adapter->num_q_vectors;
4194 	int i = 0, err = 0, vector = 0, free_vector = 0;
4195 	struct net_device *netdev = adapter->netdev;
4196 
4197 	err = request_irq(adapter->msix_entries[vector].vector,
4198 			  &igc_msix_other, 0, netdev->name, adapter);
4199 	if (err)
4200 		goto err_out;
4201 
4202 	if (num_q_vectors > MAX_Q_VECTORS) {
4203 		num_q_vectors = MAX_Q_VECTORS;
4204 		dev_warn(&adapter->pdev->dev,
4205 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
4206 			 adapter->num_q_vectors, MAX_Q_VECTORS);
4207 	}
4208 	for (i = 0; i < num_q_vectors; i++) {
4209 		struct igc_q_vector *q_vector = adapter->q_vector[i];
4210 
4211 		vector++;
4212 
4213 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4214 
4215 		if (q_vector->rx.ring && q_vector->tx.ring)
4216 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4217 				q_vector->rx.ring->queue_index);
4218 		else if (q_vector->tx.ring)
4219 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4220 				q_vector->tx.ring->queue_index);
4221 		else if (q_vector->rx.ring)
4222 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4223 				q_vector->rx.ring->queue_index);
4224 		else
4225 			sprintf(q_vector->name, "%s-unused", netdev->name);
4226 
4227 		err = request_irq(adapter->msix_entries[vector].vector,
4228 				  igc_msix_ring, 0, q_vector->name,
4229 				  q_vector);
4230 		if (err)
4231 			goto err_free;
4232 	}
4233 
4234 	igc_configure_msix(adapter);
4235 	return 0;
4236 
4237 err_free:
4238 	/* free already assigned IRQs */
4239 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4240 
4241 	vector--;
4242 	for (i = 0; i < vector; i++) {
4243 		free_irq(adapter->msix_entries[free_vector++].vector,
4244 			 adapter->q_vector[i]);
4245 	}
4246 err_out:
4247 	return err;
4248 }
4249 
4250 /**
4251  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4252  * @adapter: Pointer to adapter structure
4253  *
4254  * This function resets the device so that it has 0 rx queues, tx queues, and
4255  * MSI-X interrupts allocated.
4256  */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)4257 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4258 {
4259 	igc_free_q_vectors(adapter);
4260 	igc_reset_interrupt_capability(adapter);
4261 }
4262 
4263 /* Need to wait a few seconds after link up to get diagnostic information from
4264  * the phy
4265  */
igc_update_phy_info(struct timer_list * t)4266 static void igc_update_phy_info(struct timer_list *t)
4267 {
4268 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4269 
4270 	igc_get_phy_info(&adapter->hw);
4271 }
4272 
4273 /**
4274  * igc_has_link - check shared code for link and determine up/down
4275  * @adapter: pointer to driver private info
4276  */
igc_has_link(struct igc_adapter * adapter)4277 bool igc_has_link(struct igc_adapter *adapter)
4278 {
4279 	struct igc_hw *hw = &adapter->hw;
4280 	bool link_active = false;
4281 
4282 	/* get_link_status is set on LSC (link status) interrupt or
4283 	 * rx sequence error interrupt.  get_link_status will stay
4284 	 * false until the igc_check_for_link establishes link
4285 	 * for copper adapters ONLY
4286 	 */
4287 	if (!hw->mac.get_link_status)
4288 		return true;
4289 	hw->mac.ops.check_for_link(hw);
4290 	link_active = !hw->mac.get_link_status;
4291 
4292 	if (hw->mac.type == igc_i225) {
4293 		if (!netif_carrier_ok(adapter->netdev)) {
4294 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4295 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4296 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4297 			adapter->link_check_timeout = jiffies;
4298 		}
4299 	}
4300 
4301 	return link_active;
4302 }
4303 
4304 /**
4305  * igc_watchdog - Timer Call-back
4306  * @t: timer for the watchdog
4307  */
igc_watchdog(struct timer_list * t)4308 static void igc_watchdog(struct timer_list *t)
4309 {
4310 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4311 	/* Do the rest outside of interrupt context */
4312 	schedule_work(&adapter->watchdog_task);
4313 }
4314 
igc_watchdog_task(struct work_struct * work)4315 static void igc_watchdog_task(struct work_struct *work)
4316 {
4317 	struct igc_adapter *adapter = container_of(work,
4318 						   struct igc_adapter,
4319 						   watchdog_task);
4320 	struct net_device *netdev = adapter->netdev;
4321 	struct igc_hw *hw = &adapter->hw;
4322 	struct igc_phy_info *phy = &hw->phy;
4323 	u16 phy_data, retry_count = 20;
4324 	u32 link;
4325 	int i;
4326 
4327 	link = igc_has_link(adapter);
4328 
4329 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4330 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4331 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4332 		else
4333 			link = false;
4334 	}
4335 
4336 	if (link) {
4337 		/* Cancel scheduled suspend requests. */
4338 		pm_runtime_resume(netdev->dev.parent);
4339 
4340 		if (!netif_carrier_ok(netdev)) {
4341 			u32 ctrl;
4342 
4343 			hw->mac.ops.get_speed_and_duplex(hw,
4344 							 &adapter->link_speed,
4345 							 &adapter->link_duplex);
4346 
4347 			ctrl = rd32(IGC_CTRL);
4348 			/* Link status message must follow this format */
4349 			netdev_info(netdev,
4350 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4351 				    adapter->link_speed,
4352 				    adapter->link_duplex == FULL_DUPLEX ?
4353 				    "Full" : "Half",
4354 				    (ctrl & IGC_CTRL_TFCE) &&
4355 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4356 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4357 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4358 
4359 			/* disable EEE if enabled */
4360 			if ((adapter->flags & IGC_FLAG_EEE) &&
4361 			    adapter->link_duplex == HALF_DUPLEX) {
4362 				netdev_info(netdev,
4363 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4364 				adapter->hw.dev_spec._base.eee_enable = false;
4365 				adapter->flags &= ~IGC_FLAG_EEE;
4366 			}
4367 
4368 			/* check if SmartSpeed worked */
4369 			igc_check_downshift(hw);
4370 			if (phy->speed_downgraded)
4371 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4372 
4373 			/* adjust timeout factor according to speed/duplex */
4374 			adapter->tx_timeout_factor = 1;
4375 			switch (adapter->link_speed) {
4376 			case SPEED_10:
4377 				adapter->tx_timeout_factor = 14;
4378 				break;
4379 			case SPEED_100:
4380 				/* maybe add some timeout factor ? */
4381 				break;
4382 			}
4383 
4384 			if (adapter->link_speed != SPEED_1000)
4385 				goto no_wait;
4386 
4387 			/* wait for Remote receiver status OK */
4388 retry_read_status:
4389 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4390 					      &phy_data)) {
4391 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4392 				    retry_count) {
4393 					msleep(100);
4394 					retry_count--;
4395 					goto retry_read_status;
4396 				} else if (!retry_count) {
4397 					netdev_err(netdev, "exceed max 2 second\n");
4398 				}
4399 			} else {
4400 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
4401 			}
4402 no_wait:
4403 			netif_carrier_on(netdev);
4404 
4405 			/* link state has changed, schedule phy info update */
4406 			if (!test_bit(__IGC_DOWN, &adapter->state))
4407 				mod_timer(&adapter->phy_info_timer,
4408 					  round_jiffies(jiffies + 2 * HZ));
4409 		}
4410 	} else {
4411 		if (netif_carrier_ok(netdev)) {
4412 			adapter->link_speed = 0;
4413 			adapter->link_duplex = 0;
4414 
4415 			/* Links status message must follow this format */
4416 			netdev_info(netdev, "NIC Link is Down\n");
4417 			netif_carrier_off(netdev);
4418 
4419 			/* link state has changed, schedule phy info update */
4420 			if (!test_bit(__IGC_DOWN, &adapter->state))
4421 				mod_timer(&adapter->phy_info_timer,
4422 					  round_jiffies(jiffies + 2 * HZ));
4423 
4424 			/* link is down, time to check for alternate media */
4425 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4426 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4427 					schedule_work(&adapter->reset_task);
4428 					/* return immediately */
4429 					return;
4430 				}
4431 			}
4432 			pm_schedule_suspend(netdev->dev.parent,
4433 					    MSEC_PER_SEC * 5);
4434 
4435 		/* also check for alternate media here */
4436 		} else if (!netif_carrier_ok(netdev) &&
4437 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4438 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4439 				schedule_work(&adapter->reset_task);
4440 				/* return immediately */
4441 				return;
4442 			}
4443 		}
4444 	}
4445 
4446 	spin_lock(&adapter->stats64_lock);
4447 	igc_update_stats(adapter);
4448 	spin_unlock(&adapter->stats64_lock);
4449 
4450 	for (i = 0; i < adapter->num_tx_queues; i++) {
4451 		struct igc_ring *tx_ring = adapter->tx_ring[i];
4452 
4453 		if (!netif_carrier_ok(netdev)) {
4454 			/* We've lost link, so the controller stops DMA,
4455 			 * but we've got queued Tx work that's never going
4456 			 * to get done, so reset controller to flush Tx.
4457 			 * (Do the reset outside of interrupt context).
4458 			 */
4459 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4460 				adapter->tx_timeout_count++;
4461 				schedule_work(&adapter->reset_task);
4462 				/* return immediately since reset is imminent */
4463 				return;
4464 			}
4465 		}
4466 
4467 		/* Force detection of hung controller every watchdog period */
4468 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4469 	}
4470 
4471 	/* Cause software interrupt to ensure Rx ring is cleaned */
4472 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4473 		u32 eics = 0;
4474 
4475 		for (i = 0; i < adapter->num_q_vectors; i++)
4476 			eics |= adapter->q_vector[i]->eims_value;
4477 		wr32(IGC_EICS, eics);
4478 	} else {
4479 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
4480 	}
4481 
4482 	igc_ptp_tx_hang(adapter);
4483 
4484 	/* Reset the timer */
4485 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4486 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4487 			mod_timer(&adapter->watchdog_timer,
4488 				  round_jiffies(jiffies +  HZ));
4489 		else
4490 			mod_timer(&adapter->watchdog_timer,
4491 				  round_jiffies(jiffies + 2 * HZ));
4492 	}
4493 }
4494 
4495 /**
4496  * igc_intr_msi - Interrupt Handler
4497  * @irq: interrupt number
4498  * @data: pointer to a network interface device structure
4499  */
igc_intr_msi(int irq,void * data)4500 static irqreturn_t igc_intr_msi(int irq, void *data)
4501 {
4502 	struct igc_adapter *adapter = data;
4503 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4504 	struct igc_hw *hw = &adapter->hw;
4505 	/* read ICR disables interrupts using IAM */
4506 	u32 icr = rd32(IGC_ICR);
4507 
4508 	igc_write_itr(q_vector);
4509 
4510 	if (icr & IGC_ICR_DRSTA)
4511 		schedule_work(&adapter->reset_task);
4512 
4513 	if (icr & IGC_ICR_DOUTSYNC) {
4514 		/* HW is reporting DMA is out of sync */
4515 		adapter->stats.doosync++;
4516 	}
4517 
4518 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4519 		hw->mac.get_link_status = 1;
4520 		if (!test_bit(__IGC_DOWN, &adapter->state))
4521 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4522 	}
4523 
4524 	if (icr & IGC_ICR_TS)
4525 		igc_tsync_interrupt(adapter);
4526 
4527 	napi_schedule(&q_vector->napi);
4528 
4529 	return IRQ_HANDLED;
4530 }
4531 
4532 /**
4533  * igc_intr - Legacy Interrupt Handler
4534  * @irq: interrupt number
4535  * @data: pointer to a network interface device structure
4536  */
igc_intr(int irq,void * data)4537 static irqreturn_t igc_intr(int irq, void *data)
4538 {
4539 	struct igc_adapter *adapter = data;
4540 	struct igc_q_vector *q_vector = adapter->q_vector[0];
4541 	struct igc_hw *hw = &adapter->hw;
4542 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4543 	 * need for the IMC write
4544 	 */
4545 	u32 icr = rd32(IGC_ICR);
4546 
4547 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4548 	 * not set, then the adapter didn't send an interrupt
4549 	 */
4550 	if (!(icr & IGC_ICR_INT_ASSERTED))
4551 		return IRQ_NONE;
4552 
4553 	igc_write_itr(q_vector);
4554 
4555 	if (icr & IGC_ICR_DRSTA)
4556 		schedule_work(&adapter->reset_task);
4557 
4558 	if (icr & IGC_ICR_DOUTSYNC) {
4559 		/* HW is reporting DMA is out of sync */
4560 		adapter->stats.doosync++;
4561 	}
4562 
4563 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4564 		hw->mac.get_link_status = 1;
4565 		/* guard against interrupt when we're going down */
4566 		if (!test_bit(__IGC_DOWN, &adapter->state))
4567 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4568 	}
4569 
4570 	if (icr & IGC_ICR_TS)
4571 		igc_tsync_interrupt(adapter);
4572 
4573 	napi_schedule(&q_vector->napi);
4574 
4575 	return IRQ_HANDLED;
4576 }
4577 
igc_free_irq(struct igc_adapter * adapter)4578 static void igc_free_irq(struct igc_adapter *adapter)
4579 {
4580 	if (adapter->msix_entries) {
4581 		int vector = 0, i;
4582 
4583 		free_irq(adapter->msix_entries[vector++].vector, adapter);
4584 
4585 		for (i = 0; i < adapter->num_q_vectors; i++)
4586 			free_irq(adapter->msix_entries[vector++].vector,
4587 				 adapter->q_vector[i]);
4588 	} else {
4589 		free_irq(adapter->pdev->irq, adapter);
4590 	}
4591 }
4592 
4593 /**
4594  * igc_request_irq - initialize interrupts
4595  * @adapter: Pointer to adapter structure
4596  *
4597  * Attempts to configure interrupts using the best available
4598  * capabilities of the hardware and kernel.
4599  */
igc_request_irq(struct igc_adapter * adapter)4600 static int igc_request_irq(struct igc_adapter *adapter)
4601 {
4602 	struct net_device *netdev = adapter->netdev;
4603 	struct pci_dev *pdev = adapter->pdev;
4604 	int err = 0;
4605 
4606 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4607 		err = igc_request_msix(adapter);
4608 		if (!err)
4609 			goto request_done;
4610 		/* fall back to MSI */
4611 		igc_free_all_tx_resources(adapter);
4612 		igc_free_all_rx_resources(adapter);
4613 
4614 		igc_clear_interrupt_scheme(adapter);
4615 		err = igc_init_interrupt_scheme(adapter, false);
4616 		if (err)
4617 			goto request_done;
4618 		igc_setup_all_tx_resources(adapter);
4619 		igc_setup_all_rx_resources(adapter);
4620 		igc_configure(adapter);
4621 	}
4622 
4623 	igc_assign_vector(adapter->q_vector[0], 0);
4624 
4625 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
4626 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
4627 				  netdev->name, adapter);
4628 		if (!err)
4629 			goto request_done;
4630 
4631 		/* fall back to legacy interrupts */
4632 		igc_reset_interrupt_capability(adapter);
4633 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
4634 	}
4635 
4636 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4637 			  netdev->name, adapter);
4638 
4639 	if (err)
4640 		netdev_err(netdev, "Error %d getting interrupt\n", err);
4641 
4642 request_done:
4643 	return err;
4644 }
4645 
4646 /**
4647  * __igc_open - Called when a network interface is made active
4648  * @netdev: network interface device structure
4649  * @resuming: boolean indicating if the device is resuming
4650  *
4651  * Returns 0 on success, negative value on failure
4652  *
4653  * The open entry point is called when a network interface is made
4654  * active by the system (IFF_UP).  At this point all resources needed
4655  * for transmit and receive operations are allocated, the interrupt
4656  * handler is registered with the OS, the watchdog timer is started,
4657  * and the stack is notified that the interface is ready.
4658  */
__igc_open(struct net_device * netdev,bool resuming)4659 static int __igc_open(struct net_device *netdev, bool resuming)
4660 {
4661 	struct igc_adapter *adapter = netdev_priv(netdev);
4662 	struct pci_dev *pdev = adapter->pdev;
4663 	struct igc_hw *hw = &adapter->hw;
4664 	int err = 0;
4665 	int i = 0;
4666 
4667 	/* disallow open during test */
4668 
4669 	if (test_bit(__IGC_TESTING, &adapter->state)) {
4670 		WARN_ON(resuming);
4671 		return -EBUSY;
4672 	}
4673 
4674 	if (!resuming)
4675 		pm_runtime_get_sync(&pdev->dev);
4676 
4677 	netif_carrier_off(netdev);
4678 
4679 	/* allocate transmit descriptors */
4680 	err = igc_setup_all_tx_resources(adapter);
4681 	if (err)
4682 		goto err_setup_tx;
4683 
4684 	/* allocate receive descriptors */
4685 	err = igc_setup_all_rx_resources(adapter);
4686 	if (err)
4687 		goto err_setup_rx;
4688 
4689 	igc_power_up_link(adapter);
4690 
4691 	igc_configure(adapter);
4692 
4693 	err = igc_request_irq(adapter);
4694 	if (err)
4695 		goto err_req_irq;
4696 
4697 	/* Notify the stack of the actual queue counts. */
4698 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4699 	if (err)
4700 		goto err_set_queues;
4701 
4702 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4703 	if (err)
4704 		goto err_set_queues;
4705 
4706 	clear_bit(__IGC_DOWN, &adapter->state);
4707 
4708 	for (i = 0; i < adapter->num_q_vectors; i++)
4709 		napi_enable(&adapter->q_vector[i]->napi);
4710 
4711 	/* Clear any pending interrupts. */
4712 	rd32(IGC_ICR);
4713 	igc_irq_enable(adapter);
4714 
4715 	if (!resuming)
4716 		pm_runtime_put(&pdev->dev);
4717 
4718 	netif_tx_start_all_queues(netdev);
4719 
4720 	/* start the watchdog. */
4721 	hw->mac.get_link_status = 1;
4722 	schedule_work(&adapter->watchdog_task);
4723 
4724 	return IGC_SUCCESS;
4725 
4726 err_set_queues:
4727 	igc_free_irq(adapter);
4728 err_req_irq:
4729 	igc_release_hw_control(adapter);
4730 	igc_power_down_phy_copper_base(&adapter->hw);
4731 	igc_free_all_rx_resources(adapter);
4732 err_setup_rx:
4733 	igc_free_all_tx_resources(adapter);
4734 err_setup_tx:
4735 	igc_reset(adapter);
4736 	if (!resuming)
4737 		pm_runtime_put(&pdev->dev);
4738 
4739 	return err;
4740 }
4741 
igc_open(struct net_device * netdev)4742 int igc_open(struct net_device *netdev)
4743 {
4744 	return __igc_open(netdev, false);
4745 }
4746 
4747 /**
4748  * __igc_close - Disables a network interface
4749  * @netdev: network interface device structure
4750  * @suspending: boolean indicating the device is suspending
4751  *
4752  * Returns 0, this is not allowed to fail
4753  *
4754  * The close entry point is called when an interface is de-activated
4755  * by the OS.  The hardware is still under the driver's control, but
4756  * needs to be disabled.  A global MAC reset is issued to stop the
4757  * hardware, and all transmit and receive resources are freed.
4758  */
__igc_close(struct net_device * netdev,bool suspending)4759 static int __igc_close(struct net_device *netdev, bool suspending)
4760 {
4761 	struct igc_adapter *adapter = netdev_priv(netdev);
4762 	struct pci_dev *pdev = adapter->pdev;
4763 
4764 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4765 
4766 	if (!suspending)
4767 		pm_runtime_get_sync(&pdev->dev);
4768 
4769 	igc_down(adapter);
4770 
4771 	igc_release_hw_control(adapter);
4772 
4773 	igc_free_irq(adapter);
4774 
4775 	igc_free_all_tx_resources(adapter);
4776 	igc_free_all_rx_resources(adapter);
4777 
4778 	if (!suspending)
4779 		pm_runtime_put_sync(&pdev->dev);
4780 
4781 	return 0;
4782 }
4783 
igc_close(struct net_device * netdev)4784 int igc_close(struct net_device *netdev)
4785 {
4786 	if (netif_device_present(netdev) || netdev->dismantle)
4787 		return __igc_close(netdev, false);
4788 	return 0;
4789 }
4790 
4791 /**
4792  * igc_ioctl - Access the hwtstamp interface
4793  * @netdev: network interface device structure
4794  * @ifr: interface request data
4795  * @cmd: ioctl command
4796  **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)4797 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4798 {
4799 	switch (cmd) {
4800 	case SIOCGHWTSTAMP:
4801 		return igc_ptp_get_ts_config(netdev, ifr);
4802 	case SIOCSHWTSTAMP:
4803 		return igc_ptp_set_ts_config(netdev, ifr);
4804 	default:
4805 		return -EOPNOTSUPP;
4806 	}
4807 }
4808 
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)4809 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4810 				      bool enable)
4811 {
4812 	struct igc_ring *ring;
4813 	int i;
4814 
4815 	if (queue < 0 || queue >= adapter->num_tx_queues)
4816 		return -EINVAL;
4817 
4818 	ring = adapter->tx_ring[queue];
4819 	ring->launchtime_enable = enable;
4820 
4821 	if (adapter->base_time)
4822 		return 0;
4823 
4824 	adapter->cycle_time = NSEC_PER_SEC;
4825 
4826 	for (i = 0; i < adapter->num_tx_queues; i++) {
4827 		ring = adapter->tx_ring[i];
4828 		ring->start_time = 0;
4829 		ring->end_time = NSEC_PER_SEC;
4830 	}
4831 
4832 	return 0;
4833 }
4834 
is_base_time_past(ktime_t base_time,const struct timespec64 * now)4835 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
4836 {
4837 	struct timespec64 b;
4838 
4839 	b = ktime_to_timespec64(base_time);
4840 
4841 	return timespec64_compare(now, &b) > 0;
4842 }
4843 
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)4844 static bool validate_schedule(struct igc_adapter *adapter,
4845 			      const struct tc_taprio_qopt_offload *qopt)
4846 {
4847 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
4848 	struct timespec64 now;
4849 	size_t n;
4850 
4851 	if (qopt->cycle_time_extension)
4852 		return false;
4853 
4854 	igc_ptp_read(adapter, &now);
4855 
4856 	/* If we program the controller's BASET registers with a time
4857 	 * in the future, it will hold all the packets until that
4858 	 * time, causing a lot of TX Hangs, so to avoid that, we
4859 	 * reject schedules that would start in the future.
4860 	 */
4861 	if (!is_base_time_past(qopt->base_time, &now))
4862 		return false;
4863 
4864 	for (n = 0; n < qopt->num_entries; n++) {
4865 		const struct tc_taprio_sched_entry *e, *prev;
4866 		int i;
4867 
4868 		prev = n ? &qopt->entries[n - 1] : NULL;
4869 		e = &qopt->entries[n];
4870 
4871 		/* i225 only supports "global" frame preemption
4872 		 * settings.
4873 		 */
4874 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
4875 			return false;
4876 
4877 		for (i = 0; i < adapter->num_tx_queues; i++) {
4878 			if (e->gate_mask & BIT(i))
4879 				queue_uses[i]++;
4880 
4881 			/* There are limitations: A single queue cannot be
4882 			 * opened and closed multiple times per cycle unless the
4883 			 * gate stays open. Check for it.
4884 			 */
4885 			if (queue_uses[i] > 1 &&
4886 			    !(prev->gate_mask & BIT(i)))
4887 				return false;
4888 		}
4889 	}
4890 
4891 	return true;
4892 }
4893 
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)4894 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4895 				     struct tc_etf_qopt_offload *qopt)
4896 {
4897 	struct igc_hw *hw = &adapter->hw;
4898 	int err;
4899 
4900 	if (hw->mac.type != igc_i225)
4901 		return -EOPNOTSUPP;
4902 
4903 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4904 	if (err)
4905 		return err;
4906 
4907 	return igc_tsn_offload_apply(adapter);
4908 }
4909 
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)4910 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4911 				 struct tc_taprio_qopt_offload *qopt)
4912 {
4913 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
4914 	u32 start_time = 0, end_time = 0;
4915 	size_t n;
4916 	int i;
4917 
4918 	if (!qopt->enable) {
4919 		adapter->base_time = 0;
4920 		return 0;
4921 	}
4922 
4923 	if (qopt->base_time < 0)
4924 		return -ERANGE;
4925 
4926 	if (adapter->base_time)
4927 		return -EALREADY;
4928 
4929 	if (!validate_schedule(adapter, qopt))
4930 		return -EINVAL;
4931 
4932 	adapter->cycle_time = qopt->cycle_time;
4933 	adapter->base_time = qopt->base_time;
4934 
4935 	for (n = 0; n < qopt->num_entries; n++) {
4936 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
4937 
4938 		end_time += e->interval;
4939 
4940 		/* If any of the conditions below are true, we need to manually
4941 		 * control the end time of the cycle.
4942 		 * 1. Qbv users can specify a cycle time that is not equal
4943 		 * to the total GCL intervals. Hence, recalculation is
4944 		 * necessary here to exclude the time interval that
4945 		 * exceeds the cycle time.
4946 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
4947 		 * once the end of the list is reached, it will switch
4948 		 * to the END_OF_CYCLE state and leave the gates in the
4949 		 * same state until the next cycle is started.
4950 		 */
4951 		if (end_time > adapter->cycle_time ||
4952 		    n + 1 == qopt->num_entries)
4953 			end_time = adapter->cycle_time;
4954 
4955 		for (i = 0; i < adapter->num_tx_queues; i++) {
4956 			struct igc_ring *ring = adapter->tx_ring[i];
4957 
4958 			if (!(e->gate_mask & BIT(i)))
4959 				continue;
4960 
4961 			/* Check whether a queue stays open for more than one
4962 			 * entry. If so, keep the start and advance the end
4963 			 * time.
4964 			 */
4965 			if (!queue_configured[i])
4966 				ring->start_time = start_time;
4967 			ring->end_time = end_time;
4968 
4969 			queue_configured[i] = true;
4970 		}
4971 
4972 		start_time += e->interval;
4973 	}
4974 
4975 	/* Check whether a queue gets configured.
4976 	 * If not, set the start and end time to be end time.
4977 	 */
4978 	for (i = 0; i < adapter->num_tx_queues; i++) {
4979 		if (!queue_configured[i]) {
4980 			struct igc_ring *ring = adapter->tx_ring[i];
4981 
4982 			ring->start_time = end_time;
4983 			ring->end_time = end_time;
4984 		}
4985 	}
4986 
4987 	return 0;
4988 }
4989 
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)4990 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4991 					 struct tc_taprio_qopt_offload *qopt)
4992 {
4993 	struct igc_hw *hw = &adapter->hw;
4994 	int err;
4995 
4996 	if (hw->mac.type != igc_i225)
4997 		return -EOPNOTSUPP;
4998 
4999 	err = igc_save_qbv_schedule(adapter, qopt);
5000 	if (err)
5001 		return err;
5002 
5003 	return igc_tsn_offload_apply(adapter);
5004 }
5005 
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)5006 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5007 			void *type_data)
5008 {
5009 	struct igc_adapter *adapter = netdev_priv(dev);
5010 
5011 	switch (type) {
5012 	case TC_SETUP_QDISC_TAPRIO:
5013 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5014 
5015 	case TC_SETUP_QDISC_ETF:
5016 		return igc_tsn_enable_launchtime(adapter, type_data);
5017 
5018 	default:
5019 		return -EOPNOTSUPP;
5020 	}
5021 }
5022 
5023 static const struct net_device_ops igc_netdev_ops = {
5024 	.ndo_open		= igc_open,
5025 	.ndo_stop		= igc_close,
5026 	.ndo_start_xmit		= igc_xmit_frame,
5027 	.ndo_set_rx_mode	= igc_set_rx_mode,
5028 	.ndo_set_mac_address	= igc_set_mac,
5029 	.ndo_change_mtu		= igc_change_mtu,
5030 	.ndo_get_stats64	= igc_get_stats64,
5031 	.ndo_fix_features	= igc_fix_features,
5032 	.ndo_set_features	= igc_set_features,
5033 	.ndo_features_check	= igc_features_check,
5034 	.ndo_do_ioctl		= igc_ioctl,
5035 	.ndo_setup_tc		= igc_setup_tc,
5036 };
5037 
5038 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)5039 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5040 {
5041 	struct igc_adapter *adapter = hw->back;
5042 
5043 	pci_read_config_word(adapter->pdev, reg, value);
5044 }
5045 
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)5046 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5047 {
5048 	struct igc_adapter *adapter = hw->back;
5049 
5050 	pci_write_config_word(adapter->pdev, reg, *value);
5051 }
5052 
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)5053 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5054 {
5055 	struct igc_adapter *adapter = hw->back;
5056 
5057 	if (!pci_is_pcie(adapter->pdev))
5058 		return -IGC_ERR_CONFIG;
5059 
5060 	pcie_capability_read_word(adapter->pdev, reg, value);
5061 
5062 	return IGC_SUCCESS;
5063 }
5064 
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)5065 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5066 {
5067 	struct igc_adapter *adapter = hw->back;
5068 
5069 	if (!pci_is_pcie(adapter->pdev))
5070 		return -IGC_ERR_CONFIG;
5071 
5072 	pcie_capability_write_word(adapter->pdev, reg, *value);
5073 
5074 	return IGC_SUCCESS;
5075 }
5076 
igc_rd32(struct igc_hw * hw,u32 reg)5077 u32 igc_rd32(struct igc_hw *hw, u32 reg)
5078 {
5079 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5080 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5081 	u32 value = 0;
5082 
5083 	if (IGC_REMOVED(hw_addr))
5084 		return ~value;
5085 
5086 	value = readl(&hw_addr[reg]);
5087 
5088 	/* reads should not return all F's */
5089 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5090 		struct net_device *netdev = igc->netdev;
5091 
5092 		hw->hw_addr = NULL;
5093 		netif_device_detach(netdev);
5094 		netdev_err(netdev, "PCIe link lost, device now detached\n");
5095 		WARN(pci_device_is_present(igc->pdev),
5096 		     "igc: Failed to read reg 0x%x!\n", reg);
5097 	}
5098 
5099 	return value;
5100 }
5101 
igc_set_spd_dplx(struct igc_adapter * adapter,u32 spd,u8 dplx)5102 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5103 {
5104 	struct igc_mac_info *mac = &adapter->hw.mac;
5105 
5106 	mac->autoneg = 0;
5107 
5108 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5109 	 * for the switch() below to work
5110 	 */
5111 	if ((spd & 1) || (dplx & ~1))
5112 		goto err_inval;
5113 
5114 	switch (spd + dplx) {
5115 	case SPEED_10 + DUPLEX_HALF:
5116 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
5117 		break;
5118 	case SPEED_10 + DUPLEX_FULL:
5119 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
5120 		break;
5121 	case SPEED_100 + DUPLEX_HALF:
5122 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
5123 		break;
5124 	case SPEED_100 + DUPLEX_FULL:
5125 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
5126 		break;
5127 	case SPEED_1000 + DUPLEX_FULL:
5128 		mac->autoneg = 1;
5129 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5130 		break;
5131 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5132 		goto err_inval;
5133 	case SPEED_2500 + DUPLEX_FULL:
5134 		mac->autoneg = 1;
5135 		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5136 		break;
5137 	case SPEED_2500 + DUPLEX_HALF: /* not supported */
5138 	default:
5139 		goto err_inval;
5140 	}
5141 
5142 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5143 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
5144 
5145 	return 0;
5146 
5147 err_inval:
5148 	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5149 	return -EINVAL;
5150 }
5151 
5152 /**
5153  * igc_probe - Device Initialization Routine
5154  * @pdev: PCI device information struct
5155  * @ent: entry in igc_pci_tbl
5156  *
5157  * Returns 0 on success, negative on failure
5158  *
5159  * igc_probe initializes an adapter identified by a pci_dev structure.
5160  * The OS initialization, configuring the adapter private structure,
5161  * and a hardware reset occur.
5162  */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5163 static int igc_probe(struct pci_dev *pdev,
5164 		     const struct pci_device_id *ent)
5165 {
5166 	struct igc_adapter *adapter;
5167 	struct net_device *netdev;
5168 	struct igc_hw *hw;
5169 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5170 	int err, pci_using_dac;
5171 
5172 	err = pci_enable_device_mem(pdev);
5173 	if (err)
5174 		return err;
5175 
5176 	pci_using_dac = 0;
5177 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5178 	if (!err) {
5179 		pci_using_dac = 1;
5180 	} else {
5181 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5182 		if (err) {
5183 			dev_err(&pdev->dev,
5184 				"No usable DMA configuration, aborting\n");
5185 			goto err_dma;
5186 		}
5187 	}
5188 
5189 	err = pci_request_mem_regions(pdev, igc_driver_name);
5190 	if (err)
5191 		goto err_pci_reg;
5192 
5193 	pci_enable_pcie_error_reporting(pdev);
5194 
5195 	err = pci_enable_ptm(pdev, NULL);
5196 	if (err < 0)
5197 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
5198 
5199 	pci_set_master(pdev);
5200 
5201 	err = -ENOMEM;
5202 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5203 				   IGC_MAX_TX_QUEUES);
5204 
5205 	if (!netdev)
5206 		goto err_alloc_etherdev;
5207 
5208 	SET_NETDEV_DEV(netdev, &pdev->dev);
5209 
5210 	pci_set_drvdata(pdev, netdev);
5211 	adapter = netdev_priv(netdev);
5212 	adapter->netdev = netdev;
5213 	adapter->pdev = pdev;
5214 	hw = &adapter->hw;
5215 	hw->back = adapter;
5216 	adapter->port_num = hw->bus.func;
5217 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5218 
5219 	err = pci_save_state(pdev);
5220 	if (err)
5221 		goto err_ioremap;
5222 
5223 	err = -EIO;
5224 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5225 				   pci_resource_len(pdev, 0));
5226 	if (!adapter->io_addr)
5227 		goto err_ioremap;
5228 
5229 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5230 	hw->hw_addr = adapter->io_addr;
5231 
5232 	netdev->netdev_ops = &igc_netdev_ops;
5233 	igc_ethtool_set_ops(netdev);
5234 	netdev->watchdog_timeo = 5 * HZ;
5235 
5236 	netdev->mem_start = pci_resource_start(pdev, 0);
5237 	netdev->mem_end = pci_resource_end(pdev, 0);
5238 
5239 	/* PCI config space info */
5240 	hw->vendor_id = pdev->vendor;
5241 	hw->device_id = pdev->device;
5242 	hw->revision_id = pdev->revision;
5243 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5244 	hw->subsystem_device_id = pdev->subsystem_device;
5245 
5246 	/* Copy the default MAC and PHY function pointers */
5247 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5248 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5249 
5250 	/* Initialize skew-specific constants */
5251 	err = ei->get_invariants(hw);
5252 	if (err)
5253 		goto err_sw_init;
5254 
5255 	/* Add supported features to the features list*/
5256 	netdev->features |= NETIF_F_SG;
5257 	netdev->features |= NETIF_F_TSO;
5258 	netdev->features |= NETIF_F_TSO6;
5259 	netdev->features |= NETIF_F_TSO_ECN;
5260 	netdev->features |= NETIF_F_RXCSUM;
5261 	netdev->features |= NETIF_F_HW_CSUM;
5262 	netdev->features |= NETIF_F_SCTP_CRC;
5263 	netdev->features |= NETIF_F_HW_TC;
5264 
5265 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5266 				  NETIF_F_GSO_GRE_CSUM | \
5267 				  NETIF_F_GSO_IPXIP4 | \
5268 				  NETIF_F_GSO_IPXIP6 | \
5269 				  NETIF_F_GSO_UDP_TUNNEL | \
5270 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5271 
5272 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5273 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5274 
5275 	/* setup the private structure */
5276 	err = igc_sw_init(adapter);
5277 	if (err)
5278 		goto err_sw_init;
5279 
5280 	/* copy netdev features into list of user selectable features */
5281 	netdev->hw_features |= NETIF_F_NTUPLE;
5282 	netdev->hw_features |= netdev->features;
5283 
5284 	if (pci_using_dac)
5285 		netdev->features |= NETIF_F_HIGHDMA;
5286 
5287 	/* MTU range: 68 - 9216 */
5288 	netdev->min_mtu = ETH_MIN_MTU;
5289 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5290 
5291 	/* before reading the NVM, reset the controller to put the device in a
5292 	 * known good starting state
5293 	 */
5294 	hw->mac.ops.reset_hw(hw);
5295 
5296 	if (igc_get_flash_presence_i225(hw)) {
5297 		if (hw->nvm.ops.validate(hw) < 0) {
5298 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5299 			err = -EIO;
5300 			goto err_eeprom;
5301 		}
5302 	}
5303 
5304 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5305 		/* copy the MAC address out of the NVM */
5306 		if (hw->mac.ops.read_mac_addr(hw))
5307 			dev_err(&pdev->dev, "NVM Read Error\n");
5308 	}
5309 
5310 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5311 
5312 	if (!is_valid_ether_addr(netdev->dev_addr)) {
5313 		dev_err(&pdev->dev, "Invalid MAC Address\n");
5314 		err = -EIO;
5315 		goto err_eeprom;
5316 	}
5317 
5318 	/* configure RXPBSIZE and TXPBSIZE */
5319 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5320 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5321 
5322 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5323 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5324 
5325 	INIT_WORK(&adapter->reset_task, igc_reset_task);
5326 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5327 
5328 	/* Initialize link properties that are user-changeable */
5329 	adapter->fc_autoneg = true;
5330 	hw->mac.autoneg = true;
5331 	hw->phy.autoneg_advertised = 0xaf;
5332 
5333 	hw->fc.requested_mode = igc_fc_default;
5334 	hw->fc.current_mode = igc_fc_default;
5335 
5336 	/* By default, support wake on port A */
5337 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5338 
5339 	/* initialize the wol settings based on the eeprom settings */
5340 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5341 		adapter->wol |= IGC_WUFC_MAG;
5342 
5343 	device_set_wakeup_enable(&adapter->pdev->dev,
5344 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5345 
5346 	igc_ptp_init(adapter);
5347 
5348 	/* reset the hardware with the new settings */
5349 	igc_reset(adapter);
5350 
5351 	/* let the f/w know that the h/w is now under the control of the
5352 	 * driver.
5353 	 */
5354 	igc_get_hw_control(adapter);
5355 
5356 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
5357 	err = register_netdev(netdev);
5358 	if (err)
5359 		goto err_register;
5360 
5361 	 /* carrier off reporting is important to ethtool even BEFORE open */
5362 	netif_carrier_off(netdev);
5363 
5364 	/* Check if Media Autosense is enabled */
5365 	adapter->ei = *ei;
5366 
5367 	/* print pcie link status and MAC address */
5368 	pcie_print_link_status(pdev);
5369 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5370 
5371 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5372 	/* Disable EEE for internal PHY devices */
5373 	hw->dev_spec._base.eee_enable = false;
5374 	adapter->flags &= ~IGC_FLAG_EEE;
5375 	igc_set_eee_i225(hw, false, false, false);
5376 
5377 	pm_runtime_put_noidle(&pdev->dev);
5378 
5379 	return 0;
5380 
5381 err_register:
5382 	igc_release_hw_control(adapter);
5383 err_eeprom:
5384 	if (!igc_check_reset_block(hw))
5385 		igc_reset_phy(hw);
5386 err_sw_init:
5387 	igc_clear_interrupt_scheme(adapter);
5388 	iounmap(adapter->io_addr);
5389 err_ioremap:
5390 	free_netdev(netdev);
5391 err_alloc_etherdev:
5392 	pci_disable_pcie_error_reporting(pdev);
5393 	pci_release_mem_regions(pdev);
5394 err_pci_reg:
5395 err_dma:
5396 	pci_disable_device(pdev);
5397 	return err;
5398 }
5399 
5400 /**
5401  * igc_remove - Device Removal Routine
5402  * @pdev: PCI device information struct
5403  *
5404  * igc_remove is called by the PCI subsystem to alert the driver
5405  * that it should release a PCI device.  This could be caused by a
5406  * Hot-Plug event, or because the driver is going to be removed from
5407  * memory.
5408  */
igc_remove(struct pci_dev * pdev)5409 static void igc_remove(struct pci_dev *pdev)
5410 {
5411 	struct net_device *netdev = pci_get_drvdata(pdev);
5412 	struct igc_adapter *adapter = netdev_priv(netdev);
5413 
5414 	pm_runtime_get_noresume(&pdev->dev);
5415 
5416 	igc_flush_nfc_rules(adapter);
5417 
5418 	igc_ptp_stop(adapter);
5419 
5420 	set_bit(__IGC_DOWN, &adapter->state);
5421 
5422 	del_timer_sync(&adapter->watchdog_timer);
5423 	del_timer_sync(&adapter->phy_info_timer);
5424 
5425 	cancel_work_sync(&adapter->reset_task);
5426 	cancel_work_sync(&adapter->watchdog_task);
5427 
5428 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5429 	 * would have already happened in close and is redundant.
5430 	 */
5431 	igc_release_hw_control(adapter);
5432 	unregister_netdev(netdev);
5433 
5434 	igc_clear_interrupt_scheme(adapter);
5435 	pci_iounmap(pdev, adapter->io_addr);
5436 	pci_release_mem_regions(pdev);
5437 
5438 	free_netdev(netdev);
5439 
5440 	pci_disable_pcie_error_reporting(pdev);
5441 
5442 	pci_disable_device(pdev);
5443 }
5444 
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)5445 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5446 			  bool runtime)
5447 {
5448 	struct net_device *netdev = pci_get_drvdata(pdev);
5449 	struct igc_adapter *adapter = netdev_priv(netdev);
5450 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5451 	struct igc_hw *hw = &adapter->hw;
5452 	u32 ctrl, rctl, status;
5453 	bool wake;
5454 
5455 	rtnl_lock();
5456 	netif_device_detach(netdev);
5457 
5458 	if (netif_running(netdev))
5459 		__igc_close(netdev, true);
5460 
5461 	igc_ptp_suspend(adapter);
5462 
5463 	igc_clear_interrupt_scheme(adapter);
5464 	rtnl_unlock();
5465 
5466 	status = rd32(IGC_STATUS);
5467 	if (status & IGC_STATUS_LU)
5468 		wufc &= ~IGC_WUFC_LNKC;
5469 
5470 	if (wufc) {
5471 		igc_setup_rctl(adapter);
5472 		igc_set_rx_mode(netdev);
5473 
5474 		/* turn on all-multi mode if wake on multicast is enabled */
5475 		if (wufc & IGC_WUFC_MC) {
5476 			rctl = rd32(IGC_RCTL);
5477 			rctl |= IGC_RCTL_MPE;
5478 			wr32(IGC_RCTL, rctl);
5479 		}
5480 
5481 		ctrl = rd32(IGC_CTRL);
5482 		ctrl |= IGC_CTRL_ADVD3WUC;
5483 		wr32(IGC_CTRL, ctrl);
5484 
5485 		/* Allow time for pending master requests to run */
5486 		igc_disable_pcie_master(hw);
5487 
5488 		wr32(IGC_WUC, IGC_WUC_PME_EN);
5489 		wr32(IGC_WUFC, wufc);
5490 	} else {
5491 		wr32(IGC_WUC, 0);
5492 		wr32(IGC_WUFC, 0);
5493 	}
5494 
5495 	wake = wufc || adapter->en_mng_pt;
5496 	if (!wake)
5497 		igc_power_down_phy_copper_base(&adapter->hw);
5498 	else
5499 		igc_power_up_link(adapter);
5500 
5501 	if (enable_wake)
5502 		*enable_wake = wake;
5503 
5504 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5505 	 * would have already happened in close and is redundant.
5506 	 */
5507 	igc_release_hw_control(adapter);
5508 
5509 	pci_disable_device(pdev);
5510 
5511 	return 0;
5512 }
5513 
5514 #ifdef CONFIG_PM
igc_runtime_suspend(struct device * dev)5515 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5516 {
5517 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5518 }
5519 
igc_deliver_wake_packet(struct net_device * netdev)5520 static void igc_deliver_wake_packet(struct net_device *netdev)
5521 {
5522 	struct igc_adapter *adapter = netdev_priv(netdev);
5523 	struct igc_hw *hw = &adapter->hw;
5524 	struct sk_buff *skb;
5525 	u32 wupl;
5526 
5527 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5528 
5529 	/* WUPM stores only the first 128 bytes of the wake packet.
5530 	 * Read the packet only if we have the whole thing.
5531 	 */
5532 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5533 		return;
5534 
5535 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5536 	if (!skb)
5537 		return;
5538 
5539 	skb_put(skb, wupl);
5540 
5541 	/* Ensure reads are 32-bit aligned */
5542 	wupl = roundup(wupl, 4);
5543 
5544 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5545 
5546 	skb->protocol = eth_type_trans(skb, netdev);
5547 	netif_rx(skb);
5548 }
5549 
igc_resume(struct device * dev)5550 static int __maybe_unused igc_resume(struct device *dev)
5551 {
5552 	struct pci_dev *pdev = to_pci_dev(dev);
5553 	struct net_device *netdev = pci_get_drvdata(pdev);
5554 	struct igc_adapter *adapter = netdev_priv(netdev);
5555 	struct igc_hw *hw = &adapter->hw;
5556 	u32 err, val;
5557 
5558 	pci_set_power_state(pdev, PCI_D0);
5559 	pci_restore_state(pdev);
5560 	pci_save_state(pdev);
5561 
5562 	if (!pci_device_is_present(pdev))
5563 		return -ENODEV;
5564 	err = pci_enable_device_mem(pdev);
5565 	if (err) {
5566 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5567 		return err;
5568 	}
5569 	pci_set_master(pdev);
5570 
5571 	pci_enable_wake(pdev, PCI_D3hot, 0);
5572 	pci_enable_wake(pdev, PCI_D3cold, 0);
5573 
5574 	if (igc_init_interrupt_scheme(adapter, true)) {
5575 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5576 		return -ENOMEM;
5577 	}
5578 
5579 	igc_reset(adapter);
5580 
5581 	/* let the f/w know that the h/w is now under the control of the
5582 	 * driver.
5583 	 */
5584 	igc_get_hw_control(adapter);
5585 
5586 	val = rd32(IGC_WUS);
5587 	if (val & WAKE_PKT_WUS)
5588 		igc_deliver_wake_packet(netdev);
5589 
5590 	wr32(IGC_WUS, ~0);
5591 
5592 	rtnl_lock();
5593 	if (!err && netif_running(netdev))
5594 		err = __igc_open(netdev, true);
5595 
5596 	if (!err)
5597 		netif_device_attach(netdev);
5598 	rtnl_unlock();
5599 
5600 	return err;
5601 }
5602 
igc_runtime_resume(struct device * dev)5603 static int __maybe_unused igc_runtime_resume(struct device *dev)
5604 {
5605 	return igc_resume(dev);
5606 }
5607 
igc_suspend(struct device * dev)5608 static int __maybe_unused igc_suspend(struct device *dev)
5609 {
5610 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5611 }
5612 
igc_runtime_idle(struct device * dev)5613 static int __maybe_unused igc_runtime_idle(struct device *dev)
5614 {
5615 	struct net_device *netdev = dev_get_drvdata(dev);
5616 	struct igc_adapter *adapter = netdev_priv(netdev);
5617 
5618 	if (!igc_has_link(adapter))
5619 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5620 
5621 	return -EBUSY;
5622 }
5623 #endif /* CONFIG_PM */
5624 
igc_shutdown(struct pci_dev * pdev)5625 static void igc_shutdown(struct pci_dev *pdev)
5626 {
5627 	bool wake;
5628 
5629 	__igc_shutdown(pdev, &wake, 0);
5630 
5631 	if (system_state == SYSTEM_POWER_OFF) {
5632 		pci_wake_from_d3(pdev, wake);
5633 		pci_set_power_state(pdev, PCI_D3hot);
5634 	}
5635 }
5636 
5637 /**
5638  *  igc_io_error_detected - called when PCI error is detected
5639  *  @pdev: Pointer to PCI device
5640  *  @state: The current PCI connection state
5641  *
5642  *  This function is called after a PCI bus error affecting
5643  *  this device has been detected.
5644  **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)5645 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5646 					      pci_channel_state_t state)
5647 {
5648 	struct net_device *netdev = pci_get_drvdata(pdev);
5649 	struct igc_adapter *adapter = netdev_priv(netdev);
5650 
5651 	netif_device_detach(netdev);
5652 
5653 	if (state == pci_channel_io_perm_failure)
5654 		return PCI_ERS_RESULT_DISCONNECT;
5655 
5656 	if (netif_running(netdev))
5657 		igc_down(adapter);
5658 	pci_disable_device(pdev);
5659 
5660 	/* Request a slot reset. */
5661 	return PCI_ERS_RESULT_NEED_RESET;
5662 }
5663 
5664 /**
5665  *  igc_io_slot_reset - called after the PCI bus has been reset.
5666  *  @pdev: Pointer to PCI device
5667  *
5668  *  Restart the card from scratch, as if from a cold-boot. Implementation
5669  *  resembles the first-half of the igc_resume routine.
5670  **/
igc_io_slot_reset(struct pci_dev * pdev)5671 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5672 {
5673 	struct net_device *netdev = pci_get_drvdata(pdev);
5674 	struct igc_adapter *adapter = netdev_priv(netdev);
5675 	struct igc_hw *hw = &adapter->hw;
5676 	pci_ers_result_t result;
5677 
5678 	if (pci_enable_device_mem(pdev)) {
5679 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5680 		result = PCI_ERS_RESULT_DISCONNECT;
5681 	} else {
5682 		pci_set_master(pdev);
5683 		pci_restore_state(pdev);
5684 		pci_save_state(pdev);
5685 
5686 		pci_enable_wake(pdev, PCI_D3hot, 0);
5687 		pci_enable_wake(pdev, PCI_D3cold, 0);
5688 
5689 		/* In case of PCI error, adapter loses its HW address
5690 		 * so we should re-assign it here.
5691 		 */
5692 		hw->hw_addr = adapter->io_addr;
5693 
5694 		igc_reset(adapter);
5695 		wr32(IGC_WUS, ~0);
5696 		result = PCI_ERS_RESULT_RECOVERED;
5697 	}
5698 
5699 	return result;
5700 }
5701 
5702 /**
5703  *  igc_io_resume - called when traffic can start to flow again.
5704  *  @pdev: Pointer to PCI device
5705  *
5706  *  This callback is called when the error recovery driver tells us that
5707  *  its OK to resume normal operation. Implementation resembles the
5708  *  second-half of the igc_resume routine.
5709  */
igc_io_resume(struct pci_dev * pdev)5710 static void igc_io_resume(struct pci_dev *pdev)
5711 {
5712 	struct net_device *netdev = pci_get_drvdata(pdev);
5713 	struct igc_adapter *adapter = netdev_priv(netdev);
5714 
5715 	rtnl_lock();
5716 	if (netif_running(netdev)) {
5717 		if (igc_open(netdev)) {
5718 			netdev_err(netdev, "igc_open failed after reset\n");
5719 			return;
5720 		}
5721 	}
5722 
5723 	netif_device_attach(netdev);
5724 
5725 	/* let the f/w know that the h/w is now under the control of the
5726 	 * driver.
5727 	 */
5728 	igc_get_hw_control(adapter);
5729 	rtnl_unlock();
5730 }
5731 
5732 static const struct pci_error_handlers igc_err_handler = {
5733 	.error_detected = igc_io_error_detected,
5734 	.slot_reset = igc_io_slot_reset,
5735 	.resume = igc_io_resume,
5736 };
5737 
5738 #ifdef CONFIG_PM
5739 static const struct dev_pm_ops igc_pm_ops = {
5740 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5741 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5742 			   igc_runtime_idle)
5743 };
5744 #endif
5745 
5746 static struct pci_driver igc_driver = {
5747 	.name     = igc_driver_name,
5748 	.id_table = igc_pci_tbl,
5749 	.probe    = igc_probe,
5750 	.remove   = igc_remove,
5751 #ifdef CONFIG_PM
5752 	.driver.pm = &igc_pm_ops,
5753 #endif
5754 	.shutdown = igc_shutdown,
5755 	.err_handler = &igc_err_handler,
5756 };
5757 
5758 /**
5759  * igc_reinit_queues - return error
5760  * @adapter: pointer to adapter structure
5761  */
igc_reinit_queues(struct igc_adapter * adapter)5762 int igc_reinit_queues(struct igc_adapter *adapter)
5763 {
5764 	struct net_device *netdev = adapter->netdev;
5765 	int err = 0;
5766 
5767 	if (netif_running(netdev))
5768 		igc_close(netdev);
5769 
5770 	igc_reset_interrupt_capability(adapter);
5771 
5772 	if (igc_init_interrupt_scheme(adapter, true)) {
5773 		netdev_err(netdev, "Unable to allocate memory for queues\n");
5774 		return -ENOMEM;
5775 	}
5776 
5777 	if (netif_running(netdev))
5778 		err = igc_open(netdev);
5779 
5780 	return err;
5781 }
5782 
5783 /**
5784  * igc_get_hw_dev - return device
5785  * @hw: pointer to hardware structure
5786  *
5787  * used by hardware layer to print debugging information
5788  */
igc_get_hw_dev(struct igc_hw * hw)5789 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5790 {
5791 	struct igc_adapter *adapter = hw->back;
5792 
5793 	return adapter->netdev;
5794 }
5795 
5796 /**
5797  * igc_init_module - Driver Registration Routine
5798  *
5799  * igc_init_module is the first routine called when the driver is
5800  * loaded. All it does is register with the PCI subsystem.
5801  */
igc_init_module(void)5802 static int __init igc_init_module(void)
5803 {
5804 	int ret;
5805 
5806 	pr_info("%s\n", igc_driver_string);
5807 	pr_info("%s\n", igc_copyright);
5808 
5809 	ret = pci_register_driver(&igc_driver);
5810 	return ret;
5811 }
5812 
5813 module_init(igc_init_module);
5814 
5815 /**
5816  * igc_exit_module - Driver Exit Cleanup Routine
5817  *
5818  * igc_exit_module is called just before the driver is removed
5819  * from memory.
5820  */
igc_exit_module(void)5821 static void __exit igc_exit_module(void)
5822 {
5823 	pci_unregister_driver(&igc_driver);
5824 }
5825 
5826 module_exit(igc_exit_module);
5827 /* igc_main.c */
5828