• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/mdio/mdio-i2c.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/of.h>
14 #include <linux/phy.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 
20 #include "sfp.h"
21 #include "swphy.h"
22 
23 enum {
24 	GPIO_MODDEF0,
25 	GPIO_LOS,
26 	GPIO_TX_FAULT,
27 	GPIO_TX_DISABLE,
28 	GPIO_RATE_SELECT,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36 
37 	SFP_E_INSERT = 0,
38 	SFP_E_REMOVE,
39 	SFP_E_DEV_ATTACH,
40 	SFP_E_DEV_DETACH,
41 	SFP_E_DEV_DOWN,
42 	SFP_E_DEV_UP,
43 	SFP_E_TX_FAULT,
44 	SFP_E_TX_CLEAR,
45 	SFP_E_LOS_HIGH,
46 	SFP_E_LOS_LOW,
47 	SFP_E_TIMEOUT,
48 
49 	SFP_MOD_EMPTY = 0,
50 	SFP_MOD_ERROR,
51 	SFP_MOD_PROBE,
52 	SFP_MOD_WAITDEV,
53 	SFP_MOD_HPOWER,
54 	SFP_MOD_WAITPWR,
55 	SFP_MOD_PRESENT,
56 
57 	SFP_DEV_DETACHED = 0,
58 	SFP_DEV_DOWN,
59 	SFP_DEV_UP,
60 
61 	SFP_S_DOWN = 0,
62 	SFP_S_FAIL,
63 	SFP_S_WAIT,
64 	SFP_S_INIT,
65 	SFP_S_INIT_PHY,
66 	SFP_S_INIT_TX_FAULT,
67 	SFP_S_WAIT_LOS,
68 	SFP_S_LINK_UP,
69 	SFP_S_TX_FAULT,
70 	SFP_S_REINIT,
71 	SFP_S_TX_DISABLE,
72 };
73 
74 static const char  * const mod_state_strings[] = {
75 	[SFP_MOD_EMPTY] = "empty",
76 	[SFP_MOD_ERROR] = "error",
77 	[SFP_MOD_PROBE] = "probe",
78 	[SFP_MOD_WAITDEV] = "waitdev",
79 	[SFP_MOD_HPOWER] = "hpower",
80 	[SFP_MOD_WAITPWR] = "waitpwr",
81 	[SFP_MOD_PRESENT] = "present",
82 };
83 
mod_state_to_str(unsigned short mod_state)84 static const char *mod_state_to_str(unsigned short mod_state)
85 {
86 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
87 		return "Unknown module state";
88 	return mod_state_strings[mod_state];
89 }
90 
91 static const char * const dev_state_strings[] = {
92 	[SFP_DEV_DETACHED] = "detached",
93 	[SFP_DEV_DOWN] = "down",
94 	[SFP_DEV_UP] = "up",
95 };
96 
dev_state_to_str(unsigned short dev_state)97 static const char *dev_state_to_str(unsigned short dev_state)
98 {
99 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
100 		return "Unknown device state";
101 	return dev_state_strings[dev_state];
102 }
103 
104 static const char * const event_strings[] = {
105 	[SFP_E_INSERT] = "insert",
106 	[SFP_E_REMOVE] = "remove",
107 	[SFP_E_DEV_ATTACH] = "dev_attach",
108 	[SFP_E_DEV_DETACH] = "dev_detach",
109 	[SFP_E_DEV_DOWN] = "dev_down",
110 	[SFP_E_DEV_UP] = "dev_up",
111 	[SFP_E_TX_FAULT] = "tx_fault",
112 	[SFP_E_TX_CLEAR] = "tx_clear",
113 	[SFP_E_LOS_HIGH] = "los_high",
114 	[SFP_E_LOS_LOW] = "los_low",
115 	[SFP_E_TIMEOUT] = "timeout",
116 };
117 
event_to_str(unsigned short event)118 static const char *event_to_str(unsigned short event)
119 {
120 	if (event >= ARRAY_SIZE(event_strings))
121 		return "Unknown event";
122 	return event_strings[event];
123 }
124 
125 static const char * const sm_state_strings[] = {
126 	[SFP_S_DOWN] = "down",
127 	[SFP_S_FAIL] = "fail",
128 	[SFP_S_WAIT] = "wait",
129 	[SFP_S_INIT] = "init",
130 	[SFP_S_INIT_PHY] = "init_phy",
131 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132 	[SFP_S_WAIT_LOS] = "wait_los",
133 	[SFP_S_LINK_UP] = "link_up",
134 	[SFP_S_TX_FAULT] = "tx_fault",
135 	[SFP_S_REINIT] = "reinit",
136 	[SFP_S_TX_DISABLE] = "tx_disable",
137 };
138 
sm_state_to_str(unsigned short sm_state)139 static const char *sm_state_to_str(unsigned short sm_state)
140 {
141 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
142 		return "Unknown state";
143 	return sm_state_strings[sm_state];
144 }
145 
146 static const char *gpio_of_names[] = {
147 	"mod-def0",
148 	"los",
149 	"tx-fault",
150 	"tx-disable",
151 	"rate-select0",
152 };
153 
154 static const enum gpiod_flags gpio_flags[] = {
155 	GPIOD_IN,
156 	GPIOD_IN,
157 	GPIOD_IN,
158 	GPIOD_ASIS,
159 	GPIOD_ASIS,
160 };
161 
162 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163  * non-cooled module to initialise its laser safety circuitry. We wait
164  * an initial T_WAIT period before we check the tx fault to give any PHY
165  * on board (for a copper SFP) time to initialise.
166  */
167 #define T_WAIT			msecs_to_jiffies(50)
168 #define T_START_UP		msecs_to_jiffies(300)
169 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
170 
171 /* t_reset is the time required to assert the TX_DISABLE signal to reset
172  * an indicated TX_FAULT.
173  */
174 #define T_RESET_US		10
175 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
176 
177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
178  * time. If the TX_FAULT signal is not deasserted after this number of
179  * attempts at clearing it, we decide that the module is faulty.
180  * N_FAULT is the same but after the module has initialised.
181  */
182 #define N_FAULT_INIT		5
183 #define N_FAULT			5
184 
185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186  * R_PHY_RETRY is the number of attempts.
187  */
188 #define T_PHY_RETRY		msecs_to_jiffies(50)
189 #define R_PHY_RETRY		12
190 
191 /* SFP module presence detection is poor: the three MOD DEF signals are
192  * the same length on the PCB, which means it's possible for MOD DEF 0 to
193  * connect before the I2C bus on MOD DEF 1/2.
194  *
195  * The SFF-8472 specifies t_serial ("Time from power on until module is
196  * ready for data transmission over the two wire serial bus.") as 300ms.
197  */
198 #define T_SERIAL		msecs_to_jiffies(300)
199 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
200 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
201 #define R_PROBE_RETRY_INIT	10
202 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
203 #define R_PROBE_RETRY_SLOW	12
204 
205 /* SFP modules appear to always have their PHY configured for bus address
206  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207  */
208 #define SFP_PHY_ADDR	22
209 
210 struct sff_data {
211 	unsigned int gpios;
212 	bool (*module_supported)(const struct sfp_eeprom_id *id);
213 };
214 
215 struct sfp {
216 	struct device *dev;
217 	struct i2c_adapter *i2c;
218 	struct mii_bus *i2c_mii;
219 	struct sfp_bus *sfp_bus;
220 	struct phy_device *mod_phy;
221 	const struct sff_data *type;
222 	size_t i2c_block_size;
223 	u32 max_power_mW;
224 
225 	unsigned int (*get_state)(struct sfp *);
226 	void (*set_state)(struct sfp *, unsigned int);
227 	int (*read)(struct sfp *, bool, u8, void *, size_t);
228 	int (*write)(struct sfp *, bool, u8, void *, size_t);
229 
230 	struct gpio_desc *gpio[GPIO_MAX];
231 	int gpio_irq[GPIO_MAX];
232 
233 	bool need_poll;
234 
235 	struct mutex st_mutex;			/* Protects state */
236 	unsigned int state_soft_mask;
237 	unsigned int state;
238 	struct delayed_work poll;
239 	struct delayed_work timeout;
240 	struct mutex sm_mutex;			/* Protects state machine */
241 	unsigned char sm_mod_state;
242 	unsigned char sm_mod_tries_init;
243 	unsigned char sm_mod_tries;
244 	unsigned char sm_dev_state;
245 	unsigned short sm_state;
246 	unsigned char sm_fault_retries;
247 	unsigned char sm_phy_retries;
248 
249 	struct sfp_eeprom_id id;
250 	unsigned int module_power_mW;
251 	unsigned int module_t_start_up;
252 	bool tx_fault_ignore;
253 
254 #if IS_ENABLED(CONFIG_HWMON)
255 	struct sfp_diag diag;
256 	struct delayed_work hwmon_probe;
257 	unsigned int hwmon_tries;
258 	struct device *hwmon_dev;
259 	char *hwmon_name;
260 #endif
261 
262 };
263 
sff_module_supported(const struct sfp_eeprom_id * id)264 static bool sff_module_supported(const struct sfp_eeprom_id *id)
265 {
266 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
267 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
268 }
269 
270 static const struct sff_data sff_data = {
271 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
272 	.module_supported = sff_module_supported,
273 };
274 
sfp_module_supported(const struct sfp_eeprom_id * id)275 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
276 {
277 	if (id->base.phys_id == SFF8024_ID_SFP &&
278 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
279 		return true;
280 
281 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
282 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
283 	 * as supported based on vendor name and pn match.
284 	 */
285 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
286 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
287 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
288 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
289 		return true;
290 
291 	return false;
292 }
293 
294 static const struct sff_data sfp_data = {
295 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
296 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
297 	.module_supported = sfp_module_supported,
298 };
299 
300 static const struct of_device_id sfp_of_match[] = {
301 	{ .compatible = "sff,sff", .data = &sff_data, },
302 	{ .compatible = "sff,sfp", .data = &sfp_data, },
303 	{ },
304 };
305 MODULE_DEVICE_TABLE(of, sfp_of_match);
306 
307 static unsigned long poll_jiffies;
308 
sfp_gpio_get_state(struct sfp * sfp)309 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
310 {
311 	unsigned int i, state, v;
312 
313 	for (i = state = 0; i < GPIO_MAX; i++) {
314 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
315 			continue;
316 
317 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
318 		if (v)
319 			state |= BIT(i);
320 	}
321 
322 	return state;
323 }
324 
sff_gpio_get_state(struct sfp * sfp)325 static unsigned int sff_gpio_get_state(struct sfp *sfp)
326 {
327 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
328 }
329 
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)330 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
331 {
332 	if (state & SFP_F_PRESENT) {
333 		/* If the module is present, drive the signals */
334 		if (sfp->gpio[GPIO_TX_DISABLE])
335 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
336 					       state & SFP_F_TX_DISABLE);
337 		if (state & SFP_F_RATE_SELECT)
338 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
339 					       state & SFP_F_RATE_SELECT);
340 	} else {
341 		/* Otherwise, let them float to the pull-ups */
342 		if (sfp->gpio[GPIO_TX_DISABLE])
343 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
344 		if (state & SFP_F_RATE_SELECT)
345 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
346 	}
347 }
348 
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)349 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
350 			size_t len)
351 {
352 	struct i2c_msg msgs[2];
353 	u8 bus_addr = a2 ? 0x51 : 0x50;
354 	size_t block_size = sfp->i2c_block_size;
355 	size_t this_len;
356 	int ret;
357 
358 	msgs[0].addr = bus_addr;
359 	msgs[0].flags = 0;
360 	msgs[0].len = 1;
361 	msgs[0].buf = &dev_addr;
362 	msgs[1].addr = bus_addr;
363 	msgs[1].flags = I2C_M_RD;
364 	msgs[1].len = len;
365 	msgs[1].buf = buf;
366 
367 	while (len) {
368 		this_len = len;
369 		if (this_len > block_size)
370 			this_len = block_size;
371 
372 		msgs[1].len = this_len;
373 
374 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
375 		if (ret < 0)
376 			return ret;
377 
378 		if (ret != ARRAY_SIZE(msgs))
379 			break;
380 
381 		msgs[1].buf += this_len;
382 		dev_addr += this_len;
383 		len -= this_len;
384 	}
385 
386 	return msgs[1].buf - (u8 *)buf;
387 }
388 
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)389 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
390 	size_t len)
391 {
392 	struct i2c_msg msgs[1];
393 	u8 bus_addr = a2 ? 0x51 : 0x50;
394 	int ret;
395 
396 	msgs[0].addr = bus_addr;
397 	msgs[0].flags = 0;
398 	msgs[0].len = 1 + len;
399 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
400 	if (!msgs[0].buf)
401 		return -ENOMEM;
402 
403 	msgs[0].buf[0] = dev_addr;
404 	memcpy(&msgs[0].buf[1], buf, len);
405 
406 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
407 
408 	kfree(msgs[0].buf);
409 
410 	if (ret < 0)
411 		return ret;
412 
413 	return ret == ARRAY_SIZE(msgs) ? len : 0;
414 }
415 
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)416 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
417 {
418 	struct mii_bus *i2c_mii;
419 	int ret;
420 
421 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
422 		return -EINVAL;
423 
424 	sfp->i2c = i2c;
425 	sfp->read = sfp_i2c_read;
426 	sfp->write = sfp_i2c_write;
427 
428 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
429 	if (IS_ERR(i2c_mii))
430 		return PTR_ERR(i2c_mii);
431 
432 	i2c_mii->name = "SFP I2C Bus";
433 	i2c_mii->phy_mask = ~0;
434 
435 	ret = mdiobus_register(i2c_mii);
436 	if (ret < 0) {
437 		mdiobus_free(i2c_mii);
438 		return ret;
439 	}
440 
441 	sfp->i2c_mii = i2c_mii;
442 
443 	return 0;
444 }
445 
446 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)447 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
448 {
449 	return sfp->read(sfp, a2, addr, buf, len);
450 }
451 
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)452 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
453 {
454 	return sfp->write(sfp, a2, addr, buf, len);
455 }
456 
sfp_soft_get_state(struct sfp * sfp)457 static unsigned int sfp_soft_get_state(struct sfp *sfp)
458 {
459 	unsigned int state = 0;
460 	u8 status;
461 	int ret;
462 
463 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
464 	if (ret == sizeof(status)) {
465 		if (status & SFP_STATUS_RX_LOS)
466 			state |= SFP_F_LOS;
467 		if (status & SFP_STATUS_TX_FAULT)
468 			state |= SFP_F_TX_FAULT;
469 	} else {
470 		dev_err_ratelimited(sfp->dev,
471 				    "failed to read SFP soft status: %d\n",
472 				    ret);
473 		/* Preserve the current state */
474 		state = sfp->state;
475 	}
476 
477 	return state & sfp->state_soft_mask;
478 }
479 
sfp_soft_set_state(struct sfp * sfp,unsigned int state)480 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
481 {
482 	u8 status;
483 
484 	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
485 		     sizeof(status)) {
486 		if (state & SFP_F_TX_DISABLE)
487 			status |= SFP_STATUS_TX_DISABLE_FORCE;
488 		else
489 			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
490 
491 		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
492 	}
493 }
494 
sfp_soft_start_poll(struct sfp * sfp)495 static void sfp_soft_start_poll(struct sfp *sfp)
496 {
497 	const struct sfp_eeprom_id *id = &sfp->id;
498 
499 	sfp->state_soft_mask = 0;
500 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
501 	    !sfp->gpio[GPIO_TX_DISABLE])
502 		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
503 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
504 	    !sfp->gpio[GPIO_TX_FAULT])
505 		sfp->state_soft_mask |= SFP_F_TX_FAULT;
506 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
507 	    !sfp->gpio[GPIO_LOS])
508 		sfp->state_soft_mask |= SFP_F_LOS;
509 
510 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
511 	    !sfp->need_poll)
512 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
513 }
514 
sfp_soft_stop_poll(struct sfp * sfp)515 static void sfp_soft_stop_poll(struct sfp *sfp)
516 {
517 	sfp->state_soft_mask = 0;
518 }
519 
sfp_get_state(struct sfp * sfp)520 static unsigned int sfp_get_state(struct sfp *sfp)
521 {
522 	unsigned int state = sfp->get_state(sfp);
523 
524 	if (state & SFP_F_PRESENT &&
525 	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
526 		state |= sfp_soft_get_state(sfp);
527 
528 	return state;
529 }
530 
sfp_set_state(struct sfp * sfp,unsigned int state)531 static void sfp_set_state(struct sfp *sfp, unsigned int state)
532 {
533 	sfp->set_state(sfp, state);
534 
535 	if (state & SFP_F_PRESENT &&
536 	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
537 		sfp_soft_set_state(sfp, state);
538 }
539 
sfp_check(void * buf,size_t len)540 static unsigned int sfp_check(void *buf, size_t len)
541 {
542 	u8 *p, check;
543 
544 	for (p = buf, check = 0; len; p++, len--)
545 		check += *p;
546 
547 	return check;
548 }
549 
550 /* hwmon */
551 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)552 static umode_t sfp_hwmon_is_visible(const void *data,
553 				    enum hwmon_sensor_types type,
554 				    u32 attr, int channel)
555 {
556 	const struct sfp *sfp = data;
557 
558 	switch (type) {
559 	case hwmon_temp:
560 		switch (attr) {
561 		case hwmon_temp_min_alarm:
562 		case hwmon_temp_max_alarm:
563 		case hwmon_temp_lcrit_alarm:
564 		case hwmon_temp_crit_alarm:
565 		case hwmon_temp_min:
566 		case hwmon_temp_max:
567 		case hwmon_temp_lcrit:
568 		case hwmon_temp_crit:
569 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
570 				return 0;
571 			fallthrough;
572 		case hwmon_temp_input:
573 		case hwmon_temp_label:
574 			return 0444;
575 		default:
576 			return 0;
577 		}
578 	case hwmon_in:
579 		switch (attr) {
580 		case hwmon_in_min_alarm:
581 		case hwmon_in_max_alarm:
582 		case hwmon_in_lcrit_alarm:
583 		case hwmon_in_crit_alarm:
584 		case hwmon_in_min:
585 		case hwmon_in_max:
586 		case hwmon_in_lcrit:
587 		case hwmon_in_crit:
588 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
589 				return 0;
590 			fallthrough;
591 		case hwmon_in_input:
592 		case hwmon_in_label:
593 			return 0444;
594 		default:
595 			return 0;
596 		}
597 	case hwmon_curr:
598 		switch (attr) {
599 		case hwmon_curr_min_alarm:
600 		case hwmon_curr_max_alarm:
601 		case hwmon_curr_lcrit_alarm:
602 		case hwmon_curr_crit_alarm:
603 		case hwmon_curr_min:
604 		case hwmon_curr_max:
605 		case hwmon_curr_lcrit:
606 		case hwmon_curr_crit:
607 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
608 				return 0;
609 			fallthrough;
610 		case hwmon_curr_input:
611 		case hwmon_curr_label:
612 			return 0444;
613 		default:
614 			return 0;
615 		}
616 	case hwmon_power:
617 		/* External calibration of receive power requires
618 		 * floating point arithmetic. Doing that in the kernel
619 		 * is not easy, so just skip it. If the module does
620 		 * not require external calibration, we can however
621 		 * show receiver power, since FP is then not needed.
622 		 */
623 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
624 		    channel == 1)
625 			return 0;
626 		switch (attr) {
627 		case hwmon_power_min_alarm:
628 		case hwmon_power_max_alarm:
629 		case hwmon_power_lcrit_alarm:
630 		case hwmon_power_crit_alarm:
631 		case hwmon_power_min:
632 		case hwmon_power_max:
633 		case hwmon_power_lcrit:
634 		case hwmon_power_crit:
635 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
636 				return 0;
637 			fallthrough;
638 		case hwmon_power_input:
639 		case hwmon_power_label:
640 			return 0444;
641 		default:
642 			return 0;
643 		}
644 	default:
645 		return 0;
646 	}
647 }
648 
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)649 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
650 {
651 	__be16 val;
652 	int err;
653 
654 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
655 	if (err < 0)
656 		return err;
657 
658 	*value = be16_to_cpu(val);
659 
660 	return 0;
661 }
662 
sfp_hwmon_to_rx_power(long * value)663 static void sfp_hwmon_to_rx_power(long *value)
664 {
665 	*value = DIV_ROUND_CLOSEST(*value, 10);
666 }
667 
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)668 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
669 				long *value)
670 {
671 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
672 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
673 }
674 
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)675 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
676 {
677 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
678 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
679 
680 	if (*value >= 0x8000)
681 		*value -= 0x10000;
682 
683 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
684 }
685 
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)686 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
687 {
688 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
689 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
690 
691 	*value = DIV_ROUND_CLOSEST(*value, 10);
692 }
693 
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)694 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
695 {
696 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
697 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
698 
699 	*value = DIV_ROUND_CLOSEST(*value, 500);
700 }
701 
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)702 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
703 {
704 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
705 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
706 
707 	*value = DIV_ROUND_CLOSEST(*value, 10);
708 }
709 
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)710 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
711 {
712 	int err;
713 
714 	err = sfp_hwmon_read_sensor(sfp, reg, value);
715 	if (err < 0)
716 		return err;
717 
718 	sfp_hwmon_calibrate_temp(sfp, value);
719 
720 	return 0;
721 }
722 
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)723 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
724 {
725 	int err;
726 
727 	err = sfp_hwmon_read_sensor(sfp, reg, value);
728 	if (err < 0)
729 		return err;
730 
731 	sfp_hwmon_calibrate_vcc(sfp, value);
732 
733 	return 0;
734 }
735 
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)736 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
737 {
738 	int err;
739 
740 	err = sfp_hwmon_read_sensor(sfp, reg, value);
741 	if (err < 0)
742 		return err;
743 
744 	sfp_hwmon_calibrate_bias(sfp, value);
745 
746 	return 0;
747 }
748 
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)749 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
750 {
751 	int err;
752 
753 	err = sfp_hwmon_read_sensor(sfp, reg, value);
754 	if (err < 0)
755 		return err;
756 
757 	sfp_hwmon_calibrate_tx_power(sfp, value);
758 
759 	return 0;
760 }
761 
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)762 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
763 {
764 	int err;
765 
766 	err = sfp_hwmon_read_sensor(sfp, reg, value);
767 	if (err < 0)
768 		return err;
769 
770 	sfp_hwmon_to_rx_power(value);
771 
772 	return 0;
773 }
774 
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)775 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
776 {
777 	u8 status;
778 	int err;
779 
780 	switch (attr) {
781 	case hwmon_temp_input:
782 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
783 
784 	case hwmon_temp_lcrit:
785 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
786 		sfp_hwmon_calibrate_temp(sfp, value);
787 		return 0;
788 
789 	case hwmon_temp_min:
790 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
791 		sfp_hwmon_calibrate_temp(sfp, value);
792 		return 0;
793 	case hwmon_temp_max:
794 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
795 		sfp_hwmon_calibrate_temp(sfp, value);
796 		return 0;
797 
798 	case hwmon_temp_crit:
799 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
800 		sfp_hwmon_calibrate_temp(sfp, value);
801 		return 0;
802 
803 	case hwmon_temp_lcrit_alarm:
804 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
805 		if (err < 0)
806 			return err;
807 
808 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
809 		return 0;
810 
811 	case hwmon_temp_min_alarm:
812 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
813 		if (err < 0)
814 			return err;
815 
816 		*value = !!(status & SFP_WARN0_TEMP_LOW);
817 		return 0;
818 
819 	case hwmon_temp_max_alarm:
820 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
821 		if (err < 0)
822 			return err;
823 
824 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
825 		return 0;
826 
827 	case hwmon_temp_crit_alarm:
828 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
829 		if (err < 0)
830 			return err;
831 
832 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
833 		return 0;
834 	default:
835 		return -EOPNOTSUPP;
836 	}
837 
838 	return -EOPNOTSUPP;
839 }
840 
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)841 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
842 {
843 	u8 status;
844 	int err;
845 
846 	switch (attr) {
847 	case hwmon_in_input:
848 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
849 
850 	case hwmon_in_lcrit:
851 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
852 		sfp_hwmon_calibrate_vcc(sfp, value);
853 		return 0;
854 
855 	case hwmon_in_min:
856 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
857 		sfp_hwmon_calibrate_vcc(sfp, value);
858 		return 0;
859 
860 	case hwmon_in_max:
861 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
862 		sfp_hwmon_calibrate_vcc(sfp, value);
863 		return 0;
864 
865 	case hwmon_in_crit:
866 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
867 		sfp_hwmon_calibrate_vcc(sfp, value);
868 		return 0;
869 
870 	case hwmon_in_lcrit_alarm:
871 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
872 		if (err < 0)
873 			return err;
874 
875 		*value = !!(status & SFP_ALARM0_VCC_LOW);
876 		return 0;
877 
878 	case hwmon_in_min_alarm:
879 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
880 		if (err < 0)
881 			return err;
882 
883 		*value = !!(status & SFP_WARN0_VCC_LOW);
884 		return 0;
885 
886 	case hwmon_in_max_alarm:
887 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
888 		if (err < 0)
889 			return err;
890 
891 		*value = !!(status & SFP_WARN0_VCC_HIGH);
892 		return 0;
893 
894 	case hwmon_in_crit_alarm:
895 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
896 		if (err < 0)
897 			return err;
898 
899 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
900 		return 0;
901 	default:
902 		return -EOPNOTSUPP;
903 	}
904 
905 	return -EOPNOTSUPP;
906 }
907 
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)908 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
909 {
910 	u8 status;
911 	int err;
912 
913 	switch (attr) {
914 	case hwmon_curr_input:
915 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
916 
917 	case hwmon_curr_lcrit:
918 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
919 		sfp_hwmon_calibrate_bias(sfp, value);
920 		return 0;
921 
922 	case hwmon_curr_min:
923 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
924 		sfp_hwmon_calibrate_bias(sfp, value);
925 		return 0;
926 
927 	case hwmon_curr_max:
928 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
929 		sfp_hwmon_calibrate_bias(sfp, value);
930 		return 0;
931 
932 	case hwmon_curr_crit:
933 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
934 		sfp_hwmon_calibrate_bias(sfp, value);
935 		return 0;
936 
937 	case hwmon_curr_lcrit_alarm:
938 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
939 		if (err < 0)
940 			return err;
941 
942 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
943 		return 0;
944 
945 	case hwmon_curr_min_alarm:
946 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
947 		if (err < 0)
948 			return err;
949 
950 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
951 		return 0;
952 
953 	case hwmon_curr_max_alarm:
954 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
955 		if (err < 0)
956 			return err;
957 
958 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
959 		return 0;
960 
961 	case hwmon_curr_crit_alarm:
962 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
963 		if (err < 0)
964 			return err;
965 
966 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
967 		return 0;
968 	default:
969 		return -EOPNOTSUPP;
970 	}
971 
972 	return -EOPNOTSUPP;
973 }
974 
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)975 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
976 {
977 	u8 status;
978 	int err;
979 
980 	switch (attr) {
981 	case hwmon_power_input:
982 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
983 
984 	case hwmon_power_lcrit:
985 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
986 		sfp_hwmon_calibrate_tx_power(sfp, value);
987 		return 0;
988 
989 	case hwmon_power_min:
990 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
991 		sfp_hwmon_calibrate_tx_power(sfp, value);
992 		return 0;
993 
994 	case hwmon_power_max:
995 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
996 		sfp_hwmon_calibrate_tx_power(sfp, value);
997 		return 0;
998 
999 	case hwmon_power_crit:
1000 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1001 		sfp_hwmon_calibrate_tx_power(sfp, value);
1002 		return 0;
1003 
1004 	case hwmon_power_lcrit_alarm:
1005 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1006 		if (err < 0)
1007 			return err;
1008 
1009 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1010 		return 0;
1011 
1012 	case hwmon_power_min_alarm:
1013 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1014 		if (err < 0)
1015 			return err;
1016 
1017 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1018 		return 0;
1019 
1020 	case hwmon_power_max_alarm:
1021 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1022 		if (err < 0)
1023 			return err;
1024 
1025 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1026 		return 0;
1027 
1028 	case hwmon_power_crit_alarm:
1029 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1030 		if (err < 0)
1031 			return err;
1032 
1033 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1034 		return 0;
1035 	default:
1036 		return -EOPNOTSUPP;
1037 	}
1038 
1039 	return -EOPNOTSUPP;
1040 }
1041 
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1042 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1043 {
1044 	u8 status;
1045 	int err;
1046 
1047 	switch (attr) {
1048 	case hwmon_power_input:
1049 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1050 
1051 	case hwmon_power_lcrit:
1052 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1053 		sfp_hwmon_to_rx_power(value);
1054 		return 0;
1055 
1056 	case hwmon_power_min:
1057 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1058 		sfp_hwmon_to_rx_power(value);
1059 		return 0;
1060 
1061 	case hwmon_power_max:
1062 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1063 		sfp_hwmon_to_rx_power(value);
1064 		return 0;
1065 
1066 	case hwmon_power_crit:
1067 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1068 		sfp_hwmon_to_rx_power(value);
1069 		return 0;
1070 
1071 	case hwmon_power_lcrit_alarm:
1072 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1073 		if (err < 0)
1074 			return err;
1075 
1076 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1077 		return 0;
1078 
1079 	case hwmon_power_min_alarm:
1080 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1081 		if (err < 0)
1082 			return err;
1083 
1084 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1085 		return 0;
1086 
1087 	case hwmon_power_max_alarm:
1088 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1089 		if (err < 0)
1090 			return err;
1091 
1092 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1093 		return 0;
1094 
1095 	case hwmon_power_crit_alarm:
1096 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1097 		if (err < 0)
1098 			return err;
1099 
1100 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1101 		return 0;
1102 	default:
1103 		return -EOPNOTSUPP;
1104 	}
1105 
1106 	return -EOPNOTSUPP;
1107 }
1108 
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1109 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1110 			  u32 attr, int channel, long *value)
1111 {
1112 	struct sfp *sfp = dev_get_drvdata(dev);
1113 
1114 	switch (type) {
1115 	case hwmon_temp:
1116 		return sfp_hwmon_temp(sfp, attr, value);
1117 	case hwmon_in:
1118 		return sfp_hwmon_vcc(sfp, attr, value);
1119 	case hwmon_curr:
1120 		return sfp_hwmon_bias(sfp, attr, value);
1121 	case hwmon_power:
1122 		switch (channel) {
1123 		case 0:
1124 			return sfp_hwmon_tx_power(sfp, attr, value);
1125 		case 1:
1126 			return sfp_hwmon_rx_power(sfp, attr, value);
1127 		default:
1128 			return -EOPNOTSUPP;
1129 		}
1130 	default:
1131 		return -EOPNOTSUPP;
1132 	}
1133 }
1134 
1135 static const char *const sfp_hwmon_power_labels[] = {
1136 	"TX_power",
1137 	"RX_power",
1138 };
1139 
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1140 static int sfp_hwmon_read_string(struct device *dev,
1141 				 enum hwmon_sensor_types type,
1142 				 u32 attr, int channel, const char **str)
1143 {
1144 	switch (type) {
1145 	case hwmon_curr:
1146 		switch (attr) {
1147 		case hwmon_curr_label:
1148 			*str = "bias";
1149 			return 0;
1150 		default:
1151 			return -EOPNOTSUPP;
1152 		}
1153 		break;
1154 	case hwmon_temp:
1155 		switch (attr) {
1156 		case hwmon_temp_label:
1157 			*str = "temperature";
1158 			return 0;
1159 		default:
1160 			return -EOPNOTSUPP;
1161 		}
1162 		break;
1163 	case hwmon_in:
1164 		switch (attr) {
1165 		case hwmon_in_label:
1166 			*str = "VCC";
1167 			return 0;
1168 		default:
1169 			return -EOPNOTSUPP;
1170 		}
1171 		break;
1172 	case hwmon_power:
1173 		switch (attr) {
1174 		case hwmon_power_label:
1175 			*str = sfp_hwmon_power_labels[channel];
1176 			return 0;
1177 		default:
1178 			return -EOPNOTSUPP;
1179 		}
1180 		break;
1181 	default:
1182 		return -EOPNOTSUPP;
1183 	}
1184 
1185 	return -EOPNOTSUPP;
1186 }
1187 
1188 static const struct hwmon_ops sfp_hwmon_ops = {
1189 	.is_visible = sfp_hwmon_is_visible,
1190 	.read = sfp_hwmon_read,
1191 	.read_string = sfp_hwmon_read_string,
1192 };
1193 
1194 static u32 sfp_hwmon_chip_config[] = {
1195 	HWMON_C_REGISTER_TZ,
1196 	0,
1197 };
1198 
1199 static const struct hwmon_channel_info sfp_hwmon_chip = {
1200 	.type = hwmon_chip,
1201 	.config = sfp_hwmon_chip_config,
1202 };
1203 
1204 static u32 sfp_hwmon_temp_config[] = {
1205 	HWMON_T_INPUT |
1206 	HWMON_T_MAX | HWMON_T_MIN |
1207 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1208 	HWMON_T_CRIT | HWMON_T_LCRIT |
1209 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1210 	HWMON_T_LABEL,
1211 	0,
1212 };
1213 
1214 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1215 	.type = hwmon_temp,
1216 	.config = sfp_hwmon_temp_config,
1217 };
1218 
1219 static u32 sfp_hwmon_vcc_config[] = {
1220 	HWMON_I_INPUT |
1221 	HWMON_I_MAX | HWMON_I_MIN |
1222 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1223 	HWMON_I_CRIT | HWMON_I_LCRIT |
1224 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1225 	HWMON_I_LABEL,
1226 	0,
1227 };
1228 
1229 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1230 	.type = hwmon_in,
1231 	.config = sfp_hwmon_vcc_config,
1232 };
1233 
1234 static u32 sfp_hwmon_bias_config[] = {
1235 	HWMON_C_INPUT |
1236 	HWMON_C_MAX | HWMON_C_MIN |
1237 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1238 	HWMON_C_CRIT | HWMON_C_LCRIT |
1239 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1240 	HWMON_C_LABEL,
1241 	0,
1242 };
1243 
1244 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1245 	.type = hwmon_curr,
1246 	.config = sfp_hwmon_bias_config,
1247 };
1248 
1249 static u32 sfp_hwmon_power_config[] = {
1250 	/* Transmit power */
1251 	HWMON_P_INPUT |
1252 	HWMON_P_MAX | HWMON_P_MIN |
1253 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1254 	HWMON_P_CRIT | HWMON_P_LCRIT |
1255 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1256 	HWMON_P_LABEL,
1257 	/* Receive power */
1258 	HWMON_P_INPUT |
1259 	HWMON_P_MAX | HWMON_P_MIN |
1260 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1261 	HWMON_P_CRIT | HWMON_P_LCRIT |
1262 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1263 	HWMON_P_LABEL,
1264 	0,
1265 };
1266 
1267 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1268 	.type = hwmon_power,
1269 	.config = sfp_hwmon_power_config,
1270 };
1271 
1272 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1273 	&sfp_hwmon_chip,
1274 	&sfp_hwmon_vcc_channel_info,
1275 	&sfp_hwmon_temp_channel_info,
1276 	&sfp_hwmon_bias_channel_info,
1277 	&sfp_hwmon_power_channel_info,
1278 	NULL,
1279 };
1280 
1281 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1282 	.ops = &sfp_hwmon_ops,
1283 	.info = sfp_hwmon_info,
1284 };
1285 
sfp_hwmon_probe(struct work_struct * work)1286 static void sfp_hwmon_probe(struct work_struct *work)
1287 {
1288 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1289 	int err, i;
1290 
1291 	/* hwmon interface needs to access 16bit registers in atomic way to
1292 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1293 	 * possible to guarantee coherency because EEPROM is broken in such way
1294 	 * that does not support atomic 16bit read operation then we have to
1295 	 * skip registration of hwmon device.
1296 	 */
1297 	if (sfp->i2c_block_size < 2) {
1298 		dev_info(sfp->dev,
1299 			 "skipping hwmon device registration due to broken EEPROM\n");
1300 		dev_info(sfp->dev,
1301 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1302 		return;
1303 	}
1304 
1305 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1306 	if (err < 0) {
1307 		if (sfp->hwmon_tries--) {
1308 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1309 					 T_PROBE_RETRY_SLOW);
1310 		} else {
1311 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1312 		}
1313 		return;
1314 	}
1315 
1316 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1317 	if (!sfp->hwmon_name) {
1318 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1319 		return;
1320 	}
1321 
1322 	for (i = 0; sfp->hwmon_name[i]; i++)
1323 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1324 			sfp->hwmon_name[i] = '_';
1325 
1326 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1327 							 sfp->hwmon_name, sfp,
1328 							 &sfp_hwmon_chip_info,
1329 							 NULL);
1330 	if (IS_ERR(sfp->hwmon_dev))
1331 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1332 			PTR_ERR(sfp->hwmon_dev));
1333 }
1334 
sfp_hwmon_insert(struct sfp * sfp)1335 static int sfp_hwmon_insert(struct sfp *sfp)
1336 {
1337 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1338 		return 0;
1339 
1340 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1341 		return 0;
1342 
1343 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1344 		/* This driver in general does not support address
1345 		 * change.
1346 		 */
1347 		return 0;
1348 
1349 	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1350 	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1351 
1352 	return 0;
1353 }
1354 
sfp_hwmon_remove(struct sfp * sfp)1355 static void sfp_hwmon_remove(struct sfp *sfp)
1356 {
1357 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1358 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1359 		hwmon_device_unregister(sfp->hwmon_dev);
1360 		sfp->hwmon_dev = NULL;
1361 		kfree(sfp->hwmon_name);
1362 	}
1363 }
1364 
sfp_hwmon_init(struct sfp * sfp)1365 static int sfp_hwmon_init(struct sfp *sfp)
1366 {
1367 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1368 
1369 	return 0;
1370 }
1371 
sfp_hwmon_exit(struct sfp * sfp)1372 static void sfp_hwmon_exit(struct sfp *sfp)
1373 {
1374 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1375 }
1376 #else
sfp_hwmon_insert(struct sfp * sfp)1377 static int sfp_hwmon_insert(struct sfp *sfp)
1378 {
1379 	return 0;
1380 }
1381 
sfp_hwmon_remove(struct sfp * sfp)1382 static void sfp_hwmon_remove(struct sfp *sfp)
1383 {
1384 }
1385 
sfp_hwmon_init(struct sfp * sfp)1386 static int sfp_hwmon_init(struct sfp *sfp)
1387 {
1388 	return 0;
1389 }
1390 
sfp_hwmon_exit(struct sfp * sfp)1391 static void sfp_hwmon_exit(struct sfp *sfp)
1392 {
1393 }
1394 #endif
1395 
1396 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1397 static void sfp_module_tx_disable(struct sfp *sfp)
1398 {
1399 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1400 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1401 	sfp->state |= SFP_F_TX_DISABLE;
1402 	sfp_set_state(sfp, sfp->state);
1403 }
1404 
sfp_module_tx_enable(struct sfp * sfp)1405 static void sfp_module_tx_enable(struct sfp *sfp)
1406 {
1407 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1408 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1409 	sfp->state &= ~SFP_F_TX_DISABLE;
1410 	sfp_set_state(sfp, sfp->state);
1411 }
1412 
sfp_module_tx_fault_reset(struct sfp * sfp)1413 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1414 {
1415 	unsigned int state = sfp->state;
1416 
1417 	if (state & SFP_F_TX_DISABLE)
1418 		return;
1419 
1420 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1421 
1422 	udelay(T_RESET_US);
1423 
1424 	sfp_set_state(sfp, state);
1425 }
1426 
1427 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1428 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1429 {
1430 	if (timeout)
1431 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1432 				 timeout);
1433 	else
1434 		cancel_delayed_work(&sfp->timeout);
1435 }
1436 
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1437 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1438 			unsigned int timeout)
1439 {
1440 	sfp->sm_state = state;
1441 	sfp_sm_set_timer(sfp, timeout);
1442 }
1443 
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1444 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1445 			    unsigned int timeout)
1446 {
1447 	sfp->sm_mod_state = state;
1448 	sfp_sm_set_timer(sfp, timeout);
1449 }
1450 
sfp_sm_phy_detach(struct sfp * sfp)1451 static void sfp_sm_phy_detach(struct sfp *sfp)
1452 {
1453 	sfp_remove_phy(sfp->sfp_bus);
1454 	phy_device_remove(sfp->mod_phy);
1455 	phy_device_free(sfp->mod_phy);
1456 	sfp->mod_phy = NULL;
1457 }
1458 
sfp_sm_probe_phy(struct sfp * sfp,bool is_c45)1459 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1460 {
1461 	struct phy_device *phy;
1462 	int err;
1463 
1464 	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1465 	if (phy == ERR_PTR(-ENODEV))
1466 		return PTR_ERR(phy);
1467 	if (IS_ERR(phy)) {
1468 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1469 		return PTR_ERR(phy);
1470 	}
1471 
1472 	err = phy_device_register(phy);
1473 	if (err) {
1474 		phy_device_free(phy);
1475 		dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1476 		return err;
1477 	}
1478 
1479 	err = sfp_add_phy(sfp->sfp_bus, phy);
1480 	if (err) {
1481 		phy_device_remove(phy);
1482 		phy_device_free(phy);
1483 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1484 		return err;
1485 	}
1486 
1487 	sfp->mod_phy = phy;
1488 
1489 	return 0;
1490 }
1491 
sfp_sm_link_up(struct sfp * sfp)1492 static void sfp_sm_link_up(struct sfp *sfp)
1493 {
1494 	sfp_link_up(sfp->sfp_bus);
1495 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1496 }
1497 
sfp_sm_link_down(struct sfp * sfp)1498 static void sfp_sm_link_down(struct sfp *sfp)
1499 {
1500 	sfp_link_down(sfp->sfp_bus);
1501 }
1502 
sfp_sm_link_check_los(struct sfp * sfp)1503 static void sfp_sm_link_check_los(struct sfp *sfp)
1504 {
1505 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1506 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1507 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1508 	bool los = false;
1509 
1510 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1511 	 * are set, we assume that no LOS signal is available. If both are
1512 	 * set, we assume LOS is not implemented (and is meaningless.)
1513 	 */
1514 	if (los_options == los_inverted)
1515 		los = !(sfp->state & SFP_F_LOS);
1516 	else if (los_options == los_normal)
1517 		los = !!(sfp->state & SFP_F_LOS);
1518 
1519 	if (los)
1520 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1521 	else
1522 		sfp_sm_link_up(sfp);
1523 }
1524 
sfp_los_event_active(struct sfp * sfp,unsigned int event)1525 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1526 {
1527 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1528 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1529 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1530 
1531 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1532 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1533 }
1534 
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1535 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1536 {
1537 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1538 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1539 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1540 
1541 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1542 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1543 }
1544 
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1545 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1546 {
1547 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1548 		dev_err(sfp->dev,
1549 			"module persistently indicates fault, disabling\n");
1550 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1551 	} else {
1552 		if (warn)
1553 			dev_err(sfp->dev, "module transmit fault indicated\n");
1554 
1555 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1556 	}
1557 }
1558 
1559 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1560  * normally sits at I2C bus address 0x56, and may either be a clause 22
1561  * or clause 45 PHY.
1562  *
1563  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1564  * negotiation enabled, but some may be in 1000base-X - which is for the
1565  * PHY driver to determine.
1566  *
1567  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1568  * mode according to the negotiated line speed.
1569  */
sfp_sm_probe_for_phy(struct sfp * sfp)1570 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1571 {
1572 	int err = 0;
1573 
1574 	switch (sfp->id.base.extended_cc) {
1575 	case SFF8024_ECC_10GBASE_T_SFI:
1576 	case SFF8024_ECC_10GBASE_T_SR:
1577 	case SFF8024_ECC_5GBASE_T:
1578 	case SFF8024_ECC_2_5GBASE_T:
1579 		err = sfp_sm_probe_phy(sfp, true);
1580 		break;
1581 
1582 	default:
1583 		if (sfp->id.base.e1000_base_t)
1584 			err = sfp_sm_probe_phy(sfp, false);
1585 		break;
1586 	}
1587 	return err;
1588 }
1589 
sfp_module_parse_power(struct sfp * sfp)1590 static int sfp_module_parse_power(struct sfp *sfp)
1591 {
1592 	u32 power_mW = 1000;
1593 	bool supports_a2;
1594 
1595 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1596 		power_mW = 1500;
1597 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1598 		power_mW = 2000;
1599 
1600 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1601 				SFP_SFF8472_COMPLIANCE_NONE ||
1602 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1603 
1604 	if (power_mW > sfp->max_power_mW) {
1605 		/* Module power specification exceeds the allowed maximum. */
1606 		if (!supports_a2) {
1607 			/* The module appears not to implement bus address
1608 			 * 0xa2, so assume that the module powers up in the
1609 			 * indicated mode.
1610 			 */
1611 			dev_err(sfp->dev,
1612 				"Host does not support %u.%uW modules\n",
1613 				power_mW / 1000, (power_mW / 100) % 10);
1614 			return -EINVAL;
1615 		} else {
1616 			dev_warn(sfp->dev,
1617 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1618 				 power_mW / 1000, (power_mW / 100) % 10);
1619 			return 0;
1620 		}
1621 	}
1622 
1623 	if (power_mW <= 1000) {
1624 		/* Modules below 1W do not require a power change sequence */
1625 		sfp->module_power_mW = power_mW;
1626 		return 0;
1627 	}
1628 
1629 	if (!supports_a2) {
1630 		/* The module power level is below the host maximum and the
1631 		 * module appears not to implement bus address 0xa2, so assume
1632 		 * that the module powers up in the indicated mode.
1633 		 */
1634 		return 0;
1635 	}
1636 
1637 	/* If the module requires a higher power mode, but also requires
1638 	 * an address change sequence, warn the user that the module may
1639 	 * not be functional.
1640 	 */
1641 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1642 		dev_warn(sfp->dev,
1643 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1644 			 power_mW / 1000, (power_mW / 100) % 10);
1645 		return 0;
1646 	}
1647 
1648 	sfp->module_power_mW = power_mW;
1649 
1650 	return 0;
1651 }
1652 
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)1653 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1654 {
1655 	u8 val;
1656 	int err;
1657 
1658 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1659 	if (err != sizeof(val)) {
1660 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1661 		return -EAGAIN;
1662 	}
1663 
1664 	/* DM7052 reports as a high power module, responds to reads (with
1665 	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1666 	 * if the bit is already set, we're already in high power mode.
1667 	 */
1668 	if (!!(val & BIT(0)) == enable)
1669 		return 0;
1670 
1671 	if (enable)
1672 		val |= BIT(0);
1673 	else
1674 		val &= ~BIT(0);
1675 
1676 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1677 	if (err != sizeof(val)) {
1678 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1679 		return -EAGAIN;
1680 	}
1681 
1682 	if (enable)
1683 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1684 			 sfp->module_power_mW / 1000,
1685 			 (sfp->module_power_mW / 100) % 10);
1686 
1687 	return 0;
1688 }
1689 
1690 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1691  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1692  * not support multibyte reads from the EEPROM. Each multi-byte read
1693  * operation returns just one byte of EEPROM followed by zeros. There is
1694  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1695  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1696  * name and vendor id into EEPROM, so there is even no way to detect if
1697  * module is V-SOL V2801F. Therefore check for those zeros in the read
1698  * data and then based on check switch to reading EEPROM to one byte
1699  * at a time.
1700  */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)1701 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1702 {
1703 	size_t i, block_size = sfp->i2c_block_size;
1704 
1705 	/* Already using byte IO */
1706 	if (block_size == 1)
1707 		return false;
1708 
1709 	for (i = 1; i < len; i += block_size) {
1710 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1711 			return false;
1712 	}
1713 	return true;
1714 }
1715 
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)1716 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1717 {
1718 	u8 check;
1719 	int err;
1720 
1721 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1722 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1723 	    id->base.connector != SFF8024_CONNECTOR_LC) {
1724 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1725 		id->base.phys_id = SFF8024_ID_SFF_8472;
1726 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1727 		id->base.connector = SFF8024_CONNECTOR_LC;
1728 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1729 		if (err != 3) {
1730 			dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1731 			return err;
1732 		}
1733 
1734 		/* Cotsworks modules have been found to require a delay between write operations. */
1735 		mdelay(50);
1736 
1737 		/* Update base structure checksum */
1738 		check = sfp_check(&id->base, sizeof(id->base) - 1);
1739 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1740 		if (err != 1) {
1741 			dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1742 			return err;
1743 		}
1744 	}
1745 	return 0;
1746 }
1747 
sfp_sm_mod_probe(struct sfp * sfp,bool report)1748 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1749 {
1750 	/* SFP module inserted - read I2C data */
1751 	struct sfp_eeprom_id id;
1752 	bool cotsworks_sfbg;
1753 	bool cotsworks;
1754 	u8 check;
1755 	int ret;
1756 
1757 	/* Some SFP modules and also some Linux I2C drivers do not like reads
1758 	 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1759 	 * a time.
1760 	 */
1761 	sfp->i2c_block_size = 16;
1762 
1763 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1764 	if (ret < 0) {
1765 		if (report)
1766 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1767 		return -EAGAIN;
1768 	}
1769 
1770 	if (ret != sizeof(id.base)) {
1771 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1772 		return -EAGAIN;
1773 	}
1774 
1775 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1776 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1777 	 * that EEPROM supports atomic 16bit read operation for diagnostic
1778 	 * fields, so do not switch to one byte reading at a time unless it
1779 	 * is really required and we have no other option.
1780 	 */
1781 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1782 		dev_info(sfp->dev,
1783 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1784 		dev_info(sfp->dev,
1785 			 "Switching to reading EEPROM to one byte at a time\n");
1786 		sfp->i2c_block_size = 1;
1787 
1788 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1789 		if (ret < 0) {
1790 			if (report)
1791 				dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1792 					ret);
1793 			return -EAGAIN;
1794 		}
1795 
1796 		if (ret != sizeof(id.base)) {
1797 			dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1798 			return -EAGAIN;
1799 		}
1800 	}
1801 
1802 	/* Cotsworks do not seem to update the checksums when they
1803 	 * do the final programming with the final module part number,
1804 	 * serial number and date code.
1805 	 */
1806 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1807 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1808 
1809 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1810 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1811 	 * Cotsworks PN matches and bytes are not correct.
1812 	 */
1813 	if (cotsworks && cotsworks_sfbg) {
1814 		ret = sfp_cotsworks_fixup_check(sfp, &id);
1815 		if (ret < 0)
1816 			return ret;
1817 	}
1818 
1819 	/* Validate the checksum over the base structure */
1820 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1821 	if (check != id.base.cc_base) {
1822 		if (cotsworks) {
1823 			dev_warn(sfp->dev,
1824 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1825 				 check, id.base.cc_base);
1826 		} else {
1827 			dev_err(sfp->dev,
1828 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1829 				check, id.base.cc_base);
1830 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1831 				       16, 1, &id, sizeof(id), true);
1832 			return -EINVAL;
1833 		}
1834 	}
1835 
1836 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1837 	if (ret < 0) {
1838 		if (report)
1839 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1840 		return -EAGAIN;
1841 	}
1842 
1843 	if (ret != sizeof(id.ext)) {
1844 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1845 		return -EAGAIN;
1846 	}
1847 
1848 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1849 	if (check != id.ext.cc_ext) {
1850 		if (cotsworks) {
1851 			dev_warn(sfp->dev,
1852 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1853 				 check, id.ext.cc_ext);
1854 		} else {
1855 			dev_err(sfp->dev,
1856 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1857 				check, id.ext.cc_ext);
1858 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1859 				       16, 1, &id, sizeof(id), true);
1860 			memset(&id.ext, 0, sizeof(id.ext));
1861 		}
1862 	}
1863 
1864 	sfp->id = id;
1865 
1866 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1867 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1868 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1869 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1870 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1871 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1872 
1873 	/* Check whether we support this module */
1874 	if (!sfp->type->module_supported(&id)) {
1875 		dev_err(sfp->dev,
1876 			"module is not supported - phys id 0x%02x 0x%02x\n",
1877 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1878 		return -EINVAL;
1879 	}
1880 
1881 	/* If the module requires address swap mode, warn about it */
1882 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1883 		dev_warn(sfp->dev,
1884 			 "module address swap to access page 0xA2 is not supported.\n");
1885 
1886 	/* Parse the module power requirement */
1887 	ret = sfp_module_parse_power(sfp);
1888 	if (ret < 0)
1889 		return ret;
1890 
1891 	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1892 	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1893 		sfp->module_t_start_up = T_START_UP_BAD_GPON;
1894 	else
1895 		sfp->module_t_start_up = T_START_UP;
1896 
1897 	if (!memcmp(id.base.vendor_name, "HUAWEI          ", 16) &&
1898 	    !memcmp(id.base.vendor_pn, "MA5671A         ", 16))
1899 		sfp->tx_fault_ignore = true;
1900 	else
1901 		sfp->tx_fault_ignore = false;
1902 
1903 	return 0;
1904 }
1905 
sfp_sm_mod_remove(struct sfp * sfp)1906 static void sfp_sm_mod_remove(struct sfp *sfp)
1907 {
1908 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1909 		sfp_module_remove(sfp->sfp_bus);
1910 
1911 	sfp_hwmon_remove(sfp);
1912 
1913 	memset(&sfp->id, 0, sizeof(sfp->id));
1914 	sfp->module_power_mW = 0;
1915 
1916 	dev_info(sfp->dev, "module removed\n");
1917 }
1918 
1919 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)1920 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1921 {
1922 	switch (sfp->sm_dev_state) {
1923 	default:
1924 		if (event == SFP_E_DEV_ATTACH)
1925 			sfp->sm_dev_state = SFP_DEV_DOWN;
1926 		break;
1927 
1928 	case SFP_DEV_DOWN:
1929 		if (event == SFP_E_DEV_DETACH)
1930 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1931 		else if (event == SFP_E_DEV_UP)
1932 			sfp->sm_dev_state = SFP_DEV_UP;
1933 		break;
1934 
1935 	case SFP_DEV_UP:
1936 		if (event == SFP_E_DEV_DETACH)
1937 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1938 		else if (event == SFP_E_DEV_DOWN)
1939 			sfp->sm_dev_state = SFP_DEV_DOWN;
1940 		break;
1941 	}
1942 }
1943 
1944 /* This state machine tracks the insert/remove state of the module, probes
1945  * the on-board EEPROM, and sets up the power level.
1946  */
sfp_sm_module(struct sfp * sfp,unsigned int event)1947 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1948 {
1949 	int err;
1950 
1951 	/* Handle remove event globally, it resets this state machine */
1952 	if (event == SFP_E_REMOVE) {
1953 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
1954 			sfp_sm_mod_remove(sfp);
1955 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1956 		return;
1957 	}
1958 
1959 	/* Handle device detach globally */
1960 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1961 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1962 		if (sfp->module_power_mW > 1000 &&
1963 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
1964 			sfp_sm_mod_hpower(sfp, false);
1965 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1966 		return;
1967 	}
1968 
1969 	switch (sfp->sm_mod_state) {
1970 	default:
1971 		if (event == SFP_E_INSERT) {
1972 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1973 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1974 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1975 		}
1976 		break;
1977 
1978 	case SFP_MOD_PROBE:
1979 		/* Wait for T_PROBE_INIT to time out */
1980 		if (event != SFP_E_TIMEOUT)
1981 			break;
1982 
1983 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1984 		if (err == -EAGAIN) {
1985 			if (sfp->sm_mod_tries_init &&
1986 			   --sfp->sm_mod_tries_init) {
1987 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1988 				break;
1989 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1990 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1991 					dev_warn(sfp->dev,
1992 						 "please wait, module slow to respond\n");
1993 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1994 				break;
1995 			}
1996 		}
1997 		if (err < 0) {
1998 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1999 			break;
2000 		}
2001 
2002 		err = sfp_hwmon_insert(sfp);
2003 		if (err)
2004 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2005 
2006 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2007 		fallthrough;
2008 	case SFP_MOD_WAITDEV:
2009 		/* Ensure that the device is attached before proceeding */
2010 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2011 			break;
2012 
2013 		/* Report the module insertion to the upstream device */
2014 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2015 		if (err < 0) {
2016 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2017 			break;
2018 		}
2019 
2020 		/* If this is a power level 1 module, we are done */
2021 		if (sfp->module_power_mW <= 1000)
2022 			goto insert;
2023 
2024 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2025 		fallthrough;
2026 	case SFP_MOD_HPOWER:
2027 		/* Enable high power mode */
2028 		err = sfp_sm_mod_hpower(sfp, true);
2029 		if (err < 0) {
2030 			if (err != -EAGAIN) {
2031 				sfp_module_remove(sfp->sfp_bus);
2032 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2033 			} else {
2034 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2035 			}
2036 			break;
2037 		}
2038 
2039 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2040 		break;
2041 
2042 	case SFP_MOD_WAITPWR:
2043 		/* Wait for T_HPOWER_LEVEL to time out */
2044 		if (event != SFP_E_TIMEOUT)
2045 			break;
2046 
2047 	insert:
2048 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2049 		break;
2050 
2051 	case SFP_MOD_PRESENT:
2052 	case SFP_MOD_ERROR:
2053 		break;
2054 	}
2055 }
2056 
sfp_sm_main(struct sfp * sfp,unsigned int event)2057 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2058 {
2059 	unsigned long timeout;
2060 	int ret;
2061 
2062 	/* Some events are global */
2063 	if (sfp->sm_state != SFP_S_DOWN &&
2064 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2065 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2066 		if (sfp->sm_state == SFP_S_LINK_UP &&
2067 		    sfp->sm_dev_state == SFP_DEV_UP)
2068 			sfp_sm_link_down(sfp);
2069 		if (sfp->sm_state > SFP_S_INIT)
2070 			sfp_module_stop(sfp->sfp_bus);
2071 		if (sfp->mod_phy)
2072 			sfp_sm_phy_detach(sfp);
2073 		sfp_module_tx_disable(sfp);
2074 		sfp_soft_stop_poll(sfp);
2075 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2076 		return;
2077 	}
2078 
2079 	/* The main state machine */
2080 	switch (sfp->sm_state) {
2081 	case SFP_S_DOWN:
2082 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2083 		    sfp->sm_dev_state != SFP_DEV_UP)
2084 			break;
2085 
2086 		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2087 			sfp_soft_start_poll(sfp);
2088 
2089 		sfp_module_tx_enable(sfp);
2090 
2091 		/* Initialise the fault clearance retries */
2092 		sfp->sm_fault_retries = N_FAULT_INIT;
2093 
2094 		/* We need to check the TX_FAULT state, which is not defined
2095 		 * while TX_DISABLE is asserted. The earliest we want to do
2096 		 * anything (such as probe for a PHY) is 50ms.
2097 		 */
2098 		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2099 		break;
2100 
2101 	case SFP_S_WAIT:
2102 		if (event != SFP_E_TIMEOUT)
2103 			break;
2104 
2105 		if (sfp->state & SFP_F_TX_FAULT) {
2106 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2107 			 * from the TX_DISABLE deassertion for the module to
2108 			 * initialise, which is indicated by TX_FAULT
2109 			 * deasserting.
2110 			 */
2111 			timeout = sfp->module_t_start_up;
2112 			if (timeout > T_WAIT)
2113 				timeout -= T_WAIT;
2114 			else
2115 				timeout = 1;
2116 
2117 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2118 		} else {
2119 			/* TX_FAULT is not asserted, assume the module has
2120 			 * finished initialising.
2121 			 */
2122 			goto init_done;
2123 		}
2124 		break;
2125 
2126 	case SFP_S_INIT:
2127 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2128 			/* TX_FAULT is still asserted after t_init or
2129 			 * or t_start_up, so assume there is a fault.
2130 			 */
2131 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2132 				     sfp->sm_fault_retries == N_FAULT_INIT);
2133 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2134 	init_done:
2135 			sfp->sm_phy_retries = R_PHY_RETRY;
2136 			goto phy_probe;
2137 		}
2138 		break;
2139 
2140 	case SFP_S_INIT_PHY:
2141 		if (event != SFP_E_TIMEOUT)
2142 			break;
2143 	phy_probe:
2144 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2145 		 * clear.  Probe for the PHY and check the LOS state.
2146 		 */
2147 		ret = sfp_sm_probe_for_phy(sfp);
2148 		if (ret == -ENODEV) {
2149 			if (--sfp->sm_phy_retries) {
2150 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2151 				break;
2152 			} else {
2153 				dev_info(sfp->dev, "no PHY detected\n");
2154 			}
2155 		} else if (ret) {
2156 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2157 			break;
2158 		}
2159 		if (sfp_module_start(sfp->sfp_bus)) {
2160 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2161 			break;
2162 		}
2163 		sfp_sm_link_check_los(sfp);
2164 
2165 		/* Reset the fault retry count */
2166 		sfp->sm_fault_retries = N_FAULT;
2167 		break;
2168 
2169 	case SFP_S_INIT_TX_FAULT:
2170 		if (event == SFP_E_TIMEOUT) {
2171 			sfp_module_tx_fault_reset(sfp);
2172 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2173 		}
2174 		break;
2175 
2176 	case SFP_S_WAIT_LOS:
2177 		if (event == SFP_E_TX_FAULT)
2178 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2179 		else if (sfp_los_event_inactive(sfp, event))
2180 			sfp_sm_link_up(sfp);
2181 		break;
2182 
2183 	case SFP_S_LINK_UP:
2184 		if (event == SFP_E_TX_FAULT) {
2185 			sfp_sm_link_down(sfp);
2186 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2187 		} else if (sfp_los_event_active(sfp, event)) {
2188 			sfp_sm_link_down(sfp);
2189 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2190 		}
2191 		break;
2192 
2193 	case SFP_S_TX_FAULT:
2194 		if (event == SFP_E_TIMEOUT) {
2195 			sfp_module_tx_fault_reset(sfp);
2196 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2197 		}
2198 		break;
2199 
2200 	case SFP_S_REINIT:
2201 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2202 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2203 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2204 			dev_info(sfp->dev, "module transmit fault recovered\n");
2205 			sfp_sm_link_check_los(sfp);
2206 		}
2207 		break;
2208 
2209 	case SFP_S_TX_DISABLE:
2210 		break;
2211 	}
2212 }
2213 
sfp_sm_event(struct sfp * sfp,unsigned int event)2214 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2215 {
2216 	mutex_lock(&sfp->sm_mutex);
2217 
2218 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2219 		mod_state_to_str(sfp->sm_mod_state),
2220 		dev_state_to_str(sfp->sm_dev_state),
2221 		sm_state_to_str(sfp->sm_state),
2222 		event_to_str(event));
2223 
2224 	sfp_sm_device(sfp, event);
2225 	sfp_sm_module(sfp, event);
2226 	sfp_sm_main(sfp, event);
2227 
2228 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2229 		mod_state_to_str(sfp->sm_mod_state),
2230 		dev_state_to_str(sfp->sm_dev_state),
2231 		sm_state_to_str(sfp->sm_state));
2232 
2233 	mutex_unlock(&sfp->sm_mutex);
2234 }
2235 
sfp_attach(struct sfp * sfp)2236 static void sfp_attach(struct sfp *sfp)
2237 {
2238 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2239 }
2240 
sfp_detach(struct sfp * sfp)2241 static void sfp_detach(struct sfp *sfp)
2242 {
2243 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2244 }
2245 
sfp_start(struct sfp * sfp)2246 static void sfp_start(struct sfp *sfp)
2247 {
2248 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2249 }
2250 
sfp_stop(struct sfp * sfp)2251 static void sfp_stop(struct sfp *sfp)
2252 {
2253 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2254 }
2255 
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2256 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2257 {
2258 	/* locking... and check module is present */
2259 
2260 	if (sfp->id.ext.sff8472_compliance &&
2261 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2262 		modinfo->type = ETH_MODULE_SFF_8472;
2263 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2264 	} else {
2265 		modinfo->type = ETH_MODULE_SFF_8079;
2266 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2267 	}
2268 	return 0;
2269 }
2270 
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2271 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2272 			     u8 *data)
2273 {
2274 	unsigned int first, last, len;
2275 	int ret;
2276 
2277 	if (ee->len == 0)
2278 		return -EINVAL;
2279 
2280 	first = ee->offset;
2281 	last = ee->offset + ee->len;
2282 	if (first < ETH_MODULE_SFF_8079_LEN) {
2283 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2284 		len -= first;
2285 
2286 		ret = sfp_read(sfp, false, first, data, len);
2287 		if (ret < 0)
2288 			return ret;
2289 
2290 		first += len;
2291 		data += len;
2292 	}
2293 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2294 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2295 		len -= first;
2296 		first -= ETH_MODULE_SFF_8079_LEN;
2297 
2298 		ret = sfp_read(sfp, true, first, data, len);
2299 		if (ret < 0)
2300 			return ret;
2301 	}
2302 	return 0;
2303 }
2304 
2305 static const struct sfp_socket_ops sfp_module_ops = {
2306 	.attach = sfp_attach,
2307 	.detach = sfp_detach,
2308 	.start = sfp_start,
2309 	.stop = sfp_stop,
2310 	.module_info = sfp_module_info,
2311 	.module_eeprom = sfp_module_eeprom,
2312 };
2313 
sfp_timeout(struct work_struct * work)2314 static void sfp_timeout(struct work_struct *work)
2315 {
2316 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2317 
2318 	rtnl_lock();
2319 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2320 	rtnl_unlock();
2321 }
2322 
sfp_check_state(struct sfp * sfp)2323 static void sfp_check_state(struct sfp *sfp)
2324 {
2325 	unsigned int state, i, changed;
2326 
2327 	mutex_lock(&sfp->st_mutex);
2328 	state = sfp_get_state(sfp);
2329 	changed = state ^ sfp->state;
2330 	if (sfp->tx_fault_ignore)
2331 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2332 	else
2333 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2334 
2335 	for (i = 0; i < GPIO_MAX; i++)
2336 		if (changed & BIT(i))
2337 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2338 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2339 
2340 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2341 	sfp->state = state;
2342 
2343 	rtnl_lock();
2344 	if (changed & SFP_F_PRESENT)
2345 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2346 				SFP_E_INSERT : SFP_E_REMOVE);
2347 
2348 	if (changed & SFP_F_TX_FAULT)
2349 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2350 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2351 
2352 	if (changed & SFP_F_LOS)
2353 		sfp_sm_event(sfp, state & SFP_F_LOS ?
2354 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2355 	rtnl_unlock();
2356 	mutex_unlock(&sfp->st_mutex);
2357 }
2358 
sfp_irq(int irq,void * data)2359 static irqreturn_t sfp_irq(int irq, void *data)
2360 {
2361 	struct sfp *sfp = data;
2362 
2363 	sfp_check_state(sfp);
2364 
2365 	return IRQ_HANDLED;
2366 }
2367 
sfp_poll(struct work_struct * work)2368 static void sfp_poll(struct work_struct *work)
2369 {
2370 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2371 
2372 	sfp_check_state(sfp);
2373 
2374 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2375 	    sfp->need_poll)
2376 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2377 }
2378 
sfp_alloc(struct device * dev)2379 static struct sfp *sfp_alloc(struct device *dev)
2380 {
2381 	struct sfp *sfp;
2382 
2383 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2384 	if (!sfp)
2385 		return ERR_PTR(-ENOMEM);
2386 
2387 	sfp->dev = dev;
2388 
2389 	mutex_init(&sfp->sm_mutex);
2390 	mutex_init(&sfp->st_mutex);
2391 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2392 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2393 
2394 	sfp_hwmon_init(sfp);
2395 
2396 	return sfp;
2397 }
2398 
sfp_cleanup(void * data)2399 static void sfp_cleanup(void *data)
2400 {
2401 	struct sfp *sfp = data;
2402 
2403 	sfp_hwmon_exit(sfp);
2404 
2405 	cancel_delayed_work_sync(&sfp->poll);
2406 	cancel_delayed_work_sync(&sfp->timeout);
2407 	if (sfp->i2c_mii) {
2408 		mdiobus_unregister(sfp->i2c_mii);
2409 		mdiobus_free(sfp->i2c_mii);
2410 	}
2411 	if (sfp->i2c)
2412 		i2c_put_adapter(sfp->i2c);
2413 	kfree(sfp);
2414 }
2415 
sfp_probe(struct platform_device * pdev)2416 static int sfp_probe(struct platform_device *pdev)
2417 {
2418 	const struct sff_data *sff;
2419 	struct i2c_adapter *i2c;
2420 	char *sfp_irq_name;
2421 	struct sfp *sfp;
2422 	int err, i;
2423 
2424 	sfp = sfp_alloc(&pdev->dev);
2425 	if (IS_ERR(sfp))
2426 		return PTR_ERR(sfp);
2427 
2428 	platform_set_drvdata(pdev, sfp);
2429 
2430 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2431 	if (err < 0)
2432 		return err;
2433 
2434 	sff = sfp->type = &sfp_data;
2435 
2436 	if (pdev->dev.of_node) {
2437 		struct device_node *node = pdev->dev.of_node;
2438 		const struct of_device_id *id;
2439 		struct device_node *np;
2440 
2441 		id = of_match_node(sfp_of_match, node);
2442 		if (WARN_ON(!id))
2443 			return -EINVAL;
2444 
2445 		sff = sfp->type = id->data;
2446 
2447 		np = of_parse_phandle(node, "i2c-bus", 0);
2448 		if (!np) {
2449 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2450 			return -ENODEV;
2451 		}
2452 
2453 		i2c = of_find_i2c_adapter_by_node(np);
2454 		of_node_put(np);
2455 	} else if (has_acpi_companion(&pdev->dev)) {
2456 		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2457 		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2458 		struct fwnode_reference_args args;
2459 		struct acpi_handle *acpi_handle;
2460 		int ret;
2461 
2462 		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2463 		if (ret || !is_acpi_device_node(args.fwnode)) {
2464 			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2465 			return -ENODEV;
2466 		}
2467 
2468 		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2469 		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2470 	} else {
2471 		return -EINVAL;
2472 	}
2473 
2474 	if (!i2c)
2475 		return -EPROBE_DEFER;
2476 
2477 	err = sfp_i2c_configure(sfp, i2c);
2478 	if (err < 0) {
2479 		i2c_put_adapter(i2c);
2480 		return err;
2481 	}
2482 
2483 	for (i = 0; i < GPIO_MAX; i++)
2484 		if (sff->gpios & BIT(i)) {
2485 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2486 					   gpio_of_names[i], gpio_flags[i]);
2487 			if (IS_ERR(sfp->gpio[i]))
2488 				return PTR_ERR(sfp->gpio[i]);
2489 		}
2490 
2491 	sfp->get_state = sfp_gpio_get_state;
2492 	sfp->set_state = sfp_gpio_set_state;
2493 
2494 	/* Modules that have no detect signal are always present */
2495 	if (!(sfp->gpio[GPIO_MODDEF0]))
2496 		sfp->get_state = sff_gpio_get_state;
2497 
2498 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2499 				 &sfp->max_power_mW);
2500 	if (!sfp->max_power_mW)
2501 		sfp->max_power_mW = 1000;
2502 
2503 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2504 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2505 
2506 	/* Get the initial state, and always signal TX disable,
2507 	 * since the network interface will not be up.
2508 	 */
2509 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2510 
2511 	if (sfp->gpio[GPIO_RATE_SELECT] &&
2512 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2513 		sfp->state |= SFP_F_RATE_SELECT;
2514 	sfp_set_state(sfp, sfp->state);
2515 	sfp_module_tx_disable(sfp);
2516 	if (sfp->state & SFP_F_PRESENT) {
2517 		rtnl_lock();
2518 		sfp_sm_event(sfp, SFP_E_INSERT);
2519 		rtnl_unlock();
2520 	}
2521 
2522 	for (i = 0; i < GPIO_MAX; i++) {
2523 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2524 			continue;
2525 
2526 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2527 		if (sfp->gpio_irq[i] < 0) {
2528 			sfp->gpio_irq[i] = 0;
2529 			sfp->need_poll = true;
2530 			continue;
2531 		}
2532 
2533 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2534 					      "%s-%s", dev_name(sfp->dev),
2535 					      gpio_of_names[i]);
2536 
2537 		if (!sfp_irq_name)
2538 			return -ENOMEM;
2539 
2540 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2541 						NULL, sfp_irq,
2542 						IRQF_ONESHOT |
2543 						IRQF_TRIGGER_RISING |
2544 						IRQF_TRIGGER_FALLING,
2545 						sfp_irq_name, sfp);
2546 		if (err) {
2547 			sfp->gpio_irq[i] = 0;
2548 			sfp->need_poll = true;
2549 		}
2550 	}
2551 
2552 	if (sfp->need_poll)
2553 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2554 
2555 	/* We could have an issue in cases no Tx disable pin is available or
2556 	 * wired as modules using a laser as their light source will continue to
2557 	 * be active when the fiber is removed. This could be a safety issue and
2558 	 * we should at least warn the user about that.
2559 	 */
2560 	if (!sfp->gpio[GPIO_TX_DISABLE])
2561 		dev_warn(sfp->dev,
2562 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2563 
2564 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2565 	if (!sfp->sfp_bus)
2566 		return -ENOMEM;
2567 
2568 	return 0;
2569 }
2570 
sfp_remove(struct platform_device * pdev)2571 static int sfp_remove(struct platform_device *pdev)
2572 {
2573 	struct sfp *sfp = platform_get_drvdata(pdev);
2574 
2575 	sfp_unregister_socket(sfp->sfp_bus);
2576 
2577 	rtnl_lock();
2578 	sfp_sm_event(sfp, SFP_E_REMOVE);
2579 	rtnl_unlock();
2580 
2581 	return 0;
2582 }
2583 
sfp_shutdown(struct platform_device * pdev)2584 static void sfp_shutdown(struct platform_device *pdev)
2585 {
2586 	struct sfp *sfp = platform_get_drvdata(pdev);
2587 	int i;
2588 
2589 	for (i = 0; i < GPIO_MAX; i++) {
2590 		if (!sfp->gpio_irq[i])
2591 			continue;
2592 
2593 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2594 	}
2595 
2596 	cancel_delayed_work_sync(&sfp->poll);
2597 	cancel_delayed_work_sync(&sfp->timeout);
2598 }
2599 
2600 static struct platform_driver sfp_driver = {
2601 	.probe = sfp_probe,
2602 	.remove = sfp_remove,
2603 	.shutdown = sfp_shutdown,
2604 	.driver = {
2605 		.name = "sfp",
2606 		.of_match_table = sfp_of_match,
2607 	},
2608 };
2609 
sfp_init(void)2610 static int sfp_init(void)
2611 {
2612 	poll_jiffies = msecs_to_jiffies(100);
2613 
2614 	return platform_driver_register(&sfp_driver);
2615 }
2616 module_init(sfp_init);
2617 
sfp_exit(void)2618 static void sfp_exit(void)
2619 {
2620 	platform_driver_unregister(&sfp_driver);
2621 }
2622 module_exit(sfp_exit);
2623 
2624 MODULE_ALIAS("platform:sfp");
2625 MODULE_AUTHOR("Russell King");
2626 MODULE_LICENSE("GPL v2");
2627