1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/mdio/mdio-i2c.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/of.h>
14 #include <linux/phy.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19
20 #include "sfp.h"
21 #include "swphy.h"
22
23 enum {
24 GPIO_MODDEF0,
25 GPIO_LOS,
26 GPIO_TX_FAULT,
27 GPIO_TX_DISABLE,
28 GPIO_RATE_SELECT,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37 SFP_E_INSERT = 0,
38 SFP_E_REMOVE,
39 SFP_E_DEV_ATTACH,
40 SFP_E_DEV_DETACH,
41 SFP_E_DEV_DOWN,
42 SFP_E_DEV_UP,
43 SFP_E_TX_FAULT,
44 SFP_E_TX_CLEAR,
45 SFP_E_LOS_HIGH,
46 SFP_E_LOS_LOW,
47 SFP_E_TIMEOUT,
48
49 SFP_MOD_EMPTY = 0,
50 SFP_MOD_ERROR,
51 SFP_MOD_PROBE,
52 SFP_MOD_WAITDEV,
53 SFP_MOD_HPOWER,
54 SFP_MOD_WAITPWR,
55 SFP_MOD_PRESENT,
56
57 SFP_DEV_DETACHED = 0,
58 SFP_DEV_DOWN,
59 SFP_DEV_UP,
60
61 SFP_S_DOWN = 0,
62 SFP_S_FAIL,
63 SFP_S_WAIT,
64 SFP_S_INIT,
65 SFP_S_INIT_PHY,
66 SFP_S_INIT_TX_FAULT,
67 SFP_S_WAIT_LOS,
68 SFP_S_LINK_UP,
69 SFP_S_TX_FAULT,
70 SFP_S_REINIT,
71 SFP_S_TX_DISABLE,
72 };
73
74 static const char * const mod_state_strings[] = {
75 [SFP_MOD_EMPTY] = "empty",
76 [SFP_MOD_ERROR] = "error",
77 [SFP_MOD_PROBE] = "probe",
78 [SFP_MOD_WAITDEV] = "waitdev",
79 [SFP_MOD_HPOWER] = "hpower",
80 [SFP_MOD_WAITPWR] = "waitpwr",
81 [SFP_MOD_PRESENT] = "present",
82 };
83
mod_state_to_str(unsigned short mod_state)84 static const char *mod_state_to_str(unsigned short mod_state)
85 {
86 if (mod_state >= ARRAY_SIZE(mod_state_strings))
87 return "Unknown module state";
88 return mod_state_strings[mod_state];
89 }
90
91 static const char * const dev_state_strings[] = {
92 [SFP_DEV_DETACHED] = "detached",
93 [SFP_DEV_DOWN] = "down",
94 [SFP_DEV_UP] = "up",
95 };
96
dev_state_to_str(unsigned short dev_state)97 static const char *dev_state_to_str(unsigned short dev_state)
98 {
99 if (dev_state >= ARRAY_SIZE(dev_state_strings))
100 return "Unknown device state";
101 return dev_state_strings[dev_state];
102 }
103
104 static const char * const event_strings[] = {
105 [SFP_E_INSERT] = "insert",
106 [SFP_E_REMOVE] = "remove",
107 [SFP_E_DEV_ATTACH] = "dev_attach",
108 [SFP_E_DEV_DETACH] = "dev_detach",
109 [SFP_E_DEV_DOWN] = "dev_down",
110 [SFP_E_DEV_UP] = "dev_up",
111 [SFP_E_TX_FAULT] = "tx_fault",
112 [SFP_E_TX_CLEAR] = "tx_clear",
113 [SFP_E_LOS_HIGH] = "los_high",
114 [SFP_E_LOS_LOW] = "los_low",
115 [SFP_E_TIMEOUT] = "timeout",
116 };
117
event_to_str(unsigned short event)118 static const char *event_to_str(unsigned short event)
119 {
120 if (event >= ARRAY_SIZE(event_strings))
121 return "Unknown event";
122 return event_strings[event];
123 }
124
125 static const char * const sm_state_strings[] = {
126 [SFP_S_DOWN] = "down",
127 [SFP_S_FAIL] = "fail",
128 [SFP_S_WAIT] = "wait",
129 [SFP_S_INIT] = "init",
130 [SFP_S_INIT_PHY] = "init_phy",
131 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132 [SFP_S_WAIT_LOS] = "wait_los",
133 [SFP_S_LINK_UP] = "link_up",
134 [SFP_S_TX_FAULT] = "tx_fault",
135 [SFP_S_REINIT] = "reinit",
136 [SFP_S_TX_DISABLE] = "tx_disable",
137 };
138
sm_state_to_str(unsigned short sm_state)139 static const char *sm_state_to_str(unsigned short sm_state)
140 {
141 if (sm_state >= ARRAY_SIZE(sm_state_strings))
142 return "Unknown state";
143 return sm_state_strings[sm_state];
144 }
145
146 static const char *gpio_of_names[] = {
147 "mod-def0",
148 "los",
149 "tx-fault",
150 "tx-disable",
151 "rate-select0",
152 };
153
154 static const enum gpiod_flags gpio_flags[] = {
155 GPIOD_IN,
156 GPIOD_IN,
157 GPIOD_IN,
158 GPIOD_ASIS,
159 GPIOD_ASIS,
160 };
161
162 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163 * non-cooled module to initialise its laser safety circuitry. We wait
164 * an initial T_WAIT period before we check the tx fault to give any PHY
165 * on board (for a copper SFP) time to initialise.
166 */
167 #define T_WAIT msecs_to_jiffies(50)
168 #define T_START_UP msecs_to_jiffies(300)
169 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
170
171 /* t_reset is the time required to assert the TX_DISABLE signal to reset
172 * an indicated TX_FAULT.
173 */
174 #define T_RESET_US 10
175 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
176
177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
178 * time. If the TX_FAULT signal is not deasserted after this number of
179 * attempts at clearing it, we decide that the module is faulty.
180 * N_FAULT is the same but after the module has initialised.
181 */
182 #define N_FAULT_INIT 5
183 #define N_FAULT 5
184
185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186 * R_PHY_RETRY is the number of attempts.
187 */
188 #define T_PHY_RETRY msecs_to_jiffies(50)
189 #define R_PHY_RETRY 12
190
191 /* SFP module presence detection is poor: the three MOD DEF signals are
192 * the same length on the PCB, which means it's possible for MOD DEF 0 to
193 * connect before the I2C bus on MOD DEF 1/2.
194 *
195 * The SFF-8472 specifies t_serial ("Time from power on until module is
196 * ready for data transmission over the two wire serial bus.") as 300ms.
197 */
198 #define T_SERIAL msecs_to_jiffies(300)
199 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
200 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
201 #define R_PROBE_RETRY_INIT 10
202 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
203 #define R_PROBE_RETRY_SLOW 12
204
205 /* SFP modules appear to always have their PHY configured for bus address
206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207 */
208 #define SFP_PHY_ADDR 22
209
210 struct sff_data {
211 unsigned int gpios;
212 bool (*module_supported)(const struct sfp_eeprom_id *id);
213 };
214
215 struct sfp {
216 struct device *dev;
217 struct i2c_adapter *i2c;
218 struct mii_bus *i2c_mii;
219 struct sfp_bus *sfp_bus;
220 struct phy_device *mod_phy;
221 const struct sff_data *type;
222 size_t i2c_block_size;
223 u32 max_power_mW;
224
225 unsigned int (*get_state)(struct sfp *);
226 void (*set_state)(struct sfp *, unsigned int);
227 int (*read)(struct sfp *, bool, u8, void *, size_t);
228 int (*write)(struct sfp *, bool, u8, void *, size_t);
229
230 struct gpio_desc *gpio[GPIO_MAX];
231 int gpio_irq[GPIO_MAX];
232
233 bool need_poll;
234
235 struct mutex st_mutex; /* Protects state */
236 unsigned int state_soft_mask;
237 unsigned int state;
238 struct delayed_work poll;
239 struct delayed_work timeout;
240 struct mutex sm_mutex; /* Protects state machine */
241 unsigned char sm_mod_state;
242 unsigned char sm_mod_tries_init;
243 unsigned char sm_mod_tries;
244 unsigned char sm_dev_state;
245 unsigned short sm_state;
246 unsigned char sm_fault_retries;
247 unsigned char sm_phy_retries;
248
249 struct sfp_eeprom_id id;
250 unsigned int module_power_mW;
251 unsigned int module_t_start_up;
252 bool tx_fault_ignore;
253
254 #if IS_ENABLED(CONFIG_HWMON)
255 struct sfp_diag diag;
256 struct delayed_work hwmon_probe;
257 unsigned int hwmon_tries;
258 struct device *hwmon_dev;
259 char *hwmon_name;
260 #endif
261
262 };
263
sff_module_supported(const struct sfp_eeprom_id * id)264 static bool sff_module_supported(const struct sfp_eeprom_id *id)
265 {
266 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
267 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
268 }
269
270 static const struct sff_data sff_data = {
271 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
272 .module_supported = sff_module_supported,
273 };
274
sfp_module_supported(const struct sfp_eeprom_id * id)275 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
276 {
277 if (id->base.phys_id == SFF8024_ID_SFP &&
278 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
279 return true;
280
281 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
282 * phys id SFF instead of SFP. Therefore mark this module explicitly
283 * as supported based on vendor name and pn match.
284 */
285 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
286 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
287 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
288 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
289 return true;
290
291 return false;
292 }
293
294 static const struct sff_data sfp_data = {
295 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
296 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
297 .module_supported = sfp_module_supported,
298 };
299
300 static const struct of_device_id sfp_of_match[] = {
301 { .compatible = "sff,sff", .data = &sff_data, },
302 { .compatible = "sff,sfp", .data = &sfp_data, },
303 { },
304 };
305 MODULE_DEVICE_TABLE(of, sfp_of_match);
306
307 static unsigned long poll_jiffies;
308
sfp_gpio_get_state(struct sfp * sfp)309 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
310 {
311 unsigned int i, state, v;
312
313 for (i = state = 0; i < GPIO_MAX; i++) {
314 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
315 continue;
316
317 v = gpiod_get_value_cansleep(sfp->gpio[i]);
318 if (v)
319 state |= BIT(i);
320 }
321
322 return state;
323 }
324
sff_gpio_get_state(struct sfp * sfp)325 static unsigned int sff_gpio_get_state(struct sfp *sfp)
326 {
327 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
328 }
329
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)330 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
331 {
332 if (state & SFP_F_PRESENT) {
333 /* If the module is present, drive the signals */
334 if (sfp->gpio[GPIO_TX_DISABLE])
335 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
336 state & SFP_F_TX_DISABLE);
337 if (state & SFP_F_RATE_SELECT)
338 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
339 state & SFP_F_RATE_SELECT);
340 } else {
341 /* Otherwise, let them float to the pull-ups */
342 if (sfp->gpio[GPIO_TX_DISABLE])
343 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
344 if (state & SFP_F_RATE_SELECT)
345 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
346 }
347 }
348
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)349 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
350 size_t len)
351 {
352 struct i2c_msg msgs[2];
353 u8 bus_addr = a2 ? 0x51 : 0x50;
354 size_t block_size = sfp->i2c_block_size;
355 size_t this_len;
356 int ret;
357
358 msgs[0].addr = bus_addr;
359 msgs[0].flags = 0;
360 msgs[0].len = 1;
361 msgs[0].buf = &dev_addr;
362 msgs[1].addr = bus_addr;
363 msgs[1].flags = I2C_M_RD;
364 msgs[1].len = len;
365 msgs[1].buf = buf;
366
367 while (len) {
368 this_len = len;
369 if (this_len > block_size)
370 this_len = block_size;
371
372 msgs[1].len = this_len;
373
374 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
375 if (ret < 0)
376 return ret;
377
378 if (ret != ARRAY_SIZE(msgs))
379 break;
380
381 msgs[1].buf += this_len;
382 dev_addr += this_len;
383 len -= this_len;
384 }
385
386 return msgs[1].buf - (u8 *)buf;
387 }
388
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)389 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
390 size_t len)
391 {
392 struct i2c_msg msgs[1];
393 u8 bus_addr = a2 ? 0x51 : 0x50;
394 int ret;
395
396 msgs[0].addr = bus_addr;
397 msgs[0].flags = 0;
398 msgs[0].len = 1 + len;
399 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
400 if (!msgs[0].buf)
401 return -ENOMEM;
402
403 msgs[0].buf[0] = dev_addr;
404 memcpy(&msgs[0].buf[1], buf, len);
405
406 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
407
408 kfree(msgs[0].buf);
409
410 if (ret < 0)
411 return ret;
412
413 return ret == ARRAY_SIZE(msgs) ? len : 0;
414 }
415
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)416 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
417 {
418 struct mii_bus *i2c_mii;
419 int ret;
420
421 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
422 return -EINVAL;
423
424 sfp->i2c = i2c;
425 sfp->read = sfp_i2c_read;
426 sfp->write = sfp_i2c_write;
427
428 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
429 if (IS_ERR(i2c_mii))
430 return PTR_ERR(i2c_mii);
431
432 i2c_mii->name = "SFP I2C Bus";
433 i2c_mii->phy_mask = ~0;
434
435 ret = mdiobus_register(i2c_mii);
436 if (ret < 0) {
437 mdiobus_free(i2c_mii);
438 return ret;
439 }
440
441 sfp->i2c_mii = i2c_mii;
442
443 return 0;
444 }
445
446 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)447 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
448 {
449 return sfp->read(sfp, a2, addr, buf, len);
450 }
451
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)452 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
453 {
454 return sfp->write(sfp, a2, addr, buf, len);
455 }
456
sfp_soft_get_state(struct sfp * sfp)457 static unsigned int sfp_soft_get_state(struct sfp *sfp)
458 {
459 unsigned int state = 0;
460 u8 status;
461 int ret;
462
463 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
464 if (ret == sizeof(status)) {
465 if (status & SFP_STATUS_RX_LOS)
466 state |= SFP_F_LOS;
467 if (status & SFP_STATUS_TX_FAULT)
468 state |= SFP_F_TX_FAULT;
469 } else {
470 dev_err_ratelimited(sfp->dev,
471 "failed to read SFP soft status: %d\n",
472 ret);
473 /* Preserve the current state */
474 state = sfp->state;
475 }
476
477 return state & sfp->state_soft_mask;
478 }
479
sfp_soft_set_state(struct sfp * sfp,unsigned int state)480 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
481 {
482 u8 status;
483
484 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
485 sizeof(status)) {
486 if (state & SFP_F_TX_DISABLE)
487 status |= SFP_STATUS_TX_DISABLE_FORCE;
488 else
489 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
490
491 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
492 }
493 }
494
sfp_soft_start_poll(struct sfp * sfp)495 static void sfp_soft_start_poll(struct sfp *sfp)
496 {
497 const struct sfp_eeprom_id *id = &sfp->id;
498
499 sfp->state_soft_mask = 0;
500 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
501 !sfp->gpio[GPIO_TX_DISABLE])
502 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
503 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
504 !sfp->gpio[GPIO_TX_FAULT])
505 sfp->state_soft_mask |= SFP_F_TX_FAULT;
506 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
507 !sfp->gpio[GPIO_LOS])
508 sfp->state_soft_mask |= SFP_F_LOS;
509
510 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
511 !sfp->need_poll)
512 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
513 }
514
sfp_soft_stop_poll(struct sfp * sfp)515 static void sfp_soft_stop_poll(struct sfp *sfp)
516 {
517 sfp->state_soft_mask = 0;
518 }
519
sfp_get_state(struct sfp * sfp)520 static unsigned int sfp_get_state(struct sfp *sfp)
521 {
522 unsigned int state = sfp->get_state(sfp);
523
524 if (state & SFP_F_PRESENT &&
525 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
526 state |= sfp_soft_get_state(sfp);
527
528 return state;
529 }
530
sfp_set_state(struct sfp * sfp,unsigned int state)531 static void sfp_set_state(struct sfp *sfp, unsigned int state)
532 {
533 sfp->set_state(sfp, state);
534
535 if (state & SFP_F_PRESENT &&
536 sfp->state_soft_mask & SFP_F_TX_DISABLE)
537 sfp_soft_set_state(sfp, state);
538 }
539
sfp_check(void * buf,size_t len)540 static unsigned int sfp_check(void *buf, size_t len)
541 {
542 u8 *p, check;
543
544 for (p = buf, check = 0; len; p++, len--)
545 check += *p;
546
547 return check;
548 }
549
550 /* hwmon */
551 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)552 static umode_t sfp_hwmon_is_visible(const void *data,
553 enum hwmon_sensor_types type,
554 u32 attr, int channel)
555 {
556 const struct sfp *sfp = data;
557
558 switch (type) {
559 case hwmon_temp:
560 switch (attr) {
561 case hwmon_temp_min_alarm:
562 case hwmon_temp_max_alarm:
563 case hwmon_temp_lcrit_alarm:
564 case hwmon_temp_crit_alarm:
565 case hwmon_temp_min:
566 case hwmon_temp_max:
567 case hwmon_temp_lcrit:
568 case hwmon_temp_crit:
569 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
570 return 0;
571 fallthrough;
572 case hwmon_temp_input:
573 case hwmon_temp_label:
574 return 0444;
575 default:
576 return 0;
577 }
578 case hwmon_in:
579 switch (attr) {
580 case hwmon_in_min_alarm:
581 case hwmon_in_max_alarm:
582 case hwmon_in_lcrit_alarm:
583 case hwmon_in_crit_alarm:
584 case hwmon_in_min:
585 case hwmon_in_max:
586 case hwmon_in_lcrit:
587 case hwmon_in_crit:
588 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
589 return 0;
590 fallthrough;
591 case hwmon_in_input:
592 case hwmon_in_label:
593 return 0444;
594 default:
595 return 0;
596 }
597 case hwmon_curr:
598 switch (attr) {
599 case hwmon_curr_min_alarm:
600 case hwmon_curr_max_alarm:
601 case hwmon_curr_lcrit_alarm:
602 case hwmon_curr_crit_alarm:
603 case hwmon_curr_min:
604 case hwmon_curr_max:
605 case hwmon_curr_lcrit:
606 case hwmon_curr_crit:
607 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
608 return 0;
609 fallthrough;
610 case hwmon_curr_input:
611 case hwmon_curr_label:
612 return 0444;
613 default:
614 return 0;
615 }
616 case hwmon_power:
617 /* External calibration of receive power requires
618 * floating point arithmetic. Doing that in the kernel
619 * is not easy, so just skip it. If the module does
620 * not require external calibration, we can however
621 * show receiver power, since FP is then not needed.
622 */
623 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
624 channel == 1)
625 return 0;
626 switch (attr) {
627 case hwmon_power_min_alarm:
628 case hwmon_power_max_alarm:
629 case hwmon_power_lcrit_alarm:
630 case hwmon_power_crit_alarm:
631 case hwmon_power_min:
632 case hwmon_power_max:
633 case hwmon_power_lcrit:
634 case hwmon_power_crit:
635 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
636 return 0;
637 fallthrough;
638 case hwmon_power_input:
639 case hwmon_power_label:
640 return 0444;
641 default:
642 return 0;
643 }
644 default:
645 return 0;
646 }
647 }
648
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)649 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
650 {
651 __be16 val;
652 int err;
653
654 err = sfp_read(sfp, true, reg, &val, sizeof(val));
655 if (err < 0)
656 return err;
657
658 *value = be16_to_cpu(val);
659
660 return 0;
661 }
662
sfp_hwmon_to_rx_power(long * value)663 static void sfp_hwmon_to_rx_power(long *value)
664 {
665 *value = DIV_ROUND_CLOSEST(*value, 10);
666 }
667
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)668 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
669 long *value)
670 {
671 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
672 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
673 }
674
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)675 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
676 {
677 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
678 be16_to_cpu(sfp->diag.cal_t_offset), value);
679
680 if (*value >= 0x8000)
681 *value -= 0x10000;
682
683 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
684 }
685
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)686 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
687 {
688 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
689 be16_to_cpu(sfp->diag.cal_v_offset), value);
690
691 *value = DIV_ROUND_CLOSEST(*value, 10);
692 }
693
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)694 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
695 {
696 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
697 be16_to_cpu(sfp->diag.cal_txi_offset), value);
698
699 *value = DIV_ROUND_CLOSEST(*value, 500);
700 }
701
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)702 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
703 {
704 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
705 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
706
707 *value = DIV_ROUND_CLOSEST(*value, 10);
708 }
709
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)710 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
711 {
712 int err;
713
714 err = sfp_hwmon_read_sensor(sfp, reg, value);
715 if (err < 0)
716 return err;
717
718 sfp_hwmon_calibrate_temp(sfp, value);
719
720 return 0;
721 }
722
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)723 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
724 {
725 int err;
726
727 err = sfp_hwmon_read_sensor(sfp, reg, value);
728 if (err < 0)
729 return err;
730
731 sfp_hwmon_calibrate_vcc(sfp, value);
732
733 return 0;
734 }
735
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)736 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
737 {
738 int err;
739
740 err = sfp_hwmon_read_sensor(sfp, reg, value);
741 if (err < 0)
742 return err;
743
744 sfp_hwmon_calibrate_bias(sfp, value);
745
746 return 0;
747 }
748
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)749 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
750 {
751 int err;
752
753 err = sfp_hwmon_read_sensor(sfp, reg, value);
754 if (err < 0)
755 return err;
756
757 sfp_hwmon_calibrate_tx_power(sfp, value);
758
759 return 0;
760 }
761
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)762 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
763 {
764 int err;
765
766 err = sfp_hwmon_read_sensor(sfp, reg, value);
767 if (err < 0)
768 return err;
769
770 sfp_hwmon_to_rx_power(value);
771
772 return 0;
773 }
774
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)775 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
776 {
777 u8 status;
778 int err;
779
780 switch (attr) {
781 case hwmon_temp_input:
782 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
783
784 case hwmon_temp_lcrit:
785 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
786 sfp_hwmon_calibrate_temp(sfp, value);
787 return 0;
788
789 case hwmon_temp_min:
790 *value = be16_to_cpu(sfp->diag.temp_low_warn);
791 sfp_hwmon_calibrate_temp(sfp, value);
792 return 0;
793 case hwmon_temp_max:
794 *value = be16_to_cpu(sfp->diag.temp_high_warn);
795 sfp_hwmon_calibrate_temp(sfp, value);
796 return 0;
797
798 case hwmon_temp_crit:
799 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
800 sfp_hwmon_calibrate_temp(sfp, value);
801 return 0;
802
803 case hwmon_temp_lcrit_alarm:
804 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
805 if (err < 0)
806 return err;
807
808 *value = !!(status & SFP_ALARM0_TEMP_LOW);
809 return 0;
810
811 case hwmon_temp_min_alarm:
812 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
813 if (err < 0)
814 return err;
815
816 *value = !!(status & SFP_WARN0_TEMP_LOW);
817 return 0;
818
819 case hwmon_temp_max_alarm:
820 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
821 if (err < 0)
822 return err;
823
824 *value = !!(status & SFP_WARN0_TEMP_HIGH);
825 return 0;
826
827 case hwmon_temp_crit_alarm:
828 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
829 if (err < 0)
830 return err;
831
832 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
833 return 0;
834 default:
835 return -EOPNOTSUPP;
836 }
837
838 return -EOPNOTSUPP;
839 }
840
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)841 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
842 {
843 u8 status;
844 int err;
845
846 switch (attr) {
847 case hwmon_in_input:
848 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
849
850 case hwmon_in_lcrit:
851 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
852 sfp_hwmon_calibrate_vcc(sfp, value);
853 return 0;
854
855 case hwmon_in_min:
856 *value = be16_to_cpu(sfp->diag.volt_low_warn);
857 sfp_hwmon_calibrate_vcc(sfp, value);
858 return 0;
859
860 case hwmon_in_max:
861 *value = be16_to_cpu(sfp->diag.volt_high_warn);
862 sfp_hwmon_calibrate_vcc(sfp, value);
863 return 0;
864
865 case hwmon_in_crit:
866 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
867 sfp_hwmon_calibrate_vcc(sfp, value);
868 return 0;
869
870 case hwmon_in_lcrit_alarm:
871 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
872 if (err < 0)
873 return err;
874
875 *value = !!(status & SFP_ALARM0_VCC_LOW);
876 return 0;
877
878 case hwmon_in_min_alarm:
879 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
880 if (err < 0)
881 return err;
882
883 *value = !!(status & SFP_WARN0_VCC_LOW);
884 return 0;
885
886 case hwmon_in_max_alarm:
887 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
888 if (err < 0)
889 return err;
890
891 *value = !!(status & SFP_WARN0_VCC_HIGH);
892 return 0;
893
894 case hwmon_in_crit_alarm:
895 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
896 if (err < 0)
897 return err;
898
899 *value = !!(status & SFP_ALARM0_VCC_HIGH);
900 return 0;
901 default:
902 return -EOPNOTSUPP;
903 }
904
905 return -EOPNOTSUPP;
906 }
907
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)908 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
909 {
910 u8 status;
911 int err;
912
913 switch (attr) {
914 case hwmon_curr_input:
915 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
916
917 case hwmon_curr_lcrit:
918 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
919 sfp_hwmon_calibrate_bias(sfp, value);
920 return 0;
921
922 case hwmon_curr_min:
923 *value = be16_to_cpu(sfp->diag.bias_low_warn);
924 sfp_hwmon_calibrate_bias(sfp, value);
925 return 0;
926
927 case hwmon_curr_max:
928 *value = be16_to_cpu(sfp->diag.bias_high_warn);
929 sfp_hwmon_calibrate_bias(sfp, value);
930 return 0;
931
932 case hwmon_curr_crit:
933 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
934 sfp_hwmon_calibrate_bias(sfp, value);
935 return 0;
936
937 case hwmon_curr_lcrit_alarm:
938 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
939 if (err < 0)
940 return err;
941
942 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
943 return 0;
944
945 case hwmon_curr_min_alarm:
946 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
947 if (err < 0)
948 return err;
949
950 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
951 return 0;
952
953 case hwmon_curr_max_alarm:
954 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
955 if (err < 0)
956 return err;
957
958 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
959 return 0;
960
961 case hwmon_curr_crit_alarm:
962 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
963 if (err < 0)
964 return err;
965
966 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
967 return 0;
968 default:
969 return -EOPNOTSUPP;
970 }
971
972 return -EOPNOTSUPP;
973 }
974
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)975 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
976 {
977 u8 status;
978 int err;
979
980 switch (attr) {
981 case hwmon_power_input:
982 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
983
984 case hwmon_power_lcrit:
985 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
986 sfp_hwmon_calibrate_tx_power(sfp, value);
987 return 0;
988
989 case hwmon_power_min:
990 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
991 sfp_hwmon_calibrate_tx_power(sfp, value);
992 return 0;
993
994 case hwmon_power_max:
995 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
996 sfp_hwmon_calibrate_tx_power(sfp, value);
997 return 0;
998
999 case hwmon_power_crit:
1000 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1001 sfp_hwmon_calibrate_tx_power(sfp, value);
1002 return 0;
1003
1004 case hwmon_power_lcrit_alarm:
1005 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1006 if (err < 0)
1007 return err;
1008
1009 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1010 return 0;
1011
1012 case hwmon_power_min_alarm:
1013 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1014 if (err < 0)
1015 return err;
1016
1017 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1018 return 0;
1019
1020 case hwmon_power_max_alarm:
1021 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1022 if (err < 0)
1023 return err;
1024
1025 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1026 return 0;
1027
1028 case hwmon_power_crit_alarm:
1029 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1030 if (err < 0)
1031 return err;
1032
1033 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1034 return 0;
1035 default:
1036 return -EOPNOTSUPP;
1037 }
1038
1039 return -EOPNOTSUPP;
1040 }
1041
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1042 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1043 {
1044 u8 status;
1045 int err;
1046
1047 switch (attr) {
1048 case hwmon_power_input:
1049 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1050
1051 case hwmon_power_lcrit:
1052 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1053 sfp_hwmon_to_rx_power(value);
1054 return 0;
1055
1056 case hwmon_power_min:
1057 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1058 sfp_hwmon_to_rx_power(value);
1059 return 0;
1060
1061 case hwmon_power_max:
1062 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1063 sfp_hwmon_to_rx_power(value);
1064 return 0;
1065
1066 case hwmon_power_crit:
1067 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1068 sfp_hwmon_to_rx_power(value);
1069 return 0;
1070
1071 case hwmon_power_lcrit_alarm:
1072 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1073 if (err < 0)
1074 return err;
1075
1076 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1077 return 0;
1078
1079 case hwmon_power_min_alarm:
1080 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1081 if (err < 0)
1082 return err;
1083
1084 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1085 return 0;
1086
1087 case hwmon_power_max_alarm:
1088 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1089 if (err < 0)
1090 return err;
1091
1092 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1093 return 0;
1094
1095 case hwmon_power_crit_alarm:
1096 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1097 if (err < 0)
1098 return err;
1099
1100 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1101 return 0;
1102 default:
1103 return -EOPNOTSUPP;
1104 }
1105
1106 return -EOPNOTSUPP;
1107 }
1108
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1109 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1110 u32 attr, int channel, long *value)
1111 {
1112 struct sfp *sfp = dev_get_drvdata(dev);
1113
1114 switch (type) {
1115 case hwmon_temp:
1116 return sfp_hwmon_temp(sfp, attr, value);
1117 case hwmon_in:
1118 return sfp_hwmon_vcc(sfp, attr, value);
1119 case hwmon_curr:
1120 return sfp_hwmon_bias(sfp, attr, value);
1121 case hwmon_power:
1122 switch (channel) {
1123 case 0:
1124 return sfp_hwmon_tx_power(sfp, attr, value);
1125 case 1:
1126 return sfp_hwmon_rx_power(sfp, attr, value);
1127 default:
1128 return -EOPNOTSUPP;
1129 }
1130 default:
1131 return -EOPNOTSUPP;
1132 }
1133 }
1134
1135 static const char *const sfp_hwmon_power_labels[] = {
1136 "TX_power",
1137 "RX_power",
1138 };
1139
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1140 static int sfp_hwmon_read_string(struct device *dev,
1141 enum hwmon_sensor_types type,
1142 u32 attr, int channel, const char **str)
1143 {
1144 switch (type) {
1145 case hwmon_curr:
1146 switch (attr) {
1147 case hwmon_curr_label:
1148 *str = "bias";
1149 return 0;
1150 default:
1151 return -EOPNOTSUPP;
1152 }
1153 break;
1154 case hwmon_temp:
1155 switch (attr) {
1156 case hwmon_temp_label:
1157 *str = "temperature";
1158 return 0;
1159 default:
1160 return -EOPNOTSUPP;
1161 }
1162 break;
1163 case hwmon_in:
1164 switch (attr) {
1165 case hwmon_in_label:
1166 *str = "VCC";
1167 return 0;
1168 default:
1169 return -EOPNOTSUPP;
1170 }
1171 break;
1172 case hwmon_power:
1173 switch (attr) {
1174 case hwmon_power_label:
1175 *str = sfp_hwmon_power_labels[channel];
1176 return 0;
1177 default:
1178 return -EOPNOTSUPP;
1179 }
1180 break;
1181 default:
1182 return -EOPNOTSUPP;
1183 }
1184
1185 return -EOPNOTSUPP;
1186 }
1187
1188 static const struct hwmon_ops sfp_hwmon_ops = {
1189 .is_visible = sfp_hwmon_is_visible,
1190 .read = sfp_hwmon_read,
1191 .read_string = sfp_hwmon_read_string,
1192 };
1193
1194 static u32 sfp_hwmon_chip_config[] = {
1195 HWMON_C_REGISTER_TZ,
1196 0,
1197 };
1198
1199 static const struct hwmon_channel_info sfp_hwmon_chip = {
1200 .type = hwmon_chip,
1201 .config = sfp_hwmon_chip_config,
1202 };
1203
1204 static u32 sfp_hwmon_temp_config[] = {
1205 HWMON_T_INPUT |
1206 HWMON_T_MAX | HWMON_T_MIN |
1207 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1208 HWMON_T_CRIT | HWMON_T_LCRIT |
1209 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1210 HWMON_T_LABEL,
1211 0,
1212 };
1213
1214 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1215 .type = hwmon_temp,
1216 .config = sfp_hwmon_temp_config,
1217 };
1218
1219 static u32 sfp_hwmon_vcc_config[] = {
1220 HWMON_I_INPUT |
1221 HWMON_I_MAX | HWMON_I_MIN |
1222 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1223 HWMON_I_CRIT | HWMON_I_LCRIT |
1224 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1225 HWMON_I_LABEL,
1226 0,
1227 };
1228
1229 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1230 .type = hwmon_in,
1231 .config = sfp_hwmon_vcc_config,
1232 };
1233
1234 static u32 sfp_hwmon_bias_config[] = {
1235 HWMON_C_INPUT |
1236 HWMON_C_MAX | HWMON_C_MIN |
1237 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1238 HWMON_C_CRIT | HWMON_C_LCRIT |
1239 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1240 HWMON_C_LABEL,
1241 0,
1242 };
1243
1244 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1245 .type = hwmon_curr,
1246 .config = sfp_hwmon_bias_config,
1247 };
1248
1249 static u32 sfp_hwmon_power_config[] = {
1250 /* Transmit power */
1251 HWMON_P_INPUT |
1252 HWMON_P_MAX | HWMON_P_MIN |
1253 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1254 HWMON_P_CRIT | HWMON_P_LCRIT |
1255 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1256 HWMON_P_LABEL,
1257 /* Receive power */
1258 HWMON_P_INPUT |
1259 HWMON_P_MAX | HWMON_P_MIN |
1260 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1261 HWMON_P_CRIT | HWMON_P_LCRIT |
1262 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1263 HWMON_P_LABEL,
1264 0,
1265 };
1266
1267 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1268 .type = hwmon_power,
1269 .config = sfp_hwmon_power_config,
1270 };
1271
1272 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1273 &sfp_hwmon_chip,
1274 &sfp_hwmon_vcc_channel_info,
1275 &sfp_hwmon_temp_channel_info,
1276 &sfp_hwmon_bias_channel_info,
1277 &sfp_hwmon_power_channel_info,
1278 NULL,
1279 };
1280
1281 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1282 .ops = &sfp_hwmon_ops,
1283 .info = sfp_hwmon_info,
1284 };
1285
sfp_hwmon_probe(struct work_struct * work)1286 static void sfp_hwmon_probe(struct work_struct *work)
1287 {
1288 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1289 int err, i;
1290
1291 /* hwmon interface needs to access 16bit registers in atomic way to
1292 * guarantee coherency of the diagnostic monitoring data. If it is not
1293 * possible to guarantee coherency because EEPROM is broken in such way
1294 * that does not support atomic 16bit read operation then we have to
1295 * skip registration of hwmon device.
1296 */
1297 if (sfp->i2c_block_size < 2) {
1298 dev_info(sfp->dev,
1299 "skipping hwmon device registration due to broken EEPROM\n");
1300 dev_info(sfp->dev,
1301 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1302 return;
1303 }
1304
1305 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1306 if (err < 0) {
1307 if (sfp->hwmon_tries--) {
1308 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1309 T_PROBE_RETRY_SLOW);
1310 } else {
1311 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1312 }
1313 return;
1314 }
1315
1316 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1317 if (!sfp->hwmon_name) {
1318 dev_err(sfp->dev, "out of memory for hwmon name\n");
1319 return;
1320 }
1321
1322 for (i = 0; sfp->hwmon_name[i]; i++)
1323 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1324 sfp->hwmon_name[i] = '_';
1325
1326 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1327 sfp->hwmon_name, sfp,
1328 &sfp_hwmon_chip_info,
1329 NULL);
1330 if (IS_ERR(sfp->hwmon_dev))
1331 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1332 PTR_ERR(sfp->hwmon_dev));
1333 }
1334
sfp_hwmon_insert(struct sfp * sfp)1335 static int sfp_hwmon_insert(struct sfp *sfp)
1336 {
1337 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1338 return 0;
1339
1340 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1341 return 0;
1342
1343 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1344 /* This driver in general does not support address
1345 * change.
1346 */
1347 return 0;
1348
1349 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1350 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1351
1352 return 0;
1353 }
1354
sfp_hwmon_remove(struct sfp * sfp)1355 static void sfp_hwmon_remove(struct sfp *sfp)
1356 {
1357 cancel_delayed_work_sync(&sfp->hwmon_probe);
1358 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1359 hwmon_device_unregister(sfp->hwmon_dev);
1360 sfp->hwmon_dev = NULL;
1361 kfree(sfp->hwmon_name);
1362 }
1363 }
1364
sfp_hwmon_init(struct sfp * sfp)1365 static int sfp_hwmon_init(struct sfp *sfp)
1366 {
1367 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1368
1369 return 0;
1370 }
1371
sfp_hwmon_exit(struct sfp * sfp)1372 static void sfp_hwmon_exit(struct sfp *sfp)
1373 {
1374 cancel_delayed_work_sync(&sfp->hwmon_probe);
1375 }
1376 #else
sfp_hwmon_insert(struct sfp * sfp)1377 static int sfp_hwmon_insert(struct sfp *sfp)
1378 {
1379 return 0;
1380 }
1381
sfp_hwmon_remove(struct sfp * sfp)1382 static void sfp_hwmon_remove(struct sfp *sfp)
1383 {
1384 }
1385
sfp_hwmon_init(struct sfp * sfp)1386 static int sfp_hwmon_init(struct sfp *sfp)
1387 {
1388 return 0;
1389 }
1390
sfp_hwmon_exit(struct sfp * sfp)1391 static void sfp_hwmon_exit(struct sfp *sfp)
1392 {
1393 }
1394 #endif
1395
1396 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1397 static void sfp_module_tx_disable(struct sfp *sfp)
1398 {
1399 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1400 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1401 sfp->state |= SFP_F_TX_DISABLE;
1402 sfp_set_state(sfp, sfp->state);
1403 }
1404
sfp_module_tx_enable(struct sfp * sfp)1405 static void sfp_module_tx_enable(struct sfp *sfp)
1406 {
1407 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1408 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1409 sfp->state &= ~SFP_F_TX_DISABLE;
1410 sfp_set_state(sfp, sfp->state);
1411 }
1412
sfp_module_tx_fault_reset(struct sfp * sfp)1413 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1414 {
1415 unsigned int state = sfp->state;
1416
1417 if (state & SFP_F_TX_DISABLE)
1418 return;
1419
1420 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1421
1422 udelay(T_RESET_US);
1423
1424 sfp_set_state(sfp, state);
1425 }
1426
1427 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1428 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1429 {
1430 if (timeout)
1431 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1432 timeout);
1433 else
1434 cancel_delayed_work(&sfp->timeout);
1435 }
1436
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1437 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1438 unsigned int timeout)
1439 {
1440 sfp->sm_state = state;
1441 sfp_sm_set_timer(sfp, timeout);
1442 }
1443
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1444 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1445 unsigned int timeout)
1446 {
1447 sfp->sm_mod_state = state;
1448 sfp_sm_set_timer(sfp, timeout);
1449 }
1450
sfp_sm_phy_detach(struct sfp * sfp)1451 static void sfp_sm_phy_detach(struct sfp *sfp)
1452 {
1453 sfp_remove_phy(sfp->sfp_bus);
1454 phy_device_remove(sfp->mod_phy);
1455 phy_device_free(sfp->mod_phy);
1456 sfp->mod_phy = NULL;
1457 }
1458
sfp_sm_probe_phy(struct sfp * sfp,bool is_c45)1459 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1460 {
1461 struct phy_device *phy;
1462 int err;
1463
1464 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1465 if (phy == ERR_PTR(-ENODEV))
1466 return PTR_ERR(phy);
1467 if (IS_ERR(phy)) {
1468 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1469 return PTR_ERR(phy);
1470 }
1471
1472 err = phy_device_register(phy);
1473 if (err) {
1474 phy_device_free(phy);
1475 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1476 return err;
1477 }
1478
1479 err = sfp_add_phy(sfp->sfp_bus, phy);
1480 if (err) {
1481 phy_device_remove(phy);
1482 phy_device_free(phy);
1483 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1484 return err;
1485 }
1486
1487 sfp->mod_phy = phy;
1488
1489 return 0;
1490 }
1491
sfp_sm_link_up(struct sfp * sfp)1492 static void sfp_sm_link_up(struct sfp *sfp)
1493 {
1494 sfp_link_up(sfp->sfp_bus);
1495 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1496 }
1497
sfp_sm_link_down(struct sfp * sfp)1498 static void sfp_sm_link_down(struct sfp *sfp)
1499 {
1500 sfp_link_down(sfp->sfp_bus);
1501 }
1502
sfp_sm_link_check_los(struct sfp * sfp)1503 static void sfp_sm_link_check_los(struct sfp *sfp)
1504 {
1505 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1506 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1507 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1508 bool los = false;
1509
1510 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1511 * are set, we assume that no LOS signal is available. If both are
1512 * set, we assume LOS is not implemented (and is meaningless.)
1513 */
1514 if (los_options == los_inverted)
1515 los = !(sfp->state & SFP_F_LOS);
1516 else if (los_options == los_normal)
1517 los = !!(sfp->state & SFP_F_LOS);
1518
1519 if (los)
1520 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1521 else
1522 sfp_sm_link_up(sfp);
1523 }
1524
sfp_los_event_active(struct sfp * sfp,unsigned int event)1525 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1526 {
1527 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1528 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1529 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1530
1531 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1532 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1533 }
1534
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1535 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1536 {
1537 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1538 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1539 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1540
1541 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1542 (los_options == los_normal && event == SFP_E_LOS_LOW);
1543 }
1544
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1545 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1546 {
1547 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1548 dev_err(sfp->dev,
1549 "module persistently indicates fault, disabling\n");
1550 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1551 } else {
1552 if (warn)
1553 dev_err(sfp->dev, "module transmit fault indicated\n");
1554
1555 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1556 }
1557 }
1558
1559 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1560 * normally sits at I2C bus address 0x56, and may either be a clause 22
1561 * or clause 45 PHY.
1562 *
1563 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1564 * negotiation enabled, but some may be in 1000base-X - which is for the
1565 * PHY driver to determine.
1566 *
1567 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1568 * mode according to the negotiated line speed.
1569 */
sfp_sm_probe_for_phy(struct sfp * sfp)1570 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1571 {
1572 int err = 0;
1573
1574 switch (sfp->id.base.extended_cc) {
1575 case SFF8024_ECC_10GBASE_T_SFI:
1576 case SFF8024_ECC_10GBASE_T_SR:
1577 case SFF8024_ECC_5GBASE_T:
1578 case SFF8024_ECC_2_5GBASE_T:
1579 err = sfp_sm_probe_phy(sfp, true);
1580 break;
1581
1582 default:
1583 if (sfp->id.base.e1000_base_t)
1584 err = sfp_sm_probe_phy(sfp, false);
1585 break;
1586 }
1587 return err;
1588 }
1589
sfp_module_parse_power(struct sfp * sfp)1590 static int sfp_module_parse_power(struct sfp *sfp)
1591 {
1592 u32 power_mW = 1000;
1593 bool supports_a2;
1594
1595 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1596 power_mW = 1500;
1597 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1598 power_mW = 2000;
1599
1600 supports_a2 = sfp->id.ext.sff8472_compliance !=
1601 SFP_SFF8472_COMPLIANCE_NONE ||
1602 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1603
1604 if (power_mW > sfp->max_power_mW) {
1605 /* Module power specification exceeds the allowed maximum. */
1606 if (!supports_a2) {
1607 /* The module appears not to implement bus address
1608 * 0xa2, so assume that the module powers up in the
1609 * indicated mode.
1610 */
1611 dev_err(sfp->dev,
1612 "Host does not support %u.%uW modules\n",
1613 power_mW / 1000, (power_mW / 100) % 10);
1614 return -EINVAL;
1615 } else {
1616 dev_warn(sfp->dev,
1617 "Host does not support %u.%uW modules, module left in power mode 1\n",
1618 power_mW / 1000, (power_mW / 100) % 10);
1619 return 0;
1620 }
1621 }
1622
1623 if (power_mW <= 1000) {
1624 /* Modules below 1W do not require a power change sequence */
1625 sfp->module_power_mW = power_mW;
1626 return 0;
1627 }
1628
1629 if (!supports_a2) {
1630 /* The module power level is below the host maximum and the
1631 * module appears not to implement bus address 0xa2, so assume
1632 * that the module powers up in the indicated mode.
1633 */
1634 return 0;
1635 }
1636
1637 /* If the module requires a higher power mode, but also requires
1638 * an address change sequence, warn the user that the module may
1639 * not be functional.
1640 */
1641 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1642 dev_warn(sfp->dev,
1643 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1644 power_mW / 1000, (power_mW / 100) % 10);
1645 return 0;
1646 }
1647
1648 sfp->module_power_mW = power_mW;
1649
1650 return 0;
1651 }
1652
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)1653 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1654 {
1655 u8 val;
1656 int err;
1657
1658 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1659 if (err != sizeof(val)) {
1660 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1661 return -EAGAIN;
1662 }
1663
1664 /* DM7052 reports as a high power module, responds to reads (with
1665 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1666 * if the bit is already set, we're already in high power mode.
1667 */
1668 if (!!(val & BIT(0)) == enable)
1669 return 0;
1670
1671 if (enable)
1672 val |= BIT(0);
1673 else
1674 val &= ~BIT(0);
1675
1676 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1677 if (err != sizeof(val)) {
1678 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1679 return -EAGAIN;
1680 }
1681
1682 if (enable)
1683 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1684 sfp->module_power_mW / 1000,
1685 (sfp->module_power_mW / 100) % 10);
1686
1687 return 0;
1688 }
1689
1690 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1691 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1692 * not support multibyte reads from the EEPROM. Each multi-byte read
1693 * operation returns just one byte of EEPROM followed by zeros. There is
1694 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1695 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1696 * name and vendor id into EEPROM, so there is even no way to detect if
1697 * module is V-SOL V2801F. Therefore check for those zeros in the read
1698 * data and then based on check switch to reading EEPROM to one byte
1699 * at a time.
1700 */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)1701 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1702 {
1703 size_t i, block_size = sfp->i2c_block_size;
1704
1705 /* Already using byte IO */
1706 if (block_size == 1)
1707 return false;
1708
1709 for (i = 1; i < len; i += block_size) {
1710 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1711 return false;
1712 }
1713 return true;
1714 }
1715
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)1716 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1717 {
1718 u8 check;
1719 int err;
1720
1721 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1722 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1723 id->base.connector != SFF8024_CONNECTOR_LC) {
1724 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1725 id->base.phys_id = SFF8024_ID_SFF_8472;
1726 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1727 id->base.connector = SFF8024_CONNECTOR_LC;
1728 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1729 if (err != 3) {
1730 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1731 return err;
1732 }
1733
1734 /* Cotsworks modules have been found to require a delay between write operations. */
1735 mdelay(50);
1736
1737 /* Update base structure checksum */
1738 check = sfp_check(&id->base, sizeof(id->base) - 1);
1739 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1740 if (err != 1) {
1741 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1742 return err;
1743 }
1744 }
1745 return 0;
1746 }
1747
sfp_sm_mod_probe(struct sfp * sfp,bool report)1748 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1749 {
1750 /* SFP module inserted - read I2C data */
1751 struct sfp_eeprom_id id;
1752 bool cotsworks_sfbg;
1753 bool cotsworks;
1754 u8 check;
1755 int ret;
1756
1757 /* Some SFP modules and also some Linux I2C drivers do not like reads
1758 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1759 * a time.
1760 */
1761 sfp->i2c_block_size = 16;
1762
1763 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1764 if (ret < 0) {
1765 if (report)
1766 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1767 return -EAGAIN;
1768 }
1769
1770 if (ret != sizeof(id.base)) {
1771 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1772 return -EAGAIN;
1773 }
1774
1775 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1776 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1777 * that EEPROM supports atomic 16bit read operation for diagnostic
1778 * fields, so do not switch to one byte reading at a time unless it
1779 * is really required and we have no other option.
1780 */
1781 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1782 dev_info(sfp->dev,
1783 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1784 dev_info(sfp->dev,
1785 "Switching to reading EEPROM to one byte at a time\n");
1786 sfp->i2c_block_size = 1;
1787
1788 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1789 if (ret < 0) {
1790 if (report)
1791 dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1792 ret);
1793 return -EAGAIN;
1794 }
1795
1796 if (ret != sizeof(id.base)) {
1797 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1798 return -EAGAIN;
1799 }
1800 }
1801
1802 /* Cotsworks do not seem to update the checksums when they
1803 * do the final programming with the final module part number,
1804 * serial number and date code.
1805 */
1806 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1807 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1808
1809 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1810 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1811 * Cotsworks PN matches and bytes are not correct.
1812 */
1813 if (cotsworks && cotsworks_sfbg) {
1814 ret = sfp_cotsworks_fixup_check(sfp, &id);
1815 if (ret < 0)
1816 return ret;
1817 }
1818
1819 /* Validate the checksum over the base structure */
1820 check = sfp_check(&id.base, sizeof(id.base) - 1);
1821 if (check != id.base.cc_base) {
1822 if (cotsworks) {
1823 dev_warn(sfp->dev,
1824 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1825 check, id.base.cc_base);
1826 } else {
1827 dev_err(sfp->dev,
1828 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1829 check, id.base.cc_base);
1830 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1831 16, 1, &id, sizeof(id), true);
1832 return -EINVAL;
1833 }
1834 }
1835
1836 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1837 if (ret < 0) {
1838 if (report)
1839 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1840 return -EAGAIN;
1841 }
1842
1843 if (ret != sizeof(id.ext)) {
1844 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1845 return -EAGAIN;
1846 }
1847
1848 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1849 if (check != id.ext.cc_ext) {
1850 if (cotsworks) {
1851 dev_warn(sfp->dev,
1852 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1853 check, id.ext.cc_ext);
1854 } else {
1855 dev_err(sfp->dev,
1856 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1857 check, id.ext.cc_ext);
1858 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1859 16, 1, &id, sizeof(id), true);
1860 memset(&id.ext, 0, sizeof(id.ext));
1861 }
1862 }
1863
1864 sfp->id = id;
1865
1866 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1867 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1868 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1869 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1870 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1871 (int)sizeof(id.ext.datecode), id.ext.datecode);
1872
1873 /* Check whether we support this module */
1874 if (!sfp->type->module_supported(&id)) {
1875 dev_err(sfp->dev,
1876 "module is not supported - phys id 0x%02x 0x%02x\n",
1877 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1878 return -EINVAL;
1879 }
1880
1881 /* If the module requires address swap mode, warn about it */
1882 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1883 dev_warn(sfp->dev,
1884 "module address swap to access page 0xA2 is not supported.\n");
1885
1886 /* Parse the module power requirement */
1887 ret = sfp_module_parse_power(sfp);
1888 if (ret < 0)
1889 return ret;
1890
1891 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
1892 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
1893 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1894 else
1895 sfp->module_t_start_up = T_START_UP;
1896
1897 if (!memcmp(id.base.vendor_name, "HUAWEI ", 16) &&
1898 !memcmp(id.base.vendor_pn, "MA5671A ", 16))
1899 sfp->tx_fault_ignore = true;
1900 else
1901 sfp->tx_fault_ignore = false;
1902
1903 return 0;
1904 }
1905
sfp_sm_mod_remove(struct sfp * sfp)1906 static void sfp_sm_mod_remove(struct sfp *sfp)
1907 {
1908 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1909 sfp_module_remove(sfp->sfp_bus);
1910
1911 sfp_hwmon_remove(sfp);
1912
1913 memset(&sfp->id, 0, sizeof(sfp->id));
1914 sfp->module_power_mW = 0;
1915
1916 dev_info(sfp->dev, "module removed\n");
1917 }
1918
1919 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)1920 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1921 {
1922 switch (sfp->sm_dev_state) {
1923 default:
1924 if (event == SFP_E_DEV_ATTACH)
1925 sfp->sm_dev_state = SFP_DEV_DOWN;
1926 break;
1927
1928 case SFP_DEV_DOWN:
1929 if (event == SFP_E_DEV_DETACH)
1930 sfp->sm_dev_state = SFP_DEV_DETACHED;
1931 else if (event == SFP_E_DEV_UP)
1932 sfp->sm_dev_state = SFP_DEV_UP;
1933 break;
1934
1935 case SFP_DEV_UP:
1936 if (event == SFP_E_DEV_DETACH)
1937 sfp->sm_dev_state = SFP_DEV_DETACHED;
1938 else if (event == SFP_E_DEV_DOWN)
1939 sfp->sm_dev_state = SFP_DEV_DOWN;
1940 break;
1941 }
1942 }
1943
1944 /* This state machine tracks the insert/remove state of the module, probes
1945 * the on-board EEPROM, and sets up the power level.
1946 */
sfp_sm_module(struct sfp * sfp,unsigned int event)1947 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1948 {
1949 int err;
1950
1951 /* Handle remove event globally, it resets this state machine */
1952 if (event == SFP_E_REMOVE) {
1953 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1954 sfp_sm_mod_remove(sfp);
1955 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1956 return;
1957 }
1958
1959 /* Handle device detach globally */
1960 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1961 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1962 if (sfp->module_power_mW > 1000 &&
1963 sfp->sm_mod_state > SFP_MOD_HPOWER)
1964 sfp_sm_mod_hpower(sfp, false);
1965 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1966 return;
1967 }
1968
1969 switch (sfp->sm_mod_state) {
1970 default:
1971 if (event == SFP_E_INSERT) {
1972 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1973 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1974 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1975 }
1976 break;
1977
1978 case SFP_MOD_PROBE:
1979 /* Wait for T_PROBE_INIT to time out */
1980 if (event != SFP_E_TIMEOUT)
1981 break;
1982
1983 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1984 if (err == -EAGAIN) {
1985 if (sfp->sm_mod_tries_init &&
1986 --sfp->sm_mod_tries_init) {
1987 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1988 break;
1989 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1990 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1991 dev_warn(sfp->dev,
1992 "please wait, module slow to respond\n");
1993 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1994 break;
1995 }
1996 }
1997 if (err < 0) {
1998 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1999 break;
2000 }
2001
2002 err = sfp_hwmon_insert(sfp);
2003 if (err)
2004 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2005
2006 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2007 fallthrough;
2008 case SFP_MOD_WAITDEV:
2009 /* Ensure that the device is attached before proceeding */
2010 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2011 break;
2012
2013 /* Report the module insertion to the upstream device */
2014 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2015 if (err < 0) {
2016 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2017 break;
2018 }
2019
2020 /* If this is a power level 1 module, we are done */
2021 if (sfp->module_power_mW <= 1000)
2022 goto insert;
2023
2024 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2025 fallthrough;
2026 case SFP_MOD_HPOWER:
2027 /* Enable high power mode */
2028 err = sfp_sm_mod_hpower(sfp, true);
2029 if (err < 0) {
2030 if (err != -EAGAIN) {
2031 sfp_module_remove(sfp->sfp_bus);
2032 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2033 } else {
2034 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2035 }
2036 break;
2037 }
2038
2039 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2040 break;
2041
2042 case SFP_MOD_WAITPWR:
2043 /* Wait for T_HPOWER_LEVEL to time out */
2044 if (event != SFP_E_TIMEOUT)
2045 break;
2046
2047 insert:
2048 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2049 break;
2050
2051 case SFP_MOD_PRESENT:
2052 case SFP_MOD_ERROR:
2053 break;
2054 }
2055 }
2056
sfp_sm_main(struct sfp * sfp,unsigned int event)2057 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2058 {
2059 unsigned long timeout;
2060 int ret;
2061
2062 /* Some events are global */
2063 if (sfp->sm_state != SFP_S_DOWN &&
2064 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2065 sfp->sm_dev_state != SFP_DEV_UP)) {
2066 if (sfp->sm_state == SFP_S_LINK_UP &&
2067 sfp->sm_dev_state == SFP_DEV_UP)
2068 sfp_sm_link_down(sfp);
2069 if (sfp->sm_state > SFP_S_INIT)
2070 sfp_module_stop(sfp->sfp_bus);
2071 if (sfp->mod_phy)
2072 sfp_sm_phy_detach(sfp);
2073 sfp_module_tx_disable(sfp);
2074 sfp_soft_stop_poll(sfp);
2075 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2076 return;
2077 }
2078
2079 /* The main state machine */
2080 switch (sfp->sm_state) {
2081 case SFP_S_DOWN:
2082 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2083 sfp->sm_dev_state != SFP_DEV_UP)
2084 break;
2085
2086 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2087 sfp_soft_start_poll(sfp);
2088
2089 sfp_module_tx_enable(sfp);
2090
2091 /* Initialise the fault clearance retries */
2092 sfp->sm_fault_retries = N_FAULT_INIT;
2093
2094 /* We need to check the TX_FAULT state, which is not defined
2095 * while TX_DISABLE is asserted. The earliest we want to do
2096 * anything (such as probe for a PHY) is 50ms.
2097 */
2098 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2099 break;
2100
2101 case SFP_S_WAIT:
2102 if (event != SFP_E_TIMEOUT)
2103 break;
2104
2105 if (sfp->state & SFP_F_TX_FAULT) {
2106 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2107 * from the TX_DISABLE deassertion for the module to
2108 * initialise, which is indicated by TX_FAULT
2109 * deasserting.
2110 */
2111 timeout = sfp->module_t_start_up;
2112 if (timeout > T_WAIT)
2113 timeout -= T_WAIT;
2114 else
2115 timeout = 1;
2116
2117 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2118 } else {
2119 /* TX_FAULT is not asserted, assume the module has
2120 * finished initialising.
2121 */
2122 goto init_done;
2123 }
2124 break;
2125
2126 case SFP_S_INIT:
2127 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2128 /* TX_FAULT is still asserted after t_init or
2129 * or t_start_up, so assume there is a fault.
2130 */
2131 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2132 sfp->sm_fault_retries == N_FAULT_INIT);
2133 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2134 init_done:
2135 sfp->sm_phy_retries = R_PHY_RETRY;
2136 goto phy_probe;
2137 }
2138 break;
2139
2140 case SFP_S_INIT_PHY:
2141 if (event != SFP_E_TIMEOUT)
2142 break;
2143 phy_probe:
2144 /* TX_FAULT deasserted or we timed out with TX_FAULT
2145 * clear. Probe for the PHY and check the LOS state.
2146 */
2147 ret = sfp_sm_probe_for_phy(sfp);
2148 if (ret == -ENODEV) {
2149 if (--sfp->sm_phy_retries) {
2150 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2151 break;
2152 } else {
2153 dev_info(sfp->dev, "no PHY detected\n");
2154 }
2155 } else if (ret) {
2156 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2157 break;
2158 }
2159 if (sfp_module_start(sfp->sfp_bus)) {
2160 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2161 break;
2162 }
2163 sfp_sm_link_check_los(sfp);
2164
2165 /* Reset the fault retry count */
2166 sfp->sm_fault_retries = N_FAULT;
2167 break;
2168
2169 case SFP_S_INIT_TX_FAULT:
2170 if (event == SFP_E_TIMEOUT) {
2171 sfp_module_tx_fault_reset(sfp);
2172 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2173 }
2174 break;
2175
2176 case SFP_S_WAIT_LOS:
2177 if (event == SFP_E_TX_FAULT)
2178 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2179 else if (sfp_los_event_inactive(sfp, event))
2180 sfp_sm_link_up(sfp);
2181 break;
2182
2183 case SFP_S_LINK_UP:
2184 if (event == SFP_E_TX_FAULT) {
2185 sfp_sm_link_down(sfp);
2186 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2187 } else if (sfp_los_event_active(sfp, event)) {
2188 sfp_sm_link_down(sfp);
2189 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2190 }
2191 break;
2192
2193 case SFP_S_TX_FAULT:
2194 if (event == SFP_E_TIMEOUT) {
2195 sfp_module_tx_fault_reset(sfp);
2196 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2197 }
2198 break;
2199
2200 case SFP_S_REINIT:
2201 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2202 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2203 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2204 dev_info(sfp->dev, "module transmit fault recovered\n");
2205 sfp_sm_link_check_los(sfp);
2206 }
2207 break;
2208
2209 case SFP_S_TX_DISABLE:
2210 break;
2211 }
2212 }
2213
sfp_sm_event(struct sfp * sfp,unsigned int event)2214 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2215 {
2216 mutex_lock(&sfp->sm_mutex);
2217
2218 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2219 mod_state_to_str(sfp->sm_mod_state),
2220 dev_state_to_str(sfp->sm_dev_state),
2221 sm_state_to_str(sfp->sm_state),
2222 event_to_str(event));
2223
2224 sfp_sm_device(sfp, event);
2225 sfp_sm_module(sfp, event);
2226 sfp_sm_main(sfp, event);
2227
2228 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2229 mod_state_to_str(sfp->sm_mod_state),
2230 dev_state_to_str(sfp->sm_dev_state),
2231 sm_state_to_str(sfp->sm_state));
2232
2233 mutex_unlock(&sfp->sm_mutex);
2234 }
2235
sfp_attach(struct sfp * sfp)2236 static void sfp_attach(struct sfp *sfp)
2237 {
2238 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2239 }
2240
sfp_detach(struct sfp * sfp)2241 static void sfp_detach(struct sfp *sfp)
2242 {
2243 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2244 }
2245
sfp_start(struct sfp * sfp)2246 static void sfp_start(struct sfp *sfp)
2247 {
2248 sfp_sm_event(sfp, SFP_E_DEV_UP);
2249 }
2250
sfp_stop(struct sfp * sfp)2251 static void sfp_stop(struct sfp *sfp)
2252 {
2253 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2254 }
2255
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2256 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2257 {
2258 /* locking... and check module is present */
2259
2260 if (sfp->id.ext.sff8472_compliance &&
2261 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2262 modinfo->type = ETH_MODULE_SFF_8472;
2263 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2264 } else {
2265 modinfo->type = ETH_MODULE_SFF_8079;
2266 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2267 }
2268 return 0;
2269 }
2270
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2271 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2272 u8 *data)
2273 {
2274 unsigned int first, last, len;
2275 int ret;
2276
2277 if (ee->len == 0)
2278 return -EINVAL;
2279
2280 first = ee->offset;
2281 last = ee->offset + ee->len;
2282 if (first < ETH_MODULE_SFF_8079_LEN) {
2283 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2284 len -= first;
2285
2286 ret = sfp_read(sfp, false, first, data, len);
2287 if (ret < 0)
2288 return ret;
2289
2290 first += len;
2291 data += len;
2292 }
2293 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2294 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2295 len -= first;
2296 first -= ETH_MODULE_SFF_8079_LEN;
2297
2298 ret = sfp_read(sfp, true, first, data, len);
2299 if (ret < 0)
2300 return ret;
2301 }
2302 return 0;
2303 }
2304
2305 static const struct sfp_socket_ops sfp_module_ops = {
2306 .attach = sfp_attach,
2307 .detach = sfp_detach,
2308 .start = sfp_start,
2309 .stop = sfp_stop,
2310 .module_info = sfp_module_info,
2311 .module_eeprom = sfp_module_eeprom,
2312 };
2313
sfp_timeout(struct work_struct * work)2314 static void sfp_timeout(struct work_struct *work)
2315 {
2316 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2317
2318 rtnl_lock();
2319 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2320 rtnl_unlock();
2321 }
2322
sfp_check_state(struct sfp * sfp)2323 static void sfp_check_state(struct sfp *sfp)
2324 {
2325 unsigned int state, i, changed;
2326
2327 mutex_lock(&sfp->st_mutex);
2328 state = sfp_get_state(sfp);
2329 changed = state ^ sfp->state;
2330 if (sfp->tx_fault_ignore)
2331 changed &= SFP_F_PRESENT | SFP_F_LOS;
2332 else
2333 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2334
2335 for (i = 0; i < GPIO_MAX; i++)
2336 if (changed & BIT(i))
2337 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2338 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2339
2340 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2341 sfp->state = state;
2342
2343 rtnl_lock();
2344 if (changed & SFP_F_PRESENT)
2345 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2346 SFP_E_INSERT : SFP_E_REMOVE);
2347
2348 if (changed & SFP_F_TX_FAULT)
2349 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2350 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2351
2352 if (changed & SFP_F_LOS)
2353 sfp_sm_event(sfp, state & SFP_F_LOS ?
2354 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2355 rtnl_unlock();
2356 mutex_unlock(&sfp->st_mutex);
2357 }
2358
sfp_irq(int irq,void * data)2359 static irqreturn_t sfp_irq(int irq, void *data)
2360 {
2361 struct sfp *sfp = data;
2362
2363 sfp_check_state(sfp);
2364
2365 return IRQ_HANDLED;
2366 }
2367
sfp_poll(struct work_struct * work)2368 static void sfp_poll(struct work_struct *work)
2369 {
2370 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2371
2372 sfp_check_state(sfp);
2373
2374 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2375 sfp->need_poll)
2376 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2377 }
2378
sfp_alloc(struct device * dev)2379 static struct sfp *sfp_alloc(struct device *dev)
2380 {
2381 struct sfp *sfp;
2382
2383 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2384 if (!sfp)
2385 return ERR_PTR(-ENOMEM);
2386
2387 sfp->dev = dev;
2388
2389 mutex_init(&sfp->sm_mutex);
2390 mutex_init(&sfp->st_mutex);
2391 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2392 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2393
2394 sfp_hwmon_init(sfp);
2395
2396 return sfp;
2397 }
2398
sfp_cleanup(void * data)2399 static void sfp_cleanup(void *data)
2400 {
2401 struct sfp *sfp = data;
2402
2403 sfp_hwmon_exit(sfp);
2404
2405 cancel_delayed_work_sync(&sfp->poll);
2406 cancel_delayed_work_sync(&sfp->timeout);
2407 if (sfp->i2c_mii) {
2408 mdiobus_unregister(sfp->i2c_mii);
2409 mdiobus_free(sfp->i2c_mii);
2410 }
2411 if (sfp->i2c)
2412 i2c_put_adapter(sfp->i2c);
2413 kfree(sfp);
2414 }
2415
sfp_probe(struct platform_device * pdev)2416 static int sfp_probe(struct platform_device *pdev)
2417 {
2418 const struct sff_data *sff;
2419 struct i2c_adapter *i2c;
2420 char *sfp_irq_name;
2421 struct sfp *sfp;
2422 int err, i;
2423
2424 sfp = sfp_alloc(&pdev->dev);
2425 if (IS_ERR(sfp))
2426 return PTR_ERR(sfp);
2427
2428 platform_set_drvdata(pdev, sfp);
2429
2430 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2431 if (err < 0)
2432 return err;
2433
2434 sff = sfp->type = &sfp_data;
2435
2436 if (pdev->dev.of_node) {
2437 struct device_node *node = pdev->dev.of_node;
2438 const struct of_device_id *id;
2439 struct device_node *np;
2440
2441 id = of_match_node(sfp_of_match, node);
2442 if (WARN_ON(!id))
2443 return -EINVAL;
2444
2445 sff = sfp->type = id->data;
2446
2447 np = of_parse_phandle(node, "i2c-bus", 0);
2448 if (!np) {
2449 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2450 return -ENODEV;
2451 }
2452
2453 i2c = of_find_i2c_adapter_by_node(np);
2454 of_node_put(np);
2455 } else if (has_acpi_companion(&pdev->dev)) {
2456 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2457 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2458 struct fwnode_reference_args args;
2459 struct acpi_handle *acpi_handle;
2460 int ret;
2461
2462 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2463 if (ret || !is_acpi_device_node(args.fwnode)) {
2464 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2465 return -ENODEV;
2466 }
2467
2468 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2469 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2470 } else {
2471 return -EINVAL;
2472 }
2473
2474 if (!i2c)
2475 return -EPROBE_DEFER;
2476
2477 err = sfp_i2c_configure(sfp, i2c);
2478 if (err < 0) {
2479 i2c_put_adapter(i2c);
2480 return err;
2481 }
2482
2483 for (i = 0; i < GPIO_MAX; i++)
2484 if (sff->gpios & BIT(i)) {
2485 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2486 gpio_of_names[i], gpio_flags[i]);
2487 if (IS_ERR(sfp->gpio[i]))
2488 return PTR_ERR(sfp->gpio[i]);
2489 }
2490
2491 sfp->get_state = sfp_gpio_get_state;
2492 sfp->set_state = sfp_gpio_set_state;
2493
2494 /* Modules that have no detect signal are always present */
2495 if (!(sfp->gpio[GPIO_MODDEF0]))
2496 sfp->get_state = sff_gpio_get_state;
2497
2498 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2499 &sfp->max_power_mW);
2500 if (!sfp->max_power_mW)
2501 sfp->max_power_mW = 1000;
2502
2503 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2504 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2505
2506 /* Get the initial state, and always signal TX disable,
2507 * since the network interface will not be up.
2508 */
2509 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2510
2511 if (sfp->gpio[GPIO_RATE_SELECT] &&
2512 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2513 sfp->state |= SFP_F_RATE_SELECT;
2514 sfp_set_state(sfp, sfp->state);
2515 sfp_module_tx_disable(sfp);
2516 if (sfp->state & SFP_F_PRESENT) {
2517 rtnl_lock();
2518 sfp_sm_event(sfp, SFP_E_INSERT);
2519 rtnl_unlock();
2520 }
2521
2522 for (i = 0; i < GPIO_MAX; i++) {
2523 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2524 continue;
2525
2526 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2527 if (sfp->gpio_irq[i] < 0) {
2528 sfp->gpio_irq[i] = 0;
2529 sfp->need_poll = true;
2530 continue;
2531 }
2532
2533 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2534 "%s-%s", dev_name(sfp->dev),
2535 gpio_of_names[i]);
2536
2537 if (!sfp_irq_name)
2538 return -ENOMEM;
2539
2540 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2541 NULL, sfp_irq,
2542 IRQF_ONESHOT |
2543 IRQF_TRIGGER_RISING |
2544 IRQF_TRIGGER_FALLING,
2545 sfp_irq_name, sfp);
2546 if (err) {
2547 sfp->gpio_irq[i] = 0;
2548 sfp->need_poll = true;
2549 }
2550 }
2551
2552 if (sfp->need_poll)
2553 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2554
2555 /* We could have an issue in cases no Tx disable pin is available or
2556 * wired as modules using a laser as their light source will continue to
2557 * be active when the fiber is removed. This could be a safety issue and
2558 * we should at least warn the user about that.
2559 */
2560 if (!sfp->gpio[GPIO_TX_DISABLE])
2561 dev_warn(sfp->dev,
2562 "No tx_disable pin: SFP modules will always be emitting.\n");
2563
2564 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2565 if (!sfp->sfp_bus)
2566 return -ENOMEM;
2567
2568 return 0;
2569 }
2570
sfp_remove(struct platform_device * pdev)2571 static int sfp_remove(struct platform_device *pdev)
2572 {
2573 struct sfp *sfp = platform_get_drvdata(pdev);
2574
2575 sfp_unregister_socket(sfp->sfp_bus);
2576
2577 rtnl_lock();
2578 sfp_sm_event(sfp, SFP_E_REMOVE);
2579 rtnl_unlock();
2580
2581 return 0;
2582 }
2583
sfp_shutdown(struct platform_device * pdev)2584 static void sfp_shutdown(struct platform_device *pdev)
2585 {
2586 struct sfp *sfp = platform_get_drvdata(pdev);
2587 int i;
2588
2589 for (i = 0; i < GPIO_MAX; i++) {
2590 if (!sfp->gpio_irq[i])
2591 continue;
2592
2593 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2594 }
2595
2596 cancel_delayed_work_sync(&sfp->poll);
2597 cancel_delayed_work_sync(&sfp->timeout);
2598 }
2599
2600 static struct platform_driver sfp_driver = {
2601 .probe = sfp_probe,
2602 .remove = sfp_remove,
2603 .shutdown = sfp_shutdown,
2604 .driver = {
2605 .name = "sfp",
2606 .of_match_table = sfp_of_match,
2607 },
2608 };
2609
sfp_init(void)2610 static int sfp_init(void)
2611 {
2612 poll_jiffies = msecs_to_jiffies(100);
2613
2614 return platform_driver_register(&sfp_driver);
2615 }
2616 module_init(sfp_init);
2617
sfp_exit(void)2618 static void sfp_exit(void)
2619 {
2620 platform_driver_unregister(&sfp_driver);
2621 }
2622 module_exit(sfp_exit);
2623
2624 MODULE_ALIAS("platform:sfp");
2625 MODULE_AUTHOR("Russell King");
2626 MODULE_LICENSE("GPL v2");
2627