• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include "../regd.h"
20 #include "ar9002_phy.h"
21 
22 /* All code below is for AR5008, AR9001, AR9002 */
23 
24 #define AR5008_OFDM_RATES		8
25 #define AR5008_HT_SS_RATES		8
26 #define AR5008_HT_DS_RATES		8
27 
28 #define AR5008_HT20_SHIFT		16
29 #define AR5008_HT40_SHIFT		24
30 
31 #define AR5008_11NA_OFDM_SHIFT		0
32 #define AR5008_11NA_HT_SS_SHIFT		8
33 #define AR5008_11NA_HT_DS_SHIFT		16
34 
35 #define AR5008_11NG_OFDM_SHIFT		4
36 #define AR5008_11NG_HT_SS_SHIFT		12
37 #define AR5008_11NG_HT_DS_SHIFT		20
38 
39 /*
40  * register values to turn OFDM weak signal detection OFF
41  */
42 static const int m1ThreshLow_off = 127;
43 static const int m2ThreshLow_off = 127;
44 static const int m1Thresh_off = 127;
45 static const int m2Thresh_off = 127;
46 static const int m2CountThr_off =  31;
47 static const int m2CountThrLow_off =  63;
48 static const int m1ThreshLowExt_off = 127;
49 static const int m2ThreshLowExt_off = 127;
50 static const int m1ThreshExt_off = 127;
51 static const int m2ThreshExt_off = 127;
52 
53 static const u32 ar5416Bank0[][2] = {
54 	/* Addr      allmodes  */
55 	{0x000098b0, 0x1e5795e5},
56 	{0x000098e0, 0x02008020},
57 };
58 
59 static const u32 ar5416Bank1[][2] = {
60 	/* Addr      allmodes  */
61 	{0x000098b0, 0x02108421},
62 	{0x000098ec, 0x00000008},
63 };
64 
65 static const u32 ar5416Bank2[][2] = {
66 	/* Addr      allmodes  */
67 	{0x000098b0, 0x0e73ff17},
68 	{0x000098e0, 0x00000420},
69 };
70 
71 static const u32 ar5416Bank3[][3] = {
72 	/* Addr      5G          2G        */
73 	{0x000098f0, 0x01400018, 0x01c00018},
74 };
75 
76 static const u32 ar5416Bank7[][2] = {
77 	/* Addr      allmodes  */
78 	{0x0000989c, 0x00000500},
79 	{0x0000989c, 0x00000800},
80 	{0x000098cc, 0x0000000e},
81 };
82 
83 static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
84 static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
85 static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
86 static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
87 static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
88 
ar5008_write_bank6(struct ath_hw * ah,unsigned int * writecnt)89 static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
90 {
91 	struct ar5416IniArray *array = &ah->iniBank6;
92 	u32 *data = ah->analogBank6Data;
93 	int r;
94 
95 	ENABLE_REGWRITE_BUFFER(ah);
96 
97 	for (r = 0; r < array->ia_rows; r++) {
98 		REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
99 		DO_DELAY(*writecnt);
100 	}
101 
102 	REGWRITE_BUFFER_FLUSH(ah);
103 }
104 
105 /**
106  * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
107  * @rfbuf:
108  * @reg32:
109  * @numBits:
110  * @firstBit:
111  * @column:
112  *
113  * Performs analog "swizzling" of parameters into their location.
114  * Used on external AR2133/AR5133 radios.
115  */
ar5008_hw_phy_modify_rx_buffer(u32 * rfBuf,u32 reg32,u32 numBits,u32 firstBit,u32 column)116 static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
117 					   u32 numBits, u32 firstBit,
118 					   u32 column)
119 {
120 	u32 tmp32, mask, arrayEntry, lastBit;
121 	int32_t bitPosition, bitsLeft;
122 
123 	tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
124 	arrayEntry = (firstBit - 1) / 8;
125 	bitPosition = (firstBit - 1) % 8;
126 	bitsLeft = numBits;
127 	while (bitsLeft > 0) {
128 		lastBit = (bitPosition + bitsLeft > 8) ?
129 		    8 : bitPosition + bitsLeft;
130 		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
131 		    (column * 8);
132 		rfBuf[arrayEntry] &= ~mask;
133 		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
134 				      (column * 8)) & mask;
135 		bitsLeft -= 8 - bitPosition;
136 		tmp32 = tmp32 >> (8 - bitPosition);
137 		bitPosition = 0;
138 		arrayEntry++;
139 	}
140 }
141 
142 /*
143  * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
144  * rf_pwd_icsyndiv.
145  *
146  * Theoretical Rules:
147  *   if 2 GHz band
148  *      if forceBiasAuto
149  *         if synth_freq < 2412
150  *            bias = 0
151  *         else if 2412 <= synth_freq <= 2422
152  *            bias = 1
153  *         else // synth_freq > 2422
154  *            bias = 2
155  *      else if forceBias > 0
156  *         bias = forceBias & 7
157  *      else
158  *         no change, use value from ini file
159  *   else
160  *      no change, invalid band
161  *
162  *  1st Mod:
163  *    2422 also uses value of 2
164  *    <approved>
165  *
166  *  2nd Mod:
167  *    Less than 2412 uses value of 0, 2412 and above uses value of 2
168  */
ar5008_hw_force_bias(struct ath_hw * ah,u16 synth_freq)169 static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
170 {
171 	struct ath_common *common = ath9k_hw_common(ah);
172 	u32 tmp_reg;
173 	int reg_writes = 0;
174 	u32 new_bias = 0;
175 
176 	if (!AR_SREV_5416(ah) || synth_freq >= 3000)
177 		return;
178 
179 	BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
180 
181 	if (synth_freq < 2412)
182 		new_bias = 0;
183 	else if (synth_freq < 2422)
184 		new_bias = 1;
185 	else
186 		new_bias = 2;
187 
188 	/* pre-reverse this field */
189 	tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
190 
191 	ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
192 		new_bias, synth_freq);
193 
194 	/* swizzle rf_pwd_icsyndiv */
195 	ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
196 
197 	/* write Bank 6 with new params */
198 	ar5008_write_bank6(ah, &reg_writes);
199 }
200 
201 /**
202  * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
203  * @ah: atheros hardware structure
204  * @chan:
205  *
206  * For the external AR2133/AR5133 radios, takes the MHz channel value and set
207  * the channel value. Assumes writes enabled to analog bus and bank6 register
208  * cache in ah->analogBank6Data.
209  */
ar5008_hw_set_channel(struct ath_hw * ah,struct ath9k_channel * chan)210 static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
211 {
212 	struct ath_common *common = ath9k_hw_common(ah);
213 	u32 channelSel = 0;
214 	u32 bModeSynth = 0;
215 	u32 aModeRefSel = 0;
216 	u32 reg32 = 0;
217 	u16 freq;
218 	struct chan_centers centers;
219 
220 	ath9k_hw_get_channel_centers(ah, chan, &centers);
221 	freq = centers.synth_center;
222 
223 	if (freq < 4800) {
224 		u32 txctl;
225 
226 		if (((freq - 2192) % 5) == 0) {
227 			channelSel = ((freq - 672) * 2 - 3040) / 10;
228 			bModeSynth = 0;
229 		} else if (((freq - 2224) % 5) == 0) {
230 			channelSel = ((freq - 704) * 2 - 3040) / 10;
231 			bModeSynth = 1;
232 		} else {
233 			ath_err(common, "Invalid channel %u MHz\n", freq);
234 			return -EINVAL;
235 		}
236 
237 		channelSel = (channelSel << 2) & 0xff;
238 		channelSel = ath9k_hw_reverse_bits(channelSel, 8);
239 
240 		txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
241 		if (freq == 2484) {
242 
243 			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
244 				  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
245 		} else {
246 			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
247 				  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
248 		}
249 
250 	} else if ((freq % 20) == 0 && freq >= 5120) {
251 		channelSel =
252 		    ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
253 		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
254 	} else if ((freq % 10) == 0) {
255 		channelSel =
256 		    ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
257 		if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
258 			aModeRefSel = ath9k_hw_reverse_bits(2, 2);
259 		else
260 			aModeRefSel = ath9k_hw_reverse_bits(1, 2);
261 	} else if ((freq % 5) == 0) {
262 		channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
263 		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
264 	} else {
265 		ath_err(common, "Invalid channel %u MHz\n", freq);
266 		return -EINVAL;
267 	}
268 
269 	ar5008_hw_force_bias(ah, freq);
270 
271 	reg32 =
272 	    (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
273 	    (1 << 5) | 0x1;
274 
275 	REG_WRITE(ah, AR_PHY(0x37), reg32);
276 
277 	ah->curchan = chan;
278 
279 	return 0;
280 }
281 
ar5008_hw_cmn_spur_mitigate(struct ath_hw * ah,struct ath9k_channel * chan,int bin)282 void ar5008_hw_cmn_spur_mitigate(struct ath_hw *ah,
283 			  struct ath9k_channel *chan, int bin)
284 {
285 	int cur_bin;
286 	int upper, lower, cur_vit_mask;
287 	int i;
288 	int8_t mask_m[123] = {0};
289 	int8_t mask_p[123] = {0};
290 	int8_t mask_amt;
291 	int tmp_mask;
292 	static const int pilot_mask_reg[4] = {
293 		AR_PHY_TIMING7, AR_PHY_TIMING8,
294 		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
295 	};
296 	static const int chan_mask_reg[4] = {
297 		AR_PHY_TIMING9, AR_PHY_TIMING10,
298 		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
299 	};
300 	static const int inc[4] = { 0, 100, 0, 0 };
301 
302 	cur_bin = -6000;
303 	upper = bin + 100;
304 	lower = bin - 100;
305 
306 	for (i = 0; i < 4; i++) {
307 		int pilot_mask = 0;
308 		int chan_mask = 0;
309 		int bp = 0;
310 
311 		for (bp = 0; bp < 30; bp++) {
312 			if ((cur_bin > lower) && (cur_bin < upper)) {
313 				pilot_mask = pilot_mask | 0x1 << bp;
314 				chan_mask = chan_mask | 0x1 << bp;
315 			}
316 			cur_bin += 100;
317 		}
318 		cur_bin += inc[i];
319 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
320 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
321 	}
322 
323 	cur_vit_mask = 6100;
324 	upper = bin + 120;
325 	lower = bin - 120;
326 
327 	for (i = 0; i < ARRAY_SIZE(mask_m); i++) {
328 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
329 			/* workaround for gcc bug #37014 */
330 			volatile int tmp_v = abs(cur_vit_mask - bin);
331 
332 			if (tmp_v < 75)
333 				mask_amt = 1;
334 			else
335 				mask_amt = 0;
336 			if (cur_vit_mask < 0)
337 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
338 			else
339 				mask_p[cur_vit_mask / 100] = mask_amt;
340 		}
341 		cur_vit_mask -= 100;
342 	}
343 
344 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
345 		| (mask_m[48] << 26) | (mask_m[49] << 24)
346 		| (mask_m[50] << 22) | (mask_m[51] << 20)
347 		| (mask_m[52] << 18) | (mask_m[53] << 16)
348 		| (mask_m[54] << 14) | (mask_m[55] << 12)
349 		| (mask_m[56] << 10) | (mask_m[57] << 8)
350 		| (mask_m[58] << 6) | (mask_m[59] << 4)
351 		| (mask_m[60] << 2) | (mask_m[61] << 0);
352 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
353 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
354 
355 	tmp_mask = (mask_m[31] << 28)
356 		| (mask_m[32] << 26) | (mask_m[33] << 24)
357 		| (mask_m[34] << 22) | (mask_m[35] << 20)
358 		| (mask_m[36] << 18) | (mask_m[37] << 16)
359 		| (mask_m[48] << 14) | (mask_m[39] << 12)
360 		| (mask_m[40] << 10) | (mask_m[41] << 8)
361 		| (mask_m[42] << 6) | (mask_m[43] << 4)
362 		| (mask_m[44] << 2) | (mask_m[45] << 0);
363 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
364 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
365 
366 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
367 		| (mask_m[18] << 26) | (mask_m[18] << 24)
368 		| (mask_m[20] << 22) | (mask_m[20] << 20)
369 		| (mask_m[22] << 18) | (mask_m[22] << 16)
370 		| (mask_m[24] << 14) | (mask_m[24] << 12)
371 		| (mask_m[25] << 10) | (mask_m[26] << 8)
372 		| (mask_m[27] << 6) | (mask_m[28] << 4)
373 		| (mask_m[29] << 2) | (mask_m[30] << 0);
374 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
375 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
376 
377 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
378 		| (mask_m[2] << 26) | (mask_m[3] << 24)
379 		| (mask_m[4] << 22) | (mask_m[5] << 20)
380 		| (mask_m[6] << 18) | (mask_m[7] << 16)
381 		| (mask_m[8] << 14) | (mask_m[9] << 12)
382 		| (mask_m[10] << 10) | (mask_m[11] << 8)
383 		| (mask_m[12] << 6) | (mask_m[13] << 4)
384 		| (mask_m[14] << 2) | (mask_m[15] << 0);
385 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
386 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
387 
388 	tmp_mask = (mask_p[15] << 28)
389 		| (mask_p[14] << 26) | (mask_p[13] << 24)
390 		| (mask_p[12] << 22) | (mask_p[11] << 20)
391 		| (mask_p[10] << 18) | (mask_p[9] << 16)
392 		| (mask_p[8] << 14) | (mask_p[7] << 12)
393 		| (mask_p[6] << 10) | (mask_p[5] << 8)
394 		| (mask_p[4] << 6) | (mask_p[3] << 4)
395 		| (mask_p[2] << 2) | (mask_p[1] << 0);
396 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
397 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
398 
399 	tmp_mask = (mask_p[30] << 28)
400 		| (mask_p[29] << 26) | (mask_p[28] << 24)
401 		| (mask_p[27] << 22) | (mask_p[26] << 20)
402 		| (mask_p[25] << 18) | (mask_p[24] << 16)
403 		| (mask_p[23] << 14) | (mask_p[22] << 12)
404 		| (mask_p[21] << 10) | (mask_p[20] << 8)
405 		| (mask_p[19] << 6) | (mask_p[18] << 4)
406 		| (mask_p[17] << 2) | (mask_p[16] << 0);
407 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
408 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
409 
410 	tmp_mask = (mask_p[45] << 28)
411 		| (mask_p[44] << 26) | (mask_p[43] << 24)
412 		| (mask_p[42] << 22) | (mask_p[41] << 20)
413 		| (mask_p[40] << 18) | (mask_p[39] << 16)
414 		| (mask_p[38] << 14) | (mask_p[37] << 12)
415 		| (mask_p[36] << 10) | (mask_p[35] << 8)
416 		| (mask_p[34] << 6) | (mask_p[33] << 4)
417 		| (mask_p[32] << 2) | (mask_p[31] << 0);
418 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
419 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
420 
421 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
422 		| (mask_p[59] << 26) | (mask_p[58] << 24)
423 		| (mask_p[57] << 22) | (mask_p[56] << 20)
424 		| (mask_p[55] << 18) | (mask_p[54] << 16)
425 		| (mask_p[53] << 14) | (mask_p[52] << 12)
426 		| (mask_p[51] << 10) | (mask_p[50] << 8)
427 		| (mask_p[49] << 6) | (mask_p[48] << 4)
428 		| (mask_p[47] << 2) | (mask_p[46] << 0);
429 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
430 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
431 }
432 
433 /**
434  * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
435  * @ah: atheros hardware structure
436  * @chan:
437  *
438  * For non single-chip solutions. Converts to baseband spur frequency given the
439  * input channel frequency and compute register settings below.
440  */
ar5008_hw_spur_mitigate(struct ath_hw * ah,struct ath9k_channel * chan)441 static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
442 				    struct ath9k_channel *chan)
443 {
444 	int bb_spur = AR_NO_SPUR;
445 	int bin;
446 	int spur_freq_sd;
447 	int spur_delta_phase;
448 	int denominator;
449 	int tmp, new;
450 	int i;
451 
452 	int cur_bb_spur;
453 	bool is2GHz = IS_CHAN_2GHZ(chan);
454 
455 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
456 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
457 		if (AR_NO_SPUR == cur_bb_spur)
458 			break;
459 		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
460 		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
461 			bb_spur = cur_bb_spur;
462 			break;
463 		}
464 	}
465 
466 	if (AR_NO_SPUR == bb_spur)
467 		return;
468 
469 	bin = bb_spur * 32;
470 
471 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
472 	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
473 		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
474 		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
475 		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
476 
477 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
478 
479 	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
480 	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
481 	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
482 	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
483 	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
484 	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
485 
486 	spur_delta_phase = ((bb_spur * 524288) / 100) &
487 		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
488 
489 	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
490 	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
491 
492 	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
493 	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
494 	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
495 	REG_WRITE(ah, AR_PHY_TIMING11, new);
496 
497 	ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
498 }
499 
500 /**
501  * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
502  * @ah: atheros hardware structure
503  *
504  * Only required for older devices with external AR2133/AR5133 radios.
505  */
ar5008_hw_rf_alloc_ext_banks(struct ath_hw * ah)506 static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
507 {
508 	int size = ah->iniBank6.ia_rows * sizeof(u32);
509 
510 	if (AR_SREV_9280_20_OR_LATER(ah))
511 	    return 0;
512 
513 	ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
514 	if (!ah->analogBank6Data)
515 		return -ENOMEM;
516 
517 	return 0;
518 }
519 
520 
521 /* *
522  * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
523  * @ah: atheros hardware structure
524  * @chan:
525  * @modesIndex:
526  *
527  * Used for the external AR2133/AR5133 radios.
528  *
529  * Reads the EEPROM header info from the device structure and programs
530  * all rf registers. This routine requires access to the analog
531  * rf device. This is not required for single-chip devices.
532  */
ar5008_hw_set_rf_regs(struct ath_hw * ah,struct ath9k_channel * chan,u16 modesIndex)533 static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
534 				  struct ath9k_channel *chan,
535 				  u16 modesIndex)
536 {
537 	u32 eepMinorRev;
538 	u32 ob5GHz = 0, db5GHz = 0;
539 	u32 ob2GHz = 0, db2GHz = 0;
540 	int regWrites = 0;
541 	int i;
542 
543 	/*
544 	 * Software does not need to program bank data
545 	 * for single chip devices, that is AR9280 or anything
546 	 * after that.
547 	 */
548 	if (AR_SREV_9280_20_OR_LATER(ah))
549 		return true;
550 
551 	/* Setup rf parameters */
552 	eepMinorRev = ah->eep_ops->get_eeprom_rev(ah);
553 
554 	for (i = 0; i < ah->iniBank6.ia_rows; i++)
555 		ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
556 
557 	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
558 	if (eepMinorRev >= 2) {
559 		if (IS_CHAN_2GHZ(chan)) {
560 			ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
561 			db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
562 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
563 						       ob2GHz, 3, 197, 0);
564 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
565 						       db2GHz, 3, 194, 0);
566 		} else {
567 			ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
568 			db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
569 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
570 						       ob5GHz, 3, 203, 0);
571 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
572 						       db5GHz, 3, 200, 0);
573 		}
574 	}
575 
576 	/* Write Analog registers */
577 	REG_WRITE_ARRAY(&bank0, 1, regWrites);
578 	REG_WRITE_ARRAY(&bank1, 1, regWrites);
579 	REG_WRITE_ARRAY(&bank2, 1, regWrites);
580 	REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
581 	ar5008_write_bank6(ah, &regWrites);
582 	REG_WRITE_ARRAY(&bank7, 1, regWrites);
583 
584 	return true;
585 }
586 
ar5008_hw_init_bb(struct ath_hw * ah,struct ath9k_channel * chan)587 static void ar5008_hw_init_bb(struct ath_hw *ah,
588 			      struct ath9k_channel *chan)
589 {
590 	u32 synthDelay;
591 
592 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
593 
594 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
595 
596 	ath9k_hw_synth_delay(ah, chan, synthDelay);
597 }
598 
ar5008_hw_init_chain_masks(struct ath_hw * ah)599 static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
600 {
601 	int rx_chainmask, tx_chainmask;
602 
603 	rx_chainmask = ah->rxchainmask;
604 	tx_chainmask = ah->txchainmask;
605 
606 
607 	switch (rx_chainmask) {
608 	case 0x5:
609 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
610 			    AR_PHY_SWAP_ALT_CHAIN);
611 		fallthrough;
612 	case 0x3:
613 		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
614 			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
615 			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
616 			break;
617 		}
618 		fallthrough;
619 	case 0x1:
620 	case 0x2:
621 	case 0x7:
622 		ENABLE_REGWRITE_BUFFER(ah);
623 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
624 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
625 		break;
626 	default:
627 		ENABLE_REGWRITE_BUFFER(ah);
628 		break;
629 	}
630 
631 	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
632 
633 	REGWRITE_BUFFER_FLUSH(ah);
634 
635 	if (tx_chainmask == 0x5) {
636 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
637 			    AR_PHY_SWAP_ALT_CHAIN);
638 	}
639 	if (AR_SREV_9100(ah))
640 		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
641 			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
642 }
643 
ar5008_hw_override_ini(struct ath_hw * ah,struct ath9k_channel * chan)644 static void ar5008_hw_override_ini(struct ath_hw *ah,
645 				   struct ath9k_channel *chan)
646 {
647 	u32 val;
648 
649 	/*
650 	 * Set the RX_ABORT and RX_DIS and clear if off only after
651 	 * RXE is set for MAC. This prevents frames with corrupted
652 	 * descriptor status.
653 	 */
654 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
655 
656 	if (AR_SREV_9280_20_OR_LATER(ah)) {
657 		/*
658 		 * For AR9280 and above, there is a new feature that allows
659 		 * Multicast search based on both MAC Address and Key ID.
660 		 * By default, this feature is enabled. But since the driver
661 		 * is not using this feature, we switch it off; otherwise
662 		 * multicast search based on MAC addr only will fail.
663 		 */
664 		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
665 			(~AR_ADHOC_MCAST_KEYID_ENABLE);
666 
667 		if (!AR_SREV_9271(ah))
668 			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
669 
670 		if (AR_SREV_9287_11_OR_LATER(ah))
671 			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
672 
673 		val |= AR_PCU_MISC_MODE2_CFP_IGNORE;
674 
675 		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
676 	}
677 
678 	if (AR_SREV_9280_20_OR_LATER(ah))
679 		return;
680 	/*
681 	 * Disable BB clock gating
682 	 * Necessary to avoid issues on AR5416 2.0
683 	 */
684 	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
685 
686 	/*
687 	 * Disable RIFS search on some chips to avoid baseband
688 	 * hang issues.
689 	 */
690 	if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
691 		val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
692 		val &= ~AR_PHY_RIFS_INIT_DELAY;
693 		REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
694 	}
695 }
696 
ar5008_hw_set_channel_regs(struct ath_hw * ah,struct ath9k_channel * chan)697 static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
698 				       struct ath9k_channel *chan)
699 {
700 	u32 phymode;
701 	u32 enableDacFifo = 0;
702 
703 	if (AR_SREV_9285_12_OR_LATER(ah))
704 		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
705 					 AR_PHY_FC_ENABLE_DAC_FIFO);
706 
707 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
708 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
709 
710 	if (IS_CHAN_HT40(chan)) {
711 		phymode |= AR_PHY_FC_DYN2040_EN;
712 
713 		if (IS_CHAN_HT40PLUS(chan))
714 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
715 
716 	}
717 	ENABLE_REGWRITE_BUFFER(ah);
718 	REG_WRITE(ah, AR_PHY_TURBO, phymode);
719 
720 	/* This function do only REG_WRITE, so
721 	 * we can include it to REGWRITE_BUFFER. */
722 	ath9k_hw_set11nmac2040(ah, chan);
723 
724 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
725 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
726 
727 	REGWRITE_BUFFER_FLUSH(ah);
728 }
729 
730 
ar5008_hw_process_ini(struct ath_hw * ah,struct ath9k_channel * chan)731 static int ar5008_hw_process_ini(struct ath_hw *ah,
732 				 struct ath9k_channel *chan)
733 {
734 	struct ath_common *common = ath9k_hw_common(ah);
735 	int i, regWrites = 0;
736 	u32 modesIndex, freqIndex;
737 
738 	if (IS_CHAN_5GHZ(chan)) {
739 		freqIndex = 1;
740 		modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
741 	} else {
742 		freqIndex = 2;
743 		modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
744 	}
745 
746 	/*
747 	 * Set correct baseband to analog shift setting to
748 	 * access analog chips.
749 	 */
750 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
751 
752 	/* Write ADDAC shifts */
753 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
754 	if (ah->eep_ops->set_addac)
755 		ah->eep_ops->set_addac(ah, chan);
756 
757 	REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
758 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
759 
760 	ENABLE_REGWRITE_BUFFER(ah);
761 
762 	for (i = 0; i < ah->iniModes.ia_rows; i++) {
763 		u32 reg = INI_RA(&ah->iniModes, i, 0);
764 		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
765 
766 		if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
767 			val &= ~AR_AN_TOP2_PWDCLKIND;
768 
769 		REG_WRITE(ah, reg, val);
770 
771 		if (reg >= 0x7800 && reg < 0x78a0
772 		    && ah->config.analog_shiftreg
773 		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
774 			udelay(100);
775 		}
776 
777 		DO_DELAY(regWrites);
778 	}
779 
780 	REGWRITE_BUFFER_FLUSH(ah);
781 
782 	if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
783 		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
784 
785 	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
786 	    AR_SREV_9287_11_OR_LATER(ah))
787 		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
788 
789 	if (AR_SREV_9271_10(ah)) {
790 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
791 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
792 	}
793 
794 	ENABLE_REGWRITE_BUFFER(ah);
795 
796 	/* Write common array parameters */
797 	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
798 		u32 reg = INI_RA(&ah->iniCommon, i, 0);
799 		u32 val = INI_RA(&ah->iniCommon, i, 1);
800 
801 		REG_WRITE(ah, reg, val);
802 
803 		if (reg >= 0x7800 && reg < 0x78a0
804 		    && ah->config.analog_shiftreg
805 		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
806 			udelay(100);
807 		}
808 
809 		DO_DELAY(regWrites);
810 	}
811 
812 	REGWRITE_BUFFER_FLUSH(ah);
813 
814 	REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
815 
816 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
817 		REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
818 				regWrites);
819 
820 	ar5008_hw_override_ini(ah, chan);
821 	ar5008_hw_set_channel_regs(ah, chan);
822 	ar5008_hw_init_chain_masks(ah);
823 	ath9k_olc_init(ah);
824 	ath9k_hw_apply_txpower(ah, chan, false);
825 
826 	/* Write analog registers */
827 	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
828 		ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
829 		return -EIO;
830 	}
831 
832 	return 0;
833 }
834 
ar5008_hw_set_rfmode(struct ath_hw * ah,struct ath9k_channel * chan)835 static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
836 {
837 	u32 rfMode = 0;
838 
839 	if (chan == NULL)
840 		return;
841 
842 	if (IS_CHAN_2GHZ(chan))
843 		rfMode |= AR_PHY_MODE_DYNAMIC;
844 	else
845 		rfMode |= AR_PHY_MODE_OFDM;
846 
847 	if (!AR_SREV_9280_20_OR_LATER(ah))
848 		rfMode |= (IS_CHAN_5GHZ(chan)) ?
849 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
850 
851 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
852 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
853 
854 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
855 }
856 
ar5008_hw_mark_phy_inactive(struct ath_hw * ah)857 static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
858 {
859 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
860 }
861 
ar5008_hw_set_delta_slope(struct ath_hw * ah,struct ath9k_channel * chan)862 static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
863 				      struct ath9k_channel *chan)
864 {
865 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
866 	u32 clockMhzScaled = 0x64000000;
867 	struct chan_centers centers;
868 
869 	if (IS_CHAN_HALF_RATE(chan))
870 		clockMhzScaled = clockMhzScaled >> 1;
871 	else if (IS_CHAN_QUARTER_RATE(chan))
872 		clockMhzScaled = clockMhzScaled >> 2;
873 
874 	ath9k_hw_get_channel_centers(ah, chan, &centers);
875 	coef_scaled = clockMhzScaled / centers.synth_center;
876 
877 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
878 				      &ds_coef_exp);
879 
880 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
881 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
882 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
883 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
884 
885 	coef_scaled = (9 * coef_scaled) / 10;
886 
887 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
888 				      &ds_coef_exp);
889 
890 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
891 		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
892 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
893 		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
894 }
895 
ar5008_hw_rfbus_req(struct ath_hw * ah)896 static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
897 {
898 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
899 	return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
900 			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
901 }
902 
ar5008_hw_rfbus_done(struct ath_hw * ah)903 static void ar5008_hw_rfbus_done(struct ath_hw *ah)
904 {
905 	u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
906 
907 	ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
908 
909 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
910 }
911 
ar5008_restore_chainmask(struct ath_hw * ah)912 static void ar5008_restore_chainmask(struct ath_hw *ah)
913 {
914 	int rx_chainmask = ah->rxchainmask;
915 
916 	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
917 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
918 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
919 	}
920 }
921 
ar9160_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)922 static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
923 					 struct ath9k_channel *chan)
924 {
925 	u32 pll;
926 
927 	pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
928 
929 	if (chan && IS_CHAN_HALF_RATE(chan))
930 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
931 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
932 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
933 
934 	if (chan && IS_CHAN_5GHZ(chan))
935 		pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
936 	else
937 		pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
938 
939 	return pll;
940 }
941 
ar5008_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)942 static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
943 					 struct ath9k_channel *chan)
944 {
945 	u32 pll;
946 
947 	pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
948 
949 	if (chan && IS_CHAN_HALF_RATE(chan))
950 		pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
951 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
952 		pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
953 
954 	if (chan && IS_CHAN_5GHZ(chan))
955 		pll |= SM(0xa, AR_RTC_PLL_DIV);
956 	else
957 		pll |= SM(0xb, AR_RTC_PLL_DIV);
958 
959 	return pll;
960 }
961 
ar5008_hw_ani_control_new(struct ath_hw * ah,enum ath9k_ani_cmd cmd,int param)962 static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
963 				      enum ath9k_ani_cmd cmd,
964 				      int param)
965 {
966 	struct ath_common *common = ath9k_hw_common(ah);
967 	struct ath9k_channel *chan = ah->curchan;
968 	struct ar5416AniState *aniState = &ah->ani;
969 	s32 value;
970 
971 	switch (cmd & ah->ani_function) {
972 	case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
973 		/*
974 		 * on == 1 means ofdm weak signal detection is ON
975 		 * on == 1 is the default, for less noise immunity
976 		 *
977 		 * on == 0 means ofdm weak signal detection is OFF
978 		 * on == 0 means more noise imm
979 		 */
980 		u32 on = param ? 1 : 0;
981 		/*
982 		 * make register setting for default
983 		 * (weak sig detect ON) come from INI file
984 		 */
985 		int m1ThreshLow = on ?
986 			aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
987 		int m2ThreshLow = on ?
988 			aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
989 		int m1Thresh = on ?
990 			aniState->iniDef.m1Thresh : m1Thresh_off;
991 		int m2Thresh = on ?
992 			aniState->iniDef.m2Thresh : m2Thresh_off;
993 		int m2CountThr = on ?
994 			aniState->iniDef.m2CountThr : m2CountThr_off;
995 		int m2CountThrLow = on ?
996 			aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
997 		int m1ThreshLowExt = on ?
998 			aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
999 		int m2ThreshLowExt = on ?
1000 			aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
1001 		int m1ThreshExt = on ?
1002 			aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
1003 		int m2ThreshExt = on ?
1004 			aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
1005 
1006 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1007 			      AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
1008 			      m1ThreshLow);
1009 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1010 			      AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
1011 			      m2ThreshLow);
1012 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1013 			      AR_PHY_SFCORR_M1_THRESH, m1Thresh);
1014 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1015 			      AR_PHY_SFCORR_M2_THRESH, m2Thresh);
1016 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1017 			      AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
1018 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1019 			      AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
1020 			      m2CountThrLow);
1021 
1022 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1023 			      AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
1024 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1025 			      AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
1026 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1027 			      AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
1028 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1029 			      AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
1030 
1031 		if (on)
1032 			REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1033 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1034 		else
1035 			REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1036 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1037 
1038 		if (on != aniState->ofdmWeakSigDetect) {
1039 			ath_dbg(common, ANI,
1040 				"** ch %d: ofdm weak signal: %s=>%s\n",
1041 				chan->channel,
1042 				aniState->ofdmWeakSigDetect ?
1043 				"on" : "off",
1044 				on ? "on" : "off");
1045 			if (on)
1046 				ah->stats.ast_ani_ofdmon++;
1047 			else
1048 				ah->stats.ast_ani_ofdmoff++;
1049 			aniState->ofdmWeakSigDetect = on;
1050 		}
1051 		break;
1052 	}
1053 	case ATH9K_ANI_FIRSTEP_LEVEL:{
1054 		u32 level = param;
1055 
1056 		value = level * 2;
1057 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1058 			      AR_PHY_FIND_SIG_FIRSTEP, value);
1059 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1060 			      AR_PHY_FIND_SIG_FIRSTEP_LOW, value);
1061 
1062 		if (level != aniState->firstepLevel) {
1063 			ath_dbg(common, ANI,
1064 				"** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1065 				chan->channel,
1066 				aniState->firstepLevel,
1067 				level,
1068 				ATH9K_ANI_FIRSTEP_LVL,
1069 				value,
1070 				aniState->iniDef.firstep);
1071 			ath_dbg(common, ANI,
1072 				"** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1073 				chan->channel,
1074 				aniState->firstepLevel,
1075 				level,
1076 				ATH9K_ANI_FIRSTEP_LVL,
1077 				value,
1078 				aniState->iniDef.firstepLow);
1079 			if (level > aniState->firstepLevel)
1080 				ah->stats.ast_ani_stepup++;
1081 			else if (level < aniState->firstepLevel)
1082 				ah->stats.ast_ani_stepdown++;
1083 			aniState->firstepLevel = level;
1084 		}
1085 		break;
1086 	}
1087 	case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1088 		u32 level = param;
1089 
1090 		value = (level + 1) * 2;
1091 		REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1092 			      AR_PHY_TIMING5_CYCPWR_THR1, value);
1093 
1094 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1095 				  AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1);
1096 
1097 		if (level != aniState->spurImmunityLevel) {
1098 			ath_dbg(common, ANI,
1099 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1100 				chan->channel,
1101 				aniState->spurImmunityLevel,
1102 				level,
1103 				ATH9K_ANI_SPUR_IMMUNE_LVL,
1104 				value,
1105 				aniState->iniDef.cycpwrThr1);
1106 			ath_dbg(common, ANI,
1107 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1108 				chan->channel,
1109 				aniState->spurImmunityLevel,
1110 				level,
1111 				ATH9K_ANI_SPUR_IMMUNE_LVL,
1112 				value,
1113 				aniState->iniDef.cycpwrThr1Ext);
1114 			if (level > aniState->spurImmunityLevel)
1115 				ah->stats.ast_ani_spurup++;
1116 			else if (level < aniState->spurImmunityLevel)
1117 				ah->stats.ast_ani_spurdown++;
1118 			aniState->spurImmunityLevel = level;
1119 		}
1120 		break;
1121 	}
1122 	case ATH9K_ANI_MRC_CCK:
1123 		/*
1124 		 * You should not see this as AR5008, AR9001, AR9002
1125 		 * does not have hardware support for MRC CCK.
1126 		 */
1127 		WARN_ON(1);
1128 		break;
1129 	default:
1130 		ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
1131 		return false;
1132 	}
1133 
1134 	ath_dbg(common, ANI,
1135 		"ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1136 		aniState->spurImmunityLevel,
1137 		aniState->ofdmWeakSigDetect ? "on" : "off",
1138 		aniState->firstepLevel,
1139 		aniState->mrcCCK ? "on" : "off",
1140 		aniState->listenTime,
1141 		aniState->ofdmPhyErrCount,
1142 		aniState->cckPhyErrCount);
1143 	return true;
1144 }
1145 
ar5008_hw_do_getnf(struct ath_hw * ah,int16_t nfarray[NUM_NF_READINGS])1146 static void ar5008_hw_do_getnf(struct ath_hw *ah,
1147 			      int16_t nfarray[NUM_NF_READINGS])
1148 {
1149 	int16_t nf;
1150 
1151 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1152 	nfarray[0] = sign_extend32(nf, 8);
1153 
1154 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1155 	nfarray[1] = sign_extend32(nf, 8);
1156 
1157 	nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1158 	nfarray[2] = sign_extend32(nf, 8);
1159 
1160 	if (!IS_CHAN_HT40(ah->curchan))
1161 		return;
1162 
1163 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1164 	nfarray[3] = sign_extend32(nf, 8);
1165 
1166 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1167 	nfarray[4] = sign_extend32(nf, 8);
1168 
1169 	nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1170 	nfarray[5] = sign_extend32(nf, 8);
1171 }
1172 
1173 /*
1174  * Initialize the ANI register values with default (ini) values.
1175  * This routine is called during a (full) hardware reset after
1176  * all the registers are initialised from the INI.
1177  */
ar5008_hw_ani_cache_ini_regs(struct ath_hw * ah)1178 static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1179 {
1180 	struct ath_common *common = ath9k_hw_common(ah);
1181 	struct ath9k_channel *chan = ah->curchan;
1182 	struct ar5416AniState *aniState = &ah->ani;
1183 	struct ath9k_ani_default *iniDef;
1184 	u32 val;
1185 
1186 	iniDef = &aniState->iniDef;
1187 
1188 	ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
1189 		ah->hw_version.macVersion,
1190 		ah->hw_version.macRev,
1191 		ah->opmode,
1192 		chan->channel);
1193 
1194 	val = REG_READ(ah, AR_PHY_SFCORR);
1195 	iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1196 	iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1197 	iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1198 
1199 	val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1200 	iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1201 	iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1202 	iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1203 
1204 	val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1205 	iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1206 	iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1207 	iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1208 	iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1209 	iniDef->firstep = REG_READ_FIELD(ah,
1210 					 AR_PHY_FIND_SIG,
1211 					 AR_PHY_FIND_SIG_FIRSTEP);
1212 	iniDef->firstepLow = REG_READ_FIELD(ah,
1213 					    AR_PHY_FIND_SIG_LOW,
1214 					    AR_PHY_FIND_SIG_FIRSTEP_LOW);
1215 	iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1216 					    AR_PHY_TIMING5,
1217 					    AR_PHY_TIMING5_CYCPWR_THR1);
1218 	iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1219 					       AR_PHY_EXT_CCA,
1220 					       AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1221 
1222 	/* these levels just got reset to defaults by the INI */
1223 	aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
1224 	aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
1225 	aniState->ofdmWeakSigDetect = true;
1226 	aniState->mrcCCK = false; /* not available on pre AR9003 */
1227 }
1228 
ar5008_hw_set_nf_limits(struct ath_hw * ah)1229 static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1230 {
1231 	ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1232 	ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1233 	ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1234 	ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1235 	ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1236 	ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1237 }
1238 
ar5008_hw_set_radar_params(struct ath_hw * ah,struct ath_hw_radar_conf * conf)1239 static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1240 				       struct ath_hw_radar_conf *conf)
1241 {
1242 	u32 radar_0 = 0, radar_1;
1243 
1244 	if (!conf) {
1245 		REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1246 		return;
1247 	}
1248 
1249 	radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1250 	radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1251 	radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1252 	radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1253 	radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1254 	radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1255 
1256 	radar_1 = REG_READ(ah, AR_PHY_RADAR_1);
1257 	radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH |
1258 		     AR_PHY_RADAR_1_RELPWR_THRESH);
1259 	radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1260 	radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1261 	radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1262 	radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1263 	radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1264 
1265 	REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1266 	REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1267 	if (conf->ext_channel)
1268 		REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1269 	else
1270 		REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1271 }
1272 
ar5008_hw_set_radar_conf(struct ath_hw * ah)1273 static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1274 {
1275 	struct ath_hw_radar_conf *conf = &ah->radar_conf;
1276 
1277 	conf->fir_power = -33;
1278 	conf->radar_rssi = 20;
1279 	conf->pulse_height = 10;
1280 	conf->pulse_rssi = 15;
1281 	conf->pulse_inband = 15;
1282 	conf->pulse_maxlen = 255;
1283 	conf->pulse_inband_step = 12;
1284 	conf->radar_inband = 8;
1285 }
1286 
ar5008_hw_init_txpower_cck(struct ath_hw * ah,int16_t * rate_array)1287 static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array)
1288 {
1289 #define CCK_DELTA(x) ((OLC_FOR_AR9280_20_LATER) ? max((x) - 2, 0) : (x))
1290 	ah->tx_power[0] = CCK_DELTA(rate_array[rate1l]);
1291 	ah->tx_power[1] = CCK_DELTA(min(rate_array[rate2l],
1292 					rate_array[rate2s]));
1293 	ah->tx_power[2] = CCK_DELTA(min(rate_array[rate5_5l],
1294 					rate_array[rate5_5s]));
1295 	ah->tx_power[3] = CCK_DELTA(min(rate_array[rate11l],
1296 					rate_array[rate11s]));
1297 #undef CCK_DELTA
1298 }
1299 
ar5008_hw_init_txpower_ofdm(struct ath_hw * ah,int16_t * rate_array,int offset)1300 static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array,
1301 					int offset)
1302 {
1303 	int i, idx = 0;
1304 
1305 	for (i = offset; i < offset + AR5008_OFDM_RATES; i++) {
1306 		ah->tx_power[i] = rate_array[idx];
1307 		idx++;
1308 	}
1309 }
1310 
ar5008_hw_init_txpower_ht(struct ath_hw * ah,int16_t * rate_array,int ss_offset,int ds_offset,bool is_40,int ht40_delta)1311 static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array,
1312 				      int ss_offset, int ds_offset,
1313 				      bool is_40, int ht40_delta)
1314 {
1315 	int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT;
1316 
1317 	for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) {
1318 		ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta;
1319 		mcs_idx++;
1320 	}
1321 	memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset],
1322 	       AR5008_HT_SS_RATES);
1323 }
1324 
ar5008_hw_init_rate_txpower(struct ath_hw * ah,int16_t * rate_array,struct ath9k_channel * chan,int ht40_delta)1325 void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array,
1326 				 struct ath9k_channel *chan, int ht40_delta)
1327 {
1328 	if (IS_CHAN_5GHZ(chan)) {
1329 		ar5008_hw_init_txpower_ofdm(ah, rate_array,
1330 					    AR5008_11NA_OFDM_SHIFT);
1331 		if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1332 			ar5008_hw_init_txpower_ht(ah, rate_array,
1333 						  AR5008_11NA_HT_SS_SHIFT,
1334 						  AR5008_11NA_HT_DS_SHIFT,
1335 						  IS_CHAN_HT40(chan),
1336 						  ht40_delta);
1337 		}
1338 	} else {
1339 		ar5008_hw_init_txpower_cck(ah, rate_array);
1340 		ar5008_hw_init_txpower_ofdm(ah, rate_array,
1341 					    AR5008_11NG_OFDM_SHIFT);
1342 		if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1343 			ar5008_hw_init_txpower_ht(ah, rate_array,
1344 						  AR5008_11NG_HT_SS_SHIFT,
1345 						  AR5008_11NG_HT_DS_SHIFT,
1346 						  IS_CHAN_HT40(chan),
1347 						  ht40_delta);
1348 		}
1349 	}
1350 }
1351 
ar5008_hw_attach_phy_ops(struct ath_hw * ah)1352 int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1353 {
1354 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1355 	static const u32 ar5416_cca_regs[6] = {
1356 		AR_PHY_CCA,
1357 		AR_PHY_CH1_CCA,
1358 		AR_PHY_CH2_CCA,
1359 		AR_PHY_EXT_CCA,
1360 		AR_PHY_CH1_EXT_CCA,
1361 		AR_PHY_CH2_EXT_CCA
1362 	};
1363 	int ret;
1364 
1365 	ret = ar5008_hw_rf_alloc_ext_banks(ah);
1366 	if (ret)
1367 	    return ret;
1368 
1369 	priv_ops->rf_set_freq = ar5008_hw_set_channel;
1370 	priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1371 
1372 	priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1373 	priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1374 	priv_ops->init_bb = ar5008_hw_init_bb;
1375 	priv_ops->process_ini = ar5008_hw_process_ini;
1376 	priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1377 	priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1378 	priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1379 	priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1380 	priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1381 	priv_ops->restore_chainmask = ar5008_restore_chainmask;
1382 	priv_ops->do_getnf = ar5008_hw_do_getnf;
1383 	priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1384 
1385 	priv_ops->ani_control = ar5008_hw_ani_control_new;
1386 	priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1387 
1388 	if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
1389 		priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1390 	else
1391 		priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1392 
1393 	ar5008_hw_set_nf_limits(ah);
1394 	ar5008_hw_set_radar_conf(ah);
1395 	memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1396 	return 0;
1397 }
1398