• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41 
42 struct nvme_rdma_device {
43 	struct ib_device	*dev;
44 	struct ib_pd		*pd;
45 	struct kref		ref;
46 	struct list_head	entry;
47 	unsigned int		num_inline_segments;
48 };
49 
50 struct nvme_rdma_qe {
51 	struct ib_cqe		cqe;
52 	void			*data;
53 	u64			dma;
54 };
55 
56 struct nvme_rdma_sgl {
57 	int			nents;
58 	struct sg_table		sg_table;
59 };
60 
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 	struct nvme_request	req;
64 	struct ib_mr		*mr;
65 	struct nvme_rdma_qe	sqe;
66 	union nvme_result	result;
67 	__le16			status;
68 	refcount_t		ref;
69 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 	u32			num_sge;
71 	struct ib_reg_wr	reg_wr;
72 	struct ib_cqe		reg_cqe;
73 	struct nvme_rdma_queue  *queue;
74 	struct nvme_rdma_sgl	data_sgl;
75 	struct nvme_rdma_sgl	*metadata_sgl;
76 	bool			use_sig_mr;
77 };
78 
79 enum nvme_rdma_queue_flags {
80 	NVME_RDMA_Q_ALLOCATED		= 0,
81 	NVME_RDMA_Q_LIVE		= 1,
82 	NVME_RDMA_Q_TR_READY		= 2,
83 };
84 
85 struct nvme_rdma_queue {
86 	struct nvme_rdma_qe	*rsp_ring;
87 	int			queue_size;
88 	size_t			cmnd_capsule_len;
89 	struct nvme_rdma_ctrl	*ctrl;
90 	struct nvme_rdma_device	*device;
91 	struct ib_cq		*ib_cq;
92 	struct ib_qp		*qp;
93 
94 	unsigned long		flags;
95 	struct rdma_cm_id	*cm_id;
96 	int			cm_error;
97 	struct completion	cm_done;
98 	bool			pi_support;
99 	int			cq_size;
100 	struct mutex		queue_lock;
101 };
102 
103 struct nvme_rdma_ctrl {
104 	/* read only in the hot path */
105 	struct nvme_rdma_queue	*queues;
106 
107 	/* other member variables */
108 	struct blk_mq_tag_set	tag_set;
109 	struct work_struct	err_work;
110 
111 	struct nvme_rdma_qe	async_event_sqe;
112 
113 	struct delayed_work	reconnect_work;
114 
115 	struct list_head	list;
116 
117 	struct blk_mq_tag_set	admin_tag_set;
118 	struct nvme_rdma_device	*device;
119 
120 	u32			max_fr_pages;
121 
122 	struct sockaddr_storage addr;
123 	struct sockaddr_storage src_addr;
124 
125 	struct nvme_ctrl	ctrl;
126 	bool			use_inline_data;
127 	u32			io_queues[HCTX_MAX_TYPES];
128 };
129 
to_rdma_ctrl(struct nvme_ctrl * ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134 
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137 
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140 
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 	 "Use memory registration even for contiguous memory regions");
150 
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 		struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155 
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158 
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 	return queue - queue->ctrl->queues;
162 }
163 
nvme_rdma_poll_queue(struct nvme_rdma_queue * queue)164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 	return nvme_rdma_queue_idx(queue) >
167 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 		queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170 
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 		size_t capsule_size, enum dma_data_direction dir)
178 {
179 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 	kfree(qe->data);
181 }
182 
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 		size_t capsule_size, enum dma_data_direction dir)
185 {
186 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 	if (!qe->data)
188 		return -ENOMEM;
189 
190 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 		kfree(qe->data);
193 		qe->data = NULL;
194 		return -ENOMEM;
195 	}
196 
197 	return 0;
198 }
199 
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 		size_t capsule_size, enum dma_data_direction dir)
203 {
204 	int i;
205 
206 	for (i = 0; i < ib_queue_size; i++)
207 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 	kfree(ring);
209 }
210 
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 		size_t ib_queue_size, size_t capsule_size,
213 		enum dma_data_direction dir)
214 {
215 	struct nvme_rdma_qe *ring;
216 	int i;
217 
218 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 	if (!ring)
220 		return NULL;
221 
222 	/*
223 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 	 * lifetime. It's safe, since any chage in the underlying RDMA device
225 	 * will issue error recovery and queue re-creation.
226 	 */
227 	for (i = 0; i < ib_queue_size; i++) {
228 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 			goto out_free_ring;
230 	}
231 
232 	return ring;
233 
234 out_free_ring:
235 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 	return NULL;
237 }
238 
nvme_rdma_qp_event(struct ib_event * event,void * context)239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 	pr_debug("QP event %s (%d)\n",
242 		 ib_event_msg(event->event), event->event);
243 
244 }
245 
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 	int ret;
249 
250 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 	if (ret < 0)
253 		return ret;
254 	if (ret == 0)
255 		return -ETIMEDOUT;
256 	WARN_ON_ONCE(queue->cm_error > 0);
257 	return queue->cm_error;
258 }
259 
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 	struct nvme_rdma_device *dev = queue->device;
263 	struct ib_qp_init_attr init_attr;
264 	int ret;
265 
266 	memset(&init_attr, 0, sizeof(init_attr));
267 	init_attr.event_handler = nvme_rdma_qp_event;
268 	/* +1 for drain */
269 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 	/* +1 for drain */
271 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 	init_attr.cap.max_recv_sge = 1;
273 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 	init_attr.qp_type = IB_QPT_RC;
276 	init_attr.send_cq = queue->ib_cq;
277 	init_attr.recv_cq = queue->ib_cq;
278 	if (queue->pi_support)
279 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 	init_attr.qp_context = queue;
281 
282 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283 
284 	queue->qp = queue->cm_id->qp;
285 	return ret;
286 }
287 
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 		struct request *rq, unsigned int hctx_idx)
290 {
291 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292 
293 	kfree(req->sqe.data);
294 }
295 
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 		struct request *rq, unsigned int hctx_idx,
298 		unsigned int numa_node)
299 {
300 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304 
305 	nvme_req(rq)->ctrl = &ctrl->ctrl;
306 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 	if (!req->sqe.data)
308 		return -ENOMEM;
309 
310 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 	if (queue->pi_support)
312 		req->metadata_sgl = (void *)nvme_req(rq) +
313 			sizeof(struct nvme_rdma_request) +
314 			NVME_RDMA_DATA_SGL_SIZE;
315 
316 	req->queue = queue;
317 
318 	return 0;
319 }
320 
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322 		unsigned int hctx_idx)
323 {
324 	struct nvme_rdma_ctrl *ctrl = data;
325 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
326 
327 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
328 
329 	hctx->driver_data = queue;
330 	return 0;
331 }
332 
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
334 		unsigned int hctx_idx)
335 {
336 	struct nvme_rdma_ctrl *ctrl = data;
337 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
338 
339 	BUG_ON(hctx_idx != 0);
340 
341 	hctx->driver_data = queue;
342 	return 0;
343 }
344 
nvme_rdma_free_dev(struct kref * ref)345 static void nvme_rdma_free_dev(struct kref *ref)
346 {
347 	struct nvme_rdma_device *ndev =
348 		container_of(ref, struct nvme_rdma_device, ref);
349 
350 	mutex_lock(&device_list_mutex);
351 	list_del(&ndev->entry);
352 	mutex_unlock(&device_list_mutex);
353 
354 	ib_dealloc_pd(ndev->pd);
355 	kfree(ndev);
356 }
357 
nvme_rdma_dev_put(struct nvme_rdma_device * dev)358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
359 {
360 	kref_put(&dev->ref, nvme_rdma_free_dev);
361 }
362 
nvme_rdma_dev_get(struct nvme_rdma_device * dev)363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
364 {
365 	return kref_get_unless_zero(&dev->ref);
366 }
367 
368 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
370 {
371 	struct nvme_rdma_device *ndev;
372 
373 	mutex_lock(&device_list_mutex);
374 	list_for_each_entry(ndev, &device_list, entry) {
375 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
376 		    nvme_rdma_dev_get(ndev))
377 			goto out_unlock;
378 	}
379 
380 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
381 	if (!ndev)
382 		goto out_err;
383 
384 	ndev->dev = cm_id->device;
385 	kref_init(&ndev->ref);
386 
387 	ndev->pd = ib_alloc_pd(ndev->dev,
388 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
389 	if (IS_ERR(ndev->pd))
390 		goto out_free_dev;
391 
392 	if (!(ndev->dev->attrs.device_cap_flags &
393 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
394 		dev_err(&ndev->dev->dev,
395 			"Memory registrations not supported.\n");
396 		goto out_free_pd;
397 	}
398 
399 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
400 					ndev->dev->attrs.max_send_sge - 1);
401 	list_add(&ndev->entry, &device_list);
402 out_unlock:
403 	mutex_unlock(&device_list_mutex);
404 	return ndev;
405 
406 out_free_pd:
407 	ib_dealloc_pd(ndev->pd);
408 out_free_dev:
409 	kfree(ndev);
410 out_err:
411 	mutex_unlock(&device_list_mutex);
412 	return NULL;
413 }
414 
nvme_rdma_free_cq(struct nvme_rdma_queue * queue)415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
416 {
417 	if (nvme_rdma_poll_queue(queue))
418 		ib_free_cq(queue->ib_cq);
419 	else
420 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 }
422 
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
424 {
425 	struct nvme_rdma_device *dev;
426 	struct ib_device *ibdev;
427 
428 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
429 		return;
430 
431 	dev = queue->device;
432 	ibdev = dev->dev;
433 
434 	if (queue->pi_support)
435 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
436 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437 
438 	/*
439 	 * The cm_id object might have been destroyed during RDMA connection
440 	 * establishment error flow to avoid getting other cma events, thus
441 	 * the destruction of the QP shouldn't use rdma_cm API.
442 	 */
443 	ib_destroy_qp(queue->qp);
444 	nvme_rdma_free_cq(queue);
445 
446 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
447 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
448 
449 	nvme_rdma_dev_put(dev);
450 }
451 
nvme_rdma_get_max_fr_pages(struct ib_device * ibdev,bool pi_support)452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
453 {
454 	u32 max_page_list_len;
455 
456 	if (pi_support)
457 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
458 	else
459 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
460 
461 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 }
463 
nvme_rdma_create_cq(struct ib_device * ibdev,struct nvme_rdma_queue * queue)464 static int nvme_rdma_create_cq(struct ib_device *ibdev,
465 		struct nvme_rdma_queue *queue)
466 {
467 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468 	enum ib_poll_context poll_ctx;
469 
470 	/*
471 	 * Spread I/O queues completion vectors according their queue index.
472 	 * Admin queues can always go on completion vector 0.
473 	 */
474 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475 
476 	/* Polling queues need direct cq polling context */
477 	if (nvme_rdma_poll_queue(queue)) {
478 		poll_ctx = IB_POLL_DIRECT;
479 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
480 					   comp_vector, poll_ctx);
481 	} else {
482 		poll_ctx = IB_POLL_SOFTIRQ;
483 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
484 					      comp_vector, poll_ctx);
485 	}
486 
487 	if (IS_ERR(queue->ib_cq)) {
488 		ret = PTR_ERR(queue->ib_cq);
489 		return ret;
490 	}
491 
492 	return 0;
493 }
494 
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
496 {
497 	struct ib_device *ibdev;
498 	const int send_wr_factor = 3;			/* MR, SEND, INV */
499 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
500 	int ret, pages_per_mr;
501 
502 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
503 	if (!queue->device) {
504 		dev_err(queue->cm_id->device->dev.parent,
505 			"no client data found!\n");
506 		return -ECONNREFUSED;
507 	}
508 	ibdev = queue->device->dev;
509 
510 	/* +1 for ib_stop_cq */
511 	queue->cq_size = cq_factor * queue->queue_size + 1;
512 
513 	ret = nvme_rdma_create_cq(ibdev, queue);
514 	if (ret)
515 		goto out_put_dev;
516 
517 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
518 	if (ret)
519 		goto out_destroy_ib_cq;
520 
521 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523 	if (!queue->rsp_ring) {
524 		ret = -ENOMEM;
525 		goto out_destroy_qp;
526 	}
527 
528 	/*
529 	 * Currently we don't use SG_GAPS MR's so if the first entry is
530 	 * misaligned we'll end up using two entries for a single data page,
531 	 * so one additional entry is required.
532 	 */
533 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
534 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
535 			      queue->queue_size,
536 			      IB_MR_TYPE_MEM_REG,
537 			      pages_per_mr, 0);
538 	if (ret) {
539 		dev_err(queue->ctrl->ctrl.device,
540 			"failed to initialize MR pool sized %d for QID %d\n",
541 			queue->queue_size, nvme_rdma_queue_idx(queue));
542 		goto out_destroy_ring;
543 	}
544 
545 	if (queue->pi_support) {
546 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
547 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
548 				      pages_per_mr, pages_per_mr);
549 		if (ret) {
550 			dev_err(queue->ctrl->ctrl.device,
551 				"failed to initialize PI MR pool sized %d for QID %d\n",
552 				queue->queue_size, nvme_rdma_queue_idx(queue));
553 			goto out_destroy_mr_pool;
554 		}
555 	}
556 
557 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
558 
559 	return 0;
560 
561 out_destroy_mr_pool:
562 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
563 out_destroy_ring:
564 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
565 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
566 out_destroy_qp:
567 	rdma_destroy_qp(queue->cm_id);
568 out_destroy_ib_cq:
569 	nvme_rdma_free_cq(queue);
570 out_put_dev:
571 	nvme_rdma_dev_put(queue->device);
572 	return ret;
573 }
574 
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
576 		int idx, size_t queue_size)
577 {
578 	struct nvme_rdma_queue *queue;
579 	struct sockaddr *src_addr = NULL;
580 	int ret;
581 
582 	queue = &ctrl->queues[idx];
583 	mutex_init(&queue->queue_lock);
584 	queue->ctrl = ctrl;
585 	if (idx && ctrl->ctrl.max_integrity_segments)
586 		queue->pi_support = true;
587 	else
588 		queue->pi_support = false;
589 	init_completion(&queue->cm_done);
590 
591 	if (idx > 0)
592 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
593 	else
594 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
595 
596 	queue->queue_size = queue_size;
597 
598 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
599 			RDMA_PS_TCP, IB_QPT_RC);
600 	if (IS_ERR(queue->cm_id)) {
601 		dev_info(ctrl->ctrl.device,
602 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
603 		ret = PTR_ERR(queue->cm_id);
604 		goto out_destroy_mutex;
605 	}
606 
607 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
608 		src_addr = (struct sockaddr *)&ctrl->src_addr;
609 
610 	queue->cm_error = -ETIMEDOUT;
611 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
612 			(struct sockaddr *)&ctrl->addr,
613 			NVME_RDMA_CONNECT_TIMEOUT_MS);
614 	if (ret) {
615 		dev_info(ctrl->ctrl.device,
616 			"rdma_resolve_addr failed (%d).\n", ret);
617 		goto out_destroy_cm_id;
618 	}
619 
620 	ret = nvme_rdma_wait_for_cm(queue);
621 	if (ret) {
622 		dev_info(ctrl->ctrl.device,
623 			"rdma connection establishment failed (%d)\n", ret);
624 		goto out_destroy_cm_id;
625 	}
626 
627 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
628 
629 	return 0;
630 
631 out_destroy_cm_id:
632 	rdma_destroy_id(queue->cm_id);
633 	nvme_rdma_destroy_queue_ib(queue);
634 out_destroy_mutex:
635 	mutex_destroy(&queue->queue_lock);
636 	return ret;
637 }
638 
__nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)639 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641 	rdma_disconnect(queue->cm_id);
642 	ib_drain_qp(queue->qp);
643 }
644 
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)645 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
646 {
647 	mutex_lock(&queue->queue_lock);
648 	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
649 		__nvme_rdma_stop_queue(queue);
650 	mutex_unlock(&queue->queue_lock);
651 }
652 
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)653 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
654 {
655 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
656 		return;
657 
658 	rdma_destroy_id(queue->cm_id);
659 	nvme_rdma_destroy_queue_ib(queue);
660 	mutex_destroy(&queue->queue_lock);
661 }
662 
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)663 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
664 {
665 	int i;
666 
667 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
668 		nvme_rdma_free_queue(&ctrl->queues[i]);
669 }
670 
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)671 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
672 {
673 	int i;
674 
675 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
676 		nvme_rdma_stop_queue(&ctrl->queues[i]);
677 }
678 
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)679 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
680 {
681 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
682 	bool poll = nvme_rdma_poll_queue(queue);
683 	int ret;
684 
685 	if (idx)
686 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
687 	else
688 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
689 
690 	if (!ret) {
691 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
692 	} else {
693 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
694 			__nvme_rdma_stop_queue(queue);
695 		dev_info(ctrl->ctrl.device,
696 			"failed to connect queue: %d ret=%d\n", idx, ret);
697 	}
698 	return ret;
699 }
700 
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl)701 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
702 {
703 	int i, ret = 0;
704 
705 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
706 		ret = nvme_rdma_start_queue(ctrl, i);
707 		if (ret)
708 			goto out_stop_queues;
709 	}
710 
711 	return 0;
712 
713 out_stop_queues:
714 	for (i--; i >= 1; i--)
715 		nvme_rdma_stop_queue(&ctrl->queues[i]);
716 	return ret;
717 }
718 
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)719 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
720 {
721 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
722 	struct ib_device *ibdev = ctrl->device->dev;
723 	unsigned int nr_io_queues, nr_default_queues;
724 	unsigned int nr_read_queues, nr_poll_queues;
725 	int i, ret;
726 
727 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
728 				min(opts->nr_io_queues, num_online_cpus()));
729 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
730 				min(opts->nr_write_queues, num_online_cpus()));
731 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
732 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
733 
734 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
735 	if (ret)
736 		return ret;
737 
738 	if (nr_io_queues == 0) {
739 		dev_err(ctrl->ctrl.device,
740 			"unable to set any I/O queues\n");
741 		return -ENOMEM;
742 	}
743 
744 	ctrl->ctrl.queue_count = nr_io_queues + 1;
745 	dev_info(ctrl->ctrl.device,
746 		"creating %d I/O queues.\n", nr_io_queues);
747 
748 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
749 		/*
750 		 * separate read/write queues
751 		 * hand out dedicated default queues only after we have
752 		 * sufficient read queues.
753 		 */
754 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
755 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
756 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
757 			min(nr_default_queues, nr_io_queues);
758 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
759 	} else {
760 		/*
761 		 * shared read/write queues
762 		 * either no write queues were requested, or we don't have
763 		 * sufficient queue count to have dedicated default queues.
764 		 */
765 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
766 			min(nr_read_queues, nr_io_queues);
767 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
768 	}
769 
770 	if (opts->nr_poll_queues && nr_io_queues) {
771 		/* map dedicated poll queues only if we have queues left */
772 		ctrl->io_queues[HCTX_TYPE_POLL] =
773 			min(nr_poll_queues, nr_io_queues);
774 	}
775 
776 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
777 		ret = nvme_rdma_alloc_queue(ctrl, i,
778 				ctrl->ctrl.sqsize + 1);
779 		if (ret)
780 			goto out_free_queues;
781 	}
782 
783 	return 0;
784 
785 out_free_queues:
786 	for (i--; i >= 1; i--)
787 		nvme_rdma_free_queue(&ctrl->queues[i]);
788 
789 	return ret;
790 }
791 
nvme_rdma_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)792 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
793 		bool admin)
794 {
795 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
796 	struct blk_mq_tag_set *set;
797 	int ret;
798 
799 	if (admin) {
800 		set = &ctrl->admin_tag_set;
801 		memset(set, 0, sizeof(*set));
802 		set->ops = &nvme_rdma_admin_mq_ops;
803 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
804 		set->reserved_tags = 2; /* connect + keep-alive */
805 		set->numa_node = nctrl->numa_node;
806 		set->cmd_size = sizeof(struct nvme_rdma_request) +
807 				NVME_RDMA_DATA_SGL_SIZE;
808 		set->driver_data = ctrl;
809 		set->nr_hw_queues = 1;
810 		set->timeout = ADMIN_TIMEOUT;
811 		set->flags = BLK_MQ_F_NO_SCHED;
812 	} else {
813 		set = &ctrl->tag_set;
814 		memset(set, 0, sizeof(*set));
815 		set->ops = &nvme_rdma_mq_ops;
816 		set->queue_depth = nctrl->sqsize + 1;
817 		set->reserved_tags = 1; /* fabric connect */
818 		set->numa_node = nctrl->numa_node;
819 		set->flags = BLK_MQ_F_SHOULD_MERGE;
820 		set->cmd_size = sizeof(struct nvme_rdma_request) +
821 				NVME_RDMA_DATA_SGL_SIZE;
822 		if (nctrl->max_integrity_segments)
823 			set->cmd_size += sizeof(struct nvme_rdma_sgl) +
824 					 NVME_RDMA_METADATA_SGL_SIZE;
825 		set->driver_data = ctrl;
826 		set->nr_hw_queues = nctrl->queue_count - 1;
827 		set->timeout = NVME_IO_TIMEOUT;
828 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
829 	}
830 
831 	ret = blk_mq_alloc_tag_set(set);
832 	if (ret)
833 		return ERR_PTR(ret);
834 
835 	return set;
836 }
837 
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)838 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
839 		bool remove)
840 {
841 	if (remove) {
842 		blk_cleanup_queue(ctrl->ctrl.admin_q);
843 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
844 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
845 	}
846 	if (ctrl->async_event_sqe.data) {
847 		cancel_work_sync(&ctrl->ctrl.async_event_work);
848 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
849 				sizeof(struct nvme_command), DMA_TO_DEVICE);
850 		ctrl->async_event_sqe.data = NULL;
851 	}
852 	nvme_rdma_free_queue(&ctrl->queues[0]);
853 }
854 
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)855 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
856 		bool new)
857 {
858 	bool pi_capable = false;
859 	int error;
860 
861 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
862 	if (error)
863 		return error;
864 
865 	ctrl->device = ctrl->queues[0].device;
866 	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
867 
868 	/* T10-PI support */
869 	if (ctrl->device->dev->attrs.device_cap_flags &
870 	    IB_DEVICE_INTEGRITY_HANDOVER)
871 		pi_capable = true;
872 
873 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
874 							pi_capable);
875 
876 	/*
877 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
878 	 * It's safe, since any chage in the underlying RDMA device will issue
879 	 * error recovery and queue re-creation.
880 	 */
881 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
882 			sizeof(struct nvme_command), DMA_TO_DEVICE);
883 	if (error)
884 		goto out_free_queue;
885 
886 	if (new) {
887 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
888 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
889 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
890 			goto out_free_async_qe;
891 		}
892 
893 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
894 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
895 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
896 			goto out_free_tagset;
897 		}
898 
899 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
900 		if (IS_ERR(ctrl->ctrl.admin_q)) {
901 			error = PTR_ERR(ctrl->ctrl.admin_q);
902 			goto out_cleanup_fabrics_q;
903 		}
904 	}
905 
906 	error = nvme_rdma_start_queue(ctrl, 0);
907 	if (error)
908 		goto out_cleanup_queue;
909 
910 	error = nvme_enable_ctrl(&ctrl->ctrl);
911 	if (error)
912 		goto out_stop_queue;
913 
914 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
915 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
916 	if (pi_capable)
917 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
918 	else
919 		ctrl->ctrl.max_integrity_segments = 0;
920 
921 	nvme_start_admin_queue(&ctrl->ctrl);
922 
923 	error = nvme_init_identify(&ctrl->ctrl);
924 	if (error)
925 		goto out_quiesce_queue;
926 
927 	return 0;
928 
929 out_quiesce_queue:
930 	nvme_stop_admin_queue(&ctrl->ctrl);
931 	blk_sync_queue(ctrl->ctrl.admin_q);
932 out_stop_queue:
933 	nvme_rdma_stop_queue(&ctrl->queues[0]);
934 	nvme_cancel_admin_tagset(&ctrl->ctrl);
935 out_cleanup_queue:
936 	if (new)
937 		blk_cleanup_queue(ctrl->ctrl.admin_q);
938 out_cleanup_fabrics_q:
939 	if (new)
940 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
941 out_free_tagset:
942 	if (new)
943 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
944 out_free_async_qe:
945 	if (ctrl->async_event_sqe.data) {
946 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
947 			sizeof(struct nvme_command), DMA_TO_DEVICE);
948 		ctrl->async_event_sqe.data = NULL;
949 	}
950 out_free_queue:
951 	nvme_rdma_free_queue(&ctrl->queues[0]);
952 	return error;
953 }
954 
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)955 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
956 		bool remove)
957 {
958 	if (remove) {
959 		blk_cleanup_queue(ctrl->ctrl.connect_q);
960 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
961 	}
962 	nvme_rdma_free_io_queues(ctrl);
963 }
964 
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)965 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
966 {
967 	int ret;
968 
969 	ret = nvme_rdma_alloc_io_queues(ctrl);
970 	if (ret)
971 		return ret;
972 
973 	if (new) {
974 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
975 		if (IS_ERR(ctrl->ctrl.tagset)) {
976 			ret = PTR_ERR(ctrl->ctrl.tagset);
977 			goto out_free_io_queues;
978 		}
979 
980 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
981 		if (IS_ERR(ctrl->ctrl.connect_q)) {
982 			ret = PTR_ERR(ctrl->ctrl.connect_q);
983 			goto out_free_tag_set;
984 		}
985 	}
986 
987 	ret = nvme_rdma_start_io_queues(ctrl);
988 	if (ret)
989 		goto out_cleanup_connect_q;
990 
991 	if (!new) {
992 		nvme_start_queues(&ctrl->ctrl);
993 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
994 			/*
995 			 * If we timed out waiting for freeze we are likely to
996 			 * be stuck.  Fail the controller initialization just
997 			 * to be safe.
998 			 */
999 			ret = -ENODEV;
1000 			goto out_wait_freeze_timed_out;
1001 		}
1002 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1003 			ctrl->ctrl.queue_count - 1);
1004 		nvme_unfreeze(&ctrl->ctrl);
1005 	}
1006 
1007 	return 0;
1008 
1009 out_wait_freeze_timed_out:
1010 	nvme_stop_queues(&ctrl->ctrl);
1011 	nvme_sync_io_queues(&ctrl->ctrl);
1012 	nvme_rdma_stop_io_queues(ctrl);
1013 out_cleanup_connect_q:
1014 	nvme_cancel_tagset(&ctrl->ctrl);
1015 	if (new)
1016 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1017 out_free_tag_set:
1018 	if (new)
1019 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
1020 out_free_io_queues:
1021 	nvme_rdma_free_io_queues(ctrl);
1022 	return ret;
1023 }
1024 
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)1025 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1026 		bool remove)
1027 {
1028 	nvme_stop_admin_queue(&ctrl->ctrl);
1029 	blk_sync_queue(ctrl->ctrl.admin_q);
1030 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1031 	if (ctrl->ctrl.admin_tagset) {
1032 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1033 			nvme_cancel_request, &ctrl->ctrl);
1034 		blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1035 	}
1036 	if (remove)
1037 		nvme_start_admin_queue(&ctrl->ctrl);
1038 	nvme_rdma_destroy_admin_queue(ctrl, remove);
1039 }
1040 
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)1041 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1042 		bool remove)
1043 {
1044 	if (ctrl->ctrl.queue_count > 1) {
1045 		nvme_start_freeze(&ctrl->ctrl);
1046 		nvme_stop_queues(&ctrl->ctrl);
1047 		nvme_sync_io_queues(&ctrl->ctrl);
1048 		nvme_rdma_stop_io_queues(ctrl);
1049 		if (ctrl->ctrl.tagset) {
1050 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1051 				nvme_cancel_request, &ctrl->ctrl);
1052 			blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1053 		}
1054 		if (remove)
1055 			nvme_start_queues(&ctrl->ctrl);
1056 		nvme_rdma_destroy_io_queues(ctrl, remove);
1057 	}
1058 }
1059 
nvme_rdma_stop_ctrl(struct nvme_ctrl * nctrl)1060 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
1061 {
1062 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1063 
1064 	cancel_work_sync(&ctrl->err_work);
1065 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1066 }
1067 
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)1068 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1069 {
1070 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1071 
1072 	if (list_empty(&ctrl->list))
1073 		goto free_ctrl;
1074 
1075 	mutex_lock(&nvme_rdma_ctrl_mutex);
1076 	list_del(&ctrl->list);
1077 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1078 
1079 	nvmf_free_options(nctrl->opts);
1080 free_ctrl:
1081 	kfree(ctrl->queues);
1082 	kfree(ctrl);
1083 }
1084 
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)1085 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1086 {
1087 	/* If we are resetting/deleting then do nothing */
1088 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1089 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1090 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1091 		return;
1092 	}
1093 
1094 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1095 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1096 			ctrl->ctrl.opts->reconnect_delay);
1097 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1098 				ctrl->ctrl.opts->reconnect_delay * HZ);
1099 	} else {
1100 		nvme_delete_ctrl(&ctrl->ctrl);
1101 	}
1102 }
1103 
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl * ctrl,bool new)1104 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1105 {
1106 	int ret = -EINVAL;
1107 	bool changed;
1108 
1109 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1110 	if (ret)
1111 		return ret;
1112 
1113 	if (ctrl->ctrl.icdoff) {
1114 		ret = -EOPNOTSUPP;
1115 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1116 		goto destroy_admin;
1117 	}
1118 
1119 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1120 		ret = -EOPNOTSUPP;
1121 		dev_err(ctrl->ctrl.device,
1122 			"Mandatory keyed sgls are not supported!\n");
1123 		goto destroy_admin;
1124 	}
1125 
1126 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1127 		dev_warn(ctrl->ctrl.device,
1128 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1129 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1130 	}
1131 
1132 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1133 		dev_warn(ctrl->ctrl.device,
1134 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1135 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1136 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1137 	}
1138 
1139 	if (ctrl->ctrl.sgls & (1 << 20))
1140 		ctrl->use_inline_data = true;
1141 
1142 	if (ctrl->ctrl.queue_count > 1) {
1143 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1144 		if (ret)
1145 			goto destroy_admin;
1146 	}
1147 
1148 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1149 	if (!changed) {
1150 		/*
1151 		 * state change failure is ok if we started ctrl delete,
1152 		 * unless we're during creation of a new controller to
1153 		 * avoid races with teardown flow.
1154 		 */
1155 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1156 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1157 		WARN_ON_ONCE(new);
1158 		ret = -EINVAL;
1159 		goto destroy_io;
1160 	}
1161 
1162 	nvme_start_ctrl(&ctrl->ctrl);
1163 	return 0;
1164 
1165 destroy_io:
1166 	if (ctrl->ctrl.queue_count > 1) {
1167 		nvme_stop_queues(&ctrl->ctrl);
1168 		nvme_sync_io_queues(&ctrl->ctrl);
1169 		nvme_rdma_stop_io_queues(ctrl);
1170 		nvme_cancel_tagset(&ctrl->ctrl);
1171 		nvme_rdma_destroy_io_queues(ctrl, new);
1172 	}
1173 destroy_admin:
1174 	nvme_stop_admin_queue(&ctrl->ctrl);
1175 	blk_sync_queue(ctrl->ctrl.admin_q);
1176 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1177 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1178 	nvme_rdma_destroy_admin_queue(ctrl, new);
1179 	return ret;
1180 }
1181 
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)1182 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1183 {
1184 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1185 			struct nvme_rdma_ctrl, reconnect_work);
1186 
1187 	++ctrl->ctrl.nr_reconnects;
1188 
1189 	if (nvme_rdma_setup_ctrl(ctrl, false))
1190 		goto requeue;
1191 
1192 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1193 			ctrl->ctrl.nr_reconnects);
1194 
1195 	ctrl->ctrl.nr_reconnects = 0;
1196 
1197 	return;
1198 
1199 requeue:
1200 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1201 			ctrl->ctrl.nr_reconnects);
1202 	nvme_rdma_reconnect_or_remove(ctrl);
1203 }
1204 
nvme_rdma_error_recovery_work(struct work_struct * work)1205 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1206 {
1207 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1208 			struct nvme_rdma_ctrl, err_work);
1209 
1210 	nvme_stop_keep_alive(&ctrl->ctrl);
1211 	flush_work(&ctrl->ctrl.async_event_work);
1212 	nvme_rdma_teardown_io_queues(ctrl, false);
1213 	nvme_start_queues(&ctrl->ctrl);
1214 	nvme_rdma_teardown_admin_queue(ctrl, false);
1215 	nvme_start_admin_queue(&ctrl->ctrl);
1216 
1217 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1218 		/* state change failure is ok if we started ctrl delete */
1219 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1220 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1221 		return;
1222 	}
1223 
1224 	nvme_rdma_reconnect_or_remove(ctrl);
1225 }
1226 
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1227 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1228 {
1229 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1230 		return;
1231 
1232 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1233 	queue_work(nvme_reset_wq, &ctrl->err_work);
1234 }
1235 
nvme_rdma_end_request(struct nvme_rdma_request * req)1236 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1237 {
1238 	struct request *rq = blk_mq_rq_from_pdu(req);
1239 
1240 	if (!refcount_dec_and_test(&req->ref))
1241 		return;
1242 	if (!nvme_try_complete_req(rq, req->status, req->result))
1243 		nvme_rdma_complete_rq(rq);
1244 }
1245 
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1246 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1247 		const char *op)
1248 {
1249 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1250 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1251 
1252 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1253 		dev_info(ctrl->ctrl.device,
1254 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1255 			     op, wc->wr_cqe,
1256 			     ib_wc_status_msg(wc->status), wc->status);
1257 	nvme_rdma_error_recovery(ctrl);
1258 }
1259 
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1260 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1261 {
1262 	if (unlikely(wc->status != IB_WC_SUCCESS))
1263 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1264 }
1265 
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1266 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1267 {
1268 	struct nvme_rdma_request *req =
1269 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1270 
1271 	if (unlikely(wc->status != IB_WC_SUCCESS))
1272 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1273 	else
1274 		nvme_rdma_end_request(req);
1275 }
1276 
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1277 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1278 		struct nvme_rdma_request *req)
1279 {
1280 	struct ib_send_wr wr = {
1281 		.opcode		    = IB_WR_LOCAL_INV,
1282 		.next		    = NULL,
1283 		.num_sge	    = 0,
1284 		.send_flags	    = IB_SEND_SIGNALED,
1285 		.ex.invalidate_rkey = req->mr->rkey,
1286 	};
1287 
1288 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1289 	wr.wr_cqe = &req->reg_cqe;
1290 
1291 	return ib_post_send(queue->qp, &wr, NULL);
1292 }
1293 
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1294 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1295 		struct request *rq)
1296 {
1297 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1298 	struct nvme_rdma_device *dev = queue->device;
1299 	struct ib_device *ibdev = dev->dev;
1300 	struct list_head *pool = &queue->qp->rdma_mrs;
1301 
1302 	if (!blk_rq_nr_phys_segments(rq))
1303 		return;
1304 
1305 	if (blk_integrity_rq(rq)) {
1306 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1307 				req->metadata_sgl->nents, rq_dma_dir(rq));
1308 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1309 				      NVME_INLINE_METADATA_SG_CNT);
1310 	}
1311 
1312 	if (req->use_sig_mr)
1313 		pool = &queue->qp->sig_mrs;
1314 
1315 	if (req->mr) {
1316 		ib_mr_pool_put(queue->qp, pool, req->mr);
1317 		req->mr = NULL;
1318 	}
1319 
1320 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1321 			rq_dma_dir(rq));
1322 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1323 }
1324 
nvme_rdma_set_sg_null(struct nvme_command * c)1325 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1326 {
1327 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1328 
1329 	sg->addr = 0;
1330 	put_unaligned_le24(0, sg->length);
1331 	put_unaligned_le32(0, sg->key);
1332 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1333 	return 0;
1334 }
1335 
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1336 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1337 		struct nvme_rdma_request *req, struct nvme_command *c,
1338 		int count)
1339 {
1340 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1341 	struct ib_sge *sge = &req->sge[1];
1342 	struct scatterlist *sgl;
1343 	u32 len = 0;
1344 	int i;
1345 
1346 	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1347 		sge->addr = sg_dma_address(sgl);
1348 		sge->length = sg_dma_len(sgl);
1349 		sge->lkey = queue->device->pd->local_dma_lkey;
1350 		len += sge->length;
1351 		sge++;
1352 	}
1353 
1354 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1355 	sg->length = cpu_to_le32(len);
1356 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1357 
1358 	req->num_sge += count;
1359 	return 0;
1360 }
1361 
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1362 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1363 		struct nvme_rdma_request *req, struct nvme_command *c)
1364 {
1365 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1366 
1367 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1368 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1369 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1370 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1371 	return 0;
1372 }
1373 
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1374 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1375 		struct nvme_rdma_request *req, struct nvme_command *c,
1376 		int count)
1377 {
1378 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1379 	int nr;
1380 
1381 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1382 	if (WARN_ON_ONCE(!req->mr))
1383 		return -EAGAIN;
1384 
1385 	/*
1386 	 * Align the MR to a 4K page size to match the ctrl page size and
1387 	 * the block virtual boundary.
1388 	 */
1389 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1390 			  SZ_4K);
1391 	if (unlikely(nr < count)) {
1392 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1393 		req->mr = NULL;
1394 		if (nr < 0)
1395 			return nr;
1396 		return -EINVAL;
1397 	}
1398 
1399 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1400 
1401 	req->reg_cqe.done = nvme_rdma_memreg_done;
1402 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1403 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1404 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1405 	req->reg_wr.wr.num_sge = 0;
1406 	req->reg_wr.mr = req->mr;
1407 	req->reg_wr.key = req->mr->rkey;
1408 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1409 			     IB_ACCESS_REMOTE_READ |
1410 			     IB_ACCESS_REMOTE_WRITE;
1411 
1412 	sg->addr = cpu_to_le64(req->mr->iova);
1413 	put_unaligned_le24(req->mr->length, sg->length);
1414 	put_unaligned_le32(req->mr->rkey, sg->key);
1415 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1416 			NVME_SGL_FMT_INVALIDATE;
1417 
1418 	return 0;
1419 }
1420 
nvme_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)1421 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1422 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1423 		u16 control, u8 pi_type)
1424 {
1425 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1426 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1427 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1428 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1429 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1430 		domain->sig.dif.ref_remap = true;
1431 
1432 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1433 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1434 	domain->sig.dif.app_escape = true;
1435 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1436 		domain->sig.dif.ref_escape = true;
1437 }
1438 
nvme_rdma_set_sig_attrs(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_attrs * sig_attrs,u8 pi_type)1439 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1440 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1441 		u8 pi_type)
1442 {
1443 	u16 control = le16_to_cpu(cmd->rw.control);
1444 
1445 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1446 	if (control & NVME_RW_PRINFO_PRACT) {
1447 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1448 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1449 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1450 					 pi_type);
1451 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1452 		control &= ~NVME_RW_PRINFO_PRACT;
1453 		cmd->rw.control = cpu_to_le16(control);
1454 	} else {
1455 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1456 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1457 					 pi_type);
1458 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1459 					 pi_type);
1460 	}
1461 }
1462 
nvme_rdma_set_prot_checks(struct nvme_command * cmd,u8 * mask)1463 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1464 {
1465 	*mask = 0;
1466 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1467 		*mask |= IB_SIG_CHECK_REFTAG;
1468 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1469 		*mask |= IB_SIG_CHECK_GUARD;
1470 }
1471 
nvme_rdma_sig_done(struct ib_cq * cq,struct ib_wc * wc)1472 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1473 {
1474 	if (unlikely(wc->status != IB_WC_SUCCESS))
1475 		nvme_rdma_wr_error(cq, wc, "SIG");
1476 }
1477 
nvme_rdma_map_sg_pi(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count,int pi_count)1478 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1479 		struct nvme_rdma_request *req, struct nvme_command *c,
1480 		int count, int pi_count)
1481 {
1482 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1483 	struct ib_reg_wr *wr = &req->reg_wr;
1484 	struct request *rq = blk_mq_rq_from_pdu(req);
1485 	struct nvme_ns *ns = rq->q->queuedata;
1486 	struct bio *bio = rq->bio;
1487 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1488 	int nr;
1489 
1490 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1491 	if (WARN_ON_ONCE(!req->mr))
1492 		return -EAGAIN;
1493 
1494 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1495 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1496 			     SZ_4K);
1497 	if (unlikely(nr))
1498 		goto mr_put;
1499 
1500 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1501 				req->mr->sig_attrs, ns->pi_type);
1502 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1503 
1504 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1505 
1506 	req->reg_cqe.done = nvme_rdma_sig_done;
1507 	memset(wr, 0, sizeof(*wr));
1508 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1509 	wr->wr.wr_cqe = &req->reg_cqe;
1510 	wr->wr.num_sge = 0;
1511 	wr->wr.send_flags = 0;
1512 	wr->mr = req->mr;
1513 	wr->key = req->mr->rkey;
1514 	wr->access = IB_ACCESS_LOCAL_WRITE |
1515 		     IB_ACCESS_REMOTE_READ |
1516 		     IB_ACCESS_REMOTE_WRITE;
1517 
1518 	sg->addr = cpu_to_le64(req->mr->iova);
1519 	put_unaligned_le24(req->mr->length, sg->length);
1520 	put_unaligned_le32(req->mr->rkey, sg->key);
1521 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1522 
1523 	return 0;
1524 
1525 mr_put:
1526 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1527 	req->mr = NULL;
1528 	if (nr < 0)
1529 		return nr;
1530 	return -EINVAL;
1531 }
1532 
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1533 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1534 		struct request *rq, struct nvme_command *c)
1535 {
1536 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1537 	struct nvme_rdma_device *dev = queue->device;
1538 	struct ib_device *ibdev = dev->dev;
1539 	int pi_count = 0;
1540 	int count, ret;
1541 
1542 	req->num_sge = 1;
1543 	refcount_set(&req->ref, 2); /* send and recv completions */
1544 
1545 	c->common.flags |= NVME_CMD_SGL_METABUF;
1546 
1547 	if (!blk_rq_nr_phys_segments(rq))
1548 		return nvme_rdma_set_sg_null(c);
1549 
1550 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1551 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1552 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1553 			NVME_INLINE_SG_CNT);
1554 	if (ret)
1555 		return -ENOMEM;
1556 
1557 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1558 					    req->data_sgl.sg_table.sgl);
1559 
1560 	count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1561 			      req->data_sgl.nents, rq_dma_dir(rq));
1562 	if (unlikely(count <= 0)) {
1563 		ret = -EIO;
1564 		goto out_free_table;
1565 	}
1566 
1567 	if (blk_integrity_rq(rq)) {
1568 		req->metadata_sgl->sg_table.sgl =
1569 			(struct scatterlist *)(req->metadata_sgl + 1);
1570 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1571 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1572 				req->metadata_sgl->sg_table.sgl,
1573 				NVME_INLINE_METADATA_SG_CNT);
1574 		if (unlikely(ret)) {
1575 			ret = -ENOMEM;
1576 			goto out_unmap_sg;
1577 		}
1578 
1579 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1580 				rq->bio, req->metadata_sgl->sg_table.sgl);
1581 		pi_count = ib_dma_map_sg(ibdev,
1582 					 req->metadata_sgl->sg_table.sgl,
1583 					 req->metadata_sgl->nents,
1584 					 rq_dma_dir(rq));
1585 		if (unlikely(pi_count <= 0)) {
1586 			ret = -EIO;
1587 			goto out_free_pi_table;
1588 		}
1589 	}
1590 
1591 	if (req->use_sig_mr) {
1592 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1593 		goto out;
1594 	}
1595 
1596 	if (count <= dev->num_inline_segments) {
1597 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1598 		    queue->ctrl->use_inline_data &&
1599 		    blk_rq_payload_bytes(rq) <=
1600 				nvme_rdma_inline_data_size(queue)) {
1601 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1602 			goto out;
1603 		}
1604 
1605 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1606 			ret = nvme_rdma_map_sg_single(queue, req, c);
1607 			goto out;
1608 		}
1609 	}
1610 
1611 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1612 out:
1613 	if (unlikely(ret))
1614 		goto out_unmap_pi_sg;
1615 
1616 	return 0;
1617 
1618 out_unmap_pi_sg:
1619 	if (blk_integrity_rq(rq))
1620 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1621 				req->metadata_sgl->nents, rq_dma_dir(rq));
1622 out_free_pi_table:
1623 	if (blk_integrity_rq(rq))
1624 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1625 				      NVME_INLINE_METADATA_SG_CNT);
1626 out_unmap_sg:
1627 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1628 			rq_dma_dir(rq));
1629 out_free_table:
1630 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1631 	return ret;
1632 }
1633 
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1634 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1635 {
1636 	struct nvme_rdma_qe *qe =
1637 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1638 	struct nvme_rdma_request *req =
1639 		container_of(qe, struct nvme_rdma_request, sqe);
1640 
1641 	if (unlikely(wc->status != IB_WC_SUCCESS))
1642 		nvme_rdma_wr_error(cq, wc, "SEND");
1643 	else
1644 		nvme_rdma_end_request(req);
1645 }
1646 
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1647 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1648 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1649 		struct ib_send_wr *first)
1650 {
1651 	struct ib_send_wr wr;
1652 	int ret;
1653 
1654 	sge->addr   = qe->dma;
1655 	sge->length = sizeof(struct nvme_command);
1656 	sge->lkey   = queue->device->pd->local_dma_lkey;
1657 
1658 	wr.next       = NULL;
1659 	wr.wr_cqe     = &qe->cqe;
1660 	wr.sg_list    = sge;
1661 	wr.num_sge    = num_sge;
1662 	wr.opcode     = IB_WR_SEND;
1663 	wr.send_flags = IB_SEND_SIGNALED;
1664 
1665 	if (first)
1666 		first->next = &wr;
1667 	else
1668 		first = &wr;
1669 
1670 	ret = ib_post_send(queue->qp, first, NULL);
1671 	if (unlikely(ret)) {
1672 		dev_err(queue->ctrl->ctrl.device,
1673 			     "%s failed with error code %d\n", __func__, ret);
1674 	}
1675 	return ret;
1676 }
1677 
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1678 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1679 		struct nvme_rdma_qe *qe)
1680 {
1681 	struct ib_recv_wr wr;
1682 	struct ib_sge list;
1683 	int ret;
1684 
1685 	list.addr   = qe->dma;
1686 	list.length = sizeof(struct nvme_completion);
1687 	list.lkey   = queue->device->pd->local_dma_lkey;
1688 
1689 	qe->cqe.done = nvme_rdma_recv_done;
1690 
1691 	wr.next     = NULL;
1692 	wr.wr_cqe   = &qe->cqe;
1693 	wr.sg_list  = &list;
1694 	wr.num_sge  = 1;
1695 
1696 	ret = ib_post_recv(queue->qp, &wr, NULL);
1697 	if (unlikely(ret)) {
1698 		dev_err(queue->ctrl->ctrl.device,
1699 			"%s failed with error code %d\n", __func__, ret);
1700 	}
1701 	return ret;
1702 }
1703 
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1704 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1705 {
1706 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1707 
1708 	if (queue_idx == 0)
1709 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1710 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1711 }
1712 
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1713 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1714 {
1715 	if (unlikely(wc->status != IB_WC_SUCCESS))
1716 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1717 }
1718 
nvme_rdma_submit_async_event(struct nvme_ctrl * arg)1719 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1720 {
1721 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1722 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1723 	struct ib_device *dev = queue->device->dev;
1724 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1725 	struct nvme_command *cmd = sqe->data;
1726 	struct ib_sge sge;
1727 	int ret;
1728 
1729 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1730 
1731 	memset(cmd, 0, sizeof(*cmd));
1732 	cmd->common.opcode = nvme_admin_async_event;
1733 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1734 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1735 	nvme_rdma_set_sg_null(cmd);
1736 
1737 	sqe->cqe.done = nvme_rdma_async_done;
1738 
1739 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1740 			DMA_TO_DEVICE);
1741 
1742 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1743 	WARN_ON_ONCE(ret);
1744 }
1745 
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc)1746 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1747 		struct nvme_completion *cqe, struct ib_wc *wc)
1748 {
1749 	struct request *rq;
1750 	struct nvme_rdma_request *req;
1751 
1752 	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1753 	if (!rq) {
1754 		dev_err(queue->ctrl->ctrl.device,
1755 			"got bad command_id %#x on QP %#x\n",
1756 			cqe->command_id, queue->qp->qp_num);
1757 		nvme_rdma_error_recovery(queue->ctrl);
1758 		return;
1759 	}
1760 	req = blk_mq_rq_to_pdu(rq);
1761 
1762 	req->status = cqe->status;
1763 	req->result = cqe->result;
1764 
1765 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1766 		if (unlikely(!req->mr ||
1767 			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1768 			dev_err(queue->ctrl->ctrl.device,
1769 				"Bogus remote invalidation for rkey %#x\n",
1770 				req->mr ? req->mr->rkey : 0);
1771 			nvme_rdma_error_recovery(queue->ctrl);
1772 		}
1773 	} else if (req->mr) {
1774 		int ret;
1775 
1776 		ret = nvme_rdma_inv_rkey(queue, req);
1777 		if (unlikely(ret < 0)) {
1778 			dev_err(queue->ctrl->ctrl.device,
1779 				"Queueing INV WR for rkey %#x failed (%d)\n",
1780 				req->mr->rkey, ret);
1781 			nvme_rdma_error_recovery(queue->ctrl);
1782 		}
1783 		/* the local invalidation completion will end the request */
1784 		return;
1785 	}
1786 
1787 	nvme_rdma_end_request(req);
1788 }
1789 
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1790 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1791 {
1792 	struct nvme_rdma_qe *qe =
1793 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1794 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1795 	struct ib_device *ibdev = queue->device->dev;
1796 	struct nvme_completion *cqe = qe->data;
1797 	const size_t len = sizeof(struct nvme_completion);
1798 
1799 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1800 		nvme_rdma_wr_error(cq, wc, "RECV");
1801 		return;
1802 	}
1803 
1804 	/* sanity checking for received data length */
1805 	if (unlikely(wc->byte_len < len)) {
1806 		dev_err(queue->ctrl->ctrl.device,
1807 			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1808 		nvme_rdma_error_recovery(queue->ctrl);
1809 		return;
1810 	}
1811 
1812 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1813 	/*
1814 	 * AEN requests are special as they don't time out and can
1815 	 * survive any kind of queue freeze and often don't respond to
1816 	 * aborts.  We don't even bother to allocate a struct request
1817 	 * for them but rather special case them here.
1818 	 */
1819 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1820 				     cqe->command_id)))
1821 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1822 				&cqe->result);
1823 	else
1824 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1825 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1826 
1827 	nvme_rdma_post_recv(queue, qe);
1828 }
1829 
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1830 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1831 {
1832 	int ret, i;
1833 
1834 	for (i = 0; i < queue->queue_size; i++) {
1835 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1836 		if (ret)
1837 			return ret;
1838 	}
1839 
1840 	return 0;
1841 }
1842 
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1843 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1844 		struct rdma_cm_event *ev)
1845 {
1846 	struct rdma_cm_id *cm_id = queue->cm_id;
1847 	int status = ev->status;
1848 	const char *rej_msg;
1849 	const struct nvme_rdma_cm_rej *rej_data;
1850 	u8 rej_data_len;
1851 
1852 	rej_msg = rdma_reject_msg(cm_id, status);
1853 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1854 
1855 	if (rej_data && rej_data_len >= sizeof(u16)) {
1856 		u16 sts = le16_to_cpu(rej_data->sts);
1857 
1858 		dev_err(queue->ctrl->ctrl.device,
1859 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1860 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1861 	} else {
1862 		dev_err(queue->ctrl->ctrl.device,
1863 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1864 	}
1865 
1866 	return -ECONNRESET;
1867 }
1868 
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1869 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1870 {
1871 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1872 	int ret;
1873 
1874 	ret = nvme_rdma_create_queue_ib(queue);
1875 	if (ret)
1876 		return ret;
1877 
1878 	if (ctrl->opts->tos >= 0)
1879 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1880 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1881 	if (ret) {
1882 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1883 			queue->cm_error);
1884 		goto out_destroy_queue;
1885 	}
1886 
1887 	return 0;
1888 
1889 out_destroy_queue:
1890 	nvme_rdma_destroy_queue_ib(queue);
1891 	return ret;
1892 }
1893 
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1894 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1895 {
1896 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1897 	struct rdma_conn_param param = { };
1898 	struct nvme_rdma_cm_req priv = { };
1899 	int ret;
1900 
1901 	param.qp_num = queue->qp->qp_num;
1902 	param.flow_control = 1;
1903 
1904 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1905 	/* maximum retry count */
1906 	param.retry_count = 7;
1907 	param.rnr_retry_count = 7;
1908 	param.private_data = &priv;
1909 	param.private_data_len = sizeof(priv);
1910 
1911 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1912 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1913 	/*
1914 	 * set the admin queue depth to the minimum size
1915 	 * specified by the Fabrics standard.
1916 	 */
1917 	if (priv.qid == 0) {
1918 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1919 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1920 	} else {
1921 		/*
1922 		 * current interpretation of the fabrics spec
1923 		 * is at minimum you make hrqsize sqsize+1, or a
1924 		 * 1's based representation of sqsize.
1925 		 */
1926 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1927 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1928 	}
1929 
1930 	ret = rdma_connect_locked(queue->cm_id, &param);
1931 	if (ret) {
1932 		dev_err(ctrl->ctrl.device,
1933 			"rdma_connect_locked failed (%d).\n", ret);
1934 		return ret;
1935 	}
1936 
1937 	return 0;
1938 }
1939 
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1940 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1941 		struct rdma_cm_event *ev)
1942 {
1943 	struct nvme_rdma_queue *queue = cm_id->context;
1944 	int cm_error = 0;
1945 
1946 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1947 		rdma_event_msg(ev->event), ev->event,
1948 		ev->status, cm_id);
1949 
1950 	switch (ev->event) {
1951 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1952 		cm_error = nvme_rdma_addr_resolved(queue);
1953 		break;
1954 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1955 		cm_error = nvme_rdma_route_resolved(queue);
1956 		break;
1957 	case RDMA_CM_EVENT_ESTABLISHED:
1958 		queue->cm_error = nvme_rdma_conn_established(queue);
1959 		/* complete cm_done regardless of success/failure */
1960 		complete(&queue->cm_done);
1961 		return 0;
1962 	case RDMA_CM_EVENT_REJECTED:
1963 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1964 		break;
1965 	case RDMA_CM_EVENT_ROUTE_ERROR:
1966 	case RDMA_CM_EVENT_CONNECT_ERROR:
1967 	case RDMA_CM_EVENT_UNREACHABLE:
1968 	case RDMA_CM_EVENT_ADDR_ERROR:
1969 		dev_dbg(queue->ctrl->ctrl.device,
1970 			"CM error event %d\n", ev->event);
1971 		cm_error = -ECONNRESET;
1972 		break;
1973 	case RDMA_CM_EVENT_DISCONNECTED:
1974 	case RDMA_CM_EVENT_ADDR_CHANGE:
1975 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1976 		dev_dbg(queue->ctrl->ctrl.device,
1977 			"disconnect received - connection closed\n");
1978 		nvme_rdma_error_recovery(queue->ctrl);
1979 		break;
1980 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1981 		/* device removal is handled via the ib_client API */
1982 		break;
1983 	default:
1984 		dev_err(queue->ctrl->ctrl.device,
1985 			"Unexpected RDMA CM event (%d)\n", ev->event);
1986 		nvme_rdma_error_recovery(queue->ctrl);
1987 		break;
1988 	}
1989 
1990 	if (cm_error) {
1991 		queue->cm_error = cm_error;
1992 		complete(&queue->cm_done);
1993 	}
1994 
1995 	return 0;
1996 }
1997 
nvme_rdma_complete_timed_out(struct request * rq)1998 static void nvme_rdma_complete_timed_out(struct request *rq)
1999 {
2000 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2001 	struct nvme_rdma_queue *queue = req->queue;
2002 
2003 	nvme_rdma_stop_queue(queue);
2004 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2005 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2006 		blk_mq_complete_request(rq);
2007 	}
2008 }
2009 
2010 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request * rq,bool reserved)2011 nvme_rdma_timeout(struct request *rq, bool reserved)
2012 {
2013 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2014 	struct nvme_rdma_queue *queue = req->queue;
2015 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2016 
2017 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2018 		 rq->tag, nvme_rdma_queue_idx(queue));
2019 
2020 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2021 		/*
2022 		 * If we are resetting, connecting or deleting we should
2023 		 * complete immediately because we may block controller
2024 		 * teardown or setup sequence
2025 		 * - ctrl disable/shutdown fabrics requests
2026 		 * - connect requests
2027 		 * - initialization admin requests
2028 		 * - I/O requests that entered after unquiescing and
2029 		 *   the controller stopped responding
2030 		 *
2031 		 * All other requests should be cancelled by the error
2032 		 * recovery work, so it's fine that we fail it here.
2033 		 */
2034 		nvme_rdma_complete_timed_out(rq);
2035 		return BLK_EH_DONE;
2036 	}
2037 
2038 	/*
2039 	 * LIVE state should trigger the normal error recovery which will
2040 	 * handle completing this request.
2041 	 */
2042 	nvme_rdma_error_recovery(ctrl);
2043 	return BLK_EH_RESET_TIMER;
2044 }
2045 
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2046 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2047 		const struct blk_mq_queue_data *bd)
2048 {
2049 	struct nvme_ns *ns = hctx->queue->queuedata;
2050 	struct nvme_rdma_queue *queue = hctx->driver_data;
2051 	struct request *rq = bd->rq;
2052 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2053 	struct nvme_rdma_qe *sqe = &req->sqe;
2054 	struct nvme_command *c = sqe->data;
2055 	struct ib_device *dev;
2056 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2057 	blk_status_t ret;
2058 	int err;
2059 
2060 	WARN_ON_ONCE(rq->tag < 0);
2061 
2062 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2063 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2064 
2065 	dev = queue->device->dev;
2066 
2067 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2068 					 sizeof(struct nvme_command),
2069 					 DMA_TO_DEVICE);
2070 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2071 	if (unlikely(err))
2072 		return BLK_STS_RESOURCE;
2073 
2074 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2075 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2076 
2077 	ret = nvme_setup_cmd(ns, rq, c);
2078 	if (ret)
2079 		goto unmap_qe;
2080 
2081 	blk_mq_start_request(rq);
2082 
2083 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2084 	    queue->pi_support &&
2085 	    (c->common.opcode == nvme_cmd_write ||
2086 	     c->common.opcode == nvme_cmd_read) &&
2087 	    nvme_ns_has_pi(ns))
2088 		req->use_sig_mr = true;
2089 	else
2090 		req->use_sig_mr = false;
2091 
2092 	err = nvme_rdma_map_data(queue, rq, c);
2093 	if (unlikely(err < 0)) {
2094 		dev_err(queue->ctrl->ctrl.device,
2095 			     "Failed to map data (%d)\n", err);
2096 		goto err;
2097 	}
2098 
2099 	sqe->cqe.done = nvme_rdma_send_done;
2100 
2101 	ib_dma_sync_single_for_device(dev, sqe->dma,
2102 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2103 
2104 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2105 			req->mr ? &req->reg_wr.wr : NULL);
2106 	if (unlikely(err))
2107 		goto err_unmap;
2108 
2109 	return BLK_STS_OK;
2110 
2111 err_unmap:
2112 	nvme_rdma_unmap_data(queue, rq);
2113 err:
2114 	if (err == -ENOMEM || err == -EAGAIN)
2115 		ret = BLK_STS_RESOURCE;
2116 	else
2117 		ret = BLK_STS_IOERR;
2118 	nvme_cleanup_cmd(rq);
2119 unmap_qe:
2120 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2121 			    DMA_TO_DEVICE);
2122 	return ret;
2123 }
2124 
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx)2125 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2126 {
2127 	struct nvme_rdma_queue *queue = hctx->driver_data;
2128 
2129 	return ib_process_cq_direct(queue->ib_cq, -1);
2130 }
2131 
nvme_rdma_check_pi_status(struct nvme_rdma_request * req)2132 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2133 {
2134 	struct request *rq = blk_mq_rq_from_pdu(req);
2135 	struct ib_mr_status mr_status;
2136 	int ret;
2137 
2138 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2139 	if (ret) {
2140 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2141 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2142 		return;
2143 	}
2144 
2145 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2146 		switch (mr_status.sig_err.err_type) {
2147 		case IB_SIG_BAD_GUARD:
2148 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2149 			break;
2150 		case IB_SIG_BAD_REFTAG:
2151 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2152 			break;
2153 		case IB_SIG_BAD_APPTAG:
2154 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2155 			break;
2156 		}
2157 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2158 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2159 		       mr_status.sig_err.actual);
2160 	}
2161 }
2162 
nvme_rdma_complete_rq(struct request * rq)2163 static void nvme_rdma_complete_rq(struct request *rq)
2164 {
2165 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2166 	struct nvme_rdma_queue *queue = req->queue;
2167 	struct ib_device *ibdev = queue->device->dev;
2168 
2169 	if (req->use_sig_mr)
2170 		nvme_rdma_check_pi_status(req);
2171 
2172 	nvme_rdma_unmap_data(queue, rq);
2173 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2174 			    DMA_TO_DEVICE);
2175 	nvme_complete_rq(rq);
2176 }
2177 
nvme_rdma_map_queues(struct blk_mq_tag_set * set)2178 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2179 {
2180 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
2181 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2182 
2183 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2184 		/* separate read/write queues */
2185 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2186 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2187 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2188 		set->map[HCTX_TYPE_READ].nr_queues =
2189 			ctrl->io_queues[HCTX_TYPE_READ];
2190 		set->map[HCTX_TYPE_READ].queue_offset =
2191 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2192 	} else {
2193 		/* shared read/write queues */
2194 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2195 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2196 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2197 		set->map[HCTX_TYPE_READ].nr_queues =
2198 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2199 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2200 	}
2201 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2202 			ctrl->device->dev, 0);
2203 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2204 			ctrl->device->dev, 0);
2205 
2206 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2207 		/* map dedicated poll queues only if we have queues left */
2208 		set->map[HCTX_TYPE_POLL].nr_queues =
2209 				ctrl->io_queues[HCTX_TYPE_POLL];
2210 		set->map[HCTX_TYPE_POLL].queue_offset =
2211 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2212 			ctrl->io_queues[HCTX_TYPE_READ];
2213 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2214 	}
2215 
2216 	dev_info(ctrl->ctrl.device,
2217 		"mapped %d/%d/%d default/read/poll queues.\n",
2218 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2219 		ctrl->io_queues[HCTX_TYPE_READ],
2220 		ctrl->io_queues[HCTX_TYPE_POLL]);
2221 
2222 	return 0;
2223 }
2224 
2225 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2226 	.queue_rq	= nvme_rdma_queue_rq,
2227 	.complete	= nvme_rdma_complete_rq,
2228 	.init_request	= nvme_rdma_init_request,
2229 	.exit_request	= nvme_rdma_exit_request,
2230 	.init_hctx	= nvme_rdma_init_hctx,
2231 	.timeout	= nvme_rdma_timeout,
2232 	.map_queues	= nvme_rdma_map_queues,
2233 	.poll		= nvme_rdma_poll,
2234 };
2235 
2236 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2237 	.queue_rq	= nvme_rdma_queue_rq,
2238 	.complete	= nvme_rdma_complete_rq,
2239 	.init_request	= nvme_rdma_init_request,
2240 	.exit_request	= nvme_rdma_exit_request,
2241 	.init_hctx	= nvme_rdma_init_admin_hctx,
2242 	.timeout	= nvme_rdma_timeout,
2243 };
2244 
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)2245 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2246 {
2247 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2248 	nvme_stop_admin_queue(&ctrl->ctrl);
2249 	if (shutdown)
2250 		nvme_shutdown_ctrl(&ctrl->ctrl);
2251 	else
2252 		nvme_disable_ctrl(&ctrl->ctrl);
2253 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2254 }
2255 
nvme_rdma_delete_ctrl(struct nvme_ctrl * ctrl)2256 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2257 {
2258 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2259 }
2260 
nvme_rdma_reset_ctrl_work(struct work_struct * work)2261 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2262 {
2263 	struct nvme_rdma_ctrl *ctrl =
2264 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2265 
2266 	nvme_stop_ctrl(&ctrl->ctrl);
2267 	nvme_rdma_shutdown_ctrl(ctrl, false);
2268 
2269 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2270 		/* state change failure should never happen */
2271 		WARN_ON_ONCE(1);
2272 		return;
2273 	}
2274 
2275 	if (nvme_rdma_setup_ctrl(ctrl, false))
2276 		goto out_fail;
2277 
2278 	return;
2279 
2280 out_fail:
2281 	++ctrl->ctrl.nr_reconnects;
2282 	nvme_rdma_reconnect_or_remove(ctrl);
2283 }
2284 
2285 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2286 	.name			= "rdma",
2287 	.module			= THIS_MODULE,
2288 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2289 	.reg_read32		= nvmf_reg_read32,
2290 	.reg_read64		= nvmf_reg_read64,
2291 	.reg_write32		= nvmf_reg_write32,
2292 	.free_ctrl		= nvme_rdma_free_ctrl,
2293 	.submit_async_event	= nvme_rdma_submit_async_event,
2294 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2295 	.get_address		= nvmf_get_address,
2296 	.stop_ctrl		= nvme_rdma_stop_ctrl,
2297 };
2298 
2299 /*
2300  * Fails a connection request if it matches an existing controller
2301  * (association) with the same tuple:
2302  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2303  *
2304  * if local address is not specified in the request, it will match an
2305  * existing controller with all the other parameters the same and no
2306  * local port address specified as well.
2307  *
2308  * The ports don't need to be compared as they are intrinsically
2309  * already matched by the port pointers supplied.
2310  */
2311 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options * opts)2312 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2313 {
2314 	struct nvme_rdma_ctrl *ctrl;
2315 	bool found = false;
2316 
2317 	mutex_lock(&nvme_rdma_ctrl_mutex);
2318 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2319 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2320 		if (found)
2321 			break;
2322 	}
2323 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2324 
2325 	return found;
2326 }
2327 
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2328 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2329 		struct nvmf_ctrl_options *opts)
2330 {
2331 	struct nvme_rdma_ctrl *ctrl;
2332 	int ret;
2333 	bool changed;
2334 
2335 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2336 	if (!ctrl)
2337 		return ERR_PTR(-ENOMEM);
2338 	ctrl->ctrl.opts = opts;
2339 	INIT_LIST_HEAD(&ctrl->list);
2340 
2341 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2342 		opts->trsvcid =
2343 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2344 		if (!opts->trsvcid) {
2345 			ret = -ENOMEM;
2346 			goto out_free_ctrl;
2347 		}
2348 		opts->mask |= NVMF_OPT_TRSVCID;
2349 	}
2350 
2351 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2352 			opts->traddr, opts->trsvcid, &ctrl->addr);
2353 	if (ret) {
2354 		pr_err("malformed address passed: %s:%s\n",
2355 			opts->traddr, opts->trsvcid);
2356 		goto out_free_ctrl;
2357 	}
2358 
2359 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2360 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2361 			opts->host_traddr, NULL, &ctrl->src_addr);
2362 		if (ret) {
2363 			pr_err("malformed src address passed: %s\n",
2364 			       opts->host_traddr);
2365 			goto out_free_ctrl;
2366 		}
2367 	}
2368 
2369 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2370 		ret = -EALREADY;
2371 		goto out_free_ctrl;
2372 	}
2373 
2374 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2375 			nvme_rdma_reconnect_ctrl_work);
2376 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2377 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2378 
2379 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2380 				opts->nr_poll_queues + 1;
2381 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2382 	ctrl->ctrl.kato = opts->kato;
2383 
2384 	ret = -ENOMEM;
2385 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2386 				GFP_KERNEL);
2387 	if (!ctrl->queues)
2388 		goto out_free_ctrl;
2389 
2390 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2391 				0 /* no quirks, we're perfect! */);
2392 	if (ret)
2393 		goto out_kfree_queues;
2394 
2395 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2396 	WARN_ON_ONCE(!changed);
2397 
2398 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2399 	if (ret)
2400 		goto out_uninit_ctrl;
2401 
2402 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2403 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2404 
2405 	mutex_lock(&nvme_rdma_ctrl_mutex);
2406 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2407 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2408 
2409 	return &ctrl->ctrl;
2410 
2411 out_uninit_ctrl:
2412 	nvme_uninit_ctrl(&ctrl->ctrl);
2413 	nvme_put_ctrl(&ctrl->ctrl);
2414 	if (ret > 0)
2415 		ret = -EIO;
2416 	return ERR_PTR(ret);
2417 out_kfree_queues:
2418 	kfree(ctrl->queues);
2419 out_free_ctrl:
2420 	kfree(ctrl);
2421 	return ERR_PTR(ret);
2422 }
2423 
2424 static struct nvmf_transport_ops nvme_rdma_transport = {
2425 	.name		= "rdma",
2426 	.module		= THIS_MODULE,
2427 	.required_opts	= NVMF_OPT_TRADDR,
2428 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2429 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2430 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2431 			  NVMF_OPT_TOS,
2432 	.create_ctrl	= nvme_rdma_create_ctrl,
2433 };
2434 
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)2435 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2436 {
2437 	struct nvme_rdma_ctrl *ctrl;
2438 	struct nvme_rdma_device *ndev;
2439 	bool found = false;
2440 
2441 	mutex_lock(&device_list_mutex);
2442 	list_for_each_entry(ndev, &device_list, entry) {
2443 		if (ndev->dev == ib_device) {
2444 			found = true;
2445 			break;
2446 		}
2447 	}
2448 	mutex_unlock(&device_list_mutex);
2449 
2450 	if (!found)
2451 		return;
2452 
2453 	/* Delete all controllers using this device */
2454 	mutex_lock(&nvme_rdma_ctrl_mutex);
2455 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2456 		if (ctrl->device->dev != ib_device)
2457 			continue;
2458 		nvme_delete_ctrl(&ctrl->ctrl);
2459 	}
2460 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2461 
2462 	flush_workqueue(nvme_delete_wq);
2463 }
2464 
2465 static struct ib_client nvme_rdma_ib_client = {
2466 	.name   = "nvme_rdma",
2467 	.remove = nvme_rdma_remove_one
2468 };
2469 
nvme_rdma_init_module(void)2470 static int __init nvme_rdma_init_module(void)
2471 {
2472 	int ret;
2473 
2474 	ret = ib_register_client(&nvme_rdma_ib_client);
2475 	if (ret)
2476 		return ret;
2477 
2478 	ret = nvmf_register_transport(&nvme_rdma_transport);
2479 	if (ret)
2480 		goto err_unreg_client;
2481 
2482 	return 0;
2483 
2484 err_unreg_client:
2485 	ib_unregister_client(&nvme_rdma_ib_client);
2486 	return ret;
2487 }
2488 
nvme_rdma_cleanup_module(void)2489 static void __exit nvme_rdma_cleanup_module(void)
2490 {
2491 	struct nvme_rdma_ctrl *ctrl;
2492 
2493 	nvmf_unregister_transport(&nvme_rdma_transport);
2494 	ib_unregister_client(&nvme_rdma_ib_client);
2495 
2496 	mutex_lock(&nvme_rdma_ctrl_mutex);
2497 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2498 		nvme_delete_ctrl(&ctrl->ctrl);
2499 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2500 	flush_workqueue(nvme_delete_wq);
2501 }
2502 
2503 module_init(nvme_rdma_init_module);
2504 module_exit(nvme_rdma_cleanup_module);
2505 
2506 MODULE_LICENSE("GPL v2");
2507