1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS 256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
36
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42 struct nvme_rdma_device {
43 struct ib_device *dev;
44 struct ib_pd *pd;
45 struct kref ref;
46 struct list_head entry;
47 unsigned int num_inline_segments;
48 };
49
50 struct nvme_rdma_qe {
51 struct ib_cqe cqe;
52 void *data;
53 u64 dma;
54 };
55
56 struct nvme_rdma_sgl {
57 int nents;
58 struct sg_table sg_table;
59 };
60
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 struct nvme_request req;
64 struct ib_mr *mr;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
67 __le16 status;
68 refcount_t ref;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 u32 num_sge;
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
76 bool use_sig_mr;
77 };
78
79 enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
81 NVME_RDMA_Q_LIVE = 1,
82 NVME_RDMA_Q_TR_READY = 2,
83 };
84
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
87 int queue_size;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
91 struct ib_cq *ib_cq;
92 struct ib_qp *qp;
93
94 unsigned long flags;
95 struct rdma_cm_id *cm_id;
96 int cm_error;
97 struct completion cm_done;
98 bool pi_support;
99 int cq_size;
100 struct mutex queue_lock;
101 };
102
103 struct nvme_rdma_ctrl {
104 /* read only in the hot path */
105 struct nvme_rdma_queue *queues;
106
107 /* other member variables */
108 struct blk_mq_tag_set tag_set;
109 struct work_struct err_work;
110
111 struct nvme_rdma_qe async_event_sqe;
112
113 struct delayed_work reconnect_work;
114
115 struct list_head list;
116
117 struct blk_mq_tag_set admin_tag_set;
118 struct nvme_rdma_device *device;
119
120 u32 max_fr_pages;
121
122 struct sockaddr_storage addr;
123 struct sockaddr_storage src_addr;
124
125 struct nvme_ctrl ctrl;
126 bool use_inline_data;
127 u32 io_queues[HCTX_MAX_TYPES];
128 };
129
to_rdma_ctrl(struct nvme_ctrl * ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
145 */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 return queue - queue->ctrl->queues;
162 }
163
nvme_rdma_poll_queue(struct nvme_rdma_queue * queue)164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 return nvme_rdma_queue_idx(queue) >
167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
178 {
179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 kfree(qe->data);
181 }
182
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
185 {
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 if (!qe->data)
188 return -ENOMEM;
189
190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 kfree(qe->data);
193 qe->data = NULL;
194 return -ENOMEM;
195 }
196
197 return 0;
198 }
199
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 size_t capsule_size, enum dma_data_direction dir)
203 {
204 int i;
205
206 for (i = 0; i < ib_queue_size; i++)
207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 kfree(ring);
209 }
210
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 size_t ib_queue_size, size_t capsule_size,
213 enum dma_data_direction dir)
214 {
215 struct nvme_rdma_qe *ring;
216 int i;
217
218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 if (!ring)
220 return NULL;
221
222 /*
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any chage in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
226 */
227 for (i = 0; i < ib_queue_size; i++) {
228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 goto out_free_ring;
230 }
231
232 return ring;
233
234 out_free_ring:
235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 return NULL;
237 }
238
nvme_rdma_qp_event(struct ib_event * event,void * context)239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event->event), event->event);
243
244 }
245
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 int ret;
249
250 ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 if (ret < 0)
253 return ret;
254 if (ret == 0)
255 return -ETIMEDOUT;
256 WARN_ON_ONCE(queue->cm_error > 0);
257 return queue->cm_error;
258 }
259
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 struct nvme_rdma_device *dev = queue->device;
263 struct ib_qp_init_attr init_attr;
264 int ret;
265
266 memset(&init_attr, 0, sizeof(init_attr));
267 init_attr.event_handler = nvme_rdma_qp_event;
268 /* +1 for drain */
269 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 /* +1 for drain */
271 init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 init_attr.cap.max_recv_sge = 1;
273 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 init_attr.qp_type = IB_QPT_RC;
276 init_attr.send_cq = queue->ib_cq;
277 init_attr.recv_cq = queue->ib_cq;
278 if (queue->pi_support)
279 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 init_attr.qp_context = queue;
281
282 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283
284 queue->qp = queue->cm_id->qp;
285 return ret;
286 }
287
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 struct request *rq, unsigned int hctx_idx)
290 {
291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292
293 kfree(req->sqe.data);
294 }
295
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 struct request *rq, unsigned int hctx_idx,
298 unsigned int numa_node)
299 {
300 struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304
305 nvme_req(rq)->ctrl = &ctrl->ctrl;
306 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 if (!req->sqe.data)
308 return -ENOMEM;
309
310 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 if (queue->pi_support)
312 req->metadata_sgl = (void *)nvme_req(rq) +
313 sizeof(struct nvme_rdma_request) +
314 NVME_RDMA_DATA_SGL_SIZE;
315
316 req->queue = queue;
317
318 return 0;
319 }
320
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322 unsigned int hctx_idx)
323 {
324 struct nvme_rdma_ctrl *ctrl = data;
325 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
326
327 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
328
329 hctx->driver_data = queue;
330 return 0;
331 }
332
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
334 unsigned int hctx_idx)
335 {
336 struct nvme_rdma_ctrl *ctrl = data;
337 struct nvme_rdma_queue *queue = &ctrl->queues[0];
338
339 BUG_ON(hctx_idx != 0);
340
341 hctx->driver_data = queue;
342 return 0;
343 }
344
nvme_rdma_free_dev(struct kref * ref)345 static void nvme_rdma_free_dev(struct kref *ref)
346 {
347 struct nvme_rdma_device *ndev =
348 container_of(ref, struct nvme_rdma_device, ref);
349
350 mutex_lock(&device_list_mutex);
351 list_del(&ndev->entry);
352 mutex_unlock(&device_list_mutex);
353
354 ib_dealloc_pd(ndev->pd);
355 kfree(ndev);
356 }
357
nvme_rdma_dev_put(struct nvme_rdma_device * dev)358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
359 {
360 kref_put(&dev->ref, nvme_rdma_free_dev);
361 }
362
nvme_rdma_dev_get(struct nvme_rdma_device * dev)363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
364 {
365 return kref_get_unless_zero(&dev->ref);
366 }
367
368 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
370 {
371 struct nvme_rdma_device *ndev;
372
373 mutex_lock(&device_list_mutex);
374 list_for_each_entry(ndev, &device_list, entry) {
375 if (ndev->dev->node_guid == cm_id->device->node_guid &&
376 nvme_rdma_dev_get(ndev))
377 goto out_unlock;
378 }
379
380 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
381 if (!ndev)
382 goto out_err;
383
384 ndev->dev = cm_id->device;
385 kref_init(&ndev->ref);
386
387 ndev->pd = ib_alloc_pd(ndev->dev,
388 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
389 if (IS_ERR(ndev->pd))
390 goto out_free_dev;
391
392 if (!(ndev->dev->attrs.device_cap_flags &
393 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
394 dev_err(&ndev->dev->dev,
395 "Memory registrations not supported.\n");
396 goto out_free_pd;
397 }
398
399 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
400 ndev->dev->attrs.max_send_sge - 1);
401 list_add(&ndev->entry, &device_list);
402 out_unlock:
403 mutex_unlock(&device_list_mutex);
404 return ndev;
405
406 out_free_pd:
407 ib_dealloc_pd(ndev->pd);
408 out_free_dev:
409 kfree(ndev);
410 out_err:
411 mutex_unlock(&device_list_mutex);
412 return NULL;
413 }
414
nvme_rdma_free_cq(struct nvme_rdma_queue * queue)415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
416 {
417 if (nvme_rdma_poll_queue(queue))
418 ib_free_cq(queue->ib_cq);
419 else
420 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 }
422
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
424 {
425 struct nvme_rdma_device *dev;
426 struct ib_device *ibdev;
427
428 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
429 return;
430
431 dev = queue->device;
432 ibdev = dev->dev;
433
434 if (queue->pi_support)
435 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
436 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437
438 /*
439 * The cm_id object might have been destroyed during RDMA connection
440 * establishment error flow to avoid getting other cma events, thus
441 * the destruction of the QP shouldn't use rdma_cm API.
442 */
443 ib_destroy_qp(queue->qp);
444 nvme_rdma_free_cq(queue);
445
446 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
447 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
448
449 nvme_rdma_dev_put(dev);
450 }
451
nvme_rdma_get_max_fr_pages(struct ib_device * ibdev,bool pi_support)452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
453 {
454 u32 max_page_list_len;
455
456 if (pi_support)
457 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
458 else
459 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
460
461 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 }
463
nvme_rdma_create_cq(struct ib_device * ibdev,struct nvme_rdma_queue * queue)464 static int nvme_rdma_create_cq(struct ib_device *ibdev,
465 struct nvme_rdma_queue *queue)
466 {
467 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468 enum ib_poll_context poll_ctx;
469
470 /*
471 * Spread I/O queues completion vectors according their queue index.
472 * Admin queues can always go on completion vector 0.
473 */
474 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475
476 /* Polling queues need direct cq polling context */
477 if (nvme_rdma_poll_queue(queue)) {
478 poll_ctx = IB_POLL_DIRECT;
479 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
480 comp_vector, poll_ctx);
481 } else {
482 poll_ctx = IB_POLL_SOFTIRQ;
483 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
484 comp_vector, poll_ctx);
485 }
486
487 if (IS_ERR(queue->ib_cq)) {
488 ret = PTR_ERR(queue->ib_cq);
489 return ret;
490 }
491
492 return 0;
493 }
494
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
496 {
497 struct ib_device *ibdev;
498 const int send_wr_factor = 3; /* MR, SEND, INV */
499 const int cq_factor = send_wr_factor + 1; /* + RECV */
500 int ret, pages_per_mr;
501
502 queue->device = nvme_rdma_find_get_device(queue->cm_id);
503 if (!queue->device) {
504 dev_err(queue->cm_id->device->dev.parent,
505 "no client data found!\n");
506 return -ECONNREFUSED;
507 }
508 ibdev = queue->device->dev;
509
510 /* +1 for ib_stop_cq */
511 queue->cq_size = cq_factor * queue->queue_size + 1;
512
513 ret = nvme_rdma_create_cq(ibdev, queue);
514 if (ret)
515 goto out_put_dev;
516
517 ret = nvme_rdma_create_qp(queue, send_wr_factor);
518 if (ret)
519 goto out_destroy_ib_cq;
520
521 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523 if (!queue->rsp_ring) {
524 ret = -ENOMEM;
525 goto out_destroy_qp;
526 }
527
528 /*
529 * Currently we don't use SG_GAPS MR's so if the first entry is
530 * misaligned we'll end up using two entries for a single data page,
531 * so one additional entry is required.
532 */
533 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
534 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
535 queue->queue_size,
536 IB_MR_TYPE_MEM_REG,
537 pages_per_mr, 0);
538 if (ret) {
539 dev_err(queue->ctrl->ctrl.device,
540 "failed to initialize MR pool sized %d for QID %d\n",
541 queue->queue_size, nvme_rdma_queue_idx(queue));
542 goto out_destroy_ring;
543 }
544
545 if (queue->pi_support) {
546 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
547 queue->queue_size, IB_MR_TYPE_INTEGRITY,
548 pages_per_mr, pages_per_mr);
549 if (ret) {
550 dev_err(queue->ctrl->ctrl.device,
551 "failed to initialize PI MR pool sized %d for QID %d\n",
552 queue->queue_size, nvme_rdma_queue_idx(queue));
553 goto out_destroy_mr_pool;
554 }
555 }
556
557 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
558
559 return 0;
560
561 out_destroy_mr_pool:
562 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
563 out_destroy_ring:
564 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
565 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
566 out_destroy_qp:
567 rdma_destroy_qp(queue->cm_id);
568 out_destroy_ib_cq:
569 nvme_rdma_free_cq(queue);
570 out_put_dev:
571 nvme_rdma_dev_put(queue->device);
572 return ret;
573 }
574
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
576 int idx, size_t queue_size)
577 {
578 struct nvme_rdma_queue *queue;
579 struct sockaddr *src_addr = NULL;
580 int ret;
581
582 queue = &ctrl->queues[idx];
583 mutex_init(&queue->queue_lock);
584 queue->ctrl = ctrl;
585 if (idx && ctrl->ctrl.max_integrity_segments)
586 queue->pi_support = true;
587 else
588 queue->pi_support = false;
589 init_completion(&queue->cm_done);
590
591 if (idx > 0)
592 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
593 else
594 queue->cmnd_capsule_len = sizeof(struct nvme_command);
595
596 queue->queue_size = queue_size;
597
598 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
599 RDMA_PS_TCP, IB_QPT_RC);
600 if (IS_ERR(queue->cm_id)) {
601 dev_info(ctrl->ctrl.device,
602 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
603 ret = PTR_ERR(queue->cm_id);
604 goto out_destroy_mutex;
605 }
606
607 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
608 src_addr = (struct sockaddr *)&ctrl->src_addr;
609
610 queue->cm_error = -ETIMEDOUT;
611 ret = rdma_resolve_addr(queue->cm_id, src_addr,
612 (struct sockaddr *)&ctrl->addr,
613 NVME_RDMA_CONNECT_TIMEOUT_MS);
614 if (ret) {
615 dev_info(ctrl->ctrl.device,
616 "rdma_resolve_addr failed (%d).\n", ret);
617 goto out_destroy_cm_id;
618 }
619
620 ret = nvme_rdma_wait_for_cm(queue);
621 if (ret) {
622 dev_info(ctrl->ctrl.device,
623 "rdma connection establishment failed (%d)\n", ret);
624 goto out_destroy_cm_id;
625 }
626
627 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
628
629 return 0;
630
631 out_destroy_cm_id:
632 rdma_destroy_id(queue->cm_id);
633 nvme_rdma_destroy_queue_ib(queue);
634 out_destroy_mutex:
635 mutex_destroy(&queue->queue_lock);
636 return ret;
637 }
638
__nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)639 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641 rdma_disconnect(queue->cm_id);
642 ib_drain_qp(queue->qp);
643 }
644
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)645 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
646 {
647 mutex_lock(&queue->queue_lock);
648 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
649 __nvme_rdma_stop_queue(queue);
650 mutex_unlock(&queue->queue_lock);
651 }
652
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)653 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
654 {
655 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
656 return;
657
658 rdma_destroy_id(queue->cm_id);
659 nvme_rdma_destroy_queue_ib(queue);
660 mutex_destroy(&queue->queue_lock);
661 }
662
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)663 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
664 {
665 int i;
666
667 for (i = 1; i < ctrl->ctrl.queue_count; i++)
668 nvme_rdma_free_queue(&ctrl->queues[i]);
669 }
670
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)671 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
672 {
673 int i;
674
675 for (i = 1; i < ctrl->ctrl.queue_count; i++)
676 nvme_rdma_stop_queue(&ctrl->queues[i]);
677 }
678
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)679 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
680 {
681 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
682 bool poll = nvme_rdma_poll_queue(queue);
683 int ret;
684
685 if (idx)
686 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
687 else
688 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
689
690 if (!ret) {
691 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
692 } else {
693 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
694 __nvme_rdma_stop_queue(queue);
695 dev_info(ctrl->ctrl.device,
696 "failed to connect queue: %d ret=%d\n", idx, ret);
697 }
698 return ret;
699 }
700
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl)701 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
702 {
703 int i, ret = 0;
704
705 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
706 ret = nvme_rdma_start_queue(ctrl, i);
707 if (ret)
708 goto out_stop_queues;
709 }
710
711 return 0;
712
713 out_stop_queues:
714 for (i--; i >= 1; i--)
715 nvme_rdma_stop_queue(&ctrl->queues[i]);
716 return ret;
717 }
718
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)719 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
720 {
721 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
722 struct ib_device *ibdev = ctrl->device->dev;
723 unsigned int nr_io_queues, nr_default_queues;
724 unsigned int nr_read_queues, nr_poll_queues;
725 int i, ret;
726
727 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
728 min(opts->nr_io_queues, num_online_cpus()));
729 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
730 min(opts->nr_write_queues, num_online_cpus()));
731 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
732 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
733
734 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
735 if (ret)
736 return ret;
737
738 if (nr_io_queues == 0) {
739 dev_err(ctrl->ctrl.device,
740 "unable to set any I/O queues\n");
741 return -ENOMEM;
742 }
743
744 ctrl->ctrl.queue_count = nr_io_queues + 1;
745 dev_info(ctrl->ctrl.device,
746 "creating %d I/O queues.\n", nr_io_queues);
747
748 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
749 /*
750 * separate read/write queues
751 * hand out dedicated default queues only after we have
752 * sufficient read queues.
753 */
754 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
755 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
756 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
757 min(nr_default_queues, nr_io_queues);
758 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
759 } else {
760 /*
761 * shared read/write queues
762 * either no write queues were requested, or we don't have
763 * sufficient queue count to have dedicated default queues.
764 */
765 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
766 min(nr_read_queues, nr_io_queues);
767 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
768 }
769
770 if (opts->nr_poll_queues && nr_io_queues) {
771 /* map dedicated poll queues only if we have queues left */
772 ctrl->io_queues[HCTX_TYPE_POLL] =
773 min(nr_poll_queues, nr_io_queues);
774 }
775
776 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
777 ret = nvme_rdma_alloc_queue(ctrl, i,
778 ctrl->ctrl.sqsize + 1);
779 if (ret)
780 goto out_free_queues;
781 }
782
783 return 0;
784
785 out_free_queues:
786 for (i--; i >= 1; i--)
787 nvme_rdma_free_queue(&ctrl->queues[i]);
788
789 return ret;
790 }
791
nvme_rdma_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)792 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
793 bool admin)
794 {
795 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
796 struct blk_mq_tag_set *set;
797 int ret;
798
799 if (admin) {
800 set = &ctrl->admin_tag_set;
801 memset(set, 0, sizeof(*set));
802 set->ops = &nvme_rdma_admin_mq_ops;
803 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
804 set->reserved_tags = 2; /* connect + keep-alive */
805 set->numa_node = nctrl->numa_node;
806 set->cmd_size = sizeof(struct nvme_rdma_request) +
807 NVME_RDMA_DATA_SGL_SIZE;
808 set->driver_data = ctrl;
809 set->nr_hw_queues = 1;
810 set->timeout = ADMIN_TIMEOUT;
811 set->flags = BLK_MQ_F_NO_SCHED;
812 } else {
813 set = &ctrl->tag_set;
814 memset(set, 0, sizeof(*set));
815 set->ops = &nvme_rdma_mq_ops;
816 set->queue_depth = nctrl->sqsize + 1;
817 set->reserved_tags = 1; /* fabric connect */
818 set->numa_node = nctrl->numa_node;
819 set->flags = BLK_MQ_F_SHOULD_MERGE;
820 set->cmd_size = sizeof(struct nvme_rdma_request) +
821 NVME_RDMA_DATA_SGL_SIZE;
822 if (nctrl->max_integrity_segments)
823 set->cmd_size += sizeof(struct nvme_rdma_sgl) +
824 NVME_RDMA_METADATA_SGL_SIZE;
825 set->driver_data = ctrl;
826 set->nr_hw_queues = nctrl->queue_count - 1;
827 set->timeout = NVME_IO_TIMEOUT;
828 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
829 }
830
831 ret = blk_mq_alloc_tag_set(set);
832 if (ret)
833 return ERR_PTR(ret);
834
835 return set;
836 }
837
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)838 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
839 bool remove)
840 {
841 if (remove) {
842 blk_cleanup_queue(ctrl->ctrl.admin_q);
843 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
844 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
845 }
846 if (ctrl->async_event_sqe.data) {
847 cancel_work_sync(&ctrl->ctrl.async_event_work);
848 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
849 sizeof(struct nvme_command), DMA_TO_DEVICE);
850 ctrl->async_event_sqe.data = NULL;
851 }
852 nvme_rdma_free_queue(&ctrl->queues[0]);
853 }
854
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)855 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
856 bool new)
857 {
858 bool pi_capable = false;
859 int error;
860
861 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
862 if (error)
863 return error;
864
865 ctrl->device = ctrl->queues[0].device;
866 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
867
868 /* T10-PI support */
869 if (ctrl->device->dev->attrs.device_cap_flags &
870 IB_DEVICE_INTEGRITY_HANDOVER)
871 pi_capable = true;
872
873 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
874 pi_capable);
875
876 /*
877 * Bind the async event SQE DMA mapping to the admin queue lifetime.
878 * It's safe, since any chage in the underlying RDMA device will issue
879 * error recovery and queue re-creation.
880 */
881 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
882 sizeof(struct nvme_command), DMA_TO_DEVICE);
883 if (error)
884 goto out_free_queue;
885
886 if (new) {
887 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
888 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
889 error = PTR_ERR(ctrl->ctrl.admin_tagset);
890 goto out_free_async_qe;
891 }
892
893 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
894 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
895 error = PTR_ERR(ctrl->ctrl.fabrics_q);
896 goto out_free_tagset;
897 }
898
899 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
900 if (IS_ERR(ctrl->ctrl.admin_q)) {
901 error = PTR_ERR(ctrl->ctrl.admin_q);
902 goto out_cleanup_fabrics_q;
903 }
904 }
905
906 error = nvme_rdma_start_queue(ctrl, 0);
907 if (error)
908 goto out_cleanup_queue;
909
910 error = nvme_enable_ctrl(&ctrl->ctrl);
911 if (error)
912 goto out_stop_queue;
913
914 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
915 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
916 if (pi_capable)
917 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
918 else
919 ctrl->ctrl.max_integrity_segments = 0;
920
921 nvme_start_admin_queue(&ctrl->ctrl);
922
923 error = nvme_init_identify(&ctrl->ctrl);
924 if (error)
925 goto out_quiesce_queue;
926
927 return 0;
928
929 out_quiesce_queue:
930 nvme_stop_admin_queue(&ctrl->ctrl);
931 blk_sync_queue(ctrl->ctrl.admin_q);
932 out_stop_queue:
933 nvme_rdma_stop_queue(&ctrl->queues[0]);
934 nvme_cancel_admin_tagset(&ctrl->ctrl);
935 out_cleanup_queue:
936 if (new)
937 blk_cleanup_queue(ctrl->ctrl.admin_q);
938 out_cleanup_fabrics_q:
939 if (new)
940 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
941 out_free_tagset:
942 if (new)
943 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
944 out_free_async_qe:
945 if (ctrl->async_event_sqe.data) {
946 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
947 sizeof(struct nvme_command), DMA_TO_DEVICE);
948 ctrl->async_event_sqe.data = NULL;
949 }
950 out_free_queue:
951 nvme_rdma_free_queue(&ctrl->queues[0]);
952 return error;
953 }
954
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)955 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
956 bool remove)
957 {
958 if (remove) {
959 blk_cleanup_queue(ctrl->ctrl.connect_q);
960 blk_mq_free_tag_set(ctrl->ctrl.tagset);
961 }
962 nvme_rdma_free_io_queues(ctrl);
963 }
964
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)965 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
966 {
967 int ret;
968
969 ret = nvme_rdma_alloc_io_queues(ctrl);
970 if (ret)
971 return ret;
972
973 if (new) {
974 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
975 if (IS_ERR(ctrl->ctrl.tagset)) {
976 ret = PTR_ERR(ctrl->ctrl.tagset);
977 goto out_free_io_queues;
978 }
979
980 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
981 if (IS_ERR(ctrl->ctrl.connect_q)) {
982 ret = PTR_ERR(ctrl->ctrl.connect_q);
983 goto out_free_tag_set;
984 }
985 }
986
987 ret = nvme_rdma_start_io_queues(ctrl);
988 if (ret)
989 goto out_cleanup_connect_q;
990
991 if (!new) {
992 nvme_start_queues(&ctrl->ctrl);
993 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
994 /*
995 * If we timed out waiting for freeze we are likely to
996 * be stuck. Fail the controller initialization just
997 * to be safe.
998 */
999 ret = -ENODEV;
1000 goto out_wait_freeze_timed_out;
1001 }
1002 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1003 ctrl->ctrl.queue_count - 1);
1004 nvme_unfreeze(&ctrl->ctrl);
1005 }
1006
1007 return 0;
1008
1009 out_wait_freeze_timed_out:
1010 nvme_stop_queues(&ctrl->ctrl);
1011 nvme_sync_io_queues(&ctrl->ctrl);
1012 nvme_rdma_stop_io_queues(ctrl);
1013 out_cleanup_connect_q:
1014 nvme_cancel_tagset(&ctrl->ctrl);
1015 if (new)
1016 blk_cleanup_queue(ctrl->ctrl.connect_q);
1017 out_free_tag_set:
1018 if (new)
1019 blk_mq_free_tag_set(ctrl->ctrl.tagset);
1020 out_free_io_queues:
1021 nvme_rdma_free_io_queues(ctrl);
1022 return ret;
1023 }
1024
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)1025 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1026 bool remove)
1027 {
1028 nvme_stop_admin_queue(&ctrl->ctrl);
1029 blk_sync_queue(ctrl->ctrl.admin_q);
1030 nvme_rdma_stop_queue(&ctrl->queues[0]);
1031 if (ctrl->ctrl.admin_tagset) {
1032 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1033 nvme_cancel_request, &ctrl->ctrl);
1034 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1035 }
1036 if (remove)
1037 nvme_start_admin_queue(&ctrl->ctrl);
1038 nvme_rdma_destroy_admin_queue(ctrl, remove);
1039 }
1040
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)1041 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1042 bool remove)
1043 {
1044 if (ctrl->ctrl.queue_count > 1) {
1045 nvme_start_freeze(&ctrl->ctrl);
1046 nvme_stop_queues(&ctrl->ctrl);
1047 nvme_sync_io_queues(&ctrl->ctrl);
1048 nvme_rdma_stop_io_queues(ctrl);
1049 if (ctrl->ctrl.tagset) {
1050 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1051 nvme_cancel_request, &ctrl->ctrl);
1052 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1053 }
1054 if (remove)
1055 nvme_start_queues(&ctrl->ctrl);
1056 nvme_rdma_destroy_io_queues(ctrl, remove);
1057 }
1058 }
1059
nvme_rdma_stop_ctrl(struct nvme_ctrl * nctrl)1060 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
1061 {
1062 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1063
1064 cancel_work_sync(&ctrl->err_work);
1065 cancel_delayed_work_sync(&ctrl->reconnect_work);
1066 }
1067
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)1068 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1069 {
1070 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1071
1072 if (list_empty(&ctrl->list))
1073 goto free_ctrl;
1074
1075 mutex_lock(&nvme_rdma_ctrl_mutex);
1076 list_del(&ctrl->list);
1077 mutex_unlock(&nvme_rdma_ctrl_mutex);
1078
1079 nvmf_free_options(nctrl->opts);
1080 free_ctrl:
1081 kfree(ctrl->queues);
1082 kfree(ctrl);
1083 }
1084
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)1085 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1086 {
1087 /* If we are resetting/deleting then do nothing */
1088 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1089 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1090 ctrl->ctrl.state == NVME_CTRL_LIVE);
1091 return;
1092 }
1093
1094 if (nvmf_should_reconnect(&ctrl->ctrl)) {
1095 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1096 ctrl->ctrl.opts->reconnect_delay);
1097 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1098 ctrl->ctrl.opts->reconnect_delay * HZ);
1099 } else {
1100 nvme_delete_ctrl(&ctrl->ctrl);
1101 }
1102 }
1103
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl * ctrl,bool new)1104 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1105 {
1106 int ret = -EINVAL;
1107 bool changed;
1108
1109 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1110 if (ret)
1111 return ret;
1112
1113 if (ctrl->ctrl.icdoff) {
1114 ret = -EOPNOTSUPP;
1115 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1116 goto destroy_admin;
1117 }
1118
1119 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1120 ret = -EOPNOTSUPP;
1121 dev_err(ctrl->ctrl.device,
1122 "Mandatory keyed sgls are not supported!\n");
1123 goto destroy_admin;
1124 }
1125
1126 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1127 dev_warn(ctrl->ctrl.device,
1128 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1129 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1130 }
1131
1132 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1133 dev_warn(ctrl->ctrl.device,
1134 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1135 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1136 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1137 }
1138
1139 if (ctrl->ctrl.sgls & (1 << 20))
1140 ctrl->use_inline_data = true;
1141
1142 if (ctrl->ctrl.queue_count > 1) {
1143 ret = nvme_rdma_configure_io_queues(ctrl, new);
1144 if (ret)
1145 goto destroy_admin;
1146 }
1147
1148 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1149 if (!changed) {
1150 /*
1151 * state change failure is ok if we started ctrl delete,
1152 * unless we're during creation of a new controller to
1153 * avoid races with teardown flow.
1154 */
1155 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1156 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1157 WARN_ON_ONCE(new);
1158 ret = -EINVAL;
1159 goto destroy_io;
1160 }
1161
1162 nvme_start_ctrl(&ctrl->ctrl);
1163 return 0;
1164
1165 destroy_io:
1166 if (ctrl->ctrl.queue_count > 1) {
1167 nvme_stop_queues(&ctrl->ctrl);
1168 nvme_sync_io_queues(&ctrl->ctrl);
1169 nvme_rdma_stop_io_queues(ctrl);
1170 nvme_cancel_tagset(&ctrl->ctrl);
1171 nvme_rdma_destroy_io_queues(ctrl, new);
1172 }
1173 destroy_admin:
1174 nvme_stop_admin_queue(&ctrl->ctrl);
1175 blk_sync_queue(ctrl->ctrl.admin_q);
1176 nvme_rdma_stop_queue(&ctrl->queues[0]);
1177 nvme_cancel_admin_tagset(&ctrl->ctrl);
1178 nvme_rdma_destroy_admin_queue(ctrl, new);
1179 return ret;
1180 }
1181
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)1182 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1183 {
1184 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1185 struct nvme_rdma_ctrl, reconnect_work);
1186
1187 ++ctrl->ctrl.nr_reconnects;
1188
1189 if (nvme_rdma_setup_ctrl(ctrl, false))
1190 goto requeue;
1191
1192 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1193 ctrl->ctrl.nr_reconnects);
1194
1195 ctrl->ctrl.nr_reconnects = 0;
1196
1197 return;
1198
1199 requeue:
1200 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1201 ctrl->ctrl.nr_reconnects);
1202 nvme_rdma_reconnect_or_remove(ctrl);
1203 }
1204
nvme_rdma_error_recovery_work(struct work_struct * work)1205 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1206 {
1207 struct nvme_rdma_ctrl *ctrl = container_of(work,
1208 struct nvme_rdma_ctrl, err_work);
1209
1210 nvme_stop_keep_alive(&ctrl->ctrl);
1211 flush_work(&ctrl->ctrl.async_event_work);
1212 nvme_rdma_teardown_io_queues(ctrl, false);
1213 nvme_start_queues(&ctrl->ctrl);
1214 nvme_rdma_teardown_admin_queue(ctrl, false);
1215 nvme_start_admin_queue(&ctrl->ctrl);
1216
1217 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1218 /* state change failure is ok if we started ctrl delete */
1219 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1220 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1221 return;
1222 }
1223
1224 nvme_rdma_reconnect_or_remove(ctrl);
1225 }
1226
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1227 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1228 {
1229 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1230 return;
1231
1232 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1233 queue_work(nvme_reset_wq, &ctrl->err_work);
1234 }
1235
nvme_rdma_end_request(struct nvme_rdma_request * req)1236 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1237 {
1238 struct request *rq = blk_mq_rq_from_pdu(req);
1239
1240 if (!refcount_dec_and_test(&req->ref))
1241 return;
1242 if (!nvme_try_complete_req(rq, req->status, req->result))
1243 nvme_rdma_complete_rq(rq);
1244 }
1245
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1246 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1247 const char *op)
1248 {
1249 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1250 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1251
1252 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1253 dev_info(ctrl->ctrl.device,
1254 "%s for CQE 0x%p failed with status %s (%d)\n",
1255 op, wc->wr_cqe,
1256 ib_wc_status_msg(wc->status), wc->status);
1257 nvme_rdma_error_recovery(ctrl);
1258 }
1259
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1260 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1261 {
1262 if (unlikely(wc->status != IB_WC_SUCCESS))
1263 nvme_rdma_wr_error(cq, wc, "MEMREG");
1264 }
1265
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1266 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1267 {
1268 struct nvme_rdma_request *req =
1269 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1270
1271 if (unlikely(wc->status != IB_WC_SUCCESS))
1272 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1273 else
1274 nvme_rdma_end_request(req);
1275 }
1276
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1277 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1278 struct nvme_rdma_request *req)
1279 {
1280 struct ib_send_wr wr = {
1281 .opcode = IB_WR_LOCAL_INV,
1282 .next = NULL,
1283 .num_sge = 0,
1284 .send_flags = IB_SEND_SIGNALED,
1285 .ex.invalidate_rkey = req->mr->rkey,
1286 };
1287
1288 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1289 wr.wr_cqe = &req->reg_cqe;
1290
1291 return ib_post_send(queue->qp, &wr, NULL);
1292 }
1293
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1294 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1295 struct request *rq)
1296 {
1297 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1298 struct nvme_rdma_device *dev = queue->device;
1299 struct ib_device *ibdev = dev->dev;
1300 struct list_head *pool = &queue->qp->rdma_mrs;
1301
1302 if (!blk_rq_nr_phys_segments(rq))
1303 return;
1304
1305 if (blk_integrity_rq(rq)) {
1306 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1307 req->metadata_sgl->nents, rq_dma_dir(rq));
1308 sg_free_table_chained(&req->metadata_sgl->sg_table,
1309 NVME_INLINE_METADATA_SG_CNT);
1310 }
1311
1312 if (req->use_sig_mr)
1313 pool = &queue->qp->sig_mrs;
1314
1315 if (req->mr) {
1316 ib_mr_pool_put(queue->qp, pool, req->mr);
1317 req->mr = NULL;
1318 }
1319
1320 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1321 rq_dma_dir(rq));
1322 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1323 }
1324
nvme_rdma_set_sg_null(struct nvme_command * c)1325 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1326 {
1327 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1328
1329 sg->addr = 0;
1330 put_unaligned_le24(0, sg->length);
1331 put_unaligned_le32(0, sg->key);
1332 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1333 return 0;
1334 }
1335
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1336 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1337 struct nvme_rdma_request *req, struct nvme_command *c,
1338 int count)
1339 {
1340 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1341 struct ib_sge *sge = &req->sge[1];
1342 struct scatterlist *sgl;
1343 u32 len = 0;
1344 int i;
1345
1346 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1347 sge->addr = sg_dma_address(sgl);
1348 sge->length = sg_dma_len(sgl);
1349 sge->lkey = queue->device->pd->local_dma_lkey;
1350 len += sge->length;
1351 sge++;
1352 }
1353
1354 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1355 sg->length = cpu_to_le32(len);
1356 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1357
1358 req->num_sge += count;
1359 return 0;
1360 }
1361
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1362 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1363 struct nvme_rdma_request *req, struct nvme_command *c)
1364 {
1365 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1366
1367 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1368 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1369 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1370 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1371 return 0;
1372 }
1373
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1374 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1375 struct nvme_rdma_request *req, struct nvme_command *c,
1376 int count)
1377 {
1378 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1379 int nr;
1380
1381 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1382 if (WARN_ON_ONCE(!req->mr))
1383 return -EAGAIN;
1384
1385 /*
1386 * Align the MR to a 4K page size to match the ctrl page size and
1387 * the block virtual boundary.
1388 */
1389 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1390 SZ_4K);
1391 if (unlikely(nr < count)) {
1392 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1393 req->mr = NULL;
1394 if (nr < 0)
1395 return nr;
1396 return -EINVAL;
1397 }
1398
1399 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1400
1401 req->reg_cqe.done = nvme_rdma_memreg_done;
1402 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1403 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1404 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1405 req->reg_wr.wr.num_sge = 0;
1406 req->reg_wr.mr = req->mr;
1407 req->reg_wr.key = req->mr->rkey;
1408 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1409 IB_ACCESS_REMOTE_READ |
1410 IB_ACCESS_REMOTE_WRITE;
1411
1412 sg->addr = cpu_to_le64(req->mr->iova);
1413 put_unaligned_le24(req->mr->length, sg->length);
1414 put_unaligned_le32(req->mr->rkey, sg->key);
1415 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1416 NVME_SGL_FMT_INVALIDATE;
1417
1418 return 0;
1419 }
1420
nvme_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)1421 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1422 struct nvme_command *cmd, struct ib_sig_domain *domain,
1423 u16 control, u8 pi_type)
1424 {
1425 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1426 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1427 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1428 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1429 if (control & NVME_RW_PRINFO_PRCHK_REF)
1430 domain->sig.dif.ref_remap = true;
1431
1432 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1433 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1434 domain->sig.dif.app_escape = true;
1435 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1436 domain->sig.dif.ref_escape = true;
1437 }
1438
nvme_rdma_set_sig_attrs(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_attrs * sig_attrs,u8 pi_type)1439 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1440 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1441 u8 pi_type)
1442 {
1443 u16 control = le16_to_cpu(cmd->rw.control);
1444
1445 memset(sig_attrs, 0, sizeof(*sig_attrs));
1446 if (control & NVME_RW_PRINFO_PRACT) {
1447 /* for WRITE_INSERT/READ_STRIP no memory domain */
1448 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1449 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1450 pi_type);
1451 /* Clear the PRACT bit since HCA will generate/verify the PI */
1452 control &= ~NVME_RW_PRINFO_PRACT;
1453 cmd->rw.control = cpu_to_le16(control);
1454 } else {
1455 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1456 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1457 pi_type);
1458 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1459 pi_type);
1460 }
1461 }
1462
nvme_rdma_set_prot_checks(struct nvme_command * cmd,u8 * mask)1463 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1464 {
1465 *mask = 0;
1466 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1467 *mask |= IB_SIG_CHECK_REFTAG;
1468 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1469 *mask |= IB_SIG_CHECK_GUARD;
1470 }
1471
nvme_rdma_sig_done(struct ib_cq * cq,struct ib_wc * wc)1472 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1473 {
1474 if (unlikely(wc->status != IB_WC_SUCCESS))
1475 nvme_rdma_wr_error(cq, wc, "SIG");
1476 }
1477
nvme_rdma_map_sg_pi(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count,int pi_count)1478 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1479 struct nvme_rdma_request *req, struct nvme_command *c,
1480 int count, int pi_count)
1481 {
1482 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1483 struct ib_reg_wr *wr = &req->reg_wr;
1484 struct request *rq = blk_mq_rq_from_pdu(req);
1485 struct nvme_ns *ns = rq->q->queuedata;
1486 struct bio *bio = rq->bio;
1487 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1488 int nr;
1489
1490 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1491 if (WARN_ON_ONCE(!req->mr))
1492 return -EAGAIN;
1493
1494 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1495 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1496 SZ_4K);
1497 if (unlikely(nr))
1498 goto mr_put;
1499
1500 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1501 req->mr->sig_attrs, ns->pi_type);
1502 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1503
1504 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1505
1506 req->reg_cqe.done = nvme_rdma_sig_done;
1507 memset(wr, 0, sizeof(*wr));
1508 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1509 wr->wr.wr_cqe = &req->reg_cqe;
1510 wr->wr.num_sge = 0;
1511 wr->wr.send_flags = 0;
1512 wr->mr = req->mr;
1513 wr->key = req->mr->rkey;
1514 wr->access = IB_ACCESS_LOCAL_WRITE |
1515 IB_ACCESS_REMOTE_READ |
1516 IB_ACCESS_REMOTE_WRITE;
1517
1518 sg->addr = cpu_to_le64(req->mr->iova);
1519 put_unaligned_le24(req->mr->length, sg->length);
1520 put_unaligned_le32(req->mr->rkey, sg->key);
1521 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1522
1523 return 0;
1524
1525 mr_put:
1526 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1527 req->mr = NULL;
1528 if (nr < 0)
1529 return nr;
1530 return -EINVAL;
1531 }
1532
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1533 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1534 struct request *rq, struct nvme_command *c)
1535 {
1536 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1537 struct nvme_rdma_device *dev = queue->device;
1538 struct ib_device *ibdev = dev->dev;
1539 int pi_count = 0;
1540 int count, ret;
1541
1542 req->num_sge = 1;
1543 refcount_set(&req->ref, 2); /* send and recv completions */
1544
1545 c->common.flags |= NVME_CMD_SGL_METABUF;
1546
1547 if (!blk_rq_nr_phys_segments(rq))
1548 return nvme_rdma_set_sg_null(c);
1549
1550 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1551 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1552 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1553 NVME_INLINE_SG_CNT);
1554 if (ret)
1555 return -ENOMEM;
1556
1557 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1558 req->data_sgl.sg_table.sgl);
1559
1560 count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1561 req->data_sgl.nents, rq_dma_dir(rq));
1562 if (unlikely(count <= 0)) {
1563 ret = -EIO;
1564 goto out_free_table;
1565 }
1566
1567 if (blk_integrity_rq(rq)) {
1568 req->metadata_sgl->sg_table.sgl =
1569 (struct scatterlist *)(req->metadata_sgl + 1);
1570 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1571 blk_rq_count_integrity_sg(rq->q, rq->bio),
1572 req->metadata_sgl->sg_table.sgl,
1573 NVME_INLINE_METADATA_SG_CNT);
1574 if (unlikely(ret)) {
1575 ret = -ENOMEM;
1576 goto out_unmap_sg;
1577 }
1578
1579 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1580 rq->bio, req->metadata_sgl->sg_table.sgl);
1581 pi_count = ib_dma_map_sg(ibdev,
1582 req->metadata_sgl->sg_table.sgl,
1583 req->metadata_sgl->nents,
1584 rq_dma_dir(rq));
1585 if (unlikely(pi_count <= 0)) {
1586 ret = -EIO;
1587 goto out_free_pi_table;
1588 }
1589 }
1590
1591 if (req->use_sig_mr) {
1592 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1593 goto out;
1594 }
1595
1596 if (count <= dev->num_inline_segments) {
1597 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1598 queue->ctrl->use_inline_data &&
1599 blk_rq_payload_bytes(rq) <=
1600 nvme_rdma_inline_data_size(queue)) {
1601 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1602 goto out;
1603 }
1604
1605 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1606 ret = nvme_rdma_map_sg_single(queue, req, c);
1607 goto out;
1608 }
1609 }
1610
1611 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1612 out:
1613 if (unlikely(ret))
1614 goto out_unmap_pi_sg;
1615
1616 return 0;
1617
1618 out_unmap_pi_sg:
1619 if (blk_integrity_rq(rq))
1620 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1621 req->metadata_sgl->nents, rq_dma_dir(rq));
1622 out_free_pi_table:
1623 if (blk_integrity_rq(rq))
1624 sg_free_table_chained(&req->metadata_sgl->sg_table,
1625 NVME_INLINE_METADATA_SG_CNT);
1626 out_unmap_sg:
1627 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1628 rq_dma_dir(rq));
1629 out_free_table:
1630 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1631 return ret;
1632 }
1633
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1634 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1635 {
1636 struct nvme_rdma_qe *qe =
1637 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1638 struct nvme_rdma_request *req =
1639 container_of(qe, struct nvme_rdma_request, sqe);
1640
1641 if (unlikely(wc->status != IB_WC_SUCCESS))
1642 nvme_rdma_wr_error(cq, wc, "SEND");
1643 else
1644 nvme_rdma_end_request(req);
1645 }
1646
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1647 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1648 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1649 struct ib_send_wr *first)
1650 {
1651 struct ib_send_wr wr;
1652 int ret;
1653
1654 sge->addr = qe->dma;
1655 sge->length = sizeof(struct nvme_command);
1656 sge->lkey = queue->device->pd->local_dma_lkey;
1657
1658 wr.next = NULL;
1659 wr.wr_cqe = &qe->cqe;
1660 wr.sg_list = sge;
1661 wr.num_sge = num_sge;
1662 wr.opcode = IB_WR_SEND;
1663 wr.send_flags = IB_SEND_SIGNALED;
1664
1665 if (first)
1666 first->next = ≀
1667 else
1668 first = ≀
1669
1670 ret = ib_post_send(queue->qp, first, NULL);
1671 if (unlikely(ret)) {
1672 dev_err(queue->ctrl->ctrl.device,
1673 "%s failed with error code %d\n", __func__, ret);
1674 }
1675 return ret;
1676 }
1677
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1678 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1679 struct nvme_rdma_qe *qe)
1680 {
1681 struct ib_recv_wr wr;
1682 struct ib_sge list;
1683 int ret;
1684
1685 list.addr = qe->dma;
1686 list.length = sizeof(struct nvme_completion);
1687 list.lkey = queue->device->pd->local_dma_lkey;
1688
1689 qe->cqe.done = nvme_rdma_recv_done;
1690
1691 wr.next = NULL;
1692 wr.wr_cqe = &qe->cqe;
1693 wr.sg_list = &list;
1694 wr.num_sge = 1;
1695
1696 ret = ib_post_recv(queue->qp, &wr, NULL);
1697 if (unlikely(ret)) {
1698 dev_err(queue->ctrl->ctrl.device,
1699 "%s failed with error code %d\n", __func__, ret);
1700 }
1701 return ret;
1702 }
1703
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1704 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1705 {
1706 u32 queue_idx = nvme_rdma_queue_idx(queue);
1707
1708 if (queue_idx == 0)
1709 return queue->ctrl->admin_tag_set.tags[queue_idx];
1710 return queue->ctrl->tag_set.tags[queue_idx - 1];
1711 }
1712
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1713 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1714 {
1715 if (unlikely(wc->status != IB_WC_SUCCESS))
1716 nvme_rdma_wr_error(cq, wc, "ASYNC");
1717 }
1718
nvme_rdma_submit_async_event(struct nvme_ctrl * arg)1719 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1720 {
1721 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1722 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1723 struct ib_device *dev = queue->device->dev;
1724 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1725 struct nvme_command *cmd = sqe->data;
1726 struct ib_sge sge;
1727 int ret;
1728
1729 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1730
1731 memset(cmd, 0, sizeof(*cmd));
1732 cmd->common.opcode = nvme_admin_async_event;
1733 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1734 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1735 nvme_rdma_set_sg_null(cmd);
1736
1737 sqe->cqe.done = nvme_rdma_async_done;
1738
1739 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1740 DMA_TO_DEVICE);
1741
1742 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1743 WARN_ON_ONCE(ret);
1744 }
1745
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc)1746 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1747 struct nvme_completion *cqe, struct ib_wc *wc)
1748 {
1749 struct request *rq;
1750 struct nvme_rdma_request *req;
1751
1752 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1753 if (!rq) {
1754 dev_err(queue->ctrl->ctrl.device,
1755 "got bad command_id %#x on QP %#x\n",
1756 cqe->command_id, queue->qp->qp_num);
1757 nvme_rdma_error_recovery(queue->ctrl);
1758 return;
1759 }
1760 req = blk_mq_rq_to_pdu(rq);
1761
1762 req->status = cqe->status;
1763 req->result = cqe->result;
1764
1765 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1766 if (unlikely(!req->mr ||
1767 wc->ex.invalidate_rkey != req->mr->rkey)) {
1768 dev_err(queue->ctrl->ctrl.device,
1769 "Bogus remote invalidation for rkey %#x\n",
1770 req->mr ? req->mr->rkey : 0);
1771 nvme_rdma_error_recovery(queue->ctrl);
1772 }
1773 } else if (req->mr) {
1774 int ret;
1775
1776 ret = nvme_rdma_inv_rkey(queue, req);
1777 if (unlikely(ret < 0)) {
1778 dev_err(queue->ctrl->ctrl.device,
1779 "Queueing INV WR for rkey %#x failed (%d)\n",
1780 req->mr->rkey, ret);
1781 nvme_rdma_error_recovery(queue->ctrl);
1782 }
1783 /* the local invalidation completion will end the request */
1784 return;
1785 }
1786
1787 nvme_rdma_end_request(req);
1788 }
1789
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1790 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1791 {
1792 struct nvme_rdma_qe *qe =
1793 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1794 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1795 struct ib_device *ibdev = queue->device->dev;
1796 struct nvme_completion *cqe = qe->data;
1797 const size_t len = sizeof(struct nvme_completion);
1798
1799 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1800 nvme_rdma_wr_error(cq, wc, "RECV");
1801 return;
1802 }
1803
1804 /* sanity checking for received data length */
1805 if (unlikely(wc->byte_len < len)) {
1806 dev_err(queue->ctrl->ctrl.device,
1807 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1808 nvme_rdma_error_recovery(queue->ctrl);
1809 return;
1810 }
1811
1812 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1813 /*
1814 * AEN requests are special as they don't time out and can
1815 * survive any kind of queue freeze and often don't respond to
1816 * aborts. We don't even bother to allocate a struct request
1817 * for them but rather special case them here.
1818 */
1819 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1820 cqe->command_id)))
1821 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1822 &cqe->result);
1823 else
1824 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1825 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1826
1827 nvme_rdma_post_recv(queue, qe);
1828 }
1829
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1830 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1831 {
1832 int ret, i;
1833
1834 for (i = 0; i < queue->queue_size; i++) {
1835 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1836 if (ret)
1837 return ret;
1838 }
1839
1840 return 0;
1841 }
1842
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1843 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1844 struct rdma_cm_event *ev)
1845 {
1846 struct rdma_cm_id *cm_id = queue->cm_id;
1847 int status = ev->status;
1848 const char *rej_msg;
1849 const struct nvme_rdma_cm_rej *rej_data;
1850 u8 rej_data_len;
1851
1852 rej_msg = rdma_reject_msg(cm_id, status);
1853 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1854
1855 if (rej_data && rej_data_len >= sizeof(u16)) {
1856 u16 sts = le16_to_cpu(rej_data->sts);
1857
1858 dev_err(queue->ctrl->ctrl.device,
1859 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1860 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1861 } else {
1862 dev_err(queue->ctrl->ctrl.device,
1863 "Connect rejected: status %d (%s).\n", status, rej_msg);
1864 }
1865
1866 return -ECONNRESET;
1867 }
1868
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1869 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1870 {
1871 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1872 int ret;
1873
1874 ret = nvme_rdma_create_queue_ib(queue);
1875 if (ret)
1876 return ret;
1877
1878 if (ctrl->opts->tos >= 0)
1879 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1880 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1881 if (ret) {
1882 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1883 queue->cm_error);
1884 goto out_destroy_queue;
1885 }
1886
1887 return 0;
1888
1889 out_destroy_queue:
1890 nvme_rdma_destroy_queue_ib(queue);
1891 return ret;
1892 }
1893
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1894 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1895 {
1896 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1897 struct rdma_conn_param param = { };
1898 struct nvme_rdma_cm_req priv = { };
1899 int ret;
1900
1901 param.qp_num = queue->qp->qp_num;
1902 param.flow_control = 1;
1903
1904 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1905 /* maximum retry count */
1906 param.retry_count = 7;
1907 param.rnr_retry_count = 7;
1908 param.private_data = &priv;
1909 param.private_data_len = sizeof(priv);
1910
1911 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1912 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1913 /*
1914 * set the admin queue depth to the minimum size
1915 * specified by the Fabrics standard.
1916 */
1917 if (priv.qid == 0) {
1918 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1919 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1920 } else {
1921 /*
1922 * current interpretation of the fabrics spec
1923 * is at minimum you make hrqsize sqsize+1, or a
1924 * 1's based representation of sqsize.
1925 */
1926 priv.hrqsize = cpu_to_le16(queue->queue_size);
1927 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1928 }
1929
1930 ret = rdma_connect_locked(queue->cm_id, ¶m);
1931 if (ret) {
1932 dev_err(ctrl->ctrl.device,
1933 "rdma_connect_locked failed (%d).\n", ret);
1934 return ret;
1935 }
1936
1937 return 0;
1938 }
1939
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1940 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1941 struct rdma_cm_event *ev)
1942 {
1943 struct nvme_rdma_queue *queue = cm_id->context;
1944 int cm_error = 0;
1945
1946 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1947 rdma_event_msg(ev->event), ev->event,
1948 ev->status, cm_id);
1949
1950 switch (ev->event) {
1951 case RDMA_CM_EVENT_ADDR_RESOLVED:
1952 cm_error = nvme_rdma_addr_resolved(queue);
1953 break;
1954 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1955 cm_error = nvme_rdma_route_resolved(queue);
1956 break;
1957 case RDMA_CM_EVENT_ESTABLISHED:
1958 queue->cm_error = nvme_rdma_conn_established(queue);
1959 /* complete cm_done regardless of success/failure */
1960 complete(&queue->cm_done);
1961 return 0;
1962 case RDMA_CM_EVENT_REJECTED:
1963 cm_error = nvme_rdma_conn_rejected(queue, ev);
1964 break;
1965 case RDMA_CM_EVENT_ROUTE_ERROR:
1966 case RDMA_CM_EVENT_CONNECT_ERROR:
1967 case RDMA_CM_EVENT_UNREACHABLE:
1968 case RDMA_CM_EVENT_ADDR_ERROR:
1969 dev_dbg(queue->ctrl->ctrl.device,
1970 "CM error event %d\n", ev->event);
1971 cm_error = -ECONNRESET;
1972 break;
1973 case RDMA_CM_EVENT_DISCONNECTED:
1974 case RDMA_CM_EVENT_ADDR_CHANGE:
1975 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1976 dev_dbg(queue->ctrl->ctrl.device,
1977 "disconnect received - connection closed\n");
1978 nvme_rdma_error_recovery(queue->ctrl);
1979 break;
1980 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1981 /* device removal is handled via the ib_client API */
1982 break;
1983 default:
1984 dev_err(queue->ctrl->ctrl.device,
1985 "Unexpected RDMA CM event (%d)\n", ev->event);
1986 nvme_rdma_error_recovery(queue->ctrl);
1987 break;
1988 }
1989
1990 if (cm_error) {
1991 queue->cm_error = cm_error;
1992 complete(&queue->cm_done);
1993 }
1994
1995 return 0;
1996 }
1997
nvme_rdma_complete_timed_out(struct request * rq)1998 static void nvme_rdma_complete_timed_out(struct request *rq)
1999 {
2000 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2001 struct nvme_rdma_queue *queue = req->queue;
2002
2003 nvme_rdma_stop_queue(queue);
2004 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2005 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2006 blk_mq_complete_request(rq);
2007 }
2008 }
2009
2010 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request * rq,bool reserved)2011 nvme_rdma_timeout(struct request *rq, bool reserved)
2012 {
2013 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2014 struct nvme_rdma_queue *queue = req->queue;
2015 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2016
2017 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2018 rq->tag, nvme_rdma_queue_idx(queue));
2019
2020 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2021 /*
2022 * If we are resetting, connecting or deleting we should
2023 * complete immediately because we may block controller
2024 * teardown or setup sequence
2025 * - ctrl disable/shutdown fabrics requests
2026 * - connect requests
2027 * - initialization admin requests
2028 * - I/O requests that entered after unquiescing and
2029 * the controller stopped responding
2030 *
2031 * All other requests should be cancelled by the error
2032 * recovery work, so it's fine that we fail it here.
2033 */
2034 nvme_rdma_complete_timed_out(rq);
2035 return BLK_EH_DONE;
2036 }
2037
2038 /*
2039 * LIVE state should trigger the normal error recovery which will
2040 * handle completing this request.
2041 */
2042 nvme_rdma_error_recovery(ctrl);
2043 return BLK_EH_RESET_TIMER;
2044 }
2045
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2046 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2047 const struct blk_mq_queue_data *bd)
2048 {
2049 struct nvme_ns *ns = hctx->queue->queuedata;
2050 struct nvme_rdma_queue *queue = hctx->driver_data;
2051 struct request *rq = bd->rq;
2052 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2053 struct nvme_rdma_qe *sqe = &req->sqe;
2054 struct nvme_command *c = sqe->data;
2055 struct ib_device *dev;
2056 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2057 blk_status_t ret;
2058 int err;
2059
2060 WARN_ON_ONCE(rq->tag < 0);
2061
2062 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2063 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2064
2065 dev = queue->device->dev;
2066
2067 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2068 sizeof(struct nvme_command),
2069 DMA_TO_DEVICE);
2070 err = ib_dma_mapping_error(dev, req->sqe.dma);
2071 if (unlikely(err))
2072 return BLK_STS_RESOURCE;
2073
2074 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2075 sizeof(struct nvme_command), DMA_TO_DEVICE);
2076
2077 ret = nvme_setup_cmd(ns, rq, c);
2078 if (ret)
2079 goto unmap_qe;
2080
2081 blk_mq_start_request(rq);
2082
2083 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2084 queue->pi_support &&
2085 (c->common.opcode == nvme_cmd_write ||
2086 c->common.opcode == nvme_cmd_read) &&
2087 nvme_ns_has_pi(ns))
2088 req->use_sig_mr = true;
2089 else
2090 req->use_sig_mr = false;
2091
2092 err = nvme_rdma_map_data(queue, rq, c);
2093 if (unlikely(err < 0)) {
2094 dev_err(queue->ctrl->ctrl.device,
2095 "Failed to map data (%d)\n", err);
2096 goto err;
2097 }
2098
2099 sqe->cqe.done = nvme_rdma_send_done;
2100
2101 ib_dma_sync_single_for_device(dev, sqe->dma,
2102 sizeof(struct nvme_command), DMA_TO_DEVICE);
2103
2104 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2105 req->mr ? &req->reg_wr.wr : NULL);
2106 if (unlikely(err))
2107 goto err_unmap;
2108
2109 return BLK_STS_OK;
2110
2111 err_unmap:
2112 nvme_rdma_unmap_data(queue, rq);
2113 err:
2114 if (err == -ENOMEM || err == -EAGAIN)
2115 ret = BLK_STS_RESOURCE;
2116 else
2117 ret = BLK_STS_IOERR;
2118 nvme_cleanup_cmd(rq);
2119 unmap_qe:
2120 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2121 DMA_TO_DEVICE);
2122 return ret;
2123 }
2124
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx)2125 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2126 {
2127 struct nvme_rdma_queue *queue = hctx->driver_data;
2128
2129 return ib_process_cq_direct(queue->ib_cq, -1);
2130 }
2131
nvme_rdma_check_pi_status(struct nvme_rdma_request * req)2132 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2133 {
2134 struct request *rq = blk_mq_rq_from_pdu(req);
2135 struct ib_mr_status mr_status;
2136 int ret;
2137
2138 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2139 if (ret) {
2140 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2141 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2142 return;
2143 }
2144
2145 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2146 switch (mr_status.sig_err.err_type) {
2147 case IB_SIG_BAD_GUARD:
2148 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2149 break;
2150 case IB_SIG_BAD_REFTAG:
2151 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2152 break;
2153 case IB_SIG_BAD_APPTAG:
2154 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2155 break;
2156 }
2157 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2158 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2159 mr_status.sig_err.actual);
2160 }
2161 }
2162
nvme_rdma_complete_rq(struct request * rq)2163 static void nvme_rdma_complete_rq(struct request *rq)
2164 {
2165 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2166 struct nvme_rdma_queue *queue = req->queue;
2167 struct ib_device *ibdev = queue->device->dev;
2168
2169 if (req->use_sig_mr)
2170 nvme_rdma_check_pi_status(req);
2171
2172 nvme_rdma_unmap_data(queue, rq);
2173 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2174 DMA_TO_DEVICE);
2175 nvme_complete_rq(rq);
2176 }
2177
nvme_rdma_map_queues(struct blk_mq_tag_set * set)2178 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2179 {
2180 struct nvme_rdma_ctrl *ctrl = set->driver_data;
2181 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2182
2183 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2184 /* separate read/write queues */
2185 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2186 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2187 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2188 set->map[HCTX_TYPE_READ].nr_queues =
2189 ctrl->io_queues[HCTX_TYPE_READ];
2190 set->map[HCTX_TYPE_READ].queue_offset =
2191 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2192 } else {
2193 /* shared read/write queues */
2194 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2195 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2196 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2197 set->map[HCTX_TYPE_READ].nr_queues =
2198 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2199 set->map[HCTX_TYPE_READ].queue_offset = 0;
2200 }
2201 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2202 ctrl->device->dev, 0);
2203 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2204 ctrl->device->dev, 0);
2205
2206 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2207 /* map dedicated poll queues only if we have queues left */
2208 set->map[HCTX_TYPE_POLL].nr_queues =
2209 ctrl->io_queues[HCTX_TYPE_POLL];
2210 set->map[HCTX_TYPE_POLL].queue_offset =
2211 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2212 ctrl->io_queues[HCTX_TYPE_READ];
2213 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2214 }
2215
2216 dev_info(ctrl->ctrl.device,
2217 "mapped %d/%d/%d default/read/poll queues.\n",
2218 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2219 ctrl->io_queues[HCTX_TYPE_READ],
2220 ctrl->io_queues[HCTX_TYPE_POLL]);
2221
2222 return 0;
2223 }
2224
2225 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2226 .queue_rq = nvme_rdma_queue_rq,
2227 .complete = nvme_rdma_complete_rq,
2228 .init_request = nvme_rdma_init_request,
2229 .exit_request = nvme_rdma_exit_request,
2230 .init_hctx = nvme_rdma_init_hctx,
2231 .timeout = nvme_rdma_timeout,
2232 .map_queues = nvme_rdma_map_queues,
2233 .poll = nvme_rdma_poll,
2234 };
2235
2236 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2237 .queue_rq = nvme_rdma_queue_rq,
2238 .complete = nvme_rdma_complete_rq,
2239 .init_request = nvme_rdma_init_request,
2240 .exit_request = nvme_rdma_exit_request,
2241 .init_hctx = nvme_rdma_init_admin_hctx,
2242 .timeout = nvme_rdma_timeout,
2243 };
2244
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)2245 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2246 {
2247 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2248 nvme_stop_admin_queue(&ctrl->ctrl);
2249 if (shutdown)
2250 nvme_shutdown_ctrl(&ctrl->ctrl);
2251 else
2252 nvme_disable_ctrl(&ctrl->ctrl);
2253 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2254 }
2255
nvme_rdma_delete_ctrl(struct nvme_ctrl * ctrl)2256 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2257 {
2258 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2259 }
2260
nvme_rdma_reset_ctrl_work(struct work_struct * work)2261 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2262 {
2263 struct nvme_rdma_ctrl *ctrl =
2264 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2265
2266 nvme_stop_ctrl(&ctrl->ctrl);
2267 nvme_rdma_shutdown_ctrl(ctrl, false);
2268
2269 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2270 /* state change failure should never happen */
2271 WARN_ON_ONCE(1);
2272 return;
2273 }
2274
2275 if (nvme_rdma_setup_ctrl(ctrl, false))
2276 goto out_fail;
2277
2278 return;
2279
2280 out_fail:
2281 ++ctrl->ctrl.nr_reconnects;
2282 nvme_rdma_reconnect_or_remove(ctrl);
2283 }
2284
2285 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2286 .name = "rdma",
2287 .module = THIS_MODULE,
2288 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2289 .reg_read32 = nvmf_reg_read32,
2290 .reg_read64 = nvmf_reg_read64,
2291 .reg_write32 = nvmf_reg_write32,
2292 .free_ctrl = nvme_rdma_free_ctrl,
2293 .submit_async_event = nvme_rdma_submit_async_event,
2294 .delete_ctrl = nvme_rdma_delete_ctrl,
2295 .get_address = nvmf_get_address,
2296 .stop_ctrl = nvme_rdma_stop_ctrl,
2297 };
2298
2299 /*
2300 * Fails a connection request if it matches an existing controller
2301 * (association) with the same tuple:
2302 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2303 *
2304 * if local address is not specified in the request, it will match an
2305 * existing controller with all the other parameters the same and no
2306 * local port address specified as well.
2307 *
2308 * The ports don't need to be compared as they are intrinsically
2309 * already matched by the port pointers supplied.
2310 */
2311 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options * opts)2312 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2313 {
2314 struct nvme_rdma_ctrl *ctrl;
2315 bool found = false;
2316
2317 mutex_lock(&nvme_rdma_ctrl_mutex);
2318 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2319 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2320 if (found)
2321 break;
2322 }
2323 mutex_unlock(&nvme_rdma_ctrl_mutex);
2324
2325 return found;
2326 }
2327
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2328 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2329 struct nvmf_ctrl_options *opts)
2330 {
2331 struct nvme_rdma_ctrl *ctrl;
2332 int ret;
2333 bool changed;
2334
2335 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2336 if (!ctrl)
2337 return ERR_PTR(-ENOMEM);
2338 ctrl->ctrl.opts = opts;
2339 INIT_LIST_HEAD(&ctrl->list);
2340
2341 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2342 opts->trsvcid =
2343 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2344 if (!opts->trsvcid) {
2345 ret = -ENOMEM;
2346 goto out_free_ctrl;
2347 }
2348 opts->mask |= NVMF_OPT_TRSVCID;
2349 }
2350
2351 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2352 opts->traddr, opts->trsvcid, &ctrl->addr);
2353 if (ret) {
2354 pr_err("malformed address passed: %s:%s\n",
2355 opts->traddr, opts->trsvcid);
2356 goto out_free_ctrl;
2357 }
2358
2359 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2360 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2361 opts->host_traddr, NULL, &ctrl->src_addr);
2362 if (ret) {
2363 pr_err("malformed src address passed: %s\n",
2364 opts->host_traddr);
2365 goto out_free_ctrl;
2366 }
2367 }
2368
2369 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2370 ret = -EALREADY;
2371 goto out_free_ctrl;
2372 }
2373
2374 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2375 nvme_rdma_reconnect_ctrl_work);
2376 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2377 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2378
2379 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2380 opts->nr_poll_queues + 1;
2381 ctrl->ctrl.sqsize = opts->queue_size - 1;
2382 ctrl->ctrl.kato = opts->kato;
2383
2384 ret = -ENOMEM;
2385 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2386 GFP_KERNEL);
2387 if (!ctrl->queues)
2388 goto out_free_ctrl;
2389
2390 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2391 0 /* no quirks, we're perfect! */);
2392 if (ret)
2393 goto out_kfree_queues;
2394
2395 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2396 WARN_ON_ONCE(!changed);
2397
2398 ret = nvme_rdma_setup_ctrl(ctrl, true);
2399 if (ret)
2400 goto out_uninit_ctrl;
2401
2402 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2403 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2404
2405 mutex_lock(&nvme_rdma_ctrl_mutex);
2406 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2407 mutex_unlock(&nvme_rdma_ctrl_mutex);
2408
2409 return &ctrl->ctrl;
2410
2411 out_uninit_ctrl:
2412 nvme_uninit_ctrl(&ctrl->ctrl);
2413 nvme_put_ctrl(&ctrl->ctrl);
2414 if (ret > 0)
2415 ret = -EIO;
2416 return ERR_PTR(ret);
2417 out_kfree_queues:
2418 kfree(ctrl->queues);
2419 out_free_ctrl:
2420 kfree(ctrl);
2421 return ERR_PTR(ret);
2422 }
2423
2424 static struct nvmf_transport_ops nvme_rdma_transport = {
2425 .name = "rdma",
2426 .module = THIS_MODULE,
2427 .required_opts = NVMF_OPT_TRADDR,
2428 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2429 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2430 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2431 NVMF_OPT_TOS,
2432 .create_ctrl = nvme_rdma_create_ctrl,
2433 };
2434
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)2435 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2436 {
2437 struct nvme_rdma_ctrl *ctrl;
2438 struct nvme_rdma_device *ndev;
2439 bool found = false;
2440
2441 mutex_lock(&device_list_mutex);
2442 list_for_each_entry(ndev, &device_list, entry) {
2443 if (ndev->dev == ib_device) {
2444 found = true;
2445 break;
2446 }
2447 }
2448 mutex_unlock(&device_list_mutex);
2449
2450 if (!found)
2451 return;
2452
2453 /* Delete all controllers using this device */
2454 mutex_lock(&nvme_rdma_ctrl_mutex);
2455 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2456 if (ctrl->device->dev != ib_device)
2457 continue;
2458 nvme_delete_ctrl(&ctrl->ctrl);
2459 }
2460 mutex_unlock(&nvme_rdma_ctrl_mutex);
2461
2462 flush_workqueue(nvme_delete_wq);
2463 }
2464
2465 static struct ib_client nvme_rdma_ib_client = {
2466 .name = "nvme_rdma",
2467 .remove = nvme_rdma_remove_one
2468 };
2469
nvme_rdma_init_module(void)2470 static int __init nvme_rdma_init_module(void)
2471 {
2472 int ret;
2473
2474 ret = ib_register_client(&nvme_rdma_ib_client);
2475 if (ret)
2476 return ret;
2477
2478 ret = nvmf_register_transport(&nvme_rdma_transport);
2479 if (ret)
2480 goto err_unreg_client;
2481
2482 return 0;
2483
2484 err_unreg_client:
2485 ib_unregister_client(&nvme_rdma_ib_client);
2486 return ret;
2487 }
2488
nvme_rdma_cleanup_module(void)2489 static void __exit nvme_rdma_cleanup_module(void)
2490 {
2491 struct nvme_rdma_ctrl *ctrl;
2492
2493 nvmf_unregister_transport(&nvme_rdma_transport);
2494 ib_unregister_client(&nvme_rdma_ib_client);
2495
2496 mutex_lock(&nvme_rdma_ctrl_mutex);
2497 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2498 nvme_delete_ctrl(&ctrl->ctrl);
2499 mutex_unlock(&nvme_rdma_ctrl_mutex);
2500 flush_workqueue(nvme_delete_wq);
2501 }
2502
2503 module_init(nvme_rdma_init_module);
2504 module_exit(nvme_rdma_cleanup_module);
2505
2506 MODULE_LICENSE("GPL v2");
2507