• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36  * because dependencies are tracked for both nvme-tcp and user contexts. Using
37  * a separate class prevents lockdep from conflating nvme-tcp socket use with
38  * user-space socket API use.
39  */
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
42 
nvme_tcp_reclassify_socket(struct socket * sock)43 static void nvme_tcp_reclassify_socket(struct socket *sock)
44 {
45 	struct sock *sk = sock->sk;
46 
47 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48 		return;
49 
50 	switch (sk->sk_family) {
51 	case AF_INET:
52 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53 					      &nvme_tcp_slock_key[0],
54 					      "sk_lock-AF_INET-NVME",
55 					      &nvme_tcp_sk_key[0]);
56 		break;
57 	case AF_INET6:
58 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59 					      &nvme_tcp_slock_key[1],
60 					      "sk_lock-AF_INET6-NVME",
61 					      &nvme_tcp_sk_key[1]);
62 		break;
63 	default:
64 		WARN_ON_ONCE(1);
65 	}
66 }
67 #else
nvme_tcp_reclassify_socket(struct socket * sock)68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69 #endif
70 
71 enum nvme_tcp_send_state {
72 	NVME_TCP_SEND_CMD_PDU = 0,
73 	NVME_TCP_SEND_H2C_PDU,
74 	NVME_TCP_SEND_DATA,
75 	NVME_TCP_SEND_DDGST,
76 };
77 
78 struct nvme_tcp_request {
79 	struct nvme_request	req;
80 	void			*pdu;
81 	struct nvme_tcp_queue	*queue;
82 	u32			data_len;
83 	u32			pdu_len;
84 	u32			pdu_sent;
85 	u16			ttag;
86 	struct list_head	entry;
87 	struct llist_node	lentry;
88 	__le32			ddgst;
89 
90 	struct bio		*curr_bio;
91 	struct iov_iter		iter;
92 
93 	/* send state */
94 	size_t			offset;
95 	size_t			data_sent;
96 	enum nvme_tcp_send_state state;
97 };
98 
99 enum nvme_tcp_queue_flags {
100 	NVME_TCP_Q_ALLOCATED	= 0,
101 	NVME_TCP_Q_LIVE		= 1,
102 	NVME_TCP_Q_POLLING	= 2,
103 };
104 
105 enum nvme_tcp_recv_state {
106 	NVME_TCP_RECV_PDU = 0,
107 	NVME_TCP_RECV_DATA,
108 	NVME_TCP_RECV_DDGST,
109 };
110 
111 struct nvme_tcp_ctrl;
112 struct nvme_tcp_queue {
113 	struct socket		*sock;
114 	struct work_struct	io_work;
115 	int			io_cpu;
116 
117 	struct mutex		queue_lock;
118 	struct mutex		send_mutex;
119 	struct llist_head	req_list;
120 	struct list_head	send_list;
121 
122 	/* recv state */
123 	void			*pdu;
124 	int			pdu_remaining;
125 	int			pdu_offset;
126 	size_t			data_remaining;
127 	size_t			ddgst_remaining;
128 	unsigned int		nr_cqe;
129 
130 	/* send state */
131 	struct nvme_tcp_request *request;
132 
133 	int			queue_size;
134 	size_t			cmnd_capsule_len;
135 	struct nvme_tcp_ctrl	*ctrl;
136 	unsigned long		flags;
137 	bool			rd_enabled;
138 
139 	bool			hdr_digest;
140 	bool			data_digest;
141 	struct ahash_request	*rcv_hash;
142 	struct ahash_request	*snd_hash;
143 	__le32			exp_ddgst;
144 	__le32			recv_ddgst;
145 
146 	struct page_frag_cache	pf_cache;
147 
148 	void (*state_change)(struct sock *);
149 	void (*data_ready)(struct sock *);
150 	void (*write_space)(struct sock *);
151 };
152 
153 struct nvme_tcp_ctrl {
154 	/* read only in the hot path */
155 	struct nvme_tcp_queue	*queues;
156 	struct blk_mq_tag_set	tag_set;
157 
158 	/* other member variables */
159 	struct list_head	list;
160 	struct blk_mq_tag_set	admin_tag_set;
161 	struct sockaddr_storage addr;
162 	struct sockaddr_storage src_addr;
163 	struct nvme_ctrl	ctrl;
164 
165 	struct work_struct	err_work;
166 	struct delayed_work	connect_work;
167 	struct nvme_tcp_request async_req;
168 	u32			io_queues[HCTX_MAX_TYPES];
169 };
170 
171 static LIST_HEAD(nvme_tcp_ctrl_list);
172 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
173 static struct workqueue_struct *nvme_tcp_wq;
174 static const struct blk_mq_ops nvme_tcp_mq_ops;
175 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
176 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
177 
to_tcp_ctrl(struct nvme_ctrl * ctrl)178 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
179 {
180 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
181 }
182 
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)183 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
184 {
185 	return queue - queue->ctrl->queues;
186 }
187 
nvme_tcp_tagset(struct nvme_tcp_queue * queue)188 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
189 {
190 	u32 queue_idx = nvme_tcp_queue_id(queue);
191 
192 	if (queue_idx == 0)
193 		return queue->ctrl->admin_tag_set.tags[queue_idx];
194 	return queue->ctrl->tag_set.tags[queue_idx - 1];
195 }
196 
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)197 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
198 {
199 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
200 }
201 
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)202 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
203 {
204 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
205 }
206 
nvme_tcp_inline_data_size(struct nvme_tcp_queue * queue)207 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
208 {
209 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
210 }
211 
nvme_tcp_async_req(struct nvme_tcp_request * req)212 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
213 {
214 	return req == &req->queue->ctrl->async_req;
215 }
216 
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)217 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
218 {
219 	struct request *rq;
220 
221 	if (unlikely(nvme_tcp_async_req(req)))
222 		return false; /* async events don't have a request */
223 
224 	rq = blk_mq_rq_from_pdu(req);
225 
226 	return rq_data_dir(rq) == WRITE && req->data_len &&
227 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
228 }
229 
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)230 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
231 {
232 	return req->iter.bvec->bv_page;
233 }
234 
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)235 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
236 {
237 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
238 }
239 
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)240 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
241 {
242 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
243 			req->pdu_len - req->pdu_sent);
244 }
245 
nvme_tcp_req_offset(struct nvme_tcp_request * req)246 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
247 {
248 	return req->iter.iov_offset;
249 }
250 
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)251 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
252 {
253 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
254 			req->pdu_len - req->pdu_sent : 0;
255 }
256 
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)257 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
258 		int len)
259 {
260 	return nvme_tcp_pdu_data_left(req) <= len;
261 }
262 
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)263 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
264 		unsigned int dir)
265 {
266 	struct request *rq = blk_mq_rq_from_pdu(req);
267 	struct bio_vec *vec;
268 	unsigned int size;
269 	int nsegs;
270 	size_t offset;
271 
272 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
273 		vec = &rq->special_vec;
274 		nsegs = 1;
275 		size = blk_rq_payload_bytes(rq);
276 		offset = 0;
277 	} else {
278 		struct bio *bio = req->curr_bio;
279 
280 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
281 		nsegs = bio_segments(bio);
282 		size = bio->bi_iter.bi_size;
283 		offset = bio->bi_iter.bi_bvec_done;
284 	}
285 
286 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
287 	req->iter.iov_offset = offset;
288 }
289 
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)290 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
291 		int len)
292 {
293 	req->data_sent += len;
294 	req->pdu_sent += len;
295 	iov_iter_advance(&req->iter, len);
296 	if (!iov_iter_count(&req->iter) &&
297 	    req->data_sent < req->data_len) {
298 		req->curr_bio = req->curr_bio->bi_next;
299 		nvme_tcp_init_iter(req, WRITE);
300 	}
301 }
302 
nvme_tcp_send_all(struct nvme_tcp_queue * queue)303 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
304 {
305 	int ret;
306 
307 	/* drain the send queue as much as we can... */
308 	do {
309 		ret = nvme_tcp_try_send(queue);
310 	} while (ret > 0);
311 }
312 
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)313 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
314 {
315 	return !list_empty(&queue->send_list) ||
316 		!llist_empty(&queue->req_list);
317 }
318 
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)319 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
320 		bool sync, bool last)
321 {
322 	struct nvme_tcp_queue *queue = req->queue;
323 	bool empty;
324 
325 	empty = llist_add(&req->lentry, &queue->req_list) &&
326 		list_empty(&queue->send_list) && !queue->request;
327 
328 	/*
329 	 * if we're the first on the send_list and we can try to send
330 	 * directly, otherwise queue io_work. Also, only do that if we
331 	 * are on the same cpu, so we don't introduce contention.
332 	 */
333 	if (queue->io_cpu == raw_smp_processor_id() &&
334 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
335 		nvme_tcp_send_all(queue);
336 		mutex_unlock(&queue->send_mutex);
337 	}
338 
339 	if (last && nvme_tcp_queue_more(queue))
340 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
341 }
342 
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)343 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
344 {
345 	struct nvme_tcp_request *req;
346 	struct llist_node *node;
347 
348 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
349 		req = llist_entry(node, struct nvme_tcp_request, lentry);
350 		list_add(&req->entry, &queue->send_list);
351 	}
352 }
353 
354 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)355 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
356 {
357 	struct nvme_tcp_request *req;
358 
359 	req = list_first_entry_or_null(&queue->send_list,
360 			struct nvme_tcp_request, entry);
361 	if (!req) {
362 		nvme_tcp_process_req_list(queue);
363 		req = list_first_entry_or_null(&queue->send_list,
364 				struct nvme_tcp_request, entry);
365 		if (unlikely(!req))
366 			return NULL;
367 	}
368 
369 	list_del(&req->entry);
370 	return req;
371 }
372 
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)373 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
374 		__le32 *dgst)
375 {
376 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
377 	crypto_ahash_final(hash);
378 }
379 
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)380 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
381 		struct page *page, off_t off, size_t len)
382 {
383 	struct scatterlist sg;
384 
385 	sg_init_marker(&sg, 1);
386 	sg_set_page(&sg, page, len, off);
387 	ahash_request_set_crypt(hash, &sg, NULL, len);
388 	crypto_ahash_update(hash);
389 }
390 
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)391 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
392 		void *pdu, size_t len)
393 {
394 	struct scatterlist sg;
395 
396 	sg_init_one(&sg, pdu, len);
397 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
398 	crypto_ahash_digest(hash);
399 }
400 
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)401 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
402 		void *pdu, size_t pdu_len)
403 {
404 	struct nvme_tcp_hdr *hdr = pdu;
405 	__le32 recv_digest;
406 	__le32 exp_digest;
407 
408 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
409 		dev_err(queue->ctrl->ctrl.device,
410 			"queue %d: header digest flag is cleared\n",
411 			nvme_tcp_queue_id(queue));
412 		return -EPROTO;
413 	}
414 
415 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
416 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
417 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
418 	if (recv_digest != exp_digest) {
419 		dev_err(queue->ctrl->ctrl.device,
420 			"header digest error: recv %#x expected %#x\n",
421 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
422 		return -EIO;
423 	}
424 
425 	return 0;
426 }
427 
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)428 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
429 {
430 	struct nvme_tcp_hdr *hdr = pdu;
431 	u8 digest_len = nvme_tcp_hdgst_len(queue);
432 	u32 len;
433 
434 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
435 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
436 
437 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
438 		dev_err(queue->ctrl->ctrl.device,
439 			"queue %d: data digest flag is cleared\n",
440 		nvme_tcp_queue_id(queue));
441 		return -EPROTO;
442 	}
443 	crypto_ahash_init(queue->rcv_hash);
444 
445 	return 0;
446 }
447 
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)448 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
449 		struct request *rq, unsigned int hctx_idx)
450 {
451 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
452 
453 	page_frag_free(req->pdu);
454 }
455 
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)456 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
457 		struct request *rq, unsigned int hctx_idx,
458 		unsigned int numa_node)
459 {
460 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
461 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
462 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
463 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
464 	u8 hdgst = nvme_tcp_hdgst_len(queue);
465 
466 	req->pdu = page_frag_alloc(&queue->pf_cache,
467 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
468 		GFP_KERNEL | __GFP_ZERO);
469 	if (!req->pdu)
470 		return -ENOMEM;
471 
472 	req->queue = queue;
473 	nvme_req(rq)->ctrl = &ctrl->ctrl;
474 
475 	return 0;
476 }
477 
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)478 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
479 		unsigned int hctx_idx)
480 {
481 	struct nvme_tcp_ctrl *ctrl = data;
482 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
483 
484 	hctx->driver_data = queue;
485 	return 0;
486 }
487 
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)488 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
489 		unsigned int hctx_idx)
490 {
491 	struct nvme_tcp_ctrl *ctrl = data;
492 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
493 
494 	hctx->driver_data = queue;
495 	return 0;
496 }
497 
498 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)499 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
500 {
501 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
502 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
503 		NVME_TCP_RECV_DATA;
504 }
505 
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)506 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
507 {
508 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
509 				nvme_tcp_hdgst_len(queue);
510 	queue->pdu_offset = 0;
511 	queue->data_remaining = -1;
512 	queue->ddgst_remaining = 0;
513 }
514 
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)515 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
516 {
517 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
518 		return;
519 
520 	dev_warn(ctrl->device, "starting error recovery\n");
521 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
522 }
523 
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)524 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
525 		struct nvme_completion *cqe)
526 {
527 	struct request *rq;
528 
529 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
530 	if (!rq) {
531 		dev_err(queue->ctrl->ctrl.device,
532 			"got bad cqe.command_id %#x on queue %d\n",
533 			cqe->command_id, nvme_tcp_queue_id(queue));
534 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
535 		return -EINVAL;
536 	}
537 
538 	if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
539 		nvme_complete_rq(rq);
540 	queue->nr_cqe++;
541 
542 	return 0;
543 }
544 
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)545 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
546 		struct nvme_tcp_data_pdu *pdu)
547 {
548 	struct request *rq;
549 
550 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
551 	if (!rq) {
552 		dev_err(queue->ctrl->ctrl.device,
553 			"got bad c2hdata.command_id %#x on queue %d\n",
554 			pdu->command_id, nvme_tcp_queue_id(queue));
555 		return -ENOENT;
556 	}
557 
558 	if (!blk_rq_payload_bytes(rq)) {
559 		dev_err(queue->ctrl->ctrl.device,
560 			"queue %d tag %#x unexpected data\n",
561 			nvme_tcp_queue_id(queue), rq->tag);
562 		return -EIO;
563 	}
564 
565 	queue->data_remaining = le32_to_cpu(pdu->data_length);
566 
567 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
568 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
569 		dev_err(queue->ctrl->ctrl.device,
570 			"queue %d tag %#x SUCCESS set but not last PDU\n",
571 			nvme_tcp_queue_id(queue), rq->tag);
572 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
573 		return -EPROTO;
574 	}
575 
576 	return 0;
577 }
578 
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)579 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
580 		struct nvme_tcp_rsp_pdu *pdu)
581 {
582 	struct nvme_completion *cqe = &pdu->cqe;
583 	int ret = 0;
584 
585 	/*
586 	 * AEN requests are special as they don't time out and can
587 	 * survive any kind of queue freeze and often don't respond to
588 	 * aborts.  We don't even bother to allocate a struct request
589 	 * for them but rather special case them here.
590 	 */
591 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
592 				     cqe->command_id)))
593 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
594 				&cqe->result);
595 	else
596 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
597 
598 	return ret;
599 }
600 
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req,struct nvme_tcp_r2t_pdu * pdu)601 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
602 		struct nvme_tcp_r2t_pdu *pdu)
603 {
604 	struct nvme_tcp_data_pdu *data = req->pdu;
605 	struct nvme_tcp_queue *queue = req->queue;
606 	struct request *rq = blk_mq_rq_from_pdu(req);
607 	u8 hdgst = nvme_tcp_hdgst_len(queue);
608 	u8 ddgst = nvme_tcp_ddgst_len(queue);
609 
610 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
611 	req->pdu_sent = 0;
612 
613 	if (unlikely(!req->pdu_len)) {
614 		dev_err(queue->ctrl->ctrl.device,
615 			"req %d r2t len is %u, probably a bug...\n",
616 			rq->tag, req->pdu_len);
617 		return -EPROTO;
618 	}
619 
620 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
621 		dev_err(queue->ctrl->ctrl.device,
622 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
623 			rq->tag, req->pdu_len, req->data_len,
624 			req->data_sent);
625 		return -EPROTO;
626 	}
627 
628 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
629 		dev_err(queue->ctrl->ctrl.device,
630 			"req %d unexpected r2t offset %u (expected %zu)\n",
631 			rq->tag, le32_to_cpu(pdu->r2t_offset),
632 			req->data_sent);
633 		return -EPROTO;
634 	}
635 
636 	memset(data, 0, sizeof(*data));
637 	data->hdr.type = nvme_tcp_h2c_data;
638 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
639 	if (queue->hdr_digest)
640 		data->hdr.flags |= NVME_TCP_F_HDGST;
641 	if (queue->data_digest)
642 		data->hdr.flags |= NVME_TCP_F_DDGST;
643 	data->hdr.hlen = sizeof(*data);
644 	data->hdr.pdo = data->hdr.hlen + hdgst;
645 	data->hdr.plen =
646 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
647 	data->ttag = pdu->ttag;
648 	data->command_id = nvme_cid(rq);
649 	data->data_offset = pdu->r2t_offset;
650 	data->data_length = cpu_to_le32(req->pdu_len);
651 	return 0;
652 }
653 
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)654 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
655 		struct nvme_tcp_r2t_pdu *pdu)
656 {
657 	struct nvme_tcp_request *req;
658 	struct request *rq;
659 	int ret;
660 
661 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
662 	if (!rq) {
663 		dev_err(queue->ctrl->ctrl.device,
664 			"got bad r2t.command_id %#x on queue %d\n",
665 			pdu->command_id, nvme_tcp_queue_id(queue));
666 		return -ENOENT;
667 	}
668 	req = blk_mq_rq_to_pdu(rq);
669 
670 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
671 	if (unlikely(ret))
672 		return ret;
673 
674 	req->state = NVME_TCP_SEND_H2C_PDU;
675 	req->offset = 0;
676 
677 	nvme_tcp_queue_request(req, false, true);
678 
679 	return 0;
680 }
681 
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)682 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
683 		unsigned int *offset, size_t *len)
684 {
685 	struct nvme_tcp_hdr *hdr;
686 	char *pdu = queue->pdu;
687 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
688 	int ret;
689 
690 	ret = skb_copy_bits(skb, *offset,
691 		&pdu[queue->pdu_offset], rcv_len);
692 	if (unlikely(ret))
693 		return ret;
694 
695 	queue->pdu_remaining -= rcv_len;
696 	queue->pdu_offset += rcv_len;
697 	*offset += rcv_len;
698 	*len -= rcv_len;
699 	if (queue->pdu_remaining)
700 		return 0;
701 
702 	hdr = queue->pdu;
703 	if (queue->hdr_digest) {
704 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
705 		if (unlikely(ret))
706 			return ret;
707 	}
708 
709 
710 	if (queue->data_digest) {
711 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
712 		if (unlikely(ret))
713 			return ret;
714 	}
715 
716 	switch (hdr->type) {
717 	case nvme_tcp_c2h_data:
718 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
719 	case nvme_tcp_rsp:
720 		nvme_tcp_init_recv_ctx(queue);
721 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
722 	case nvme_tcp_r2t:
723 		nvme_tcp_init_recv_ctx(queue);
724 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
725 	default:
726 		dev_err(queue->ctrl->ctrl.device,
727 			"unsupported pdu type (%d)\n", hdr->type);
728 		return -EINVAL;
729 	}
730 }
731 
nvme_tcp_end_request(struct request * rq,u16 status)732 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
733 {
734 	union nvme_result res = {};
735 
736 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
737 		nvme_complete_rq(rq);
738 }
739 
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)740 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
741 			      unsigned int *offset, size_t *len)
742 {
743 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
744 	struct request *rq =
745 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
746 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
747 
748 	while (true) {
749 		int recv_len, ret;
750 
751 		recv_len = min_t(size_t, *len, queue->data_remaining);
752 		if (!recv_len)
753 			break;
754 
755 		if (!iov_iter_count(&req->iter)) {
756 			req->curr_bio = req->curr_bio->bi_next;
757 
758 			/*
759 			 * If we don`t have any bios it means that controller
760 			 * sent more data than we requested, hence error
761 			 */
762 			if (!req->curr_bio) {
763 				dev_err(queue->ctrl->ctrl.device,
764 					"queue %d no space in request %#x",
765 					nvme_tcp_queue_id(queue), rq->tag);
766 				nvme_tcp_init_recv_ctx(queue);
767 				return -EIO;
768 			}
769 			nvme_tcp_init_iter(req, READ);
770 		}
771 
772 		/* we can read only from what is left in this bio */
773 		recv_len = min_t(size_t, recv_len,
774 				iov_iter_count(&req->iter));
775 
776 		if (queue->data_digest)
777 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
778 				&req->iter, recv_len, queue->rcv_hash);
779 		else
780 			ret = skb_copy_datagram_iter(skb, *offset,
781 					&req->iter, recv_len);
782 		if (ret) {
783 			dev_err(queue->ctrl->ctrl.device,
784 				"queue %d failed to copy request %#x data",
785 				nvme_tcp_queue_id(queue), rq->tag);
786 			return ret;
787 		}
788 
789 		*len -= recv_len;
790 		*offset += recv_len;
791 		queue->data_remaining -= recv_len;
792 	}
793 
794 	if (!queue->data_remaining) {
795 		if (queue->data_digest) {
796 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
797 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
798 		} else {
799 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
800 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
801 				queue->nr_cqe++;
802 			}
803 			nvme_tcp_init_recv_ctx(queue);
804 		}
805 	}
806 
807 	return 0;
808 }
809 
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)810 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
811 		struct sk_buff *skb, unsigned int *offset, size_t *len)
812 {
813 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
814 	char *ddgst = (char *)&queue->recv_ddgst;
815 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
816 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
817 	int ret;
818 
819 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
820 	if (unlikely(ret))
821 		return ret;
822 
823 	queue->ddgst_remaining -= recv_len;
824 	*offset += recv_len;
825 	*len -= recv_len;
826 	if (queue->ddgst_remaining)
827 		return 0;
828 
829 	if (queue->recv_ddgst != queue->exp_ddgst) {
830 		dev_err(queue->ctrl->ctrl.device,
831 			"data digest error: recv %#x expected %#x\n",
832 			le32_to_cpu(queue->recv_ddgst),
833 			le32_to_cpu(queue->exp_ddgst));
834 		return -EIO;
835 	}
836 
837 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
838 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
839 					pdu->command_id);
840 
841 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
842 		queue->nr_cqe++;
843 	}
844 
845 	nvme_tcp_init_recv_ctx(queue);
846 	return 0;
847 }
848 
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)849 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
850 			     unsigned int offset, size_t len)
851 {
852 	struct nvme_tcp_queue *queue = desc->arg.data;
853 	size_t consumed = len;
854 	int result;
855 
856 	while (len) {
857 		switch (nvme_tcp_recv_state(queue)) {
858 		case NVME_TCP_RECV_PDU:
859 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
860 			break;
861 		case NVME_TCP_RECV_DATA:
862 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
863 			break;
864 		case NVME_TCP_RECV_DDGST:
865 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
866 			break;
867 		default:
868 			result = -EFAULT;
869 		}
870 		if (result) {
871 			dev_err(queue->ctrl->ctrl.device,
872 				"receive failed:  %d\n", result);
873 			queue->rd_enabled = false;
874 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
875 			return result;
876 		}
877 	}
878 
879 	return consumed;
880 }
881 
nvme_tcp_data_ready(struct sock * sk)882 static void nvme_tcp_data_ready(struct sock *sk)
883 {
884 	struct nvme_tcp_queue *queue;
885 
886 	read_lock_bh(&sk->sk_callback_lock);
887 	queue = sk->sk_user_data;
888 	if (likely(queue && queue->rd_enabled) &&
889 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
890 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
891 	read_unlock_bh(&sk->sk_callback_lock);
892 }
893 
nvme_tcp_write_space(struct sock * sk)894 static void nvme_tcp_write_space(struct sock *sk)
895 {
896 	struct nvme_tcp_queue *queue;
897 
898 	read_lock_bh(&sk->sk_callback_lock);
899 	queue = sk->sk_user_data;
900 	if (likely(queue && sk_stream_is_writeable(sk))) {
901 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
902 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
903 	}
904 	read_unlock_bh(&sk->sk_callback_lock);
905 }
906 
nvme_tcp_state_change(struct sock * sk)907 static void nvme_tcp_state_change(struct sock *sk)
908 {
909 	struct nvme_tcp_queue *queue;
910 
911 	read_lock_bh(&sk->sk_callback_lock);
912 	queue = sk->sk_user_data;
913 	if (!queue)
914 		goto done;
915 
916 	switch (sk->sk_state) {
917 	case TCP_CLOSE:
918 	case TCP_CLOSE_WAIT:
919 	case TCP_LAST_ACK:
920 	case TCP_FIN_WAIT1:
921 	case TCP_FIN_WAIT2:
922 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
923 		break;
924 	default:
925 		dev_info(queue->ctrl->ctrl.device,
926 			"queue %d socket state %d\n",
927 			nvme_tcp_queue_id(queue), sk->sk_state);
928 	}
929 
930 	queue->state_change(sk);
931 done:
932 	read_unlock_bh(&sk->sk_callback_lock);
933 }
934 
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)935 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
936 {
937 	queue->request = NULL;
938 }
939 
nvme_tcp_fail_request(struct nvme_tcp_request * req)940 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
941 {
942 	if (nvme_tcp_async_req(req)) {
943 		union nvme_result res = {};
944 
945 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
946 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
947 	} else {
948 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
949 				NVME_SC_HOST_PATH_ERROR);
950 	}
951 }
952 
nvme_tcp_try_send_data(struct nvme_tcp_request * req)953 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
954 {
955 	struct nvme_tcp_queue *queue = req->queue;
956 	int req_data_len = req->data_len;
957 
958 	while (true) {
959 		struct page *page = nvme_tcp_req_cur_page(req);
960 		size_t offset = nvme_tcp_req_cur_offset(req);
961 		size_t len = nvme_tcp_req_cur_length(req);
962 		bool last = nvme_tcp_pdu_last_send(req, len);
963 		int req_data_sent = req->data_sent;
964 		int ret, flags = MSG_DONTWAIT;
965 
966 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
967 			flags |= MSG_EOR;
968 		else
969 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
970 
971 		if (sendpage_ok(page)) {
972 			ret = kernel_sendpage(queue->sock, page, offset, len,
973 					flags);
974 		} else {
975 			ret = sock_no_sendpage(queue->sock, page, offset, len,
976 					flags);
977 		}
978 		if (ret <= 0)
979 			return ret;
980 
981 		if (queue->data_digest)
982 			nvme_tcp_ddgst_update(queue->snd_hash, page,
983 					offset, ret);
984 
985 		/*
986 		 * update the request iterator except for the last payload send
987 		 * in the request where we don't want to modify it as we may
988 		 * compete with the RX path completing the request.
989 		 */
990 		if (req_data_sent + ret < req_data_len)
991 			nvme_tcp_advance_req(req, ret);
992 
993 		/* fully successful last send in current PDU */
994 		if (last && ret == len) {
995 			if (queue->data_digest) {
996 				nvme_tcp_ddgst_final(queue->snd_hash,
997 					&req->ddgst);
998 				req->state = NVME_TCP_SEND_DDGST;
999 				req->offset = 0;
1000 			} else {
1001 				nvme_tcp_done_send_req(queue);
1002 			}
1003 			return 1;
1004 		}
1005 	}
1006 	return -EAGAIN;
1007 }
1008 
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1009 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1010 {
1011 	struct nvme_tcp_queue *queue = req->queue;
1012 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1013 	bool inline_data = nvme_tcp_has_inline_data(req);
1014 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1015 	int len = sizeof(*pdu) + hdgst - req->offset;
1016 	int flags = MSG_DONTWAIT;
1017 	int ret;
1018 
1019 	if (inline_data || nvme_tcp_queue_more(queue))
1020 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1021 	else
1022 		flags |= MSG_EOR;
1023 
1024 	if (queue->hdr_digest && !req->offset)
1025 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1026 
1027 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1028 			offset_in_page(pdu) + req->offset, len,  flags);
1029 	if (unlikely(ret <= 0))
1030 		return ret;
1031 
1032 	len -= ret;
1033 	if (!len) {
1034 		if (inline_data) {
1035 			req->state = NVME_TCP_SEND_DATA;
1036 			if (queue->data_digest)
1037 				crypto_ahash_init(queue->snd_hash);
1038 			nvme_tcp_init_iter(req, WRITE);
1039 		} else {
1040 			nvme_tcp_done_send_req(queue);
1041 		}
1042 		return 1;
1043 	}
1044 	req->offset += ret;
1045 
1046 	return -EAGAIN;
1047 }
1048 
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1049 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1050 {
1051 	struct nvme_tcp_queue *queue = req->queue;
1052 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1053 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1054 	int len = sizeof(*pdu) - req->offset + hdgst;
1055 	int ret;
1056 
1057 	if (queue->hdr_digest && !req->offset)
1058 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1059 
1060 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1061 			offset_in_page(pdu) + req->offset, len,
1062 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1063 	if (unlikely(ret <= 0))
1064 		return ret;
1065 
1066 	len -= ret;
1067 	if (!len) {
1068 		req->state = NVME_TCP_SEND_DATA;
1069 		if (queue->data_digest)
1070 			crypto_ahash_init(queue->snd_hash);
1071 		if (!req->data_sent)
1072 			nvme_tcp_init_iter(req, WRITE);
1073 		return 1;
1074 	}
1075 	req->offset += ret;
1076 
1077 	return -EAGAIN;
1078 }
1079 
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1080 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1081 {
1082 	struct nvme_tcp_queue *queue = req->queue;
1083 	size_t offset = req->offset;
1084 	int ret;
1085 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1086 	struct kvec iov = {
1087 		.iov_base = (u8 *)&req->ddgst + req->offset,
1088 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1089 	};
1090 
1091 	if (nvme_tcp_queue_more(queue))
1092 		msg.msg_flags |= MSG_MORE;
1093 	else
1094 		msg.msg_flags |= MSG_EOR;
1095 
1096 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1097 	if (unlikely(ret <= 0))
1098 		return ret;
1099 
1100 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1101 		nvme_tcp_done_send_req(queue);
1102 		return 1;
1103 	}
1104 
1105 	req->offset += ret;
1106 	return -EAGAIN;
1107 }
1108 
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1109 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1110 {
1111 	struct nvme_tcp_request *req;
1112 	int ret = 1;
1113 
1114 	if (!queue->request) {
1115 		queue->request = nvme_tcp_fetch_request(queue);
1116 		if (!queue->request)
1117 			return 0;
1118 	}
1119 	req = queue->request;
1120 
1121 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1122 		ret = nvme_tcp_try_send_cmd_pdu(req);
1123 		if (ret <= 0)
1124 			goto done;
1125 		if (!nvme_tcp_has_inline_data(req))
1126 			return ret;
1127 	}
1128 
1129 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1130 		ret = nvme_tcp_try_send_data_pdu(req);
1131 		if (ret <= 0)
1132 			goto done;
1133 	}
1134 
1135 	if (req->state == NVME_TCP_SEND_DATA) {
1136 		ret = nvme_tcp_try_send_data(req);
1137 		if (ret <= 0)
1138 			goto done;
1139 	}
1140 
1141 	if (req->state == NVME_TCP_SEND_DDGST)
1142 		ret = nvme_tcp_try_send_ddgst(req);
1143 done:
1144 	if (ret == -EAGAIN) {
1145 		ret = 0;
1146 	} else if (ret < 0) {
1147 		dev_err(queue->ctrl->ctrl.device,
1148 			"failed to send request %d\n", ret);
1149 		nvme_tcp_fail_request(queue->request);
1150 		nvme_tcp_done_send_req(queue);
1151 	}
1152 	return ret;
1153 }
1154 
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1155 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1156 {
1157 	struct socket *sock = queue->sock;
1158 	struct sock *sk = sock->sk;
1159 	read_descriptor_t rd_desc;
1160 	int consumed;
1161 
1162 	rd_desc.arg.data = queue;
1163 	rd_desc.count = 1;
1164 	lock_sock(sk);
1165 	queue->nr_cqe = 0;
1166 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1167 	release_sock(sk);
1168 	return consumed;
1169 }
1170 
nvme_tcp_io_work(struct work_struct * w)1171 static void nvme_tcp_io_work(struct work_struct *w)
1172 {
1173 	struct nvme_tcp_queue *queue =
1174 		container_of(w, struct nvme_tcp_queue, io_work);
1175 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1176 
1177 	do {
1178 		bool pending = false;
1179 		int result;
1180 
1181 		if (mutex_trylock(&queue->send_mutex)) {
1182 			result = nvme_tcp_try_send(queue);
1183 			mutex_unlock(&queue->send_mutex);
1184 			if (result > 0)
1185 				pending = true;
1186 			else if (unlikely(result < 0))
1187 				break;
1188 		}
1189 
1190 		result = nvme_tcp_try_recv(queue);
1191 		if (result > 0)
1192 			pending = true;
1193 		else if (unlikely(result < 0))
1194 			return;
1195 
1196 		if (!pending || !queue->rd_enabled)
1197 			return;
1198 
1199 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1200 
1201 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1202 }
1203 
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1204 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1205 {
1206 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1207 
1208 	ahash_request_free(queue->rcv_hash);
1209 	ahash_request_free(queue->snd_hash);
1210 	crypto_free_ahash(tfm);
1211 }
1212 
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1213 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1214 {
1215 	struct crypto_ahash *tfm;
1216 
1217 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1218 	if (IS_ERR(tfm))
1219 		return PTR_ERR(tfm);
1220 
1221 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1222 	if (!queue->snd_hash)
1223 		goto free_tfm;
1224 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1225 
1226 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1227 	if (!queue->rcv_hash)
1228 		goto free_snd_hash;
1229 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1230 
1231 	return 0;
1232 free_snd_hash:
1233 	ahash_request_free(queue->snd_hash);
1234 free_tfm:
1235 	crypto_free_ahash(tfm);
1236 	return -ENOMEM;
1237 }
1238 
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1239 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1240 {
1241 	struct nvme_tcp_request *async = &ctrl->async_req;
1242 
1243 	page_frag_free(async->pdu);
1244 }
1245 
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1246 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1247 {
1248 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1249 	struct nvme_tcp_request *async = &ctrl->async_req;
1250 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1251 
1252 	async->pdu = page_frag_alloc(&queue->pf_cache,
1253 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1254 		GFP_KERNEL | __GFP_ZERO);
1255 	if (!async->pdu)
1256 		return -ENOMEM;
1257 
1258 	async->queue = &ctrl->queues[0];
1259 	return 0;
1260 }
1261 
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1262 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1263 {
1264 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1265 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1266 
1267 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1268 		return;
1269 
1270 	if (queue->hdr_digest || queue->data_digest)
1271 		nvme_tcp_free_crypto(queue);
1272 
1273 	sock_release(queue->sock);
1274 	kfree(queue->pdu);
1275 	mutex_destroy(&queue->queue_lock);
1276 }
1277 
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1278 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1279 {
1280 	struct nvme_tcp_icreq_pdu *icreq;
1281 	struct nvme_tcp_icresp_pdu *icresp;
1282 	struct msghdr msg = {};
1283 	struct kvec iov;
1284 	bool ctrl_hdgst, ctrl_ddgst;
1285 	int ret;
1286 
1287 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1288 	if (!icreq)
1289 		return -ENOMEM;
1290 
1291 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1292 	if (!icresp) {
1293 		ret = -ENOMEM;
1294 		goto free_icreq;
1295 	}
1296 
1297 	icreq->hdr.type = nvme_tcp_icreq;
1298 	icreq->hdr.hlen = sizeof(*icreq);
1299 	icreq->hdr.pdo = 0;
1300 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1301 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1302 	icreq->maxr2t = 0; /* single inflight r2t supported */
1303 	icreq->hpda = 0; /* no alignment constraint */
1304 	if (queue->hdr_digest)
1305 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1306 	if (queue->data_digest)
1307 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1308 
1309 	iov.iov_base = icreq;
1310 	iov.iov_len = sizeof(*icreq);
1311 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1312 	if (ret < 0)
1313 		goto free_icresp;
1314 
1315 	memset(&msg, 0, sizeof(msg));
1316 	iov.iov_base = icresp;
1317 	iov.iov_len = sizeof(*icresp);
1318 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1319 			iov.iov_len, msg.msg_flags);
1320 	if (ret < 0)
1321 		goto free_icresp;
1322 
1323 	ret = -EINVAL;
1324 	if (icresp->hdr.type != nvme_tcp_icresp) {
1325 		pr_err("queue %d: bad type returned %d\n",
1326 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1327 		goto free_icresp;
1328 	}
1329 
1330 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1331 		pr_err("queue %d: bad pdu length returned %d\n",
1332 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1333 		goto free_icresp;
1334 	}
1335 
1336 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1337 		pr_err("queue %d: bad pfv returned %d\n",
1338 			nvme_tcp_queue_id(queue), icresp->pfv);
1339 		goto free_icresp;
1340 	}
1341 
1342 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1343 	if ((queue->data_digest && !ctrl_ddgst) ||
1344 	    (!queue->data_digest && ctrl_ddgst)) {
1345 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1346 			nvme_tcp_queue_id(queue),
1347 			queue->data_digest ? "enabled" : "disabled",
1348 			ctrl_ddgst ? "enabled" : "disabled");
1349 		goto free_icresp;
1350 	}
1351 
1352 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1353 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1354 	    (!queue->hdr_digest && ctrl_hdgst)) {
1355 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1356 			nvme_tcp_queue_id(queue),
1357 			queue->hdr_digest ? "enabled" : "disabled",
1358 			ctrl_hdgst ? "enabled" : "disabled");
1359 		goto free_icresp;
1360 	}
1361 
1362 	if (icresp->cpda != 0) {
1363 		pr_err("queue %d: unsupported cpda returned %d\n",
1364 			nvme_tcp_queue_id(queue), icresp->cpda);
1365 		goto free_icresp;
1366 	}
1367 
1368 	ret = 0;
1369 free_icresp:
1370 	kfree(icresp);
1371 free_icreq:
1372 	kfree(icreq);
1373 	return ret;
1374 }
1375 
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1376 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1377 {
1378 	return nvme_tcp_queue_id(queue) == 0;
1379 }
1380 
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1381 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1382 {
1383 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1384 	int qid = nvme_tcp_queue_id(queue);
1385 
1386 	return !nvme_tcp_admin_queue(queue) &&
1387 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1388 }
1389 
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1390 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1391 {
1392 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1393 	int qid = nvme_tcp_queue_id(queue);
1394 
1395 	return !nvme_tcp_admin_queue(queue) &&
1396 		!nvme_tcp_default_queue(queue) &&
1397 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1398 			  ctrl->io_queues[HCTX_TYPE_READ];
1399 }
1400 
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1401 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1402 {
1403 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1404 	int qid = nvme_tcp_queue_id(queue);
1405 
1406 	return !nvme_tcp_admin_queue(queue) &&
1407 		!nvme_tcp_default_queue(queue) &&
1408 		!nvme_tcp_read_queue(queue) &&
1409 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1410 			  ctrl->io_queues[HCTX_TYPE_READ] +
1411 			  ctrl->io_queues[HCTX_TYPE_POLL];
1412 }
1413 
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1414 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1415 {
1416 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1417 	int qid = nvme_tcp_queue_id(queue);
1418 	int n = 0;
1419 
1420 	if (nvme_tcp_default_queue(queue))
1421 		n = qid - 1;
1422 	else if (nvme_tcp_read_queue(queue))
1423 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1424 	else if (nvme_tcp_poll_queue(queue))
1425 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1426 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1427 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1428 }
1429 
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,size_t queue_size)1430 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1431 		int qid, size_t queue_size)
1432 {
1433 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1434 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1435 	int ret, rcv_pdu_size;
1436 
1437 	mutex_init(&queue->queue_lock);
1438 	queue->ctrl = ctrl;
1439 	init_llist_head(&queue->req_list);
1440 	INIT_LIST_HEAD(&queue->send_list);
1441 	mutex_init(&queue->send_mutex);
1442 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1443 	queue->queue_size = queue_size;
1444 
1445 	if (qid > 0)
1446 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1447 	else
1448 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1449 						NVME_TCP_ADMIN_CCSZ;
1450 
1451 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1452 			IPPROTO_TCP, &queue->sock);
1453 	if (ret) {
1454 		dev_err(nctrl->device,
1455 			"failed to create socket: %d\n", ret);
1456 		goto err_destroy_mutex;
1457 	}
1458 
1459 	nvme_tcp_reclassify_socket(queue->sock);
1460 
1461 	/* Single syn retry */
1462 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1463 
1464 	/* Set TCP no delay */
1465 	tcp_sock_set_nodelay(queue->sock->sk);
1466 
1467 	/*
1468 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1469 	 * close. This is done to prevent stale data from being sent should
1470 	 * the network connection be restored before TCP times out.
1471 	 */
1472 	sock_no_linger(queue->sock->sk);
1473 
1474 	if (so_priority > 0)
1475 		sock_set_priority(queue->sock->sk, so_priority);
1476 
1477 	/* Set socket type of service */
1478 	if (nctrl->opts->tos >= 0)
1479 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1480 
1481 	/* Set 10 seconds timeout for icresp recvmsg */
1482 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1483 
1484 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1485 	nvme_tcp_set_queue_io_cpu(queue);
1486 	queue->request = NULL;
1487 	queue->data_remaining = 0;
1488 	queue->ddgst_remaining = 0;
1489 	queue->pdu_remaining = 0;
1490 	queue->pdu_offset = 0;
1491 	sk_set_memalloc(queue->sock->sk);
1492 
1493 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1494 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1495 			sizeof(ctrl->src_addr));
1496 		if (ret) {
1497 			dev_err(nctrl->device,
1498 				"failed to bind queue %d socket %d\n",
1499 				qid, ret);
1500 			goto err_sock;
1501 		}
1502 	}
1503 
1504 	queue->hdr_digest = nctrl->opts->hdr_digest;
1505 	queue->data_digest = nctrl->opts->data_digest;
1506 	if (queue->hdr_digest || queue->data_digest) {
1507 		ret = nvme_tcp_alloc_crypto(queue);
1508 		if (ret) {
1509 			dev_err(nctrl->device,
1510 				"failed to allocate queue %d crypto\n", qid);
1511 			goto err_sock;
1512 		}
1513 	}
1514 
1515 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1516 			nvme_tcp_hdgst_len(queue);
1517 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1518 	if (!queue->pdu) {
1519 		ret = -ENOMEM;
1520 		goto err_crypto;
1521 	}
1522 
1523 	dev_dbg(nctrl->device, "connecting queue %d\n",
1524 			nvme_tcp_queue_id(queue));
1525 
1526 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1527 		sizeof(ctrl->addr), 0);
1528 	if (ret) {
1529 		dev_err(nctrl->device,
1530 			"failed to connect socket: %d\n", ret);
1531 		goto err_rcv_pdu;
1532 	}
1533 
1534 	ret = nvme_tcp_init_connection(queue);
1535 	if (ret)
1536 		goto err_init_connect;
1537 
1538 	queue->rd_enabled = true;
1539 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1540 	nvme_tcp_init_recv_ctx(queue);
1541 
1542 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1543 	queue->sock->sk->sk_user_data = queue;
1544 	queue->state_change = queue->sock->sk->sk_state_change;
1545 	queue->data_ready = queue->sock->sk->sk_data_ready;
1546 	queue->write_space = queue->sock->sk->sk_write_space;
1547 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1548 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1549 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1550 #ifdef CONFIG_NET_RX_BUSY_POLL
1551 	queue->sock->sk->sk_ll_usec = 1;
1552 #endif
1553 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1554 
1555 	return 0;
1556 
1557 err_init_connect:
1558 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1559 err_rcv_pdu:
1560 	kfree(queue->pdu);
1561 err_crypto:
1562 	if (queue->hdr_digest || queue->data_digest)
1563 		nvme_tcp_free_crypto(queue);
1564 err_sock:
1565 	sock_release(queue->sock);
1566 	queue->sock = NULL;
1567 err_destroy_mutex:
1568 	mutex_destroy(&queue->queue_lock);
1569 	return ret;
1570 }
1571 
nvme_tcp_restore_sock_calls(struct nvme_tcp_queue * queue)1572 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1573 {
1574 	struct socket *sock = queue->sock;
1575 
1576 	write_lock_bh(&sock->sk->sk_callback_lock);
1577 	sock->sk->sk_user_data  = NULL;
1578 	sock->sk->sk_data_ready = queue->data_ready;
1579 	sock->sk->sk_state_change = queue->state_change;
1580 	sock->sk->sk_write_space  = queue->write_space;
1581 	write_unlock_bh(&sock->sk->sk_callback_lock);
1582 }
1583 
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1584 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1585 {
1586 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1587 	nvme_tcp_restore_sock_calls(queue);
1588 	cancel_work_sync(&queue->io_work);
1589 }
1590 
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1591 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1592 {
1593 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1594 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1595 
1596 	mutex_lock(&queue->queue_lock);
1597 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1598 		__nvme_tcp_stop_queue(queue);
1599 	mutex_unlock(&queue->queue_lock);
1600 }
1601 
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1602 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1603 {
1604 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1605 	int ret;
1606 
1607 	if (idx)
1608 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1609 	else
1610 		ret = nvmf_connect_admin_queue(nctrl);
1611 
1612 	if (!ret) {
1613 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1614 	} else {
1615 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1616 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1617 		dev_err(nctrl->device,
1618 			"failed to connect queue: %d ret=%d\n", idx, ret);
1619 	}
1620 	return ret;
1621 }
1622 
nvme_tcp_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)1623 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1624 		bool admin)
1625 {
1626 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1627 	struct blk_mq_tag_set *set;
1628 	int ret;
1629 
1630 	if (admin) {
1631 		set = &ctrl->admin_tag_set;
1632 		memset(set, 0, sizeof(*set));
1633 		set->ops = &nvme_tcp_admin_mq_ops;
1634 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1635 		set->reserved_tags = 2; /* connect + keep-alive */
1636 		set->numa_node = nctrl->numa_node;
1637 		set->flags = BLK_MQ_F_BLOCKING;
1638 		set->cmd_size = sizeof(struct nvme_tcp_request);
1639 		set->driver_data = ctrl;
1640 		set->nr_hw_queues = 1;
1641 		set->timeout = ADMIN_TIMEOUT;
1642 	} else {
1643 		set = &ctrl->tag_set;
1644 		memset(set, 0, sizeof(*set));
1645 		set->ops = &nvme_tcp_mq_ops;
1646 		set->queue_depth = nctrl->sqsize + 1;
1647 		set->reserved_tags = 1; /* fabric connect */
1648 		set->numa_node = nctrl->numa_node;
1649 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1650 		set->cmd_size = sizeof(struct nvme_tcp_request);
1651 		set->driver_data = ctrl;
1652 		set->nr_hw_queues = nctrl->queue_count - 1;
1653 		set->timeout = NVME_IO_TIMEOUT;
1654 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1655 	}
1656 
1657 	ret = blk_mq_alloc_tag_set(set);
1658 	if (ret)
1659 		return ERR_PTR(ret);
1660 
1661 	return set;
1662 }
1663 
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1664 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1665 {
1666 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1667 		cancel_work_sync(&ctrl->async_event_work);
1668 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1669 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1670 	}
1671 
1672 	nvme_tcp_free_queue(ctrl, 0);
1673 }
1674 
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1675 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1676 {
1677 	int i;
1678 
1679 	for (i = 1; i < ctrl->queue_count; i++)
1680 		nvme_tcp_free_queue(ctrl, i);
1681 }
1682 
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1683 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1684 {
1685 	int i;
1686 
1687 	for (i = 1; i < ctrl->queue_count; i++)
1688 		nvme_tcp_stop_queue(ctrl, i);
1689 }
1690 
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl)1691 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1692 {
1693 	int i, ret = 0;
1694 
1695 	for (i = 1; i < ctrl->queue_count; i++) {
1696 		ret = nvme_tcp_start_queue(ctrl, i);
1697 		if (ret)
1698 			goto out_stop_queues;
1699 	}
1700 
1701 	return 0;
1702 
1703 out_stop_queues:
1704 	for (i--; i >= 1; i--)
1705 		nvme_tcp_stop_queue(ctrl, i);
1706 	return ret;
1707 }
1708 
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1709 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1710 {
1711 	int ret;
1712 
1713 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1714 	if (ret)
1715 		return ret;
1716 
1717 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1718 	if (ret)
1719 		goto out_free_queue;
1720 
1721 	return 0;
1722 
1723 out_free_queue:
1724 	nvme_tcp_free_queue(ctrl, 0);
1725 	return ret;
1726 }
1727 
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1728 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1729 {
1730 	int i, ret;
1731 
1732 	for (i = 1; i < ctrl->queue_count; i++) {
1733 		ret = nvme_tcp_alloc_queue(ctrl, i,
1734 				ctrl->sqsize + 1);
1735 		if (ret)
1736 			goto out_free_queues;
1737 	}
1738 
1739 	return 0;
1740 
1741 out_free_queues:
1742 	for (i--; i >= 1; i--)
1743 		nvme_tcp_free_queue(ctrl, i);
1744 
1745 	return ret;
1746 }
1747 
nvme_tcp_nr_io_queues(struct nvme_ctrl * ctrl)1748 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1749 {
1750 	unsigned int nr_io_queues;
1751 
1752 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1753 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1754 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1755 
1756 	return nr_io_queues;
1757 }
1758 
nvme_tcp_set_io_queues(struct nvme_ctrl * nctrl,unsigned int nr_io_queues)1759 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1760 		unsigned int nr_io_queues)
1761 {
1762 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1763 	struct nvmf_ctrl_options *opts = nctrl->opts;
1764 
1765 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1766 		/*
1767 		 * separate read/write queues
1768 		 * hand out dedicated default queues only after we have
1769 		 * sufficient read queues.
1770 		 */
1771 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1772 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1773 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1774 			min(opts->nr_write_queues, nr_io_queues);
1775 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1776 	} else {
1777 		/*
1778 		 * shared read/write queues
1779 		 * either no write queues were requested, or we don't have
1780 		 * sufficient queue count to have dedicated default queues.
1781 		 */
1782 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1783 			min(opts->nr_io_queues, nr_io_queues);
1784 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1785 	}
1786 
1787 	if (opts->nr_poll_queues && nr_io_queues) {
1788 		/* map dedicated poll queues only if we have queues left */
1789 		ctrl->io_queues[HCTX_TYPE_POLL] =
1790 			min(opts->nr_poll_queues, nr_io_queues);
1791 	}
1792 }
1793 
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1794 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1795 {
1796 	unsigned int nr_io_queues;
1797 	int ret;
1798 
1799 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1800 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1801 	if (ret)
1802 		return ret;
1803 
1804 	if (nr_io_queues == 0) {
1805 		dev_err(ctrl->device,
1806 			"unable to set any I/O queues\n");
1807 		return -ENOMEM;
1808 	}
1809 
1810 	ctrl->queue_count = nr_io_queues + 1;
1811 	dev_info(ctrl->device,
1812 		"creating %d I/O queues.\n", nr_io_queues);
1813 
1814 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1815 
1816 	return __nvme_tcp_alloc_io_queues(ctrl);
1817 }
1818 
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1819 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1820 {
1821 	nvme_tcp_stop_io_queues(ctrl);
1822 	if (remove) {
1823 		blk_cleanup_queue(ctrl->connect_q);
1824 		blk_mq_free_tag_set(ctrl->tagset);
1825 	}
1826 	nvme_tcp_free_io_queues(ctrl);
1827 }
1828 
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1829 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1830 {
1831 	int ret;
1832 
1833 	ret = nvme_tcp_alloc_io_queues(ctrl);
1834 	if (ret)
1835 		return ret;
1836 
1837 	if (new) {
1838 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1839 		if (IS_ERR(ctrl->tagset)) {
1840 			ret = PTR_ERR(ctrl->tagset);
1841 			goto out_free_io_queues;
1842 		}
1843 
1844 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1845 		if (IS_ERR(ctrl->connect_q)) {
1846 			ret = PTR_ERR(ctrl->connect_q);
1847 			goto out_free_tag_set;
1848 		}
1849 	}
1850 
1851 	ret = nvme_tcp_start_io_queues(ctrl);
1852 	if (ret)
1853 		goto out_cleanup_connect_q;
1854 
1855 	if (!new) {
1856 		nvme_start_queues(ctrl);
1857 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1858 			/*
1859 			 * If we timed out waiting for freeze we are likely to
1860 			 * be stuck.  Fail the controller initialization just
1861 			 * to be safe.
1862 			 */
1863 			ret = -ENODEV;
1864 			goto out_wait_freeze_timed_out;
1865 		}
1866 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1867 			ctrl->queue_count - 1);
1868 		nvme_unfreeze(ctrl);
1869 	}
1870 
1871 	return 0;
1872 
1873 out_wait_freeze_timed_out:
1874 	nvme_stop_queues(ctrl);
1875 	nvme_sync_io_queues(ctrl);
1876 	nvme_tcp_stop_io_queues(ctrl);
1877 out_cleanup_connect_q:
1878 	nvme_cancel_tagset(ctrl);
1879 	if (new)
1880 		blk_cleanup_queue(ctrl->connect_q);
1881 out_free_tag_set:
1882 	if (new)
1883 		blk_mq_free_tag_set(ctrl->tagset);
1884 out_free_io_queues:
1885 	nvme_tcp_free_io_queues(ctrl);
1886 	return ret;
1887 }
1888 
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1889 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1890 {
1891 	nvme_tcp_stop_queue(ctrl, 0);
1892 	if (remove) {
1893 		blk_cleanup_queue(ctrl->admin_q);
1894 		blk_cleanup_queue(ctrl->fabrics_q);
1895 		blk_mq_free_tag_set(ctrl->admin_tagset);
1896 	}
1897 	nvme_tcp_free_admin_queue(ctrl);
1898 }
1899 
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1900 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1901 {
1902 	int error;
1903 
1904 	error = nvme_tcp_alloc_admin_queue(ctrl);
1905 	if (error)
1906 		return error;
1907 
1908 	if (new) {
1909 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1910 		if (IS_ERR(ctrl->admin_tagset)) {
1911 			error = PTR_ERR(ctrl->admin_tagset);
1912 			goto out_free_queue;
1913 		}
1914 
1915 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1916 		if (IS_ERR(ctrl->fabrics_q)) {
1917 			error = PTR_ERR(ctrl->fabrics_q);
1918 			goto out_free_tagset;
1919 		}
1920 
1921 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1922 		if (IS_ERR(ctrl->admin_q)) {
1923 			error = PTR_ERR(ctrl->admin_q);
1924 			goto out_cleanup_fabrics_q;
1925 		}
1926 	}
1927 
1928 	error = nvme_tcp_start_queue(ctrl, 0);
1929 	if (error)
1930 		goto out_cleanup_queue;
1931 
1932 	error = nvme_enable_ctrl(ctrl);
1933 	if (error)
1934 		goto out_stop_queue;
1935 
1936 	nvme_start_admin_queue(ctrl);
1937 
1938 	error = nvme_init_identify(ctrl);
1939 	if (error)
1940 		goto out_quiesce_queue;
1941 
1942 	return 0;
1943 
1944 out_quiesce_queue:
1945 	nvme_stop_admin_queue(ctrl);
1946 	blk_sync_queue(ctrl->admin_q);
1947 out_stop_queue:
1948 	nvme_tcp_stop_queue(ctrl, 0);
1949 	nvme_cancel_admin_tagset(ctrl);
1950 out_cleanup_queue:
1951 	if (new)
1952 		blk_cleanup_queue(ctrl->admin_q);
1953 out_cleanup_fabrics_q:
1954 	if (new)
1955 		blk_cleanup_queue(ctrl->fabrics_q);
1956 out_free_tagset:
1957 	if (new)
1958 		blk_mq_free_tag_set(ctrl->admin_tagset);
1959 out_free_queue:
1960 	nvme_tcp_free_admin_queue(ctrl);
1961 	return error;
1962 }
1963 
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)1964 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1965 		bool remove)
1966 {
1967 	nvme_stop_admin_queue(ctrl);
1968 	blk_sync_queue(ctrl->admin_q);
1969 	nvme_tcp_stop_queue(ctrl, 0);
1970 	if (ctrl->admin_tagset) {
1971 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1972 			nvme_cancel_request, ctrl);
1973 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1974 	}
1975 	if (remove)
1976 		nvme_start_admin_queue(ctrl);
1977 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1978 }
1979 
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)1980 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1981 		bool remove)
1982 {
1983 	if (ctrl->queue_count <= 1)
1984 		return;
1985 	nvme_stop_admin_queue(ctrl);
1986 	nvme_start_freeze(ctrl);
1987 	nvme_stop_queues(ctrl);
1988 	nvme_sync_io_queues(ctrl);
1989 	nvme_tcp_stop_io_queues(ctrl);
1990 	if (ctrl->tagset) {
1991 		blk_mq_tagset_busy_iter(ctrl->tagset,
1992 			nvme_cancel_request, ctrl);
1993 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
1994 	}
1995 	if (remove)
1996 		nvme_start_queues(ctrl);
1997 	nvme_tcp_destroy_io_queues(ctrl, remove);
1998 }
1999 
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)2000 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2001 {
2002 	/* If we are resetting/deleting then do nothing */
2003 	if (ctrl->state != NVME_CTRL_CONNECTING) {
2004 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2005 			ctrl->state == NVME_CTRL_LIVE);
2006 		return;
2007 	}
2008 
2009 	if (nvmf_should_reconnect(ctrl)) {
2010 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2011 			ctrl->opts->reconnect_delay);
2012 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2013 				ctrl->opts->reconnect_delay * HZ);
2014 	} else {
2015 		dev_info(ctrl->device, "Removing controller...\n");
2016 		nvme_delete_ctrl(ctrl);
2017 	}
2018 }
2019 
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2020 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2021 {
2022 	struct nvmf_ctrl_options *opts = ctrl->opts;
2023 	int ret;
2024 
2025 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2026 	if (ret)
2027 		return ret;
2028 
2029 	if (ctrl->icdoff) {
2030 		dev_err(ctrl->device, "icdoff is not supported!\n");
2031 		goto destroy_admin;
2032 	}
2033 
2034 	if (opts->queue_size > ctrl->sqsize + 1)
2035 		dev_warn(ctrl->device,
2036 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2037 			opts->queue_size, ctrl->sqsize + 1);
2038 
2039 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2040 		dev_warn(ctrl->device,
2041 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2042 			ctrl->sqsize + 1, ctrl->maxcmd);
2043 		ctrl->sqsize = ctrl->maxcmd - 1;
2044 	}
2045 
2046 	if (ctrl->queue_count > 1) {
2047 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2048 		if (ret)
2049 			goto destroy_admin;
2050 	}
2051 
2052 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2053 		/*
2054 		 * state change failure is ok if we started ctrl delete,
2055 		 * unless we're during creation of a new controller to
2056 		 * avoid races with teardown flow.
2057 		 */
2058 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2059 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2060 		WARN_ON_ONCE(new);
2061 		ret = -EINVAL;
2062 		goto destroy_io;
2063 	}
2064 
2065 	nvme_start_ctrl(ctrl);
2066 	return 0;
2067 
2068 destroy_io:
2069 	if (ctrl->queue_count > 1) {
2070 		nvme_stop_queues(ctrl);
2071 		nvme_sync_io_queues(ctrl);
2072 		nvme_tcp_stop_io_queues(ctrl);
2073 		nvme_cancel_tagset(ctrl);
2074 		nvme_tcp_destroy_io_queues(ctrl, new);
2075 	}
2076 destroy_admin:
2077 	nvme_stop_admin_queue(ctrl);
2078 	blk_sync_queue(ctrl->admin_q);
2079 	nvme_tcp_stop_queue(ctrl, 0);
2080 	nvme_cancel_admin_tagset(ctrl);
2081 	nvme_tcp_destroy_admin_queue(ctrl, new);
2082 	return ret;
2083 }
2084 
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2085 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2086 {
2087 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2088 			struct nvme_tcp_ctrl, connect_work);
2089 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2090 
2091 	++ctrl->nr_reconnects;
2092 
2093 	if (nvme_tcp_setup_ctrl(ctrl, false))
2094 		goto requeue;
2095 
2096 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2097 			ctrl->nr_reconnects);
2098 
2099 	ctrl->nr_reconnects = 0;
2100 
2101 	return;
2102 
2103 requeue:
2104 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2105 			ctrl->nr_reconnects);
2106 	nvme_tcp_reconnect_or_remove(ctrl);
2107 }
2108 
nvme_tcp_error_recovery_work(struct work_struct * work)2109 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2110 {
2111 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2112 				struct nvme_tcp_ctrl, err_work);
2113 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2114 
2115 	nvme_stop_keep_alive(ctrl);
2116 	flush_work(&ctrl->async_event_work);
2117 	nvme_tcp_teardown_io_queues(ctrl, false);
2118 	/* unquiesce to fail fast pending requests */
2119 	nvme_start_queues(ctrl);
2120 	nvme_tcp_teardown_admin_queue(ctrl, false);
2121 	nvme_start_admin_queue(ctrl);
2122 
2123 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2124 		/* state change failure is ok if we started ctrl delete */
2125 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2126 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2127 		return;
2128 	}
2129 
2130 	nvme_tcp_reconnect_or_remove(ctrl);
2131 }
2132 
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2133 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2134 {
2135 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2136 	nvme_stop_admin_queue(ctrl);
2137 	if (shutdown)
2138 		nvme_shutdown_ctrl(ctrl);
2139 	else
2140 		nvme_disable_ctrl(ctrl);
2141 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2142 }
2143 
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2144 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2145 {
2146 	nvme_tcp_teardown_ctrl(ctrl, true);
2147 }
2148 
nvme_reset_ctrl_work(struct work_struct * work)2149 static void nvme_reset_ctrl_work(struct work_struct *work)
2150 {
2151 	struct nvme_ctrl *ctrl =
2152 		container_of(work, struct nvme_ctrl, reset_work);
2153 
2154 	nvme_stop_ctrl(ctrl);
2155 	nvme_tcp_teardown_ctrl(ctrl, false);
2156 
2157 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2158 		/* state change failure is ok if we started ctrl delete */
2159 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2160 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2161 		return;
2162 	}
2163 
2164 	if (nvme_tcp_setup_ctrl(ctrl, false))
2165 		goto out_fail;
2166 
2167 	return;
2168 
2169 out_fail:
2170 	++ctrl->nr_reconnects;
2171 	nvme_tcp_reconnect_or_remove(ctrl);
2172 }
2173 
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2174 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2175 {
2176 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2177 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2178 }
2179 
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2180 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2181 {
2182 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2183 
2184 	if (list_empty(&ctrl->list))
2185 		goto free_ctrl;
2186 
2187 	mutex_lock(&nvme_tcp_ctrl_mutex);
2188 	list_del(&ctrl->list);
2189 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2190 
2191 	nvmf_free_options(nctrl->opts);
2192 free_ctrl:
2193 	kfree(ctrl->queues);
2194 	kfree(ctrl);
2195 }
2196 
nvme_tcp_set_sg_null(struct nvme_command * c)2197 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2198 {
2199 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2200 
2201 	sg->addr = 0;
2202 	sg->length = 0;
2203 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2204 			NVME_SGL_FMT_TRANSPORT_A;
2205 }
2206 
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2207 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2208 		struct nvme_command *c, u32 data_len)
2209 {
2210 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2211 
2212 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2213 	sg->length = cpu_to_le32(data_len);
2214 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2215 }
2216 
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2217 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2218 		u32 data_len)
2219 {
2220 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2221 
2222 	sg->addr = 0;
2223 	sg->length = cpu_to_le32(data_len);
2224 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2225 			NVME_SGL_FMT_TRANSPORT_A;
2226 }
2227 
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2228 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2229 {
2230 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2231 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2232 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2233 	struct nvme_command *cmd = &pdu->cmd;
2234 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2235 
2236 	memset(pdu, 0, sizeof(*pdu));
2237 	pdu->hdr.type = nvme_tcp_cmd;
2238 	if (queue->hdr_digest)
2239 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2240 	pdu->hdr.hlen = sizeof(*pdu);
2241 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2242 
2243 	cmd->common.opcode = nvme_admin_async_event;
2244 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2245 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2246 	nvme_tcp_set_sg_null(cmd);
2247 
2248 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2249 	ctrl->async_req.offset = 0;
2250 	ctrl->async_req.curr_bio = NULL;
2251 	ctrl->async_req.data_len = 0;
2252 
2253 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2254 }
2255 
nvme_tcp_complete_timed_out(struct request * rq)2256 static void nvme_tcp_complete_timed_out(struct request *rq)
2257 {
2258 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2259 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2260 
2261 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2262 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2263 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2264 		blk_mq_complete_request(rq);
2265 	}
2266 }
2267 
2268 static enum blk_eh_timer_return
nvme_tcp_timeout(struct request * rq,bool reserved)2269 nvme_tcp_timeout(struct request *rq, bool reserved)
2270 {
2271 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2272 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2273 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2274 
2275 	dev_warn(ctrl->device,
2276 		"queue %d: timeout request %#x type %d\n",
2277 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2278 
2279 	if (ctrl->state != NVME_CTRL_LIVE) {
2280 		/*
2281 		 * If we are resetting, connecting or deleting we should
2282 		 * complete immediately because we may block controller
2283 		 * teardown or setup sequence
2284 		 * - ctrl disable/shutdown fabrics requests
2285 		 * - connect requests
2286 		 * - initialization admin requests
2287 		 * - I/O requests that entered after unquiescing and
2288 		 *   the controller stopped responding
2289 		 *
2290 		 * All other requests should be cancelled by the error
2291 		 * recovery work, so it's fine that we fail it here.
2292 		 */
2293 		nvme_tcp_complete_timed_out(rq);
2294 		return BLK_EH_DONE;
2295 	}
2296 
2297 	/*
2298 	 * LIVE state should trigger the normal error recovery which will
2299 	 * handle completing this request.
2300 	 */
2301 	nvme_tcp_error_recovery(ctrl);
2302 	return BLK_EH_RESET_TIMER;
2303 }
2304 
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2305 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2306 			struct request *rq)
2307 {
2308 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2309 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2310 	struct nvme_command *c = &pdu->cmd;
2311 
2312 	c->common.flags |= NVME_CMD_SGL_METABUF;
2313 
2314 	if (!blk_rq_nr_phys_segments(rq))
2315 		nvme_tcp_set_sg_null(c);
2316 	else if (rq_data_dir(rq) == WRITE &&
2317 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2318 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2319 	else
2320 		nvme_tcp_set_sg_host_data(c, req->data_len);
2321 
2322 	return 0;
2323 }
2324 
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2325 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2326 		struct request *rq)
2327 {
2328 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2329 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2330 	struct nvme_tcp_queue *queue = req->queue;
2331 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2332 	blk_status_t ret;
2333 
2334 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2335 	if (ret)
2336 		return ret;
2337 
2338 	req->state = NVME_TCP_SEND_CMD_PDU;
2339 	req->offset = 0;
2340 	req->data_sent = 0;
2341 	req->pdu_len = 0;
2342 	req->pdu_sent = 0;
2343 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2344 				blk_rq_payload_bytes(rq) : 0;
2345 	req->curr_bio = rq->bio;
2346 
2347 	if (rq_data_dir(rq) == WRITE &&
2348 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2349 		req->pdu_len = req->data_len;
2350 	else if (req->curr_bio)
2351 		nvme_tcp_init_iter(req, READ);
2352 
2353 	pdu->hdr.type = nvme_tcp_cmd;
2354 	pdu->hdr.flags = 0;
2355 	if (queue->hdr_digest)
2356 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2357 	if (queue->data_digest && req->pdu_len) {
2358 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2359 		ddgst = nvme_tcp_ddgst_len(queue);
2360 	}
2361 	pdu->hdr.hlen = sizeof(*pdu);
2362 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2363 	pdu->hdr.plen =
2364 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2365 
2366 	ret = nvme_tcp_map_data(queue, rq);
2367 	if (unlikely(ret)) {
2368 		nvme_cleanup_cmd(rq);
2369 		dev_err(queue->ctrl->ctrl.device,
2370 			"Failed to map data (%d)\n", ret);
2371 		return ret;
2372 	}
2373 
2374 	return 0;
2375 }
2376 
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2377 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2378 {
2379 	struct nvme_tcp_queue *queue = hctx->driver_data;
2380 
2381 	if (!llist_empty(&queue->req_list))
2382 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2383 }
2384 
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2385 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2386 		const struct blk_mq_queue_data *bd)
2387 {
2388 	struct nvme_ns *ns = hctx->queue->queuedata;
2389 	struct nvme_tcp_queue *queue = hctx->driver_data;
2390 	struct request *rq = bd->rq;
2391 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2392 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2393 	blk_status_t ret;
2394 
2395 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2396 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2397 
2398 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2399 	if (unlikely(ret))
2400 		return ret;
2401 
2402 	blk_mq_start_request(rq);
2403 
2404 	nvme_tcp_queue_request(req, true, bd->last);
2405 
2406 	return BLK_STS_OK;
2407 }
2408 
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2409 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2410 {
2411 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2412 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2413 
2414 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2415 		/* separate read/write queues */
2416 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2417 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2418 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2419 		set->map[HCTX_TYPE_READ].nr_queues =
2420 			ctrl->io_queues[HCTX_TYPE_READ];
2421 		set->map[HCTX_TYPE_READ].queue_offset =
2422 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2423 	} else {
2424 		/* shared read/write queues */
2425 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2426 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2427 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2428 		set->map[HCTX_TYPE_READ].nr_queues =
2429 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2430 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2431 	}
2432 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2433 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2434 
2435 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2436 		/* map dedicated poll queues only if we have queues left */
2437 		set->map[HCTX_TYPE_POLL].nr_queues =
2438 				ctrl->io_queues[HCTX_TYPE_POLL];
2439 		set->map[HCTX_TYPE_POLL].queue_offset =
2440 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2441 			ctrl->io_queues[HCTX_TYPE_READ];
2442 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2443 	}
2444 
2445 	dev_info(ctrl->ctrl.device,
2446 		"mapped %d/%d/%d default/read/poll queues.\n",
2447 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2448 		ctrl->io_queues[HCTX_TYPE_READ],
2449 		ctrl->io_queues[HCTX_TYPE_POLL]);
2450 
2451 	return 0;
2452 }
2453 
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx)2454 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2455 {
2456 	struct nvme_tcp_queue *queue = hctx->driver_data;
2457 	struct sock *sk = queue->sock->sk;
2458 
2459 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2460 		return 0;
2461 
2462 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2463 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2464 		sk_busy_loop(sk, true);
2465 	nvme_tcp_try_recv(queue);
2466 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2467 	return queue->nr_cqe;
2468 }
2469 
2470 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2471 	.queue_rq	= nvme_tcp_queue_rq,
2472 	.commit_rqs	= nvme_tcp_commit_rqs,
2473 	.complete	= nvme_complete_rq,
2474 	.init_request	= nvme_tcp_init_request,
2475 	.exit_request	= nvme_tcp_exit_request,
2476 	.init_hctx	= nvme_tcp_init_hctx,
2477 	.timeout	= nvme_tcp_timeout,
2478 	.map_queues	= nvme_tcp_map_queues,
2479 	.poll		= nvme_tcp_poll,
2480 };
2481 
2482 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2483 	.queue_rq	= nvme_tcp_queue_rq,
2484 	.complete	= nvme_complete_rq,
2485 	.init_request	= nvme_tcp_init_request,
2486 	.exit_request	= nvme_tcp_exit_request,
2487 	.init_hctx	= nvme_tcp_init_admin_hctx,
2488 	.timeout	= nvme_tcp_timeout,
2489 };
2490 
2491 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2492 	.name			= "tcp",
2493 	.module			= THIS_MODULE,
2494 	.flags			= NVME_F_FABRICS,
2495 	.reg_read32		= nvmf_reg_read32,
2496 	.reg_read64		= nvmf_reg_read64,
2497 	.reg_write32		= nvmf_reg_write32,
2498 	.free_ctrl		= nvme_tcp_free_ctrl,
2499 	.submit_async_event	= nvme_tcp_submit_async_event,
2500 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2501 	.get_address		= nvmf_get_address,
2502 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2503 };
2504 
2505 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2506 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2507 {
2508 	struct nvme_tcp_ctrl *ctrl;
2509 	bool found = false;
2510 
2511 	mutex_lock(&nvme_tcp_ctrl_mutex);
2512 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2513 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2514 		if (found)
2515 			break;
2516 	}
2517 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2518 
2519 	return found;
2520 }
2521 
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2522 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2523 		struct nvmf_ctrl_options *opts)
2524 {
2525 	struct nvme_tcp_ctrl *ctrl;
2526 	int ret;
2527 
2528 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2529 	if (!ctrl)
2530 		return ERR_PTR(-ENOMEM);
2531 
2532 	INIT_LIST_HEAD(&ctrl->list);
2533 	ctrl->ctrl.opts = opts;
2534 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2535 				opts->nr_poll_queues + 1;
2536 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2537 	ctrl->ctrl.kato = opts->kato;
2538 
2539 	INIT_DELAYED_WORK(&ctrl->connect_work,
2540 			nvme_tcp_reconnect_ctrl_work);
2541 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2542 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2543 
2544 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2545 		opts->trsvcid =
2546 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2547 		if (!opts->trsvcid) {
2548 			ret = -ENOMEM;
2549 			goto out_free_ctrl;
2550 		}
2551 		opts->mask |= NVMF_OPT_TRSVCID;
2552 	}
2553 
2554 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2555 			opts->traddr, opts->trsvcid, &ctrl->addr);
2556 	if (ret) {
2557 		pr_err("malformed address passed: %s:%s\n",
2558 			opts->traddr, opts->trsvcid);
2559 		goto out_free_ctrl;
2560 	}
2561 
2562 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2563 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2564 			opts->host_traddr, NULL, &ctrl->src_addr);
2565 		if (ret) {
2566 			pr_err("malformed src address passed: %s\n",
2567 			       opts->host_traddr);
2568 			goto out_free_ctrl;
2569 		}
2570 	}
2571 
2572 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2573 		ret = -EALREADY;
2574 		goto out_free_ctrl;
2575 	}
2576 
2577 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2578 				GFP_KERNEL);
2579 	if (!ctrl->queues) {
2580 		ret = -ENOMEM;
2581 		goto out_free_ctrl;
2582 	}
2583 
2584 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2585 	if (ret)
2586 		goto out_kfree_queues;
2587 
2588 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2589 		WARN_ON_ONCE(1);
2590 		ret = -EINTR;
2591 		goto out_uninit_ctrl;
2592 	}
2593 
2594 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2595 	if (ret)
2596 		goto out_uninit_ctrl;
2597 
2598 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2599 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2600 
2601 	mutex_lock(&nvme_tcp_ctrl_mutex);
2602 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2603 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2604 
2605 	return &ctrl->ctrl;
2606 
2607 out_uninit_ctrl:
2608 	nvme_uninit_ctrl(&ctrl->ctrl);
2609 	nvme_put_ctrl(&ctrl->ctrl);
2610 	if (ret > 0)
2611 		ret = -EIO;
2612 	return ERR_PTR(ret);
2613 out_kfree_queues:
2614 	kfree(ctrl->queues);
2615 out_free_ctrl:
2616 	kfree(ctrl);
2617 	return ERR_PTR(ret);
2618 }
2619 
2620 static struct nvmf_transport_ops nvme_tcp_transport = {
2621 	.name		= "tcp",
2622 	.module		= THIS_MODULE,
2623 	.required_opts	= NVMF_OPT_TRADDR,
2624 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2625 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2626 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2627 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2628 			  NVMF_OPT_TOS,
2629 	.create_ctrl	= nvme_tcp_create_ctrl,
2630 };
2631 
nvme_tcp_init_module(void)2632 static int __init nvme_tcp_init_module(void)
2633 {
2634 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2635 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2636 	if (!nvme_tcp_wq)
2637 		return -ENOMEM;
2638 
2639 	nvmf_register_transport(&nvme_tcp_transport);
2640 	return 0;
2641 }
2642 
nvme_tcp_cleanup_module(void)2643 static void __exit nvme_tcp_cleanup_module(void)
2644 {
2645 	struct nvme_tcp_ctrl *ctrl;
2646 
2647 	nvmf_unregister_transport(&nvme_tcp_transport);
2648 
2649 	mutex_lock(&nvme_tcp_ctrl_mutex);
2650 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2651 		nvme_delete_ctrl(&ctrl->ctrl);
2652 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2653 	flush_workqueue(nvme_delete_wq);
2654 
2655 	destroy_workqueue(nvme_tcp_wq);
2656 }
2657 
2658 module_init(nvme_tcp_init_module);
2659 module_exit(nvme_tcp_cleanup_module);
2660 
2661 MODULE_LICENSE("GPL v2");
2662