• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
4  * Copyright (C) 2015 Broadcom Corporation
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/pci.h>
9 #include <linux/msi.h>
10 #include <linux/clk.h>
11 #include <linux/module.h>
12 #include <linux/mbus.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqchip/arm-gic-v3.h>
17 #include <linux/platform_device.h>
18 #include <linux/of_address.h>
19 #include <linux/of_pci.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/phy/phy.h>
23 
24 #include "pcie-iproc.h"
25 
26 #define EP_PERST_SOURCE_SELECT_SHIFT	2
27 #define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT)
28 #define EP_MODE_SURVIVE_PERST_SHIFT	1
29 #define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT)
30 #define RC_PCIE_RST_OUTPUT_SHIFT	0
31 #define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT)
32 #define PAXC_RESET_MASK			0x7f
33 
34 #define GIC_V3_CFG_SHIFT		0
35 #define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT)
36 
37 #define MSI_ENABLE_CFG_SHIFT		0
38 #define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT)
39 
40 #define CFG_IND_ADDR_MASK		0x00001ffc
41 
42 #define CFG_ADDR_BUS_NUM_SHIFT		20
43 #define CFG_ADDR_BUS_NUM_MASK		0x0ff00000
44 #define CFG_ADDR_DEV_NUM_SHIFT		15
45 #define CFG_ADDR_DEV_NUM_MASK		0x000f8000
46 #define CFG_ADDR_FUNC_NUM_SHIFT		12
47 #define CFG_ADDR_FUNC_NUM_MASK		0x00007000
48 #define CFG_ADDR_REG_NUM_SHIFT		2
49 #define CFG_ADDR_REG_NUM_MASK		0x00000ffc
50 #define CFG_ADDR_CFG_TYPE_SHIFT		0
51 #define CFG_ADDR_CFG_TYPE_MASK		0x00000003
52 
53 #define SYS_RC_INTX_MASK		0xf
54 
55 #define PCIE_PHYLINKUP_SHIFT		3
56 #define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT)
57 #define PCIE_DL_ACTIVE_SHIFT		2
58 #define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT)
59 
60 #define APB_ERR_EN_SHIFT		0
61 #define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT)
62 
63 #define CFG_RD_SUCCESS			0
64 #define CFG_RD_UR			1
65 #define CFG_RD_CRS			2
66 #define CFG_RD_CA			3
67 #define CFG_RETRY_STATUS		0xffff0001
68 #define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */
69 
70 /* derive the enum index of the outbound/inbound mapping registers */
71 #define MAP_REG(base_reg, index)	((base_reg) + (index) * 2)
72 
73 /*
74  * Maximum number of outbound mapping window sizes that can be supported by any
75  * OARR/OMAP mapping pair
76  */
77 #define MAX_NUM_OB_WINDOW_SIZES		4
78 
79 #define OARR_VALID_SHIFT		0
80 #define OARR_VALID			BIT(OARR_VALID_SHIFT)
81 #define OARR_SIZE_CFG_SHIFT		1
82 
83 /*
84  * Maximum number of inbound mapping region sizes that can be supported by an
85  * IARR
86  */
87 #define MAX_NUM_IB_REGION_SIZES		9
88 
89 #define IMAP_VALID_SHIFT		0
90 #define IMAP_VALID			BIT(IMAP_VALID_SHIFT)
91 
92 #define IPROC_PCI_PM_CAP		0x48
93 #define IPROC_PCI_PM_CAP_MASK		0xffff
94 #define IPROC_PCI_EXP_CAP		0xac
95 
96 #define IPROC_PCIE_REG_INVALID		0xffff
97 
98 /**
99  * iProc PCIe outbound mapping controller specific parameters
100  *
101  * @window_sizes: list of supported outbound mapping window sizes in MB
102  * @nr_sizes: number of supported outbound mapping window sizes
103  */
104 struct iproc_pcie_ob_map {
105 	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
106 	unsigned int nr_sizes;
107 };
108 
109 static const struct iproc_pcie_ob_map paxb_ob_map[] = {
110 	{
111 		/* OARR0/OMAP0 */
112 		.window_sizes = { 128, 256 },
113 		.nr_sizes = 2,
114 	},
115 	{
116 		/* OARR1/OMAP1 */
117 		.window_sizes = { 128, 256 },
118 		.nr_sizes = 2,
119 	},
120 };
121 
122 static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
123 	{
124 		/* OARR0/OMAP0 */
125 		.window_sizes = { 128, 256 },
126 		.nr_sizes = 2,
127 	},
128 	{
129 		/* OARR1/OMAP1 */
130 		.window_sizes = { 128, 256 },
131 		.nr_sizes = 2,
132 	},
133 	{
134 		/* OARR2/OMAP2 */
135 		.window_sizes = { 128, 256, 512, 1024 },
136 		.nr_sizes = 4,
137 	},
138 	{
139 		/* OARR3/OMAP3 */
140 		.window_sizes = { 128, 256, 512, 1024 },
141 		.nr_sizes = 4,
142 	},
143 };
144 
145 /**
146  * iProc PCIe inbound mapping type
147  */
148 enum iproc_pcie_ib_map_type {
149 	/* for DDR memory */
150 	IPROC_PCIE_IB_MAP_MEM = 0,
151 
152 	/* for device I/O memory */
153 	IPROC_PCIE_IB_MAP_IO,
154 
155 	/* invalid or unused */
156 	IPROC_PCIE_IB_MAP_INVALID
157 };
158 
159 /**
160  * iProc PCIe inbound mapping controller specific parameters
161  *
162  * @type: inbound mapping region type
163  * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
164  * SZ_1G
165  * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
166  * GB, depending on the size unit
167  * @nr_sizes: number of supported inbound mapping region sizes
168  * @nr_windows: number of supported inbound mapping windows for the region
169  * @imap_addr_offset: register offset between the upper and lower 32-bit
170  * IMAP address registers
171  * @imap_window_offset: register offset between each IMAP window
172  */
173 struct iproc_pcie_ib_map {
174 	enum iproc_pcie_ib_map_type type;
175 	unsigned int size_unit;
176 	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
177 	unsigned int nr_sizes;
178 	unsigned int nr_windows;
179 	u16 imap_addr_offset;
180 	u16 imap_window_offset;
181 };
182 
183 static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
184 	{
185 		/* IARR0/IMAP0 */
186 		.type = IPROC_PCIE_IB_MAP_IO,
187 		.size_unit = SZ_1K,
188 		.region_sizes = { 32 },
189 		.nr_sizes = 1,
190 		.nr_windows = 8,
191 		.imap_addr_offset = 0x40,
192 		.imap_window_offset = 0x4,
193 	},
194 	{
195 		/* IARR1/IMAP1 */
196 		.type = IPROC_PCIE_IB_MAP_MEM,
197 		.size_unit = SZ_1M,
198 		.region_sizes = { 8 },
199 		.nr_sizes = 1,
200 		.nr_windows = 8,
201 		.imap_addr_offset = 0x4,
202 		.imap_window_offset = 0x8,
203 
204 	},
205 	{
206 		/* IARR2/IMAP2 */
207 		.type = IPROC_PCIE_IB_MAP_MEM,
208 		.size_unit = SZ_1M,
209 		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
210 				  16384 },
211 		.nr_sizes = 9,
212 		.nr_windows = 1,
213 		.imap_addr_offset = 0x4,
214 		.imap_window_offset = 0x8,
215 	},
216 	{
217 		/* IARR3/IMAP3 */
218 		.type = IPROC_PCIE_IB_MAP_MEM,
219 		.size_unit = SZ_1G,
220 		.region_sizes = { 1, 2, 4, 8, 16, 32 },
221 		.nr_sizes = 6,
222 		.nr_windows = 8,
223 		.imap_addr_offset = 0x4,
224 		.imap_window_offset = 0x8,
225 	},
226 	{
227 		/* IARR4/IMAP4 */
228 		.type = IPROC_PCIE_IB_MAP_MEM,
229 		.size_unit = SZ_1G,
230 		.region_sizes = { 32, 64, 128, 256, 512 },
231 		.nr_sizes = 5,
232 		.nr_windows = 8,
233 		.imap_addr_offset = 0x4,
234 		.imap_window_offset = 0x8,
235 	},
236 };
237 
238 /*
239  * iProc PCIe host registers
240  */
241 enum iproc_pcie_reg {
242 	/* clock/reset signal control */
243 	IPROC_PCIE_CLK_CTRL = 0,
244 
245 	/*
246 	 * To allow MSI to be steered to an external MSI controller (e.g., ARM
247 	 * GICv3 ITS)
248 	 */
249 	IPROC_PCIE_MSI_GIC_MODE,
250 
251 	/*
252 	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
253 	 * window where the MSI posted writes are written, for the writes to be
254 	 * interpreted as MSI writes.
255 	 */
256 	IPROC_PCIE_MSI_BASE_ADDR,
257 	IPROC_PCIE_MSI_WINDOW_SIZE,
258 
259 	/*
260 	 * To hold the address of the register where the MSI writes are
261 	 * programed.  When ARM GICv3 ITS is used, this should be programmed
262 	 * with the address of the GITS_TRANSLATER register.
263 	 */
264 	IPROC_PCIE_MSI_ADDR_LO,
265 	IPROC_PCIE_MSI_ADDR_HI,
266 
267 	/* enable MSI */
268 	IPROC_PCIE_MSI_EN_CFG,
269 
270 	/* allow access to root complex configuration space */
271 	IPROC_PCIE_CFG_IND_ADDR,
272 	IPROC_PCIE_CFG_IND_DATA,
273 
274 	/* allow access to device configuration space */
275 	IPROC_PCIE_CFG_ADDR,
276 	IPROC_PCIE_CFG_DATA,
277 
278 	/* enable INTx */
279 	IPROC_PCIE_INTX_EN,
280 
281 	/* outbound address mapping */
282 	IPROC_PCIE_OARR0,
283 	IPROC_PCIE_OMAP0,
284 	IPROC_PCIE_OARR1,
285 	IPROC_PCIE_OMAP1,
286 	IPROC_PCIE_OARR2,
287 	IPROC_PCIE_OMAP2,
288 	IPROC_PCIE_OARR3,
289 	IPROC_PCIE_OMAP3,
290 
291 	/* inbound address mapping */
292 	IPROC_PCIE_IARR0,
293 	IPROC_PCIE_IMAP0,
294 	IPROC_PCIE_IARR1,
295 	IPROC_PCIE_IMAP1,
296 	IPROC_PCIE_IARR2,
297 	IPROC_PCIE_IMAP2,
298 	IPROC_PCIE_IARR3,
299 	IPROC_PCIE_IMAP3,
300 	IPROC_PCIE_IARR4,
301 	IPROC_PCIE_IMAP4,
302 
303 	/* config read status */
304 	IPROC_PCIE_CFG_RD_STATUS,
305 
306 	/* link status */
307 	IPROC_PCIE_LINK_STATUS,
308 
309 	/* enable APB error for unsupported requests */
310 	IPROC_PCIE_APB_ERR_EN,
311 
312 	/* total number of core registers */
313 	IPROC_PCIE_MAX_NUM_REG,
314 };
315 
316 /* iProc PCIe PAXB BCMA registers */
317 static const u16 iproc_pcie_reg_paxb_bcma[IPROC_PCIE_MAX_NUM_REG] = {
318 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
319 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
320 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
321 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
322 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
323 	[IPROC_PCIE_INTX_EN]		= 0x330,
324 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
325 };
326 
327 /* iProc PCIe PAXB registers */
328 static const u16 iproc_pcie_reg_paxb[IPROC_PCIE_MAX_NUM_REG] = {
329 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
330 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
331 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
332 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
333 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
334 	[IPROC_PCIE_INTX_EN]		= 0x330,
335 	[IPROC_PCIE_OARR0]		= 0xd20,
336 	[IPROC_PCIE_OMAP0]		= 0xd40,
337 	[IPROC_PCIE_OARR1]		= 0xd28,
338 	[IPROC_PCIE_OMAP1]		= 0xd48,
339 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
340 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
341 };
342 
343 /* iProc PCIe PAXB v2 registers */
344 static const u16 iproc_pcie_reg_paxb_v2[IPROC_PCIE_MAX_NUM_REG] = {
345 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
346 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120,
347 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124,
348 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
349 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
350 	[IPROC_PCIE_INTX_EN]		= 0x330,
351 	[IPROC_PCIE_OARR0]		= 0xd20,
352 	[IPROC_PCIE_OMAP0]		= 0xd40,
353 	[IPROC_PCIE_OARR1]		= 0xd28,
354 	[IPROC_PCIE_OMAP1]		= 0xd48,
355 	[IPROC_PCIE_OARR2]		= 0xd60,
356 	[IPROC_PCIE_OMAP2]		= 0xd68,
357 	[IPROC_PCIE_OARR3]		= 0xdf0,
358 	[IPROC_PCIE_OMAP3]		= 0xdf8,
359 	[IPROC_PCIE_IARR0]		= 0xd00,
360 	[IPROC_PCIE_IMAP0]		= 0xc00,
361 	[IPROC_PCIE_IARR1]		= 0xd08,
362 	[IPROC_PCIE_IMAP1]		= 0xd70,
363 	[IPROC_PCIE_IARR2]		= 0xd10,
364 	[IPROC_PCIE_IMAP2]		= 0xcc0,
365 	[IPROC_PCIE_IARR3]		= 0xe00,
366 	[IPROC_PCIE_IMAP3]		= 0xe08,
367 	[IPROC_PCIE_IARR4]		= 0xe68,
368 	[IPROC_PCIE_IMAP4]		= 0xe70,
369 	[IPROC_PCIE_CFG_RD_STATUS]	= 0xee0,
370 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c,
371 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40,
372 };
373 
374 /* iProc PCIe PAXC v1 registers */
375 static const u16 iproc_pcie_reg_paxc[IPROC_PCIE_MAX_NUM_REG] = {
376 	[IPROC_PCIE_CLK_CTRL]		= 0x000,
377 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
378 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
379 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
380 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
381 };
382 
383 /* iProc PCIe PAXC v2 registers */
384 static const u16 iproc_pcie_reg_paxc_v2[IPROC_PCIE_MAX_NUM_REG] = {
385 	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050,
386 	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074,
387 	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078,
388 	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c,
389 	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080,
390 	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c,
391 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0,
392 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4,
393 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8,
394 	[IPROC_PCIE_CFG_DATA]		= 0x1fc,
395 };
396 
397 /*
398  * List of device IDs of controllers that have corrupted capability list that
399  * require SW fixup
400  */
401 static const u16 iproc_pcie_corrupt_cap_did[] = {
402 	0x16cd,
403 	0x16f0,
404 	0xd802,
405 	0xd804
406 };
407 
iproc_data(struct pci_bus * bus)408 static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
409 {
410 	struct iproc_pcie *pcie = bus->sysdata;
411 	return pcie;
412 }
413 
iproc_pcie_reg_is_invalid(u16 reg_offset)414 static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
415 {
416 	return !!(reg_offset == IPROC_PCIE_REG_INVALID);
417 }
418 
iproc_pcie_reg_offset(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)419 static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
420 					enum iproc_pcie_reg reg)
421 {
422 	return pcie->reg_offsets[reg];
423 }
424 
iproc_pcie_read_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg)425 static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
426 				      enum iproc_pcie_reg reg)
427 {
428 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
429 
430 	if (iproc_pcie_reg_is_invalid(offset))
431 		return 0;
432 
433 	return readl(pcie->base + offset);
434 }
435 
iproc_pcie_write_reg(struct iproc_pcie * pcie,enum iproc_pcie_reg reg,u32 val)436 static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
437 					enum iproc_pcie_reg reg, u32 val)
438 {
439 	u16 offset = iproc_pcie_reg_offset(pcie, reg);
440 
441 	if (iproc_pcie_reg_is_invalid(offset))
442 		return;
443 
444 	writel(val, pcie->base + offset);
445 }
446 
447 /**
448  * APB error forwarding can be disabled during access of configuration
449  * registers of the endpoint device, to prevent unsupported requests
450  * (typically seen during enumeration with multi-function devices) from
451  * triggering a system exception.
452  */
iproc_pcie_apb_err_disable(struct pci_bus * bus,bool disable)453 static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
454 					      bool disable)
455 {
456 	struct iproc_pcie *pcie = iproc_data(bus);
457 	u32 val;
458 
459 	if (bus->number && pcie->has_apb_err_disable) {
460 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
461 		if (disable)
462 			val &= ~APB_ERR_EN;
463 		else
464 			val |= APB_ERR_EN;
465 		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
466 	}
467 }
468 
iproc_pcie_map_ep_cfg_reg(struct iproc_pcie * pcie,unsigned int busno,unsigned int slot,unsigned int fn,int where)469 static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
470 					       unsigned int busno,
471 					       unsigned int slot,
472 					       unsigned int fn,
473 					       int where)
474 {
475 	u16 offset;
476 	u32 val;
477 
478 	/* EP device access */
479 	val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
480 		(slot << CFG_ADDR_DEV_NUM_SHIFT) |
481 		(fn << CFG_ADDR_FUNC_NUM_SHIFT) |
482 		(where & CFG_ADDR_REG_NUM_MASK) |
483 		(1 & CFG_ADDR_CFG_TYPE_MASK);
484 
485 	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
486 	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
487 
488 	if (iproc_pcie_reg_is_invalid(offset))
489 		return NULL;
490 
491 	return (pcie->base + offset);
492 }
493 
iproc_pcie_cfg_retry(struct iproc_pcie * pcie,void __iomem * cfg_data_p)494 static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
495 					 void __iomem *cfg_data_p)
496 {
497 	int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
498 	unsigned int data;
499 	u32 status;
500 
501 	/*
502 	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
503 	 * affects config reads of the Vendor ID.  For config writes or any
504 	 * other config reads, the Root may automatically reissue the
505 	 * configuration request again as a new request.
506 	 *
507 	 * For config reads, this hardware returns CFG_RETRY_STATUS data
508 	 * when it receives a CRS completion, regardless of the address of
509 	 * the read or the CRS Software Visibility Enable bit.  As a
510 	 * partial workaround for this, we retry in software any read that
511 	 * returns CFG_RETRY_STATUS.
512 	 *
513 	 * Note that a non-Vendor ID config register may have a value of
514 	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from
515 	 * a CRS completion, so we will incorrectly retry the read and
516 	 * eventually return the wrong data (0xffffffff).
517 	 */
518 	data = readl(cfg_data_p);
519 	while (data == CFG_RETRY_STATUS && timeout--) {
520 		/*
521 		 * CRS state is set in CFG_RD status register
522 		 * This will handle the case where CFG_RETRY_STATUS is
523 		 * valid config data.
524 		 */
525 		status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
526 		if (status != CFG_RD_CRS)
527 			return data;
528 
529 		udelay(1);
530 		data = readl(cfg_data_p);
531 	}
532 
533 	if (data == CFG_RETRY_STATUS)
534 		data = 0xffffffff;
535 
536 	return data;
537 }
538 
iproc_pcie_fix_cap(struct iproc_pcie * pcie,int where,u32 * val)539 static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
540 {
541 	u32 i, dev_id;
542 
543 	switch (where & ~0x3) {
544 	case PCI_VENDOR_ID:
545 		dev_id = *val >> 16;
546 
547 		/*
548 		 * Activate fixup for those controllers that have corrupted
549 		 * capability list registers
550 		 */
551 		for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
552 			if (dev_id == iproc_pcie_corrupt_cap_did[i])
553 				pcie->fix_paxc_cap = true;
554 		break;
555 
556 	case IPROC_PCI_PM_CAP:
557 		if (pcie->fix_paxc_cap) {
558 			/* advertise PM, force next capability to PCIe */
559 			*val &= ~IPROC_PCI_PM_CAP_MASK;
560 			*val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
561 		}
562 		break;
563 
564 	case IPROC_PCI_EXP_CAP:
565 		if (pcie->fix_paxc_cap) {
566 			/* advertise root port, version 2, terminate here */
567 			*val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
568 				PCI_CAP_ID_EXP;
569 		}
570 		break;
571 
572 	case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
573 		/* Don't advertise CRS SV support */
574 		*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
575 		break;
576 
577 	default:
578 		break;
579 	}
580 }
581 
iproc_pcie_config_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)582 static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
583 				  int where, int size, u32 *val)
584 {
585 	struct iproc_pcie *pcie = iproc_data(bus);
586 	unsigned int slot = PCI_SLOT(devfn);
587 	unsigned int fn = PCI_FUNC(devfn);
588 	unsigned int busno = bus->number;
589 	void __iomem *cfg_data_p;
590 	unsigned int data;
591 	int ret;
592 
593 	/* root complex access */
594 	if (busno == 0) {
595 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
596 		if (ret == PCIBIOS_SUCCESSFUL)
597 			iproc_pcie_fix_cap(pcie, where, val);
598 
599 		return ret;
600 	}
601 
602 	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
603 
604 	if (!cfg_data_p)
605 		return PCIBIOS_DEVICE_NOT_FOUND;
606 
607 	data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
608 
609 	*val = data;
610 	if (size <= 2)
611 		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
612 
613 	/*
614 	 * For PAXC and PAXCv2, the total number of PFs that one can enumerate
615 	 * depends on the firmware configuration. Unfortunately, due to an ASIC
616 	 * bug, unconfigured PFs cannot be properly hidden from the root
617 	 * complex. As a result, write access to these PFs will cause bus lock
618 	 * up on the embedded processor
619 	 *
620 	 * Since all unconfigured PFs are left with an incorrect, staled device
621 	 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
622 	 * early here and reject them all
623 	 */
624 #define DEVICE_ID_MASK     0xffff0000
625 #define DEVICE_ID_SHIFT    16
626 	if (pcie->rej_unconfig_pf &&
627 	    (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
628 		if ((*val & DEVICE_ID_MASK) ==
629 		    (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
630 			return PCIBIOS_FUNC_NOT_SUPPORTED;
631 
632 	return PCIBIOS_SUCCESSFUL;
633 }
634 
635 /**
636  * Note access to the configuration registers are protected at the higher layer
637  * by 'pci_lock' in drivers/pci/access.c
638  */
iproc_pcie_map_cfg_bus(struct iproc_pcie * pcie,int busno,unsigned int devfn,int where)639 static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
640 					    int busno, unsigned int devfn,
641 					    int where)
642 {
643 	unsigned slot = PCI_SLOT(devfn);
644 	unsigned fn = PCI_FUNC(devfn);
645 	u16 offset;
646 
647 	/* root complex access */
648 	if (busno == 0) {
649 		if (slot > 0 || fn > 0)
650 			return NULL;
651 
652 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
653 				     where & CFG_IND_ADDR_MASK);
654 		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
655 		if (iproc_pcie_reg_is_invalid(offset))
656 			return NULL;
657 		else
658 			return (pcie->base + offset);
659 	}
660 
661 	return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
662 }
663 
iproc_pcie_bus_map_cfg_bus(struct pci_bus * bus,unsigned int devfn,int where)664 static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
665 						unsigned int devfn,
666 						int where)
667 {
668 	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
669 				      where);
670 }
671 
iproc_pci_raw_config_read32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 * val)672 static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
673 				       unsigned int devfn, int where,
674 				       int size, u32 *val)
675 {
676 	void __iomem *addr;
677 
678 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
679 	if (!addr) {
680 		*val = ~0;
681 		return PCIBIOS_DEVICE_NOT_FOUND;
682 	}
683 
684 	*val = readl(addr);
685 
686 	if (size <= 2)
687 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
688 
689 	return PCIBIOS_SUCCESSFUL;
690 }
691 
iproc_pci_raw_config_write32(struct iproc_pcie * pcie,unsigned int devfn,int where,int size,u32 val)692 static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
693 					unsigned int devfn, int where,
694 					int size, u32 val)
695 {
696 	void __iomem *addr;
697 	u32 mask, tmp;
698 
699 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
700 	if (!addr)
701 		return PCIBIOS_DEVICE_NOT_FOUND;
702 
703 	if (size == 4) {
704 		writel(val, addr);
705 		return PCIBIOS_SUCCESSFUL;
706 	}
707 
708 	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
709 	tmp = readl(addr) & mask;
710 	tmp |= val << ((where & 0x3) * 8);
711 	writel(tmp, addr);
712 
713 	return PCIBIOS_SUCCESSFUL;
714 }
715 
iproc_pcie_config_read32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)716 static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
717 				    int where, int size, u32 *val)
718 {
719 	int ret;
720 	struct iproc_pcie *pcie = iproc_data(bus);
721 
722 	iproc_pcie_apb_err_disable(bus, true);
723 	if (pcie->iproc_cfg_read)
724 		ret = iproc_pcie_config_read(bus, devfn, where, size, val);
725 	else
726 		ret = pci_generic_config_read32(bus, devfn, where, size, val);
727 	iproc_pcie_apb_err_disable(bus, false);
728 
729 	return ret;
730 }
731 
iproc_pcie_config_write32(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)732 static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
733 				     int where, int size, u32 val)
734 {
735 	int ret;
736 
737 	iproc_pcie_apb_err_disable(bus, true);
738 	ret = pci_generic_config_write32(bus, devfn, where, size, val);
739 	iproc_pcie_apb_err_disable(bus, false);
740 
741 	return ret;
742 }
743 
744 static struct pci_ops iproc_pcie_ops = {
745 	.map_bus = iproc_pcie_bus_map_cfg_bus,
746 	.read = iproc_pcie_config_read32,
747 	.write = iproc_pcie_config_write32,
748 };
749 
iproc_pcie_perst_ctrl(struct iproc_pcie * pcie,bool assert)750 static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
751 {
752 	u32 val;
753 
754 	/*
755 	 * PAXC and the internal emulated endpoint device downstream should not
756 	 * be reset.  If firmware has been loaded on the endpoint device at an
757 	 * earlier boot stage, reset here causes issues.
758 	 */
759 	if (pcie->ep_is_internal)
760 		return;
761 
762 	if (assert) {
763 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
764 		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
765 			~RC_PCIE_RST_OUTPUT;
766 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
767 		udelay(250);
768 	} else {
769 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
770 		val |= RC_PCIE_RST_OUTPUT;
771 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
772 		msleep(100);
773 	}
774 }
775 
iproc_pcie_shutdown(struct iproc_pcie * pcie)776 int iproc_pcie_shutdown(struct iproc_pcie *pcie)
777 {
778 	iproc_pcie_perst_ctrl(pcie, true);
779 	msleep(500);
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
784 
iproc_pcie_check_link(struct iproc_pcie * pcie)785 static int iproc_pcie_check_link(struct iproc_pcie *pcie)
786 {
787 	struct device *dev = pcie->dev;
788 	u32 hdr_type, link_ctrl, link_status, class, val;
789 	bool link_is_active = false;
790 
791 	/*
792 	 * PAXC connects to emulated endpoint devices directly and does not
793 	 * have a Serdes.  Therefore skip the link detection logic here.
794 	 */
795 	if (pcie->ep_is_internal)
796 		return 0;
797 
798 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
799 	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
800 		dev_err(dev, "PHY or data link is INACTIVE!\n");
801 		return -ENODEV;
802 	}
803 
804 	/* make sure we are not in EP mode */
805 	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
806 	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
807 		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
808 		return -EFAULT;
809 	}
810 
811 	/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
812 #define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c
813 #define PCI_CLASS_BRIDGE_MASK		0xffff00
814 #define PCI_CLASS_BRIDGE_SHIFT		8
815 	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
816 				    4, &class);
817 	class &= ~PCI_CLASS_BRIDGE_MASK;
818 	class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
819 	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
820 				     4, class);
821 
822 	/* check link status to see if link is active */
823 	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
824 				    2, &link_status);
825 	if (link_status & PCI_EXP_LNKSTA_NLW)
826 		link_is_active = true;
827 
828 	if (!link_is_active) {
829 		/* try GEN 1 link speed */
830 #define PCI_TARGET_LINK_SPEED_MASK	0xf
831 #define PCI_TARGET_LINK_SPEED_GEN2	0x2
832 #define PCI_TARGET_LINK_SPEED_GEN1	0x1
833 		iproc_pci_raw_config_read32(pcie, 0,
834 					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
835 					    4, &link_ctrl);
836 		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
837 		    PCI_TARGET_LINK_SPEED_GEN2) {
838 			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
839 			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
840 			iproc_pci_raw_config_write32(pcie, 0,
841 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
842 					4, link_ctrl);
843 			msleep(100);
844 
845 			iproc_pci_raw_config_read32(pcie, 0,
846 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
847 					2, &link_status);
848 			if (link_status & PCI_EXP_LNKSTA_NLW)
849 				link_is_active = true;
850 		}
851 	}
852 
853 	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
854 
855 	return link_is_active ? 0 : -ENODEV;
856 }
857 
iproc_pcie_enable(struct iproc_pcie * pcie)858 static void iproc_pcie_enable(struct iproc_pcie *pcie)
859 {
860 	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
861 }
862 
iproc_pcie_ob_is_valid(struct iproc_pcie * pcie,int window_idx)863 static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
864 					  int window_idx)
865 {
866 	u32 val;
867 
868 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
869 
870 	return !!(val & OARR_VALID);
871 }
872 
iproc_pcie_ob_write(struct iproc_pcie * pcie,int window_idx,int size_idx,u64 axi_addr,u64 pci_addr)873 static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
874 				      int size_idx, u64 axi_addr, u64 pci_addr)
875 {
876 	struct device *dev = pcie->dev;
877 	u16 oarr_offset, omap_offset;
878 
879 	/*
880 	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
881 	 * on window index.
882 	 */
883 	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
884 							  window_idx));
885 	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
886 							  window_idx));
887 	if (iproc_pcie_reg_is_invalid(oarr_offset) ||
888 	    iproc_pcie_reg_is_invalid(omap_offset))
889 		return -EINVAL;
890 
891 	/*
892 	 * Program the OARR registers.  The upper 32-bit OARR register is
893 	 * always right after the lower 32-bit OARR register.
894 	 */
895 	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
896 	       OARR_VALID, pcie->base + oarr_offset);
897 	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
898 
899 	/* now program the OMAP registers */
900 	writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
901 	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
902 
903 	dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
904 		window_idx, oarr_offset, &axi_addr, &pci_addr);
905 	dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
906 		readl(pcie->base + oarr_offset),
907 		readl(pcie->base + oarr_offset + 4));
908 	dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
909 		readl(pcie->base + omap_offset),
910 		readl(pcie->base + omap_offset + 4));
911 
912 	return 0;
913 }
914 
915 /**
916  * Some iProc SoCs require the SW to configure the outbound address mapping
917  *
918  * Outbound address translation:
919  *
920  * iproc_pcie_address = axi_address - axi_offset
921  * OARR = iproc_pcie_address
922  * OMAP = pci_addr
923  *
924  * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
925  */
iproc_pcie_setup_ob(struct iproc_pcie * pcie,u64 axi_addr,u64 pci_addr,resource_size_t size)926 static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
927 			       u64 pci_addr, resource_size_t size)
928 {
929 	struct iproc_pcie_ob *ob = &pcie->ob;
930 	struct device *dev = pcie->dev;
931 	int ret = -EINVAL, window_idx, size_idx;
932 
933 	if (axi_addr < ob->axi_offset) {
934 		dev_err(dev, "axi address %pap less than offset %pap\n",
935 			&axi_addr, &ob->axi_offset);
936 		return -EINVAL;
937 	}
938 
939 	/*
940 	 * Translate the AXI address to the internal address used by the iProc
941 	 * PCIe core before programming the OARR
942 	 */
943 	axi_addr -= ob->axi_offset;
944 
945 	/* iterate through all OARR/OMAP mapping windows */
946 	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
947 		const struct iproc_pcie_ob_map *ob_map =
948 			&pcie->ob_map[window_idx];
949 
950 		/*
951 		 * If current outbound window is already in use, move on to the
952 		 * next one.
953 		 */
954 		if (iproc_pcie_ob_is_valid(pcie, window_idx))
955 			continue;
956 
957 		/*
958 		 * Iterate through all supported window sizes within the
959 		 * OARR/OMAP pair to find a match.  Go through the window sizes
960 		 * in a descending order.
961 		 */
962 		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
963 		     size_idx--) {
964 			resource_size_t window_size =
965 				ob_map->window_sizes[size_idx] * SZ_1M;
966 
967 			/*
968 			 * Keep iterating until we reach the last window and
969 			 * with the minimal window size at index zero. In this
970 			 * case, we take a compromise by mapping it using the
971 			 * minimum window size that can be supported
972 			 */
973 			if (size < window_size) {
974 				if (size_idx > 0 || window_idx > 0)
975 					continue;
976 
977 				/*
978 				 * For the corner case of reaching the minimal
979 				 * window size that can be supported on the
980 				 * last window
981 				 */
982 				axi_addr = ALIGN_DOWN(axi_addr, window_size);
983 				pci_addr = ALIGN_DOWN(pci_addr, window_size);
984 				size = window_size;
985 			}
986 
987 			if (!IS_ALIGNED(axi_addr, window_size) ||
988 			    !IS_ALIGNED(pci_addr, window_size)) {
989 				dev_err(dev,
990 					"axi %pap or pci %pap not aligned\n",
991 					&axi_addr, &pci_addr);
992 				return -EINVAL;
993 			}
994 
995 			/*
996 			 * Match found!  Program both OARR and OMAP and mark
997 			 * them as a valid entry.
998 			 */
999 			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
1000 						  axi_addr, pci_addr);
1001 			if (ret)
1002 				goto err_ob;
1003 
1004 			size -= window_size;
1005 			if (size == 0)
1006 				return 0;
1007 
1008 			/*
1009 			 * If we are here, we are done with the current window,
1010 			 * but not yet finished all mappings.  Need to move on
1011 			 * to the next window.
1012 			 */
1013 			axi_addr += window_size;
1014 			pci_addr += window_size;
1015 			break;
1016 		}
1017 	}
1018 
1019 err_ob:
1020 	dev_err(dev, "unable to configure outbound mapping\n");
1021 	dev_err(dev,
1022 		"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
1023 		&axi_addr, &ob->axi_offset, &pci_addr, &size);
1024 
1025 	return ret;
1026 }
1027 
iproc_pcie_map_ranges(struct iproc_pcie * pcie,struct list_head * resources)1028 static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
1029 				 struct list_head *resources)
1030 {
1031 	struct device *dev = pcie->dev;
1032 	struct resource_entry *window;
1033 	int ret;
1034 
1035 	resource_list_for_each_entry(window, resources) {
1036 		struct resource *res = window->res;
1037 		u64 res_type = resource_type(res);
1038 
1039 		switch (res_type) {
1040 		case IORESOURCE_IO:
1041 		case IORESOURCE_BUS:
1042 			break;
1043 		case IORESOURCE_MEM:
1044 			ret = iproc_pcie_setup_ob(pcie, res->start,
1045 						  res->start - window->offset,
1046 						  resource_size(res));
1047 			if (ret)
1048 				return ret;
1049 			break;
1050 		default:
1051 			dev_err(dev, "invalid resource %pR\n", res);
1052 			return -EINVAL;
1053 		}
1054 	}
1055 
1056 	return 0;
1057 }
1058 
iproc_pcie_ib_is_in_use(struct iproc_pcie * pcie,int region_idx)1059 static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
1060 					   int region_idx)
1061 {
1062 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1063 	u32 val;
1064 
1065 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
1066 
1067 	return !!(val & (BIT(ib_map->nr_sizes) - 1));
1068 }
1069 
iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map * ib_map,enum iproc_pcie_ib_map_type type)1070 static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
1071 					    enum iproc_pcie_ib_map_type type)
1072 {
1073 	return !!(ib_map->type == type);
1074 }
1075 
iproc_pcie_ib_write(struct iproc_pcie * pcie,int region_idx,int size_idx,int nr_windows,u64 axi_addr,u64 pci_addr,resource_size_t size)1076 static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
1077 			       int size_idx, int nr_windows, u64 axi_addr,
1078 			       u64 pci_addr, resource_size_t size)
1079 {
1080 	struct device *dev = pcie->dev;
1081 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
1082 	u16 iarr_offset, imap_offset;
1083 	u32 val;
1084 	int window_idx;
1085 
1086 	iarr_offset = iproc_pcie_reg_offset(pcie,
1087 				MAP_REG(IPROC_PCIE_IARR0, region_idx));
1088 	imap_offset = iproc_pcie_reg_offset(pcie,
1089 				MAP_REG(IPROC_PCIE_IMAP0, region_idx));
1090 	if (iproc_pcie_reg_is_invalid(iarr_offset) ||
1091 	    iproc_pcie_reg_is_invalid(imap_offset))
1092 		return -EINVAL;
1093 
1094 	dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
1095 		region_idx, iarr_offset, &axi_addr, &pci_addr);
1096 
1097 	/*
1098 	 * Program the IARR registers.  The upper 32-bit IARR register is
1099 	 * always right after the lower 32-bit IARR register.
1100 	 */
1101 	writel(lower_32_bits(pci_addr) | BIT(size_idx),
1102 	       pcie->base + iarr_offset);
1103 	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
1104 
1105 	dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
1106 		readl(pcie->base + iarr_offset),
1107 		readl(pcie->base + iarr_offset + 4));
1108 
1109 	/*
1110 	 * Now program the IMAP registers.  Each IARR region may have one or
1111 	 * more IMAP windows.
1112 	 */
1113 	size >>= ilog2(nr_windows);
1114 	for (window_idx = 0; window_idx < nr_windows; window_idx++) {
1115 		val = readl(pcie->base + imap_offset);
1116 		val |= lower_32_bits(axi_addr) | IMAP_VALID;
1117 		writel(val, pcie->base + imap_offset);
1118 		writel(upper_32_bits(axi_addr),
1119 		       pcie->base + imap_offset + ib_map->imap_addr_offset);
1120 
1121 		dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
1122 			window_idx, readl(pcie->base + imap_offset),
1123 			readl(pcie->base + imap_offset +
1124 			      ib_map->imap_addr_offset));
1125 
1126 		imap_offset += ib_map->imap_window_offset;
1127 		axi_addr += size;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
iproc_pcie_setup_ib(struct iproc_pcie * pcie,struct resource_entry * entry,enum iproc_pcie_ib_map_type type)1133 static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
1134 			       struct resource_entry *entry,
1135 			       enum iproc_pcie_ib_map_type type)
1136 {
1137 	struct device *dev = pcie->dev;
1138 	struct iproc_pcie_ib *ib = &pcie->ib;
1139 	int ret;
1140 	unsigned int region_idx, size_idx;
1141 	u64 axi_addr = entry->res->start;
1142 	u64 pci_addr = entry->res->start - entry->offset;
1143 	resource_size_t size = resource_size(entry->res);
1144 
1145 	/* iterate through all IARR mapping regions */
1146 	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
1147 		const struct iproc_pcie_ib_map *ib_map =
1148 			&pcie->ib_map[region_idx];
1149 
1150 		/*
1151 		 * If current inbound region is already in use or not a
1152 		 * compatible type, move on to the next.
1153 		 */
1154 		if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
1155 		    !iproc_pcie_ib_check_type(ib_map, type))
1156 			continue;
1157 
1158 		/* iterate through all supported region sizes to find a match */
1159 		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
1160 			resource_size_t region_size =
1161 			ib_map->region_sizes[size_idx] * ib_map->size_unit;
1162 
1163 			if (size != region_size)
1164 				continue;
1165 
1166 			if (!IS_ALIGNED(axi_addr, region_size) ||
1167 			    !IS_ALIGNED(pci_addr, region_size)) {
1168 				dev_err(dev,
1169 					"axi %pap or pci %pap not aligned\n",
1170 					&axi_addr, &pci_addr);
1171 				return -EINVAL;
1172 			}
1173 
1174 			/* Match found!  Program IARR and all IMAP windows. */
1175 			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
1176 						  ib_map->nr_windows, axi_addr,
1177 						  pci_addr, size);
1178 			if (ret)
1179 				goto err_ib;
1180 			else
1181 				return 0;
1182 
1183 		}
1184 	}
1185 	ret = -EINVAL;
1186 
1187 err_ib:
1188 	dev_err(dev, "unable to configure inbound mapping\n");
1189 	dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
1190 		&axi_addr, &pci_addr, &size);
1191 
1192 	return ret;
1193 }
1194 
iproc_pcie_map_dma_ranges(struct iproc_pcie * pcie)1195 static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
1196 {
1197 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1198 	struct resource_entry *entry;
1199 	int ret = 0;
1200 
1201 	resource_list_for_each_entry(entry, &host->dma_ranges) {
1202 		/* Each range entry corresponds to an inbound mapping region */
1203 		ret = iproc_pcie_setup_ib(pcie, entry, IPROC_PCIE_IB_MAP_MEM);
1204 		if (ret)
1205 			break;
1206 	}
1207 
1208 	return ret;
1209 }
1210 
iproc_pcie_invalidate_mapping(struct iproc_pcie * pcie)1211 static void iproc_pcie_invalidate_mapping(struct iproc_pcie *pcie)
1212 {
1213 	struct iproc_pcie_ib *ib = &pcie->ib;
1214 	struct iproc_pcie_ob *ob = &pcie->ob;
1215 	int idx;
1216 
1217 	if (pcie->ep_is_internal)
1218 		return;
1219 
1220 	if (pcie->need_ob_cfg) {
1221 		/* iterate through all OARR mapping regions */
1222 		for (idx = ob->nr_windows - 1; idx >= 0; idx--) {
1223 			iproc_pcie_write_reg(pcie,
1224 					     MAP_REG(IPROC_PCIE_OARR0, idx), 0);
1225 		}
1226 	}
1227 
1228 	if (pcie->need_ib_cfg) {
1229 		/* iterate through all IARR mapping regions */
1230 		for (idx = 0; idx < ib->nr_regions; idx++) {
1231 			iproc_pcie_write_reg(pcie,
1232 					     MAP_REG(IPROC_PCIE_IARR0, idx), 0);
1233 		}
1234 	}
1235 }
1236 
iproce_pcie_get_msi(struct iproc_pcie * pcie,struct device_node * msi_node,u64 * msi_addr)1237 static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
1238 			       struct device_node *msi_node,
1239 			       u64 *msi_addr)
1240 {
1241 	struct device *dev = pcie->dev;
1242 	int ret;
1243 	struct resource res;
1244 
1245 	/*
1246 	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only
1247 	 * supported external MSI controller that requires steering.
1248 	 */
1249 	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
1250 		dev_err(dev, "unable to find compatible MSI controller\n");
1251 		return -ENODEV;
1252 	}
1253 
1254 	/* derive GITS_TRANSLATER address from GICv3 */
1255 	ret = of_address_to_resource(msi_node, 0, &res);
1256 	if (ret < 0) {
1257 		dev_err(dev, "unable to obtain MSI controller resources\n");
1258 		return ret;
1259 	}
1260 
1261 	*msi_addr = res.start + GITS_TRANSLATER;
1262 	return 0;
1263 }
1264 
iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr)1265 static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
1266 {
1267 	int ret;
1268 	struct resource_entry entry;
1269 
1270 	memset(&entry, 0, sizeof(entry));
1271 	entry.res = &entry.__res;
1272 
1273 	msi_addr &= ~(SZ_32K - 1);
1274 	entry.res->start = msi_addr;
1275 	entry.res->end = msi_addr + SZ_32K - 1;
1276 
1277 	ret = iproc_pcie_setup_ib(pcie, &entry, IPROC_PCIE_IB_MAP_IO);
1278 	return ret;
1279 }
1280 
iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie * pcie,u64 msi_addr,bool enable)1281 static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
1282 					 bool enable)
1283 {
1284 	u32 val;
1285 
1286 	if (!enable) {
1287 		/*
1288 		 * Disable PAXC MSI steering. All write transfers will be
1289 		 * treated as non-MSI transfers
1290 		 */
1291 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1292 		val &= ~MSI_ENABLE_CFG;
1293 		iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1294 		return;
1295 	}
1296 
1297 	/*
1298 	 * Program bits [43:13] of address of GITS_TRANSLATER register into
1299 	 * bits [30:0] of the MSI base address register.  In fact, in all iProc
1300 	 * based SoCs, all I/O register bases are well below the 32-bit
1301 	 * boundary, so we can safely assume bits [43:32] are always zeros.
1302 	 */
1303 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
1304 			     (u32)(msi_addr >> 13));
1305 
1306 	/* use a default 8K window size */
1307 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
1308 
1309 	/* steering MSI to GICv3 ITS */
1310 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
1311 	val |= GIC_V3_CFG;
1312 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
1313 
1314 	/*
1315 	 * Program bits [43:2] of address of GITS_TRANSLATER register into the
1316 	 * iProc MSI address registers.
1317 	 */
1318 	msi_addr >>= 2;
1319 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
1320 			     upper_32_bits(msi_addr));
1321 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
1322 			     lower_32_bits(msi_addr));
1323 
1324 	/* enable MSI */
1325 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
1326 	val |= MSI_ENABLE_CFG;
1327 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
1328 }
1329 
iproc_pcie_msi_steer(struct iproc_pcie * pcie,struct device_node * msi_node)1330 static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
1331 				struct device_node *msi_node)
1332 {
1333 	struct device *dev = pcie->dev;
1334 	int ret;
1335 	u64 msi_addr;
1336 
1337 	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
1338 	if (ret < 0) {
1339 		dev_err(dev, "msi steering failed\n");
1340 		return ret;
1341 	}
1342 
1343 	switch (pcie->type) {
1344 	case IPROC_PCIE_PAXB_V2:
1345 		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
1346 		if (ret)
1347 			return ret;
1348 		break;
1349 	case IPROC_PCIE_PAXC_V2:
1350 		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
1351 		break;
1352 	default:
1353 		return -EINVAL;
1354 	}
1355 
1356 	return 0;
1357 }
1358 
iproc_pcie_msi_enable(struct iproc_pcie * pcie)1359 static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
1360 {
1361 	struct device_node *msi_node;
1362 	int ret;
1363 
1364 	/*
1365 	 * Either the "msi-parent" or the "msi-map" phandle needs to exist
1366 	 * for us to obtain the MSI node.
1367 	 */
1368 
1369 	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
1370 	if (!msi_node) {
1371 		const __be32 *msi_map = NULL;
1372 		int len;
1373 		u32 phandle;
1374 
1375 		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
1376 		if (!msi_map)
1377 			return -ENODEV;
1378 
1379 		phandle = be32_to_cpup(msi_map + 1);
1380 		msi_node = of_find_node_by_phandle(phandle);
1381 		if (!msi_node)
1382 			return -ENODEV;
1383 	}
1384 
1385 	/*
1386 	 * Certain revisions of the iProc PCIe controller require additional
1387 	 * configurations to steer the MSI writes towards an external MSI
1388 	 * controller.
1389 	 */
1390 	if (pcie->need_msi_steer) {
1391 		ret = iproc_pcie_msi_steer(pcie, msi_node);
1392 		if (ret)
1393 			goto out_put_node;
1394 	}
1395 
1396 	/*
1397 	 * If another MSI controller is being used, the call below should fail
1398 	 * but that is okay
1399 	 */
1400 	ret = iproc_msi_init(pcie, msi_node);
1401 
1402 out_put_node:
1403 	of_node_put(msi_node);
1404 	return ret;
1405 }
1406 
iproc_pcie_msi_disable(struct iproc_pcie * pcie)1407 static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
1408 {
1409 	iproc_msi_exit(pcie);
1410 }
1411 
iproc_pcie_rev_init(struct iproc_pcie * pcie)1412 static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
1413 {
1414 	struct device *dev = pcie->dev;
1415 	unsigned int reg_idx;
1416 	const u16 *regs;
1417 
1418 	switch (pcie->type) {
1419 	case IPROC_PCIE_PAXB_BCMA:
1420 		regs = iproc_pcie_reg_paxb_bcma;
1421 		break;
1422 	case IPROC_PCIE_PAXB:
1423 		regs = iproc_pcie_reg_paxb;
1424 		pcie->has_apb_err_disable = true;
1425 		if (pcie->need_ob_cfg) {
1426 			pcie->ob_map = paxb_ob_map;
1427 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
1428 		}
1429 		break;
1430 	case IPROC_PCIE_PAXB_V2:
1431 		regs = iproc_pcie_reg_paxb_v2;
1432 		pcie->iproc_cfg_read = true;
1433 		pcie->has_apb_err_disable = true;
1434 		if (pcie->need_ob_cfg) {
1435 			pcie->ob_map = paxb_v2_ob_map;
1436 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
1437 		}
1438 		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
1439 		pcie->ib_map = paxb_v2_ib_map;
1440 		pcie->need_msi_steer = true;
1441 		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
1442 			 CFG_RETRY_STATUS);
1443 		break;
1444 	case IPROC_PCIE_PAXC:
1445 		regs = iproc_pcie_reg_paxc;
1446 		pcie->ep_is_internal = true;
1447 		pcie->iproc_cfg_read = true;
1448 		pcie->rej_unconfig_pf = true;
1449 		break;
1450 	case IPROC_PCIE_PAXC_V2:
1451 		regs = iproc_pcie_reg_paxc_v2;
1452 		pcie->ep_is_internal = true;
1453 		pcie->iproc_cfg_read = true;
1454 		pcie->rej_unconfig_pf = true;
1455 		pcie->need_msi_steer = true;
1456 		break;
1457 	default:
1458 		dev_err(dev, "incompatible iProc PCIe interface\n");
1459 		return -EINVAL;
1460 	}
1461 
1462 	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
1463 					 sizeof(*pcie->reg_offsets),
1464 					 GFP_KERNEL);
1465 	if (!pcie->reg_offsets)
1466 		return -ENOMEM;
1467 
1468 	/* go through the register table and populate all valid registers */
1469 	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
1470 		IPROC_PCIE_REG_INVALID : regs[0];
1471 	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
1472 		pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
1473 			regs[reg_idx] : IPROC_PCIE_REG_INVALID;
1474 
1475 	return 0;
1476 }
1477 
iproc_pcie_setup(struct iproc_pcie * pcie,struct list_head * res)1478 int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
1479 {
1480 	struct device *dev;
1481 	int ret;
1482 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1483 
1484 	dev = pcie->dev;
1485 
1486 	ret = iproc_pcie_rev_init(pcie);
1487 	if (ret) {
1488 		dev_err(dev, "unable to initialize controller parameters\n");
1489 		return ret;
1490 	}
1491 
1492 	ret = phy_init(pcie->phy);
1493 	if (ret) {
1494 		dev_err(dev, "unable to initialize PCIe PHY\n");
1495 		return ret;
1496 	}
1497 
1498 	ret = phy_power_on(pcie->phy);
1499 	if (ret) {
1500 		dev_err(dev, "unable to power on PCIe PHY\n");
1501 		goto err_exit_phy;
1502 	}
1503 
1504 	iproc_pcie_perst_ctrl(pcie, true);
1505 	iproc_pcie_perst_ctrl(pcie, false);
1506 
1507 	iproc_pcie_invalidate_mapping(pcie);
1508 
1509 	if (pcie->need_ob_cfg) {
1510 		ret = iproc_pcie_map_ranges(pcie, res);
1511 		if (ret) {
1512 			dev_err(dev, "map failed\n");
1513 			goto err_power_off_phy;
1514 		}
1515 	}
1516 
1517 	if (pcie->need_ib_cfg) {
1518 		ret = iproc_pcie_map_dma_ranges(pcie);
1519 		if (ret && ret != -ENOENT)
1520 			goto err_power_off_phy;
1521 	}
1522 
1523 	ret = iproc_pcie_check_link(pcie);
1524 	if (ret) {
1525 		dev_err(dev, "no PCIe EP device detected\n");
1526 		goto err_power_off_phy;
1527 	}
1528 
1529 	iproc_pcie_enable(pcie);
1530 
1531 	if (IS_ENABLED(CONFIG_PCI_MSI))
1532 		if (iproc_pcie_msi_enable(pcie))
1533 			dev_info(dev, "not using iProc MSI\n");
1534 
1535 	host->ops = &iproc_pcie_ops;
1536 	host->sysdata = pcie;
1537 	host->map_irq = pcie->map_irq;
1538 
1539 	ret = pci_host_probe(host);
1540 	if (ret < 0) {
1541 		dev_err(dev, "failed to scan host: %d\n", ret);
1542 		goto err_power_off_phy;
1543 	}
1544 
1545 	return 0;
1546 
1547 err_power_off_phy:
1548 	phy_power_off(pcie->phy);
1549 err_exit_phy:
1550 	phy_exit(pcie->phy);
1551 	return ret;
1552 }
1553 EXPORT_SYMBOL(iproc_pcie_setup);
1554 
iproc_pcie_remove(struct iproc_pcie * pcie)1555 int iproc_pcie_remove(struct iproc_pcie *pcie)
1556 {
1557 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
1558 
1559 	pci_stop_root_bus(host->bus);
1560 	pci_remove_root_bus(host->bus);
1561 
1562 	iproc_pcie_msi_disable(pcie);
1563 
1564 	phy_power_off(pcie->phy);
1565 	phy_exit(pcie->phy);
1566 
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL(iproc_pcie_remove);
1570 
1571 /*
1572  * The MSI parsing logic in certain revisions of Broadcom PAXC based root
1573  * complex does not work and needs to be disabled
1574  */
quirk_paxc_disable_msi_parsing(struct pci_dev * pdev)1575 static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
1576 {
1577 	struct iproc_pcie *pcie = iproc_data(pdev->bus);
1578 
1579 	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1580 		iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
1581 }
1582 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
1583 			quirk_paxc_disable_msi_parsing);
1584 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
1585 			quirk_paxc_disable_msi_parsing);
1586 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
1587 			quirk_paxc_disable_msi_parsing);
1588 
quirk_paxc_bridge(struct pci_dev * pdev)1589 static void quirk_paxc_bridge(struct pci_dev *pdev)
1590 {
1591 	/*
1592 	 * The PCI config space is shared with the PAXC root port and the first
1593 	 * Ethernet device.  So, we need to workaround this by telling the PCI
1594 	 * code that the bridge is not an Ethernet device.
1595 	 */
1596 	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
1597 		pdev->class = PCI_CLASS_BRIDGE_PCI << 8;
1598 
1599 	/*
1600 	 * MPSS is not being set properly (as it is currently 0).  This is
1601 	 * because that area of the PCI config space is hard coded to zero, and
1602 	 * is not modifiable by firmware.  Set this to 2 (e.g., 512 byte MPS)
1603 	 * so that the MPS can be set to the real max value.
1604 	 */
1605 	pdev->pcie_mpss = 2;
1606 }
1607 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16cd, quirk_paxc_bridge);
1608 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_bridge);
1609 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd750, quirk_paxc_bridge);
1610 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_bridge);
1611 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_bridge);
1612 
1613 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1614 MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
1615 MODULE_LICENSE("GPL v2");
1616