1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
14
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 /*
43 * Cache if the event is allowed to trace Context information.
44 * This allows us to perform the check, i.e, perfmon_capable(),
45 * in the context of the event owner, once, during the event_init().
46 */
47 #define SPE_PMU_HW_FLAGS_CX BIT(0)
48
set_spe_event_has_cx(struct perf_event * event)49 static void set_spe_event_has_cx(struct perf_event *event)
50 {
51 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
52 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
53 }
54
get_spe_event_has_cx(struct perf_event * event)55 static bool get_spe_event_has_cx(struct perf_event *event)
56 {
57 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
58 }
59
60 #define ARM_SPE_BUF_PAD_BYTE 0
61
62 struct arm_spe_pmu_buf {
63 int nr_pages;
64 bool snapshot;
65 void *base;
66 };
67
68 struct arm_spe_pmu {
69 struct pmu pmu;
70 struct platform_device *pdev;
71 cpumask_t supported_cpus;
72 struct hlist_node hotplug_node;
73
74 int irq; /* PPI */
75
76 u16 min_period;
77 u16 counter_sz;
78
79 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
80 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
81 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
82 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
83 #define SPE_PMU_FEAT_LDS (1UL << 4)
84 #define SPE_PMU_FEAT_ERND (1UL << 5)
85 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
86 u64 features;
87
88 u16 max_record_sz;
89 u16 align;
90 struct perf_output_handle __percpu *handle;
91 };
92
93 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
94
95 /* Convert a free-running index from perf into an SPE buffer offset */
96 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
97
98 /* Keep track of our dynamic hotplug state */
99 static enum cpuhp_state arm_spe_pmu_online;
100
101 enum arm_spe_pmu_buf_fault_action {
102 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
103 SPE_PMU_BUF_FAULT_ACT_FATAL,
104 SPE_PMU_BUF_FAULT_ACT_OK,
105 };
106
107 /* This sysfs gunk was really good fun to write. */
108 enum arm_spe_pmu_capabilities {
109 SPE_PMU_CAP_ARCH_INST = 0,
110 SPE_PMU_CAP_ERND,
111 SPE_PMU_CAP_FEAT_MAX,
112 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
113 SPE_PMU_CAP_MIN_IVAL,
114 };
115
116 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
117 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
118 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
119 };
120
arm_spe_pmu_cap_get(struct arm_spe_pmu * spe_pmu,int cap)121 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
122 {
123 if (cap < SPE_PMU_CAP_FEAT_MAX)
124 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
125
126 switch (cap) {
127 case SPE_PMU_CAP_CNT_SZ:
128 return spe_pmu->counter_sz;
129 case SPE_PMU_CAP_MIN_IVAL:
130 return spe_pmu->min_period;
131 default:
132 WARN(1, "unknown cap %d\n", cap);
133 }
134
135 return 0;
136 }
137
arm_spe_pmu_cap_show(struct device * dev,struct device_attribute * attr,char * buf)138 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
139 struct device_attribute *attr,
140 char *buf)
141 {
142 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
143 struct dev_ext_attribute *ea =
144 container_of(attr, struct dev_ext_attribute, attr);
145 int cap = (long)ea->var;
146
147 return snprintf(buf, PAGE_SIZE, "%u\n",
148 arm_spe_pmu_cap_get(spe_pmu, cap));
149 }
150
151 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
152 &((struct dev_ext_attribute[]) { \
153 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
154 })[0].attr.attr
155
156 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
157 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
158
159 static struct attribute *arm_spe_pmu_cap_attr[] = {
160 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
161 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
162 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
163 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
164 NULL,
165 };
166
167 static struct attribute_group arm_spe_pmu_cap_group = {
168 .name = "caps",
169 .attrs = arm_spe_pmu_cap_attr,
170 };
171
172 /* User ABI */
173 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
174 #define ATTR_CFG_FLD_ts_enable_LO 0
175 #define ATTR_CFG_FLD_ts_enable_HI 0
176 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
177 #define ATTR_CFG_FLD_pa_enable_LO 1
178 #define ATTR_CFG_FLD_pa_enable_HI 1
179 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
180 #define ATTR_CFG_FLD_pct_enable_LO 2
181 #define ATTR_CFG_FLD_pct_enable_HI 2
182 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
183 #define ATTR_CFG_FLD_jitter_LO 16
184 #define ATTR_CFG_FLD_jitter_HI 16
185 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
186 #define ATTR_CFG_FLD_branch_filter_LO 32
187 #define ATTR_CFG_FLD_branch_filter_HI 32
188 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
189 #define ATTR_CFG_FLD_load_filter_LO 33
190 #define ATTR_CFG_FLD_load_filter_HI 33
191 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
192 #define ATTR_CFG_FLD_store_filter_LO 34
193 #define ATTR_CFG_FLD_store_filter_HI 34
194
195 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
196 #define ATTR_CFG_FLD_event_filter_LO 0
197 #define ATTR_CFG_FLD_event_filter_HI 63
198
199 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
200 #define ATTR_CFG_FLD_min_latency_LO 0
201 #define ATTR_CFG_FLD_min_latency_HI 11
202
203 /* Why does everything I do descend into this? */
204 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
205 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
206
207 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
208 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
209
210 #define GEN_PMU_FORMAT_ATTR(name) \
211 PMU_FORMAT_ATTR(name, \
212 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
213 ATTR_CFG_FLD_##name##_LO, \
214 ATTR_CFG_FLD_##name##_HI))
215
216 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
217 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
218
219 #define ATTR_CFG_GET_FLD(attr, name) \
220 _ATTR_CFG_GET_FLD(attr, \
221 ATTR_CFG_FLD_##name##_CFG, \
222 ATTR_CFG_FLD_##name##_LO, \
223 ATTR_CFG_FLD_##name##_HI)
224
225 GEN_PMU_FORMAT_ATTR(ts_enable);
226 GEN_PMU_FORMAT_ATTR(pa_enable);
227 GEN_PMU_FORMAT_ATTR(pct_enable);
228 GEN_PMU_FORMAT_ATTR(jitter);
229 GEN_PMU_FORMAT_ATTR(branch_filter);
230 GEN_PMU_FORMAT_ATTR(load_filter);
231 GEN_PMU_FORMAT_ATTR(store_filter);
232 GEN_PMU_FORMAT_ATTR(event_filter);
233 GEN_PMU_FORMAT_ATTR(min_latency);
234
235 static struct attribute *arm_spe_pmu_formats_attr[] = {
236 &format_attr_ts_enable.attr,
237 &format_attr_pa_enable.attr,
238 &format_attr_pct_enable.attr,
239 &format_attr_jitter.attr,
240 &format_attr_branch_filter.attr,
241 &format_attr_load_filter.attr,
242 &format_attr_store_filter.attr,
243 &format_attr_event_filter.attr,
244 &format_attr_min_latency.attr,
245 NULL,
246 };
247
248 static struct attribute_group arm_spe_pmu_format_group = {
249 .name = "format",
250 .attrs = arm_spe_pmu_formats_attr,
251 };
252
arm_spe_pmu_get_attr_cpumask(struct device * dev,struct device_attribute * attr,char * buf)253 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
254 struct device_attribute *attr,
255 char *buf)
256 {
257 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
258
259 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
260 }
261 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
262
263 static struct attribute *arm_spe_pmu_attrs[] = {
264 &dev_attr_cpumask.attr,
265 NULL,
266 };
267
268 static struct attribute_group arm_spe_pmu_group = {
269 .attrs = arm_spe_pmu_attrs,
270 };
271
272 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
273 &arm_spe_pmu_group,
274 &arm_spe_pmu_cap_group,
275 &arm_spe_pmu_format_group,
276 NULL,
277 };
278
279 /* Convert between user ABI and register values */
arm_spe_event_to_pmscr(struct perf_event * event)280 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
281 {
282 struct perf_event_attr *attr = &event->attr;
283 u64 reg = 0;
284
285 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
286 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
287 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
288
289 if (!attr->exclude_user)
290 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
291
292 if (!attr->exclude_kernel)
293 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
294
295 if (get_spe_event_has_cx(event))
296 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
297
298 return reg;
299 }
300
arm_spe_event_sanitise_period(struct perf_event * event)301 static void arm_spe_event_sanitise_period(struct perf_event *event)
302 {
303 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
304 u64 period = event->hw.sample_period;
305 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
306 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
307
308 if (period < spe_pmu->min_period)
309 period = spe_pmu->min_period;
310 else if (period > max_period)
311 period = max_period;
312 else
313 period &= max_period;
314
315 event->hw.sample_period = period;
316 }
317
arm_spe_event_to_pmsirr(struct perf_event * event)318 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
319 {
320 struct perf_event_attr *attr = &event->attr;
321 u64 reg = 0;
322
323 arm_spe_event_sanitise_period(event);
324
325 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
326 reg |= event->hw.sample_period;
327
328 return reg;
329 }
330
arm_spe_event_to_pmsfcr(struct perf_event * event)331 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
332 {
333 struct perf_event_attr *attr = &event->attr;
334 u64 reg = 0;
335
336 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
337 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
338 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
339
340 if (reg)
341 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
342
343 if (ATTR_CFG_GET_FLD(attr, event_filter))
344 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
345
346 if (ATTR_CFG_GET_FLD(attr, min_latency))
347 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
348
349 return reg;
350 }
351
arm_spe_event_to_pmsevfr(struct perf_event * event)352 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
353 {
354 struct perf_event_attr *attr = &event->attr;
355 return ATTR_CFG_GET_FLD(attr, event_filter);
356 }
357
arm_spe_event_to_pmslatfr(struct perf_event * event)358 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
359 {
360 struct perf_event_attr *attr = &event->attr;
361 return ATTR_CFG_GET_FLD(attr, min_latency)
362 << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
363 }
364
arm_spe_pmu_pad_buf(struct perf_output_handle * handle,int len)365 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
366 {
367 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
368 u64 head = PERF_IDX2OFF(handle->head, buf);
369
370 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
371 if (!buf->snapshot)
372 perf_aux_output_skip(handle, len);
373 }
374
arm_spe_pmu_next_snapshot_off(struct perf_output_handle * handle)375 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
376 {
377 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
378 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
379 u64 head = PERF_IDX2OFF(handle->head, buf);
380 u64 limit = buf->nr_pages * PAGE_SIZE;
381
382 /*
383 * The trace format isn't parseable in reverse, so clamp
384 * the limit to half of the buffer size in snapshot mode
385 * so that the worst case is half a buffer of records, as
386 * opposed to a single record.
387 */
388 if (head < limit >> 1)
389 limit >>= 1;
390
391 /*
392 * If we're within max_record_sz of the limit, we must
393 * pad, move the head index and recompute the limit.
394 */
395 if (limit - head < spe_pmu->max_record_sz) {
396 arm_spe_pmu_pad_buf(handle, limit - head);
397 handle->head = PERF_IDX2OFF(limit, buf);
398 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
399 }
400
401 return limit;
402 }
403
__arm_spe_pmu_next_off(struct perf_output_handle * handle)404 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
405 {
406 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
407 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
408 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
409 u64 limit = bufsize;
410 u64 head, tail, wakeup;
411
412 /*
413 * The head can be misaligned for two reasons:
414 *
415 * 1. The hardware left PMBPTR pointing to the first byte after
416 * a record when generating a buffer management event.
417 *
418 * 2. We used perf_aux_output_skip to consume handle->size bytes
419 * and CIRC_SPACE was used to compute the size, which always
420 * leaves one entry free.
421 *
422 * Deal with this by padding to the next alignment boundary and
423 * moving the head index. If we run out of buffer space, we'll
424 * reduce handle->size to zero and end up reporting truncation.
425 */
426 head = PERF_IDX2OFF(handle->head, buf);
427 if (!IS_ALIGNED(head, spe_pmu->align)) {
428 unsigned long delta = roundup(head, spe_pmu->align) - head;
429
430 delta = min(delta, handle->size);
431 arm_spe_pmu_pad_buf(handle, delta);
432 head = PERF_IDX2OFF(handle->head, buf);
433 }
434
435 /* If we've run out of free space, then nothing more to do */
436 if (!handle->size)
437 goto no_space;
438
439 /* Compute the tail and wakeup indices now that we've aligned head */
440 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
441 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
442
443 /*
444 * Avoid clobbering unconsumed data. We know we have space, so
445 * if we see head == tail we know that the buffer is empty. If
446 * head > tail, then there's nothing to clobber prior to
447 * wrapping.
448 */
449 if (head < tail)
450 limit = round_down(tail, PAGE_SIZE);
451
452 /*
453 * Wakeup may be arbitrarily far into the future. If it's not in
454 * the current generation, either we'll wrap before hitting it,
455 * or it's in the past and has been handled already.
456 *
457 * If there's a wakeup before we wrap, arrange to be woken up by
458 * the page boundary following it. Keep the tail boundary if
459 * that's lower.
460 */
461 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
462 limit = min(limit, round_up(wakeup, PAGE_SIZE));
463
464 if (limit > head)
465 return limit;
466
467 arm_spe_pmu_pad_buf(handle, handle->size);
468 no_space:
469 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
470 perf_aux_output_end(handle, 0);
471 return 0;
472 }
473
arm_spe_pmu_next_off(struct perf_output_handle * handle)474 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
475 {
476 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
477 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
478 u64 limit = __arm_spe_pmu_next_off(handle);
479 u64 head = PERF_IDX2OFF(handle->head, buf);
480
481 /*
482 * If the head has come too close to the end of the buffer,
483 * then pad to the end and recompute the limit.
484 */
485 if (limit && (limit - head < spe_pmu->max_record_sz)) {
486 arm_spe_pmu_pad_buf(handle, limit - head);
487 limit = __arm_spe_pmu_next_off(handle);
488 }
489
490 return limit;
491 }
492
arm_spe_perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)493 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
494 struct perf_event *event)
495 {
496 u64 base, limit;
497 struct arm_spe_pmu_buf *buf;
498
499 /* Start a new aux session */
500 buf = perf_aux_output_begin(handle, event);
501 if (!buf) {
502 event->hw.state |= PERF_HES_STOPPED;
503 /*
504 * We still need to clear the limit pointer, since the
505 * profiler might only be disabled by virtue of a fault.
506 */
507 limit = 0;
508 goto out_write_limit;
509 }
510
511 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
512 : arm_spe_pmu_next_off(handle);
513 if (limit)
514 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
515
516 limit += (u64)buf->base;
517 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
518 write_sysreg_s(base, SYS_PMBPTR_EL1);
519
520 out_write_limit:
521 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
522 }
523
arm_spe_perf_aux_output_end(struct perf_output_handle * handle)524 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
525 {
526 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
527 u64 offset, size;
528
529 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
530 size = offset - PERF_IDX2OFF(handle->head, buf);
531
532 if (buf->snapshot)
533 handle->head = offset;
534
535 perf_aux_output_end(handle, size);
536 }
537
arm_spe_pmu_disable_and_drain_local(void)538 static void arm_spe_pmu_disable_and_drain_local(void)
539 {
540 /* Disable profiling at EL0 and EL1 */
541 write_sysreg_s(0, SYS_PMSCR_EL1);
542 isb();
543
544 /* Drain any buffered data */
545 psb_csync();
546 dsb(nsh);
547
548 /* Disable the profiling buffer */
549 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
550 isb();
551 }
552
553 /* IRQ handling */
554 static enum arm_spe_pmu_buf_fault_action
arm_spe_pmu_buf_get_fault_act(struct perf_output_handle * handle)555 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
556 {
557 const char *err_str;
558 u64 pmbsr;
559 enum arm_spe_pmu_buf_fault_action ret;
560
561 /*
562 * Ensure new profiling data is visible to the CPU and any external
563 * aborts have been resolved.
564 */
565 psb_csync();
566 dsb(nsh);
567
568 /* Ensure hardware updates to PMBPTR_EL1 are visible */
569 isb();
570
571 /* Service required? */
572 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
573 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
574 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
575
576 /*
577 * If we've lost data, disable profiling and also set the PARTIAL
578 * flag to indicate that the last record is corrupted.
579 */
580 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
581 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
582 PERF_AUX_FLAG_PARTIAL);
583
584 /* Report collisions to userspace so that it can up the period */
585 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
586 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
587
588 /* We only expect buffer management events */
589 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
590 case SYS_PMBSR_EL1_EC_BUF:
591 /* Handled below */
592 break;
593 case SYS_PMBSR_EL1_EC_FAULT_S1:
594 case SYS_PMBSR_EL1_EC_FAULT_S2:
595 err_str = "Unexpected buffer fault";
596 goto out_err;
597 default:
598 err_str = "Unknown error code";
599 goto out_err;
600 }
601
602 /* Buffer management event */
603 switch (pmbsr &
604 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
605 case SYS_PMBSR_EL1_BUF_BSC_FULL:
606 ret = SPE_PMU_BUF_FAULT_ACT_OK;
607 goto out_stop;
608 default:
609 err_str = "Unknown buffer status code";
610 }
611
612 out_err:
613 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
614 err_str, smp_processor_id(), pmbsr,
615 read_sysreg_s(SYS_PMBPTR_EL1),
616 read_sysreg_s(SYS_PMBLIMITR_EL1));
617 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
618
619 out_stop:
620 arm_spe_perf_aux_output_end(handle);
621 return ret;
622 }
623
arm_spe_pmu_irq_handler(int irq,void * dev)624 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
625 {
626 struct perf_output_handle *handle = dev;
627 struct perf_event *event = handle->event;
628 enum arm_spe_pmu_buf_fault_action act;
629
630 if (!perf_get_aux(handle))
631 return IRQ_NONE;
632
633 act = arm_spe_pmu_buf_get_fault_act(handle);
634 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
635 return IRQ_NONE;
636
637 /*
638 * Ensure perf callbacks have completed, which may disable the
639 * profiling buffer in response to a TRUNCATION flag.
640 */
641 irq_work_run();
642
643 switch (act) {
644 case SPE_PMU_BUF_FAULT_ACT_FATAL:
645 /*
646 * If a fatal exception occurred then leaving the profiling
647 * buffer enabled is a recipe waiting to happen. Since
648 * fatal faults don't always imply truncation, make sure
649 * that the profiling buffer is disabled explicitly before
650 * clearing the syndrome register.
651 */
652 arm_spe_pmu_disable_and_drain_local();
653 break;
654 case SPE_PMU_BUF_FAULT_ACT_OK:
655 /*
656 * We handled the fault (the buffer was full), so resume
657 * profiling as long as we didn't detect truncation.
658 * PMBPTR might be misaligned, but we'll burn that bridge
659 * when we get to it.
660 */
661 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
662 arm_spe_perf_aux_output_begin(handle, event);
663 isb();
664 }
665 break;
666 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
667 /* We've seen you before, but GCC has the memory of a sieve. */
668 break;
669 }
670
671 /* The buffer pointers are now sane, so resume profiling. */
672 write_sysreg_s(0, SYS_PMBSR_EL1);
673 return IRQ_HANDLED;
674 }
675
676 /* Perf callbacks */
arm_spe_pmu_event_init(struct perf_event * event)677 static int arm_spe_pmu_event_init(struct perf_event *event)
678 {
679 u64 reg;
680 struct perf_event_attr *attr = &event->attr;
681 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
682
683 /* This is, of course, deeply driver-specific */
684 if (attr->type != event->pmu->type)
685 return -ENOENT;
686
687 if (event->cpu >= 0 &&
688 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
689 return -ENOENT;
690
691 if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
692 return -EOPNOTSUPP;
693
694 if (attr->exclude_idle)
695 return -EOPNOTSUPP;
696
697 /*
698 * Feedback-directed frequency throttling doesn't work when we
699 * have a buffer of samples. We'd need to manually count the
700 * samples in the buffer when it fills up and adjust the event
701 * count to reflect that. Instead, just force the user to specify
702 * a sample period.
703 */
704 if (attr->freq)
705 return -EINVAL;
706
707 reg = arm_spe_event_to_pmsfcr(event);
708 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
709 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
710 return -EOPNOTSUPP;
711
712 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
713 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
714 return -EOPNOTSUPP;
715
716 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
717 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
718 return -EOPNOTSUPP;
719
720 set_spe_event_has_cx(event);
721 reg = arm_spe_event_to_pmscr(event);
722 if (!perfmon_capable() &&
723 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
724 BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
725 return -EACCES;
726
727 return 0;
728 }
729
arm_spe_pmu_start(struct perf_event * event,int flags)730 static void arm_spe_pmu_start(struct perf_event *event, int flags)
731 {
732 u64 reg;
733 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
734 struct hw_perf_event *hwc = &event->hw;
735 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
736
737 hwc->state = 0;
738 arm_spe_perf_aux_output_begin(handle, event);
739 if (hwc->state)
740 return;
741
742 reg = arm_spe_event_to_pmsfcr(event);
743 write_sysreg_s(reg, SYS_PMSFCR_EL1);
744
745 reg = arm_spe_event_to_pmsevfr(event);
746 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
747
748 reg = arm_spe_event_to_pmslatfr(event);
749 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
750
751 if (flags & PERF_EF_RELOAD) {
752 reg = arm_spe_event_to_pmsirr(event);
753 write_sysreg_s(reg, SYS_PMSIRR_EL1);
754 isb();
755 reg = local64_read(&hwc->period_left);
756 write_sysreg_s(reg, SYS_PMSICR_EL1);
757 }
758
759 reg = arm_spe_event_to_pmscr(event);
760 isb();
761 write_sysreg_s(reg, SYS_PMSCR_EL1);
762 }
763
arm_spe_pmu_stop(struct perf_event * event,int flags)764 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
765 {
766 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
767 struct hw_perf_event *hwc = &event->hw;
768 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
769
770 /* If we're already stopped, then nothing to do */
771 if (hwc->state & PERF_HES_STOPPED)
772 return;
773
774 /* Stop all trace generation */
775 arm_spe_pmu_disable_and_drain_local();
776
777 if (flags & PERF_EF_UPDATE) {
778 /*
779 * If there's a fault pending then ensure we contain it
780 * to this buffer, since we might be on the context-switch
781 * path.
782 */
783 if (perf_get_aux(handle)) {
784 enum arm_spe_pmu_buf_fault_action act;
785
786 act = arm_spe_pmu_buf_get_fault_act(handle);
787 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
788 arm_spe_perf_aux_output_end(handle);
789 else
790 write_sysreg_s(0, SYS_PMBSR_EL1);
791 }
792
793 /*
794 * This may also contain ECOUNT, but nobody else should
795 * be looking at period_left, since we forbid frequency
796 * based sampling.
797 */
798 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
799 hwc->state |= PERF_HES_UPTODATE;
800 }
801
802 hwc->state |= PERF_HES_STOPPED;
803 }
804
arm_spe_pmu_add(struct perf_event * event,int flags)805 static int arm_spe_pmu_add(struct perf_event *event, int flags)
806 {
807 int ret = 0;
808 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
809 struct hw_perf_event *hwc = &event->hw;
810 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
811
812 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
813 return -ENOENT;
814
815 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
816
817 if (flags & PERF_EF_START) {
818 arm_spe_pmu_start(event, PERF_EF_RELOAD);
819 if (hwc->state & PERF_HES_STOPPED)
820 ret = -EINVAL;
821 }
822
823 return ret;
824 }
825
arm_spe_pmu_del(struct perf_event * event,int flags)826 static void arm_spe_pmu_del(struct perf_event *event, int flags)
827 {
828 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
829 }
830
arm_spe_pmu_read(struct perf_event * event)831 static void arm_spe_pmu_read(struct perf_event *event)
832 {
833 }
834
arm_spe_pmu_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)835 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
836 int nr_pages, bool snapshot)
837 {
838 int i, cpu = event->cpu;
839 struct page **pglist;
840 struct arm_spe_pmu_buf *buf;
841
842 /* We need at least two pages for this to work. */
843 if (nr_pages < 2)
844 return NULL;
845
846 /*
847 * We require an even number of pages for snapshot mode, so that
848 * we can effectively treat the buffer as consisting of two equal
849 * parts and give userspace a fighting chance of getting some
850 * useful data out of it.
851 */
852 if (snapshot && (nr_pages & 1))
853 return NULL;
854
855 if (cpu == -1)
856 cpu = raw_smp_processor_id();
857
858 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
859 if (!buf)
860 return NULL;
861
862 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
863 if (!pglist)
864 goto out_free_buf;
865
866 for (i = 0; i < nr_pages; ++i)
867 pglist[i] = virt_to_page(pages[i]);
868
869 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
870 if (!buf->base)
871 goto out_free_pglist;
872
873 buf->nr_pages = nr_pages;
874 buf->snapshot = snapshot;
875
876 kfree(pglist);
877 return buf;
878
879 out_free_pglist:
880 kfree(pglist);
881 out_free_buf:
882 kfree(buf);
883 return NULL;
884 }
885
arm_spe_pmu_free_aux(void * aux)886 static void arm_spe_pmu_free_aux(void *aux)
887 {
888 struct arm_spe_pmu_buf *buf = aux;
889
890 vunmap(buf->base);
891 kfree(buf);
892 }
893
894 /* Initialisation and teardown functions */
arm_spe_pmu_perf_init(struct arm_spe_pmu * spe_pmu)895 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
896 {
897 static atomic_t pmu_idx = ATOMIC_INIT(-1);
898
899 int idx;
900 char *name;
901 struct device *dev = &spe_pmu->pdev->dev;
902
903 spe_pmu->pmu = (struct pmu) {
904 .module = THIS_MODULE,
905 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
906 .attr_groups = arm_spe_pmu_attr_groups,
907 /*
908 * We hitch a ride on the software context here, so that
909 * we can support per-task profiling (which is not possible
910 * with the invalid context as it doesn't get sched callbacks).
911 * This requires that userspace either uses a dummy event for
912 * perf_event_open, since the aux buffer is not setup until
913 * a subsequent mmap, or creates the profiling event in a
914 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
915 * once the buffer has been created.
916 */
917 .task_ctx_nr = perf_sw_context,
918 .event_init = arm_spe_pmu_event_init,
919 .add = arm_spe_pmu_add,
920 .del = arm_spe_pmu_del,
921 .start = arm_spe_pmu_start,
922 .stop = arm_spe_pmu_stop,
923 .read = arm_spe_pmu_read,
924 .setup_aux = arm_spe_pmu_setup_aux,
925 .free_aux = arm_spe_pmu_free_aux,
926 };
927
928 idx = atomic_inc_return(&pmu_idx);
929 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
930 if (!name) {
931 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
932 return -ENOMEM;
933 }
934
935 return perf_pmu_register(&spe_pmu->pmu, name, -1);
936 }
937
arm_spe_pmu_perf_destroy(struct arm_spe_pmu * spe_pmu)938 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
939 {
940 perf_pmu_unregister(&spe_pmu->pmu);
941 }
942
__arm_spe_pmu_dev_probe(void * info)943 static void __arm_spe_pmu_dev_probe(void *info)
944 {
945 int fld;
946 u64 reg;
947 struct arm_spe_pmu *spe_pmu = info;
948 struct device *dev = &spe_pmu->pdev->dev;
949
950 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
951 ID_AA64DFR0_PMSVER_SHIFT);
952 if (!fld) {
953 dev_err(dev,
954 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
955 fld, smp_processor_id());
956 return;
957 }
958
959 /* Read PMBIDR first to determine whether or not we have access */
960 reg = read_sysreg_s(SYS_PMBIDR_EL1);
961 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
962 dev_err(dev,
963 "profiling buffer owned by higher exception level\n");
964 return;
965 }
966
967 /* Minimum alignment. If it's out-of-range, then fail the probe */
968 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
969 spe_pmu->align = 1 << fld;
970 if (spe_pmu->align > SZ_2K) {
971 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
972 fld, smp_processor_id());
973 return;
974 }
975
976 /* It's now safe to read PMSIDR and figure out what we've got */
977 reg = read_sysreg_s(SYS_PMSIDR_EL1);
978 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
979 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
980
981 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
982 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
983
984 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
985 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
986
987 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
988 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
989
990 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
991 spe_pmu->features |= SPE_PMU_FEAT_LDS;
992
993 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
994 spe_pmu->features |= SPE_PMU_FEAT_ERND;
995
996 /* This field has a spaced out encoding, so just use a look-up */
997 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
998 switch (fld) {
999 case 0:
1000 spe_pmu->min_period = 256;
1001 break;
1002 case 2:
1003 spe_pmu->min_period = 512;
1004 break;
1005 case 3:
1006 spe_pmu->min_period = 768;
1007 break;
1008 case 4:
1009 spe_pmu->min_period = 1024;
1010 break;
1011 case 5:
1012 spe_pmu->min_period = 1536;
1013 break;
1014 case 6:
1015 spe_pmu->min_period = 2048;
1016 break;
1017 case 7:
1018 spe_pmu->min_period = 3072;
1019 break;
1020 default:
1021 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1022 fld);
1023 fallthrough;
1024 case 8:
1025 spe_pmu->min_period = 4096;
1026 }
1027
1028 /* Maximum record size. If it's out-of-range, then fail the probe */
1029 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1030 spe_pmu->max_record_sz = 1 << fld;
1031 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1032 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1033 fld, smp_processor_id());
1034 return;
1035 }
1036
1037 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1038 switch (fld) {
1039 default:
1040 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1041 fld);
1042 fallthrough;
1043 case 2:
1044 spe_pmu->counter_sz = 12;
1045 }
1046
1047 dev_info(dev,
1048 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1049 cpumask_pr_args(&spe_pmu->supported_cpus),
1050 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1051
1052 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1053 return;
1054 }
1055
__arm_spe_pmu_reset_local(void)1056 static void __arm_spe_pmu_reset_local(void)
1057 {
1058 /*
1059 * This is probably overkill, as we have no idea where we're
1060 * draining any buffered data to...
1061 */
1062 arm_spe_pmu_disable_and_drain_local();
1063
1064 /* Reset the buffer base pointer */
1065 write_sysreg_s(0, SYS_PMBPTR_EL1);
1066 isb();
1067
1068 /* Clear any pending management interrupts */
1069 write_sysreg_s(0, SYS_PMBSR_EL1);
1070 isb();
1071 }
1072
__arm_spe_pmu_setup_one(void * info)1073 static void __arm_spe_pmu_setup_one(void *info)
1074 {
1075 struct arm_spe_pmu *spe_pmu = info;
1076
1077 __arm_spe_pmu_reset_local();
1078 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1079 }
1080
__arm_spe_pmu_stop_one(void * info)1081 static void __arm_spe_pmu_stop_one(void *info)
1082 {
1083 struct arm_spe_pmu *spe_pmu = info;
1084
1085 disable_percpu_irq(spe_pmu->irq);
1086 __arm_spe_pmu_reset_local();
1087 }
1088
arm_spe_pmu_cpu_startup(unsigned int cpu,struct hlist_node * node)1089 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1090 {
1091 struct arm_spe_pmu *spe_pmu;
1092
1093 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1094 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1095 return 0;
1096
1097 __arm_spe_pmu_setup_one(spe_pmu);
1098 return 0;
1099 }
1100
arm_spe_pmu_cpu_teardown(unsigned int cpu,struct hlist_node * node)1101 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1102 {
1103 struct arm_spe_pmu *spe_pmu;
1104
1105 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1106 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1107 return 0;
1108
1109 __arm_spe_pmu_stop_one(spe_pmu);
1110 return 0;
1111 }
1112
arm_spe_pmu_dev_init(struct arm_spe_pmu * spe_pmu)1113 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1114 {
1115 int ret;
1116 cpumask_t *mask = &spe_pmu->supported_cpus;
1117
1118 /* Make sure we probe the hardware on a relevant CPU */
1119 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1120 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1121 return -ENXIO;
1122
1123 /* Request our PPIs (note that the IRQ is still disabled) */
1124 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1125 spe_pmu->handle);
1126 if (ret)
1127 return ret;
1128
1129 /*
1130 * Register our hotplug notifier now so we don't miss any events.
1131 * This will enable the IRQ for any supported CPUs that are already
1132 * up.
1133 */
1134 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1135 &spe_pmu->hotplug_node);
1136 if (ret)
1137 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1138
1139 return ret;
1140 }
1141
arm_spe_pmu_dev_teardown(struct arm_spe_pmu * spe_pmu)1142 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1143 {
1144 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1145 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1146 }
1147
1148 /* Driver and device probing */
arm_spe_pmu_irq_probe(struct arm_spe_pmu * spe_pmu)1149 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1150 {
1151 struct platform_device *pdev = spe_pmu->pdev;
1152 int irq = platform_get_irq(pdev, 0);
1153
1154 if (irq < 0)
1155 return -ENXIO;
1156
1157 if (!irq_is_percpu(irq)) {
1158 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1159 return -EINVAL;
1160 }
1161
1162 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1163 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1164 return -EINVAL;
1165 }
1166
1167 spe_pmu->irq = irq;
1168 return 0;
1169 }
1170
1171 static const struct of_device_id arm_spe_pmu_of_match[] = {
1172 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1173 { /* Sentinel */ },
1174 };
1175 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1176
1177 static const struct platform_device_id arm_spe_match[] = {
1178 { ARMV8_SPE_PDEV_NAME, 0},
1179 { }
1180 };
1181 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1182
arm_spe_pmu_device_probe(struct platform_device * pdev)1183 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1184 {
1185 int ret;
1186 struct arm_spe_pmu *spe_pmu;
1187 struct device *dev = &pdev->dev;
1188
1189 /*
1190 * If kernelspace is unmapped when running at EL0, then the SPE
1191 * buffer will fault and prematurely terminate the AUX session.
1192 */
1193 if (arm64_kernel_unmapped_at_el0()) {
1194 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1195 return -EPERM;
1196 }
1197
1198 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1199 if (!spe_pmu) {
1200 dev_err(dev, "failed to allocate spe_pmu\n");
1201 return -ENOMEM;
1202 }
1203
1204 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1205 if (!spe_pmu->handle)
1206 return -ENOMEM;
1207
1208 spe_pmu->pdev = pdev;
1209 platform_set_drvdata(pdev, spe_pmu);
1210
1211 ret = arm_spe_pmu_irq_probe(spe_pmu);
1212 if (ret)
1213 goto out_free_handle;
1214
1215 ret = arm_spe_pmu_dev_init(spe_pmu);
1216 if (ret)
1217 goto out_free_handle;
1218
1219 ret = arm_spe_pmu_perf_init(spe_pmu);
1220 if (ret)
1221 goto out_teardown_dev;
1222
1223 return 0;
1224
1225 out_teardown_dev:
1226 arm_spe_pmu_dev_teardown(spe_pmu);
1227 out_free_handle:
1228 free_percpu(spe_pmu->handle);
1229 return ret;
1230 }
1231
arm_spe_pmu_device_remove(struct platform_device * pdev)1232 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1233 {
1234 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1235
1236 arm_spe_pmu_perf_destroy(spe_pmu);
1237 arm_spe_pmu_dev_teardown(spe_pmu);
1238 free_percpu(spe_pmu->handle);
1239 return 0;
1240 }
1241
1242 static struct platform_driver arm_spe_pmu_driver = {
1243 .id_table = arm_spe_match,
1244 .driver = {
1245 .name = DRVNAME,
1246 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1247 .suppress_bind_attrs = true,
1248 },
1249 .probe = arm_spe_pmu_device_probe,
1250 .remove = arm_spe_pmu_device_remove,
1251 };
1252
arm_spe_pmu_init(void)1253 static int __init arm_spe_pmu_init(void)
1254 {
1255 int ret;
1256
1257 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1258 arm_spe_pmu_cpu_startup,
1259 arm_spe_pmu_cpu_teardown);
1260 if (ret < 0)
1261 return ret;
1262 arm_spe_pmu_online = ret;
1263
1264 ret = platform_driver_register(&arm_spe_pmu_driver);
1265 if (ret)
1266 cpuhp_remove_multi_state(arm_spe_pmu_online);
1267
1268 return ret;
1269 }
1270
arm_spe_pmu_exit(void)1271 static void __exit arm_spe_pmu_exit(void)
1272 {
1273 platform_driver_unregister(&arm_spe_pmu_driver);
1274 cpuhp_remove_multi_state(arm_spe_pmu_online);
1275 }
1276
1277 module_init(arm_spe_pmu_init);
1278 module_exit(arm_spe_pmu_exit);
1279
1280 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1281 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1282 MODULE_LICENSE("GPL v2");
1283