• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10 
11 #define PMUNAME					"arm_spe"
12 #define DRVNAME					PMUNAME "_pmu"
13 #define pr_fmt(fmt)				DRVNAME ": " fmt
14 
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41 
42 /*
43  * Cache if the event is allowed to trace Context information.
44  * This allows us to perform the check, i.e, perfmon_capable(),
45  * in the context of the event owner, once, during the event_init().
46  */
47 #define SPE_PMU_HW_FLAGS_CX			BIT(0)
48 
set_spe_event_has_cx(struct perf_event * event)49 static void set_spe_event_has_cx(struct perf_event *event)
50 {
51 	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
52 		event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
53 }
54 
get_spe_event_has_cx(struct perf_event * event)55 static bool get_spe_event_has_cx(struct perf_event *event)
56 {
57 	return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
58 }
59 
60 #define ARM_SPE_BUF_PAD_BYTE			0
61 
62 struct arm_spe_pmu_buf {
63 	int					nr_pages;
64 	bool					snapshot;
65 	void					*base;
66 };
67 
68 struct arm_spe_pmu {
69 	struct pmu				pmu;
70 	struct platform_device			*pdev;
71 	cpumask_t				supported_cpus;
72 	struct hlist_node			hotplug_node;
73 
74 	int					irq; /* PPI */
75 
76 	u16					min_period;
77 	u16					counter_sz;
78 
79 #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
80 #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
81 #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
82 #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
83 #define SPE_PMU_FEAT_LDS			(1UL << 4)
84 #define SPE_PMU_FEAT_ERND			(1UL << 5)
85 #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
86 	u64					features;
87 
88 	u16					max_record_sz;
89 	u16					align;
90 	struct perf_output_handle __percpu	*handle;
91 };
92 
93 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
94 
95 /* Convert a free-running index from perf into an SPE buffer offset */
96 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
97 
98 /* Keep track of our dynamic hotplug state */
99 static enum cpuhp_state arm_spe_pmu_online;
100 
101 enum arm_spe_pmu_buf_fault_action {
102 	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
103 	SPE_PMU_BUF_FAULT_ACT_FATAL,
104 	SPE_PMU_BUF_FAULT_ACT_OK,
105 };
106 
107 /* This sysfs gunk was really good fun to write. */
108 enum arm_spe_pmu_capabilities {
109 	SPE_PMU_CAP_ARCH_INST = 0,
110 	SPE_PMU_CAP_ERND,
111 	SPE_PMU_CAP_FEAT_MAX,
112 	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
113 	SPE_PMU_CAP_MIN_IVAL,
114 };
115 
116 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
117 	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
118 	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
119 };
120 
arm_spe_pmu_cap_get(struct arm_spe_pmu * spe_pmu,int cap)121 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
122 {
123 	if (cap < SPE_PMU_CAP_FEAT_MAX)
124 		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
125 
126 	switch (cap) {
127 	case SPE_PMU_CAP_CNT_SZ:
128 		return spe_pmu->counter_sz;
129 	case SPE_PMU_CAP_MIN_IVAL:
130 		return spe_pmu->min_period;
131 	default:
132 		WARN(1, "unknown cap %d\n", cap);
133 	}
134 
135 	return 0;
136 }
137 
arm_spe_pmu_cap_show(struct device * dev,struct device_attribute * attr,char * buf)138 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
139 				    struct device_attribute *attr,
140 				    char *buf)
141 {
142 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
143 	struct dev_ext_attribute *ea =
144 		container_of(attr, struct dev_ext_attribute, attr);
145 	int cap = (long)ea->var;
146 
147 	return snprintf(buf, PAGE_SIZE, "%u\n",
148 		arm_spe_pmu_cap_get(spe_pmu, cap));
149 }
150 
151 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
152 	&((struct dev_ext_attribute[]) {				\
153 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
154 	})[0].attr.attr
155 
156 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
157 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
158 
159 static struct attribute *arm_spe_pmu_cap_attr[] = {
160 	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
161 	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
162 	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
163 	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
164 	NULL,
165 };
166 
167 static struct attribute_group arm_spe_pmu_cap_group = {
168 	.name	= "caps",
169 	.attrs	= arm_spe_pmu_cap_attr,
170 };
171 
172 /* User ABI */
173 #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
174 #define ATTR_CFG_FLD_ts_enable_LO		0
175 #define ATTR_CFG_FLD_ts_enable_HI		0
176 #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
177 #define ATTR_CFG_FLD_pa_enable_LO		1
178 #define ATTR_CFG_FLD_pa_enable_HI		1
179 #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
180 #define ATTR_CFG_FLD_pct_enable_LO		2
181 #define ATTR_CFG_FLD_pct_enable_HI		2
182 #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
183 #define ATTR_CFG_FLD_jitter_LO			16
184 #define ATTR_CFG_FLD_jitter_HI			16
185 #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
186 #define ATTR_CFG_FLD_branch_filter_LO		32
187 #define ATTR_CFG_FLD_branch_filter_HI		32
188 #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
189 #define ATTR_CFG_FLD_load_filter_LO		33
190 #define ATTR_CFG_FLD_load_filter_HI		33
191 #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
192 #define ATTR_CFG_FLD_store_filter_LO		34
193 #define ATTR_CFG_FLD_store_filter_HI		34
194 
195 #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
196 #define ATTR_CFG_FLD_event_filter_LO		0
197 #define ATTR_CFG_FLD_event_filter_HI		63
198 
199 #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
200 #define ATTR_CFG_FLD_min_latency_LO		0
201 #define ATTR_CFG_FLD_min_latency_HI		11
202 
203 /* Why does everything I do descend into this? */
204 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
205 	(lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
206 
207 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
208 	__GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
209 
210 #define GEN_PMU_FORMAT_ATTR(name)					\
211 	PMU_FORMAT_ATTR(name,						\
212 	_GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,			\
213 			     ATTR_CFG_FLD_##name##_LO,			\
214 			     ATTR_CFG_FLD_##name##_HI))
215 
216 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)				\
217 	((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
218 
219 #define ATTR_CFG_GET_FLD(attr, name)					\
220 	_ATTR_CFG_GET_FLD(attr,						\
221 			  ATTR_CFG_FLD_##name##_CFG,			\
222 			  ATTR_CFG_FLD_##name##_LO,			\
223 			  ATTR_CFG_FLD_##name##_HI)
224 
225 GEN_PMU_FORMAT_ATTR(ts_enable);
226 GEN_PMU_FORMAT_ATTR(pa_enable);
227 GEN_PMU_FORMAT_ATTR(pct_enable);
228 GEN_PMU_FORMAT_ATTR(jitter);
229 GEN_PMU_FORMAT_ATTR(branch_filter);
230 GEN_PMU_FORMAT_ATTR(load_filter);
231 GEN_PMU_FORMAT_ATTR(store_filter);
232 GEN_PMU_FORMAT_ATTR(event_filter);
233 GEN_PMU_FORMAT_ATTR(min_latency);
234 
235 static struct attribute *arm_spe_pmu_formats_attr[] = {
236 	&format_attr_ts_enable.attr,
237 	&format_attr_pa_enable.attr,
238 	&format_attr_pct_enable.attr,
239 	&format_attr_jitter.attr,
240 	&format_attr_branch_filter.attr,
241 	&format_attr_load_filter.attr,
242 	&format_attr_store_filter.attr,
243 	&format_attr_event_filter.attr,
244 	&format_attr_min_latency.attr,
245 	NULL,
246 };
247 
248 static struct attribute_group arm_spe_pmu_format_group = {
249 	.name	= "format",
250 	.attrs	= arm_spe_pmu_formats_attr,
251 };
252 
arm_spe_pmu_get_attr_cpumask(struct device * dev,struct device_attribute * attr,char * buf)253 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
254 					    struct device_attribute *attr,
255 					    char *buf)
256 {
257 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
258 
259 	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
260 }
261 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
262 
263 static struct attribute *arm_spe_pmu_attrs[] = {
264 	&dev_attr_cpumask.attr,
265 	NULL,
266 };
267 
268 static struct attribute_group arm_spe_pmu_group = {
269 	.attrs	= arm_spe_pmu_attrs,
270 };
271 
272 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
273 	&arm_spe_pmu_group,
274 	&arm_spe_pmu_cap_group,
275 	&arm_spe_pmu_format_group,
276 	NULL,
277 };
278 
279 /* Convert between user ABI and register values */
arm_spe_event_to_pmscr(struct perf_event * event)280 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
281 {
282 	struct perf_event_attr *attr = &event->attr;
283 	u64 reg = 0;
284 
285 	reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
286 	reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
287 	reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
288 
289 	if (!attr->exclude_user)
290 		reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
291 
292 	if (!attr->exclude_kernel)
293 		reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
294 
295 	if (get_spe_event_has_cx(event))
296 		reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
297 
298 	return reg;
299 }
300 
arm_spe_event_sanitise_period(struct perf_event * event)301 static void arm_spe_event_sanitise_period(struct perf_event *event)
302 {
303 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
304 	u64 period = event->hw.sample_period;
305 	u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
306 			 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
307 
308 	if (period < spe_pmu->min_period)
309 		period = spe_pmu->min_period;
310 	else if (period > max_period)
311 		period = max_period;
312 	else
313 		period &= max_period;
314 
315 	event->hw.sample_period = period;
316 }
317 
arm_spe_event_to_pmsirr(struct perf_event * event)318 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
319 {
320 	struct perf_event_attr *attr = &event->attr;
321 	u64 reg = 0;
322 
323 	arm_spe_event_sanitise_period(event);
324 
325 	reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
326 	reg |= event->hw.sample_period;
327 
328 	return reg;
329 }
330 
arm_spe_event_to_pmsfcr(struct perf_event * event)331 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
332 {
333 	struct perf_event_attr *attr = &event->attr;
334 	u64 reg = 0;
335 
336 	reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
337 	reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
338 	reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
339 
340 	if (reg)
341 		reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
342 
343 	if (ATTR_CFG_GET_FLD(attr, event_filter))
344 		reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
345 
346 	if (ATTR_CFG_GET_FLD(attr, min_latency))
347 		reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
348 
349 	return reg;
350 }
351 
arm_spe_event_to_pmsevfr(struct perf_event * event)352 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
353 {
354 	struct perf_event_attr *attr = &event->attr;
355 	return ATTR_CFG_GET_FLD(attr, event_filter);
356 }
357 
arm_spe_event_to_pmslatfr(struct perf_event * event)358 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
359 {
360 	struct perf_event_attr *attr = &event->attr;
361 	return ATTR_CFG_GET_FLD(attr, min_latency)
362 	       << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
363 }
364 
arm_spe_pmu_pad_buf(struct perf_output_handle * handle,int len)365 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
366 {
367 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
368 	u64 head = PERF_IDX2OFF(handle->head, buf);
369 
370 	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
371 	if (!buf->snapshot)
372 		perf_aux_output_skip(handle, len);
373 }
374 
arm_spe_pmu_next_snapshot_off(struct perf_output_handle * handle)375 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
376 {
377 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
378 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
379 	u64 head = PERF_IDX2OFF(handle->head, buf);
380 	u64 limit = buf->nr_pages * PAGE_SIZE;
381 
382 	/*
383 	 * The trace format isn't parseable in reverse, so clamp
384 	 * the limit to half of the buffer size in snapshot mode
385 	 * so that the worst case is half a buffer of records, as
386 	 * opposed to a single record.
387 	 */
388 	if (head < limit >> 1)
389 		limit >>= 1;
390 
391 	/*
392 	 * If we're within max_record_sz of the limit, we must
393 	 * pad, move the head index and recompute the limit.
394 	 */
395 	if (limit - head < spe_pmu->max_record_sz) {
396 		arm_spe_pmu_pad_buf(handle, limit - head);
397 		handle->head = PERF_IDX2OFF(limit, buf);
398 		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
399 	}
400 
401 	return limit;
402 }
403 
__arm_spe_pmu_next_off(struct perf_output_handle * handle)404 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
405 {
406 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
407 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
408 	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
409 	u64 limit = bufsize;
410 	u64 head, tail, wakeup;
411 
412 	/*
413 	 * The head can be misaligned for two reasons:
414 	 *
415 	 * 1. The hardware left PMBPTR pointing to the first byte after
416 	 *    a record when generating a buffer management event.
417 	 *
418 	 * 2. We used perf_aux_output_skip to consume handle->size bytes
419 	 *    and CIRC_SPACE was used to compute the size, which always
420 	 *    leaves one entry free.
421 	 *
422 	 * Deal with this by padding to the next alignment boundary and
423 	 * moving the head index. If we run out of buffer space, we'll
424 	 * reduce handle->size to zero and end up reporting truncation.
425 	 */
426 	head = PERF_IDX2OFF(handle->head, buf);
427 	if (!IS_ALIGNED(head, spe_pmu->align)) {
428 		unsigned long delta = roundup(head, spe_pmu->align) - head;
429 
430 		delta = min(delta, handle->size);
431 		arm_spe_pmu_pad_buf(handle, delta);
432 		head = PERF_IDX2OFF(handle->head, buf);
433 	}
434 
435 	/* If we've run out of free space, then nothing more to do */
436 	if (!handle->size)
437 		goto no_space;
438 
439 	/* Compute the tail and wakeup indices now that we've aligned head */
440 	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
441 	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
442 
443 	/*
444 	 * Avoid clobbering unconsumed data. We know we have space, so
445 	 * if we see head == tail we know that the buffer is empty. If
446 	 * head > tail, then there's nothing to clobber prior to
447 	 * wrapping.
448 	 */
449 	if (head < tail)
450 		limit = round_down(tail, PAGE_SIZE);
451 
452 	/*
453 	 * Wakeup may be arbitrarily far into the future. If it's not in
454 	 * the current generation, either we'll wrap before hitting it,
455 	 * or it's in the past and has been handled already.
456 	 *
457 	 * If there's a wakeup before we wrap, arrange to be woken up by
458 	 * the page boundary following it. Keep the tail boundary if
459 	 * that's lower.
460 	 */
461 	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
462 		limit = min(limit, round_up(wakeup, PAGE_SIZE));
463 
464 	if (limit > head)
465 		return limit;
466 
467 	arm_spe_pmu_pad_buf(handle, handle->size);
468 no_space:
469 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
470 	perf_aux_output_end(handle, 0);
471 	return 0;
472 }
473 
arm_spe_pmu_next_off(struct perf_output_handle * handle)474 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
475 {
476 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
477 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
478 	u64 limit = __arm_spe_pmu_next_off(handle);
479 	u64 head = PERF_IDX2OFF(handle->head, buf);
480 
481 	/*
482 	 * If the head has come too close to the end of the buffer,
483 	 * then pad to the end and recompute the limit.
484 	 */
485 	if (limit && (limit - head < spe_pmu->max_record_sz)) {
486 		arm_spe_pmu_pad_buf(handle, limit - head);
487 		limit = __arm_spe_pmu_next_off(handle);
488 	}
489 
490 	return limit;
491 }
492 
arm_spe_perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)493 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
494 					  struct perf_event *event)
495 {
496 	u64 base, limit;
497 	struct arm_spe_pmu_buf *buf;
498 
499 	/* Start a new aux session */
500 	buf = perf_aux_output_begin(handle, event);
501 	if (!buf) {
502 		event->hw.state |= PERF_HES_STOPPED;
503 		/*
504 		 * We still need to clear the limit pointer, since the
505 		 * profiler might only be disabled by virtue of a fault.
506 		 */
507 		limit = 0;
508 		goto out_write_limit;
509 	}
510 
511 	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
512 			      : arm_spe_pmu_next_off(handle);
513 	if (limit)
514 		limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
515 
516 	limit += (u64)buf->base;
517 	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
518 	write_sysreg_s(base, SYS_PMBPTR_EL1);
519 
520 out_write_limit:
521 	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
522 }
523 
arm_spe_perf_aux_output_end(struct perf_output_handle * handle)524 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
525 {
526 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
527 	u64 offset, size;
528 
529 	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
530 	size = offset - PERF_IDX2OFF(handle->head, buf);
531 
532 	if (buf->snapshot)
533 		handle->head = offset;
534 
535 	perf_aux_output_end(handle, size);
536 }
537 
arm_spe_pmu_disable_and_drain_local(void)538 static void arm_spe_pmu_disable_and_drain_local(void)
539 {
540 	/* Disable profiling at EL0 and EL1 */
541 	write_sysreg_s(0, SYS_PMSCR_EL1);
542 	isb();
543 
544 	/* Drain any buffered data */
545 	psb_csync();
546 	dsb(nsh);
547 
548 	/* Disable the profiling buffer */
549 	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
550 	isb();
551 }
552 
553 /* IRQ handling */
554 static enum arm_spe_pmu_buf_fault_action
arm_spe_pmu_buf_get_fault_act(struct perf_output_handle * handle)555 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
556 {
557 	const char *err_str;
558 	u64 pmbsr;
559 	enum arm_spe_pmu_buf_fault_action ret;
560 
561 	/*
562 	 * Ensure new profiling data is visible to the CPU and any external
563 	 * aborts have been resolved.
564 	 */
565 	psb_csync();
566 	dsb(nsh);
567 
568 	/* Ensure hardware updates to PMBPTR_EL1 are visible */
569 	isb();
570 
571 	/* Service required? */
572 	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
573 	if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
574 		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
575 
576 	/*
577 	 * If we've lost data, disable profiling and also set the PARTIAL
578 	 * flag to indicate that the last record is corrupted.
579 	 */
580 	if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
581 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
582 					     PERF_AUX_FLAG_PARTIAL);
583 
584 	/* Report collisions to userspace so that it can up the period */
585 	if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
586 		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
587 
588 	/* We only expect buffer management events */
589 	switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
590 	case SYS_PMBSR_EL1_EC_BUF:
591 		/* Handled below */
592 		break;
593 	case SYS_PMBSR_EL1_EC_FAULT_S1:
594 	case SYS_PMBSR_EL1_EC_FAULT_S2:
595 		err_str = "Unexpected buffer fault";
596 		goto out_err;
597 	default:
598 		err_str = "Unknown error code";
599 		goto out_err;
600 	}
601 
602 	/* Buffer management event */
603 	switch (pmbsr &
604 		(SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
605 	case SYS_PMBSR_EL1_BUF_BSC_FULL:
606 		ret = SPE_PMU_BUF_FAULT_ACT_OK;
607 		goto out_stop;
608 	default:
609 		err_str = "Unknown buffer status code";
610 	}
611 
612 out_err:
613 	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
614 			   err_str, smp_processor_id(), pmbsr,
615 			   read_sysreg_s(SYS_PMBPTR_EL1),
616 			   read_sysreg_s(SYS_PMBLIMITR_EL1));
617 	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
618 
619 out_stop:
620 	arm_spe_perf_aux_output_end(handle);
621 	return ret;
622 }
623 
arm_spe_pmu_irq_handler(int irq,void * dev)624 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
625 {
626 	struct perf_output_handle *handle = dev;
627 	struct perf_event *event = handle->event;
628 	enum arm_spe_pmu_buf_fault_action act;
629 
630 	if (!perf_get_aux(handle))
631 		return IRQ_NONE;
632 
633 	act = arm_spe_pmu_buf_get_fault_act(handle);
634 	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
635 		return IRQ_NONE;
636 
637 	/*
638 	 * Ensure perf callbacks have completed, which may disable the
639 	 * profiling buffer in response to a TRUNCATION flag.
640 	 */
641 	irq_work_run();
642 
643 	switch (act) {
644 	case SPE_PMU_BUF_FAULT_ACT_FATAL:
645 		/*
646 		 * If a fatal exception occurred then leaving the profiling
647 		 * buffer enabled is a recipe waiting to happen. Since
648 		 * fatal faults don't always imply truncation, make sure
649 		 * that the profiling buffer is disabled explicitly before
650 		 * clearing the syndrome register.
651 		 */
652 		arm_spe_pmu_disable_and_drain_local();
653 		break;
654 	case SPE_PMU_BUF_FAULT_ACT_OK:
655 		/*
656 		 * We handled the fault (the buffer was full), so resume
657 		 * profiling as long as we didn't detect truncation.
658 		 * PMBPTR might be misaligned, but we'll burn that bridge
659 		 * when we get to it.
660 		 */
661 		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
662 			arm_spe_perf_aux_output_begin(handle, event);
663 			isb();
664 		}
665 		break;
666 	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
667 		/* We've seen you before, but GCC has the memory of a sieve. */
668 		break;
669 	}
670 
671 	/* The buffer pointers are now sane, so resume profiling. */
672 	write_sysreg_s(0, SYS_PMBSR_EL1);
673 	return IRQ_HANDLED;
674 }
675 
676 /* Perf callbacks */
arm_spe_pmu_event_init(struct perf_event * event)677 static int arm_spe_pmu_event_init(struct perf_event *event)
678 {
679 	u64 reg;
680 	struct perf_event_attr *attr = &event->attr;
681 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
682 
683 	/* This is, of course, deeply driver-specific */
684 	if (attr->type != event->pmu->type)
685 		return -ENOENT;
686 
687 	if (event->cpu >= 0 &&
688 	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
689 		return -ENOENT;
690 
691 	if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
692 		return -EOPNOTSUPP;
693 
694 	if (attr->exclude_idle)
695 		return -EOPNOTSUPP;
696 
697 	/*
698 	 * Feedback-directed frequency throttling doesn't work when we
699 	 * have a buffer of samples. We'd need to manually count the
700 	 * samples in the buffer when it fills up and adjust the event
701 	 * count to reflect that. Instead, just force the user to specify
702 	 * a sample period.
703 	 */
704 	if (attr->freq)
705 		return -EINVAL;
706 
707 	reg = arm_spe_event_to_pmsfcr(event);
708 	if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
709 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
710 		return -EOPNOTSUPP;
711 
712 	if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
713 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
714 		return -EOPNOTSUPP;
715 
716 	if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
717 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
718 		return -EOPNOTSUPP;
719 
720 	set_spe_event_has_cx(event);
721 	reg = arm_spe_event_to_pmscr(event);
722 	if (!perfmon_capable() &&
723 	    (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
724 		    BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
725 		return -EACCES;
726 
727 	return 0;
728 }
729 
arm_spe_pmu_start(struct perf_event * event,int flags)730 static void arm_spe_pmu_start(struct perf_event *event, int flags)
731 {
732 	u64 reg;
733 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
734 	struct hw_perf_event *hwc = &event->hw;
735 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
736 
737 	hwc->state = 0;
738 	arm_spe_perf_aux_output_begin(handle, event);
739 	if (hwc->state)
740 		return;
741 
742 	reg = arm_spe_event_to_pmsfcr(event);
743 	write_sysreg_s(reg, SYS_PMSFCR_EL1);
744 
745 	reg = arm_spe_event_to_pmsevfr(event);
746 	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
747 
748 	reg = arm_spe_event_to_pmslatfr(event);
749 	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
750 
751 	if (flags & PERF_EF_RELOAD) {
752 		reg = arm_spe_event_to_pmsirr(event);
753 		write_sysreg_s(reg, SYS_PMSIRR_EL1);
754 		isb();
755 		reg = local64_read(&hwc->period_left);
756 		write_sysreg_s(reg, SYS_PMSICR_EL1);
757 	}
758 
759 	reg = arm_spe_event_to_pmscr(event);
760 	isb();
761 	write_sysreg_s(reg, SYS_PMSCR_EL1);
762 }
763 
arm_spe_pmu_stop(struct perf_event * event,int flags)764 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
765 {
766 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
767 	struct hw_perf_event *hwc = &event->hw;
768 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
769 
770 	/* If we're already stopped, then nothing to do */
771 	if (hwc->state & PERF_HES_STOPPED)
772 		return;
773 
774 	/* Stop all trace generation */
775 	arm_spe_pmu_disable_and_drain_local();
776 
777 	if (flags & PERF_EF_UPDATE) {
778 		/*
779 		 * If there's a fault pending then ensure we contain it
780 		 * to this buffer, since we might be on the context-switch
781 		 * path.
782 		 */
783 		if (perf_get_aux(handle)) {
784 			enum arm_spe_pmu_buf_fault_action act;
785 
786 			act = arm_spe_pmu_buf_get_fault_act(handle);
787 			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
788 				arm_spe_perf_aux_output_end(handle);
789 			else
790 				write_sysreg_s(0, SYS_PMBSR_EL1);
791 		}
792 
793 		/*
794 		 * This may also contain ECOUNT, but nobody else should
795 		 * be looking at period_left, since we forbid frequency
796 		 * based sampling.
797 		 */
798 		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
799 		hwc->state |= PERF_HES_UPTODATE;
800 	}
801 
802 	hwc->state |= PERF_HES_STOPPED;
803 }
804 
arm_spe_pmu_add(struct perf_event * event,int flags)805 static int arm_spe_pmu_add(struct perf_event *event, int flags)
806 {
807 	int ret = 0;
808 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
809 	struct hw_perf_event *hwc = &event->hw;
810 	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
811 
812 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
813 		return -ENOENT;
814 
815 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
816 
817 	if (flags & PERF_EF_START) {
818 		arm_spe_pmu_start(event, PERF_EF_RELOAD);
819 		if (hwc->state & PERF_HES_STOPPED)
820 			ret = -EINVAL;
821 	}
822 
823 	return ret;
824 }
825 
arm_spe_pmu_del(struct perf_event * event,int flags)826 static void arm_spe_pmu_del(struct perf_event *event, int flags)
827 {
828 	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
829 }
830 
arm_spe_pmu_read(struct perf_event * event)831 static void arm_spe_pmu_read(struct perf_event *event)
832 {
833 }
834 
arm_spe_pmu_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)835 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
836 				   int nr_pages, bool snapshot)
837 {
838 	int i, cpu = event->cpu;
839 	struct page **pglist;
840 	struct arm_spe_pmu_buf *buf;
841 
842 	/* We need at least two pages for this to work. */
843 	if (nr_pages < 2)
844 		return NULL;
845 
846 	/*
847 	 * We require an even number of pages for snapshot mode, so that
848 	 * we can effectively treat the buffer as consisting of two equal
849 	 * parts and give userspace a fighting chance of getting some
850 	 * useful data out of it.
851 	 */
852 	if (snapshot && (nr_pages & 1))
853 		return NULL;
854 
855 	if (cpu == -1)
856 		cpu = raw_smp_processor_id();
857 
858 	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
859 	if (!buf)
860 		return NULL;
861 
862 	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
863 	if (!pglist)
864 		goto out_free_buf;
865 
866 	for (i = 0; i < nr_pages; ++i)
867 		pglist[i] = virt_to_page(pages[i]);
868 
869 	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
870 	if (!buf->base)
871 		goto out_free_pglist;
872 
873 	buf->nr_pages	= nr_pages;
874 	buf->snapshot	= snapshot;
875 
876 	kfree(pglist);
877 	return buf;
878 
879 out_free_pglist:
880 	kfree(pglist);
881 out_free_buf:
882 	kfree(buf);
883 	return NULL;
884 }
885 
arm_spe_pmu_free_aux(void * aux)886 static void arm_spe_pmu_free_aux(void *aux)
887 {
888 	struct arm_spe_pmu_buf *buf = aux;
889 
890 	vunmap(buf->base);
891 	kfree(buf);
892 }
893 
894 /* Initialisation and teardown functions */
arm_spe_pmu_perf_init(struct arm_spe_pmu * spe_pmu)895 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
896 {
897 	static atomic_t pmu_idx = ATOMIC_INIT(-1);
898 
899 	int idx;
900 	char *name;
901 	struct device *dev = &spe_pmu->pdev->dev;
902 
903 	spe_pmu->pmu = (struct pmu) {
904 		.module = THIS_MODULE,
905 		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
906 		.attr_groups	= arm_spe_pmu_attr_groups,
907 		/*
908 		 * We hitch a ride on the software context here, so that
909 		 * we can support per-task profiling (which is not possible
910 		 * with the invalid context as it doesn't get sched callbacks).
911 		 * This requires that userspace either uses a dummy event for
912 		 * perf_event_open, since the aux buffer is not setup until
913 		 * a subsequent mmap, or creates the profiling event in a
914 		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
915 		 * once the buffer has been created.
916 		 */
917 		.task_ctx_nr	= perf_sw_context,
918 		.event_init	= arm_spe_pmu_event_init,
919 		.add		= arm_spe_pmu_add,
920 		.del		= arm_spe_pmu_del,
921 		.start		= arm_spe_pmu_start,
922 		.stop		= arm_spe_pmu_stop,
923 		.read		= arm_spe_pmu_read,
924 		.setup_aux	= arm_spe_pmu_setup_aux,
925 		.free_aux	= arm_spe_pmu_free_aux,
926 	};
927 
928 	idx = atomic_inc_return(&pmu_idx);
929 	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
930 	if (!name) {
931 		dev_err(dev, "failed to allocate name for pmu %d\n", idx);
932 		return -ENOMEM;
933 	}
934 
935 	return perf_pmu_register(&spe_pmu->pmu, name, -1);
936 }
937 
arm_spe_pmu_perf_destroy(struct arm_spe_pmu * spe_pmu)938 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
939 {
940 	perf_pmu_unregister(&spe_pmu->pmu);
941 }
942 
__arm_spe_pmu_dev_probe(void * info)943 static void __arm_spe_pmu_dev_probe(void *info)
944 {
945 	int fld;
946 	u64 reg;
947 	struct arm_spe_pmu *spe_pmu = info;
948 	struct device *dev = &spe_pmu->pdev->dev;
949 
950 	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
951 						   ID_AA64DFR0_PMSVER_SHIFT);
952 	if (!fld) {
953 		dev_err(dev,
954 			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
955 			fld, smp_processor_id());
956 		return;
957 	}
958 
959 	/* Read PMBIDR first to determine whether or not we have access */
960 	reg = read_sysreg_s(SYS_PMBIDR_EL1);
961 	if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
962 		dev_err(dev,
963 			"profiling buffer owned by higher exception level\n");
964 		return;
965 	}
966 
967 	/* Minimum alignment. If it's out-of-range, then fail the probe */
968 	fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
969 	spe_pmu->align = 1 << fld;
970 	if (spe_pmu->align > SZ_2K) {
971 		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
972 			fld, smp_processor_id());
973 		return;
974 	}
975 
976 	/* It's now safe to read PMSIDR and figure out what we've got */
977 	reg = read_sysreg_s(SYS_PMSIDR_EL1);
978 	if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
979 		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
980 
981 	if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
982 		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
983 
984 	if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
985 		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
986 
987 	if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
988 		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
989 
990 	if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
991 		spe_pmu->features |= SPE_PMU_FEAT_LDS;
992 
993 	if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
994 		spe_pmu->features |= SPE_PMU_FEAT_ERND;
995 
996 	/* This field has a spaced out encoding, so just use a look-up */
997 	fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
998 	switch (fld) {
999 	case 0:
1000 		spe_pmu->min_period = 256;
1001 		break;
1002 	case 2:
1003 		spe_pmu->min_period = 512;
1004 		break;
1005 	case 3:
1006 		spe_pmu->min_period = 768;
1007 		break;
1008 	case 4:
1009 		spe_pmu->min_period = 1024;
1010 		break;
1011 	case 5:
1012 		spe_pmu->min_period = 1536;
1013 		break;
1014 	case 6:
1015 		spe_pmu->min_period = 2048;
1016 		break;
1017 	case 7:
1018 		spe_pmu->min_period = 3072;
1019 		break;
1020 	default:
1021 		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1022 			 fld);
1023 		fallthrough;
1024 	case 8:
1025 		spe_pmu->min_period = 4096;
1026 	}
1027 
1028 	/* Maximum record size. If it's out-of-range, then fail the probe */
1029 	fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1030 	spe_pmu->max_record_sz = 1 << fld;
1031 	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1032 		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1033 			fld, smp_processor_id());
1034 		return;
1035 	}
1036 
1037 	fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1038 	switch (fld) {
1039 	default:
1040 		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1041 			 fld);
1042 		fallthrough;
1043 	case 2:
1044 		spe_pmu->counter_sz = 12;
1045 	}
1046 
1047 	dev_info(dev,
1048 		 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1049 		 cpumask_pr_args(&spe_pmu->supported_cpus),
1050 		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1051 
1052 	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1053 	return;
1054 }
1055 
__arm_spe_pmu_reset_local(void)1056 static void __arm_spe_pmu_reset_local(void)
1057 {
1058 	/*
1059 	 * This is probably overkill, as we have no idea where we're
1060 	 * draining any buffered data to...
1061 	 */
1062 	arm_spe_pmu_disable_and_drain_local();
1063 
1064 	/* Reset the buffer base pointer */
1065 	write_sysreg_s(0, SYS_PMBPTR_EL1);
1066 	isb();
1067 
1068 	/* Clear any pending management interrupts */
1069 	write_sysreg_s(0, SYS_PMBSR_EL1);
1070 	isb();
1071 }
1072 
__arm_spe_pmu_setup_one(void * info)1073 static void __arm_spe_pmu_setup_one(void *info)
1074 {
1075 	struct arm_spe_pmu *spe_pmu = info;
1076 
1077 	__arm_spe_pmu_reset_local();
1078 	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1079 }
1080 
__arm_spe_pmu_stop_one(void * info)1081 static void __arm_spe_pmu_stop_one(void *info)
1082 {
1083 	struct arm_spe_pmu *spe_pmu = info;
1084 
1085 	disable_percpu_irq(spe_pmu->irq);
1086 	__arm_spe_pmu_reset_local();
1087 }
1088 
arm_spe_pmu_cpu_startup(unsigned int cpu,struct hlist_node * node)1089 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1090 {
1091 	struct arm_spe_pmu *spe_pmu;
1092 
1093 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1094 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1095 		return 0;
1096 
1097 	__arm_spe_pmu_setup_one(spe_pmu);
1098 	return 0;
1099 }
1100 
arm_spe_pmu_cpu_teardown(unsigned int cpu,struct hlist_node * node)1101 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1102 {
1103 	struct arm_spe_pmu *spe_pmu;
1104 
1105 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1106 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1107 		return 0;
1108 
1109 	__arm_spe_pmu_stop_one(spe_pmu);
1110 	return 0;
1111 }
1112 
arm_spe_pmu_dev_init(struct arm_spe_pmu * spe_pmu)1113 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1114 {
1115 	int ret;
1116 	cpumask_t *mask = &spe_pmu->supported_cpus;
1117 
1118 	/* Make sure we probe the hardware on a relevant CPU */
1119 	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1120 	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1121 		return -ENXIO;
1122 
1123 	/* Request our PPIs (note that the IRQ is still disabled) */
1124 	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1125 				 spe_pmu->handle);
1126 	if (ret)
1127 		return ret;
1128 
1129 	/*
1130 	 * Register our hotplug notifier now so we don't miss any events.
1131 	 * This will enable the IRQ for any supported CPUs that are already
1132 	 * up.
1133 	 */
1134 	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1135 				       &spe_pmu->hotplug_node);
1136 	if (ret)
1137 		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1138 
1139 	return ret;
1140 }
1141 
arm_spe_pmu_dev_teardown(struct arm_spe_pmu * spe_pmu)1142 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1143 {
1144 	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1145 	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1146 }
1147 
1148 /* Driver and device probing */
arm_spe_pmu_irq_probe(struct arm_spe_pmu * spe_pmu)1149 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1150 {
1151 	struct platform_device *pdev = spe_pmu->pdev;
1152 	int irq = platform_get_irq(pdev, 0);
1153 
1154 	if (irq < 0)
1155 		return -ENXIO;
1156 
1157 	if (!irq_is_percpu(irq)) {
1158 		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1159 		return -EINVAL;
1160 	}
1161 
1162 	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1163 		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1164 		return -EINVAL;
1165 	}
1166 
1167 	spe_pmu->irq = irq;
1168 	return 0;
1169 }
1170 
1171 static const struct of_device_id arm_spe_pmu_of_match[] = {
1172 	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1173 	{ /* Sentinel */ },
1174 };
1175 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1176 
1177 static const struct platform_device_id arm_spe_match[] = {
1178 	{ ARMV8_SPE_PDEV_NAME, 0},
1179 	{ }
1180 };
1181 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1182 
arm_spe_pmu_device_probe(struct platform_device * pdev)1183 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1184 {
1185 	int ret;
1186 	struct arm_spe_pmu *spe_pmu;
1187 	struct device *dev = &pdev->dev;
1188 
1189 	/*
1190 	 * If kernelspace is unmapped when running at EL0, then the SPE
1191 	 * buffer will fault and prematurely terminate the AUX session.
1192 	 */
1193 	if (arm64_kernel_unmapped_at_el0()) {
1194 		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1195 		return -EPERM;
1196 	}
1197 
1198 	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1199 	if (!spe_pmu) {
1200 		dev_err(dev, "failed to allocate spe_pmu\n");
1201 		return -ENOMEM;
1202 	}
1203 
1204 	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1205 	if (!spe_pmu->handle)
1206 		return -ENOMEM;
1207 
1208 	spe_pmu->pdev = pdev;
1209 	platform_set_drvdata(pdev, spe_pmu);
1210 
1211 	ret = arm_spe_pmu_irq_probe(spe_pmu);
1212 	if (ret)
1213 		goto out_free_handle;
1214 
1215 	ret = arm_spe_pmu_dev_init(spe_pmu);
1216 	if (ret)
1217 		goto out_free_handle;
1218 
1219 	ret = arm_spe_pmu_perf_init(spe_pmu);
1220 	if (ret)
1221 		goto out_teardown_dev;
1222 
1223 	return 0;
1224 
1225 out_teardown_dev:
1226 	arm_spe_pmu_dev_teardown(spe_pmu);
1227 out_free_handle:
1228 	free_percpu(spe_pmu->handle);
1229 	return ret;
1230 }
1231 
arm_spe_pmu_device_remove(struct platform_device * pdev)1232 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1233 {
1234 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1235 
1236 	arm_spe_pmu_perf_destroy(spe_pmu);
1237 	arm_spe_pmu_dev_teardown(spe_pmu);
1238 	free_percpu(spe_pmu->handle);
1239 	return 0;
1240 }
1241 
1242 static struct platform_driver arm_spe_pmu_driver = {
1243 	.id_table = arm_spe_match,
1244 	.driver	= {
1245 		.name		= DRVNAME,
1246 		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1247 		.suppress_bind_attrs = true,
1248 	},
1249 	.probe	= arm_spe_pmu_device_probe,
1250 	.remove	= arm_spe_pmu_device_remove,
1251 };
1252 
arm_spe_pmu_init(void)1253 static int __init arm_spe_pmu_init(void)
1254 {
1255 	int ret;
1256 
1257 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1258 				      arm_spe_pmu_cpu_startup,
1259 				      arm_spe_pmu_cpu_teardown);
1260 	if (ret < 0)
1261 		return ret;
1262 	arm_spe_pmu_online = ret;
1263 
1264 	ret = platform_driver_register(&arm_spe_pmu_driver);
1265 	if (ret)
1266 		cpuhp_remove_multi_state(arm_spe_pmu_online);
1267 
1268 	return ret;
1269 }
1270 
arm_spe_pmu_exit(void)1271 static void __exit arm_spe_pmu_exit(void)
1272 {
1273 	platform_driver_unregister(&arm_spe_pmu_driver);
1274 	cpuhp_remove_multi_state(arm_spe_pmu_online);
1275 }
1276 
1277 module_init(arm_spe_pmu_init);
1278 module_exit(arm_spe_pmu_exit);
1279 
1280 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1281 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1282 MODULE_LICENSE("GPL v2");
1283