1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
20
21 #define DRIVER_NAME "spi_stm32"
22
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1 0x00
25 #define STM32F4_SPI_CR2 0x04
26 #define STM32F4_SPI_SR 0x08
27 #define STM32F4_SPI_DR 0x0C
28 #define STM32F4_SPI_I2SCFGR 0x1C
29
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA BIT(0)
32 #define STM32F4_SPI_CR1_CPOL BIT(1)
33 #define STM32F4_SPI_CR1_MSTR BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT 3
35 #define STM32F4_SPI_CR1_BR GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST BIT(7)
38 #define STM32F4_SPI_CR1_SSI BIT(8)
39 #define STM32F4_SPI_CR1_SSM BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY BIT(10)
41 #define STM32F4_SPI_CR1_DFF BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN 0
47 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
48
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN BIT(1)
52 #define STM32F4_SPI_CR2_SSOE BIT(2)
53 #define STM32F4_SPI_CR2_FRF BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE BIT(7)
57
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE BIT(0)
60 #define STM32F4_SPI_SR_TXE BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE BIT(2)
62 #define STM32F4_SPI_SR_UDR BIT(3)
63 #define STM32F4_SPI_SR_CRCERR BIT(4)
64 #define STM32F4_SPI_SR_MODF BIT(5)
65 #define STM32F4_SPI_SR_OVR BIT(6)
66 #define STM32F4_SPI_SR_BSY BIT(7)
67 #define STM32F4_SPI_SR_FRE BIT(8)
68
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
71
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
75
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1 0x00
78 #define STM32H7_SPI_CR2 0x04
79 #define STM32H7_SPI_CFG1 0x08
80 #define STM32H7_SPI_CFG2 0x0C
81 #define STM32H7_SPI_IER 0x10
82 #define STM32H7_SPI_SR 0x14
83 #define STM32H7_SPI_IFCR 0x18
84 #define STM32H7_SPI_TXDR 0x20
85 #define STM32H7_SPI_RXDR 0x30
86 #define STM32H7_SPI_I2SCFGR 0x50
87
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE BIT(0)
90 #define STM32H7_SPI_CR1_MASRX BIT(8)
91 #define STM32H7_SPI_CR1_CSTART BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR BIT(11)
94 #define STM32H7_SPI_CR1_SSI BIT(12)
95
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT 0
98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
99
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT 0
102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT 5
104 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28
108 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN 0
110 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
111
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT 4
114 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT 17
116 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT 19
118 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL BIT(25)
123 #define STM32H7_SPI_CFG2_SSM BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR BIT(31)
125
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE BIT(0)
128 #define STM32H7_SPI_IER_TXPIE BIT(1)
129 #define STM32H7_SPI_IER_DXPIE BIT(2)
130 #define STM32H7_SPI_IER_EOTIE BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE BIT(4)
132 #define STM32H7_SPI_IER_OVRIE BIT(6)
133 #define STM32H7_SPI_IER_MODFIE BIT(9)
134 #define STM32H7_SPI_IER_ALL GENMASK(10, 0)
135
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP BIT(0)
138 #define STM32H7_SPI_SR_TXP BIT(1)
139 #define STM32H7_SPI_SR_EOT BIT(3)
140 #define STM32H7_SPI_SR_OVR BIT(6)
141 #define STM32H7_SPI_SR_MODF BIT(9)
142 #define STM32H7_SPI_SR_SUSP BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT 13
144 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE BIT(15)
146
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
149
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
152
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
156
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX 0
159 #define STM32H7_SPI_SIMPLEX_TX 1
160 #define STM32H7_SPI_SIMPLEX_RX 2
161 #define STM32H7_SPI_HALF_DUPLEX 3
162
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX 0
165 #define SPI_SIMPLEX_TX 1
166 #define SPI_SIMPLEX_RX 2
167 #define SPI_3WIRE_TX 3
168 #define SPI_3WIRE_RX 4
169
170 #define SPI_1HZ_NS 1000000000
171
172 /*
173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174 * without fifo buffers.
175 */
176 #define SPI_DMA_MIN_BYTES 16
177
178 /**
179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180 * @reg: register offset
181 * @mask: bitfield mask
182 * @shift: left shift
183 */
184 struct stm32_spi_reg {
185 int reg;
186 int mask;
187 int shift;
188 };
189
190 /**
191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192 * @en: enable register and SPI enable bit
193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195 * @cpol: clock polarity register and polarity bit
196 * @cpha: clock phase register and phase bit
197 * @lsb_first: LSB transmitted first register and bit
198 * @br: baud rate register and bitfields
199 * @rx: SPI RX data register
200 * @tx: SPI TX data register
201 */
202 struct stm32_spi_regspec {
203 const struct stm32_spi_reg en;
204 const struct stm32_spi_reg dma_rx_en;
205 const struct stm32_spi_reg dma_tx_en;
206 const struct stm32_spi_reg cpol;
207 const struct stm32_spi_reg cpha;
208 const struct stm32_spi_reg lsb_first;
209 const struct stm32_spi_reg br;
210 const struct stm32_spi_reg rx;
211 const struct stm32_spi_reg tx;
212 };
213
214 struct stm32_spi;
215
216 /**
217 * struct stm32_spi_cfg - stm32 compatible configuration data
218 * @regs: registers descriptions
219 * @get_fifo_size: routine to get fifo size
220 * @get_bpw_mask: routine to get bits per word mask
221 * @disable: routine to disable controller
222 * @config: routine to configure controller as SPI Master
223 * @set_bpw: routine to configure registers to for bits per word
224 * @set_mode: routine to configure registers to desired mode
225 * @set_data_idleness: optional routine to configure registers to desired idle
226 * time between frames (if driver has this functionality)
227 * @set_number_of_data: optional routine to configure registers to desired
228 * number of data (if driver has this functionality)
229 * @can_dma: routine to determine if the transfer is eligible for DMA use
230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231 * using DMA
232 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
233 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234 * @transfer_one_irq: routine to configure interrupts for driver
235 * @irq_handler_event: Interrupt handler for SPI controller events
236 * @irq_handler_thread: thread of interrupt handler for SPI controller
237 * @baud_rate_div_min: minimum baud rate divisor
238 * @baud_rate_div_max: maximum baud rate divisor
239 * @has_fifo: boolean to know if fifo is used for driver
240 * @has_startbit: boolean to know if start bit is used to start transfer
241 */
242 struct stm32_spi_cfg {
243 const struct stm32_spi_regspec *regs;
244 int (*get_fifo_size)(struct stm32_spi *spi);
245 int (*get_bpw_mask)(struct stm32_spi *spi);
246 void (*disable)(struct stm32_spi *spi);
247 int (*config)(struct stm32_spi *spi);
248 void (*set_bpw)(struct stm32_spi *spi);
249 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252 void (*transfer_one_dma_start)(struct stm32_spi *spi);
253 void (*dma_rx_cb)(void *data);
254 void (*dma_tx_cb)(void *data);
255 int (*transfer_one_irq)(struct stm32_spi *spi);
256 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258 unsigned int baud_rate_div_min;
259 unsigned int baud_rate_div_max;
260 bool has_fifo;
261 };
262
263 /**
264 * struct stm32_spi - private data of the SPI controller
265 * @dev: driver model representation of the controller
266 * @master: controller master interface
267 * @cfg: compatible configuration data
268 * @base: virtual memory area
269 * @clk: hw kernel clock feeding the SPI clock generator
270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271 * @rst: SPI controller reset line
272 * @lock: prevent I/O concurrent access
273 * @irq: SPI controller interrupt line
274 * @fifo_size: size of the embedded fifo in bytes
275 * @cur_midi: master inter-data idleness in ns
276 * @cur_speed: speed configured in Hz
277 * @cur_bpw: number of bits in a single SPI data frame
278 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279 * @cur_comm: SPI communication mode
280 * @cur_xferlen: current transfer length in bytes
281 * @cur_usedma: boolean to know if dma is used in current transfer
282 * @tx_buf: data to be written, or NULL
283 * @rx_buf: data to be read, or NULL
284 * @tx_len: number of data to be written in bytes
285 * @rx_len: number of data to be read in bytes
286 * @dma_tx: dma channel for TX transfer
287 * @dma_rx: dma channel for RX transfer
288 * @phys_addr: SPI registers physical base address
289 */
290 struct stm32_spi {
291 struct device *dev;
292 struct spi_master *master;
293 const struct stm32_spi_cfg *cfg;
294 void __iomem *base;
295 struct clk *clk;
296 u32 clk_rate;
297 struct reset_control *rst;
298 spinlock_t lock; /* prevent I/O concurrent access */
299 int irq;
300 unsigned int fifo_size;
301
302 unsigned int cur_midi;
303 unsigned int cur_speed;
304 unsigned int cur_bpw;
305 unsigned int cur_fthlv;
306 unsigned int cur_comm;
307 unsigned int cur_xferlen;
308 bool cur_usedma;
309
310 const void *tx_buf;
311 void *rx_buf;
312 int tx_len;
313 int rx_len;
314 struct dma_chan *dma_tx;
315 struct dma_chan *dma_rx;
316 dma_addr_t phys_addr;
317 };
318
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321
322 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324
325 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329
330 .rx = { STM32F4_SPI_DR },
331 .tx = { STM32F4_SPI_DR },
332 };
333
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335 /* SPI data transfer is enabled but spi_ker_ck is idle.
336 * CFG1 and CFG2 registers are write protected when SPE is enabled.
337 */
338 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339
340 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342
343 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347 STM32H7_SPI_CFG1_MBR_SHIFT },
348
349 .rx = { STM32H7_SPI_RXDR },
350 .tx = { STM32H7_SPI_TXDR },
351 };
352
stm32_spi_set_bits(struct stm32_spi * spi,u32 offset,u32 bits)353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354 u32 offset, u32 bits)
355 {
356 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357 spi->base + offset);
358 }
359
stm32_spi_clr_bits(struct stm32_spi * spi,u32 offset,u32 bits)360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361 u32 offset, u32 bits)
362 {
363 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364 spi->base + offset);
365 }
366
367 /**
368 * stm32h7_spi_get_fifo_size - Return fifo size
369 * @spi: pointer to the spi controller data structure
370 */
stm32h7_spi_get_fifo_size(struct stm32_spi * spi)371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 {
373 unsigned long flags;
374 u32 count = 0;
375
376 spin_lock_irqsave(&spi->lock, flags);
377
378 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379
380 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382
383 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384
385 spin_unlock_irqrestore(&spi->lock, flags);
386
387 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388
389 return count;
390 }
391
392 /**
393 * stm32f4_spi_get_bpw_mask - Return bits per word mask
394 * @spi: pointer to the spi controller data structure
395 */
stm32f4_spi_get_bpw_mask(struct stm32_spi * spi)396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 {
398 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400 }
401
402 /**
403 * stm32h7_spi_get_bpw_mask - Return bits per word mask
404 * @spi: pointer to the spi controller data structure
405 */
stm32h7_spi_get_bpw_mask(struct stm32_spi * spi)406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408 unsigned long flags;
409 u32 cfg1, max_bpw;
410
411 spin_lock_irqsave(&spi->lock, flags);
412
413 /*
414 * The most significant bit at DSIZE bit field is reserved when the
415 * maximum data size of periperal instances is limited to 16-bit
416 */
417 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418
419 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420 max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421 STM32H7_SPI_CFG1_DSIZE_SHIFT;
422 max_bpw += 1;
423
424 spin_unlock_irqrestore(&spi->lock, flags);
425
426 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427
428 return SPI_BPW_RANGE_MASK(4, max_bpw);
429 }
430
431 /**
432 * stm32_spi_prepare_mbr - Determine baud rate divisor value
433 * @spi: pointer to the spi controller data structure
434 * @speed_hz: requested speed
435 * @min_div: minimum baud rate divisor
436 * @max_div: maximum baud rate divisor
437 *
438 * Return baud rate divisor value in case of success or -EINVAL
439 */
stm32_spi_prepare_mbr(struct stm32_spi * spi,u32 speed_hz,u32 min_div,u32 max_div)440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441 u32 min_div, u32 max_div)
442 {
443 u32 div, mbrdiv;
444
445 /* Ensure spi->clk_rate is even */
446 div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
447
448 /*
449 * SPI framework set xfer->speed_hz to master->max_speed_hz if
450 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
451 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
452 * no need to check it there.
453 * However, we need to ensure the following calculations.
454 */
455 if ((div < min_div) || (div > max_div))
456 return -EINVAL;
457
458 /* Determine the first power of 2 greater than or equal to div */
459 if (div & (div - 1))
460 mbrdiv = fls(div);
461 else
462 mbrdiv = fls(div) - 1;
463
464 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465
466 return mbrdiv - 1;
467 }
468
469 /**
470 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471 * @spi: pointer to the spi controller data structure
472 * @xfer_len: length of the message to be transferred
473 */
stm32h7_spi_prepare_fthlv(struct stm32_spi * spi,u32 xfer_len)474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475 {
476 u32 fthlv, half_fifo, packet;
477
478 /* data packet should not exceed 1/2 of fifo space */
479 half_fifo = (spi->fifo_size / 2);
480
481 /* data_packet should not exceed transfer length */
482 if (half_fifo > xfer_len)
483 packet = xfer_len;
484 else
485 packet = half_fifo;
486
487 if (spi->cur_bpw <= 8)
488 fthlv = packet;
489 else if (spi->cur_bpw <= 16)
490 fthlv = packet / 2;
491 else
492 fthlv = packet / 4;
493
494 /* align packet size with data registers access */
495 if (spi->cur_bpw > 8)
496 fthlv += (fthlv % 2) ? 1 : 0;
497 else
498 fthlv += (fthlv % 4) ? (4 - (fthlv % 4)) : 0;
499
500 if (!fthlv)
501 fthlv = 1;
502
503 return fthlv;
504 }
505
506 /**
507 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
508 * @spi: pointer to the spi controller data structure
509 *
510 * Read from tx_buf depends on remaining bytes to avoid to read beyond
511 * tx_buf end.
512 */
stm32f4_spi_write_tx(struct stm32_spi * spi)513 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
514 {
515 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
516 STM32F4_SPI_SR_TXE)) {
517 u32 offs = spi->cur_xferlen - spi->tx_len;
518
519 if (spi->cur_bpw == 16) {
520 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
521
522 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
523 spi->tx_len -= sizeof(u16);
524 } else {
525 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
526
527 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
528 spi->tx_len -= sizeof(u8);
529 }
530 }
531
532 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
533 }
534
535 /**
536 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537 * @spi: pointer to the spi controller data structure
538 *
539 * Read from tx_buf depends on remaining bytes to avoid to read beyond
540 * tx_buf end.
541 */
stm32h7_spi_write_txfifo(struct stm32_spi * spi)542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 {
544 while ((spi->tx_len > 0) &&
545 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
546 STM32H7_SPI_SR_TXP)) {
547 u32 offs = spi->cur_xferlen - spi->tx_len;
548
549 if (spi->tx_len >= sizeof(u32)) {
550 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
551
552 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553 spi->tx_len -= sizeof(u32);
554 } else if (spi->tx_len >= sizeof(u16)) {
555 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
556
557 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558 spi->tx_len -= sizeof(u16);
559 } else {
560 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
561
562 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563 spi->tx_len -= sizeof(u8);
564 }
565 }
566
567 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
568 }
569
570 /**
571 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
572 * @spi: pointer to the spi controller data structure
573 *
574 * Write in rx_buf depends on remaining bytes to avoid to write beyond
575 * rx_buf end.
576 */
stm32f4_spi_read_rx(struct stm32_spi * spi)577 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
578 {
579 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
580 STM32F4_SPI_SR_RXNE)) {
581 u32 offs = spi->cur_xferlen - spi->rx_len;
582
583 if (spi->cur_bpw == 16) {
584 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
585
586 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
587 spi->rx_len -= sizeof(u16);
588 } else {
589 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
590
591 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
592 spi->rx_len -= sizeof(u8);
593 }
594 }
595
596 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
597 }
598
599 /**
600 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601 * @spi: pointer to the spi controller data structure
602 * @flush: boolean indicating that FIFO should be flushed
603 *
604 * Write in rx_buf depends on remaining bytes to avoid to write beyond
605 * rx_buf end.
606 */
stm32h7_spi_read_rxfifo(struct stm32_spi * spi,bool flush)607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608 {
609 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
610 u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
611 STM32H7_SPI_SR_RXPLVL_SHIFT;
612
613 while ((spi->rx_len > 0) &&
614 ((sr & STM32H7_SPI_SR_RXP) ||
615 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616 u32 offs = spi->cur_xferlen - spi->rx_len;
617
618 if ((spi->rx_len >= sizeof(u32)) ||
619 (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
621
622 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623 spi->rx_len -= sizeof(u32);
624 } else if ((spi->rx_len >= sizeof(u16)) ||
625 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
626 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
627
628 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629 spi->rx_len -= sizeof(u16);
630 } else {
631 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
632
633 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634 spi->rx_len -= sizeof(u8);
635 }
636
637 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
638 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
639 STM32H7_SPI_SR_RXPLVL_SHIFT;
640 }
641
642 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
643 flush ? "(flush)" : "", spi->rx_len);
644 }
645
646 /**
647 * stm32_spi_enable - Enable SPI controller
648 * @spi: pointer to the spi controller data structure
649 */
stm32_spi_enable(struct stm32_spi * spi)650 static void stm32_spi_enable(struct stm32_spi *spi)
651 {
652 dev_dbg(spi->dev, "enable controller\n");
653
654 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
655 spi->cfg->regs->en.mask);
656 }
657
658 /**
659 * stm32f4_spi_disable - Disable SPI controller
660 * @spi: pointer to the spi controller data structure
661 */
stm32f4_spi_disable(struct stm32_spi * spi)662 static void stm32f4_spi_disable(struct stm32_spi *spi)
663 {
664 unsigned long flags;
665 u32 sr;
666
667 dev_dbg(spi->dev, "disable controller\n");
668
669 spin_lock_irqsave(&spi->lock, flags);
670
671 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
672 STM32F4_SPI_CR1_SPE)) {
673 spin_unlock_irqrestore(&spi->lock, flags);
674 return;
675 }
676
677 /* Disable interrupts */
678 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
679 STM32F4_SPI_CR2_RXNEIE |
680 STM32F4_SPI_CR2_ERRIE);
681
682 /* Wait until BSY = 0 */
683 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
684 sr, !(sr & STM32F4_SPI_SR_BSY),
685 10, 100000) < 0) {
686 dev_warn(spi->dev, "disabling condition timeout\n");
687 }
688
689 if (spi->cur_usedma && spi->dma_tx)
690 dmaengine_terminate_all(spi->dma_tx);
691 if (spi->cur_usedma && spi->dma_rx)
692 dmaengine_terminate_all(spi->dma_rx);
693
694 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
695
696 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
697 STM32F4_SPI_CR2_RXDMAEN);
698
699 /* Sequence to clear OVR flag */
700 readl_relaxed(spi->base + STM32F4_SPI_DR);
701 readl_relaxed(spi->base + STM32F4_SPI_SR);
702
703 spin_unlock_irqrestore(&spi->lock, flags);
704 }
705
706 /**
707 * stm32h7_spi_disable - Disable SPI controller
708 * @spi: pointer to the spi controller data structure
709 *
710 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712 * RX-Fifo.
713 * Normally, if TSIZE has been configured, we should relax the hardware at the
714 * reception of the EOT interrupt. But in case of error, EOT will not be
715 * raised. So the subsystem unprepare_message call allows us to properly
716 * complete the transfer from an hardware point of view.
717 */
stm32h7_spi_disable(struct stm32_spi * spi)718 static void stm32h7_spi_disable(struct stm32_spi *spi)
719 {
720 unsigned long flags;
721 u32 cr1, sr;
722
723 dev_dbg(spi->dev, "disable controller\n");
724
725 spin_lock_irqsave(&spi->lock, flags);
726
727 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728
729 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730 spin_unlock_irqrestore(&spi->lock, flags);
731 return;
732 }
733
734 /* Wait on EOT or suspend the flow */
735 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
736 sr, !(sr & STM32H7_SPI_SR_EOT),
737 10, 100000) < 0) {
738 if (cr1 & STM32H7_SPI_CR1_CSTART) {
739 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
740 spi->base + STM32H7_SPI_CR1);
741 if (readl_relaxed_poll_timeout_atomic(
742 spi->base + STM32H7_SPI_SR,
743 sr, !(sr & STM32H7_SPI_SR_SUSP),
744 10, 100000) < 0)
745 dev_warn(spi->dev,
746 "Suspend request timeout\n");
747 }
748 }
749
750 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751 stm32h7_spi_read_rxfifo(spi, true);
752
753 if (spi->cur_usedma && spi->dma_tx)
754 dmaengine_terminate_all(spi->dma_tx);
755 if (spi->cur_usedma && spi->dma_rx)
756 dmaengine_terminate_all(spi->dma_rx);
757
758 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759
760 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
761 STM32H7_SPI_CFG1_RXDMAEN);
762
763 /* Disable interrupts and clear status flags */
764 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
765 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766
767 spin_unlock_irqrestore(&spi->lock, flags);
768 }
769
770 /**
771 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772 * @master: controller master interface
773 * @spi_dev: pointer to the spi device
774 * @transfer: pointer to spi transfer
775 *
776 * If driver has fifo and the current transfer size is greater than fifo size,
777 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778 */
stm32_spi_can_dma(struct spi_master * master,struct spi_device * spi_dev,struct spi_transfer * transfer)779 static bool stm32_spi_can_dma(struct spi_master *master,
780 struct spi_device *spi_dev,
781 struct spi_transfer *transfer)
782 {
783 unsigned int dma_size;
784 struct stm32_spi *spi = spi_master_get_devdata(master);
785
786 if (spi->cfg->has_fifo)
787 dma_size = spi->fifo_size;
788 else
789 dma_size = SPI_DMA_MIN_BYTES;
790
791 dev_dbg(spi->dev, "%s: %s\n", __func__,
792 (transfer->len > dma_size) ? "true" : "false");
793
794 return (transfer->len > dma_size);
795 }
796
797 /**
798 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
799 * @irq: interrupt line
800 * @dev_id: SPI controller master interface
801 */
stm32f4_spi_irq_event(int irq,void * dev_id)802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
803 {
804 struct spi_master *master = dev_id;
805 struct stm32_spi *spi = spi_master_get_devdata(master);
806 u32 sr, mask = 0;
807 bool end = false;
808
809 spin_lock(&spi->lock);
810
811 sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
812 /*
813 * BSY flag is not handled in interrupt but it is normal behavior when
814 * this flag is set.
815 */
816 sr &= ~STM32F4_SPI_SR_BSY;
817
818 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
819 spi->cur_comm == SPI_3WIRE_TX)) {
820 /* OVR flag shouldn't be handled for TX only mode */
821 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
822 mask |= STM32F4_SPI_SR_TXE;
823 }
824
825 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
826 spi->cur_comm == SPI_SIMPLEX_RX ||
827 spi->cur_comm == SPI_3WIRE_RX)) {
828 /* TXE flag is set and is handled when RXNE flag occurs */
829 sr &= ~STM32F4_SPI_SR_TXE;
830 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
831 }
832
833 if (!(sr & mask)) {
834 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
835 spin_unlock(&spi->lock);
836 return IRQ_NONE;
837 }
838
839 if (sr & STM32F4_SPI_SR_OVR) {
840 dev_warn(spi->dev, "Overrun: received value discarded\n");
841
842 /* Sequence to clear OVR flag */
843 readl_relaxed(spi->base + STM32F4_SPI_DR);
844 readl_relaxed(spi->base + STM32F4_SPI_SR);
845
846 /*
847 * If overrun is detected, it means that something went wrong,
848 * so stop the current transfer. Transfer can wait for next
849 * RXNE but DR is already read and end never happens.
850 */
851 end = true;
852 goto end_irq;
853 }
854
855 if (sr & STM32F4_SPI_SR_TXE) {
856 if (spi->tx_buf)
857 stm32f4_spi_write_tx(spi);
858 if (spi->tx_len == 0)
859 end = true;
860 }
861
862 if (sr & STM32F4_SPI_SR_RXNE) {
863 stm32f4_spi_read_rx(spi);
864 if (spi->rx_len == 0)
865 end = true;
866 else if (spi->tx_buf)/* Load data for discontinuous mode */
867 stm32f4_spi_write_tx(spi);
868 }
869
870 end_irq:
871 if (end) {
872 /* Immediately disable interrupts to do not generate new one */
873 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
874 STM32F4_SPI_CR2_TXEIE |
875 STM32F4_SPI_CR2_RXNEIE |
876 STM32F4_SPI_CR2_ERRIE);
877 spin_unlock(&spi->lock);
878 return IRQ_WAKE_THREAD;
879 }
880
881 spin_unlock(&spi->lock);
882 return IRQ_HANDLED;
883 }
884
885 /**
886 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
887 * @irq: interrupt line
888 * @dev_id: SPI controller master interface
889 */
stm32f4_spi_irq_thread(int irq,void * dev_id)890 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
891 {
892 struct spi_master *master = dev_id;
893 struct stm32_spi *spi = spi_master_get_devdata(master);
894
895 spi_finalize_current_transfer(master);
896 stm32f4_spi_disable(spi);
897
898 return IRQ_HANDLED;
899 }
900
901 /**
902 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
903 * @irq: interrupt line
904 * @dev_id: SPI controller master interface
905 */
stm32h7_spi_irq_thread(int irq,void * dev_id)906 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
907 {
908 struct spi_master *master = dev_id;
909 struct stm32_spi *spi = spi_master_get_devdata(master);
910 u32 sr, ier, mask;
911 unsigned long flags;
912 bool end = false;
913
914 spin_lock_irqsave(&spi->lock, flags);
915
916 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
917 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
918
919 mask = ier;
920 /*
921 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
922 * SUSP to acknowledge it later. TXC is automatically cleared
923 */
924
925 mask |= STM32H7_SPI_SR_SUSP;
926 /*
927 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
928 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
929 */
930 if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
931 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
932
933 if (!(sr & mask)) {
934 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
935 sr, ier);
936 spin_unlock_irqrestore(&spi->lock, flags);
937 return IRQ_NONE;
938 }
939
940 if (sr & STM32H7_SPI_SR_SUSP) {
941 static DEFINE_RATELIMIT_STATE(rs,
942 DEFAULT_RATELIMIT_INTERVAL * 10,
943 1);
944 ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
945 if (__ratelimit(&rs))
946 dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
947 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
948 stm32h7_spi_read_rxfifo(spi, false);
949 /*
950 * If communication is suspended while using DMA, it means
951 * that something went wrong, so stop the current transfer
952 */
953 if (spi->cur_usedma)
954 end = true;
955 }
956
957 if (sr & STM32H7_SPI_SR_MODF) {
958 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
959 end = true;
960 }
961
962 if (sr & STM32H7_SPI_SR_OVR) {
963 dev_err(spi->dev, "Overrun: RX data lost\n");
964 end = true;
965 }
966
967 if (sr & STM32H7_SPI_SR_EOT) {
968 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
969 stm32h7_spi_read_rxfifo(spi, true);
970 end = true;
971 }
972
973 if (sr & STM32H7_SPI_SR_TXP)
974 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
975 stm32h7_spi_write_txfifo(spi);
976
977 if (sr & STM32H7_SPI_SR_RXP)
978 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
979 stm32h7_spi_read_rxfifo(spi, false);
980
981 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
982
983 spin_unlock_irqrestore(&spi->lock, flags);
984
985 if (end) {
986 stm32h7_spi_disable(spi);
987 spi_finalize_current_transfer(master);
988 }
989
990 return IRQ_HANDLED;
991 }
992
993 /**
994 * stm32_spi_prepare_msg - set up the controller to transfer a single message
995 * @master: controller master interface
996 * @msg: pointer to spi message
997 */
stm32_spi_prepare_msg(struct spi_master * master,struct spi_message * msg)998 static int stm32_spi_prepare_msg(struct spi_master *master,
999 struct spi_message *msg)
1000 {
1001 struct stm32_spi *spi = spi_master_get_devdata(master);
1002 struct spi_device *spi_dev = msg->spi;
1003 struct device_node *np = spi_dev->dev.of_node;
1004 unsigned long flags;
1005 u32 clrb = 0, setb = 0;
1006
1007 /* SPI slave device may need time between data frames */
1008 spi->cur_midi = 0;
1009 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1010 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1011
1012 if (spi_dev->mode & SPI_CPOL)
1013 setb |= spi->cfg->regs->cpol.mask;
1014 else
1015 clrb |= spi->cfg->regs->cpol.mask;
1016
1017 if (spi_dev->mode & SPI_CPHA)
1018 setb |= spi->cfg->regs->cpha.mask;
1019 else
1020 clrb |= spi->cfg->regs->cpha.mask;
1021
1022 if (spi_dev->mode & SPI_LSB_FIRST)
1023 setb |= spi->cfg->regs->lsb_first.mask;
1024 else
1025 clrb |= spi->cfg->regs->lsb_first.mask;
1026
1027 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1028 spi_dev->mode & SPI_CPOL,
1029 spi_dev->mode & SPI_CPHA,
1030 spi_dev->mode & SPI_LSB_FIRST,
1031 spi_dev->mode & SPI_CS_HIGH);
1032
1033 spin_lock_irqsave(&spi->lock, flags);
1034
1035 /* CPOL, CPHA and LSB FIRST bits have common register */
1036 if (clrb || setb)
1037 writel_relaxed(
1038 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1039 ~clrb) | setb,
1040 spi->base + spi->cfg->regs->cpol.reg);
1041
1042 spin_unlock_irqrestore(&spi->lock, flags);
1043
1044 return 0;
1045 }
1046
1047 /**
1048 * stm32f4_spi_dma_tx_cb - dma callback
1049 * @data: pointer to the spi controller data structure
1050 *
1051 * DMA callback is called when the transfer is complete for DMA TX channel.
1052 */
stm32f4_spi_dma_tx_cb(void * data)1053 static void stm32f4_spi_dma_tx_cb(void *data)
1054 {
1055 struct stm32_spi *spi = data;
1056
1057 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1058 spi_finalize_current_transfer(spi->master);
1059 stm32f4_spi_disable(spi);
1060 }
1061 }
1062
1063 /**
1064 * stm32f4_spi_dma_rx_cb - dma callback
1065 * @data: pointer to the spi controller data structure
1066 *
1067 * DMA callback is called when the transfer is complete for DMA RX channel.
1068 */
stm32f4_spi_dma_rx_cb(void * data)1069 static void stm32f4_spi_dma_rx_cb(void *data)
1070 {
1071 struct stm32_spi *spi = data;
1072
1073 spi_finalize_current_transfer(spi->master);
1074 stm32f4_spi_disable(spi);
1075 }
1076
1077 /**
1078 * stm32h7_spi_dma_cb - dma callback
1079 * @data: pointer to the spi controller data structure
1080 *
1081 * DMA callback is called when the transfer is complete or when an error
1082 * occurs. If the transfer is complete, EOT flag is raised.
1083 */
stm32h7_spi_dma_cb(void * data)1084 static void stm32h7_spi_dma_cb(void *data)
1085 {
1086 struct stm32_spi *spi = data;
1087 unsigned long flags;
1088 u32 sr;
1089
1090 spin_lock_irqsave(&spi->lock, flags);
1091
1092 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1093
1094 spin_unlock_irqrestore(&spi->lock, flags);
1095
1096 if (!(sr & STM32H7_SPI_SR_EOT))
1097 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1098
1099 /* Now wait for EOT, or SUSP or OVR in case of error */
1100 }
1101
1102 /**
1103 * stm32_spi_dma_config - configure dma slave channel depending on current
1104 * transfer bits_per_word.
1105 * @spi: pointer to the spi controller data structure
1106 * @dma_conf: pointer to the dma_slave_config structure
1107 * @dir: direction of the dma transfer
1108 */
stm32_spi_dma_config(struct stm32_spi * spi,struct dma_slave_config * dma_conf,enum dma_transfer_direction dir)1109 static void stm32_spi_dma_config(struct stm32_spi *spi,
1110 struct dma_slave_config *dma_conf,
1111 enum dma_transfer_direction dir)
1112 {
1113 enum dma_slave_buswidth buswidth;
1114 u32 maxburst;
1115
1116 if (spi->cur_bpw <= 8)
1117 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118 else if (spi->cur_bpw <= 16)
1119 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1120 else
1121 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1122
1123 if (spi->cfg->has_fifo) {
1124 /* Valid for DMA Half or Full Fifo threshold */
1125 if (spi->cur_fthlv == 2)
1126 maxburst = 1;
1127 else
1128 maxburst = spi->cur_fthlv;
1129 } else {
1130 maxburst = 1;
1131 }
1132
1133 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1134 dma_conf->direction = dir;
1135 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1136 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1137 dma_conf->src_addr_width = buswidth;
1138 dma_conf->src_maxburst = maxburst;
1139
1140 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1141 buswidth, maxburst);
1142 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1143 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1144 dma_conf->dst_addr_width = buswidth;
1145 dma_conf->dst_maxburst = maxburst;
1146
1147 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1148 buswidth, maxburst);
1149 }
1150 }
1151
1152 /**
1153 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1154 * interrupts
1155 * @spi: pointer to the spi controller data structure
1156 *
1157 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1158 * in progress.
1159 */
stm32f4_spi_transfer_one_irq(struct stm32_spi * spi)1160 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1161 {
1162 unsigned long flags;
1163 u32 cr2 = 0;
1164
1165 /* Enable the interrupts relative to the current communication mode */
1166 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1167 cr2 |= STM32F4_SPI_CR2_TXEIE;
1168 } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1169 spi->cur_comm == SPI_SIMPLEX_RX ||
1170 spi->cur_comm == SPI_3WIRE_RX) {
1171 /* In transmit-only mode, the OVR flag is set in the SR register
1172 * since the received data are never read. Therefore set OVR
1173 * interrupt only when rx buffer is available.
1174 */
1175 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1176 } else {
1177 return -EINVAL;
1178 }
1179
1180 spin_lock_irqsave(&spi->lock, flags);
1181
1182 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1183
1184 stm32_spi_enable(spi);
1185
1186 /* starting data transfer when buffer is loaded */
1187 if (spi->tx_buf)
1188 stm32f4_spi_write_tx(spi);
1189
1190 spin_unlock_irqrestore(&spi->lock, flags);
1191
1192 return 1;
1193 }
1194
1195 /**
1196 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1197 * interrupts
1198 * @spi: pointer to the spi controller data structure
1199 *
1200 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1201 * in progress.
1202 */
stm32h7_spi_transfer_one_irq(struct stm32_spi * spi)1203 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1204 {
1205 unsigned long flags;
1206 u32 ier = 0;
1207
1208 /* Enable the interrupts relative to the current communication mode */
1209 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1210 ier |= STM32H7_SPI_IER_DXPIE;
1211 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
1212 ier |= STM32H7_SPI_IER_TXPIE;
1213 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
1214 ier |= STM32H7_SPI_IER_RXPIE;
1215
1216 /* Enable the interrupts relative to the end of transfer */
1217 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1218 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1219
1220 spin_lock_irqsave(&spi->lock, flags);
1221
1222 stm32_spi_enable(spi);
1223
1224 /* Be sure to have data in fifo before starting data transfer */
1225 if (spi->tx_buf)
1226 stm32h7_spi_write_txfifo(spi);
1227
1228 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1229
1230 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1231
1232 spin_unlock_irqrestore(&spi->lock, flags);
1233
1234 return 1;
1235 }
1236
1237 /**
1238 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1239 * transfer using DMA
1240 * @spi: pointer to the spi controller data structure
1241 */
stm32f4_spi_transfer_one_dma_start(struct stm32_spi * spi)1242 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1243 {
1244 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1245 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1246 spi->cur_comm == SPI_FULL_DUPLEX) {
1247 /*
1248 * In transmit-only mode, the OVR flag is set in the SR register
1249 * since the received data are never read. Therefore set OVR
1250 * interrupt only when rx buffer is available.
1251 */
1252 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1253 }
1254
1255 stm32_spi_enable(spi);
1256 }
1257
1258 /**
1259 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1260 * transfer using DMA
1261 * @spi: pointer to the spi controller data structure
1262 */
stm32h7_spi_transfer_one_dma_start(struct stm32_spi * spi)1263 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1264 {
1265 /* Enable the interrupts relative to the end of transfer */
1266 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1267 STM32H7_SPI_IER_TXTFIE |
1268 STM32H7_SPI_IER_OVRIE |
1269 STM32H7_SPI_IER_MODFIE);
1270
1271 stm32_spi_enable(spi);
1272
1273 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1274 }
1275
1276 /**
1277 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1278 * @spi: pointer to the spi controller data structure
1279 * @xfer: pointer to the spi_transfer structure
1280 *
1281 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1282 * in progress.
1283 */
stm32_spi_transfer_one_dma(struct stm32_spi * spi,struct spi_transfer * xfer)1284 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1285 struct spi_transfer *xfer)
1286 {
1287 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1288 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1289 unsigned long flags;
1290
1291 spin_lock_irqsave(&spi->lock, flags);
1292
1293 rx_dma_desc = NULL;
1294 if (spi->rx_buf && spi->dma_rx) {
1295 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1296 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1297
1298 /* Enable Rx DMA request */
1299 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1300 spi->cfg->regs->dma_rx_en.mask);
1301
1302 rx_dma_desc = dmaengine_prep_slave_sg(
1303 spi->dma_rx, xfer->rx_sg.sgl,
1304 xfer->rx_sg.nents,
1305 rx_dma_conf.direction,
1306 DMA_PREP_INTERRUPT);
1307 }
1308
1309 tx_dma_desc = NULL;
1310 if (spi->tx_buf && spi->dma_tx) {
1311 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1312 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1313
1314 tx_dma_desc = dmaengine_prep_slave_sg(
1315 spi->dma_tx, xfer->tx_sg.sgl,
1316 xfer->tx_sg.nents,
1317 tx_dma_conf.direction,
1318 DMA_PREP_INTERRUPT);
1319 }
1320
1321 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1322 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1323 goto dma_desc_error;
1324
1325 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1326 goto dma_desc_error;
1327
1328 if (rx_dma_desc) {
1329 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1330 rx_dma_desc->callback_param = spi;
1331
1332 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1333 dev_err(spi->dev, "Rx DMA submit failed\n");
1334 goto dma_desc_error;
1335 }
1336 /* Enable Rx DMA channel */
1337 dma_async_issue_pending(spi->dma_rx);
1338 }
1339
1340 if (tx_dma_desc) {
1341 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1342 spi->cur_comm == SPI_3WIRE_TX) {
1343 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1344 tx_dma_desc->callback_param = spi;
1345 }
1346
1347 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1348 dev_err(spi->dev, "Tx DMA submit failed\n");
1349 goto dma_submit_error;
1350 }
1351 /* Enable Tx DMA channel */
1352 dma_async_issue_pending(spi->dma_tx);
1353
1354 /* Enable Tx DMA request */
1355 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1356 spi->cfg->regs->dma_tx_en.mask);
1357 }
1358
1359 spi->cfg->transfer_one_dma_start(spi);
1360
1361 spin_unlock_irqrestore(&spi->lock, flags);
1362
1363 return 1;
1364
1365 dma_submit_error:
1366 if (spi->dma_rx)
1367 dmaengine_terminate_all(spi->dma_rx);
1368
1369 dma_desc_error:
1370 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1371 spi->cfg->regs->dma_rx_en.mask);
1372
1373 spin_unlock_irqrestore(&spi->lock, flags);
1374
1375 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1376
1377 spi->cur_usedma = false;
1378 return spi->cfg->transfer_one_irq(spi);
1379 }
1380
1381 /**
1382 * stm32f4_spi_set_bpw - Configure bits per word
1383 * @spi: pointer to the spi controller data structure
1384 */
stm32f4_spi_set_bpw(struct stm32_spi * spi)1385 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1386 {
1387 if (spi->cur_bpw == 16)
1388 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1389 else
1390 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1391 }
1392
1393 /**
1394 * stm32h7_spi_set_bpw - configure bits per word
1395 * @spi: pointer to the spi controller data structure
1396 */
stm32h7_spi_set_bpw(struct stm32_spi * spi)1397 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1398 {
1399 u32 bpw, fthlv;
1400 u32 cfg1_clrb = 0, cfg1_setb = 0;
1401
1402 bpw = spi->cur_bpw - 1;
1403
1404 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1405 cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1406 STM32H7_SPI_CFG1_DSIZE;
1407
1408 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1409 fthlv = spi->cur_fthlv - 1;
1410
1411 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1412 cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1413 STM32H7_SPI_CFG1_FTHLV;
1414
1415 writel_relaxed(
1416 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1417 ~cfg1_clrb) | cfg1_setb,
1418 spi->base + STM32H7_SPI_CFG1);
1419 }
1420
1421 /**
1422 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1423 * @spi: pointer to the spi controller data structure
1424 * @mbrdiv: baud rate divisor value
1425 */
stm32_spi_set_mbr(struct stm32_spi * spi,u32 mbrdiv)1426 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1427 {
1428 u32 clrb = 0, setb = 0;
1429
1430 clrb |= spi->cfg->regs->br.mask;
1431 setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1432 spi->cfg->regs->br.mask;
1433
1434 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1435 ~clrb) | setb,
1436 spi->base + spi->cfg->regs->br.reg);
1437 }
1438
1439 /**
1440 * stm32_spi_communication_type - return transfer communication type
1441 * @spi_dev: pointer to the spi device
1442 * @transfer: pointer to spi transfer
1443 */
stm32_spi_communication_type(struct spi_device * spi_dev,struct spi_transfer * transfer)1444 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1445 struct spi_transfer *transfer)
1446 {
1447 unsigned int type = SPI_FULL_DUPLEX;
1448
1449 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1450 /*
1451 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1452 * is forbidden and unvalidated by SPI subsystem so depending
1453 * on the valid buffer, we can determine the direction of the
1454 * transfer.
1455 */
1456 if (!transfer->tx_buf)
1457 type = SPI_3WIRE_RX;
1458 else
1459 type = SPI_3WIRE_TX;
1460 } else {
1461 if (!transfer->tx_buf)
1462 type = SPI_SIMPLEX_RX;
1463 else if (!transfer->rx_buf)
1464 type = SPI_SIMPLEX_TX;
1465 }
1466
1467 return type;
1468 }
1469
1470 /**
1471 * stm32f4_spi_set_mode - configure communication mode
1472 * @spi: pointer to the spi controller data structure
1473 * @comm_type: type of communication to configure
1474 */
stm32f4_spi_set_mode(struct stm32_spi * spi,unsigned int comm_type)1475 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1476 {
1477 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1478 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1479 STM32F4_SPI_CR1_BIDIMODE |
1480 STM32F4_SPI_CR1_BIDIOE);
1481 } else if (comm_type == SPI_FULL_DUPLEX ||
1482 comm_type == SPI_SIMPLEX_RX) {
1483 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1484 STM32F4_SPI_CR1_BIDIMODE |
1485 STM32F4_SPI_CR1_BIDIOE);
1486 } else if (comm_type == SPI_3WIRE_RX) {
1487 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1488 STM32F4_SPI_CR1_BIDIMODE);
1489 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1490 STM32F4_SPI_CR1_BIDIOE);
1491 } else {
1492 return -EINVAL;
1493 }
1494
1495 return 0;
1496 }
1497
1498 /**
1499 * stm32h7_spi_set_mode - configure communication mode
1500 * @spi: pointer to the spi controller data structure
1501 * @comm_type: type of communication to configure
1502 */
stm32h7_spi_set_mode(struct stm32_spi * spi,unsigned int comm_type)1503 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1504 {
1505 u32 mode;
1506 u32 cfg2_clrb = 0, cfg2_setb = 0;
1507
1508 if (comm_type == SPI_3WIRE_RX) {
1509 mode = STM32H7_SPI_HALF_DUPLEX;
1510 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1511 } else if (comm_type == SPI_3WIRE_TX) {
1512 mode = STM32H7_SPI_HALF_DUPLEX;
1513 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1514 } else if (comm_type == SPI_SIMPLEX_RX) {
1515 mode = STM32H7_SPI_SIMPLEX_RX;
1516 } else if (comm_type == SPI_SIMPLEX_TX) {
1517 mode = STM32H7_SPI_SIMPLEX_TX;
1518 } else {
1519 mode = STM32H7_SPI_FULL_DUPLEX;
1520 }
1521
1522 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1523 cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1524 STM32H7_SPI_CFG2_COMM;
1525
1526 writel_relaxed(
1527 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1528 ~cfg2_clrb) | cfg2_setb,
1529 spi->base + STM32H7_SPI_CFG2);
1530
1531 return 0;
1532 }
1533
1534 /**
1535 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1536 * consecutive data frames in master mode
1537 * @spi: pointer to the spi controller data structure
1538 * @len: transfer len
1539 */
stm32h7_spi_data_idleness(struct stm32_spi * spi,u32 len)1540 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1541 {
1542 u32 cfg2_clrb = 0, cfg2_setb = 0;
1543
1544 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1545 if ((len > 1) && (spi->cur_midi > 0)) {
1546 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1547 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1548 (u32)STM32H7_SPI_CFG2_MIDI >>
1549 STM32H7_SPI_CFG2_MIDI_SHIFT);
1550
1551 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1552 sck_period_ns, midi, midi * sck_period_ns);
1553 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1554 STM32H7_SPI_CFG2_MIDI;
1555 }
1556
1557 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1558 ~cfg2_clrb) | cfg2_setb,
1559 spi->base + STM32H7_SPI_CFG2);
1560 }
1561
1562 /**
1563 * stm32h7_spi_number_of_data - configure number of data at current transfer
1564 * @spi: pointer to the spi controller data structure
1565 * @nb_words: transfer length (in words)
1566 */
stm32h7_spi_number_of_data(struct stm32_spi * spi,u32 nb_words)1567 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1568 {
1569 u32 cr2_clrb = 0, cr2_setb = 0;
1570
1571 if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1572 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1573 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1574 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1575 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1576 ~cr2_clrb) | cr2_setb,
1577 spi->base + STM32H7_SPI_CR2);
1578 } else {
1579 return -EMSGSIZE;
1580 }
1581
1582 return 0;
1583 }
1584
1585 /**
1586 * stm32_spi_transfer_one_setup - common setup to transfer a single
1587 * spi_transfer either using DMA or
1588 * interrupts.
1589 * @spi: pointer to the spi controller data structure
1590 * @spi_dev: pointer to the spi device
1591 * @transfer: pointer to spi transfer
1592 */
stm32_spi_transfer_one_setup(struct stm32_spi * spi,struct spi_device * spi_dev,struct spi_transfer * transfer)1593 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1594 struct spi_device *spi_dev,
1595 struct spi_transfer *transfer)
1596 {
1597 unsigned long flags;
1598 unsigned int comm_type;
1599 int nb_words, ret = 0;
1600 int mbr;
1601
1602 spin_lock_irqsave(&spi->lock, flags);
1603
1604 spi->cur_xferlen = transfer->len;
1605
1606 spi->cur_bpw = transfer->bits_per_word;
1607 spi->cfg->set_bpw(spi);
1608
1609 /* Update spi->cur_speed with real clock speed */
1610 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1611 spi->cfg->baud_rate_div_min,
1612 spi->cfg->baud_rate_div_max);
1613 if (mbr < 0) {
1614 ret = mbr;
1615 goto out;
1616 }
1617
1618 transfer->speed_hz = spi->cur_speed;
1619 stm32_spi_set_mbr(spi, mbr);
1620
1621 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1622 ret = spi->cfg->set_mode(spi, comm_type);
1623 if (ret < 0)
1624 goto out;
1625
1626 spi->cur_comm = comm_type;
1627
1628 if (spi->cfg->set_data_idleness)
1629 spi->cfg->set_data_idleness(spi, transfer->len);
1630
1631 if (spi->cur_bpw <= 8)
1632 nb_words = transfer->len;
1633 else if (spi->cur_bpw <= 16)
1634 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1635 else
1636 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1637
1638 if (spi->cfg->set_number_of_data) {
1639 ret = spi->cfg->set_number_of_data(spi, nb_words);
1640 if (ret < 0)
1641 goto out;
1642 }
1643
1644 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1645 spi->cur_comm);
1646 dev_dbg(spi->dev,
1647 "data frame of %d-bit, data packet of %d data frames\n",
1648 spi->cur_bpw, spi->cur_fthlv);
1649 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1650 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1651 spi->cur_xferlen, nb_words);
1652 dev_dbg(spi->dev, "dma %s\n",
1653 (spi->cur_usedma) ? "enabled" : "disabled");
1654
1655 out:
1656 spin_unlock_irqrestore(&spi->lock, flags);
1657
1658 return ret;
1659 }
1660
1661 /**
1662 * stm32_spi_transfer_one - transfer a single spi_transfer
1663 * @master: controller master interface
1664 * @spi_dev: pointer to the spi device
1665 * @transfer: pointer to spi transfer
1666 *
1667 * It must return 0 if the transfer is finished or 1 if the transfer is still
1668 * in progress.
1669 */
stm32_spi_transfer_one(struct spi_master * master,struct spi_device * spi_dev,struct spi_transfer * transfer)1670 static int stm32_spi_transfer_one(struct spi_master *master,
1671 struct spi_device *spi_dev,
1672 struct spi_transfer *transfer)
1673 {
1674 struct stm32_spi *spi = spi_master_get_devdata(master);
1675 int ret;
1676
1677 /* Don't do anything on 0 bytes transfers */
1678 if (transfer->len == 0)
1679 return 0;
1680
1681 spi->tx_buf = transfer->tx_buf;
1682 spi->rx_buf = transfer->rx_buf;
1683 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1684 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1685
1686 spi->cur_usedma = (master->can_dma &&
1687 master->can_dma(master, spi_dev, transfer));
1688
1689 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1690 if (ret) {
1691 dev_err(spi->dev, "SPI transfer setup failed\n");
1692 return ret;
1693 }
1694
1695 if (spi->cur_usedma)
1696 return stm32_spi_transfer_one_dma(spi, transfer);
1697 else
1698 return spi->cfg->transfer_one_irq(spi);
1699 }
1700
1701 /**
1702 * stm32_spi_unprepare_msg - relax the hardware
1703 * @master: controller master interface
1704 * @msg: pointer to the spi message
1705 */
stm32_spi_unprepare_msg(struct spi_master * master,struct spi_message * msg)1706 static int stm32_spi_unprepare_msg(struct spi_master *master,
1707 struct spi_message *msg)
1708 {
1709 struct stm32_spi *spi = spi_master_get_devdata(master);
1710
1711 spi->cfg->disable(spi);
1712
1713 return 0;
1714 }
1715
1716 /**
1717 * stm32f4_spi_config - Configure SPI controller as SPI master
1718 * @spi: pointer to the spi controller data structure
1719 */
stm32f4_spi_config(struct stm32_spi * spi)1720 static int stm32f4_spi_config(struct stm32_spi *spi)
1721 {
1722 unsigned long flags;
1723
1724 spin_lock_irqsave(&spi->lock, flags);
1725
1726 /* Ensure I2SMOD bit is kept cleared */
1727 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1728 STM32F4_SPI_I2SCFGR_I2SMOD);
1729
1730 /*
1731 * - SS input value high
1732 * - transmitter half duplex direction
1733 * - Set the master mode (default Motorola mode)
1734 * - Consider 1 master/n slaves configuration and
1735 * SS input value is determined by the SSI bit
1736 */
1737 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1738 STM32F4_SPI_CR1_BIDIOE |
1739 STM32F4_SPI_CR1_MSTR |
1740 STM32F4_SPI_CR1_SSM);
1741
1742 spin_unlock_irqrestore(&spi->lock, flags);
1743
1744 return 0;
1745 }
1746
1747 /**
1748 * stm32h7_spi_config - Configure SPI controller as SPI master
1749 * @spi: pointer to the spi controller data structure
1750 */
stm32h7_spi_config(struct stm32_spi * spi)1751 static int stm32h7_spi_config(struct stm32_spi *spi)
1752 {
1753 unsigned long flags;
1754
1755 spin_lock_irqsave(&spi->lock, flags);
1756
1757 /* Ensure I2SMOD bit is kept cleared */
1758 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1759 STM32H7_SPI_I2SCFGR_I2SMOD);
1760
1761 /*
1762 * - SS input value high
1763 * - transmitter half duplex direction
1764 * - automatic communication suspend when RX-Fifo is full
1765 */
1766 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1767 STM32H7_SPI_CR1_HDDIR |
1768 STM32H7_SPI_CR1_MASRX);
1769
1770 /*
1771 * - Set the master mode (default Motorola mode)
1772 * - Consider 1 master/n slaves configuration and
1773 * SS input value is determined by the SSI bit
1774 * - keep control of all associated GPIOs
1775 */
1776 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1777 STM32H7_SPI_CFG2_SSM |
1778 STM32H7_SPI_CFG2_AFCNTR);
1779
1780 spin_unlock_irqrestore(&spi->lock, flags);
1781
1782 return 0;
1783 }
1784
1785 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1786 .regs = &stm32f4_spi_regspec,
1787 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1788 .disable = stm32f4_spi_disable,
1789 .config = stm32f4_spi_config,
1790 .set_bpw = stm32f4_spi_set_bpw,
1791 .set_mode = stm32f4_spi_set_mode,
1792 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1793 .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1794 .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1795 .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1796 .irq_handler_event = stm32f4_spi_irq_event,
1797 .irq_handler_thread = stm32f4_spi_irq_thread,
1798 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1799 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1800 .has_fifo = false,
1801 };
1802
1803 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1804 .regs = &stm32h7_spi_regspec,
1805 .get_fifo_size = stm32h7_spi_get_fifo_size,
1806 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1807 .disable = stm32h7_spi_disable,
1808 .config = stm32h7_spi_config,
1809 .set_bpw = stm32h7_spi_set_bpw,
1810 .set_mode = stm32h7_spi_set_mode,
1811 .set_data_idleness = stm32h7_spi_data_idleness,
1812 .set_number_of_data = stm32h7_spi_number_of_data,
1813 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1814 .dma_rx_cb = stm32h7_spi_dma_cb,
1815 .dma_tx_cb = stm32h7_spi_dma_cb,
1816 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1817 .irq_handler_thread = stm32h7_spi_irq_thread,
1818 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1819 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1820 .has_fifo = true,
1821 };
1822
1823 static const struct of_device_id stm32_spi_of_match[] = {
1824 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1825 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1826 {},
1827 };
1828 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1829
stm32_spi_probe(struct platform_device * pdev)1830 static int stm32_spi_probe(struct platform_device *pdev)
1831 {
1832 struct spi_master *master;
1833 struct stm32_spi *spi;
1834 struct resource *res;
1835 int ret;
1836
1837 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1838 if (!master) {
1839 dev_err(&pdev->dev, "spi master allocation failed\n");
1840 return -ENOMEM;
1841 }
1842 platform_set_drvdata(pdev, master);
1843
1844 spi = spi_master_get_devdata(master);
1845 spi->dev = &pdev->dev;
1846 spi->master = master;
1847 spin_lock_init(&spi->lock);
1848
1849 spi->cfg = (const struct stm32_spi_cfg *)
1850 of_match_device(pdev->dev.driver->of_match_table,
1851 &pdev->dev)->data;
1852
1853 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1854 spi->base = devm_ioremap_resource(&pdev->dev, res);
1855 if (IS_ERR(spi->base))
1856 return PTR_ERR(spi->base);
1857
1858 spi->phys_addr = (dma_addr_t)res->start;
1859
1860 spi->irq = platform_get_irq(pdev, 0);
1861 if (spi->irq <= 0)
1862 return dev_err_probe(&pdev->dev, spi->irq,
1863 "failed to get irq\n");
1864
1865 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1866 spi->cfg->irq_handler_event,
1867 spi->cfg->irq_handler_thread,
1868 IRQF_ONESHOT, pdev->name, master);
1869 if (ret) {
1870 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1871 ret);
1872 return ret;
1873 }
1874
1875 spi->clk = devm_clk_get(&pdev->dev, NULL);
1876 if (IS_ERR(spi->clk)) {
1877 ret = PTR_ERR(spi->clk);
1878 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1879 return ret;
1880 }
1881
1882 ret = clk_prepare_enable(spi->clk);
1883 if (ret) {
1884 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1885 return ret;
1886 }
1887 spi->clk_rate = clk_get_rate(spi->clk);
1888 if (!spi->clk_rate) {
1889 dev_err(&pdev->dev, "clk rate = 0\n");
1890 ret = -EINVAL;
1891 goto err_clk_disable;
1892 }
1893
1894 spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1895 if (!IS_ERR(spi->rst)) {
1896 reset_control_assert(spi->rst);
1897 udelay(2);
1898 reset_control_deassert(spi->rst);
1899 }
1900
1901 if (spi->cfg->has_fifo)
1902 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1903
1904 ret = spi->cfg->config(spi);
1905 if (ret) {
1906 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1907 ret);
1908 goto err_clk_disable;
1909 }
1910
1911 master->dev.of_node = pdev->dev.of_node;
1912 master->auto_runtime_pm = true;
1913 master->bus_num = pdev->id;
1914 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1915 SPI_3WIRE;
1916 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1917 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1918 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1919 master->use_gpio_descriptors = true;
1920 master->prepare_message = stm32_spi_prepare_msg;
1921 master->transfer_one = stm32_spi_transfer_one;
1922 master->unprepare_message = stm32_spi_unprepare_msg;
1923 master->flags = SPI_MASTER_MUST_TX;
1924
1925 spi->dma_tx = dma_request_chan(spi->dev, "tx");
1926 if (IS_ERR(spi->dma_tx)) {
1927 ret = PTR_ERR(spi->dma_tx);
1928 spi->dma_tx = NULL;
1929 if (ret == -EPROBE_DEFER)
1930 goto err_clk_disable;
1931
1932 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1933 } else {
1934 master->dma_tx = spi->dma_tx;
1935 }
1936
1937 spi->dma_rx = dma_request_chan(spi->dev, "rx");
1938 if (IS_ERR(spi->dma_rx)) {
1939 ret = PTR_ERR(spi->dma_rx);
1940 spi->dma_rx = NULL;
1941 if (ret == -EPROBE_DEFER)
1942 goto err_dma_release;
1943
1944 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1945 } else {
1946 master->dma_rx = spi->dma_rx;
1947 }
1948
1949 if (spi->dma_tx || spi->dma_rx)
1950 master->can_dma = stm32_spi_can_dma;
1951
1952 pm_runtime_set_active(&pdev->dev);
1953 pm_runtime_get_noresume(&pdev->dev);
1954 pm_runtime_enable(&pdev->dev);
1955
1956 ret = spi_register_master(master);
1957 if (ret) {
1958 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1959 ret);
1960 goto err_pm_disable;
1961 }
1962
1963 if (!master->cs_gpiods) {
1964 dev_err(&pdev->dev, "no CS gpios available\n");
1965 ret = -EINVAL;
1966 goto err_pm_disable;
1967 }
1968
1969 dev_info(&pdev->dev, "driver initialized\n");
1970
1971 return 0;
1972
1973 err_pm_disable:
1974 pm_runtime_disable(&pdev->dev);
1975 pm_runtime_put_noidle(&pdev->dev);
1976 pm_runtime_set_suspended(&pdev->dev);
1977 err_dma_release:
1978 if (spi->dma_tx)
1979 dma_release_channel(spi->dma_tx);
1980 if (spi->dma_rx)
1981 dma_release_channel(spi->dma_rx);
1982 err_clk_disable:
1983 clk_disable_unprepare(spi->clk);
1984
1985 return ret;
1986 }
1987
stm32_spi_remove(struct platform_device * pdev)1988 static int stm32_spi_remove(struct platform_device *pdev)
1989 {
1990 struct spi_master *master = platform_get_drvdata(pdev);
1991 struct stm32_spi *spi = spi_master_get_devdata(master);
1992
1993 pm_runtime_get_sync(&pdev->dev);
1994
1995 spi_unregister_master(master);
1996 spi->cfg->disable(spi);
1997
1998 pm_runtime_disable(&pdev->dev);
1999 pm_runtime_put_noidle(&pdev->dev);
2000 pm_runtime_set_suspended(&pdev->dev);
2001 if (master->dma_tx)
2002 dma_release_channel(master->dma_tx);
2003 if (master->dma_rx)
2004 dma_release_channel(master->dma_rx);
2005
2006 clk_disable_unprepare(spi->clk);
2007
2008
2009 pinctrl_pm_select_sleep_state(&pdev->dev);
2010
2011 return 0;
2012 }
2013
2014 #ifdef CONFIG_PM
stm32_spi_runtime_suspend(struct device * dev)2015 static int stm32_spi_runtime_suspend(struct device *dev)
2016 {
2017 struct spi_master *master = dev_get_drvdata(dev);
2018 struct stm32_spi *spi = spi_master_get_devdata(master);
2019
2020 clk_disable_unprepare(spi->clk);
2021
2022 return pinctrl_pm_select_sleep_state(dev);
2023 }
2024
stm32_spi_runtime_resume(struct device * dev)2025 static int stm32_spi_runtime_resume(struct device *dev)
2026 {
2027 struct spi_master *master = dev_get_drvdata(dev);
2028 struct stm32_spi *spi = spi_master_get_devdata(master);
2029 int ret;
2030
2031 ret = pinctrl_pm_select_default_state(dev);
2032 if (ret)
2033 return ret;
2034
2035 return clk_prepare_enable(spi->clk);
2036 }
2037 #endif
2038
2039 #ifdef CONFIG_PM_SLEEP
stm32_spi_suspend(struct device * dev)2040 static int stm32_spi_suspend(struct device *dev)
2041 {
2042 struct spi_master *master = dev_get_drvdata(dev);
2043 int ret;
2044
2045 ret = spi_master_suspend(master);
2046 if (ret)
2047 return ret;
2048
2049 return pm_runtime_force_suspend(dev);
2050 }
2051
stm32_spi_resume(struct device * dev)2052 static int stm32_spi_resume(struct device *dev)
2053 {
2054 struct spi_master *master = dev_get_drvdata(dev);
2055 struct stm32_spi *spi = spi_master_get_devdata(master);
2056 int ret;
2057
2058 ret = pm_runtime_force_resume(dev);
2059 if (ret)
2060 return ret;
2061
2062 ret = spi_master_resume(master);
2063 if (ret) {
2064 clk_disable_unprepare(spi->clk);
2065 return ret;
2066 }
2067
2068 ret = pm_runtime_get_sync(dev);
2069 if (ret < 0) {
2070 pm_runtime_put_noidle(dev);
2071 dev_err(dev, "Unable to power device:%d\n", ret);
2072 return ret;
2073 }
2074
2075 spi->cfg->config(spi);
2076
2077 pm_runtime_mark_last_busy(dev);
2078 pm_runtime_put_autosuspend(dev);
2079
2080 return 0;
2081 }
2082 #endif
2083
2084 static const struct dev_pm_ops stm32_spi_pm_ops = {
2085 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2086 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2087 stm32_spi_runtime_resume, NULL)
2088 };
2089
2090 static struct platform_driver stm32_spi_driver = {
2091 .probe = stm32_spi_probe,
2092 .remove = stm32_spi_remove,
2093 .driver = {
2094 .name = DRIVER_NAME,
2095 .pm = &stm32_spi_pm_ops,
2096 .of_match_table = stm32_spi_of_match,
2097 },
2098 };
2099
2100 module_platform_driver(stm32_spi_driver);
2101
2102 MODULE_ALIAS("platform:" DRIVER_NAME);
2103 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2104 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2105 MODULE_LICENSE("GPL v2");
2106