1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI QSPI driver
4 *
5 * Copyright (C) 2013 Texas Instruments Incorporated - https://www.ti.com
6 * Author: Sourav Poddar <sourav.poddar@ti.com>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/omap-dma.h>
18 #include <linux/platform_device.h>
19 #include <linux/err.h>
20 #include <linux/clk.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/mfd/syscon.h>
28 #include <linux/regmap.h>
29 #include <linux/sizes.h>
30
31 #include <linux/spi/spi.h>
32 #include <linux/spi/spi-mem.h>
33
34 struct ti_qspi_regs {
35 u32 clkctrl;
36 };
37
38 struct ti_qspi {
39 struct completion transfer_complete;
40
41 /* list synchronization */
42 struct mutex list_lock;
43
44 struct spi_master *master;
45 void __iomem *base;
46 void __iomem *mmap_base;
47 size_t mmap_size;
48 struct regmap *ctrl_base;
49 unsigned int ctrl_reg;
50 struct clk *fclk;
51 struct device *dev;
52
53 struct ti_qspi_regs ctx_reg;
54
55 dma_addr_t mmap_phys_base;
56 dma_addr_t rx_bb_dma_addr;
57 void *rx_bb_addr;
58 struct dma_chan *rx_chan;
59
60 u32 spi_max_frequency;
61 u32 cmd;
62 u32 dc;
63
64 bool mmap_enabled;
65 int current_cs;
66 };
67
68 #define QSPI_PID (0x0)
69 #define QSPI_SYSCONFIG (0x10)
70 #define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
71 #define QSPI_SPI_DC_REG (0x44)
72 #define QSPI_SPI_CMD_REG (0x48)
73 #define QSPI_SPI_STATUS_REG (0x4c)
74 #define QSPI_SPI_DATA_REG (0x50)
75 #define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n))
76 #define QSPI_SPI_SWITCH_REG (0x64)
77 #define QSPI_SPI_DATA_REG_1 (0x68)
78 #define QSPI_SPI_DATA_REG_2 (0x6c)
79 #define QSPI_SPI_DATA_REG_3 (0x70)
80
81 #define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
82
83 /* Clock Control */
84 #define QSPI_CLK_EN (1 << 31)
85 #define QSPI_CLK_DIV_MAX 0xffff
86
87 /* Command */
88 #define QSPI_EN_CS(n) (n << 28)
89 #define QSPI_WLEN(n) ((n - 1) << 19)
90 #define QSPI_3_PIN (1 << 18)
91 #define QSPI_RD_SNGL (1 << 16)
92 #define QSPI_WR_SNGL (2 << 16)
93 #define QSPI_RD_DUAL (3 << 16)
94 #define QSPI_RD_QUAD (7 << 16)
95 #define QSPI_INVAL (4 << 16)
96 #define QSPI_FLEN(n) ((n - 1) << 0)
97 #define QSPI_WLEN_MAX_BITS 128
98 #define QSPI_WLEN_MAX_BYTES 16
99 #define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
100
101 /* STATUS REGISTER */
102 #define BUSY 0x01
103 #define WC 0x02
104
105 /* Device Control */
106 #define QSPI_DD(m, n) (m << (3 + n * 8))
107 #define QSPI_CKPHA(n) (1 << (2 + n * 8))
108 #define QSPI_CSPOL(n) (1 << (1 + n * 8))
109 #define QSPI_CKPOL(n) (1 << (n * 8))
110
111 #define QSPI_FRAME 4096
112
113 #define QSPI_AUTOSUSPEND_TIMEOUT 2000
114
115 #define MEM_CS_EN(n) ((n + 1) << 8)
116 #define MEM_CS_MASK (7 << 8)
117
118 #define MM_SWITCH 0x1
119
120 #define QSPI_SETUP_RD_NORMAL (0x0 << 12)
121 #define QSPI_SETUP_RD_DUAL (0x1 << 12)
122 #define QSPI_SETUP_RD_QUAD (0x3 << 12)
123 #define QSPI_SETUP_ADDR_SHIFT 8
124 #define QSPI_SETUP_DUMMY_SHIFT 10
125
126 #define QSPI_DMA_BUFFER_SIZE SZ_64K
127
ti_qspi_read(struct ti_qspi * qspi,unsigned long reg)128 static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
129 unsigned long reg)
130 {
131 return readl(qspi->base + reg);
132 }
133
ti_qspi_write(struct ti_qspi * qspi,unsigned long val,unsigned long reg)134 static inline void ti_qspi_write(struct ti_qspi *qspi,
135 unsigned long val, unsigned long reg)
136 {
137 writel(val, qspi->base + reg);
138 }
139
ti_qspi_setup(struct spi_device * spi)140 static int ti_qspi_setup(struct spi_device *spi)
141 {
142 struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
143 struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
144 int clk_div = 0, ret;
145 u32 clk_ctrl_reg, clk_rate, clk_mask;
146
147 if (spi->master->busy) {
148 dev_dbg(qspi->dev, "master busy doing other transfers\n");
149 return -EBUSY;
150 }
151
152 if (!qspi->spi_max_frequency) {
153 dev_err(qspi->dev, "spi max frequency not defined\n");
154 return -EINVAL;
155 }
156
157 clk_rate = clk_get_rate(qspi->fclk);
158
159 clk_div = DIV_ROUND_UP(clk_rate, qspi->spi_max_frequency) - 1;
160
161 if (clk_div < 0) {
162 dev_dbg(qspi->dev, "clock divider < 0, using /1 divider\n");
163 return -EINVAL;
164 }
165
166 if (clk_div > QSPI_CLK_DIV_MAX) {
167 dev_dbg(qspi->dev, "clock divider >%d , using /%d divider\n",
168 QSPI_CLK_DIV_MAX, QSPI_CLK_DIV_MAX + 1);
169 return -EINVAL;
170 }
171
172 dev_dbg(qspi->dev, "hz: %d, clock divider %d\n",
173 qspi->spi_max_frequency, clk_div);
174
175 ret = pm_runtime_get_sync(qspi->dev);
176 if (ret < 0) {
177 pm_runtime_put_noidle(qspi->dev);
178 dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
179 return ret;
180 }
181
182 clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
183
184 clk_ctrl_reg &= ~QSPI_CLK_EN;
185
186 /* disable SCLK */
187 ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
188
189 /* enable SCLK */
190 clk_mask = QSPI_CLK_EN | clk_div;
191 ti_qspi_write(qspi, clk_mask, QSPI_SPI_CLOCK_CNTRL_REG);
192 ctx_reg->clkctrl = clk_mask;
193
194 pm_runtime_mark_last_busy(qspi->dev);
195 ret = pm_runtime_put_autosuspend(qspi->dev);
196 if (ret < 0) {
197 dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
198 return ret;
199 }
200
201 return 0;
202 }
203
ti_qspi_restore_ctx(struct ti_qspi * qspi)204 static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
205 {
206 struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
207
208 ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
209 }
210
qspi_is_busy(struct ti_qspi * qspi)211 static inline u32 qspi_is_busy(struct ti_qspi *qspi)
212 {
213 u32 stat;
214 unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
215
216 stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
217 while ((stat & BUSY) && time_after(timeout, jiffies)) {
218 cpu_relax();
219 stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
220 }
221
222 WARN(stat & BUSY, "qspi busy\n");
223 return stat & BUSY;
224 }
225
ti_qspi_poll_wc(struct ti_qspi * qspi)226 static inline int ti_qspi_poll_wc(struct ti_qspi *qspi)
227 {
228 u32 stat;
229 unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
230
231 do {
232 stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
233 if (stat & WC)
234 return 0;
235 cpu_relax();
236 } while (time_after(timeout, jiffies));
237
238 stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
239 if (stat & WC)
240 return 0;
241 return -ETIMEDOUT;
242 }
243
qspi_write_msg(struct ti_qspi * qspi,struct spi_transfer * t,int count)244 static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t,
245 int count)
246 {
247 int wlen, xfer_len;
248 unsigned int cmd;
249 const u8 *txbuf;
250 u32 data;
251
252 txbuf = t->tx_buf;
253 cmd = qspi->cmd | QSPI_WR_SNGL;
254 wlen = t->bits_per_word >> 3; /* in bytes */
255 xfer_len = wlen;
256
257 while (count) {
258 if (qspi_is_busy(qspi))
259 return -EBUSY;
260
261 switch (wlen) {
262 case 1:
263 dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
264 cmd, qspi->dc, *txbuf);
265 if (count >= QSPI_WLEN_MAX_BYTES) {
266 u32 *txp = (u32 *)txbuf;
267
268 data = cpu_to_be32(*txp++);
269 writel(data, qspi->base +
270 QSPI_SPI_DATA_REG_3);
271 data = cpu_to_be32(*txp++);
272 writel(data, qspi->base +
273 QSPI_SPI_DATA_REG_2);
274 data = cpu_to_be32(*txp++);
275 writel(data, qspi->base +
276 QSPI_SPI_DATA_REG_1);
277 data = cpu_to_be32(*txp++);
278 writel(data, qspi->base +
279 QSPI_SPI_DATA_REG);
280 xfer_len = QSPI_WLEN_MAX_BYTES;
281 cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
282 } else {
283 writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
284 cmd = qspi->cmd | QSPI_WR_SNGL;
285 xfer_len = wlen;
286 cmd |= QSPI_WLEN(wlen);
287 }
288 break;
289 case 2:
290 dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
291 cmd, qspi->dc, *txbuf);
292 writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
293 break;
294 case 4:
295 dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
296 cmd, qspi->dc, *txbuf);
297 writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
298 break;
299 }
300
301 ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
302 if (ti_qspi_poll_wc(qspi)) {
303 dev_err(qspi->dev, "write timed out\n");
304 return -ETIMEDOUT;
305 }
306 txbuf += xfer_len;
307 count -= xfer_len;
308 }
309
310 return 0;
311 }
312
qspi_read_msg(struct ti_qspi * qspi,struct spi_transfer * t,int count)313 static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t,
314 int count)
315 {
316 int wlen;
317 unsigned int cmd;
318 u32 rx;
319 u8 rxlen, rx_wlen;
320 u8 *rxbuf;
321
322 rxbuf = t->rx_buf;
323 cmd = qspi->cmd;
324 switch (t->rx_nbits) {
325 case SPI_NBITS_DUAL:
326 cmd |= QSPI_RD_DUAL;
327 break;
328 case SPI_NBITS_QUAD:
329 cmd |= QSPI_RD_QUAD;
330 break;
331 default:
332 cmd |= QSPI_RD_SNGL;
333 break;
334 }
335 wlen = t->bits_per_word >> 3; /* in bytes */
336 rx_wlen = wlen;
337
338 while (count) {
339 dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
340 if (qspi_is_busy(qspi))
341 return -EBUSY;
342
343 switch (wlen) {
344 case 1:
345 /*
346 * Optimize the 8-bit words transfers, as used by
347 * the SPI flash devices.
348 */
349 if (count >= QSPI_WLEN_MAX_BYTES) {
350 rxlen = QSPI_WLEN_MAX_BYTES;
351 } else {
352 rxlen = min(count, 4);
353 }
354 rx_wlen = rxlen << 3;
355 cmd &= ~QSPI_WLEN_MASK;
356 cmd |= QSPI_WLEN(rx_wlen);
357 break;
358 default:
359 rxlen = wlen;
360 break;
361 }
362
363 ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
364 if (ti_qspi_poll_wc(qspi)) {
365 dev_err(qspi->dev, "read timed out\n");
366 return -ETIMEDOUT;
367 }
368
369 switch (wlen) {
370 case 1:
371 /*
372 * Optimize the 8-bit words transfers, as used by
373 * the SPI flash devices.
374 */
375 if (count >= QSPI_WLEN_MAX_BYTES) {
376 u32 *rxp = (u32 *) rxbuf;
377 rx = readl(qspi->base + QSPI_SPI_DATA_REG_3);
378 *rxp++ = be32_to_cpu(rx);
379 rx = readl(qspi->base + QSPI_SPI_DATA_REG_2);
380 *rxp++ = be32_to_cpu(rx);
381 rx = readl(qspi->base + QSPI_SPI_DATA_REG_1);
382 *rxp++ = be32_to_cpu(rx);
383 rx = readl(qspi->base + QSPI_SPI_DATA_REG);
384 *rxp++ = be32_to_cpu(rx);
385 } else {
386 u8 *rxp = rxbuf;
387 rx = readl(qspi->base + QSPI_SPI_DATA_REG);
388 if (rx_wlen >= 8)
389 *rxp++ = rx >> (rx_wlen - 8);
390 if (rx_wlen >= 16)
391 *rxp++ = rx >> (rx_wlen - 16);
392 if (rx_wlen >= 24)
393 *rxp++ = rx >> (rx_wlen - 24);
394 if (rx_wlen >= 32)
395 *rxp++ = rx;
396 }
397 break;
398 case 2:
399 *((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
400 break;
401 case 4:
402 *((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
403 break;
404 }
405 rxbuf += rxlen;
406 count -= rxlen;
407 }
408
409 return 0;
410 }
411
qspi_transfer_msg(struct ti_qspi * qspi,struct spi_transfer * t,int count)412 static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t,
413 int count)
414 {
415 int ret;
416
417 if (t->tx_buf) {
418 ret = qspi_write_msg(qspi, t, count);
419 if (ret) {
420 dev_dbg(qspi->dev, "Error while writing\n");
421 return ret;
422 }
423 }
424
425 if (t->rx_buf) {
426 ret = qspi_read_msg(qspi, t, count);
427 if (ret) {
428 dev_dbg(qspi->dev, "Error while reading\n");
429 return ret;
430 }
431 }
432
433 return 0;
434 }
435
ti_qspi_dma_callback(void * param)436 static void ti_qspi_dma_callback(void *param)
437 {
438 struct ti_qspi *qspi = param;
439
440 complete(&qspi->transfer_complete);
441 }
442
ti_qspi_dma_xfer(struct ti_qspi * qspi,dma_addr_t dma_dst,dma_addr_t dma_src,size_t len)443 static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst,
444 dma_addr_t dma_src, size_t len)
445 {
446 struct dma_chan *chan = qspi->rx_chan;
447 dma_cookie_t cookie;
448 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
449 struct dma_async_tx_descriptor *tx;
450 int ret;
451 unsigned long time_left;
452
453 tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags);
454 if (!tx) {
455 dev_err(qspi->dev, "device_prep_dma_memcpy error\n");
456 return -EIO;
457 }
458
459 tx->callback = ti_qspi_dma_callback;
460 tx->callback_param = qspi;
461 cookie = tx->tx_submit(tx);
462 reinit_completion(&qspi->transfer_complete);
463
464 ret = dma_submit_error(cookie);
465 if (ret) {
466 dev_err(qspi->dev, "dma_submit_error %d\n", cookie);
467 return -EIO;
468 }
469
470 dma_async_issue_pending(chan);
471 time_left = wait_for_completion_timeout(&qspi->transfer_complete,
472 msecs_to_jiffies(len));
473 if (time_left == 0) {
474 dmaengine_terminate_sync(chan);
475 dev_err(qspi->dev, "DMA wait_for_completion_timeout\n");
476 return -ETIMEDOUT;
477 }
478
479 return 0;
480 }
481
ti_qspi_dma_bounce_buffer(struct ti_qspi * qspi,loff_t offs,void * to,size_t readsize)482 static int ti_qspi_dma_bounce_buffer(struct ti_qspi *qspi, loff_t offs,
483 void *to, size_t readsize)
484 {
485 dma_addr_t dma_src = qspi->mmap_phys_base + offs;
486 int ret = 0;
487
488 /*
489 * Use bounce buffer as FS like jffs2, ubifs may pass
490 * buffers that does not belong to kernel lowmem region.
491 */
492 while (readsize != 0) {
493 size_t xfer_len = min_t(size_t, QSPI_DMA_BUFFER_SIZE,
494 readsize);
495
496 ret = ti_qspi_dma_xfer(qspi, qspi->rx_bb_dma_addr,
497 dma_src, xfer_len);
498 if (ret != 0)
499 return ret;
500 memcpy(to, qspi->rx_bb_addr, xfer_len);
501 readsize -= xfer_len;
502 dma_src += xfer_len;
503 to += xfer_len;
504 }
505
506 return ret;
507 }
508
ti_qspi_dma_xfer_sg(struct ti_qspi * qspi,struct sg_table rx_sg,loff_t from)509 static int ti_qspi_dma_xfer_sg(struct ti_qspi *qspi, struct sg_table rx_sg,
510 loff_t from)
511 {
512 struct scatterlist *sg;
513 dma_addr_t dma_src = qspi->mmap_phys_base + from;
514 dma_addr_t dma_dst;
515 int i, len, ret;
516
517 for_each_sg(rx_sg.sgl, sg, rx_sg.nents, i) {
518 dma_dst = sg_dma_address(sg);
519 len = sg_dma_len(sg);
520 ret = ti_qspi_dma_xfer(qspi, dma_dst, dma_src, len);
521 if (ret)
522 return ret;
523 dma_src += len;
524 }
525
526 return 0;
527 }
528
ti_qspi_enable_memory_map(struct spi_device * spi)529 static void ti_qspi_enable_memory_map(struct spi_device *spi)
530 {
531 struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
532
533 ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG);
534 if (qspi->ctrl_base) {
535 regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
536 MEM_CS_MASK,
537 MEM_CS_EN(spi->chip_select));
538 }
539 qspi->mmap_enabled = true;
540 qspi->current_cs = spi->chip_select;
541 }
542
ti_qspi_disable_memory_map(struct spi_device * spi)543 static void ti_qspi_disable_memory_map(struct spi_device *spi)
544 {
545 struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
546
547 ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG);
548 if (qspi->ctrl_base)
549 regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
550 MEM_CS_MASK, 0);
551 qspi->mmap_enabled = false;
552 qspi->current_cs = -1;
553 }
554
ti_qspi_setup_mmap_read(struct spi_device * spi,u8 opcode,u8 data_nbits,u8 addr_width,u8 dummy_bytes)555 static void ti_qspi_setup_mmap_read(struct spi_device *spi, u8 opcode,
556 u8 data_nbits, u8 addr_width,
557 u8 dummy_bytes)
558 {
559 struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
560 u32 memval = opcode;
561
562 switch (data_nbits) {
563 case SPI_NBITS_QUAD:
564 memval |= QSPI_SETUP_RD_QUAD;
565 break;
566 case SPI_NBITS_DUAL:
567 memval |= QSPI_SETUP_RD_DUAL;
568 break;
569 default:
570 memval |= QSPI_SETUP_RD_NORMAL;
571 break;
572 }
573 memval |= ((addr_width - 1) << QSPI_SETUP_ADDR_SHIFT |
574 dummy_bytes << QSPI_SETUP_DUMMY_SHIFT);
575 ti_qspi_write(qspi, memval,
576 QSPI_SPI_SETUP_REG(spi->chip_select));
577 }
578
ti_qspi_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)579 static int ti_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
580 {
581 struct ti_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
582 size_t max_len;
583
584 if (op->data.dir == SPI_MEM_DATA_IN) {
585 if (op->addr.val < qspi->mmap_size) {
586 /* Limit MMIO to the mmaped region */
587 if (op->addr.val + op->data.nbytes > qspi->mmap_size) {
588 max_len = qspi->mmap_size - op->addr.val;
589 op->data.nbytes = min((size_t) op->data.nbytes,
590 max_len);
591 }
592 } else {
593 /*
594 * Use fallback mode (SW generated transfers) above the
595 * mmaped region.
596 * Adjust size to comply with the QSPI max frame length.
597 */
598 max_len = QSPI_FRAME;
599 max_len -= 1 + op->addr.nbytes + op->dummy.nbytes;
600 op->data.nbytes = min((size_t) op->data.nbytes,
601 max_len);
602 }
603 }
604
605 return 0;
606 }
607
ti_qspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)608 static int ti_qspi_exec_mem_op(struct spi_mem *mem,
609 const struct spi_mem_op *op)
610 {
611 struct ti_qspi *qspi = spi_master_get_devdata(mem->spi->master);
612 u32 from = 0;
613 int ret = 0;
614
615 /* Only optimize read path. */
616 if (!op->data.nbytes || op->data.dir != SPI_MEM_DATA_IN ||
617 !op->addr.nbytes || op->addr.nbytes > 4)
618 return -ENOTSUPP;
619
620 /* Address exceeds MMIO window size, fall back to regular mode. */
621 from = op->addr.val;
622 if (from + op->data.nbytes > qspi->mmap_size)
623 return -ENOTSUPP;
624
625 mutex_lock(&qspi->list_lock);
626
627 if (!qspi->mmap_enabled || qspi->current_cs != mem->spi->chip_select)
628 ti_qspi_enable_memory_map(mem->spi);
629 ti_qspi_setup_mmap_read(mem->spi, op->cmd.opcode, op->data.buswidth,
630 op->addr.nbytes, op->dummy.nbytes);
631
632 if (qspi->rx_chan) {
633 struct sg_table sgt;
634
635 if (virt_addr_valid(op->data.buf.in) &&
636 !spi_controller_dma_map_mem_op_data(mem->spi->master, op,
637 &sgt)) {
638 ret = ti_qspi_dma_xfer_sg(qspi, sgt, from);
639 spi_controller_dma_unmap_mem_op_data(mem->spi->master,
640 op, &sgt);
641 } else {
642 ret = ti_qspi_dma_bounce_buffer(qspi, from,
643 op->data.buf.in,
644 op->data.nbytes);
645 }
646 } else {
647 memcpy_fromio(op->data.buf.in, qspi->mmap_base + from,
648 op->data.nbytes);
649 }
650
651 mutex_unlock(&qspi->list_lock);
652
653 return ret;
654 }
655
656 static const struct spi_controller_mem_ops ti_qspi_mem_ops = {
657 .exec_op = ti_qspi_exec_mem_op,
658 .adjust_op_size = ti_qspi_adjust_op_size,
659 };
660
ti_qspi_start_transfer_one(struct spi_master * master,struct spi_message * m)661 static int ti_qspi_start_transfer_one(struct spi_master *master,
662 struct spi_message *m)
663 {
664 struct ti_qspi *qspi = spi_master_get_devdata(master);
665 struct spi_device *spi = m->spi;
666 struct spi_transfer *t;
667 int status = 0, ret;
668 unsigned int frame_len_words, transfer_len_words;
669 int wlen;
670
671 /* setup device control reg */
672 qspi->dc = 0;
673
674 if (spi->mode & SPI_CPHA)
675 qspi->dc |= QSPI_CKPHA(spi->chip_select);
676 if (spi->mode & SPI_CPOL)
677 qspi->dc |= QSPI_CKPOL(spi->chip_select);
678 if (spi->mode & SPI_CS_HIGH)
679 qspi->dc |= QSPI_CSPOL(spi->chip_select);
680
681 frame_len_words = 0;
682 list_for_each_entry(t, &m->transfers, transfer_list)
683 frame_len_words += t->len / (t->bits_per_word >> 3);
684 frame_len_words = min_t(unsigned int, frame_len_words, QSPI_FRAME);
685
686 /* setup command reg */
687 qspi->cmd = 0;
688 qspi->cmd |= QSPI_EN_CS(spi->chip_select);
689 qspi->cmd |= QSPI_FLEN(frame_len_words);
690
691 ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
692
693 mutex_lock(&qspi->list_lock);
694
695 if (qspi->mmap_enabled)
696 ti_qspi_disable_memory_map(spi);
697
698 list_for_each_entry(t, &m->transfers, transfer_list) {
699 qspi->cmd = ((qspi->cmd & ~QSPI_WLEN_MASK) |
700 QSPI_WLEN(t->bits_per_word));
701
702 wlen = t->bits_per_word >> 3;
703 transfer_len_words = min(t->len / wlen, frame_len_words);
704
705 ret = qspi_transfer_msg(qspi, t, transfer_len_words * wlen);
706 if (ret) {
707 dev_dbg(qspi->dev, "transfer message failed\n");
708 mutex_unlock(&qspi->list_lock);
709 return -EINVAL;
710 }
711
712 m->actual_length += transfer_len_words * wlen;
713 frame_len_words -= transfer_len_words;
714 if (frame_len_words == 0)
715 break;
716 }
717
718 mutex_unlock(&qspi->list_lock);
719
720 ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
721 m->status = status;
722 spi_finalize_current_message(master);
723
724 return status;
725 }
726
ti_qspi_runtime_resume(struct device * dev)727 static int ti_qspi_runtime_resume(struct device *dev)
728 {
729 struct ti_qspi *qspi;
730
731 qspi = dev_get_drvdata(dev);
732 ti_qspi_restore_ctx(qspi);
733
734 return 0;
735 }
736
ti_qspi_dma_cleanup(struct ti_qspi * qspi)737 static void ti_qspi_dma_cleanup(struct ti_qspi *qspi)
738 {
739 if (qspi->rx_bb_addr)
740 dma_free_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE,
741 qspi->rx_bb_addr,
742 qspi->rx_bb_dma_addr);
743
744 if (qspi->rx_chan)
745 dma_release_channel(qspi->rx_chan);
746 }
747
748 static const struct of_device_id ti_qspi_match[] = {
749 {.compatible = "ti,dra7xxx-qspi" },
750 {.compatible = "ti,am4372-qspi" },
751 {},
752 };
753 MODULE_DEVICE_TABLE(of, ti_qspi_match);
754
ti_qspi_probe(struct platform_device * pdev)755 static int ti_qspi_probe(struct platform_device *pdev)
756 {
757 struct ti_qspi *qspi;
758 struct spi_master *master;
759 struct resource *r, *res_mmap;
760 struct device_node *np = pdev->dev.of_node;
761 u32 max_freq;
762 int ret = 0, num_cs, irq;
763 dma_cap_mask_t mask;
764
765 master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
766 if (!master)
767 return -ENOMEM;
768
769 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD;
770
771 master->flags = SPI_MASTER_HALF_DUPLEX;
772 master->setup = ti_qspi_setup;
773 master->auto_runtime_pm = true;
774 master->transfer_one_message = ti_qspi_start_transfer_one;
775 master->dev.of_node = pdev->dev.of_node;
776 master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
777 SPI_BPW_MASK(8);
778 master->mem_ops = &ti_qspi_mem_ops;
779
780 if (!of_property_read_u32(np, "num-cs", &num_cs))
781 master->num_chipselect = num_cs;
782
783 qspi = spi_master_get_devdata(master);
784 qspi->master = master;
785 qspi->dev = &pdev->dev;
786 platform_set_drvdata(pdev, qspi);
787
788 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
789 if (r == NULL) {
790 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
791 if (r == NULL) {
792 dev_err(&pdev->dev, "missing platform data\n");
793 ret = -ENODEV;
794 goto free_master;
795 }
796 }
797
798 res_mmap = platform_get_resource_byname(pdev,
799 IORESOURCE_MEM, "qspi_mmap");
800 if (res_mmap == NULL) {
801 res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1);
802 if (res_mmap == NULL) {
803 dev_err(&pdev->dev,
804 "memory mapped resource not required\n");
805 }
806 }
807
808 if (res_mmap)
809 qspi->mmap_size = resource_size(res_mmap);
810
811 irq = platform_get_irq(pdev, 0);
812 if (irq < 0) {
813 ret = irq;
814 goto free_master;
815 }
816
817 mutex_init(&qspi->list_lock);
818
819 qspi->base = devm_ioremap_resource(&pdev->dev, r);
820 if (IS_ERR(qspi->base)) {
821 ret = PTR_ERR(qspi->base);
822 goto free_master;
823 }
824
825
826 if (of_property_read_bool(np, "syscon-chipselects")) {
827 qspi->ctrl_base =
828 syscon_regmap_lookup_by_phandle(np,
829 "syscon-chipselects");
830 if (IS_ERR(qspi->ctrl_base)) {
831 ret = PTR_ERR(qspi->ctrl_base);
832 goto free_master;
833 }
834 ret = of_property_read_u32_index(np,
835 "syscon-chipselects",
836 1, &qspi->ctrl_reg);
837 if (ret) {
838 dev_err(&pdev->dev,
839 "couldn't get ctrl_mod reg index\n");
840 goto free_master;
841 }
842 }
843
844 qspi->fclk = devm_clk_get(&pdev->dev, "fck");
845 if (IS_ERR(qspi->fclk)) {
846 ret = PTR_ERR(qspi->fclk);
847 dev_err(&pdev->dev, "could not get clk: %d\n", ret);
848 }
849
850 pm_runtime_use_autosuspend(&pdev->dev);
851 pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
852 pm_runtime_enable(&pdev->dev);
853
854 if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
855 qspi->spi_max_frequency = max_freq;
856
857 dma_cap_zero(mask);
858 dma_cap_set(DMA_MEMCPY, mask);
859
860 qspi->rx_chan = dma_request_chan_by_mask(&mask);
861 if (IS_ERR(qspi->rx_chan)) {
862 dev_err(qspi->dev,
863 "No Rx DMA available, trying mmap mode\n");
864 qspi->rx_chan = NULL;
865 ret = 0;
866 goto no_dma;
867 }
868 qspi->rx_bb_addr = dma_alloc_coherent(qspi->dev,
869 QSPI_DMA_BUFFER_SIZE,
870 &qspi->rx_bb_dma_addr,
871 GFP_KERNEL | GFP_DMA);
872 if (!qspi->rx_bb_addr) {
873 dev_err(qspi->dev,
874 "dma_alloc_coherent failed, using PIO mode\n");
875 dma_release_channel(qspi->rx_chan);
876 goto no_dma;
877 }
878 master->dma_rx = qspi->rx_chan;
879 init_completion(&qspi->transfer_complete);
880 if (res_mmap)
881 qspi->mmap_phys_base = (dma_addr_t)res_mmap->start;
882
883 no_dma:
884 if (!qspi->rx_chan && res_mmap) {
885 qspi->mmap_base = devm_ioremap_resource(&pdev->dev, res_mmap);
886 if (IS_ERR(qspi->mmap_base)) {
887 dev_info(&pdev->dev,
888 "mmap failed with error %ld using PIO mode\n",
889 PTR_ERR(qspi->mmap_base));
890 qspi->mmap_base = NULL;
891 master->mem_ops = NULL;
892 }
893 }
894 qspi->mmap_enabled = false;
895 qspi->current_cs = -1;
896
897 ret = devm_spi_register_master(&pdev->dev, master);
898 if (!ret)
899 return 0;
900
901 ti_qspi_dma_cleanup(qspi);
902
903 pm_runtime_disable(&pdev->dev);
904 free_master:
905 spi_master_put(master);
906 return ret;
907 }
908
ti_qspi_remove(struct platform_device * pdev)909 static int ti_qspi_remove(struct platform_device *pdev)
910 {
911 struct ti_qspi *qspi = platform_get_drvdata(pdev);
912 int rc;
913
914 rc = spi_master_suspend(qspi->master);
915 if (rc)
916 return rc;
917
918 pm_runtime_put_sync(&pdev->dev);
919 pm_runtime_disable(&pdev->dev);
920
921 ti_qspi_dma_cleanup(qspi);
922
923 return 0;
924 }
925
926 static const struct dev_pm_ops ti_qspi_pm_ops = {
927 .runtime_resume = ti_qspi_runtime_resume,
928 };
929
930 static struct platform_driver ti_qspi_driver = {
931 .probe = ti_qspi_probe,
932 .remove = ti_qspi_remove,
933 .driver = {
934 .name = "ti-qspi",
935 .pm = &ti_qspi_pm_ops,
936 .of_match_table = ti_qspi_match,
937 }
938 };
939
940 module_platform_driver(ti_qspi_driver);
941
942 MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>");
943 MODULE_LICENSE("GPL v2");
944 MODULE_DESCRIPTION("TI QSPI controller driver");
945 MODULE_ALIAS("platform:ti-qspi");
946