• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
spidev_release(struct device * dev)46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68 
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)69 static ssize_t driver_override_store(struct device *dev,
70 				     struct device_attribute *a,
71 				     const char *buf, size_t count)
72 {
73 	struct spi_device *spi = to_spi_device(dev);
74 	const char *end = memchr(buf, '\n', count);
75 	const size_t len = end ? end - buf : count;
76 	const char *driver_override, *old;
77 
78 	/* We need to keep extra room for a newline when displaying value */
79 	if (len >= (PAGE_SIZE - 1))
80 		return -EINVAL;
81 
82 	driver_override = kstrndup(buf, len, GFP_KERNEL);
83 	if (!driver_override)
84 		return -ENOMEM;
85 
86 	device_lock(dev);
87 	old = spi->driver_override;
88 	if (len) {
89 		spi->driver_override = driver_override;
90 	} else {
91 		/* Empty string, disable driver override */
92 		spi->driver_override = NULL;
93 		kfree(driver_override);
94 	}
95 	device_unlock(dev);
96 	kfree(old);
97 
98 	return count;
99 }
100 
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)101 static ssize_t driver_override_show(struct device *dev,
102 				    struct device_attribute *a, char *buf)
103 {
104 	const struct spi_device *spi = to_spi_device(dev);
105 	ssize_t len;
106 
107 	device_lock(dev);
108 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 	device_unlock(dev);
110 	return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113 
114 #define SPI_STATISTICS_ATTRS(field, file)				\
115 static ssize_t spi_controller_##field##_show(struct device *dev,	\
116 					     struct device_attribute *attr, \
117 					     char *buf)			\
118 {									\
119 	struct spi_controller *ctlr = container_of(dev,			\
120 					 struct spi_controller, dev);	\
121 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
122 }									\
123 static struct device_attribute dev_attr_spi_controller_##field = {	\
124 	.attr = { .name = file, .mode = 0444 },				\
125 	.show = spi_controller_##field##_show,				\
126 };									\
127 static ssize_t spi_device_##field##_show(struct device *dev,		\
128 					 struct device_attribute *attr,	\
129 					char *buf)			\
130 {									\
131 	struct spi_device *spi = to_spi_device(dev);			\
132 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
133 }									\
134 static struct device_attribute dev_attr_spi_device_##field = {		\
135 	.attr = { .name = file, .mode = 0444 },				\
136 	.show = spi_device_##field##_show,				\
137 }
138 
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 					    char *buf)			\
142 {									\
143 	unsigned long flags;						\
144 	ssize_t len;							\
145 	spin_lock_irqsave(&stat->lock, flags);				\
146 	len = sprintf(buf, format_string, stat->field);			\
147 	spin_unlock_irqrestore(&stat->lock, flags);			\
148 	return len;							\
149 }									\
150 SPI_STATISTICS_ATTRS(name, file)
151 
152 #define SPI_STATISTICS_SHOW(field, format_string)			\
153 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
154 				 field, format_string)
155 
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160 
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164 
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168 
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
170 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
171 				 "transfer_bytes_histo_" number,	\
172 				 transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190 
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192 
193 static struct attribute *spi_dev_attrs[] = {
194 	&dev_attr_modalias.attr,
195 	&dev_attr_driver_override.attr,
196 	NULL,
197 };
198 
199 static const struct attribute_group spi_dev_group = {
200 	.attrs  = spi_dev_attrs,
201 };
202 
203 static struct attribute *spi_device_statistics_attrs[] = {
204 	&dev_attr_spi_device_messages.attr,
205 	&dev_attr_spi_device_transfers.attr,
206 	&dev_attr_spi_device_errors.attr,
207 	&dev_attr_spi_device_timedout.attr,
208 	&dev_attr_spi_device_spi_sync.attr,
209 	&dev_attr_spi_device_spi_sync_immediate.attr,
210 	&dev_attr_spi_device_spi_async.attr,
211 	&dev_attr_spi_device_bytes.attr,
212 	&dev_attr_spi_device_bytes_rx.attr,
213 	&dev_attr_spi_device_bytes_tx.attr,
214 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
231 	&dev_attr_spi_device_transfers_split_maxsize.attr,
232 	NULL,
233 };
234 
235 static const struct attribute_group spi_device_statistics_group = {
236 	.name  = "statistics",
237 	.attrs  = spi_device_statistics_attrs,
238 };
239 
240 static const struct attribute_group *spi_dev_groups[] = {
241 	&spi_dev_group,
242 	&spi_device_statistics_group,
243 	NULL,
244 };
245 
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 	&dev_attr_spi_controller_messages.attr,
248 	&dev_attr_spi_controller_transfers.attr,
249 	&dev_attr_spi_controller_errors.attr,
250 	&dev_attr_spi_controller_timedout.attr,
251 	&dev_attr_spi_controller_spi_sync.attr,
252 	&dev_attr_spi_controller_spi_sync_immediate.attr,
253 	&dev_attr_spi_controller_spi_async.attr,
254 	&dev_attr_spi_controller_bytes.attr,
255 	&dev_attr_spi_controller_bytes_rx.attr,
256 	&dev_attr_spi_controller_bytes_tx.attr,
257 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
275 	NULL,
276 };
277 
278 static const struct attribute_group spi_controller_statistics_group = {
279 	.name  = "statistics",
280 	.attrs  = spi_controller_statistics_attrs,
281 };
282 
283 static const struct attribute_group *spi_master_groups[] = {
284 	&spi_controller_statistics_group,
285 	NULL,
286 };
287 
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_controller * ctlr)288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 				       struct spi_transfer *xfer,
290 				       struct spi_controller *ctlr)
291 {
292 	unsigned long flags;
293 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294 
295 	if (l2len < 0)
296 		l2len = 0;
297 
298 	spin_lock_irqsave(&stats->lock, flags);
299 
300 	stats->transfers++;
301 	stats->transfer_bytes_histo[l2len]++;
302 
303 	stats->bytes += xfer->len;
304 	if ((xfer->tx_buf) &&
305 	    (xfer->tx_buf != ctlr->dummy_tx))
306 		stats->bytes_tx += xfer->len;
307 	if ((xfer->rx_buf) &&
308 	    (xfer->rx_buf != ctlr->dummy_rx))
309 		stats->bytes_rx += xfer->len;
310 
311 	spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314 
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320 						const struct spi_device *sdev)
321 {
322 	while (id->name[0]) {
323 		if (!strcmp(sdev->modalias, id->name))
324 			return id;
325 		id++;
326 	}
327 	return NULL;
328 }
329 
spi_get_device_id(const struct spi_device * sdev)330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333 
334 	return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337 
spi_match_device(struct device * dev,struct device_driver * drv)338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340 	const struct spi_device	*spi = to_spi_device(dev);
341 	const struct spi_driver	*sdrv = to_spi_driver(drv);
342 
343 	/* Check override first, and if set, only use the named driver */
344 	if (spi->driver_override)
345 		return strcmp(spi->driver_override, drv->name) == 0;
346 
347 	/* Attempt an OF style match */
348 	if (of_driver_match_device(dev, drv))
349 		return 1;
350 
351 	/* Then try ACPI */
352 	if (acpi_driver_match_device(dev, drv))
353 		return 1;
354 
355 	if (sdrv->id_table)
356 		return !!spi_match_id(sdrv->id_table, spi);
357 
358 	return strcmp(spi->modalias, drv->name) == 0;
359 }
360 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363 	const struct spi_device		*spi = to_spi_device(dev);
364 	int rc;
365 
366 	rc = acpi_device_uevent_modalias(dev, env);
367 	if (rc != -ENODEV)
368 		return rc;
369 
370 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
371 }
372 
373 struct bus_type spi_bus_type = {
374 	.name		= "spi",
375 	.dev_groups	= spi_dev_groups,
376 	.match		= spi_match_device,
377 	.uevent		= spi_uevent,
378 };
379 EXPORT_SYMBOL_GPL(spi_bus_type);
380 
381 
spi_drv_probe(struct device * dev)382 static int spi_drv_probe(struct device *dev)
383 {
384 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
385 	struct spi_device		*spi = to_spi_device(dev);
386 	int ret;
387 
388 	ret = of_clk_set_defaults(dev->of_node, false);
389 	if (ret)
390 		return ret;
391 
392 	if (dev->of_node) {
393 		spi->irq = of_irq_get(dev->of_node, 0);
394 		if (spi->irq == -EPROBE_DEFER)
395 			return -EPROBE_DEFER;
396 		if (spi->irq < 0)
397 			spi->irq = 0;
398 	}
399 
400 	ret = dev_pm_domain_attach(dev, true);
401 	if (ret)
402 		return ret;
403 
404 	if (sdrv->probe) {
405 		ret = sdrv->probe(spi);
406 		if (ret)
407 			dev_pm_domain_detach(dev, true);
408 	}
409 
410 	return ret;
411 }
412 
spi_drv_remove(struct device * dev)413 static int spi_drv_remove(struct device *dev)
414 {
415 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
416 	int ret = 0;
417 
418 	if (sdrv->remove)
419 		ret = sdrv->remove(to_spi_device(dev));
420 	dev_pm_domain_detach(dev, true);
421 
422 	return ret;
423 }
424 
spi_drv_shutdown(struct device * dev)425 static void spi_drv_shutdown(struct device *dev)
426 {
427 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
428 
429 	sdrv->shutdown(to_spi_device(dev));
430 }
431 
432 /**
433  * __spi_register_driver - register a SPI driver
434  * @owner: owner module of the driver to register
435  * @sdrv: the driver to register
436  * Context: can sleep
437  *
438  * Return: zero on success, else a negative error code.
439  */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)440 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
441 {
442 	sdrv->driver.owner = owner;
443 	sdrv->driver.bus = &spi_bus_type;
444 	sdrv->driver.probe = spi_drv_probe;
445 	sdrv->driver.remove = spi_drv_remove;
446 	if (sdrv->shutdown)
447 		sdrv->driver.shutdown = spi_drv_shutdown;
448 	return driver_register(&sdrv->driver);
449 }
450 EXPORT_SYMBOL_GPL(__spi_register_driver);
451 
452 /*-------------------------------------------------------------------------*/
453 
454 /* SPI devices should normally not be created by SPI device drivers; that
455  * would make them board-specific.  Similarly with SPI controller drivers.
456  * Device registration normally goes into like arch/.../mach.../board-YYY.c
457  * with other readonly (flashable) information about mainboard devices.
458  */
459 
460 struct boardinfo {
461 	struct list_head	list;
462 	struct spi_board_info	board_info;
463 };
464 
465 static LIST_HEAD(board_list);
466 static LIST_HEAD(spi_controller_list);
467 
468 /*
469  * Used to protect add/del operation for board_info list and
470  * spi_controller list, and their matching process
471  * also used to protect object of type struct idr
472  */
473 static DEFINE_MUTEX(board_lock);
474 
475 /*
476  * Prevents addition of devices with same chip select and
477  * addition of devices below an unregistering controller.
478  */
479 static DEFINE_MUTEX(spi_add_lock);
480 
481 /**
482  * spi_alloc_device - Allocate a new SPI device
483  * @ctlr: Controller to which device is connected
484  * Context: can sleep
485  *
486  * Allows a driver to allocate and initialize a spi_device without
487  * registering it immediately.  This allows a driver to directly
488  * fill the spi_device with device parameters before calling
489  * spi_add_device() on it.
490  *
491  * Caller is responsible to call spi_add_device() on the returned
492  * spi_device structure to add it to the SPI controller.  If the caller
493  * needs to discard the spi_device without adding it, then it should
494  * call spi_dev_put() on it.
495  *
496  * Return: a pointer to the new device, or NULL.
497  */
spi_alloc_device(struct spi_controller * ctlr)498 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
499 {
500 	struct spi_device	*spi;
501 
502 	if (!spi_controller_get(ctlr))
503 		return NULL;
504 
505 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
506 	if (!spi) {
507 		spi_controller_put(ctlr);
508 		return NULL;
509 	}
510 
511 	spi->master = spi->controller = ctlr;
512 	spi->dev.parent = &ctlr->dev;
513 	spi->dev.bus = &spi_bus_type;
514 	spi->dev.release = spidev_release;
515 	spi->cs_gpio = -ENOENT;
516 	spi->mode = ctlr->buswidth_override_bits;
517 
518 	spin_lock_init(&spi->statistics.lock);
519 
520 	device_initialize(&spi->dev);
521 	return spi;
522 }
523 EXPORT_SYMBOL_GPL(spi_alloc_device);
524 
spi_dev_set_name(struct spi_device * spi)525 static void spi_dev_set_name(struct spi_device *spi)
526 {
527 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
528 
529 	if (adev) {
530 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
531 		return;
532 	}
533 
534 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
535 		     spi->chip_select);
536 }
537 
spi_dev_check(struct device * dev,void * data)538 static int spi_dev_check(struct device *dev, void *data)
539 {
540 	struct spi_device *spi = to_spi_device(dev);
541 	struct spi_device *new_spi = data;
542 
543 	if (spi->controller == new_spi->controller &&
544 	    spi->chip_select == new_spi->chip_select)
545 		return -EBUSY;
546 	return 0;
547 }
548 
spi_cleanup(struct spi_device * spi)549 static void spi_cleanup(struct spi_device *spi)
550 {
551 	if (spi->controller->cleanup)
552 		spi->controller->cleanup(spi);
553 }
554 
555 /**
556  * spi_add_device - Add spi_device allocated with spi_alloc_device
557  * @spi: spi_device to register
558  *
559  * Companion function to spi_alloc_device.  Devices allocated with
560  * spi_alloc_device can be added onto the spi bus with this function.
561  *
562  * Return: 0 on success; negative errno on failure
563  */
spi_add_device(struct spi_device * spi)564 int spi_add_device(struct spi_device *spi)
565 {
566 	struct spi_controller *ctlr = spi->controller;
567 	struct device *dev = ctlr->dev.parent;
568 	int status;
569 
570 	/* Chipselects are numbered 0..max; validate. */
571 	if (spi->chip_select >= ctlr->num_chipselect) {
572 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
573 			ctlr->num_chipselect);
574 		return -EINVAL;
575 	}
576 
577 	/* Set the bus ID string */
578 	spi_dev_set_name(spi);
579 
580 	/* We need to make sure there's no other device with this
581 	 * chipselect **BEFORE** we call setup(), else we'll trash
582 	 * its configuration.  Lock against concurrent add() calls.
583 	 */
584 	mutex_lock(&spi_add_lock);
585 
586 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
587 	if (status) {
588 		dev_err(dev, "chipselect %d already in use\n",
589 				spi->chip_select);
590 		goto done;
591 	}
592 
593 	/* Controller may unregister concurrently */
594 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
595 	    !device_is_registered(&ctlr->dev)) {
596 		status = -ENODEV;
597 		goto done;
598 	}
599 
600 	/* Descriptors take precedence */
601 	if (ctlr->cs_gpiods)
602 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
603 	else if (ctlr->cs_gpios)
604 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
605 
606 	/* Drivers may modify this initial i/o setup, but will
607 	 * normally rely on the device being setup.  Devices
608 	 * using SPI_CS_HIGH can't coexist well otherwise...
609 	 */
610 	status = spi_setup(spi);
611 	if (status < 0) {
612 		dev_err(dev, "can't setup %s, status %d\n",
613 				dev_name(&spi->dev), status);
614 		goto done;
615 	}
616 
617 	/* Device may be bound to an active driver when this returns */
618 	status = device_add(&spi->dev);
619 	if (status < 0) {
620 		dev_err(dev, "can't add %s, status %d\n",
621 				dev_name(&spi->dev), status);
622 		spi_cleanup(spi);
623 	} else {
624 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
625 	}
626 
627 done:
628 	mutex_unlock(&spi_add_lock);
629 	return status;
630 }
631 EXPORT_SYMBOL_GPL(spi_add_device);
632 
633 /**
634  * spi_new_device - instantiate one new SPI device
635  * @ctlr: Controller to which device is connected
636  * @chip: Describes the SPI device
637  * Context: can sleep
638  *
639  * On typical mainboards, this is purely internal; and it's not needed
640  * after board init creates the hard-wired devices.  Some development
641  * platforms may not be able to use spi_register_board_info though, and
642  * this is exported so that for example a USB or parport based adapter
643  * driver could add devices (which it would learn about out-of-band).
644  *
645  * Return: the new device, or NULL.
646  */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)647 struct spi_device *spi_new_device(struct spi_controller *ctlr,
648 				  struct spi_board_info *chip)
649 {
650 	struct spi_device	*proxy;
651 	int			status;
652 
653 	/* NOTE:  caller did any chip->bus_num checks necessary.
654 	 *
655 	 * Also, unless we change the return value convention to use
656 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
657 	 * suggests syslogged diagnostics are best here (ugh).
658 	 */
659 
660 	proxy = spi_alloc_device(ctlr);
661 	if (!proxy)
662 		return NULL;
663 
664 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
665 
666 	proxy->chip_select = chip->chip_select;
667 	proxy->max_speed_hz = chip->max_speed_hz;
668 	proxy->mode = chip->mode;
669 	proxy->irq = chip->irq;
670 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
671 	proxy->dev.platform_data = (void *) chip->platform_data;
672 	proxy->controller_data = chip->controller_data;
673 	proxy->controller_state = NULL;
674 
675 	if (chip->properties) {
676 		status = device_add_properties(&proxy->dev, chip->properties);
677 		if (status) {
678 			dev_err(&ctlr->dev,
679 				"failed to add properties to '%s': %d\n",
680 				chip->modalias, status);
681 			goto err_dev_put;
682 		}
683 	}
684 
685 	status = spi_add_device(proxy);
686 	if (status < 0)
687 		goto err_remove_props;
688 
689 	return proxy;
690 
691 err_remove_props:
692 	if (chip->properties)
693 		device_remove_properties(&proxy->dev);
694 err_dev_put:
695 	spi_dev_put(proxy);
696 	return NULL;
697 }
698 EXPORT_SYMBOL_GPL(spi_new_device);
699 
700 /**
701  * spi_unregister_device - unregister a single SPI device
702  * @spi: spi_device to unregister
703  *
704  * Start making the passed SPI device vanish. Normally this would be handled
705  * by spi_unregister_controller().
706  */
spi_unregister_device(struct spi_device * spi)707 void spi_unregister_device(struct spi_device *spi)
708 {
709 	if (!spi)
710 		return;
711 
712 	if (spi->dev.of_node) {
713 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
714 		of_node_put(spi->dev.of_node);
715 	}
716 	if (ACPI_COMPANION(&spi->dev))
717 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
718 	device_del(&spi->dev);
719 	spi_cleanup(spi);
720 	put_device(&spi->dev);
721 }
722 EXPORT_SYMBOL_GPL(spi_unregister_device);
723 
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)724 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
725 					      struct spi_board_info *bi)
726 {
727 	struct spi_device *dev;
728 
729 	if (ctlr->bus_num != bi->bus_num)
730 		return;
731 
732 	dev = spi_new_device(ctlr, bi);
733 	if (!dev)
734 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
735 			bi->modalias);
736 }
737 
738 /**
739  * spi_register_board_info - register SPI devices for a given board
740  * @info: array of chip descriptors
741  * @n: how many descriptors are provided
742  * Context: can sleep
743  *
744  * Board-specific early init code calls this (probably during arch_initcall)
745  * with segments of the SPI device table.  Any device nodes are created later,
746  * after the relevant parent SPI controller (bus_num) is defined.  We keep
747  * this table of devices forever, so that reloading a controller driver will
748  * not make Linux forget about these hard-wired devices.
749  *
750  * Other code can also call this, e.g. a particular add-on board might provide
751  * SPI devices through its expansion connector, so code initializing that board
752  * would naturally declare its SPI devices.
753  *
754  * The board info passed can safely be __initdata ... but be careful of
755  * any embedded pointers (platform_data, etc), they're copied as-is.
756  * Device properties are deep-copied though.
757  *
758  * Return: zero on success, else a negative error code.
759  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)760 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
761 {
762 	struct boardinfo *bi;
763 	int i;
764 
765 	if (!n)
766 		return 0;
767 
768 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
769 	if (!bi)
770 		return -ENOMEM;
771 
772 	for (i = 0; i < n; i++, bi++, info++) {
773 		struct spi_controller *ctlr;
774 
775 		memcpy(&bi->board_info, info, sizeof(*info));
776 		if (info->properties) {
777 			bi->board_info.properties =
778 					property_entries_dup(info->properties);
779 			if (IS_ERR(bi->board_info.properties))
780 				return PTR_ERR(bi->board_info.properties);
781 		}
782 
783 		mutex_lock(&board_lock);
784 		list_add_tail(&bi->list, &board_list);
785 		list_for_each_entry(ctlr, &spi_controller_list, list)
786 			spi_match_controller_to_boardinfo(ctlr,
787 							  &bi->board_info);
788 		mutex_unlock(&board_lock);
789 	}
790 
791 	return 0;
792 }
793 
794 /*-------------------------------------------------------------------------*/
795 
spi_set_cs(struct spi_device * spi,bool enable,bool force)796 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
797 {
798 	bool enable1 = enable;
799 
800 	/*
801 	 * Avoid calling into the driver (or doing delays) if the chip select
802 	 * isn't actually changing from the last time this was called.
803 	 */
804 	if (!force && (spi->controller->last_cs_enable == enable) &&
805 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
806 		return;
807 
808 	spi->controller->last_cs_enable = enable;
809 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
810 
811 	if (!spi->controller->set_cs_timing) {
812 		if (enable1)
813 			spi_delay_exec(&spi->controller->cs_setup, NULL);
814 		else
815 			spi_delay_exec(&spi->controller->cs_hold, NULL);
816 	}
817 
818 	if (spi->mode & SPI_CS_HIGH)
819 		enable = !enable;
820 
821 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
822 		if (!(spi->mode & SPI_NO_CS)) {
823 			if (spi->cs_gpiod) {
824 				/*
825 				 * Historically ACPI has no means of the GPIO polarity and
826 				 * thus the SPISerialBus() resource defines it on the per-chip
827 				 * basis. In order to avoid a chain of negations, the GPIO
828 				 * polarity is considered being Active High. Even for the cases
829 				 * when _DSD() is involved (in the updated versions of ACPI)
830 				 * the GPIO CS polarity must be defined Active High to avoid
831 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
832 				 * into account.
833 				 */
834 				if (has_acpi_companion(&spi->dev))
835 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
836 				else
837 					/* Polarity handled by GPIO library */
838 					gpiod_set_value_cansleep(spi->cs_gpiod, enable1);
839 			} else {
840 				/*
841 				 * invert the enable line, as active low is
842 				 * default for SPI.
843 				 */
844 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
845 			}
846 		}
847 		/* Some SPI masters need both GPIO CS & slave_select */
848 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
849 		    spi->controller->set_cs)
850 			spi->controller->set_cs(spi, !enable);
851 	} else if (spi->controller->set_cs) {
852 		spi->controller->set_cs(spi, !enable);
853 	}
854 
855 	if (!spi->controller->set_cs_timing) {
856 		if (!enable1)
857 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
858 	}
859 }
860 
861 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)862 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
863 		struct sg_table *sgt, void *buf, size_t len,
864 		enum dma_data_direction dir)
865 {
866 	const bool vmalloced_buf = is_vmalloc_addr(buf);
867 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
868 #ifdef CONFIG_HIGHMEM
869 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
870 				(unsigned long)buf < (PKMAP_BASE +
871 					(LAST_PKMAP * PAGE_SIZE)));
872 #else
873 	const bool kmap_buf = false;
874 #endif
875 	int desc_len;
876 	int sgs;
877 	struct page *vm_page;
878 	struct scatterlist *sg;
879 	void *sg_buf;
880 	size_t min;
881 	int i, ret;
882 
883 	if (vmalloced_buf || kmap_buf) {
884 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
885 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
886 	} else if (virt_addr_valid(buf)) {
887 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
888 		sgs = DIV_ROUND_UP(len, desc_len);
889 	} else {
890 		return -EINVAL;
891 	}
892 
893 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
894 	if (ret != 0)
895 		return ret;
896 
897 	sg = &sgt->sgl[0];
898 	for (i = 0; i < sgs; i++) {
899 
900 		if (vmalloced_buf || kmap_buf) {
901 			/*
902 			 * Next scatterlist entry size is the minimum between
903 			 * the desc_len and the remaining buffer length that
904 			 * fits in a page.
905 			 */
906 			min = min_t(size_t, desc_len,
907 				    min_t(size_t, len,
908 					  PAGE_SIZE - offset_in_page(buf)));
909 			if (vmalloced_buf)
910 				vm_page = vmalloc_to_page(buf);
911 			else
912 				vm_page = kmap_to_page(buf);
913 			if (!vm_page) {
914 				sg_free_table(sgt);
915 				return -ENOMEM;
916 			}
917 			sg_set_page(sg, vm_page,
918 				    min, offset_in_page(buf));
919 		} else {
920 			min = min_t(size_t, len, desc_len);
921 			sg_buf = buf;
922 			sg_set_buf(sg, sg_buf, min);
923 		}
924 
925 		buf += min;
926 		len -= min;
927 		sg = sg_next(sg);
928 	}
929 
930 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
931 	if (!ret)
932 		ret = -ENOMEM;
933 	if (ret < 0) {
934 		sg_free_table(sgt);
935 		return ret;
936 	}
937 
938 	sgt->nents = ret;
939 
940 	return 0;
941 }
942 
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)943 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
944 		   struct sg_table *sgt, enum dma_data_direction dir)
945 {
946 	if (sgt->orig_nents) {
947 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
948 		sg_free_table(sgt);
949 		sgt->orig_nents = 0;
950 		sgt->nents = 0;
951 	}
952 }
953 
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)954 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
955 {
956 	struct device *tx_dev, *rx_dev;
957 	struct spi_transfer *xfer;
958 	int ret;
959 
960 	if (!ctlr->can_dma)
961 		return 0;
962 
963 	if (ctlr->dma_tx)
964 		tx_dev = ctlr->dma_tx->device->dev;
965 	else
966 		tx_dev = ctlr->dev.parent;
967 
968 	if (ctlr->dma_rx)
969 		rx_dev = ctlr->dma_rx->device->dev;
970 	else
971 		rx_dev = ctlr->dev.parent;
972 
973 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
974 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
975 			continue;
976 
977 		if (xfer->tx_buf != NULL) {
978 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
979 					  (void *)xfer->tx_buf, xfer->len,
980 					  DMA_TO_DEVICE);
981 			if (ret != 0)
982 				return ret;
983 		}
984 
985 		if (xfer->rx_buf != NULL) {
986 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
987 					  xfer->rx_buf, xfer->len,
988 					  DMA_FROM_DEVICE);
989 			if (ret != 0) {
990 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
991 					      DMA_TO_DEVICE);
992 				return ret;
993 			}
994 		}
995 	}
996 
997 	ctlr->cur_msg_mapped = true;
998 
999 	return 0;
1000 }
1001 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1002 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1003 {
1004 	struct spi_transfer *xfer;
1005 	struct device *tx_dev, *rx_dev;
1006 
1007 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1008 		return 0;
1009 
1010 	if (ctlr->dma_tx)
1011 		tx_dev = ctlr->dma_tx->device->dev;
1012 	else
1013 		tx_dev = ctlr->dev.parent;
1014 
1015 	if (ctlr->dma_rx)
1016 		rx_dev = ctlr->dma_rx->device->dev;
1017 	else
1018 		rx_dev = ctlr->dev.parent;
1019 
1020 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1021 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1022 			continue;
1023 
1024 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1025 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1026 	}
1027 
1028 	ctlr->cur_msg_mapped = false;
1029 
1030 	return 0;
1031 }
1032 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1033 static inline int __spi_map_msg(struct spi_controller *ctlr,
1034 				struct spi_message *msg)
1035 {
1036 	return 0;
1037 }
1038 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1039 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1040 				  struct spi_message *msg)
1041 {
1042 	return 0;
1043 }
1044 #endif /* !CONFIG_HAS_DMA */
1045 
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1046 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1047 				struct spi_message *msg)
1048 {
1049 	struct spi_transfer *xfer;
1050 
1051 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1052 		/*
1053 		 * Restore the original value of tx_buf or rx_buf if they are
1054 		 * NULL.
1055 		 */
1056 		if (xfer->tx_buf == ctlr->dummy_tx)
1057 			xfer->tx_buf = NULL;
1058 		if (xfer->rx_buf == ctlr->dummy_rx)
1059 			xfer->rx_buf = NULL;
1060 	}
1061 
1062 	return __spi_unmap_msg(ctlr, msg);
1063 }
1064 
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1065 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1066 {
1067 	struct spi_transfer *xfer;
1068 	void *tmp;
1069 	unsigned int max_tx, max_rx;
1070 
1071 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1072 		&& !(msg->spi->mode & SPI_3WIRE)) {
1073 		max_tx = 0;
1074 		max_rx = 0;
1075 
1076 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1077 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1078 			    !xfer->tx_buf)
1079 				max_tx = max(xfer->len, max_tx);
1080 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1081 			    !xfer->rx_buf)
1082 				max_rx = max(xfer->len, max_rx);
1083 		}
1084 
1085 		if (max_tx) {
1086 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1087 				       GFP_KERNEL | GFP_DMA);
1088 			if (!tmp)
1089 				return -ENOMEM;
1090 			ctlr->dummy_tx = tmp;
1091 			memset(tmp, 0, max_tx);
1092 		}
1093 
1094 		if (max_rx) {
1095 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1096 				       GFP_KERNEL | GFP_DMA);
1097 			if (!tmp)
1098 				return -ENOMEM;
1099 			ctlr->dummy_rx = tmp;
1100 		}
1101 
1102 		if (max_tx || max_rx) {
1103 			list_for_each_entry(xfer, &msg->transfers,
1104 					    transfer_list) {
1105 				if (!xfer->len)
1106 					continue;
1107 				if (!xfer->tx_buf)
1108 					xfer->tx_buf = ctlr->dummy_tx;
1109 				if (!xfer->rx_buf)
1110 					xfer->rx_buf = ctlr->dummy_rx;
1111 			}
1112 		}
1113 	}
1114 
1115 	return __spi_map_msg(ctlr, msg);
1116 }
1117 
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1118 static int spi_transfer_wait(struct spi_controller *ctlr,
1119 			     struct spi_message *msg,
1120 			     struct spi_transfer *xfer)
1121 {
1122 	struct spi_statistics *statm = &ctlr->statistics;
1123 	struct spi_statistics *stats = &msg->spi->statistics;
1124 	u32 speed_hz = xfer->speed_hz;
1125 	unsigned long long ms;
1126 
1127 	if (spi_controller_is_slave(ctlr)) {
1128 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1129 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1130 			return -EINTR;
1131 		}
1132 	} else {
1133 		if (!speed_hz)
1134 			speed_hz = 100000;
1135 
1136 		ms = 8LL * 1000LL * xfer->len;
1137 		do_div(ms, speed_hz);
1138 		ms += ms + 200; /* some tolerance */
1139 
1140 		if (ms > UINT_MAX)
1141 			ms = UINT_MAX;
1142 
1143 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1144 						 msecs_to_jiffies(ms));
1145 
1146 		if (ms == 0) {
1147 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1148 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1149 			dev_err(&msg->spi->dev,
1150 				"SPI transfer timed out\n");
1151 			return -ETIMEDOUT;
1152 		}
1153 	}
1154 
1155 	return 0;
1156 }
1157 
_spi_transfer_delay_ns(u32 ns)1158 static void _spi_transfer_delay_ns(u32 ns)
1159 {
1160 	if (!ns)
1161 		return;
1162 	if (ns <= 1000) {
1163 		ndelay(ns);
1164 	} else {
1165 		u32 us = DIV_ROUND_UP(ns, 1000);
1166 
1167 		if (us <= 10)
1168 			udelay(us);
1169 		else
1170 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1171 	}
1172 }
1173 
spi_delay_to_ns(struct spi_delay * _delay,struct spi_transfer * xfer)1174 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1175 {
1176 	u32 delay = _delay->value;
1177 	u32 unit = _delay->unit;
1178 	u32 hz;
1179 
1180 	if (!delay)
1181 		return 0;
1182 
1183 	switch (unit) {
1184 	case SPI_DELAY_UNIT_USECS:
1185 		delay *= 1000;
1186 		break;
1187 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1188 		break;
1189 	case SPI_DELAY_UNIT_SCK:
1190 		/* clock cycles need to be obtained from spi_transfer */
1191 		if (!xfer)
1192 			return -EINVAL;
1193 		/* if there is no effective speed know, then approximate
1194 		 * by underestimating with half the requested hz
1195 		 */
1196 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1197 		if (!hz)
1198 			return -EINVAL;
1199 		delay *= DIV_ROUND_UP(1000000000, hz);
1200 		break;
1201 	default:
1202 		return -EINVAL;
1203 	}
1204 
1205 	return delay;
1206 }
1207 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1208 
spi_delay_exec(struct spi_delay * _delay,struct spi_transfer * xfer)1209 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1210 {
1211 	int delay;
1212 
1213 	might_sleep();
1214 
1215 	if (!_delay)
1216 		return -EINVAL;
1217 
1218 	delay = spi_delay_to_ns(_delay, xfer);
1219 	if (delay < 0)
1220 		return delay;
1221 
1222 	_spi_transfer_delay_ns(delay);
1223 
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(spi_delay_exec);
1227 
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1228 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1229 					  struct spi_transfer *xfer)
1230 {
1231 	u32 delay = xfer->cs_change_delay.value;
1232 	u32 unit = xfer->cs_change_delay.unit;
1233 	int ret;
1234 
1235 	/* return early on "fast" mode - for everything but USECS */
1236 	if (!delay) {
1237 		if (unit == SPI_DELAY_UNIT_USECS)
1238 			_spi_transfer_delay_ns(10000);
1239 		return;
1240 	}
1241 
1242 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1243 	if (ret) {
1244 		dev_err_once(&msg->spi->dev,
1245 			     "Use of unsupported delay unit %i, using default of 10us\n",
1246 			     unit);
1247 		_spi_transfer_delay_ns(10000);
1248 	}
1249 }
1250 
1251 /*
1252  * spi_transfer_one_message - Default implementation of transfer_one_message()
1253  *
1254  * This is a standard implementation of transfer_one_message() for
1255  * drivers which implement a transfer_one() operation.  It provides
1256  * standard handling of delays and chip select management.
1257  */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1258 static int spi_transfer_one_message(struct spi_controller *ctlr,
1259 				    struct spi_message *msg)
1260 {
1261 	struct spi_transfer *xfer;
1262 	bool keep_cs = false;
1263 	int ret = 0;
1264 	struct spi_statistics *statm = &ctlr->statistics;
1265 	struct spi_statistics *stats = &msg->spi->statistics;
1266 
1267 	spi_set_cs(msg->spi, true, false);
1268 
1269 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1270 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1271 
1272 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1273 		trace_spi_transfer_start(msg, xfer);
1274 
1275 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1276 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1277 
1278 		if (!ctlr->ptp_sts_supported) {
1279 			xfer->ptp_sts_word_pre = 0;
1280 			ptp_read_system_prets(xfer->ptp_sts);
1281 		}
1282 
1283 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1284 			reinit_completion(&ctlr->xfer_completion);
1285 
1286 fallback_pio:
1287 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1288 			if (ret < 0) {
1289 				if (ctlr->cur_msg_mapped &&
1290 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1291 					__spi_unmap_msg(ctlr, msg);
1292 					ctlr->fallback = true;
1293 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1294 					goto fallback_pio;
1295 				}
1296 
1297 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1298 							       errors);
1299 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1300 							       errors);
1301 				dev_err(&msg->spi->dev,
1302 					"SPI transfer failed: %d\n", ret);
1303 				goto out;
1304 			}
1305 
1306 			if (ret > 0) {
1307 				ret = spi_transfer_wait(ctlr, msg, xfer);
1308 				if (ret < 0)
1309 					msg->status = ret;
1310 			}
1311 		} else {
1312 			if (xfer->len)
1313 				dev_err(&msg->spi->dev,
1314 					"Bufferless transfer has length %u\n",
1315 					xfer->len);
1316 		}
1317 
1318 		if (!ctlr->ptp_sts_supported) {
1319 			ptp_read_system_postts(xfer->ptp_sts);
1320 			xfer->ptp_sts_word_post = xfer->len;
1321 		}
1322 
1323 		trace_spi_transfer_stop(msg, xfer);
1324 
1325 		if (msg->status != -EINPROGRESS)
1326 			goto out;
1327 
1328 		spi_transfer_delay_exec(xfer);
1329 
1330 		if (xfer->cs_change) {
1331 			if (list_is_last(&xfer->transfer_list,
1332 					 &msg->transfers)) {
1333 				keep_cs = true;
1334 			} else {
1335 				spi_set_cs(msg->spi, false, false);
1336 				_spi_transfer_cs_change_delay(msg, xfer);
1337 				spi_set_cs(msg->spi, true, false);
1338 			}
1339 		}
1340 
1341 		msg->actual_length += xfer->len;
1342 	}
1343 
1344 out:
1345 	if (ret != 0 || !keep_cs)
1346 		spi_set_cs(msg->spi, false, false);
1347 
1348 	if (msg->status == -EINPROGRESS)
1349 		msg->status = ret;
1350 
1351 	if (msg->status && ctlr->handle_err)
1352 		ctlr->handle_err(ctlr, msg);
1353 
1354 	spi_finalize_current_message(ctlr);
1355 
1356 	return ret;
1357 }
1358 
1359 /**
1360  * spi_finalize_current_transfer - report completion of a transfer
1361  * @ctlr: the controller reporting completion
1362  *
1363  * Called by SPI drivers using the core transfer_one_message()
1364  * implementation to notify it that the current interrupt driven
1365  * transfer has finished and the next one may be scheduled.
1366  */
spi_finalize_current_transfer(struct spi_controller * ctlr)1367 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1368 {
1369 	complete(&ctlr->xfer_completion);
1370 }
1371 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1372 
spi_idle_runtime_pm(struct spi_controller * ctlr)1373 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1374 {
1375 	if (ctlr->auto_runtime_pm) {
1376 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1377 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1378 	}
1379 }
1380 
1381 /**
1382  * __spi_pump_messages - function which processes spi message queue
1383  * @ctlr: controller to process queue for
1384  * @in_kthread: true if we are in the context of the message pump thread
1385  *
1386  * This function checks if there is any spi message in the queue that
1387  * needs processing and if so call out to the driver to initialize hardware
1388  * and transfer each message.
1389  *
1390  * Note that it is called both from the kthread itself and also from
1391  * inside spi_sync(); the queue extraction handling at the top of the
1392  * function should deal with this safely.
1393  */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1394 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1395 {
1396 	struct spi_transfer *xfer;
1397 	struct spi_message *msg;
1398 	bool was_busy = false;
1399 	unsigned long flags;
1400 	int ret;
1401 
1402 	/* Lock queue */
1403 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1404 
1405 	/* Make sure we are not already running a message */
1406 	if (ctlr->cur_msg) {
1407 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1408 		return;
1409 	}
1410 
1411 	/* If another context is idling the device then defer */
1412 	if (ctlr->idling) {
1413 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1414 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1415 		return;
1416 	}
1417 
1418 	/* Check if the queue is idle */
1419 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1420 		if (!ctlr->busy) {
1421 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1422 			return;
1423 		}
1424 
1425 		/* Defer any non-atomic teardown to the thread */
1426 		if (!in_kthread) {
1427 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1428 			    !ctlr->unprepare_transfer_hardware) {
1429 				spi_idle_runtime_pm(ctlr);
1430 				ctlr->busy = false;
1431 				trace_spi_controller_idle(ctlr);
1432 			} else {
1433 				kthread_queue_work(ctlr->kworker,
1434 						   &ctlr->pump_messages);
1435 			}
1436 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1437 			return;
1438 		}
1439 
1440 		ctlr->busy = false;
1441 		ctlr->idling = true;
1442 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1443 
1444 		kfree(ctlr->dummy_rx);
1445 		ctlr->dummy_rx = NULL;
1446 		kfree(ctlr->dummy_tx);
1447 		ctlr->dummy_tx = NULL;
1448 		if (ctlr->unprepare_transfer_hardware &&
1449 		    ctlr->unprepare_transfer_hardware(ctlr))
1450 			dev_err(&ctlr->dev,
1451 				"failed to unprepare transfer hardware\n");
1452 		spi_idle_runtime_pm(ctlr);
1453 		trace_spi_controller_idle(ctlr);
1454 
1455 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1456 		ctlr->idling = false;
1457 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1458 		return;
1459 	}
1460 
1461 	/* Extract head of queue */
1462 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1463 	ctlr->cur_msg = msg;
1464 
1465 	list_del_init(&msg->queue);
1466 	if (ctlr->busy)
1467 		was_busy = true;
1468 	else
1469 		ctlr->busy = true;
1470 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1471 
1472 	mutex_lock(&ctlr->io_mutex);
1473 
1474 	if (!was_busy && ctlr->auto_runtime_pm) {
1475 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1476 		if (ret < 0) {
1477 			pm_runtime_put_noidle(ctlr->dev.parent);
1478 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1479 				ret);
1480 			mutex_unlock(&ctlr->io_mutex);
1481 			return;
1482 		}
1483 	}
1484 
1485 	if (!was_busy)
1486 		trace_spi_controller_busy(ctlr);
1487 
1488 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1489 		ret = ctlr->prepare_transfer_hardware(ctlr);
1490 		if (ret) {
1491 			dev_err(&ctlr->dev,
1492 				"failed to prepare transfer hardware: %d\n",
1493 				ret);
1494 
1495 			if (ctlr->auto_runtime_pm)
1496 				pm_runtime_put(ctlr->dev.parent);
1497 
1498 			msg->status = ret;
1499 			spi_finalize_current_message(ctlr);
1500 
1501 			mutex_unlock(&ctlr->io_mutex);
1502 			return;
1503 		}
1504 	}
1505 
1506 	trace_spi_message_start(msg);
1507 
1508 	if (ctlr->prepare_message) {
1509 		ret = ctlr->prepare_message(ctlr, msg);
1510 		if (ret) {
1511 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1512 				ret);
1513 			msg->status = ret;
1514 			spi_finalize_current_message(ctlr);
1515 			goto out;
1516 		}
1517 		ctlr->cur_msg_prepared = true;
1518 	}
1519 
1520 	ret = spi_map_msg(ctlr, msg);
1521 	if (ret) {
1522 		msg->status = ret;
1523 		spi_finalize_current_message(ctlr);
1524 		goto out;
1525 	}
1526 
1527 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1528 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1529 			xfer->ptp_sts_word_pre = 0;
1530 			ptp_read_system_prets(xfer->ptp_sts);
1531 		}
1532 	}
1533 
1534 	ret = ctlr->transfer_one_message(ctlr, msg);
1535 	if (ret) {
1536 		dev_err(&ctlr->dev,
1537 			"failed to transfer one message from queue\n");
1538 		goto out;
1539 	}
1540 
1541 out:
1542 	mutex_unlock(&ctlr->io_mutex);
1543 
1544 	/* Prod the scheduler in case transfer_one() was busy waiting */
1545 	if (!ret)
1546 		cond_resched();
1547 }
1548 
1549 /**
1550  * spi_pump_messages - kthread work function which processes spi message queue
1551  * @work: pointer to kthread work struct contained in the controller struct
1552  */
spi_pump_messages(struct kthread_work * work)1553 static void spi_pump_messages(struct kthread_work *work)
1554 {
1555 	struct spi_controller *ctlr =
1556 		container_of(work, struct spi_controller, pump_messages);
1557 
1558 	__spi_pump_messages(ctlr, true);
1559 }
1560 
1561 /**
1562  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1563  *			    TX timestamp for the requested byte from the SPI
1564  *			    transfer. The frequency with which this function
1565  *			    must be called (once per word, once for the whole
1566  *			    transfer, once per batch of words etc) is arbitrary
1567  *			    as long as the @tx buffer offset is greater than or
1568  *			    equal to the requested byte at the time of the
1569  *			    call. The timestamp is only taken once, at the
1570  *			    first such call. It is assumed that the driver
1571  *			    advances its @tx buffer pointer monotonically.
1572  * @ctlr: Pointer to the spi_controller structure of the driver
1573  * @xfer: Pointer to the transfer being timestamped
1574  * @progress: How many words (not bytes) have been transferred so far
1575  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1576  *	      transfer, for less jitter in time measurement. Only compatible
1577  *	      with PIO drivers. If true, must follow up with
1578  *	      spi_take_timestamp_post or otherwise system will crash.
1579  *	      WARNING: for fully predictable results, the CPU frequency must
1580  *	      also be under control (governor).
1581  */
spi_take_timestamp_pre(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1582 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1583 			    struct spi_transfer *xfer,
1584 			    size_t progress, bool irqs_off)
1585 {
1586 	if (!xfer->ptp_sts)
1587 		return;
1588 
1589 	if (xfer->timestamped)
1590 		return;
1591 
1592 	if (progress > xfer->ptp_sts_word_pre)
1593 		return;
1594 
1595 	/* Capture the resolution of the timestamp */
1596 	xfer->ptp_sts_word_pre = progress;
1597 
1598 	if (irqs_off) {
1599 		local_irq_save(ctlr->irq_flags);
1600 		preempt_disable();
1601 	}
1602 
1603 	ptp_read_system_prets(xfer->ptp_sts);
1604 }
1605 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1606 
1607 /**
1608  * spi_take_timestamp_post - helper for drivers to collect the end of the
1609  *			     TX timestamp for the requested byte from the SPI
1610  *			     transfer. Can be called with an arbitrary
1611  *			     frequency: only the first call where @tx exceeds
1612  *			     or is equal to the requested word will be
1613  *			     timestamped.
1614  * @ctlr: Pointer to the spi_controller structure of the driver
1615  * @xfer: Pointer to the transfer being timestamped
1616  * @progress: How many words (not bytes) have been transferred so far
1617  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1618  */
spi_take_timestamp_post(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1619 void spi_take_timestamp_post(struct spi_controller *ctlr,
1620 			     struct spi_transfer *xfer,
1621 			     size_t progress, bool irqs_off)
1622 {
1623 	if (!xfer->ptp_sts)
1624 		return;
1625 
1626 	if (xfer->timestamped)
1627 		return;
1628 
1629 	if (progress < xfer->ptp_sts_word_post)
1630 		return;
1631 
1632 	ptp_read_system_postts(xfer->ptp_sts);
1633 
1634 	if (irqs_off) {
1635 		local_irq_restore(ctlr->irq_flags);
1636 		preempt_enable();
1637 	}
1638 
1639 	/* Capture the resolution of the timestamp */
1640 	xfer->ptp_sts_word_post = progress;
1641 
1642 	xfer->timestamped = true;
1643 }
1644 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1645 
1646 /**
1647  * spi_set_thread_rt - set the controller to pump at realtime priority
1648  * @ctlr: controller to boost priority of
1649  *
1650  * This can be called because the controller requested realtime priority
1651  * (by setting the ->rt value before calling spi_register_controller()) or
1652  * because a device on the bus said that its transfers needed realtime
1653  * priority.
1654  *
1655  * NOTE: at the moment if any device on a bus says it needs realtime then
1656  * the thread will be at realtime priority for all transfers on that
1657  * controller.  If this eventually becomes a problem we may see if we can
1658  * find a way to boost the priority only temporarily during relevant
1659  * transfers.
1660  */
spi_set_thread_rt(struct spi_controller * ctlr)1661 static void spi_set_thread_rt(struct spi_controller *ctlr)
1662 {
1663 	dev_info(&ctlr->dev,
1664 		"will run message pump with realtime priority\n");
1665 	sched_set_fifo(ctlr->kworker->task);
1666 }
1667 
spi_init_queue(struct spi_controller * ctlr)1668 static int spi_init_queue(struct spi_controller *ctlr)
1669 {
1670 	ctlr->running = false;
1671 	ctlr->busy = false;
1672 
1673 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1674 	if (IS_ERR(ctlr->kworker)) {
1675 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1676 		return PTR_ERR(ctlr->kworker);
1677 	}
1678 
1679 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1680 
1681 	/*
1682 	 * Controller config will indicate if this controller should run the
1683 	 * message pump with high (realtime) priority to reduce the transfer
1684 	 * latency on the bus by minimising the delay between a transfer
1685 	 * request and the scheduling of the message pump thread. Without this
1686 	 * setting the message pump thread will remain at default priority.
1687 	 */
1688 	if (ctlr->rt)
1689 		spi_set_thread_rt(ctlr);
1690 
1691 	return 0;
1692 }
1693 
1694 /**
1695  * spi_get_next_queued_message() - called by driver to check for queued
1696  * messages
1697  * @ctlr: the controller to check for queued messages
1698  *
1699  * If there are more messages in the queue, the next message is returned from
1700  * this call.
1701  *
1702  * Return: the next message in the queue, else NULL if the queue is empty.
1703  */
spi_get_next_queued_message(struct spi_controller * ctlr)1704 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1705 {
1706 	struct spi_message *next;
1707 	unsigned long flags;
1708 
1709 	/* get a pointer to the next message, if any */
1710 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1711 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1712 					queue);
1713 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1714 
1715 	return next;
1716 }
1717 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1718 
1719 /**
1720  * spi_finalize_current_message() - the current message is complete
1721  * @ctlr: the controller to return the message to
1722  *
1723  * Called by the driver to notify the core that the message in the front of the
1724  * queue is complete and can be removed from the queue.
1725  */
spi_finalize_current_message(struct spi_controller * ctlr)1726 void spi_finalize_current_message(struct spi_controller *ctlr)
1727 {
1728 	struct spi_transfer *xfer;
1729 	struct spi_message *mesg;
1730 	unsigned long flags;
1731 	int ret;
1732 
1733 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1734 	mesg = ctlr->cur_msg;
1735 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1736 
1737 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1738 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1739 			ptp_read_system_postts(xfer->ptp_sts);
1740 			xfer->ptp_sts_word_post = xfer->len;
1741 		}
1742 	}
1743 
1744 	if (unlikely(ctlr->ptp_sts_supported))
1745 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1746 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1747 
1748 	spi_unmap_msg(ctlr, mesg);
1749 
1750 	/* In the prepare_messages callback the spi bus has the opportunity to
1751 	 * split a transfer to smaller chunks.
1752 	 * Release splited transfers here since spi_map_msg is done on the
1753 	 * splited transfers.
1754 	 */
1755 	spi_res_release(ctlr, mesg);
1756 
1757 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1758 		ret = ctlr->unprepare_message(ctlr, mesg);
1759 		if (ret) {
1760 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1761 				ret);
1762 		}
1763 	}
1764 
1765 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1766 	ctlr->cur_msg = NULL;
1767 	ctlr->cur_msg_prepared = false;
1768 	ctlr->fallback = false;
1769 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1770 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1771 
1772 	trace_spi_message_done(mesg);
1773 
1774 	mesg->state = NULL;
1775 	if (mesg->complete)
1776 		mesg->complete(mesg->context);
1777 }
1778 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1779 
spi_start_queue(struct spi_controller * ctlr)1780 static int spi_start_queue(struct spi_controller *ctlr)
1781 {
1782 	unsigned long flags;
1783 
1784 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1785 
1786 	if (ctlr->running || ctlr->busy) {
1787 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1788 		return -EBUSY;
1789 	}
1790 
1791 	ctlr->running = true;
1792 	ctlr->cur_msg = NULL;
1793 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1794 
1795 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1796 
1797 	return 0;
1798 }
1799 
spi_stop_queue(struct spi_controller * ctlr)1800 static int spi_stop_queue(struct spi_controller *ctlr)
1801 {
1802 	unsigned long flags;
1803 	unsigned limit = 500;
1804 	int ret = 0;
1805 
1806 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1807 
1808 	/*
1809 	 * This is a bit lame, but is optimized for the common execution path.
1810 	 * A wait_queue on the ctlr->busy could be used, but then the common
1811 	 * execution path (pump_messages) would be required to call wake_up or
1812 	 * friends on every SPI message. Do this instead.
1813 	 */
1814 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1815 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1816 		usleep_range(10000, 11000);
1817 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1818 	}
1819 
1820 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1821 		ret = -EBUSY;
1822 	else
1823 		ctlr->running = false;
1824 
1825 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1826 
1827 	if (ret) {
1828 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1829 		return ret;
1830 	}
1831 	return ret;
1832 }
1833 
spi_destroy_queue(struct spi_controller * ctlr)1834 static int spi_destroy_queue(struct spi_controller *ctlr)
1835 {
1836 	int ret;
1837 
1838 	ret = spi_stop_queue(ctlr);
1839 
1840 	/*
1841 	 * kthread_flush_worker will block until all work is done.
1842 	 * If the reason that stop_queue timed out is that the work will never
1843 	 * finish, then it does no good to call flush/stop thread, so
1844 	 * return anyway.
1845 	 */
1846 	if (ret) {
1847 		dev_err(&ctlr->dev, "problem destroying queue\n");
1848 		return ret;
1849 	}
1850 
1851 	kthread_destroy_worker(ctlr->kworker);
1852 
1853 	return 0;
1854 }
1855 
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1856 static int __spi_queued_transfer(struct spi_device *spi,
1857 				 struct spi_message *msg,
1858 				 bool need_pump)
1859 {
1860 	struct spi_controller *ctlr = spi->controller;
1861 	unsigned long flags;
1862 
1863 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1864 
1865 	if (!ctlr->running) {
1866 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1867 		return -ESHUTDOWN;
1868 	}
1869 	msg->actual_length = 0;
1870 	msg->status = -EINPROGRESS;
1871 
1872 	list_add_tail(&msg->queue, &ctlr->queue);
1873 	if (!ctlr->busy && need_pump)
1874 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1875 
1876 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1877 	return 0;
1878 }
1879 
1880 /**
1881  * spi_queued_transfer - transfer function for queued transfers
1882  * @spi: spi device which is requesting transfer
1883  * @msg: spi message which is to handled is queued to driver queue
1884  *
1885  * Return: zero on success, else a negative error code.
1886  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1887 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1888 {
1889 	return __spi_queued_transfer(spi, msg, true);
1890 }
1891 
spi_controller_initialize_queue(struct spi_controller * ctlr)1892 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1893 {
1894 	int ret;
1895 
1896 	ctlr->transfer = spi_queued_transfer;
1897 	if (!ctlr->transfer_one_message)
1898 		ctlr->transfer_one_message = spi_transfer_one_message;
1899 
1900 	/* Initialize and start queue */
1901 	ret = spi_init_queue(ctlr);
1902 	if (ret) {
1903 		dev_err(&ctlr->dev, "problem initializing queue\n");
1904 		goto err_init_queue;
1905 	}
1906 	ctlr->queued = true;
1907 	ret = spi_start_queue(ctlr);
1908 	if (ret) {
1909 		dev_err(&ctlr->dev, "problem starting queue\n");
1910 		goto err_start_queue;
1911 	}
1912 
1913 	return 0;
1914 
1915 err_start_queue:
1916 	spi_destroy_queue(ctlr);
1917 err_init_queue:
1918 	return ret;
1919 }
1920 
1921 /**
1922  * spi_flush_queue - Send all pending messages in the queue from the callers'
1923  *		     context
1924  * @ctlr: controller to process queue for
1925  *
1926  * This should be used when one wants to ensure all pending messages have been
1927  * sent before doing something. Is used by the spi-mem code to make sure SPI
1928  * memory operations do not preempt regular SPI transfers that have been queued
1929  * before the spi-mem operation.
1930  */
spi_flush_queue(struct spi_controller * ctlr)1931 void spi_flush_queue(struct spi_controller *ctlr)
1932 {
1933 	if (ctlr->transfer == spi_queued_transfer)
1934 		__spi_pump_messages(ctlr, false);
1935 }
1936 
1937 /*-------------------------------------------------------------------------*/
1938 
1939 #if defined(CONFIG_OF)
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)1940 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1941 			   struct device_node *nc)
1942 {
1943 	u32 value;
1944 	int rc;
1945 
1946 	/* Mode (clock phase/polarity/etc.) */
1947 	if (of_property_read_bool(nc, "spi-cpha"))
1948 		spi->mode |= SPI_CPHA;
1949 	if (of_property_read_bool(nc, "spi-cpol"))
1950 		spi->mode |= SPI_CPOL;
1951 	if (of_property_read_bool(nc, "spi-3wire"))
1952 		spi->mode |= SPI_3WIRE;
1953 	if (of_property_read_bool(nc, "spi-lsb-first"))
1954 		spi->mode |= SPI_LSB_FIRST;
1955 	if (of_property_read_bool(nc, "spi-cs-high"))
1956 		spi->mode |= SPI_CS_HIGH;
1957 
1958 	/* Device DUAL/QUAD mode */
1959 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1960 		switch (value) {
1961 		case 1:
1962 			break;
1963 		case 2:
1964 			spi->mode |= SPI_TX_DUAL;
1965 			break;
1966 		case 4:
1967 			spi->mode |= SPI_TX_QUAD;
1968 			break;
1969 		case 8:
1970 			spi->mode |= SPI_TX_OCTAL;
1971 			break;
1972 		default:
1973 			dev_warn(&ctlr->dev,
1974 				"spi-tx-bus-width %d not supported\n",
1975 				value);
1976 			break;
1977 		}
1978 	}
1979 
1980 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1981 		switch (value) {
1982 		case 1:
1983 			break;
1984 		case 2:
1985 			spi->mode |= SPI_RX_DUAL;
1986 			break;
1987 		case 4:
1988 			spi->mode |= SPI_RX_QUAD;
1989 			break;
1990 		case 8:
1991 			spi->mode |= SPI_RX_OCTAL;
1992 			break;
1993 		default:
1994 			dev_warn(&ctlr->dev,
1995 				"spi-rx-bus-width %d not supported\n",
1996 				value);
1997 			break;
1998 		}
1999 	}
2000 
2001 	if (spi_controller_is_slave(ctlr)) {
2002 		if (!of_node_name_eq(nc, "slave")) {
2003 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2004 				nc);
2005 			return -EINVAL;
2006 		}
2007 		return 0;
2008 	}
2009 
2010 	/* Device address */
2011 	rc = of_property_read_u32(nc, "reg", &value);
2012 	if (rc) {
2013 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2014 			nc, rc);
2015 		return rc;
2016 	}
2017 	spi->chip_select = value;
2018 
2019 	/* Device speed */
2020 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2021 		spi->max_speed_hz = value;
2022 
2023 	return 0;
2024 }
2025 
2026 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)2027 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2028 {
2029 	struct spi_device *spi;
2030 	int rc;
2031 
2032 	/* Alloc an spi_device */
2033 	spi = spi_alloc_device(ctlr);
2034 	if (!spi) {
2035 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2036 		rc = -ENOMEM;
2037 		goto err_out;
2038 	}
2039 
2040 	/* Select device driver */
2041 	rc = of_modalias_node(nc, spi->modalias,
2042 				sizeof(spi->modalias));
2043 	if (rc < 0) {
2044 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2045 		goto err_out;
2046 	}
2047 
2048 	rc = of_spi_parse_dt(ctlr, spi, nc);
2049 	if (rc)
2050 		goto err_out;
2051 
2052 	/* Store a pointer to the node in the device structure */
2053 	of_node_get(nc);
2054 	spi->dev.of_node = nc;
2055 	spi->dev.fwnode = of_fwnode_handle(nc);
2056 
2057 	/* Register the new device */
2058 	rc = spi_add_device(spi);
2059 	if (rc) {
2060 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2061 		goto err_of_node_put;
2062 	}
2063 
2064 	return spi;
2065 
2066 err_of_node_put:
2067 	of_node_put(nc);
2068 err_out:
2069 	spi_dev_put(spi);
2070 	return ERR_PTR(rc);
2071 }
2072 
2073 /**
2074  * of_register_spi_devices() - Register child devices onto the SPI bus
2075  * @ctlr:	Pointer to spi_controller device
2076  *
2077  * Registers an spi_device for each child node of controller node which
2078  * represents a valid SPI slave.
2079  */
of_register_spi_devices(struct spi_controller * ctlr)2080 static void of_register_spi_devices(struct spi_controller *ctlr)
2081 {
2082 	struct spi_device *spi;
2083 	struct device_node *nc;
2084 
2085 	if (!ctlr->dev.of_node)
2086 		return;
2087 
2088 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2089 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2090 			continue;
2091 		spi = of_register_spi_device(ctlr, nc);
2092 		if (IS_ERR(spi)) {
2093 			dev_warn(&ctlr->dev,
2094 				 "Failed to create SPI device for %pOF\n", nc);
2095 			of_node_clear_flag(nc, OF_POPULATED);
2096 		}
2097 	}
2098 }
2099 #else
of_register_spi_devices(struct spi_controller * ctlr)2100 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2101 #endif
2102 
2103 #ifdef CONFIG_ACPI
2104 struct acpi_spi_lookup {
2105 	struct spi_controller 	*ctlr;
2106 	u32			max_speed_hz;
2107 	u32			mode;
2108 	int			irq;
2109 	u8			bits_per_word;
2110 	u8			chip_select;
2111 };
2112 
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)2113 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2114 					    struct acpi_spi_lookup *lookup)
2115 {
2116 	const union acpi_object *obj;
2117 
2118 	if (!x86_apple_machine)
2119 		return;
2120 
2121 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2122 	    && obj->buffer.length >= 4)
2123 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2124 
2125 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2126 	    && obj->buffer.length == 8)
2127 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2128 
2129 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2130 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2131 		lookup->mode |= SPI_LSB_FIRST;
2132 
2133 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2134 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2135 		lookup->mode |= SPI_CPOL;
2136 
2137 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2138 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2139 		lookup->mode |= SPI_CPHA;
2140 }
2141 
acpi_spi_add_resource(struct acpi_resource * ares,void * data)2142 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2143 {
2144 	struct acpi_spi_lookup *lookup = data;
2145 	struct spi_controller *ctlr = lookup->ctlr;
2146 
2147 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2148 		struct acpi_resource_spi_serialbus *sb;
2149 		acpi_handle parent_handle;
2150 		acpi_status status;
2151 
2152 		sb = &ares->data.spi_serial_bus;
2153 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2154 
2155 			status = acpi_get_handle(NULL,
2156 						 sb->resource_source.string_ptr,
2157 						 &parent_handle);
2158 
2159 			if (ACPI_FAILURE(status) ||
2160 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2161 				return -ENODEV;
2162 
2163 			/*
2164 			 * ACPI DeviceSelection numbering is handled by the
2165 			 * host controller driver in Windows and can vary
2166 			 * from driver to driver. In Linux we always expect
2167 			 * 0 .. max - 1 so we need to ask the driver to
2168 			 * translate between the two schemes.
2169 			 */
2170 			if (ctlr->fw_translate_cs) {
2171 				int cs = ctlr->fw_translate_cs(ctlr,
2172 						sb->device_selection);
2173 				if (cs < 0)
2174 					return cs;
2175 				lookup->chip_select = cs;
2176 			} else {
2177 				lookup->chip_select = sb->device_selection;
2178 			}
2179 
2180 			lookup->max_speed_hz = sb->connection_speed;
2181 			lookup->bits_per_word = sb->data_bit_length;
2182 
2183 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2184 				lookup->mode |= SPI_CPHA;
2185 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2186 				lookup->mode |= SPI_CPOL;
2187 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2188 				lookup->mode |= SPI_CS_HIGH;
2189 		}
2190 	} else if (lookup->irq < 0) {
2191 		struct resource r;
2192 
2193 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2194 			lookup->irq = r.start;
2195 	}
2196 
2197 	/* Always tell the ACPI core to skip this resource */
2198 	return 1;
2199 }
2200 
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)2201 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2202 					    struct acpi_device *adev)
2203 {
2204 	acpi_handle parent_handle = NULL;
2205 	struct list_head resource_list;
2206 	struct acpi_spi_lookup lookup = {};
2207 	struct spi_device *spi;
2208 	int ret;
2209 
2210 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2211 	    acpi_device_enumerated(adev))
2212 		return AE_OK;
2213 
2214 	lookup.ctlr		= ctlr;
2215 	lookup.irq		= -1;
2216 
2217 	INIT_LIST_HEAD(&resource_list);
2218 	ret = acpi_dev_get_resources(adev, &resource_list,
2219 				     acpi_spi_add_resource, &lookup);
2220 	acpi_dev_free_resource_list(&resource_list);
2221 
2222 	if (ret < 0)
2223 		/* found SPI in _CRS but it points to another controller */
2224 		return AE_OK;
2225 
2226 	if (!lookup.max_speed_hz &&
2227 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2228 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2229 		/* Apple does not use _CRS but nested devices for SPI slaves */
2230 		acpi_spi_parse_apple_properties(adev, &lookup);
2231 	}
2232 
2233 	if (!lookup.max_speed_hz)
2234 		return AE_OK;
2235 
2236 	spi = spi_alloc_device(ctlr);
2237 	if (!spi) {
2238 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2239 			dev_name(&adev->dev));
2240 		return AE_NO_MEMORY;
2241 	}
2242 
2243 
2244 	ACPI_COMPANION_SET(&spi->dev, adev);
2245 	spi->max_speed_hz	= lookup.max_speed_hz;
2246 	spi->mode		|= lookup.mode;
2247 	spi->irq		= lookup.irq;
2248 	spi->bits_per_word	= lookup.bits_per_word;
2249 	spi->chip_select	= lookup.chip_select;
2250 
2251 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2252 			  sizeof(spi->modalias));
2253 
2254 	if (spi->irq < 0)
2255 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2256 
2257 	acpi_device_set_enumerated(adev);
2258 
2259 	adev->power.flags.ignore_parent = true;
2260 	if (spi_add_device(spi)) {
2261 		adev->power.flags.ignore_parent = false;
2262 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2263 			dev_name(&adev->dev));
2264 		spi_dev_put(spi);
2265 	}
2266 
2267 	return AE_OK;
2268 }
2269 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2270 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2271 				       void *data, void **return_value)
2272 {
2273 	struct spi_controller *ctlr = data;
2274 	struct acpi_device *adev;
2275 
2276 	if (acpi_bus_get_device(handle, &adev))
2277 		return AE_OK;
2278 
2279 	return acpi_register_spi_device(ctlr, adev);
2280 }
2281 
2282 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2283 
acpi_register_spi_devices(struct spi_controller * ctlr)2284 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2285 {
2286 	acpi_status status;
2287 	acpi_handle handle;
2288 
2289 	handle = ACPI_HANDLE(ctlr->dev.parent);
2290 	if (!handle)
2291 		return;
2292 
2293 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2294 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2295 				     acpi_spi_add_device, NULL, ctlr, NULL);
2296 	if (ACPI_FAILURE(status))
2297 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2298 }
2299 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2300 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2301 #endif /* CONFIG_ACPI */
2302 
spi_controller_release(struct device * dev)2303 static void spi_controller_release(struct device *dev)
2304 {
2305 	struct spi_controller *ctlr;
2306 
2307 	ctlr = container_of(dev, struct spi_controller, dev);
2308 	kfree(ctlr);
2309 }
2310 
2311 static struct class spi_master_class = {
2312 	.name		= "spi_master",
2313 	.owner		= THIS_MODULE,
2314 	.dev_release	= spi_controller_release,
2315 	.dev_groups	= spi_master_groups,
2316 };
2317 
2318 #ifdef CONFIG_SPI_SLAVE
2319 /**
2320  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2321  *		     controller
2322  * @spi: device used for the current transfer
2323  */
spi_slave_abort(struct spi_device * spi)2324 int spi_slave_abort(struct spi_device *spi)
2325 {
2326 	struct spi_controller *ctlr = spi->controller;
2327 
2328 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2329 		return ctlr->slave_abort(ctlr);
2330 
2331 	return -ENOTSUPP;
2332 }
2333 EXPORT_SYMBOL_GPL(spi_slave_abort);
2334 
match_true(struct device * dev,void * data)2335 static int match_true(struct device *dev, void *data)
2336 {
2337 	return 1;
2338 }
2339 
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2340 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2341 			  char *buf)
2342 {
2343 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2344 						   dev);
2345 	struct device *child;
2346 
2347 	child = device_find_child(&ctlr->dev, NULL, match_true);
2348 	return sprintf(buf, "%s\n",
2349 		       child ? to_spi_device(child)->modalias : NULL);
2350 }
2351 
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2352 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2353 			   const char *buf, size_t count)
2354 {
2355 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2356 						   dev);
2357 	struct spi_device *spi;
2358 	struct device *child;
2359 	char name[32];
2360 	int rc;
2361 
2362 	rc = sscanf(buf, "%31s", name);
2363 	if (rc != 1 || !name[0])
2364 		return -EINVAL;
2365 
2366 	child = device_find_child(&ctlr->dev, NULL, match_true);
2367 	if (child) {
2368 		/* Remove registered slave */
2369 		device_unregister(child);
2370 		put_device(child);
2371 	}
2372 
2373 	if (strcmp(name, "(null)")) {
2374 		/* Register new slave */
2375 		spi = spi_alloc_device(ctlr);
2376 		if (!spi)
2377 			return -ENOMEM;
2378 
2379 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2380 
2381 		rc = spi_add_device(spi);
2382 		if (rc) {
2383 			spi_dev_put(spi);
2384 			return rc;
2385 		}
2386 	}
2387 
2388 	return count;
2389 }
2390 
2391 static DEVICE_ATTR_RW(slave);
2392 
2393 static struct attribute *spi_slave_attrs[] = {
2394 	&dev_attr_slave.attr,
2395 	NULL,
2396 };
2397 
2398 static const struct attribute_group spi_slave_group = {
2399 	.attrs = spi_slave_attrs,
2400 };
2401 
2402 static const struct attribute_group *spi_slave_groups[] = {
2403 	&spi_controller_statistics_group,
2404 	&spi_slave_group,
2405 	NULL,
2406 };
2407 
2408 static struct class spi_slave_class = {
2409 	.name		= "spi_slave",
2410 	.owner		= THIS_MODULE,
2411 	.dev_release	= spi_controller_release,
2412 	.dev_groups	= spi_slave_groups,
2413 };
2414 #else
2415 extern struct class spi_slave_class;	/* dummy */
2416 #endif
2417 
2418 /**
2419  * __spi_alloc_controller - allocate an SPI master or slave controller
2420  * @dev: the controller, possibly using the platform_bus
2421  * @size: how much zeroed driver-private data to allocate; the pointer to this
2422  *	memory is in the driver_data field of the returned device, accessible
2423  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2424  *	drivers granting DMA access to portions of their private data need to
2425  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2426  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2427  *	slave (true) controller
2428  * Context: can sleep
2429  *
2430  * This call is used only by SPI controller drivers, which are the
2431  * only ones directly touching chip registers.  It's how they allocate
2432  * an spi_controller structure, prior to calling spi_register_controller().
2433  *
2434  * This must be called from context that can sleep.
2435  *
2436  * The caller is responsible for assigning the bus number and initializing the
2437  * controller's methods before calling spi_register_controller(); and (after
2438  * errors adding the device) calling spi_controller_put() to prevent a memory
2439  * leak.
2440  *
2441  * Return: the SPI controller structure on success, else NULL.
2442  */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2443 struct spi_controller *__spi_alloc_controller(struct device *dev,
2444 					      unsigned int size, bool slave)
2445 {
2446 	struct spi_controller	*ctlr;
2447 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2448 
2449 	if (!dev)
2450 		return NULL;
2451 
2452 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2453 	if (!ctlr)
2454 		return NULL;
2455 
2456 	device_initialize(&ctlr->dev);
2457 	ctlr->bus_num = -1;
2458 	ctlr->num_chipselect = 1;
2459 	ctlr->slave = slave;
2460 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2461 		ctlr->dev.class = &spi_slave_class;
2462 	else
2463 		ctlr->dev.class = &spi_master_class;
2464 	ctlr->dev.parent = dev;
2465 	pm_suspend_ignore_children(&ctlr->dev, true);
2466 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2467 
2468 	return ctlr;
2469 }
2470 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2471 
devm_spi_release_controller(struct device * dev,void * ctlr)2472 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2473 {
2474 	spi_controller_put(*(struct spi_controller **)ctlr);
2475 }
2476 
2477 /**
2478  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2479  * @dev: physical device of SPI controller
2480  * @size: how much zeroed driver-private data to allocate
2481  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2482  * Context: can sleep
2483  *
2484  * Allocate an SPI controller and automatically release a reference on it
2485  * when @dev is unbound from its driver.  Drivers are thus relieved from
2486  * having to call spi_controller_put().
2487  *
2488  * The arguments to this function are identical to __spi_alloc_controller().
2489  *
2490  * Return: the SPI controller structure on success, else NULL.
2491  */
__devm_spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2492 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2493 						   unsigned int size,
2494 						   bool slave)
2495 {
2496 	struct spi_controller **ptr, *ctlr;
2497 
2498 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2499 			   GFP_KERNEL);
2500 	if (!ptr)
2501 		return NULL;
2502 
2503 	ctlr = __spi_alloc_controller(dev, size, slave);
2504 	if (ctlr) {
2505 		ctlr->devm_allocated = true;
2506 		*ptr = ctlr;
2507 		devres_add(dev, ptr);
2508 	} else {
2509 		devres_free(ptr);
2510 	}
2511 
2512 	return ctlr;
2513 }
2514 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2515 
2516 #ifdef CONFIG_OF
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2517 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2518 {
2519 	int nb, i, *cs;
2520 	struct device_node *np = ctlr->dev.of_node;
2521 
2522 	if (!np)
2523 		return 0;
2524 
2525 	nb = of_gpio_named_count(np, "cs-gpios");
2526 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2527 
2528 	/* Return error only for an incorrectly formed cs-gpios property */
2529 	if (nb == 0 || nb == -ENOENT)
2530 		return 0;
2531 	else if (nb < 0)
2532 		return nb;
2533 
2534 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2535 			  GFP_KERNEL);
2536 	ctlr->cs_gpios = cs;
2537 
2538 	if (!ctlr->cs_gpios)
2539 		return -ENOMEM;
2540 
2541 	for (i = 0; i < ctlr->num_chipselect; i++)
2542 		cs[i] = -ENOENT;
2543 
2544 	for (i = 0; i < nb; i++)
2545 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2546 
2547 	return 0;
2548 }
2549 #else
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2550 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2551 {
2552 	return 0;
2553 }
2554 #endif
2555 
2556 /**
2557  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2558  * @ctlr: The SPI master to grab GPIO descriptors for
2559  */
spi_get_gpio_descs(struct spi_controller * ctlr)2560 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2561 {
2562 	int nb, i;
2563 	struct gpio_desc **cs;
2564 	struct device *dev = &ctlr->dev;
2565 	unsigned long native_cs_mask = 0;
2566 	unsigned int num_cs_gpios = 0;
2567 
2568 	nb = gpiod_count(dev, "cs");
2569 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2570 
2571 	/* No GPIOs at all is fine, else return the error */
2572 	if (nb == 0 || nb == -ENOENT)
2573 		return 0;
2574 	else if (nb < 0)
2575 		return nb;
2576 
2577 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2578 			  GFP_KERNEL);
2579 	if (!cs)
2580 		return -ENOMEM;
2581 	ctlr->cs_gpiods = cs;
2582 
2583 	for (i = 0; i < nb; i++) {
2584 		/*
2585 		 * Most chipselects are active low, the inverted
2586 		 * semantics are handled by special quirks in gpiolib,
2587 		 * so initializing them GPIOD_OUT_LOW here means
2588 		 * "unasserted", in most cases this will drive the physical
2589 		 * line high.
2590 		 */
2591 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2592 						      GPIOD_OUT_LOW);
2593 		if (IS_ERR(cs[i]))
2594 			return PTR_ERR(cs[i]);
2595 
2596 		if (cs[i]) {
2597 			/*
2598 			 * If we find a CS GPIO, name it after the device and
2599 			 * chip select line.
2600 			 */
2601 			char *gpioname;
2602 
2603 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2604 						  dev_name(dev), i);
2605 			if (!gpioname)
2606 				return -ENOMEM;
2607 			gpiod_set_consumer_name(cs[i], gpioname);
2608 			num_cs_gpios++;
2609 			continue;
2610 		}
2611 
2612 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2613 			dev_err(dev, "Invalid native chip select %d\n", i);
2614 			return -EINVAL;
2615 		}
2616 		native_cs_mask |= BIT(i);
2617 	}
2618 
2619 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2620 
2621 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2622 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2623 		dev_err(dev, "No unused native chip select available\n");
2624 		return -EINVAL;
2625 	}
2626 
2627 	return 0;
2628 }
2629 
spi_controller_check_ops(struct spi_controller * ctlr)2630 static int spi_controller_check_ops(struct spi_controller *ctlr)
2631 {
2632 	/*
2633 	 * The controller may implement only the high-level SPI-memory like
2634 	 * operations if it does not support regular SPI transfers, and this is
2635 	 * valid use case.
2636 	 * If ->mem_ops is NULL, we request that at least one of the
2637 	 * ->transfer_xxx() method be implemented.
2638 	 */
2639 	if (ctlr->mem_ops) {
2640 		if (!ctlr->mem_ops->exec_op)
2641 			return -EINVAL;
2642 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2643 		   !ctlr->transfer_one_message) {
2644 		return -EINVAL;
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 /**
2651  * spi_register_controller - register SPI master or slave controller
2652  * @ctlr: initialized master, originally from spi_alloc_master() or
2653  *	spi_alloc_slave()
2654  * Context: can sleep
2655  *
2656  * SPI controllers connect to their drivers using some non-SPI bus,
2657  * such as the platform bus.  The final stage of probe() in that code
2658  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2659  *
2660  * SPI controllers use board specific (often SOC specific) bus numbers,
2661  * and board-specific addressing for SPI devices combines those numbers
2662  * with chip select numbers.  Since SPI does not directly support dynamic
2663  * device identification, boards need configuration tables telling which
2664  * chip is at which address.
2665  *
2666  * This must be called from context that can sleep.  It returns zero on
2667  * success, else a negative error code (dropping the controller's refcount).
2668  * After a successful return, the caller is responsible for calling
2669  * spi_unregister_controller().
2670  *
2671  * Return: zero on success, else a negative error code.
2672  */
spi_register_controller(struct spi_controller * ctlr)2673 int spi_register_controller(struct spi_controller *ctlr)
2674 {
2675 	struct device		*dev = ctlr->dev.parent;
2676 	struct boardinfo	*bi;
2677 	int			status;
2678 	int			id, first_dynamic;
2679 
2680 	if (!dev)
2681 		return -ENODEV;
2682 
2683 	/*
2684 	 * Make sure all necessary hooks are implemented before registering
2685 	 * the SPI controller.
2686 	 */
2687 	status = spi_controller_check_ops(ctlr);
2688 	if (status)
2689 		return status;
2690 
2691 	if (ctlr->bus_num >= 0) {
2692 		/* devices with a fixed bus num must check-in with the num */
2693 		mutex_lock(&board_lock);
2694 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2695 			ctlr->bus_num + 1, GFP_KERNEL);
2696 		mutex_unlock(&board_lock);
2697 		if (WARN(id < 0, "couldn't get idr"))
2698 			return id == -ENOSPC ? -EBUSY : id;
2699 		ctlr->bus_num = id;
2700 	} else if (ctlr->dev.of_node) {
2701 		/* allocate dynamic bus number using Linux idr */
2702 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2703 		if (id >= 0) {
2704 			ctlr->bus_num = id;
2705 			mutex_lock(&board_lock);
2706 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2707 				       ctlr->bus_num + 1, GFP_KERNEL);
2708 			mutex_unlock(&board_lock);
2709 			if (WARN(id < 0, "couldn't get idr"))
2710 				return id == -ENOSPC ? -EBUSY : id;
2711 		}
2712 	}
2713 	if (ctlr->bus_num < 0) {
2714 		first_dynamic = of_alias_get_highest_id("spi");
2715 		if (first_dynamic < 0)
2716 			first_dynamic = 0;
2717 		else
2718 			first_dynamic++;
2719 
2720 		mutex_lock(&board_lock);
2721 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2722 			       0, GFP_KERNEL);
2723 		mutex_unlock(&board_lock);
2724 		if (WARN(id < 0, "couldn't get idr"))
2725 			return id;
2726 		ctlr->bus_num = id;
2727 	}
2728 	INIT_LIST_HEAD(&ctlr->queue);
2729 	spin_lock_init(&ctlr->queue_lock);
2730 	spin_lock_init(&ctlr->bus_lock_spinlock);
2731 	mutex_init(&ctlr->bus_lock_mutex);
2732 	mutex_init(&ctlr->io_mutex);
2733 	ctlr->bus_lock_flag = 0;
2734 	init_completion(&ctlr->xfer_completion);
2735 	if (!ctlr->max_dma_len)
2736 		ctlr->max_dma_len = INT_MAX;
2737 
2738 	/* register the device, then userspace will see it.
2739 	 * registration fails if the bus ID is in use.
2740 	 */
2741 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2742 
2743 	if (!spi_controller_is_slave(ctlr)) {
2744 		if (ctlr->use_gpio_descriptors) {
2745 			status = spi_get_gpio_descs(ctlr);
2746 			if (status)
2747 				goto free_bus_id;
2748 			/*
2749 			 * A controller using GPIO descriptors always
2750 			 * supports SPI_CS_HIGH if need be.
2751 			 */
2752 			ctlr->mode_bits |= SPI_CS_HIGH;
2753 		} else {
2754 			/* Legacy code path for GPIOs from DT */
2755 			status = of_spi_get_gpio_numbers(ctlr);
2756 			if (status)
2757 				goto free_bus_id;
2758 		}
2759 	}
2760 
2761 	/*
2762 	 * Even if it's just one always-selected device, there must
2763 	 * be at least one chipselect.
2764 	 */
2765 	if (!ctlr->num_chipselect) {
2766 		status = -EINVAL;
2767 		goto free_bus_id;
2768 	}
2769 
2770 	status = device_add(&ctlr->dev);
2771 	if (status < 0)
2772 		goto free_bus_id;
2773 	dev_dbg(dev, "registered %s %s\n",
2774 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2775 			dev_name(&ctlr->dev));
2776 
2777 	/*
2778 	 * If we're using a queued driver, start the queue. Note that we don't
2779 	 * need the queueing logic if the driver is only supporting high-level
2780 	 * memory operations.
2781 	 */
2782 	if (ctlr->transfer) {
2783 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2784 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2785 		status = spi_controller_initialize_queue(ctlr);
2786 		if (status) {
2787 			device_del(&ctlr->dev);
2788 			goto free_bus_id;
2789 		}
2790 	}
2791 	/* add statistics */
2792 	spin_lock_init(&ctlr->statistics.lock);
2793 
2794 	mutex_lock(&board_lock);
2795 	list_add_tail(&ctlr->list, &spi_controller_list);
2796 	list_for_each_entry(bi, &board_list, list)
2797 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2798 	mutex_unlock(&board_lock);
2799 
2800 	/* Register devices from the device tree and ACPI */
2801 	of_register_spi_devices(ctlr);
2802 	acpi_register_spi_devices(ctlr);
2803 	return status;
2804 
2805 free_bus_id:
2806 	mutex_lock(&board_lock);
2807 	idr_remove(&spi_master_idr, ctlr->bus_num);
2808 	mutex_unlock(&board_lock);
2809 	return status;
2810 }
2811 EXPORT_SYMBOL_GPL(spi_register_controller);
2812 
devm_spi_unregister(struct device * dev,void * res)2813 static void devm_spi_unregister(struct device *dev, void *res)
2814 {
2815 	spi_unregister_controller(*(struct spi_controller **)res);
2816 }
2817 
2818 /**
2819  * devm_spi_register_controller - register managed SPI master or slave
2820  *	controller
2821  * @dev:    device managing SPI controller
2822  * @ctlr: initialized controller, originally from spi_alloc_master() or
2823  *	spi_alloc_slave()
2824  * Context: can sleep
2825  *
2826  * Register a SPI device as with spi_register_controller() which will
2827  * automatically be unregistered and freed.
2828  *
2829  * Return: zero on success, else a negative error code.
2830  */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)2831 int devm_spi_register_controller(struct device *dev,
2832 				 struct spi_controller *ctlr)
2833 {
2834 	struct spi_controller **ptr;
2835 	int ret;
2836 
2837 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2838 	if (!ptr)
2839 		return -ENOMEM;
2840 
2841 	ret = spi_register_controller(ctlr);
2842 	if (!ret) {
2843 		*ptr = ctlr;
2844 		devres_add(dev, ptr);
2845 	} else {
2846 		devres_free(ptr);
2847 	}
2848 
2849 	return ret;
2850 }
2851 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2852 
__unregister(struct device * dev,void * null)2853 static int __unregister(struct device *dev, void *null)
2854 {
2855 	spi_unregister_device(to_spi_device(dev));
2856 	return 0;
2857 }
2858 
2859 /**
2860  * spi_unregister_controller - unregister SPI master or slave controller
2861  * @ctlr: the controller being unregistered
2862  * Context: can sleep
2863  *
2864  * This call is used only by SPI controller drivers, which are the
2865  * only ones directly touching chip registers.
2866  *
2867  * This must be called from context that can sleep.
2868  *
2869  * Note that this function also drops a reference to the controller.
2870  */
spi_unregister_controller(struct spi_controller * ctlr)2871 void spi_unregister_controller(struct spi_controller *ctlr)
2872 {
2873 	struct spi_controller *found;
2874 	int id = ctlr->bus_num;
2875 
2876 	/* Prevent addition of new devices, unregister existing ones */
2877 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2878 		mutex_lock(&spi_add_lock);
2879 
2880 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2881 
2882 	/* First make sure that this controller was ever added */
2883 	mutex_lock(&board_lock);
2884 	found = idr_find(&spi_master_idr, id);
2885 	mutex_unlock(&board_lock);
2886 	if (ctlr->queued) {
2887 		if (spi_destroy_queue(ctlr))
2888 			dev_err(&ctlr->dev, "queue remove failed\n");
2889 	}
2890 	mutex_lock(&board_lock);
2891 	list_del(&ctlr->list);
2892 	mutex_unlock(&board_lock);
2893 
2894 	device_del(&ctlr->dev);
2895 
2896 	/* Release the last reference on the controller if its driver
2897 	 * has not yet been converted to devm_spi_alloc_master/slave().
2898 	 */
2899 	if (!ctlr->devm_allocated)
2900 		put_device(&ctlr->dev);
2901 
2902 	/* free bus id */
2903 	mutex_lock(&board_lock);
2904 	if (found == ctlr)
2905 		idr_remove(&spi_master_idr, id);
2906 	mutex_unlock(&board_lock);
2907 
2908 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2909 		mutex_unlock(&spi_add_lock);
2910 }
2911 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2912 
spi_controller_suspend(struct spi_controller * ctlr)2913 int spi_controller_suspend(struct spi_controller *ctlr)
2914 {
2915 	int ret;
2916 
2917 	/* Basically no-ops for non-queued controllers */
2918 	if (!ctlr->queued)
2919 		return 0;
2920 
2921 	ret = spi_stop_queue(ctlr);
2922 	if (ret)
2923 		dev_err(&ctlr->dev, "queue stop failed\n");
2924 
2925 	return ret;
2926 }
2927 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2928 
spi_controller_resume(struct spi_controller * ctlr)2929 int spi_controller_resume(struct spi_controller *ctlr)
2930 {
2931 	int ret;
2932 
2933 	if (!ctlr->queued)
2934 		return 0;
2935 
2936 	ret = spi_start_queue(ctlr);
2937 	if (ret)
2938 		dev_err(&ctlr->dev, "queue restart failed\n");
2939 
2940 	return ret;
2941 }
2942 EXPORT_SYMBOL_GPL(spi_controller_resume);
2943 
__spi_controller_match(struct device * dev,const void * data)2944 static int __spi_controller_match(struct device *dev, const void *data)
2945 {
2946 	struct spi_controller *ctlr;
2947 	const u16 *bus_num = data;
2948 
2949 	ctlr = container_of(dev, struct spi_controller, dev);
2950 	return ctlr->bus_num == *bus_num;
2951 }
2952 
2953 /**
2954  * spi_busnum_to_master - look up master associated with bus_num
2955  * @bus_num: the master's bus number
2956  * Context: can sleep
2957  *
2958  * This call may be used with devices that are registered after
2959  * arch init time.  It returns a refcounted pointer to the relevant
2960  * spi_controller (which the caller must release), or NULL if there is
2961  * no such master registered.
2962  *
2963  * Return: the SPI master structure on success, else NULL.
2964  */
spi_busnum_to_master(u16 bus_num)2965 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2966 {
2967 	struct device		*dev;
2968 	struct spi_controller	*ctlr = NULL;
2969 
2970 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2971 				__spi_controller_match);
2972 	if (dev)
2973 		ctlr = container_of(dev, struct spi_controller, dev);
2974 	/* reference got in class_find_device */
2975 	return ctlr;
2976 }
2977 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2978 
2979 /*-------------------------------------------------------------------------*/
2980 
2981 /* Core methods for SPI resource management */
2982 
2983 /**
2984  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2985  *                 during the processing of a spi_message while using
2986  *                 spi_transfer_one
2987  * @spi:     the spi device for which we allocate memory
2988  * @release: the release code to execute for this resource
2989  * @size:    size to alloc and return
2990  * @gfp:     GFP allocation flags
2991  *
2992  * Return: the pointer to the allocated data
2993  *
2994  * This may get enhanced in the future to allocate from a memory pool
2995  * of the @spi_device or @spi_controller to avoid repeated allocations.
2996  */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)2997 void *spi_res_alloc(struct spi_device *spi,
2998 		    spi_res_release_t release,
2999 		    size_t size, gfp_t gfp)
3000 {
3001 	struct spi_res *sres;
3002 
3003 	sres = kzalloc(sizeof(*sres) + size, gfp);
3004 	if (!sres)
3005 		return NULL;
3006 
3007 	INIT_LIST_HEAD(&sres->entry);
3008 	sres->release = release;
3009 
3010 	return sres->data;
3011 }
3012 EXPORT_SYMBOL_GPL(spi_res_alloc);
3013 
3014 /**
3015  * spi_res_free - free an spi resource
3016  * @res: pointer to the custom data of a resource
3017  *
3018  */
spi_res_free(void * res)3019 void spi_res_free(void *res)
3020 {
3021 	struct spi_res *sres = container_of(res, struct spi_res, data);
3022 
3023 	if (!res)
3024 		return;
3025 
3026 	WARN_ON(!list_empty(&sres->entry));
3027 	kfree(sres);
3028 }
3029 EXPORT_SYMBOL_GPL(spi_res_free);
3030 
3031 /**
3032  * spi_res_add - add a spi_res to the spi_message
3033  * @message: the spi message
3034  * @res:     the spi_resource
3035  */
spi_res_add(struct spi_message * message,void * res)3036 void spi_res_add(struct spi_message *message, void *res)
3037 {
3038 	struct spi_res *sres = container_of(res, struct spi_res, data);
3039 
3040 	WARN_ON(!list_empty(&sres->entry));
3041 	list_add_tail(&sres->entry, &message->resources);
3042 }
3043 EXPORT_SYMBOL_GPL(spi_res_add);
3044 
3045 /**
3046  * spi_res_release - release all spi resources for this message
3047  * @ctlr:  the @spi_controller
3048  * @message: the @spi_message
3049  */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)3050 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3051 {
3052 	struct spi_res *res, *tmp;
3053 
3054 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3055 		if (res->release)
3056 			res->release(ctlr, message, res->data);
3057 
3058 		list_del(&res->entry);
3059 
3060 		kfree(res);
3061 	}
3062 }
3063 EXPORT_SYMBOL_GPL(spi_res_release);
3064 
3065 /*-------------------------------------------------------------------------*/
3066 
3067 /* Core methods for spi_message alterations */
3068 
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)3069 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3070 					    struct spi_message *msg,
3071 					    void *res)
3072 {
3073 	struct spi_replaced_transfers *rxfer = res;
3074 	size_t i;
3075 
3076 	/* call extra callback if requested */
3077 	if (rxfer->release)
3078 		rxfer->release(ctlr, msg, res);
3079 
3080 	/* insert replaced transfers back into the message */
3081 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3082 
3083 	/* remove the formerly inserted entries */
3084 	for (i = 0; i < rxfer->inserted; i++)
3085 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3086 }
3087 
3088 /**
3089  * spi_replace_transfers - replace transfers with several transfers
3090  *                         and register change with spi_message.resources
3091  * @msg:           the spi_message we work upon
3092  * @xfer_first:    the first spi_transfer we want to replace
3093  * @remove:        number of transfers to remove
3094  * @insert:        the number of transfers we want to insert instead
3095  * @release:       extra release code necessary in some circumstances
3096  * @extradatasize: extra data to allocate (with alignment guarantees
3097  *                 of struct @spi_transfer)
3098  * @gfp:           gfp flags
3099  *
3100  * Returns: pointer to @spi_replaced_transfers,
3101  *          PTR_ERR(...) in case of errors.
3102  */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)3103 struct spi_replaced_transfers *spi_replace_transfers(
3104 	struct spi_message *msg,
3105 	struct spi_transfer *xfer_first,
3106 	size_t remove,
3107 	size_t insert,
3108 	spi_replaced_release_t release,
3109 	size_t extradatasize,
3110 	gfp_t gfp)
3111 {
3112 	struct spi_replaced_transfers *rxfer;
3113 	struct spi_transfer *xfer;
3114 	size_t i;
3115 
3116 	/* allocate the structure using spi_res */
3117 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3118 			      struct_size(rxfer, inserted_transfers, insert)
3119 			      + extradatasize,
3120 			      gfp);
3121 	if (!rxfer)
3122 		return ERR_PTR(-ENOMEM);
3123 
3124 	/* the release code to invoke before running the generic release */
3125 	rxfer->release = release;
3126 
3127 	/* assign extradata */
3128 	if (extradatasize)
3129 		rxfer->extradata =
3130 			&rxfer->inserted_transfers[insert];
3131 
3132 	/* init the replaced_transfers list */
3133 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3134 
3135 	/* assign the list_entry after which we should reinsert
3136 	 * the @replaced_transfers - it may be spi_message.messages!
3137 	 */
3138 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3139 
3140 	/* remove the requested number of transfers */
3141 	for (i = 0; i < remove; i++) {
3142 		/* if the entry after replaced_after it is msg->transfers
3143 		 * then we have been requested to remove more transfers
3144 		 * than are in the list
3145 		 */
3146 		if (rxfer->replaced_after->next == &msg->transfers) {
3147 			dev_err(&msg->spi->dev,
3148 				"requested to remove more spi_transfers than are available\n");
3149 			/* insert replaced transfers back into the message */
3150 			list_splice(&rxfer->replaced_transfers,
3151 				    rxfer->replaced_after);
3152 
3153 			/* free the spi_replace_transfer structure */
3154 			spi_res_free(rxfer);
3155 
3156 			/* and return with an error */
3157 			return ERR_PTR(-EINVAL);
3158 		}
3159 
3160 		/* remove the entry after replaced_after from list of
3161 		 * transfers and add it to list of replaced_transfers
3162 		 */
3163 		list_move_tail(rxfer->replaced_after->next,
3164 			       &rxfer->replaced_transfers);
3165 	}
3166 
3167 	/* create copy of the given xfer with identical settings
3168 	 * based on the first transfer to get removed
3169 	 */
3170 	for (i = 0; i < insert; i++) {
3171 		/* we need to run in reverse order */
3172 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3173 
3174 		/* copy all spi_transfer data */
3175 		memcpy(xfer, xfer_first, sizeof(*xfer));
3176 
3177 		/* add to list */
3178 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3179 
3180 		/* clear cs_change and delay for all but the last */
3181 		if (i) {
3182 			xfer->cs_change = false;
3183 			xfer->delay_usecs = 0;
3184 			xfer->delay.value = 0;
3185 		}
3186 	}
3187 
3188 	/* set up inserted */
3189 	rxfer->inserted = insert;
3190 
3191 	/* and register it with spi_res/spi_message */
3192 	spi_res_add(msg, rxfer);
3193 
3194 	return rxfer;
3195 }
3196 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3197 
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)3198 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3199 					struct spi_message *msg,
3200 					struct spi_transfer **xferp,
3201 					size_t maxsize,
3202 					gfp_t gfp)
3203 {
3204 	struct spi_transfer *xfer = *xferp, *xfers;
3205 	struct spi_replaced_transfers *srt;
3206 	size_t offset;
3207 	size_t count, i;
3208 
3209 	/* calculate how many we have to replace */
3210 	count = DIV_ROUND_UP(xfer->len, maxsize);
3211 
3212 	/* create replacement */
3213 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3214 	if (IS_ERR(srt))
3215 		return PTR_ERR(srt);
3216 	xfers = srt->inserted_transfers;
3217 
3218 	/* now handle each of those newly inserted spi_transfers
3219 	 * note that the replacements spi_transfers all are preset
3220 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3221 	 * are all identical (as well as most others)
3222 	 * so we just have to fix up len and the pointers.
3223 	 *
3224 	 * this also includes support for the depreciated
3225 	 * spi_message.is_dma_mapped interface
3226 	 */
3227 
3228 	/* the first transfer just needs the length modified, so we
3229 	 * run it outside the loop
3230 	 */
3231 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3232 
3233 	/* all the others need rx_buf/tx_buf also set */
3234 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3235 		/* update rx_buf, tx_buf and dma */
3236 		if (xfers[i].rx_buf)
3237 			xfers[i].rx_buf += offset;
3238 		if (xfers[i].rx_dma)
3239 			xfers[i].rx_dma += offset;
3240 		if (xfers[i].tx_buf)
3241 			xfers[i].tx_buf += offset;
3242 		if (xfers[i].tx_dma)
3243 			xfers[i].tx_dma += offset;
3244 
3245 		/* update length */
3246 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3247 	}
3248 
3249 	/* we set up xferp to the last entry we have inserted,
3250 	 * so that we skip those already split transfers
3251 	 */
3252 	*xferp = &xfers[count - 1];
3253 
3254 	/* increment statistics counters */
3255 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3256 				       transfers_split_maxsize);
3257 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3258 				       transfers_split_maxsize);
3259 
3260 	return 0;
3261 }
3262 
3263 /**
3264  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3265  *                              when an individual transfer exceeds a
3266  *                              certain size
3267  * @ctlr:    the @spi_controller for this transfer
3268  * @msg:   the @spi_message to transform
3269  * @maxsize:  the maximum when to apply this
3270  * @gfp: GFP allocation flags
3271  *
3272  * Return: status of transformation
3273  */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)3274 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3275 				struct spi_message *msg,
3276 				size_t maxsize,
3277 				gfp_t gfp)
3278 {
3279 	struct spi_transfer *xfer;
3280 	int ret;
3281 
3282 	/* iterate over the transfer_list,
3283 	 * but note that xfer is advanced to the last transfer inserted
3284 	 * to avoid checking sizes again unnecessarily (also xfer does
3285 	 * potentiall belong to a different list by the time the
3286 	 * replacement has happened
3287 	 */
3288 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3289 		if (xfer->len > maxsize) {
3290 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3291 							   maxsize, gfp);
3292 			if (ret)
3293 				return ret;
3294 		}
3295 	}
3296 
3297 	return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3300 
3301 /*-------------------------------------------------------------------------*/
3302 
3303 /* Core methods for SPI controller protocol drivers.  Some of the
3304  * other core methods are currently defined as inline functions.
3305  */
3306 
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3307 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3308 					u8 bits_per_word)
3309 {
3310 	if (ctlr->bits_per_word_mask) {
3311 		/* Only 32 bits fit in the mask */
3312 		if (bits_per_word > 32)
3313 			return -EINVAL;
3314 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3315 			return -EINVAL;
3316 	}
3317 
3318 	return 0;
3319 }
3320 
3321 /**
3322  * spi_setup - setup SPI mode and clock rate
3323  * @spi: the device whose settings are being modified
3324  * Context: can sleep, and no requests are queued to the device
3325  *
3326  * SPI protocol drivers may need to update the transfer mode if the
3327  * device doesn't work with its default.  They may likewise need
3328  * to update clock rates or word sizes from initial values.  This function
3329  * changes those settings, and must be called from a context that can sleep.
3330  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3331  * effect the next time the device is selected and data is transferred to
3332  * or from it.  When this function returns, the spi device is deselected.
3333  *
3334  * Note that this call will fail if the protocol driver specifies an option
3335  * that the underlying controller or its driver does not support.  For
3336  * example, not all hardware supports wire transfers using nine bit words,
3337  * LSB-first wire encoding, or active-high chipselects.
3338  *
3339  * Return: zero on success, else a negative error code.
3340  */
spi_setup(struct spi_device * spi)3341 int spi_setup(struct spi_device *spi)
3342 {
3343 	unsigned	bad_bits, ugly_bits;
3344 	int		status;
3345 
3346 	/* check mode to prevent that DUAL and QUAD set at the same time
3347 	 */
3348 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3349 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3350 		dev_err(&spi->dev,
3351 		"setup: can not select dual and quad at the same time\n");
3352 		return -EINVAL;
3353 	}
3354 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3355 	 */
3356 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3357 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3358 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3359 		return -EINVAL;
3360 	/* help drivers fail *cleanly* when they need options
3361 	 * that aren't supported with their current controller
3362 	 * SPI_CS_WORD has a fallback software implementation,
3363 	 * so it is ignored here.
3364 	 */
3365 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3366 	/* nothing prevents from working with active-high CS in case if it
3367 	 * is driven by GPIO.
3368 	 */
3369 	if (gpio_is_valid(spi->cs_gpio))
3370 		bad_bits &= ~SPI_CS_HIGH;
3371 	ugly_bits = bad_bits &
3372 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3373 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3374 	if (ugly_bits) {
3375 		dev_warn(&spi->dev,
3376 			 "setup: ignoring unsupported mode bits %x\n",
3377 			 ugly_bits);
3378 		spi->mode &= ~ugly_bits;
3379 		bad_bits &= ~ugly_bits;
3380 	}
3381 	if (bad_bits) {
3382 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3383 			bad_bits);
3384 		return -EINVAL;
3385 	}
3386 
3387 	if (!spi->bits_per_word)
3388 		spi->bits_per_word = 8;
3389 
3390 	status = __spi_validate_bits_per_word(spi->controller,
3391 					      spi->bits_per_word);
3392 	if (status)
3393 		return status;
3394 
3395 	if (!spi->max_speed_hz)
3396 		spi->max_speed_hz = spi->controller->max_speed_hz;
3397 
3398 	mutex_lock(&spi->controller->io_mutex);
3399 
3400 	if (spi->controller->setup)
3401 		status = spi->controller->setup(spi);
3402 
3403 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3404 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3405 		if (status < 0) {
3406 			mutex_unlock(&spi->controller->io_mutex);
3407 			pm_runtime_put_noidle(spi->controller->dev.parent);
3408 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3409 				status);
3410 			return status;
3411 		}
3412 
3413 		/*
3414 		 * We do not want to return positive value from pm_runtime_get,
3415 		 * there are many instances of devices calling spi_setup() and
3416 		 * checking for a non-zero return value instead of a negative
3417 		 * return value.
3418 		 */
3419 		status = 0;
3420 
3421 		spi_set_cs(spi, false, true);
3422 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3423 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3424 	} else {
3425 		spi_set_cs(spi, false, true);
3426 	}
3427 
3428 	mutex_unlock(&spi->controller->io_mutex);
3429 
3430 	if (spi->rt && !spi->controller->rt) {
3431 		spi->controller->rt = true;
3432 		spi_set_thread_rt(spi->controller);
3433 	}
3434 
3435 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3436 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3437 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3438 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3439 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3440 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3441 			spi->bits_per_word, spi->max_speed_hz,
3442 			status);
3443 
3444 	return status;
3445 }
3446 EXPORT_SYMBOL_GPL(spi_setup);
3447 
3448 /**
3449  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3450  * @spi: the device that requires specific CS timing configuration
3451  * @setup: CS setup time specified via @spi_delay
3452  * @hold: CS hold time specified via @spi_delay
3453  * @inactive: CS inactive delay between transfers specified via @spi_delay
3454  *
3455  * Return: zero on success, else a negative error code.
3456  */
spi_set_cs_timing(struct spi_device * spi,struct spi_delay * setup,struct spi_delay * hold,struct spi_delay * inactive)3457 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3458 		      struct spi_delay *hold, struct spi_delay *inactive)
3459 {
3460 	size_t len;
3461 
3462 	if (spi->controller->set_cs_timing)
3463 		return spi->controller->set_cs_timing(spi, setup, hold,
3464 						      inactive);
3465 
3466 	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3467 	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3468 	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3469 		dev_err(&spi->dev,
3470 			"Clock-cycle delays for CS not supported in SW mode\n");
3471 		return -ENOTSUPP;
3472 	}
3473 
3474 	len = sizeof(struct spi_delay);
3475 
3476 	/* copy delays to controller */
3477 	if (setup)
3478 		memcpy(&spi->controller->cs_setup, setup, len);
3479 	else
3480 		memset(&spi->controller->cs_setup, 0, len);
3481 
3482 	if (hold)
3483 		memcpy(&spi->controller->cs_hold, hold, len);
3484 	else
3485 		memset(&spi->controller->cs_hold, 0, len);
3486 
3487 	if (inactive)
3488 		memcpy(&spi->controller->cs_inactive, inactive, len);
3489 	else
3490 		memset(&spi->controller->cs_inactive, 0, len);
3491 
3492 	return 0;
3493 }
3494 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3495 
_spi_xfer_word_delay_update(struct spi_transfer * xfer,struct spi_device * spi)3496 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3497 				       struct spi_device *spi)
3498 {
3499 	int delay1, delay2;
3500 
3501 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3502 	if (delay1 < 0)
3503 		return delay1;
3504 
3505 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3506 	if (delay2 < 0)
3507 		return delay2;
3508 
3509 	if (delay1 < delay2)
3510 		memcpy(&xfer->word_delay, &spi->word_delay,
3511 		       sizeof(xfer->word_delay));
3512 
3513 	return 0;
3514 }
3515 
__spi_validate(struct spi_device * spi,struct spi_message * message)3516 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3517 {
3518 	struct spi_controller *ctlr = spi->controller;
3519 	struct spi_transfer *xfer;
3520 	int w_size;
3521 
3522 	if (list_empty(&message->transfers))
3523 		return -EINVAL;
3524 
3525 	/* If an SPI controller does not support toggling the CS line on each
3526 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3527 	 * for the CS line, we can emulate the CS-per-word hardware function by
3528 	 * splitting transfers into one-word transfers and ensuring that
3529 	 * cs_change is set for each transfer.
3530 	 */
3531 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3532 					  spi->cs_gpiod ||
3533 					  gpio_is_valid(spi->cs_gpio))) {
3534 		size_t maxsize;
3535 		int ret;
3536 
3537 		maxsize = (spi->bits_per_word + 7) / 8;
3538 
3539 		/* spi_split_transfers_maxsize() requires message->spi */
3540 		message->spi = spi;
3541 
3542 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3543 						  GFP_KERNEL);
3544 		if (ret)
3545 			return ret;
3546 
3547 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3548 			/* don't change cs_change on the last entry in the list */
3549 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3550 				break;
3551 			xfer->cs_change = 1;
3552 		}
3553 	}
3554 
3555 	/* Half-duplex links include original MicroWire, and ones with
3556 	 * only one data pin like SPI_3WIRE (switches direction) or where
3557 	 * either MOSI or MISO is missing.  They can also be caused by
3558 	 * software limitations.
3559 	 */
3560 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3561 	    (spi->mode & SPI_3WIRE)) {
3562 		unsigned flags = ctlr->flags;
3563 
3564 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3565 			if (xfer->rx_buf && xfer->tx_buf)
3566 				return -EINVAL;
3567 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3568 				return -EINVAL;
3569 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3570 				return -EINVAL;
3571 		}
3572 	}
3573 
3574 	/**
3575 	 * Set transfer bits_per_word and max speed as spi device default if
3576 	 * it is not set for this transfer.
3577 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3578 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3579 	 * Ensure transfer word_delay is at least as long as that required by
3580 	 * device itself.
3581 	 */
3582 	message->frame_length = 0;
3583 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3584 		xfer->effective_speed_hz = 0;
3585 		message->frame_length += xfer->len;
3586 		if (!xfer->bits_per_word)
3587 			xfer->bits_per_word = spi->bits_per_word;
3588 
3589 		if (!xfer->speed_hz)
3590 			xfer->speed_hz = spi->max_speed_hz;
3591 
3592 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3593 			xfer->speed_hz = ctlr->max_speed_hz;
3594 
3595 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3596 			return -EINVAL;
3597 
3598 		/*
3599 		 * SPI transfer length should be multiple of SPI word size
3600 		 * where SPI word size should be power-of-two multiple
3601 		 */
3602 		if (xfer->bits_per_word <= 8)
3603 			w_size = 1;
3604 		else if (xfer->bits_per_word <= 16)
3605 			w_size = 2;
3606 		else
3607 			w_size = 4;
3608 
3609 		/* No partial transfers accepted */
3610 		if (xfer->len % w_size)
3611 			return -EINVAL;
3612 
3613 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3614 		    xfer->speed_hz < ctlr->min_speed_hz)
3615 			return -EINVAL;
3616 
3617 		if (xfer->tx_buf && !xfer->tx_nbits)
3618 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3619 		if (xfer->rx_buf && !xfer->rx_nbits)
3620 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3621 		/* check transfer tx/rx_nbits:
3622 		 * 1. check the value matches one of single, dual and quad
3623 		 * 2. check tx/rx_nbits match the mode in spi_device
3624 		 */
3625 		if (xfer->tx_buf) {
3626 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3627 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3628 				xfer->tx_nbits != SPI_NBITS_QUAD)
3629 				return -EINVAL;
3630 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3631 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3632 				return -EINVAL;
3633 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3634 				!(spi->mode & SPI_TX_QUAD))
3635 				return -EINVAL;
3636 		}
3637 		/* check transfer rx_nbits */
3638 		if (xfer->rx_buf) {
3639 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3640 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3641 				xfer->rx_nbits != SPI_NBITS_QUAD)
3642 				return -EINVAL;
3643 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3644 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3645 				return -EINVAL;
3646 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3647 				!(spi->mode & SPI_RX_QUAD))
3648 				return -EINVAL;
3649 		}
3650 
3651 		if (_spi_xfer_word_delay_update(xfer, spi))
3652 			return -EINVAL;
3653 	}
3654 
3655 	message->status = -EINPROGRESS;
3656 
3657 	return 0;
3658 }
3659 
__spi_async(struct spi_device * spi,struct spi_message * message)3660 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3661 {
3662 	struct spi_controller *ctlr = spi->controller;
3663 	struct spi_transfer *xfer;
3664 
3665 	/*
3666 	 * Some controllers do not support doing regular SPI transfers. Return
3667 	 * ENOTSUPP when this is the case.
3668 	 */
3669 	if (!ctlr->transfer)
3670 		return -ENOTSUPP;
3671 
3672 	message->spi = spi;
3673 
3674 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3675 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3676 
3677 	trace_spi_message_submit(message);
3678 
3679 	if (!ctlr->ptp_sts_supported) {
3680 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3681 			xfer->ptp_sts_word_pre = 0;
3682 			ptp_read_system_prets(xfer->ptp_sts);
3683 		}
3684 	}
3685 
3686 	return ctlr->transfer(spi, message);
3687 }
3688 
3689 /**
3690  * spi_async - asynchronous SPI transfer
3691  * @spi: device with which data will be exchanged
3692  * @message: describes the data transfers, including completion callback
3693  * Context: any (irqs may be blocked, etc)
3694  *
3695  * This call may be used in_irq and other contexts which can't sleep,
3696  * as well as from task contexts which can sleep.
3697  *
3698  * The completion callback is invoked in a context which can't sleep.
3699  * Before that invocation, the value of message->status is undefined.
3700  * When the callback is issued, message->status holds either zero (to
3701  * indicate complete success) or a negative error code.  After that
3702  * callback returns, the driver which issued the transfer request may
3703  * deallocate the associated memory; it's no longer in use by any SPI
3704  * core or controller driver code.
3705  *
3706  * Note that although all messages to a spi_device are handled in
3707  * FIFO order, messages may go to different devices in other orders.
3708  * Some device might be higher priority, or have various "hard" access
3709  * time requirements, for example.
3710  *
3711  * On detection of any fault during the transfer, processing of
3712  * the entire message is aborted, and the device is deselected.
3713  * Until returning from the associated message completion callback,
3714  * no other spi_message queued to that device will be processed.
3715  * (This rule applies equally to all the synchronous transfer calls,
3716  * which are wrappers around this core asynchronous primitive.)
3717  *
3718  * Return: zero on success, else a negative error code.
3719  */
spi_async(struct spi_device * spi,struct spi_message * message)3720 int spi_async(struct spi_device *spi, struct spi_message *message)
3721 {
3722 	struct spi_controller *ctlr = spi->controller;
3723 	int ret;
3724 	unsigned long flags;
3725 
3726 	ret = __spi_validate(spi, message);
3727 	if (ret != 0)
3728 		return ret;
3729 
3730 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3731 
3732 	if (ctlr->bus_lock_flag)
3733 		ret = -EBUSY;
3734 	else
3735 		ret = __spi_async(spi, message);
3736 
3737 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3738 
3739 	return ret;
3740 }
3741 EXPORT_SYMBOL_GPL(spi_async);
3742 
3743 /**
3744  * spi_async_locked - version of spi_async with exclusive bus usage
3745  * @spi: device with which data will be exchanged
3746  * @message: describes the data transfers, including completion callback
3747  * Context: any (irqs may be blocked, etc)
3748  *
3749  * This call may be used in_irq and other contexts which can't sleep,
3750  * as well as from task contexts which can sleep.
3751  *
3752  * The completion callback is invoked in a context which can't sleep.
3753  * Before that invocation, the value of message->status is undefined.
3754  * When the callback is issued, message->status holds either zero (to
3755  * indicate complete success) or a negative error code.  After that
3756  * callback returns, the driver which issued the transfer request may
3757  * deallocate the associated memory; it's no longer in use by any SPI
3758  * core or controller driver code.
3759  *
3760  * Note that although all messages to a spi_device are handled in
3761  * FIFO order, messages may go to different devices in other orders.
3762  * Some device might be higher priority, or have various "hard" access
3763  * time requirements, for example.
3764  *
3765  * On detection of any fault during the transfer, processing of
3766  * the entire message is aborted, and the device is deselected.
3767  * Until returning from the associated message completion callback,
3768  * no other spi_message queued to that device will be processed.
3769  * (This rule applies equally to all the synchronous transfer calls,
3770  * which are wrappers around this core asynchronous primitive.)
3771  *
3772  * Return: zero on success, else a negative error code.
3773  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)3774 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3775 {
3776 	struct spi_controller *ctlr = spi->controller;
3777 	int ret;
3778 	unsigned long flags;
3779 
3780 	ret = __spi_validate(spi, message);
3781 	if (ret != 0)
3782 		return ret;
3783 
3784 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3785 
3786 	ret = __spi_async(spi, message);
3787 
3788 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3789 
3790 	return ret;
3791 
3792 }
3793 EXPORT_SYMBOL_GPL(spi_async_locked);
3794 
3795 /*-------------------------------------------------------------------------*/
3796 
3797 /* Utility methods for SPI protocol drivers, layered on
3798  * top of the core.  Some other utility methods are defined as
3799  * inline functions.
3800  */
3801 
spi_complete(void * arg)3802 static void spi_complete(void *arg)
3803 {
3804 	complete(arg);
3805 }
3806 
__spi_sync(struct spi_device * spi,struct spi_message * message)3807 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3808 {
3809 	DECLARE_COMPLETION_ONSTACK(done);
3810 	int status;
3811 	struct spi_controller *ctlr = spi->controller;
3812 	unsigned long flags;
3813 
3814 	status = __spi_validate(spi, message);
3815 	if (status != 0)
3816 		return status;
3817 
3818 	message->complete = spi_complete;
3819 	message->context = &done;
3820 	message->spi = spi;
3821 
3822 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3823 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3824 
3825 	/* If we're not using the legacy transfer method then we will
3826 	 * try to transfer in the calling context so special case.
3827 	 * This code would be less tricky if we could remove the
3828 	 * support for driver implemented message queues.
3829 	 */
3830 	if (ctlr->transfer == spi_queued_transfer) {
3831 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3832 
3833 		trace_spi_message_submit(message);
3834 
3835 		status = __spi_queued_transfer(spi, message, false);
3836 
3837 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3838 	} else {
3839 		status = spi_async_locked(spi, message);
3840 	}
3841 
3842 	if (status == 0) {
3843 		/* Push out the messages in the calling context if we
3844 		 * can.
3845 		 */
3846 		if (ctlr->transfer == spi_queued_transfer) {
3847 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3848 						       spi_sync_immediate);
3849 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3850 						       spi_sync_immediate);
3851 			__spi_pump_messages(ctlr, false);
3852 		}
3853 
3854 		wait_for_completion(&done);
3855 		status = message->status;
3856 	}
3857 	message->context = NULL;
3858 	return status;
3859 }
3860 
3861 /**
3862  * spi_sync - blocking/synchronous SPI data transfers
3863  * @spi: device with which data will be exchanged
3864  * @message: describes the data transfers
3865  * Context: can sleep
3866  *
3867  * This call may only be used from a context that may sleep.  The sleep
3868  * is non-interruptible, and has no timeout.  Low-overhead controller
3869  * drivers may DMA directly into and out of the message buffers.
3870  *
3871  * Note that the SPI device's chip select is active during the message,
3872  * and then is normally disabled between messages.  Drivers for some
3873  * frequently-used devices may want to minimize costs of selecting a chip,
3874  * by leaving it selected in anticipation that the next message will go
3875  * to the same chip.  (That may increase power usage.)
3876  *
3877  * Also, the caller is guaranteeing that the memory associated with the
3878  * message will not be freed before this call returns.
3879  *
3880  * Return: zero on success, else a negative error code.
3881  */
spi_sync(struct spi_device * spi,struct spi_message * message)3882 int spi_sync(struct spi_device *spi, struct spi_message *message)
3883 {
3884 	int ret;
3885 
3886 	mutex_lock(&spi->controller->bus_lock_mutex);
3887 	ret = __spi_sync(spi, message);
3888 	mutex_unlock(&spi->controller->bus_lock_mutex);
3889 
3890 	return ret;
3891 }
3892 EXPORT_SYMBOL_GPL(spi_sync);
3893 
3894 /**
3895  * spi_sync_locked - version of spi_sync with exclusive bus usage
3896  * @spi: device with which data will be exchanged
3897  * @message: describes the data transfers
3898  * Context: can sleep
3899  *
3900  * This call may only be used from a context that may sleep.  The sleep
3901  * is non-interruptible, and has no timeout.  Low-overhead controller
3902  * drivers may DMA directly into and out of the message buffers.
3903  *
3904  * This call should be used by drivers that require exclusive access to the
3905  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3906  * be released by a spi_bus_unlock call when the exclusive access is over.
3907  *
3908  * Return: zero on success, else a negative error code.
3909  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)3910 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3911 {
3912 	return __spi_sync(spi, message);
3913 }
3914 EXPORT_SYMBOL_GPL(spi_sync_locked);
3915 
3916 /**
3917  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3918  * @ctlr: SPI bus master that should be locked for exclusive bus access
3919  * Context: can sleep
3920  *
3921  * This call may only be used from a context that may sleep.  The sleep
3922  * is non-interruptible, and has no timeout.
3923  *
3924  * This call should be used by drivers that require exclusive access to the
3925  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3926  * exclusive access is over. Data transfer must be done by spi_sync_locked
3927  * and spi_async_locked calls when the SPI bus lock is held.
3928  *
3929  * Return: always zero.
3930  */
spi_bus_lock(struct spi_controller * ctlr)3931 int spi_bus_lock(struct spi_controller *ctlr)
3932 {
3933 	unsigned long flags;
3934 
3935 	mutex_lock(&ctlr->bus_lock_mutex);
3936 
3937 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3938 	ctlr->bus_lock_flag = 1;
3939 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3940 
3941 	/* mutex remains locked until spi_bus_unlock is called */
3942 
3943 	return 0;
3944 }
3945 EXPORT_SYMBOL_GPL(spi_bus_lock);
3946 
3947 /**
3948  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3949  * @ctlr: SPI bus master that was locked for exclusive bus access
3950  * Context: can sleep
3951  *
3952  * This call may only be used from a context that may sleep.  The sleep
3953  * is non-interruptible, and has no timeout.
3954  *
3955  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3956  * call.
3957  *
3958  * Return: always zero.
3959  */
spi_bus_unlock(struct spi_controller * ctlr)3960 int spi_bus_unlock(struct spi_controller *ctlr)
3961 {
3962 	ctlr->bus_lock_flag = 0;
3963 
3964 	mutex_unlock(&ctlr->bus_lock_mutex);
3965 
3966 	return 0;
3967 }
3968 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3969 
3970 /* portable code must never pass more than 32 bytes */
3971 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3972 
3973 static u8	*buf;
3974 
3975 /**
3976  * spi_write_then_read - SPI synchronous write followed by read
3977  * @spi: device with which data will be exchanged
3978  * @txbuf: data to be written (need not be dma-safe)
3979  * @n_tx: size of txbuf, in bytes
3980  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3981  * @n_rx: size of rxbuf, in bytes
3982  * Context: can sleep
3983  *
3984  * This performs a half duplex MicroWire style transaction with the
3985  * device, sending txbuf and then reading rxbuf.  The return value
3986  * is zero for success, else a negative errno status code.
3987  * This call may only be used from a context that may sleep.
3988  *
3989  * Parameters to this routine are always copied using a small buffer.
3990  * Performance-sensitive or bulk transfer code should instead use
3991  * spi_{async,sync}() calls with dma-safe buffers.
3992  *
3993  * Return: zero on success, else a negative error code.
3994  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)3995 int spi_write_then_read(struct spi_device *spi,
3996 		const void *txbuf, unsigned n_tx,
3997 		void *rxbuf, unsigned n_rx)
3998 {
3999 	static DEFINE_MUTEX(lock);
4000 
4001 	int			status;
4002 	struct spi_message	message;
4003 	struct spi_transfer	x[2];
4004 	u8			*local_buf;
4005 
4006 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
4007 	 * copying here, (as a pure convenience thing), but we can
4008 	 * keep heap costs out of the hot path unless someone else is
4009 	 * using the pre-allocated buffer or the transfer is too large.
4010 	 */
4011 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4012 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4013 				    GFP_KERNEL | GFP_DMA);
4014 		if (!local_buf)
4015 			return -ENOMEM;
4016 	} else {
4017 		local_buf = buf;
4018 	}
4019 
4020 	spi_message_init(&message);
4021 	memset(x, 0, sizeof(x));
4022 	if (n_tx) {
4023 		x[0].len = n_tx;
4024 		spi_message_add_tail(&x[0], &message);
4025 	}
4026 	if (n_rx) {
4027 		x[1].len = n_rx;
4028 		spi_message_add_tail(&x[1], &message);
4029 	}
4030 
4031 	memcpy(local_buf, txbuf, n_tx);
4032 	x[0].tx_buf = local_buf;
4033 	x[1].rx_buf = local_buf + n_tx;
4034 
4035 	/* do the i/o */
4036 	status = spi_sync(spi, &message);
4037 	if (status == 0)
4038 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4039 
4040 	if (x[0].tx_buf == buf)
4041 		mutex_unlock(&lock);
4042 	else
4043 		kfree(local_buf);
4044 
4045 	return status;
4046 }
4047 EXPORT_SYMBOL_GPL(spi_write_then_read);
4048 
4049 /*-------------------------------------------------------------------------*/
4050 
4051 #if IS_ENABLED(CONFIG_OF)
4052 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)4053 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4054 {
4055 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4056 
4057 	return dev ? to_spi_device(dev) : NULL;
4058 }
4059 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4060 #endif /* IS_ENABLED(CONFIG_OF) */
4061 
4062 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4063 /* the spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)4064 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4065 {
4066 	struct device *dev;
4067 
4068 	dev = class_find_device_by_of_node(&spi_master_class, node);
4069 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4070 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4071 	if (!dev)
4072 		return NULL;
4073 
4074 	/* reference got in class_find_device */
4075 	return container_of(dev, struct spi_controller, dev);
4076 }
4077 
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)4078 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4079 			 void *arg)
4080 {
4081 	struct of_reconfig_data *rd = arg;
4082 	struct spi_controller *ctlr;
4083 	struct spi_device *spi;
4084 
4085 	switch (of_reconfig_get_state_change(action, arg)) {
4086 	case OF_RECONFIG_CHANGE_ADD:
4087 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4088 		if (ctlr == NULL)
4089 			return NOTIFY_OK;	/* not for us */
4090 
4091 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4092 			put_device(&ctlr->dev);
4093 			return NOTIFY_OK;
4094 		}
4095 
4096 		spi = of_register_spi_device(ctlr, rd->dn);
4097 		put_device(&ctlr->dev);
4098 
4099 		if (IS_ERR(spi)) {
4100 			pr_err("%s: failed to create for '%pOF'\n",
4101 					__func__, rd->dn);
4102 			of_node_clear_flag(rd->dn, OF_POPULATED);
4103 			return notifier_from_errno(PTR_ERR(spi));
4104 		}
4105 		break;
4106 
4107 	case OF_RECONFIG_CHANGE_REMOVE:
4108 		/* already depopulated? */
4109 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4110 			return NOTIFY_OK;
4111 
4112 		/* find our device by node */
4113 		spi = of_find_spi_device_by_node(rd->dn);
4114 		if (spi == NULL)
4115 			return NOTIFY_OK;	/* no? not meant for us */
4116 
4117 		/* unregister takes one ref away */
4118 		spi_unregister_device(spi);
4119 
4120 		/* and put the reference of the find */
4121 		put_device(&spi->dev);
4122 		break;
4123 	}
4124 
4125 	return NOTIFY_OK;
4126 }
4127 
4128 static struct notifier_block spi_of_notifier = {
4129 	.notifier_call = of_spi_notify,
4130 };
4131 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4132 extern struct notifier_block spi_of_notifier;
4133 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4134 
4135 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)4136 static int spi_acpi_controller_match(struct device *dev, const void *data)
4137 {
4138 	return ACPI_COMPANION(dev->parent) == data;
4139 }
4140 
acpi_spi_find_controller_by_adev(struct acpi_device * adev)4141 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4142 {
4143 	struct device *dev;
4144 
4145 	dev = class_find_device(&spi_master_class, NULL, adev,
4146 				spi_acpi_controller_match);
4147 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4148 		dev = class_find_device(&spi_slave_class, NULL, adev,
4149 					spi_acpi_controller_match);
4150 	if (!dev)
4151 		return NULL;
4152 
4153 	return container_of(dev, struct spi_controller, dev);
4154 }
4155 
acpi_spi_find_device_by_adev(struct acpi_device * adev)4156 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4157 {
4158 	struct device *dev;
4159 
4160 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4161 	return to_spi_device(dev);
4162 }
4163 
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)4164 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4165 			   void *arg)
4166 {
4167 	struct acpi_device *adev = arg;
4168 	struct spi_controller *ctlr;
4169 	struct spi_device *spi;
4170 
4171 	switch (value) {
4172 	case ACPI_RECONFIG_DEVICE_ADD:
4173 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4174 		if (!ctlr)
4175 			break;
4176 
4177 		acpi_register_spi_device(ctlr, adev);
4178 		put_device(&ctlr->dev);
4179 		break;
4180 	case ACPI_RECONFIG_DEVICE_REMOVE:
4181 		if (!acpi_device_enumerated(adev))
4182 			break;
4183 
4184 		spi = acpi_spi_find_device_by_adev(adev);
4185 		if (!spi)
4186 			break;
4187 
4188 		spi_unregister_device(spi);
4189 		put_device(&spi->dev);
4190 		break;
4191 	}
4192 
4193 	return NOTIFY_OK;
4194 }
4195 
4196 static struct notifier_block spi_acpi_notifier = {
4197 	.notifier_call = acpi_spi_notify,
4198 };
4199 #else
4200 extern struct notifier_block spi_acpi_notifier;
4201 #endif
4202 
spi_init(void)4203 static int __init spi_init(void)
4204 {
4205 	int	status;
4206 
4207 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4208 	if (!buf) {
4209 		status = -ENOMEM;
4210 		goto err0;
4211 	}
4212 
4213 	status = bus_register(&spi_bus_type);
4214 	if (status < 0)
4215 		goto err1;
4216 
4217 	status = class_register(&spi_master_class);
4218 	if (status < 0)
4219 		goto err2;
4220 
4221 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4222 		status = class_register(&spi_slave_class);
4223 		if (status < 0)
4224 			goto err3;
4225 	}
4226 
4227 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4228 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4229 	if (IS_ENABLED(CONFIG_ACPI))
4230 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4231 
4232 	return 0;
4233 
4234 err3:
4235 	class_unregister(&spi_master_class);
4236 err2:
4237 	bus_unregister(&spi_bus_type);
4238 err1:
4239 	kfree(buf);
4240 	buf = NULL;
4241 err0:
4242 	return status;
4243 }
4244 
4245 /* board_info is normally registered in arch_initcall(),
4246  * but even essential drivers wait till later
4247  *
4248  * REVISIT only boardinfo really needs static linking. the rest (device and
4249  * driver registration) _could_ be dynamically linked (modular) ... costs
4250  * include needing to have boardinfo data structures be much more public.
4251  */
4252 postcore_initcall(spi_init);
4253