1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 14 #include <linux/genhd.h> 15 #include <linux/highmem.h> 16 #include <linux/memcontrol.h> 17 #include <linux/mm.h> 18 #include <linux/mutex.h> 19 #include <linux/pagevec.h> 20 #include <linux/sched.h> 21 #include <linux/sched/signal.h> 22 #include <linux/uio.h> 23 #include <linux/vmstat.h> 24 #include <linux/pfn_t.h> 25 #include <linux/sizes.h> 26 #include <linux/mmu_notifier.h> 27 #include <linux/iomap.h> 28 #include <asm/pgalloc.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/fs_dax.h> 32 pe_order(enum page_entry_size pe_size)33 static inline unsigned int pe_order(enum page_entry_size pe_size) 34 { 35 if (pe_size == PE_SIZE_PTE) 36 return PAGE_SHIFT - PAGE_SHIFT; 37 if (pe_size == PE_SIZE_PMD) 38 return PMD_SHIFT - PAGE_SHIFT; 39 if (pe_size == PE_SIZE_PUD) 40 return PUD_SHIFT - PAGE_SHIFT; 41 return ~0; 42 } 43 44 /* We choose 4096 entries - same as per-zone page wait tables */ 45 #define DAX_WAIT_TABLE_BITS 12 46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 47 48 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 51 52 /* The order of a PMD entry */ 53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 54 55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 56 init_dax_wait_table(void)57 static int __init init_dax_wait_table(void) 58 { 59 int i; 60 61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 62 init_waitqueue_head(wait_table + i); 63 return 0; 64 } 65 fs_initcall(init_dax_wait_table); 66 67 /* 68 * DAX pagecache entries use XArray value entries so they can't be mistaken 69 * for pages. We use one bit for locking, one bit for the entry size (PMD) 70 * and two more to tell us if the entry is a zero page or an empty entry that 71 * is just used for locking. In total four special bits. 72 * 73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 75 * block allocation. 76 */ 77 #define DAX_SHIFT (4) 78 #define DAX_LOCKED (1UL << 0) 79 #define DAX_PMD (1UL << 1) 80 #define DAX_ZERO_PAGE (1UL << 2) 81 #define DAX_EMPTY (1UL << 3) 82 dax_to_pfn(void * entry)83 static unsigned long dax_to_pfn(void *entry) 84 { 85 return xa_to_value(entry) >> DAX_SHIFT; 86 } 87 dax_make_entry(pfn_t pfn,unsigned long flags)88 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 89 { 90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 91 } 92 dax_is_locked(void * entry)93 static bool dax_is_locked(void *entry) 94 { 95 return xa_to_value(entry) & DAX_LOCKED; 96 } 97 dax_entry_order(void * entry)98 static unsigned int dax_entry_order(void *entry) 99 { 100 if (xa_to_value(entry) & DAX_PMD) 101 return PMD_ORDER; 102 return 0; 103 } 104 dax_is_pmd_entry(void * entry)105 static unsigned long dax_is_pmd_entry(void *entry) 106 { 107 return xa_to_value(entry) & DAX_PMD; 108 } 109 dax_is_pte_entry(void * entry)110 static bool dax_is_pte_entry(void *entry) 111 { 112 return !(xa_to_value(entry) & DAX_PMD); 113 } 114 dax_is_zero_entry(void * entry)115 static int dax_is_zero_entry(void *entry) 116 { 117 return xa_to_value(entry) & DAX_ZERO_PAGE; 118 } 119 dax_is_empty_entry(void * entry)120 static int dax_is_empty_entry(void *entry) 121 { 122 return xa_to_value(entry) & DAX_EMPTY; 123 } 124 125 /* 126 * true if the entry that was found is of a smaller order than the entry 127 * we were looking for 128 */ dax_is_conflict(void * entry)129 static bool dax_is_conflict(void *entry) 130 { 131 return entry == XA_RETRY_ENTRY; 132 } 133 134 /* 135 * DAX page cache entry locking 136 */ 137 struct exceptional_entry_key { 138 struct xarray *xa; 139 pgoff_t entry_start; 140 }; 141 142 struct wait_exceptional_entry_queue { 143 wait_queue_entry_t wait; 144 struct exceptional_entry_key key; 145 }; 146 147 /** 148 * enum dax_wake_mode: waitqueue wakeup behaviour 149 * @WAKE_ALL: wake all waiters in the waitqueue 150 * @WAKE_NEXT: wake only the first waiter in the waitqueue 151 */ 152 enum dax_wake_mode { 153 WAKE_ALL, 154 WAKE_NEXT, 155 }; 156 dax_entry_waitqueue(struct xa_state * xas,void * entry,struct exceptional_entry_key * key)157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 158 void *entry, struct exceptional_entry_key *key) 159 { 160 unsigned long hash; 161 unsigned long index = xas->xa_index; 162 163 /* 164 * If 'entry' is a PMD, align the 'index' that we use for the wait 165 * queue to the start of that PMD. This ensures that all offsets in 166 * the range covered by the PMD map to the same bit lock. 167 */ 168 if (dax_is_pmd_entry(entry)) 169 index &= ~PG_PMD_COLOUR; 170 key->xa = xas->xa; 171 key->entry_start = index; 172 173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 174 return wait_table + hash; 175 } 176 wake_exceptional_entry_func(wait_queue_entry_t * wait,unsigned int mode,int sync,void * keyp)177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 178 unsigned int mode, int sync, void *keyp) 179 { 180 struct exceptional_entry_key *key = keyp; 181 struct wait_exceptional_entry_queue *ewait = 182 container_of(wait, struct wait_exceptional_entry_queue, wait); 183 184 if (key->xa != ewait->key.xa || 185 key->entry_start != ewait->key.entry_start) 186 return 0; 187 return autoremove_wake_function(wait, mode, sync, NULL); 188 } 189 190 /* 191 * @entry may no longer be the entry at the index in the mapping. 192 * The important information it's conveying is whether the entry at 193 * this index used to be a PMD entry. 194 */ dax_wake_entry(struct xa_state * xas,void * entry,enum dax_wake_mode mode)195 static void dax_wake_entry(struct xa_state *xas, void *entry, 196 enum dax_wake_mode mode) 197 { 198 struct exceptional_entry_key key; 199 wait_queue_head_t *wq; 200 201 wq = dax_entry_waitqueue(xas, entry, &key); 202 203 /* 204 * Checking for locked entry and prepare_to_wait_exclusive() happens 205 * under the i_pages lock, ditto for entry handling in our callers. 206 * So at this point all tasks that could have seen our entry locked 207 * must be in the waitqueue and the following check will see them. 208 */ 209 if (waitqueue_active(wq)) 210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); 211 } 212 213 /* 214 * Look up entry in page cache, wait for it to become unlocked if it 215 * is a DAX entry and return it. The caller must subsequently call 216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 217 * if it did. The entry returned may have a larger order than @order. 218 * If @order is larger than the order of the entry found in i_pages, this 219 * function returns a dax_is_conflict entry. 220 * 221 * Must be called with the i_pages lock held. 222 */ get_unlocked_entry(struct xa_state * xas,unsigned int order)223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) 224 { 225 void *entry; 226 struct wait_exceptional_entry_queue ewait; 227 wait_queue_head_t *wq; 228 229 init_wait(&ewait.wait); 230 ewait.wait.func = wake_exceptional_entry_func; 231 232 for (;;) { 233 entry = xas_find_conflict(xas); 234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 235 return entry; 236 if (dax_entry_order(entry) < order) 237 return XA_RETRY_ENTRY; 238 if (!dax_is_locked(entry)) 239 return entry; 240 241 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 242 prepare_to_wait_exclusive(wq, &ewait.wait, 243 TASK_UNINTERRUPTIBLE); 244 xas_unlock_irq(xas); 245 xas_reset(xas); 246 schedule(); 247 finish_wait(wq, &ewait.wait); 248 xas_lock_irq(xas); 249 } 250 } 251 252 /* 253 * The only thing keeping the address space around is the i_pages lock 254 * (it's cycled in clear_inode() after removing the entries from i_pages) 255 * After we call xas_unlock_irq(), we cannot touch xas->xa. 256 */ wait_entry_unlocked(struct xa_state * xas,void * entry)257 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 258 { 259 struct wait_exceptional_entry_queue ewait; 260 wait_queue_head_t *wq; 261 262 init_wait(&ewait.wait); 263 ewait.wait.func = wake_exceptional_entry_func; 264 265 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 266 /* 267 * Unlike get_unlocked_entry() there is no guarantee that this 268 * path ever successfully retrieves an unlocked entry before an 269 * inode dies. Perform a non-exclusive wait in case this path 270 * never successfully performs its own wake up. 271 */ 272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 273 xas_unlock_irq(xas); 274 schedule(); 275 finish_wait(wq, &ewait.wait); 276 } 277 put_unlocked_entry(struct xa_state * xas,void * entry,enum dax_wake_mode mode)278 static void put_unlocked_entry(struct xa_state *xas, void *entry, 279 enum dax_wake_mode mode) 280 { 281 if (entry && !dax_is_conflict(entry)) 282 dax_wake_entry(xas, entry, mode); 283 } 284 285 /* 286 * We used the xa_state to get the entry, but then we locked the entry and 287 * dropped the xa_lock, so we know the xa_state is stale and must be reset 288 * before use. 289 */ dax_unlock_entry(struct xa_state * xas,void * entry)290 static void dax_unlock_entry(struct xa_state *xas, void *entry) 291 { 292 void *old; 293 294 BUG_ON(dax_is_locked(entry)); 295 xas_reset(xas); 296 xas_lock_irq(xas); 297 old = xas_store(xas, entry); 298 xas_unlock_irq(xas); 299 BUG_ON(!dax_is_locked(old)); 300 dax_wake_entry(xas, entry, WAKE_NEXT); 301 } 302 303 /* 304 * Return: The entry stored at this location before it was locked. 305 */ dax_lock_entry(struct xa_state * xas,void * entry)306 static void *dax_lock_entry(struct xa_state *xas, void *entry) 307 { 308 unsigned long v = xa_to_value(entry); 309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 310 } 311 dax_entry_size(void * entry)312 static unsigned long dax_entry_size(void *entry) 313 { 314 if (dax_is_zero_entry(entry)) 315 return 0; 316 else if (dax_is_empty_entry(entry)) 317 return 0; 318 else if (dax_is_pmd_entry(entry)) 319 return PMD_SIZE; 320 else 321 return PAGE_SIZE; 322 } 323 dax_end_pfn(void * entry)324 static unsigned long dax_end_pfn(void *entry) 325 { 326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 327 } 328 329 /* 330 * Iterate through all mapped pfns represented by an entry, i.e. skip 331 * 'empty' and 'zero' entries. 332 */ 333 #define for_each_mapped_pfn(entry, pfn) \ 334 for (pfn = dax_to_pfn(entry); \ 335 pfn < dax_end_pfn(entry); pfn++) 336 337 /* 338 * TODO: for reflink+dax we need a way to associate a single page with 339 * multiple address_space instances at different linear_page_index() 340 * offsets. 341 */ dax_associate_entry(void * entry,struct address_space * mapping,struct vm_area_struct * vma,unsigned long address)342 static void dax_associate_entry(void *entry, struct address_space *mapping, 343 struct vm_area_struct *vma, unsigned long address) 344 { 345 unsigned long size = dax_entry_size(entry), pfn, index; 346 int i = 0; 347 348 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 349 return; 350 351 index = linear_page_index(vma, address & ~(size - 1)); 352 for_each_mapped_pfn(entry, pfn) { 353 struct page *page = pfn_to_page(pfn); 354 355 WARN_ON_ONCE(page->mapping); 356 page->mapping = mapping; 357 page->index = index + i++; 358 } 359 } 360 dax_disassociate_entry(void * entry,struct address_space * mapping,bool trunc)361 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 362 bool trunc) 363 { 364 unsigned long pfn; 365 366 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 367 return; 368 369 for_each_mapped_pfn(entry, pfn) { 370 struct page *page = pfn_to_page(pfn); 371 372 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 373 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 374 page->mapping = NULL; 375 page->index = 0; 376 } 377 } 378 dax_busy_page(void * entry)379 static struct page *dax_busy_page(void *entry) 380 { 381 unsigned long pfn; 382 383 for_each_mapped_pfn(entry, pfn) { 384 struct page *page = pfn_to_page(pfn); 385 386 if (page_ref_count(page) > 1) 387 return page; 388 } 389 return NULL; 390 } 391 392 /* 393 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page 394 * @page: The page whose entry we want to lock 395 * 396 * Context: Process context. 397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 398 * not be locked. 399 */ dax_lock_page(struct page * page)400 dax_entry_t dax_lock_page(struct page *page) 401 { 402 XA_STATE(xas, NULL, 0); 403 void *entry; 404 405 /* Ensure page->mapping isn't freed while we look at it */ 406 rcu_read_lock(); 407 for (;;) { 408 struct address_space *mapping = READ_ONCE(page->mapping); 409 410 entry = NULL; 411 if (!mapping || !dax_mapping(mapping)) 412 break; 413 414 /* 415 * In the device-dax case there's no need to lock, a 416 * struct dev_pagemap pin is sufficient to keep the 417 * inode alive, and we assume we have dev_pagemap pin 418 * otherwise we would not have a valid pfn_to_page() 419 * translation. 420 */ 421 entry = (void *)~0UL; 422 if (S_ISCHR(mapping->host->i_mode)) 423 break; 424 425 xas.xa = &mapping->i_pages; 426 xas_lock_irq(&xas); 427 if (mapping != page->mapping) { 428 xas_unlock_irq(&xas); 429 continue; 430 } 431 xas_set(&xas, page->index); 432 entry = xas_load(&xas); 433 if (dax_is_locked(entry)) { 434 rcu_read_unlock(); 435 wait_entry_unlocked(&xas, entry); 436 rcu_read_lock(); 437 continue; 438 } 439 dax_lock_entry(&xas, entry); 440 xas_unlock_irq(&xas); 441 break; 442 } 443 rcu_read_unlock(); 444 return (dax_entry_t)entry; 445 } 446 dax_unlock_page(struct page * page,dax_entry_t cookie)447 void dax_unlock_page(struct page *page, dax_entry_t cookie) 448 { 449 struct address_space *mapping = page->mapping; 450 XA_STATE(xas, &mapping->i_pages, page->index); 451 452 if (S_ISCHR(mapping->host->i_mode)) 453 return; 454 455 dax_unlock_entry(&xas, (void *)cookie); 456 } 457 458 /* 459 * Find page cache entry at given index. If it is a DAX entry, return it 460 * with the entry locked. If the page cache doesn't contain an entry at 461 * that index, add a locked empty entry. 462 * 463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 464 * either return that locked entry or will return VM_FAULT_FALLBACK. 465 * This will happen if there are any PTE entries within the PMD range 466 * that we are requesting. 467 * 468 * We always favor PTE entries over PMD entries. There isn't a flow where we 469 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 470 * insertion will fail if it finds any PTE entries already in the tree, and a 471 * PTE insertion will cause an existing PMD entry to be unmapped and 472 * downgraded to PTE entries. This happens for both PMD zero pages as 473 * well as PMD empty entries. 474 * 475 * The exception to this downgrade path is for PMD entries that have 476 * real storage backing them. We will leave these real PMD entries in 477 * the tree, and PTE writes will simply dirty the entire PMD entry. 478 * 479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 480 * persistent memory the benefit is doubtful. We can add that later if we can 481 * show it helps. 482 * 483 * On error, this function does not return an ERR_PTR. Instead it returns 484 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 485 * overlap with xarray value entries. 486 */ grab_mapping_entry(struct xa_state * xas,struct address_space * mapping,unsigned int order)487 static void *grab_mapping_entry(struct xa_state *xas, 488 struct address_space *mapping, unsigned int order) 489 { 490 unsigned long index = xas->xa_index; 491 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */ 492 void *entry; 493 494 retry: 495 pmd_downgrade = false; 496 xas_lock_irq(xas); 497 entry = get_unlocked_entry(xas, order); 498 499 if (entry) { 500 if (dax_is_conflict(entry)) 501 goto fallback; 502 if (!xa_is_value(entry)) { 503 xas_set_err(xas, -EIO); 504 goto out_unlock; 505 } 506 507 if (order == 0) { 508 if (dax_is_pmd_entry(entry) && 509 (dax_is_zero_entry(entry) || 510 dax_is_empty_entry(entry))) { 511 pmd_downgrade = true; 512 } 513 } 514 } 515 516 if (pmd_downgrade) { 517 /* 518 * Make sure 'entry' remains valid while we drop 519 * the i_pages lock. 520 */ 521 dax_lock_entry(xas, entry); 522 523 /* 524 * Besides huge zero pages the only other thing that gets 525 * downgraded are empty entries which don't need to be 526 * unmapped. 527 */ 528 if (dax_is_zero_entry(entry)) { 529 xas_unlock_irq(xas); 530 unmap_mapping_pages(mapping, 531 xas->xa_index & ~PG_PMD_COLOUR, 532 PG_PMD_NR, false); 533 xas_reset(xas); 534 xas_lock_irq(xas); 535 } 536 537 dax_disassociate_entry(entry, mapping, false); 538 xas_store(xas, NULL); /* undo the PMD join */ 539 dax_wake_entry(xas, entry, WAKE_ALL); 540 mapping->nrexceptional--; 541 entry = NULL; 542 xas_set(xas, index); 543 } 544 545 if (entry) { 546 dax_lock_entry(xas, entry); 547 } else { 548 unsigned long flags = DAX_EMPTY; 549 550 if (order > 0) 551 flags |= DAX_PMD; 552 entry = dax_make_entry(pfn_to_pfn_t(0), flags); 553 dax_lock_entry(xas, entry); 554 if (xas_error(xas)) 555 goto out_unlock; 556 mapping->nrexceptional++; 557 } 558 559 out_unlock: 560 xas_unlock_irq(xas); 561 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 562 goto retry; 563 if (xas->xa_node == XA_ERROR(-ENOMEM)) 564 return xa_mk_internal(VM_FAULT_OOM); 565 if (xas_error(xas)) 566 return xa_mk_internal(VM_FAULT_SIGBUS); 567 return entry; 568 fallback: 569 xas_unlock_irq(xas); 570 return xa_mk_internal(VM_FAULT_FALLBACK); 571 } 572 573 /** 574 * dax_layout_busy_page_range - find first pinned page in @mapping 575 * @mapping: address space to scan for a page with ref count > 1 576 * @start: Starting offset. Page containing 'start' is included. 577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, 578 * pages from 'start' till the end of file are included. 579 * 580 * DAX requires ZONE_DEVICE mapped pages. These pages are never 581 * 'onlined' to the page allocator so they are considered idle when 582 * page->count == 1. A filesystem uses this interface to determine if 583 * any page in the mapping is busy, i.e. for DMA, or other 584 * get_user_pages() usages. 585 * 586 * It is expected that the filesystem is holding locks to block the 587 * establishment of new mappings in this address_space. I.e. it expects 588 * to be able to run unmap_mapping_range() and subsequently not race 589 * mapping_mapped() becoming true. 590 */ dax_layout_busy_page_range(struct address_space * mapping,loff_t start,loff_t end)591 struct page *dax_layout_busy_page_range(struct address_space *mapping, 592 loff_t start, loff_t end) 593 { 594 void *entry; 595 unsigned int scanned = 0; 596 struct page *page = NULL; 597 pgoff_t start_idx = start >> PAGE_SHIFT; 598 pgoff_t end_idx; 599 XA_STATE(xas, &mapping->i_pages, start_idx); 600 601 /* 602 * In the 'limited' case get_user_pages() for dax is disabled. 603 */ 604 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 605 return NULL; 606 607 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 608 return NULL; 609 610 /* If end == LLONG_MAX, all pages from start to till end of file */ 611 if (end == LLONG_MAX) 612 end_idx = ULONG_MAX; 613 else 614 end_idx = end >> PAGE_SHIFT; 615 /* 616 * If we race get_user_pages_fast() here either we'll see the 617 * elevated page count in the iteration and wait, or 618 * get_user_pages_fast() will see that the page it took a reference 619 * against is no longer mapped in the page tables and bail to the 620 * get_user_pages() slow path. The slow path is protected by 621 * pte_lock() and pmd_lock(). New references are not taken without 622 * holding those locks, and unmap_mapping_pages() will not zero the 623 * pte or pmd without holding the respective lock, so we are 624 * guaranteed to either see new references or prevent new 625 * references from being established. 626 */ 627 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); 628 629 xas_lock_irq(&xas); 630 xas_for_each(&xas, entry, end_idx) { 631 if (WARN_ON_ONCE(!xa_is_value(entry))) 632 continue; 633 if (unlikely(dax_is_locked(entry))) 634 entry = get_unlocked_entry(&xas, 0); 635 if (entry) 636 page = dax_busy_page(entry); 637 put_unlocked_entry(&xas, entry, WAKE_NEXT); 638 if (page) 639 break; 640 if (++scanned % XA_CHECK_SCHED) 641 continue; 642 643 xas_pause(&xas); 644 xas_unlock_irq(&xas); 645 cond_resched(); 646 xas_lock_irq(&xas); 647 } 648 xas_unlock_irq(&xas); 649 return page; 650 } 651 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); 652 dax_layout_busy_page(struct address_space * mapping)653 struct page *dax_layout_busy_page(struct address_space *mapping) 654 { 655 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); 656 } 657 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 658 __dax_invalidate_entry(struct address_space * mapping,pgoff_t index,bool trunc)659 static int __dax_invalidate_entry(struct address_space *mapping, 660 pgoff_t index, bool trunc) 661 { 662 XA_STATE(xas, &mapping->i_pages, index); 663 int ret = 0; 664 void *entry; 665 666 xas_lock_irq(&xas); 667 entry = get_unlocked_entry(&xas, 0); 668 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 669 goto out; 670 if (!trunc && 671 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 672 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 673 goto out; 674 dax_disassociate_entry(entry, mapping, trunc); 675 xas_store(&xas, NULL); 676 mapping->nrexceptional--; 677 ret = 1; 678 out: 679 put_unlocked_entry(&xas, entry, WAKE_ALL); 680 xas_unlock_irq(&xas); 681 return ret; 682 } 683 684 /* 685 * Delete DAX entry at @index from @mapping. Wait for it 686 * to be unlocked before deleting it. 687 */ dax_delete_mapping_entry(struct address_space * mapping,pgoff_t index)688 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 689 { 690 int ret = __dax_invalidate_entry(mapping, index, true); 691 692 /* 693 * This gets called from truncate / punch_hole path. As such, the caller 694 * must hold locks protecting against concurrent modifications of the 695 * page cache (usually fs-private i_mmap_sem for writing). Since the 696 * caller has seen a DAX entry for this index, we better find it 697 * at that index as well... 698 */ 699 WARN_ON_ONCE(!ret); 700 return ret; 701 } 702 703 /* 704 * Invalidate DAX entry if it is clean. 705 */ dax_invalidate_mapping_entry_sync(struct address_space * mapping,pgoff_t index)706 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 707 pgoff_t index) 708 { 709 return __dax_invalidate_entry(mapping, index, false); 710 } 711 copy_cow_page_dax(struct block_device * bdev,struct dax_device * dax_dev,sector_t sector,struct page * to,unsigned long vaddr)712 static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev, 713 sector_t sector, struct page *to, unsigned long vaddr) 714 { 715 void *vto, *kaddr; 716 pgoff_t pgoff; 717 long rc; 718 int id; 719 720 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); 721 if (rc) 722 return rc; 723 724 id = dax_read_lock(); 725 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL); 726 if (rc < 0) { 727 dax_read_unlock(id); 728 return rc; 729 } 730 vto = kmap_atomic(to); 731 copy_user_page(vto, (void __force *)kaddr, vaddr, to); 732 kunmap_atomic(vto); 733 dax_read_unlock(id); 734 return 0; 735 } 736 737 /* 738 * By this point grab_mapping_entry() has ensured that we have a locked entry 739 * of the appropriate size so we don't have to worry about downgrading PMDs to 740 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 741 * already in the tree, we will skip the insertion and just dirty the PMD as 742 * appropriate. 743 */ dax_insert_entry(struct xa_state * xas,struct address_space * mapping,struct vm_fault * vmf,void * entry,pfn_t pfn,unsigned long flags,bool dirty)744 static void *dax_insert_entry(struct xa_state *xas, 745 struct address_space *mapping, struct vm_fault *vmf, 746 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 747 { 748 void *new_entry = dax_make_entry(pfn, flags); 749 750 if (dirty) 751 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 752 753 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 754 unsigned long index = xas->xa_index; 755 /* we are replacing a zero page with block mapping */ 756 if (dax_is_pmd_entry(entry)) 757 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 758 PG_PMD_NR, false); 759 else /* pte entry */ 760 unmap_mapping_pages(mapping, index, 1, false); 761 } 762 763 xas_reset(xas); 764 xas_lock_irq(xas); 765 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 766 void *old; 767 768 dax_disassociate_entry(entry, mapping, false); 769 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 770 /* 771 * Only swap our new entry into the page cache if the current 772 * entry is a zero page or an empty entry. If a normal PTE or 773 * PMD entry is already in the cache, we leave it alone. This 774 * means that if we are trying to insert a PTE and the 775 * existing entry is a PMD, we will just leave the PMD in the 776 * tree and dirty it if necessary. 777 */ 778 old = dax_lock_entry(xas, new_entry); 779 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 780 DAX_LOCKED)); 781 entry = new_entry; 782 } else { 783 xas_load(xas); /* Walk the xa_state */ 784 } 785 786 if (dirty) 787 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 788 789 xas_unlock_irq(xas); 790 return entry; 791 } 792 793 static inline pgoff_address(pgoff_t pgoff,struct vm_area_struct * vma)794 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 795 { 796 unsigned long address; 797 798 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 799 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 800 return address; 801 } 802 803 /* Walk all mappings of a given index of a file and writeprotect them */ dax_entry_mkclean(struct address_space * mapping,pgoff_t index,unsigned long pfn)804 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, 805 unsigned long pfn) 806 { 807 struct vm_area_struct *vma; 808 pte_t pte, *ptep = NULL; 809 pmd_t *pmdp = NULL; 810 spinlock_t *ptl; 811 812 i_mmap_lock_read(mapping); 813 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 814 struct mmu_notifier_range range; 815 unsigned long address; 816 817 cond_resched(); 818 819 if (!(vma->vm_flags & VM_SHARED)) 820 continue; 821 822 address = pgoff_address(index, vma); 823 824 /* 825 * follow_invalidate_pte() will use the range to call 826 * mmu_notifier_invalidate_range_start() on our behalf before 827 * taking any lock. 828 */ 829 if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep, 830 &pmdp, &ptl)) 831 continue; 832 833 /* 834 * No need to call mmu_notifier_invalidate_range() as we are 835 * downgrading page table protection not changing it to point 836 * to a new page. 837 * 838 * See Documentation/vm/mmu_notifier.rst 839 */ 840 if (pmdp) { 841 #ifdef CONFIG_FS_DAX_PMD 842 pmd_t pmd; 843 844 if (pfn != pmd_pfn(*pmdp)) 845 goto unlock_pmd; 846 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 847 goto unlock_pmd; 848 849 flush_cache_range(vma, address, 850 address + HPAGE_PMD_SIZE); 851 pmd = pmdp_invalidate(vma, address, pmdp); 852 pmd = pmd_wrprotect(pmd); 853 pmd = pmd_mkclean(pmd); 854 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 855 unlock_pmd: 856 #endif 857 spin_unlock(ptl); 858 } else { 859 if (pfn != pte_pfn(*ptep)) 860 goto unlock_pte; 861 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 862 goto unlock_pte; 863 864 flush_cache_page(vma, address, pfn); 865 pte = ptep_clear_flush(vma, address, ptep); 866 pte = pte_wrprotect(pte); 867 pte = pte_mkclean(pte); 868 set_pte_at(vma->vm_mm, address, ptep, pte); 869 unlock_pte: 870 pte_unmap_unlock(ptep, ptl); 871 } 872 873 mmu_notifier_invalidate_range_end(&range); 874 } 875 i_mmap_unlock_read(mapping); 876 } 877 dax_writeback_one(struct xa_state * xas,struct dax_device * dax_dev,struct address_space * mapping,void * entry)878 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 879 struct address_space *mapping, void *entry) 880 { 881 unsigned long pfn, index, count; 882 long ret = 0; 883 884 /* 885 * A page got tagged dirty in DAX mapping? Something is seriously 886 * wrong. 887 */ 888 if (WARN_ON(!xa_is_value(entry))) 889 return -EIO; 890 891 if (unlikely(dax_is_locked(entry))) { 892 void *old_entry = entry; 893 894 entry = get_unlocked_entry(xas, 0); 895 896 /* Entry got punched out / reallocated? */ 897 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 898 goto put_unlocked; 899 /* 900 * Entry got reallocated elsewhere? No need to writeback. 901 * We have to compare pfns as we must not bail out due to 902 * difference in lockbit or entry type. 903 */ 904 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 905 goto put_unlocked; 906 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 907 dax_is_zero_entry(entry))) { 908 ret = -EIO; 909 goto put_unlocked; 910 } 911 912 /* Another fsync thread may have already done this entry */ 913 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 914 goto put_unlocked; 915 } 916 917 /* Lock the entry to serialize with page faults */ 918 dax_lock_entry(xas, entry); 919 920 /* 921 * We can clear the tag now but we have to be careful so that concurrent 922 * dax_writeback_one() calls for the same index cannot finish before we 923 * actually flush the caches. This is achieved as the calls will look 924 * at the entry only under the i_pages lock and once they do that 925 * they will see the entry locked and wait for it to unlock. 926 */ 927 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 928 xas_unlock_irq(xas); 929 930 /* 931 * If dax_writeback_mapping_range() was given a wbc->range_start 932 * in the middle of a PMD, the 'index' we use needs to be 933 * aligned to the start of the PMD. 934 * This allows us to flush for PMD_SIZE and not have to worry about 935 * partial PMD writebacks. 936 */ 937 pfn = dax_to_pfn(entry); 938 count = 1UL << dax_entry_order(entry); 939 index = xas->xa_index & ~(count - 1); 940 941 dax_entry_mkclean(mapping, index, pfn); 942 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 943 /* 944 * After we have flushed the cache, we can clear the dirty tag. There 945 * cannot be new dirty data in the pfn after the flush has completed as 946 * the pfn mappings are writeprotected and fault waits for mapping 947 * entry lock. 948 */ 949 xas_reset(xas); 950 xas_lock_irq(xas); 951 xas_store(xas, entry); 952 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 953 dax_wake_entry(xas, entry, WAKE_NEXT); 954 955 trace_dax_writeback_one(mapping->host, index, count); 956 return ret; 957 958 put_unlocked: 959 put_unlocked_entry(xas, entry, WAKE_NEXT); 960 return ret; 961 } 962 963 /* 964 * Flush the mapping to the persistent domain within the byte range of [start, 965 * end]. This is required by data integrity operations to ensure file data is 966 * on persistent storage prior to completion of the operation. 967 */ dax_writeback_mapping_range(struct address_space * mapping,struct dax_device * dax_dev,struct writeback_control * wbc)968 int dax_writeback_mapping_range(struct address_space *mapping, 969 struct dax_device *dax_dev, struct writeback_control *wbc) 970 { 971 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 972 struct inode *inode = mapping->host; 973 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 974 void *entry; 975 int ret = 0; 976 unsigned int scanned = 0; 977 978 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 979 return -EIO; 980 981 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 982 return 0; 983 984 trace_dax_writeback_range(inode, xas.xa_index, end_index); 985 986 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 987 988 xas_lock_irq(&xas); 989 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 990 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 991 if (ret < 0) { 992 mapping_set_error(mapping, ret); 993 break; 994 } 995 if (++scanned % XA_CHECK_SCHED) 996 continue; 997 998 xas_pause(&xas); 999 xas_unlock_irq(&xas); 1000 cond_resched(); 1001 xas_lock_irq(&xas); 1002 } 1003 xas_unlock_irq(&xas); 1004 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 1005 return ret; 1006 } 1007 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 1008 dax_iomap_sector(struct iomap * iomap,loff_t pos)1009 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 1010 { 1011 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; 1012 } 1013 dax_iomap_pfn(struct iomap * iomap,loff_t pos,size_t size,pfn_t * pfnp)1014 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, 1015 pfn_t *pfnp) 1016 { 1017 const sector_t sector = dax_iomap_sector(iomap, pos); 1018 pgoff_t pgoff; 1019 int id, rc; 1020 long length; 1021 1022 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); 1023 if (rc) 1024 return rc; 1025 id = dax_read_lock(); 1026 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 1027 NULL, pfnp); 1028 if (length < 0) { 1029 rc = length; 1030 goto out; 1031 } 1032 rc = -EINVAL; 1033 if (PFN_PHYS(length) < size) 1034 goto out; 1035 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1036 goto out; 1037 /* For larger pages we need devmap */ 1038 if (length > 1 && !pfn_t_devmap(*pfnp)) 1039 goto out; 1040 rc = 0; 1041 out: 1042 dax_read_unlock(id); 1043 return rc; 1044 } 1045 1046 /* 1047 * The user has performed a load from a hole in the file. Allocating a new 1048 * page in the file would cause excessive storage usage for workloads with 1049 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1050 * If this page is ever written to we will re-fault and change the mapping to 1051 * point to real DAX storage instead. 1052 */ dax_load_hole(struct xa_state * xas,struct address_space * mapping,void ** entry,struct vm_fault * vmf)1053 static vm_fault_t dax_load_hole(struct xa_state *xas, 1054 struct address_space *mapping, void **entry, 1055 struct vm_fault *vmf) 1056 { 1057 struct inode *inode = mapping->host; 1058 unsigned long vaddr = vmf->address; 1059 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1060 vm_fault_t ret; 1061 1062 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1063 DAX_ZERO_PAGE, false); 1064 1065 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1066 trace_dax_load_hole(inode, vmf, ret); 1067 return ret; 1068 } 1069 dax_iomap_zero(loff_t pos,u64 length,struct iomap * iomap)1070 s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap) 1071 { 1072 sector_t sector = iomap_sector(iomap, pos & PAGE_MASK); 1073 pgoff_t pgoff; 1074 long rc, id; 1075 void *kaddr; 1076 bool page_aligned = false; 1077 unsigned offset = offset_in_page(pos); 1078 unsigned size = min_t(u64, PAGE_SIZE - offset, length); 1079 1080 if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) && 1081 (size == PAGE_SIZE)) 1082 page_aligned = true; 1083 1084 rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff); 1085 if (rc) 1086 return rc; 1087 1088 id = dax_read_lock(); 1089 1090 if (page_aligned) 1091 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1); 1092 else 1093 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL); 1094 if (rc < 0) { 1095 dax_read_unlock(id); 1096 return rc; 1097 } 1098 1099 if (!page_aligned) { 1100 memset(kaddr + offset, 0, size); 1101 dax_flush(iomap->dax_dev, kaddr + offset, size); 1102 } 1103 dax_read_unlock(id); 1104 return size; 1105 } 1106 1107 static loff_t dax_iomap_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)1108 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1109 struct iomap *iomap, struct iomap *srcmap) 1110 { 1111 struct block_device *bdev = iomap->bdev; 1112 struct dax_device *dax_dev = iomap->dax_dev; 1113 struct iov_iter *iter = data; 1114 loff_t end = pos + length, done = 0; 1115 ssize_t ret = 0; 1116 size_t xfer; 1117 int id; 1118 1119 if (iov_iter_rw(iter) == READ) { 1120 end = min(end, i_size_read(inode)); 1121 if (pos >= end) 1122 return 0; 1123 1124 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1125 return iov_iter_zero(min(length, end - pos), iter); 1126 } 1127 1128 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1129 return -EIO; 1130 1131 /* 1132 * Write can allocate block for an area which has a hole page mapped 1133 * into page tables. We have to tear down these mappings so that data 1134 * written by write(2) is visible in mmap. 1135 */ 1136 if (iomap->flags & IOMAP_F_NEW) { 1137 invalidate_inode_pages2_range(inode->i_mapping, 1138 pos >> PAGE_SHIFT, 1139 (end - 1) >> PAGE_SHIFT); 1140 } 1141 1142 id = dax_read_lock(); 1143 while (pos < end) { 1144 unsigned offset = pos & (PAGE_SIZE - 1); 1145 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1146 const sector_t sector = dax_iomap_sector(iomap, pos); 1147 ssize_t map_len; 1148 pgoff_t pgoff; 1149 void *kaddr; 1150 1151 if (fatal_signal_pending(current)) { 1152 ret = -EINTR; 1153 break; 1154 } 1155 1156 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 1157 if (ret) 1158 break; 1159 1160 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1161 &kaddr, NULL); 1162 if (map_len < 0) { 1163 ret = map_len; 1164 break; 1165 } 1166 1167 map_len = PFN_PHYS(map_len); 1168 kaddr += offset; 1169 map_len -= offset; 1170 if (map_len > end - pos) 1171 map_len = end - pos; 1172 1173 /* 1174 * The userspace address for the memory copy has already been 1175 * validated via access_ok() in either vfs_read() or 1176 * vfs_write(), depending on which operation we are doing. 1177 */ 1178 if (iov_iter_rw(iter) == WRITE) 1179 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1180 map_len, iter); 1181 else 1182 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1183 map_len, iter); 1184 1185 pos += xfer; 1186 length -= xfer; 1187 done += xfer; 1188 1189 if (xfer == 0) 1190 ret = -EFAULT; 1191 if (xfer < map_len) 1192 break; 1193 } 1194 dax_read_unlock(id); 1195 1196 return done ? done : ret; 1197 } 1198 1199 /** 1200 * dax_iomap_rw - Perform I/O to a DAX file 1201 * @iocb: The control block for this I/O 1202 * @iter: The addresses to do I/O from or to 1203 * @ops: iomap ops passed from the file system 1204 * 1205 * This function performs read and write operations to directly mapped 1206 * persistent memory. The callers needs to take care of read/write exclusion 1207 * and evicting any page cache pages in the region under I/O. 1208 */ 1209 ssize_t dax_iomap_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)1210 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1211 const struct iomap_ops *ops) 1212 { 1213 struct address_space *mapping = iocb->ki_filp->f_mapping; 1214 struct inode *inode = mapping->host; 1215 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1216 unsigned flags = 0; 1217 1218 if (iov_iter_rw(iter) == WRITE) { 1219 lockdep_assert_held_write(&inode->i_rwsem); 1220 flags |= IOMAP_WRITE; 1221 } else { 1222 lockdep_assert_held(&inode->i_rwsem); 1223 } 1224 1225 if (iocb->ki_flags & IOCB_NOWAIT) 1226 flags |= IOMAP_NOWAIT; 1227 1228 while (iov_iter_count(iter)) { 1229 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1230 iter, dax_iomap_actor); 1231 if (ret <= 0) 1232 break; 1233 pos += ret; 1234 done += ret; 1235 } 1236 1237 iocb->ki_pos += done; 1238 return done ? done : ret; 1239 } 1240 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1241 dax_fault_return(int error)1242 static vm_fault_t dax_fault_return(int error) 1243 { 1244 if (error == 0) 1245 return VM_FAULT_NOPAGE; 1246 return vmf_error(error); 1247 } 1248 1249 /* 1250 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1251 * flushed on write-faults (non-cow), but not read-faults. 1252 */ dax_fault_is_synchronous(unsigned long flags,struct vm_area_struct * vma,struct iomap * iomap)1253 static bool dax_fault_is_synchronous(unsigned long flags, 1254 struct vm_area_struct *vma, struct iomap *iomap) 1255 { 1256 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1257 && (iomap->flags & IOMAP_F_DIRTY); 1258 } 1259 dax_iomap_pte_fault(struct vm_fault * vmf,pfn_t * pfnp,int * iomap_errp,const struct iomap_ops * ops)1260 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1261 int *iomap_errp, const struct iomap_ops *ops) 1262 { 1263 struct vm_area_struct *vma = vmf->vma; 1264 struct address_space *mapping = vma->vm_file->f_mapping; 1265 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1266 struct inode *inode = mapping->host; 1267 unsigned long vaddr = vmf->address; 1268 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1269 struct iomap iomap = { .type = IOMAP_HOLE }; 1270 struct iomap srcmap = { .type = IOMAP_HOLE }; 1271 unsigned flags = IOMAP_FAULT; 1272 int error, major = 0; 1273 bool write = vmf->flags & FAULT_FLAG_WRITE; 1274 bool sync; 1275 vm_fault_t ret = 0; 1276 void *entry; 1277 pfn_t pfn; 1278 1279 trace_dax_pte_fault(inode, vmf, ret); 1280 /* 1281 * Check whether offset isn't beyond end of file now. Caller is supposed 1282 * to hold locks serializing us with truncate / punch hole so this is 1283 * a reliable test. 1284 */ 1285 if (pos >= i_size_read(inode)) { 1286 ret = VM_FAULT_SIGBUS; 1287 goto out; 1288 } 1289 1290 if (write && !vmf->cow_page) 1291 flags |= IOMAP_WRITE; 1292 1293 entry = grab_mapping_entry(&xas, mapping, 0); 1294 if (xa_is_internal(entry)) { 1295 ret = xa_to_internal(entry); 1296 goto out; 1297 } 1298 1299 /* 1300 * It is possible, particularly with mixed reads & writes to private 1301 * mappings, that we have raced with a PMD fault that overlaps with 1302 * the PTE we need to set up. If so just return and the fault will be 1303 * retried. 1304 */ 1305 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1306 ret = VM_FAULT_NOPAGE; 1307 goto unlock_entry; 1308 } 1309 1310 /* 1311 * Note that we don't bother to use iomap_apply here: DAX required 1312 * the file system block size to be equal the page size, which means 1313 * that we never have to deal with more than a single extent here. 1314 */ 1315 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap); 1316 if (iomap_errp) 1317 *iomap_errp = error; 1318 if (error) { 1319 ret = dax_fault_return(error); 1320 goto unlock_entry; 1321 } 1322 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1323 error = -EIO; /* fs corruption? */ 1324 goto error_finish_iomap; 1325 } 1326 1327 if (vmf->cow_page) { 1328 sector_t sector = dax_iomap_sector(&iomap, pos); 1329 1330 switch (iomap.type) { 1331 case IOMAP_HOLE: 1332 case IOMAP_UNWRITTEN: 1333 clear_user_highpage(vmf->cow_page, vaddr); 1334 break; 1335 case IOMAP_MAPPED: 1336 error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev, 1337 sector, vmf->cow_page, vaddr); 1338 break; 1339 default: 1340 WARN_ON_ONCE(1); 1341 error = -EIO; 1342 break; 1343 } 1344 1345 if (error) 1346 goto error_finish_iomap; 1347 1348 __SetPageUptodate(vmf->cow_page); 1349 ret = finish_fault(vmf); 1350 if (!ret) 1351 ret = VM_FAULT_DONE_COW; 1352 goto finish_iomap; 1353 } 1354 1355 sync = dax_fault_is_synchronous(flags, vma, &iomap); 1356 1357 switch (iomap.type) { 1358 case IOMAP_MAPPED: 1359 if (iomap.flags & IOMAP_F_NEW) { 1360 count_vm_event(PGMAJFAULT); 1361 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 1362 major = VM_FAULT_MAJOR; 1363 } 1364 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); 1365 if (error < 0) 1366 goto error_finish_iomap; 1367 1368 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1369 0, write && !sync); 1370 1371 /* 1372 * If we are doing synchronous page fault and inode needs fsync, 1373 * we can insert PTE into page tables only after that happens. 1374 * Skip insertion for now and return the pfn so that caller can 1375 * insert it after fsync is done. 1376 */ 1377 if (sync) { 1378 if (WARN_ON_ONCE(!pfnp)) { 1379 error = -EIO; 1380 goto error_finish_iomap; 1381 } 1382 *pfnp = pfn; 1383 ret = VM_FAULT_NEEDDSYNC | major; 1384 goto finish_iomap; 1385 } 1386 trace_dax_insert_mapping(inode, vmf, entry); 1387 if (write) 1388 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); 1389 else 1390 ret = vmf_insert_mixed(vma, vaddr, pfn); 1391 1392 goto finish_iomap; 1393 case IOMAP_UNWRITTEN: 1394 case IOMAP_HOLE: 1395 if (!write) { 1396 ret = dax_load_hole(&xas, mapping, &entry, vmf); 1397 goto finish_iomap; 1398 } 1399 fallthrough; 1400 default: 1401 WARN_ON_ONCE(1); 1402 error = -EIO; 1403 break; 1404 } 1405 1406 error_finish_iomap: 1407 ret = dax_fault_return(error); 1408 finish_iomap: 1409 if (ops->iomap_end) { 1410 int copied = PAGE_SIZE; 1411 1412 if (ret & VM_FAULT_ERROR) 1413 copied = 0; 1414 /* 1415 * The fault is done by now and there's no way back (other 1416 * thread may be already happily using PTE we have installed). 1417 * Just ignore error from ->iomap_end since we cannot do much 1418 * with it. 1419 */ 1420 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1421 } 1422 unlock_entry: 1423 dax_unlock_entry(&xas, entry); 1424 out: 1425 trace_dax_pte_fault_done(inode, vmf, ret); 1426 return ret | major; 1427 } 1428 1429 #ifdef CONFIG_FS_DAX_PMD dax_pmd_load_hole(struct xa_state * xas,struct vm_fault * vmf,struct iomap * iomap,void ** entry)1430 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1431 struct iomap *iomap, void **entry) 1432 { 1433 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1434 unsigned long pmd_addr = vmf->address & PMD_MASK; 1435 struct vm_area_struct *vma = vmf->vma; 1436 struct inode *inode = mapping->host; 1437 pgtable_t pgtable = NULL; 1438 struct page *zero_page; 1439 spinlock_t *ptl; 1440 pmd_t pmd_entry; 1441 pfn_t pfn; 1442 1443 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1444 1445 if (unlikely(!zero_page)) 1446 goto fallback; 1447 1448 pfn = page_to_pfn_t(zero_page); 1449 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1450 DAX_PMD | DAX_ZERO_PAGE, false); 1451 1452 if (arch_needs_pgtable_deposit()) { 1453 pgtable = pte_alloc_one(vma->vm_mm); 1454 if (!pgtable) 1455 return VM_FAULT_OOM; 1456 } 1457 1458 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1459 if (!pmd_none(*(vmf->pmd))) { 1460 spin_unlock(ptl); 1461 goto fallback; 1462 } 1463 1464 if (pgtable) { 1465 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1466 mm_inc_nr_ptes(vma->vm_mm); 1467 } 1468 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1469 pmd_entry = pmd_mkhuge(pmd_entry); 1470 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1471 spin_unlock(ptl); 1472 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1473 return VM_FAULT_NOPAGE; 1474 1475 fallback: 1476 if (pgtable) 1477 pte_free(vma->vm_mm, pgtable); 1478 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1479 return VM_FAULT_FALLBACK; 1480 } 1481 dax_iomap_pmd_fault(struct vm_fault * vmf,pfn_t * pfnp,const struct iomap_ops * ops)1482 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1483 const struct iomap_ops *ops) 1484 { 1485 struct vm_area_struct *vma = vmf->vma; 1486 struct address_space *mapping = vma->vm_file->f_mapping; 1487 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1488 unsigned long pmd_addr = vmf->address & PMD_MASK; 1489 bool write = vmf->flags & FAULT_FLAG_WRITE; 1490 bool sync; 1491 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1492 struct inode *inode = mapping->host; 1493 vm_fault_t result = VM_FAULT_FALLBACK; 1494 struct iomap iomap = { .type = IOMAP_HOLE }; 1495 struct iomap srcmap = { .type = IOMAP_HOLE }; 1496 pgoff_t max_pgoff; 1497 void *entry; 1498 loff_t pos; 1499 int error; 1500 pfn_t pfn; 1501 1502 /* 1503 * Check whether offset isn't beyond end of file now. Caller is 1504 * supposed to hold locks serializing us with truncate / punch hole so 1505 * this is a reliable test. 1506 */ 1507 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1508 1509 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1510 1511 /* 1512 * Make sure that the faulting address's PMD offset (color) matches 1513 * the PMD offset from the start of the file. This is necessary so 1514 * that a PMD range in the page table overlaps exactly with a PMD 1515 * range in the page cache. 1516 */ 1517 if ((vmf->pgoff & PG_PMD_COLOUR) != 1518 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1519 goto fallback; 1520 1521 /* Fall back to PTEs if we're going to COW */ 1522 if (write && !(vma->vm_flags & VM_SHARED)) 1523 goto fallback; 1524 1525 /* If the PMD would extend outside the VMA */ 1526 if (pmd_addr < vma->vm_start) 1527 goto fallback; 1528 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1529 goto fallback; 1530 1531 if (xas.xa_index >= max_pgoff) { 1532 result = VM_FAULT_SIGBUS; 1533 goto out; 1534 } 1535 1536 /* If the PMD would extend beyond the file size */ 1537 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff) 1538 goto fallback; 1539 1540 /* 1541 * grab_mapping_entry() will make sure we get an empty PMD entry, 1542 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1543 * entry is already in the array, for instance), it will return 1544 * VM_FAULT_FALLBACK. 1545 */ 1546 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 1547 if (xa_is_internal(entry)) { 1548 result = xa_to_internal(entry); 1549 goto fallback; 1550 } 1551 1552 /* 1553 * It is possible, particularly with mixed reads & writes to private 1554 * mappings, that we have raced with a PTE fault that overlaps with 1555 * the PMD we need to set up. If so just return and the fault will be 1556 * retried. 1557 */ 1558 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1559 !pmd_devmap(*vmf->pmd)) { 1560 result = 0; 1561 goto unlock_entry; 1562 } 1563 1564 /* 1565 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1566 * setting up a mapping, so really we're using iomap_begin() as a way 1567 * to look up our filesystem block. 1568 */ 1569 pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1570 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap, 1571 &srcmap); 1572 if (error) 1573 goto unlock_entry; 1574 1575 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1576 goto finish_iomap; 1577 1578 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); 1579 1580 switch (iomap.type) { 1581 case IOMAP_MAPPED: 1582 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); 1583 if (error < 0) 1584 goto finish_iomap; 1585 1586 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1587 DAX_PMD, write && !sync); 1588 1589 /* 1590 * If we are doing synchronous page fault and inode needs fsync, 1591 * we can insert PMD into page tables only after that happens. 1592 * Skip insertion for now and return the pfn so that caller can 1593 * insert it after fsync is done. 1594 */ 1595 if (sync) { 1596 if (WARN_ON_ONCE(!pfnp)) 1597 goto finish_iomap; 1598 *pfnp = pfn; 1599 result = VM_FAULT_NEEDDSYNC; 1600 goto finish_iomap; 1601 } 1602 1603 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); 1604 result = vmf_insert_pfn_pmd(vmf, pfn, write); 1605 break; 1606 case IOMAP_UNWRITTEN: 1607 case IOMAP_HOLE: 1608 if (WARN_ON_ONCE(write)) 1609 break; 1610 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry); 1611 break; 1612 default: 1613 WARN_ON_ONCE(1); 1614 break; 1615 } 1616 1617 finish_iomap: 1618 if (ops->iomap_end) { 1619 int copied = PMD_SIZE; 1620 1621 if (result == VM_FAULT_FALLBACK) 1622 copied = 0; 1623 /* 1624 * The fault is done by now and there's no way back (other 1625 * thread may be already happily using PMD we have installed). 1626 * Just ignore error from ->iomap_end since we cannot do much 1627 * with it. 1628 */ 1629 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1630 &iomap); 1631 } 1632 unlock_entry: 1633 dax_unlock_entry(&xas, entry); 1634 fallback: 1635 if (result == VM_FAULT_FALLBACK) { 1636 split_huge_pmd(vma, vmf->pmd, vmf->address); 1637 count_vm_event(THP_FAULT_FALLBACK); 1638 } 1639 out: 1640 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1641 return result; 1642 } 1643 #else dax_iomap_pmd_fault(struct vm_fault * vmf,pfn_t * pfnp,const struct iomap_ops * ops)1644 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1645 const struct iomap_ops *ops) 1646 { 1647 return VM_FAULT_FALLBACK; 1648 } 1649 #endif /* CONFIG_FS_DAX_PMD */ 1650 1651 /** 1652 * dax_iomap_fault - handle a page fault on a DAX file 1653 * @vmf: The description of the fault 1654 * @pe_size: Size of the page to fault in 1655 * @pfnp: PFN to insert for synchronous faults if fsync is required 1656 * @iomap_errp: Storage for detailed error code in case of error 1657 * @ops: Iomap ops passed from the file system 1658 * 1659 * When a page fault occurs, filesystems may call this helper in 1660 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1661 * has done all the necessary locking for page fault to proceed 1662 * successfully. 1663 */ dax_iomap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,pfn_t * pfnp,int * iomap_errp,const struct iomap_ops * ops)1664 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1665 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1666 { 1667 switch (pe_size) { 1668 case PE_SIZE_PTE: 1669 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1670 case PE_SIZE_PMD: 1671 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1672 default: 1673 return VM_FAULT_FALLBACK; 1674 } 1675 } 1676 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1677 1678 /* 1679 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1680 * @vmf: The description of the fault 1681 * @pfn: PFN to insert 1682 * @order: Order of entry to insert. 1683 * 1684 * This function inserts a writeable PTE or PMD entry into the page tables 1685 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1686 */ 1687 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault * vmf,pfn_t pfn,unsigned int order)1688 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1689 { 1690 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1691 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1692 void *entry; 1693 vm_fault_t ret; 1694 1695 xas_lock_irq(&xas); 1696 entry = get_unlocked_entry(&xas, order); 1697 /* Did we race with someone splitting entry or so? */ 1698 if (!entry || dax_is_conflict(entry) || 1699 (order == 0 && !dax_is_pte_entry(entry))) { 1700 put_unlocked_entry(&xas, entry, WAKE_NEXT); 1701 xas_unlock_irq(&xas); 1702 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1703 VM_FAULT_NOPAGE); 1704 return VM_FAULT_NOPAGE; 1705 } 1706 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1707 dax_lock_entry(&xas, entry); 1708 xas_unlock_irq(&xas); 1709 if (order == 0) 1710 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1711 #ifdef CONFIG_FS_DAX_PMD 1712 else if (order == PMD_ORDER) 1713 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1714 #endif 1715 else 1716 ret = VM_FAULT_FALLBACK; 1717 dax_unlock_entry(&xas, entry); 1718 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1719 return ret; 1720 } 1721 1722 /** 1723 * dax_finish_sync_fault - finish synchronous page fault 1724 * @vmf: The description of the fault 1725 * @pe_size: Size of entry to be inserted 1726 * @pfn: PFN to insert 1727 * 1728 * This function ensures that the file range touched by the page fault is 1729 * stored persistently on the media and handles inserting of appropriate page 1730 * table entry. 1731 */ dax_finish_sync_fault(struct vm_fault * vmf,enum page_entry_size pe_size,pfn_t pfn)1732 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1733 enum page_entry_size pe_size, pfn_t pfn) 1734 { 1735 int err; 1736 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1737 unsigned int order = pe_order(pe_size); 1738 size_t len = PAGE_SIZE << order; 1739 1740 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1741 if (err) 1742 return VM_FAULT_SIGBUS; 1743 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1744 } 1745 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1746