• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * fs/dax.c - Direct Access filesystem code
4   * Copyright (c) 2013-2014 Intel Corporation
5   * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6   * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7   */
8  
9  #include <linux/atomic.h>
10  #include <linux/blkdev.h>
11  #include <linux/buffer_head.h>
12  #include <linux/dax.h>
13  #include <linux/fs.h>
14  #include <linux/genhd.h>
15  #include <linux/highmem.h>
16  #include <linux/memcontrol.h>
17  #include <linux/mm.h>
18  #include <linux/mutex.h>
19  #include <linux/pagevec.h>
20  #include <linux/sched.h>
21  #include <linux/sched/signal.h>
22  #include <linux/uio.h>
23  #include <linux/vmstat.h>
24  #include <linux/pfn_t.h>
25  #include <linux/sizes.h>
26  #include <linux/mmu_notifier.h>
27  #include <linux/iomap.h>
28  #include <asm/pgalloc.h>
29  
30  #define CREATE_TRACE_POINTS
31  #include <trace/events/fs_dax.h>
32  
pe_order(enum page_entry_size pe_size)33  static inline unsigned int pe_order(enum page_entry_size pe_size)
34  {
35  	if (pe_size == PE_SIZE_PTE)
36  		return PAGE_SHIFT - PAGE_SHIFT;
37  	if (pe_size == PE_SIZE_PMD)
38  		return PMD_SHIFT - PAGE_SHIFT;
39  	if (pe_size == PE_SIZE_PUD)
40  		return PUD_SHIFT - PAGE_SHIFT;
41  	return ~0;
42  }
43  
44  /* We choose 4096 entries - same as per-zone page wait tables */
45  #define DAX_WAIT_TABLE_BITS 12
46  #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47  
48  /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49  #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
50  #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
51  
52  /* The order of a PMD entry */
53  #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
54  
55  static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56  
init_dax_wait_table(void)57  static int __init init_dax_wait_table(void)
58  {
59  	int i;
60  
61  	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62  		init_waitqueue_head(wait_table + i);
63  	return 0;
64  }
65  fs_initcall(init_dax_wait_table);
66  
67  /*
68   * DAX pagecache entries use XArray value entries so they can't be mistaken
69   * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70   * and two more to tell us if the entry is a zero page or an empty entry that
71   * is just used for locking.  In total four special bits.
72   *
73   * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74   * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75   * block allocation.
76   */
77  #define DAX_SHIFT	(4)
78  #define DAX_LOCKED	(1UL << 0)
79  #define DAX_PMD		(1UL << 1)
80  #define DAX_ZERO_PAGE	(1UL << 2)
81  #define DAX_EMPTY	(1UL << 3)
82  
dax_to_pfn(void * entry)83  static unsigned long dax_to_pfn(void *entry)
84  {
85  	return xa_to_value(entry) >> DAX_SHIFT;
86  }
87  
dax_make_entry(pfn_t pfn,unsigned long flags)88  static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89  {
90  	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91  }
92  
dax_is_locked(void * entry)93  static bool dax_is_locked(void *entry)
94  {
95  	return xa_to_value(entry) & DAX_LOCKED;
96  }
97  
dax_entry_order(void * entry)98  static unsigned int dax_entry_order(void *entry)
99  {
100  	if (xa_to_value(entry) & DAX_PMD)
101  		return PMD_ORDER;
102  	return 0;
103  }
104  
dax_is_pmd_entry(void * entry)105  static unsigned long dax_is_pmd_entry(void *entry)
106  {
107  	return xa_to_value(entry) & DAX_PMD;
108  }
109  
dax_is_pte_entry(void * entry)110  static bool dax_is_pte_entry(void *entry)
111  {
112  	return !(xa_to_value(entry) & DAX_PMD);
113  }
114  
dax_is_zero_entry(void * entry)115  static int dax_is_zero_entry(void *entry)
116  {
117  	return xa_to_value(entry) & DAX_ZERO_PAGE;
118  }
119  
dax_is_empty_entry(void * entry)120  static int dax_is_empty_entry(void *entry)
121  {
122  	return xa_to_value(entry) & DAX_EMPTY;
123  }
124  
125  /*
126   * true if the entry that was found is of a smaller order than the entry
127   * we were looking for
128   */
dax_is_conflict(void * entry)129  static bool dax_is_conflict(void *entry)
130  {
131  	return entry == XA_RETRY_ENTRY;
132  }
133  
134  /*
135   * DAX page cache entry locking
136   */
137  struct exceptional_entry_key {
138  	struct xarray *xa;
139  	pgoff_t entry_start;
140  };
141  
142  struct wait_exceptional_entry_queue {
143  	wait_queue_entry_t wait;
144  	struct exceptional_entry_key key;
145  };
146  
147  /**
148   * enum dax_wake_mode: waitqueue wakeup behaviour
149   * @WAKE_ALL: wake all waiters in the waitqueue
150   * @WAKE_NEXT: wake only the first waiter in the waitqueue
151   */
152  enum dax_wake_mode {
153  	WAKE_ALL,
154  	WAKE_NEXT,
155  };
156  
dax_entry_waitqueue(struct xa_state * xas,void * entry,struct exceptional_entry_key * key)157  static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158  		void *entry, struct exceptional_entry_key *key)
159  {
160  	unsigned long hash;
161  	unsigned long index = xas->xa_index;
162  
163  	/*
164  	 * If 'entry' is a PMD, align the 'index' that we use for the wait
165  	 * queue to the start of that PMD.  This ensures that all offsets in
166  	 * the range covered by the PMD map to the same bit lock.
167  	 */
168  	if (dax_is_pmd_entry(entry))
169  		index &= ~PG_PMD_COLOUR;
170  	key->xa = xas->xa;
171  	key->entry_start = index;
172  
173  	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174  	return wait_table + hash;
175  }
176  
wake_exceptional_entry_func(wait_queue_entry_t * wait,unsigned int mode,int sync,void * keyp)177  static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178  		unsigned int mode, int sync, void *keyp)
179  {
180  	struct exceptional_entry_key *key = keyp;
181  	struct wait_exceptional_entry_queue *ewait =
182  		container_of(wait, struct wait_exceptional_entry_queue, wait);
183  
184  	if (key->xa != ewait->key.xa ||
185  	    key->entry_start != ewait->key.entry_start)
186  		return 0;
187  	return autoremove_wake_function(wait, mode, sync, NULL);
188  }
189  
190  /*
191   * @entry may no longer be the entry at the index in the mapping.
192   * The important information it's conveying is whether the entry at
193   * this index used to be a PMD entry.
194   */
dax_wake_entry(struct xa_state * xas,void * entry,enum dax_wake_mode mode)195  static void dax_wake_entry(struct xa_state *xas, void *entry,
196  			   enum dax_wake_mode mode)
197  {
198  	struct exceptional_entry_key key;
199  	wait_queue_head_t *wq;
200  
201  	wq = dax_entry_waitqueue(xas, entry, &key);
202  
203  	/*
204  	 * Checking for locked entry and prepare_to_wait_exclusive() happens
205  	 * under the i_pages lock, ditto for entry handling in our callers.
206  	 * So at this point all tasks that could have seen our entry locked
207  	 * must be in the waitqueue and the following check will see them.
208  	 */
209  	if (waitqueue_active(wq))
210  		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211  }
212  
213  /*
214   * Look up entry in page cache, wait for it to become unlocked if it
215   * is a DAX entry and return it.  The caller must subsequently call
216   * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217   * if it did.  The entry returned may have a larger order than @order.
218   * If @order is larger than the order of the entry found in i_pages, this
219   * function returns a dax_is_conflict entry.
220   *
221   * Must be called with the i_pages lock held.
222   */
get_unlocked_entry(struct xa_state * xas,unsigned int order)223  static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224  {
225  	void *entry;
226  	struct wait_exceptional_entry_queue ewait;
227  	wait_queue_head_t *wq;
228  
229  	init_wait(&ewait.wait);
230  	ewait.wait.func = wake_exceptional_entry_func;
231  
232  	for (;;) {
233  		entry = xas_find_conflict(xas);
234  		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235  			return entry;
236  		if (dax_entry_order(entry) < order)
237  			return XA_RETRY_ENTRY;
238  		if (!dax_is_locked(entry))
239  			return entry;
240  
241  		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242  		prepare_to_wait_exclusive(wq, &ewait.wait,
243  					  TASK_UNINTERRUPTIBLE);
244  		xas_unlock_irq(xas);
245  		xas_reset(xas);
246  		schedule();
247  		finish_wait(wq, &ewait.wait);
248  		xas_lock_irq(xas);
249  	}
250  }
251  
252  /*
253   * The only thing keeping the address space around is the i_pages lock
254   * (it's cycled in clear_inode() after removing the entries from i_pages)
255   * After we call xas_unlock_irq(), we cannot touch xas->xa.
256   */
wait_entry_unlocked(struct xa_state * xas,void * entry)257  static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258  {
259  	struct wait_exceptional_entry_queue ewait;
260  	wait_queue_head_t *wq;
261  
262  	init_wait(&ewait.wait);
263  	ewait.wait.func = wake_exceptional_entry_func;
264  
265  	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266  	/*
267  	 * Unlike get_unlocked_entry() there is no guarantee that this
268  	 * path ever successfully retrieves an unlocked entry before an
269  	 * inode dies. Perform a non-exclusive wait in case this path
270  	 * never successfully performs its own wake up.
271  	 */
272  	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273  	xas_unlock_irq(xas);
274  	schedule();
275  	finish_wait(wq, &ewait.wait);
276  }
277  
put_unlocked_entry(struct xa_state * xas,void * entry,enum dax_wake_mode mode)278  static void put_unlocked_entry(struct xa_state *xas, void *entry,
279  			       enum dax_wake_mode mode)
280  {
281  	if (entry && !dax_is_conflict(entry))
282  		dax_wake_entry(xas, entry, mode);
283  }
284  
285  /*
286   * We used the xa_state to get the entry, but then we locked the entry and
287   * dropped the xa_lock, so we know the xa_state is stale and must be reset
288   * before use.
289   */
dax_unlock_entry(struct xa_state * xas,void * entry)290  static void dax_unlock_entry(struct xa_state *xas, void *entry)
291  {
292  	void *old;
293  
294  	BUG_ON(dax_is_locked(entry));
295  	xas_reset(xas);
296  	xas_lock_irq(xas);
297  	old = xas_store(xas, entry);
298  	xas_unlock_irq(xas);
299  	BUG_ON(!dax_is_locked(old));
300  	dax_wake_entry(xas, entry, WAKE_NEXT);
301  }
302  
303  /*
304   * Return: The entry stored at this location before it was locked.
305   */
dax_lock_entry(struct xa_state * xas,void * entry)306  static void *dax_lock_entry(struct xa_state *xas, void *entry)
307  {
308  	unsigned long v = xa_to_value(entry);
309  	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310  }
311  
dax_entry_size(void * entry)312  static unsigned long dax_entry_size(void *entry)
313  {
314  	if (dax_is_zero_entry(entry))
315  		return 0;
316  	else if (dax_is_empty_entry(entry))
317  		return 0;
318  	else if (dax_is_pmd_entry(entry))
319  		return PMD_SIZE;
320  	else
321  		return PAGE_SIZE;
322  }
323  
dax_end_pfn(void * entry)324  static unsigned long dax_end_pfn(void *entry)
325  {
326  	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327  }
328  
329  /*
330   * Iterate through all mapped pfns represented by an entry, i.e. skip
331   * 'empty' and 'zero' entries.
332   */
333  #define for_each_mapped_pfn(entry, pfn) \
334  	for (pfn = dax_to_pfn(entry); \
335  			pfn < dax_end_pfn(entry); pfn++)
336  
337  /*
338   * TODO: for reflink+dax we need a way to associate a single page with
339   * multiple address_space instances at different linear_page_index()
340   * offsets.
341   */
dax_associate_entry(void * entry,struct address_space * mapping,struct vm_area_struct * vma,unsigned long address)342  static void dax_associate_entry(void *entry, struct address_space *mapping,
343  		struct vm_area_struct *vma, unsigned long address)
344  {
345  	unsigned long size = dax_entry_size(entry), pfn, index;
346  	int i = 0;
347  
348  	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
349  		return;
350  
351  	index = linear_page_index(vma, address & ~(size - 1));
352  	for_each_mapped_pfn(entry, pfn) {
353  		struct page *page = pfn_to_page(pfn);
354  
355  		WARN_ON_ONCE(page->mapping);
356  		page->mapping = mapping;
357  		page->index = index + i++;
358  	}
359  }
360  
dax_disassociate_entry(void * entry,struct address_space * mapping,bool trunc)361  static void dax_disassociate_entry(void *entry, struct address_space *mapping,
362  		bool trunc)
363  {
364  	unsigned long pfn;
365  
366  	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
367  		return;
368  
369  	for_each_mapped_pfn(entry, pfn) {
370  		struct page *page = pfn_to_page(pfn);
371  
372  		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
373  		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
374  		page->mapping = NULL;
375  		page->index = 0;
376  	}
377  }
378  
dax_busy_page(void * entry)379  static struct page *dax_busy_page(void *entry)
380  {
381  	unsigned long pfn;
382  
383  	for_each_mapped_pfn(entry, pfn) {
384  		struct page *page = pfn_to_page(pfn);
385  
386  		if (page_ref_count(page) > 1)
387  			return page;
388  	}
389  	return NULL;
390  }
391  
392  /*
393   * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
394   * @page: The page whose entry we want to lock
395   *
396   * Context: Process context.
397   * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
398   * not be locked.
399   */
dax_lock_page(struct page * page)400  dax_entry_t dax_lock_page(struct page *page)
401  {
402  	XA_STATE(xas, NULL, 0);
403  	void *entry;
404  
405  	/* Ensure page->mapping isn't freed while we look at it */
406  	rcu_read_lock();
407  	for (;;) {
408  		struct address_space *mapping = READ_ONCE(page->mapping);
409  
410  		entry = NULL;
411  		if (!mapping || !dax_mapping(mapping))
412  			break;
413  
414  		/*
415  		 * In the device-dax case there's no need to lock, a
416  		 * struct dev_pagemap pin is sufficient to keep the
417  		 * inode alive, and we assume we have dev_pagemap pin
418  		 * otherwise we would not have a valid pfn_to_page()
419  		 * translation.
420  		 */
421  		entry = (void *)~0UL;
422  		if (S_ISCHR(mapping->host->i_mode))
423  			break;
424  
425  		xas.xa = &mapping->i_pages;
426  		xas_lock_irq(&xas);
427  		if (mapping != page->mapping) {
428  			xas_unlock_irq(&xas);
429  			continue;
430  		}
431  		xas_set(&xas, page->index);
432  		entry = xas_load(&xas);
433  		if (dax_is_locked(entry)) {
434  			rcu_read_unlock();
435  			wait_entry_unlocked(&xas, entry);
436  			rcu_read_lock();
437  			continue;
438  		}
439  		dax_lock_entry(&xas, entry);
440  		xas_unlock_irq(&xas);
441  		break;
442  	}
443  	rcu_read_unlock();
444  	return (dax_entry_t)entry;
445  }
446  
dax_unlock_page(struct page * page,dax_entry_t cookie)447  void dax_unlock_page(struct page *page, dax_entry_t cookie)
448  {
449  	struct address_space *mapping = page->mapping;
450  	XA_STATE(xas, &mapping->i_pages, page->index);
451  
452  	if (S_ISCHR(mapping->host->i_mode))
453  		return;
454  
455  	dax_unlock_entry(&xas, (void *)cookie);
456  }
457  
458  /*
459   * Find page cache entry at given index. If it is a DAX entry, return it
460   * with the entry locked. If the page cache doesn't contain an entry at
461   * that index, add a locked empty entry.
462   *
463   * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
464   * either return that locked entry or will return VM_FAULT_FALLBACK.
465   * This will happen if there are any PTE entries within the PMD range
466   * that we are requesting.
467   *
468   * We always favor PTE entries over PMD entries. There isn't a flow where we
469   * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
470   * insertion will fail if it finds any PTE entries already in the tree, and a
471   * PTE insertion will cause an existing PMD entry to be unmapped and
472   * downgraded to PTE entries.  This happens for both PMD zero pages as
473   * well as PMD empty entries.
474   *
475   * The exception to this downgrade path is for PMD entries that have
476   * real storage backing them.  We will leave these real PMD entries in
477   * the tree, and PTE writes will simply dirty the entire PMD entry.
478   *
479   * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
480   * persistent memory the benefit is doubtful. We can add that later if we can
481   * show it helps.
482   *
483   * On error, this function does not return an ERR_PTR.  Instead it returns
484   * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
485   * overlap with xarray value entries.
486   */
grab_mapping_entry(struct xa_state * xas,struct address_space * mapping,unsigned int order)487  static void *grab_mapping_entry(struct xa_state *xas,
488  		struct address_space *mapping, unsigned int order)
489  {
490  	unsigned long index = xas->xa_index;
491  	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
492  	void *entry;
493  
494  retry:
495  	pmd_downgrade = false;
496  	xas_lock_irq(xas);
497  	entry = get_unlocked_entry(xas, order);
498  
499  	if (entry) {
500  		if (dax_is_conflict(entry))
501  			goto fallback;
502  		if (!xa_is_value(entry)) {
503  			xas_set_err(xas, -EIO);
504  			goto out_unlock;
505  		}
506  
507  		if (order == 0) {
508  			if (dax_is_pmd_entry(entry) &&
509  			    (dax_is_zero_entry(entry) ||
510  			     dax_is_empty_entry(entry))) {
511  				pmd_downgrade = true;
512  			}
513  		}
514  	}
515  
516  	if (pmd_downgrade) {
517  		/*
518  		 * Make sure 'entry' remains valid while we drop
519  		 * the i_pages lock.
520  		 */
521  		dax_lock_entry(xas, entry);
522  
523  		/*
524  		 * Besides huge zero pages the only other thing that gets
525  		 * downgraded are empty entries which don't need to be
526  		 * unmapped.
527  		 */
528  		if (dax_is_zero_entry(entry)) {
529  			xas_unlock_irq(xas);
530  			unmap_mapping_pages(mapping,
531  					xas->xa_index & ~PG_PMD_COLOUR,
532  					PG_PMD_NR, false);
533  			xas_reset(xas);
534  			xas_lock_irq(xas);
535  		}
536  
537  		dax_disassociate_entry(entry, mapping, false);
538  		xas_store(xas, NULL);	/* undo the PMD join */
539  		dax_wake_entry(xas, entry, WAKE_ALL);
540  		mapping->nrexceptional--;
541  		entry = NULL;
542  		xas_set(xas, index);
543  	}
544  
545  	if (entry) {
546  		dax_lock_entry(xas, entry);
547  	} else {
548  		unsigned long flags = DAX_EMPTY;
549  
550  		if (order > 0)
551  			flags |= DAX_PMD;
552  		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
553  		dax_lock_entry(xas, entry);
554  		if (xas_error(xas))
555  			goto out_unlock;
556  		mapping->nrexceptional++;
557  	}
558  
559  out_unlock:
560  	xas_unlock_irq(xas);
561  	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
562  		goto retry;
563  	if (xas->xa_node == XA_ERROR(-ENOMEM))
564  		return xa_mk_internal(VM_FAULT_OOM);
565  	if (xas_error(xas))
566  		return xa_mk_internal(VM_FAULT_SIGBUS);
567  	return entry;
568  fallback:
569  	xas_unlock_irq(xas);
570  	return xa_mk_internal(VM_FAULT_FALLBACK);
571  }
572  
573  /**
574   * dax_layout_busy_page_range - find first pinned page in @mapping
575   * @mapping: address space to scan for a page with ref count > 1
576   * @start: Starting offset. Page containing 'start' is included.
577   * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
578   *       pages from 'start' till the end of file are included.
579   *
580   * DAX requires ZONE_DEVICE mapped pages. These pages are never
581   * 'onlined' to the page allocator so they are considered idle when
582   * page->count == 1. A filesystem uses this interface to determine if
583   * any page in the mapping is busy, i.e. for DMA, or other
584   * get_user_pages() usages.
585   *
586   * It is expected that the filesystem is holding locks to block the
587   * establishment of new mappings in this address_space. I.e. it expects
588   * to be able to run unmap_mapping_range() and subsequently not race
589   * mapping_mapped() becoming true.
590   */
dax_layout_busy_page_range(struct address_space * mapping,loff_t start,loff_t end)591  struct page *dax_layout_busy_page_range(struct address_space *mapping,
592  					loff_t start, loff_t end)
593  {
594  	void *entry;
595  	unsigned int scanned = 0;
596  	struct page *page = NULL;
597  	pgoff_t start_idx = start >> PAGE_SHIFT;
598  	pgoff_t end_idx;
599  	XA_STATE(xas, &mapping->i_pages, start_idx);
600  
601  	/*
602  	 * In the 'limited' case get_user_pages() for dax is disabled.
603  	 */
604  	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
605  		return NULL;
606  
607  	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
608  		return NULL;
609  
610  	/* If end == LLONG_MAX, all pages from start to till end of file */
611  	if (end == LLONG_MAX)
612  		end_idx = ULONG_MAX;
613  	else
614  		end_idx = end >> PAGE_SHIFT;
615  	/*
616  	 * If we race get_user_pages_fast() here either we'll see the
617  	 * elevated page count in the iteration and wait, or
618  	 * get_user_pages_fast() will see that the page it took a reference
619  	 * against is no longer mapped in the page tables and bail to the
620  	 * get_user_pages() slow path.  The slow path is protected by
621  	 * pte_lock() and pmd_lock(). New references are not taken without
622  	 * holding those locks, and unmap_mapping_pages() will not zero the
623  	 * pte or pmd without holding the respective lock, so we are
624  	 * guaranteed to either see new references or prevent new
625  	 * references from being established.
626  	 */
627  	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
628  
629  	xas_lock_irq(&xas);
630  	xas_for_each(&xas, entry, end_idx) {
631  		if (WARN_ON_ONCE(!xa_is_value(entry)))
632  			continue;
633  		if (unlikely(dax_is_locked(entry)))
634  			entry = get_unlocked_entry(&xas, 0);
635  		if (entry)
636  			page = dax_busy_page(entry);
637  		put_unlocked_entry(&xas, entry, WAKE_NEXT);
638  		if (page)
639  			break;
640  		if (++scanned % XA_CHECK_SCHED)
641  			continue;
642  
643  		xas_pause(&xas);
644  		xas_unlock_irq(&xas);
645  		cond_resched();
646  		xas_lock_irq(&xas);
647  	}
648  	xas_unlock_irq(&xas);
649  	return page;
650  }
651  EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
652  
dax_layout_busy_page(struct address_space * mapping)653  struct page *dax_layout_busy_page(struct address_space *mapping)
654  {
655  	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
656  }
657  EXPORT_SYMBOL_GPL(dax_layout_busy_page);
658  
__dax_invalidate_entry(struct address_space * mapping,pgoff_t index,bool trunc)659  static int __dax_invalidate_entry(struct address_space *mapping,
660  					  pgoff_t index, bool trunc)
661  {
662  	XA_STATE(xas, &mapping->i_pages, index);
663  	int ret = 0;
664  	void *entry;
665  
666  	xas_lock_irq(&xas);
667  	entry = get_unlocked_entry(&xas, 0);
668  	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
669  		goto out;
670  	if (!trunc &&
671  	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
672  	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
673  		goto out;
674  	dax_disassociate_entry(entry, mapping, trunc);
675  	xas_store(&xas, NULL);
676  	mapping->nrexceptional--;
677  	ret = 1;
678  out:
679  	put_unlocked_entry(&xas, entry, WAKE_ALL);
680  	xas_unlock_irq(&xas);
681  	return ret;
682  }
683  
684  /*
685   * Delete DAX entry at @index from @mapping.  Wait for it
686   * to be unlocked before deleting it.
687   */
dax_delete_mapping_entry(struct address_space * mapping,pgoff_t index)688  int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
689  {
690  	int ret = __dax_invalidate_entry(mapping, index, true);
691  
692  	/*
693  	 * This gets called from truncate / punch_hole path. As such, the caller
694  	 * must hold locks protecting against concurrent modifications of the
695  	 * page cache (usually fs-private i_mmap_sem for writing). Since the
696  	 * caller has seen a DAX entry for this index, we better find it
697  	 * at that index as well...
698  	 */
699  	WARN_ON_ONCE(!ret);
700  	return ret;
701  }
702  
703  /*
704   * Invalidate DAX entry if it is clean.
705   */
dax_invalidate_mapping_entry_sync(struct address_space * mapping,pgoff_t index)706  int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
707  				      pgoff_t index)
708  {
709  	return __dax_invalidate_entry(mapping, index, false);
710  }
711  
copy_cow_page_dax(struct block_device * bdev,struct dax_device * dax_dev,sector_t sector,struct page * to,unsigned long vaddr)712  static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
713  			     sector_t sector, struct page *to, unsigned long vaddr)
714  {
715  	void *vto, *kaddr;
716  	pgoff_t pgoff;
717  	long rc;
718  	int id;
719  
720  	rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
721  	if (rc)
722  		return rc;
723  
724  	id = dax_read_lock();
725  	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
726  	if (rc < 0) {
727  		dax_read_unlock(id);
728  		return rc;
729  	}
730  	vto = kmap_atomic(to);
731  	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
732  	kunmap_atomic(vto);
733  	dax_read_unlock(id);
734  	return 0;
735  }
736  
737  /*
738   * By this point grab_mapping_entry() has ensured that we have a locked entry
739   * of the appropriate size so we don't have to worry about downgrading PMDs to
740   * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
741   * already in the tree, we will skip the insertion and just dirty the PMD as
742   * appropriate.
743   */
dax_insert_entry(struct xa_state * xas,struct address_space * mapping,struct vm_fault * vmf,void * entry,pfn_t pfn,unsigned long flags,bool dirty)744  static void *dax_insert_entry(struct xa_state *xas,
745  		struct address_space *mapping, struct vm_fault *vmf,
746  		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
747  {
748  	void *new_entry = dax_make_entry(pfn, flags);
749  
750  	if (dirty)
751  		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752  
753  	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
754  		unsigned long index = xas->xa_index;
755  		/* we are replacing a zero page with block mapping */
756  		if (dax_is_pmd_entry(entry))
757  			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
758  					PG_PMD_NR, false);
759  		else /* pte entry */
760  			unmap_mapping_pages(mapping, index, 1, false);
761  	}
762  
763  	xas_reset(xas);
764  	xas_lock_irq(xas);
765  	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
766  		void *old;
767  
768  		dax_disassociate_entry(entry, mapping, false);
769  		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
770  		/*
771  		 * Only swap our new entry into the page cache if the current
772  		 * entry is a zero page or an empty entry.  If a normal PTE or
773  		 * PMD entry is already in the cache, we leave it alone.  This
774  		 * means that if we are trying to insert a PTE and the
775  		 * existing entry is a PMD, we will just leave the PMD in the
776  		 * tree and dirty it if necessary.
777  		 */
778  		old = dax_lock_entry(xas, new_entry);
779  		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
780  					DAX_LOCKED));
781  		entry = new_entry;
782  	} else {
783  		xas_load(xas);	/* Walk the xa_state */
784  	}
785  
786  	if (dirty)
787  		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
788  
789  	xas_unlock_irq(xas);
790  	return entry;
791  }
792  
793  static inline
pgoff_address(pgoff_t pgoff,struct vm_area_struct * vma)794  unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
795  {
796  	unsigned long address;
797  
798  	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
799  	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
800  	return address;
801  }
802  
803  /* Walk all mappings of a given index of a file and writeprotect them */
dax_entry_mkclean(struct address_space * mapping,pgoff_t index,unsigned long pfn)804  static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
805  		unsigned long pfn)
806  {
807  	struct vm_area_struct *vma;
808  	pte_t pte, *ptep = NULL;
809  	pmd_t *pmdp = NULL;
810  	spinlock_t *ptl;
811  
812  	i_mmap_lock_read(mapping);
813  	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
814  		struct mmu_notifier_range range;
815  		unsigned long address;
816  
817  		cond_resched();
818  
819  		if (!(vma->vm_flags & VM_SHARED))
820  			continue;
821  
822  		address = pgoff_address(index, vma);
823  
824  		/*
825  		 * follow_invalidate_pte() will use the range to call
826  		 * mmu_notifier_invalidate_range_start() on our behalf before
827  		 * taking any lock.
828  		 */
829  		if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
830  					  &pmdp, &ptl))
831  			continue;
832  
833  		/*
834  		 * No need to call mmu_notifier_invalidate_range() as we are
835  		 * downgrading page table protection not changing it to point
836  		 * to a new page.
837  		 *
838  		 * See Documentation/vm/mmu_notifier.rst
839  		 */
840  		if (pmdp) {
841  #ifdef CONFIG_FS_DAX_PMD
842  			pmd_t pmd;
843  
844  			if (pfn != pmd_pfn(*pmdp))
845  				goto unlock_pmd;
846  			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
847  				goto unlock_pmd;
848  
849  			flush_cache_range(vma, address,
850  					  address + HPAGE_PMD_SIZE);
851  			pmd = pmdp_invalidate(vma, address, pmdp);
852  			pmd = pmd_wrprotect(pmd);
853  			pmd = pmd_mkclean(pmd);
854  			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
855  unlock_pmd:
856  #endif
857  			spin_unlock(ptl);
858  		} else {
859  			if (pfn != pte_pfn(*ptep))
860  				goto unlock_pte;
861  			if (!pte_dirty(*ptep) && !pte_write(*ptep))
862  				goto unlock_pte;
863  
864  			flush_cache_page(vma, address, pfn);
865  			pte = ptep_clear_flush(vma, address, ptep);
866  			pte = pte_wrprotect(pte);
867  			pte = pte_mkclean(pte);
868  			set_pte_at(vma->vm_mm, address, ptep, pte);
869  unlock_pte:
870  			pte_unmap_unlock(ptep, ptl);
871  		}
872  
873  		mmu_notifier_invalidate_range_end(&range);
874  	}
875  	i_mmap_unlock_read(mapping);
876  }
877  
dax_writeback_one(struct xa_state * xas,struct dax_device * dax_dev,struct address_space * mapping,void * entry)878  static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
879  		struct address_space *mapping, void *entry)
880  {
881  	unsigned long pfn, index, count;
882  	long ret = 0;
883  
884  	/*
885  	 * A page got tagged dirty in DAX mapping? Something is seriously
886  	 * wrong.
887  	 */
888  	if (WARN_ON(!xa_is_value(entry)))
889  		return -EIO;
890  
891  	if (unlikely(dax_is_locked(entry))) {
892  		void *old_entry = entry;
893  
894  		entry = get_unlocked_entry(xas, 0);
895  
896  		/* Entry got punched out / reallocated? */
897  		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
898  			goto put_unlocked;
899  		/*
900  		 * Entry got reallocated elsewhere? No need to writeback.
901  		 * We have to compare pfns as we must not bail out due to
902  		 * difference in lockbit or entry type.
903  		 */
904  		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
905  			goto put_unlocked;
906  		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
907  					dax_is_zero_entry(entry))) {
908  			ret = -EIO;
909  			goto put_unlocked;
910  		}
911  
912  		/* Another fsync thread may have already done this entry */
913  		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
914  			goto put_unlocked;
915  	}
916  
917  	/* Lock the entry to serialize with page faults */
918  	dax_lock_entry(xas, entry);
919  
920  	/*
921  	 * We can clear the tag now but we have to be careful so that concurrent
922  	 * dax_writeback_one() calls for the same index cannot finish before we
923  	 * actually flush the caches. This is achieved as the calls will look
924  	 * at the entry only under the i_pages lock and once they do that
925  	 * they will see the entry locked and wait for it to unlock.
926  	 */
927  	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
928  	xas_unlock_irq(xas);
929  
930  	/*
931  	 * If dax_writeback_mapping_range() was given a wbc->range_start
932  	 * in the middle of a PMD, the 'index' we use needs to be
933  	 * aligned to the start of the PMD.
934  	 * This allows us to flush for PMD_SIZE and not have to worry about
935  	 * partial PMD writebacks.
936  	 */
937  	pfn = dax_to_pfn(entry);
938  	count = 1UL << dax_entry_order(entry);
939  	index = xas->xa_index & ~(count - 1);
940  
941  	dax_entry_mkclean(mapping, index, pfn);
942  	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
943  	/*
944  	 * After we have flushed the cache, we can clear the dirty tag. There
945  	 * cannot be new dirty data in the pfn after the flush has completed as
946  	 * the pfn mappings are writeprotected and fault waits for mapping
947  	 * entry lock.
948  	 */
949  	xas_reset(xas);
950  	xas_lock_irq(xas);
951  	xas_store(xas, entry);
952  	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
953  	dax_wake_entry(xas, entry, WAKE_NEXT);
954  
955  	trace_dax_writeback_one(mapping->host, index, count);
956  	return ret;
957  
958   put_unlocked:
959  	put_unlocked_entry(xas, entry, WAKE_NEXT);
960  	return ret;
961  }
962  
963  /*
964   * Flush the mapping to the persistent domain within the byte range of [start,
965   * end]. This is required by data integrity operations to ensure file data is
966   * on persistent storage prior to completion of the operation.
967   */
dax_writeback_mapping_range(struct address_space * mapping,struct dax_device * dax_dev,struct writeback_control * wbc)968  int dax_writeback_mapping_range(struct address_space *mapping,
969  		struct dax_device *dax_dev, struct writeback_control *wbc)
970  {
971  	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
972  	struct inode *inode = mapping->host;
973  	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
974  	void *entry;
975  	int ret = 0;
976  	unsigned int scanned = 0;
977  
978  	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
979  		return -EIO;
980  
981  	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
982  		return 0;
983  
984  	trace_dax_writeback_range(inode, xas.xa_index, end_index);
985  
986  	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
987  
988  	xas_lock_irq(&xas);
989  	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
990  		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
991  		if (ret < 0) {
992  			mapping_set_error(mapping, ret);
993  			break;
994  		}
995  		if (++scanned % XA_CHECK_SCHED)
996  			continue;
997  
998  		xas_pause(&xas);
999  		xas_unlock_irq(&xas);
1000  		cond_resched();
1001  		xas_lock_irq(&xas);
1002  	}
1003  	xas_unlock_irq(&xas);
1004  	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1005  	return ret;
1006  }
1007  EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1008  
dax_iomap_sector(struct iomap * iomap,loff_t pos)1009  static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1010  {
1011  	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1012  }
1013  
dax_iomap_pfn(struct iomap * iomap,loff_t pos,size_t size,pfn_t * pfnp)1014  static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1015  			 pfn_t *pfnp)
1016  {
1017  	const sector_t sector = dax_iomap_sector(iomap, pos);
1018  	pgoff_t pgoff;
1019  	int id, rc;
1020  	long length;
1021  
1022  	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1023  	if (rc)
1024  		return rc;
1025  	id = dax_read_lock();
1026  	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1027  				   NULL, pfnp);
1028  	if (length < 0) {
1029  		rc = length;
1030  		goto out;
1031  	}
1032  	rc = -EINVAL;
1033  	if (PFN_PHYS(length) < size)
1034  		goto out;
1035  	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1036  		goto out;
1037  	/* For larger pages we need devmap */
1038  	if (length > 1 && !pfn_t_devmap(*pfnp))
1039  		goto out;
1040  	rc = 0;
1041  out:
1042  	dax_read_unlock(id);
1043  	return rc;
1044  }
1045  
1046  /*
1047   * The user has performed a load from a hole in the file.  Allocating a new
1048   * page in the file would cause excessive storage usage for workloads with
1049   * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1050   * If this page is ever written to we will re-fault and change the mapping to
1051   * point to real DAX storage instead.
1052   */
dax_load_hole(struct xa_state * xas,struct address_space * mapping,void ** entry,struct vm_fault * vmf)1053  static vm_fault_t dax_load_hole(struct xa_state *xas,
1054  		struct address_space *mapping, void **entry,
1055  		struct vm_fault *vmf)
1056  {
1057  	struct inode *inode = mapping->host;
1058  	unsigned long vaddr = vmf->address;
1059  	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1060  	vm_fault_t ret;
1061  
1062  	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1063  			DAX_ZERO_PAGE, false);
1064  
1065  	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1066  	trace_dax_load_hole(inode, vmf, ret);
1067  	return ret;
1068  }
1069  
dax_iomap_zero(loff_t pos,u64 length,struct iomap * iomap)1070  s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
1071  {
1072  	sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1073  	pgoff_t pgoff;
1074  	long rc, id;
1075  	void *kaddr;
1076  	bool page_aligned = false;
1077  	unsigned offset = offset_in_page(pos);
1078  	unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1079  
1080  	if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1081  	    (size == PAGE_SIZE))
1082  		page_aligned = true;
1083  
1084  	rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1085  	if (rc)
1086  		return rc;
1087  
1088  	id = dax_read_lock();
1089  
1090  	if (page_aligned)
1091  		rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1092  	else
1093  		rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1094  	if (rc < 0) {
1095  		dax_read_unlock(id);
1096  		return rc;
1097  	}
1098  
1099  	if (!page_aligned) {
1100  		memset(kaddr + offset, 0, size);
1101  		dax_flush(iomap->dax_dev, kaddr + offset, size);
1102  	}
1103  	dax_read_unlock(id);
1104  	return size;
1105  }
1106  
1107  static loff_t
dax_iomap_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)1108  dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1109  		struct iomap *iomap, struct iomap *srcmap)
1110  {
1111  	struct block_device *bdev = iomap->bdev;
1112  	struct dax_device *dax_dev = iomap->dax_dev;
1113  	struct iov_iter *iter = data;
1114  	loff_t end = pos + length, done = 0;
1115  	ssize_t ret = 0;
1116  	size_t xfer;
1117  	int id;
1118  
1119  	if (iov_iter_rw(iter) == READ) {
1120  		end = min(end, i_size_read(inode));
1121  		if (pos >= end)
1122  			return 0;
1123  
1124  		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1125  			return iov_iter_zero(min(length, end - pos), iter);
1126  	}
1127  
1128  	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1129  		return -EIO;
1130  
1131  	/*
1132  	 * Write can allocate block for an area which has a hole page mapped
1133  	 * into page tables. We have to tear down these mappings so that data
1134  	 * written by write(2) is visible in mmap.
1135  	 */
1136  	if (iomap->flags & IOMAP_F_NEW) {
1137  		invalidate_inode_pages2_range(inode->i_mapping,
1138  					      pos >> PAGE_SHIFT,
1139  					      (end - 1) >> PAGE_SHIFT);
1140  	}
1141  
1142  	id = dax_read_lock();
1143  	while (pos < end) {
1144  		unsigned offset = pos & (PAGE_SIZE - 1);
1145  		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1146  		const sector_t sector = dax_iomap_sector(iomap, pos);
1147  		ssize_t map_len;
1148  		pgoff_t pgoff;
1149  		void *kaddr;
1150  
1151  		if (fatal_signal_pending(current)) {
1152  			ret = -EINTR;
1153  			break;
1154  		}
1155  
1156  		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1157  		if (ret)
1158  			break;
1159  
1160  		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1161  				&kaddr, NULL);
1162  		if (map_len < 0) {
1163  			ret = map_len;
1164  			break;
1165  		}
1166  
1167  		map_len = PFN_PHYS(map_len);
1168  		kaddr += offset;
1169  		map_len -= offset;
1170  		if (map_len > end - pos)
1171  			map_len = end - pos;
1172  
1173  		/*
1174  		 * The userspace address for the memory copy has already been
1175  		 * validated via access_ok() in either vfs_read() or
1176  		 * vfs_write(), depending on which operation we are doing.
1177  		 */
1178  		if (iov_iter_rw(iter) == WRITE)
1179  			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1180  					map_len, iter);
1181  		else
1182  			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1183  					map_len, iter);
1184  
1185  		pos += xfer;
1186  		length -= xfer;
1187  		done += xfer;
1188  
1189  		if (xfer == 0)
1190  			ret = -EFAULT;
1191  		if (xfer < map_len)
1192  			break;
1193  	}
1194  	dax_read_unlock(id);
1195  
1196  	return done ? done : ret;
1197  }
1198  
1199  /**
1200   * dax_iomap_rw - Perform I/O to a DAX file
1201   * @iocb:	The control block for this I/O
1202   * @iter:	The addresses to do I/O from or to
1203   * @ops:	iomap ops passed from the file system
1204   *
1205   * This function performs read and write operations to directly mapped
1206   * persistent memory.  The callers needs to take care of read/write exclusion
1207   * and evicting any page cache pages in the region under I/O.
1208   */
1209  ssize_t
dax_iomap_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)1210  dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1211  		const struct iomap_ops *ops)
1212  {
1213  	struct address_space *mapping = iocb->ki_filp->f_mapping;
1214  	struct inode *inode = mapping->host;
1215  	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1216  	unsigned flags = 0;
1217  
1218  	if (iov_iter_rw(iter) == WRITE) {
1219  		lockdep_assert_held_write(&inode->i_rwsem);
1220  		flags |= IOMAP_WRITE;
1221  	} else {
1222  		lockdep_assert_held(&inode->i_rwsem);
1223  	}
1224  
1225  	if (iocb->ki_flags & IOCB_NOWAIT)
1226  		flags |= IOMAP_NOWAIT;
1227  
1228  	while (iov_iter_count(iter)) {
1229  		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1230  				iter, dax_iomap_actor);
1231  		if (ret <= 0)
1232  			break;
1233  		pos += ret;
1234  		done += ret;
1235  	}
1236  
1237  	iocb->ki_pos += done;
1238  	return done ? done : ret;
1239  }
1240  EXPORT_SYMBOL_GPL(dax_iomap_rw);
1241  
dax_fault_return(int error)1242  static vm_fault_t dax_fault_return(int error)
1243  {
1244  	if (error == 0)
1245  		return VM_FAULT_NOPAGE;
1246  	return vmf_error(error);
1247  }
1248  
1249  /*
1250   * MAP_SYNC on a dax mapping guarantees dirty metadata is
1251   * flushed on write-faults (non-cow), but not read-faults.
1252   */
dax_fault_is_synchronous(unsigned long flags,struct vm_area_struct * vma,struct iomap * iomap)1253  static bool dax_fault_is_synchronous(unsigned long flags,
1254  		struct vm_area_struct *vma, struct iomap *iomap)
1255  {
1256  	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1257  		&& (iomap->flags & IOMAP_F_DIRTY);
1258  }
1259  
dax_iomap_pte_fault(struct vm_fault * vmf,pfn_t * pfnp,int * iomap_errp,const struct iomap_ops * ops)1260  static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1261  			       int *iomap_errp, const struct iomap_ops *ops)
1262  {
1263  	struct vm_area_struct *vma = vmf->vma;
1264  	struct address_space *mapping = vma->vm_file->f_mapping;
1265  	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1266  	struct inode *inode = mapping->host;
1267  	unsigned long vaddr = vmf->address;
1268  	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1269  	struct iomap iomap = { .type = IOMAP_HOLE };
1270  	struct iomap srcmap = { .type = IOMAP_HOLE };
1271  	unsigned flags = IOMAP_FAULT;
1272  	int error, major = 0;
1273  	bool write = vmf->flags & FAULT_FLAG_WRITE;
1274  	bool sync;
1275  	vm_fault_t ret = 0;
1276  	void *entry;
1277  	pfn_t pfn;
1278  
1279  	trace_dax_pte_fault(inode, vmf, ret);
1280  	/*
1281  	 * Check whether offset isn't beyond end of file now. Caller is supposed
1282  	 * to hold locks serializing us with truncate / punch hole so this is
1283  	 * a reliable test.
1284  	 */
1285  	if (pos >= i_size_read(inode)) {
1286  		ret = VM_FAULT_SIGBUS;
1287  		goto out;
1288  	}
1289  
1290  	if (write && !vmf->cow_page)
1291  		flags |= IOMAP_WRITE;
1292  
1293  	entry = grab_mapping_entry(&xas, mapping, 0);
1294  	if (xa_is_internal(entry)) {
1295  		ret = xa_to_internal(entry);
1296  		goto out;
1297  	}
1298  
1299  	/*
1300  	 * It is possible, particularly with mixed reads & writes to private
1301  	 * mappings, that we have raced with a PMD fault that overlaps with
1302  	 * the PTE we need to set up.  If so just return and the fault will be
1303  	 * retried.
1304  	 */
1305  	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1306  		ret = VM_FAULT_NOPAGE;
1307  		goto unlock_entry;
1308  	}
1309  
1310  	/*
1311  	 * Note that we don't bother to use iomap_apply here: DAX required
1312  	 * the file system block size to be equal the page size, which means
1313  	 * that we never have to deal with more than a single extent here.
1314  	 */
1315  	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1316  	if (iomap_errp)
1317  		*iomap_errp = error;
1318  	if (error) {
1319  		ret = dax_fault_return(error);
1320  		goto unlock_entry;
1321  	}
1322  	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1323  		error = -EIO;	/* fs corruption? */
1324  		goto error_finish_iomap;
1325  	}
1326  
1327  	if (vmf->cow_page) {
1328  		sector_t sector = dax_iomap_sector(&iomap, pos);
1329  
1330  		switch (iomap.type) {
1331  		case IOMAP_HOLE:
1332  		case IOMAP_UNWRITTEN:
1333  			clear_user_highpage(vmf->cow_page, vaddr);
1334  			break;
1335  		case IOMAP_MAPPED:
1336  			error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1337  						  sector, vmf->cow_page, vaddr);
1338  			break;
1339  		default:
1340  			WARN_ON_ONCE(1);
1341  			error = -EIO;
1342  			break;
1343  		}
1344  
1345  		if (error)
1346  			goto error_finish_iomap;
1347  
1348  		__SetPageUptodate(vmf->cow_page);
1349  		ret = finish_fault(vmf);
1350  		if (!ret)
1351  			ret = VM_FAULT_DONE_COW;
1352  		goto finish_iomap;
1353  	}
1354  
1355  	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1356  
1357  	switch (iomap.type) {
1358  	case IOMAP_MAPPED:
1359  		if (iomap.flags & IOMAP_F_NEW) {
1360  			count_vm_event(PGMAJFAULT);
1361  			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1362  			major = VM_FAULT_MAJOR;
1363  		}
1364  		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1365  		if (error < 0)
1366  			goto error_finish_iomap;
1367  
1368  		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1369  						 0, write && !sync);
1370  
1371  		/*
1372  		 * If we are doing synchronous page fault and inode needs fsync,
1373  		 * we can insert PTE into page tables only after that happens.
1374  		 * Skip insertion for now and return the pfn so that caller can
1375  		 * insert it after fsync is done.
1376  		 */
1377  		if (sync) {
1378  			if (WARN_ON_ONCE(!pfnp)) {
1379  				error = -EIO;
1380  				goto error_finish_iomap;
1381  			}
1382  			*pfnp = pfn;
1383  			ret = VM_FAULT_NEEDDSYNC | major;
1384  			goto finish_iomap;
1385  		}
1386  		trace_dax_insert_mapping(inode, vmf, entry);
1387  		if (write)
1388  			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1389  		else
1390  			ret = vmf_insert_mixed(vma, vaddr, pfn);
1391  
1392  		goto finish_iomap;
1393  	case IOMAP_UNWRITTEN:
1394  	case IOMAP_HOLE:
1395  		if (!write) {
1396  			ret = dax_load_hole(&xas, mapping, &entry, vmf);
1397  			goto finish_iomap;
1398  		}
1399  		fallthrough;
1400  	default:
1401  		WARN_ON_ONCE(1);
1402  		error = -EIO;
1403  		break;
1404  	}
1405  
1406   error_finish_iomap:
1407  	ret = dax_fault_return(error);
1408   finish_iomap:
1409  	if (ops->iomap_end) {
1410  		int copied = PAGE_SIZE;
1411  
1412  		if (ret & VM_FAULT_ERROR)
1413  			copied = 0;
1414  		/*
1415  		 * The fault is done by now and there's no way back (other
1416  		 * thread may be already happily using PTE we have installed).
1417  		 * Just ignore error from ->iomap_end since we cannot do much
1418  		 * with it.
1419  		 */
1420  		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1421  	}
1422   unlock_entry:
1423  	dax_unlock_entry(&xas, entry);
1424   out:
1425  	trace_dax_pte_fault_done(inode, vmf, ret);
1426  	return ret | major;
1427  }
1428  
1429  #ifdef CONFIG_FS_DAX_PMD
dax_pmd_load_hole(struct xa_state * xas,struct vm_fault * vmf,struct iomap * iomap,void ** entry)1430  static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1431  		struct iomap *iomap, void **entry)
1432  {
1433  	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1434  	unsigned long pmd_addr = vmf->address & PMD_MASK;
1435  	struct vm_area_struct *vma = vmf->vma;
1436  	struct inode *inode = mapping->host;
1437  	pgtable_t pgtable = NULL;
1438  	struct page *zero_page;
1439  	spinlock_t *ptl;
1440  	pmd_t pmd_entry;
1441  	pfn_t pfn;
1442  
1443  	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1444  
1445  	if (unlikely(!zero_page))
1446  		goto fallback;
1447  
1448  	pfn = page_to_pfn_t(zero_page);
1449  	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1450  			DAX_PMD | DAX_ZERO_PAGE, false);
1451  
1452  	if (arch_needs_pgtable_deposit()) {
1453  		pgtable = pte_alloc_one(vma->vm_mm);
1454  		if (!pgtable)
1455  			return VM_FAULT_OOM;
1456  	}
1457  
1458  	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1459  	if (!pmd_none(*(vmf->pmd))) {
1460  		spin_unlock(ptl);
1461  		goto fallback;
1462  	}
1463  
1464  	if (pgtable) {
1465  		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1466  		mm_inc_nr_ptes(vma->vm_mm);
1467  	}
1468  	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1469  	pmd_entry = pmd_mkhuge(pmd_entry);
1470  	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1471  	spin_unlock(ptl);
1472  	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1473  	return VM_FAULT_NOPAGE;
1474  
1475  fallback:
1476  	if (pgtable)
1477  		pte_free(vma->vm_mm, pgtable);
1478  	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1479  	return VM_FAULT_FALLBACK;
1480  }
1481  
dax_iomap_pmd_fault(struct vm_fault * vmf,pfn_t * pfnp,const struct iomap_ops * ops)1482  static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1483  			       const struct iomap_ops *ops)
1484  {
1485  	struct vm_area_struct *vma = vmf->vma;
1486  	struct address_space *mapping = vma->vm_file->f_mapping;
1487  	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1488  	unsigned long pmd_addr = vmf->address & PMD_MASK;
1489  	bool write = vmf->flags & FAULT_FLAG_WRITE;
1490  	bool sync;
1491  	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1492  	struct inode *inode = mapping->host;
1493  	vm_fault_t result = VM_FAULT_FALLBACK;
1494  	struct iomap iomap = { .type = IOMAP_HOLE };
1495  	struct iomap srcmap = { .type = IOMAP_HOLE };
1496  	pgoff_t max_pgoff;
1497  	void *entry;
1498  	loff_t pos;
1499  	int error;
1500  	pfn_t pfn;
1501  
1502  	/*
1503  	 * Check whether offset isn't beyond end of file now. Caller is
1504  	 * supposed to hold locks serializing us with truncate / punch hole so
1505  	 * this is a reliable test.
1506  	 */
1507  	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1508  
1509  	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1510  
1511  	/*
1512  	 * Make sure that the faulting address's PMD offset (color) matches
1513  	 * the PMD offset from the start of the file.  This is necessary so
1514  	 * that a PMD range in the page table overlaps exactly with a PMD
1515  	 * range in the page cache.
1516  	 */
1517  	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1518  	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1519  		goto fallback;
1520  
1521  	/* Fall back to PTEs if we're going to COW */
1522  	if (write && !(vma->vm_flags & VM_SHARED))
1523  		goto fallback;
1524  
1525  	/* If the PMD would extend outside the VMA */
1526  	if (pmd_addr < vma->vm_start)
1527  		goto fallback;
1528  	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1529  		goto fallback;
1530  
1531  	if (xas.xa_index >= max_pgoff) {
1532  		result = VM_FAULT_SIGBUS;
1533  		goto out;
1534  	}
1535  
1536  	/* If the PMD would extend beyond the file size */
1537  	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1538  		goto fallback;
1539  
1540  	/*
1541  	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1542  	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1543  	 * entry is already in the array, for instance), it will return
1544  	 * VM_FAULT_FALLBACK.
1545  	 */
1546  	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1547  	if (xa_is_internal(entry)) {
1548  		result = xa_to_internal(entry);
1549  		goto fallback;
1550  	}
1551  
1552  	/*
1553  	 * It is possible, particularly with mixed reads & writes to private
1554  	 * mappings, that we have raced with a PTE fault that overlaps with
1555  	 * the PMD we need to set up.  If so just return and the fault will be
1556  	 * retried.
1557  	 */
1558  	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1559  			!pmd_devmap(*vmf->pmd)) {
1560  		result = 0;
1561  		goto unlock_entry;
1562  	}
1563  
1564  	/*
1565  	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1566  	 * setting up a mapping, so really we're using iomap_begin() as a way
1567  	 * to look up our filesystem block.
1568  	 */
1569  	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1570  	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1571  			&srcmap);
1572  	if (error)
1573  		goto unlock_entry;
1574  
1575  	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1576  		goto finish_iomap;
1577  
1578  	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1579  
1580  	switch (iomap.type) {
1581  	case IOMAP_MAPPED:
1582  		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1583  		if (error < 0)
1584  			goto finish_iomap;
1585  
1586  		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1587  						DAX_PMD, write && !sync);
1588  
1589  		/*
1590  		 * If we are doing synchronous page fault and inode needs fsync,
1591  		 * we can insert PMD into page tables only after that happens.
1592  		 * Skip insertion for now and return the pfn so that caller can
1593  		 * insert it after fsync is done.
1594  		 */
1595  		if (sync) {
1596  			if (WARN_ON_ONCE(!pfnp))
1597  				goto finish_iomap;
1598  			*pfnp = pfn;
1599  			result = VM_FAULT_NEEDDSYNC;
1600  			goto finish_iomap;
1601  		}
1602  
1603  		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1604  		result = vmf_insert_pfn_pmd(vmf, pfn, write);
1605  		break;
1606  	case IOMAP_UNWRITTEN:
1607  	case IOMAP_HOLE:
1608  		if (WARN_ON_ONCE(write))
1609  			break;
1610  		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1611  		break;
1612  	default:
1613  		WARN_ON_ONCE(1);
1614  		break;
1615  	}
1616  
1617   finish_iomap:
1618  	if (ops->iomap_end) {
1619  		int copied = PMD_SIZE;
1620  
1621  		if (result == VM_FAULT_FALLBACK)
1622  			copied = 0;
1623  		/*
1624  		 * The fault is done by now and there's no way back (other
1625  		 * thread may be already happily using PMD we have installed).
1626  		 * Just ignore error from ->iomap_end since we cannot do much
1627  		 * with it.
1628  		 */
1629  		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1630  				&iomap);
1631  	}
1632   unlock_entry:
1633  	dax_unlock_entry(&xas, entry);
1634   fallback:
1635  	if (result == VM_FAULT_FALLBACK) {
1636  		split_huge_pmd(vma, vmf->pmd, vmf->address);
1637  		count_vm_event(THP_FAULT_FALLBACK);
1638  	}
1639  out:
1640  	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1641  	return result;
1642  }
1643  #else
dax_iomap_pmd_fault(struct vm_fault * vmf,pfn_t * pfnp,const struct iomap_ops * ops)1644  static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1645  			       const struct iomap_ops *ops)
1646  {
1647  	return VM_FAULT_FALLBACK;
1648  }
1649  #endif /* CONFIG_FS_DAX_PMD */
1650  
1651  /**
1652   * dax_iomap_fault - handle a page fault on a DAX file
1653   * @vmf: The description of the fault
1654   * @pe_size: Size of the page to fault in
1655   * @pfnp: PFN to insert for synchronous faults if fsync is required
1656   * @iomap_errp: Storage for detailed error code in case of error
1657   * @ops: Iomap ops passed from the file system
1658   *
1659   * When a page fault occurs, filesystems may call this helper in
1660   * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1661   * has done all the necessary locking for page fault to proceed
1662   * successfully.
1663   */
dax_iomap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,pfn_t * pfnp,int * iomap_errp,const struct iomap_ops * ops)1664  vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1665  		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1666  {
1667  	switch (pe_size) {
1668  	case PE_SIZE_PTE:
1669  		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1670  	case PE_SIZE_PMD:
1671  		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1672  	default:
1673  		return VM_FAULT_FALLBACK;
1674  	}
1675  }
1676  EXPORT_SYMBOL_GPL(dax_iomap_fault);
1677  
1678  /*
1679   * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1680   * @vmf: The description of the fault
1681   * @pfn: PFN to insert
1682   * @order: Order of entry to insert.
1683   *
1684   * This function inserts a writeable PTE or PMD entry into the page tables
1685   * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1686   */
1687  static vm_fault_t
dax_insert_pfn_mkwrite(struct vm_fault * vmf,pfn_t pfn,unsigned int order)1688  dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1689  {
1690  	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1691  	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1692  	void *entry;
1693  	vm_fault_t ret;
1694  
1695  	xas_lock_irq(&xas);
1696  	entry = get_unlocked_entry(&xas, order);
1697  	/* Did we race with someone splitting entry or so? */
1698  	if (!entry || dax_is_conflict(entry) ||
1699  	    (order == 0 && !dax_is_pte_entry(entry))) {
1700  		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1701  		xas_unlock_irq(&xas);
1702  		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1703  						      VM_FAULT_NOPAGE);
1704  		return VM_FAULT_NOPAGE;
1705  	}
1706  	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1707  	dax_lock_entry(&xas, entry);
1708  	xas_unlock_irq(&xas);
1709  	if (order == 0)
1710  		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1711  #ifdef CONFIG_FS_DAX_PMD
1712  	else if (order == PMD_ORDER)
1713  		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1714  #endif
1715  	else
1716  		ret = VM_FAULT_FALLBACK;
1717  	dax_unlock_entry(&xas, entry);
1718  	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1719  	return ret;
1720  }
1721  
1722  /**
1723   * dax_finish_sync_fault - finish synchronous page fault
1724   * @vmf: The description of the fault
1725   * @pe_size: Size of entry to be inserted
1726   * @pfn: PFN to insert
1727   *
1728   * This function ensures that the file range touched by the page fault is
1729   * stored persistently on the media and handles inserting of appropriate page
1730   * table entry.
1731   */
dax_finish_sync_fault(struct vm_fault * vmf,enum page_entry_size pe_size,pfn_t pfn)1732  vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1733  		enum page_entry_size pe_size, pfn_t pfn)
1734  {
1735  	int err;
1736  	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1737  	unsigned int order = pe_order(pe_size);
1738  	size_t len = PAGE_SIZE << order;
1739  
1740  	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1741  	if (err)
1742  		return VM_FAULT_SIGBUS;
1743  	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1744  }
1745  EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1746