1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
9 * 04Jul2002 Andrew Morton
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
13 * 29Oct2002 Andrew Morton
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41
42 #include "internal.h"
43
44 /*
45 * How many user pages to map in one call to get_user_pages(). This determines
46 * the size of a structure in the slab cache
47 */
48 #define DIO_PAGES 64
49
50 /*
51 * Flags for dio_complete()
52 */
53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
55
56 /*
57 * This code generally works in units of "dio_blocks". A dio_block is
58 * somewhere between the hard sector size and the filesystem block size. it
59 * is determined on a per-invocation basis. When talking to the filesystem
60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
62 * to bio_block quantities by shifting left by blkfactor.
63 *
64 * If blkfactor is zero then the user's request was aligned to the filesystem's
65 * blocksize.
66 */
67
68 /* dio_state only used in the submission path */
69
70 struct dio_submit {
71 struct bio *bio; /* bio under assembly */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 sector_t block_in_file; /* Current offset into the underlying
83 file in dio_block units. */
84 unsigned blocks_available; /* At block_in_file. changes */
85 int reap_counter; /* rate limit reaping */
86 sector_t final_block_in_request;/* doesn't change */
87 int boundary; /* prev block is at a boundary */
88 get_block_t *get_block; /* block mapping function */
89 dio_submit_t *submit_io; /* IO submition function */
90
91 loff_t logical_offset_in_bio; /* current first logical block in bio */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
95
96 /*
97 * Deferred addition of a page to the dio. These variables are
98 * private to dio_send_cur_page(), submit_page_section() and
99 * dio_bio_add_page().
100 */
101 struct page *cur_page; /* The page */
102 unsigned cur_page_offset; /* Offset into it, in bytes */
103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
104 sector_t cur_page_block; /* Where it starts */
105 loff_t cur_page_fs_offset; /* Offset in file */
106
107 struct iov_iter *iter;
108 /*
109 * Page queue. These variables belong to dio_refill_pages() and
110 * dio_get_page().
111 */
112 unsigned head; /* next page to process */
113 unsigned tail; /* last valid page + 1 */
114 size_t from, to;
115 };
116
117 /* dio_state communicated between submission path and end_io */
118 struct dio {
119 int flags; /* doesn't change */
120 int op;
121 int op_flags;
122 blk_qc_t bio_cookie;
123 struct gendisk *bio_disk;
124 struct inode *inode;
125 loff_t i_size; /* i_size when submitted */
126 dio_iodone_t *end_io; /* IO completion function */
127
128 void *private; /* copy from map_bh.b_private */
129
130 /* BIO completion state */
131 spinlock_t bio_lock; /* protects BIO fields below */
132 int page_errors; /* errno from get_user_pages() */
133 int is_async; /* is IO async ? */
134 bool defer_completion; /* defer AIO completion to workqueue? */
135 bool should_dirty; /* if pages should be dirtied */
136 int io_error; /* IO error in completion path */
137 unsigned long refcount; /* direct_io_worker() and bios */
138 struct bio *bio_list; /* singly linked via bi_private */
139 struct task_struct *waiter; /* waiting task (NULL if none) */
140
141 /* AIO related stuff */
142 struct kiocb *iocb; /* kiocb */
143 ssize_t result; /* IO result */
144
145 /*
146 * pages[] (and any fields placed after it) are not zeroed out at
147 * allocation time. Don't add new fields after pages[] unless you
148 * wish that they not be zeroed.
149 */
150 union {
151 struct page *pages[DIO_PAGES]; /* page buffer */
152 struct work_struct complete_work;/* deferred AIO completion */
153 };
154 } ____cacheline_aligned_in_smp;
155
156 static struct kmem_cache *dio_cache __read_mostly;
157
158 /*
159 * How many pages are in the queue?
160 */
dio_pages_present(struct dio_submit * sdio)161 static inline unsigned dio_pages_present(struct dio_submit *sdio)
162 {
163 return sdio->tail - sdio->head;
164 }
165
166 /*
167 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
168 */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)169 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
170 {
171 ssize_t ret;
172
173 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
174 &sdio->from);
175
176 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
177 struct page *page = ZERO_PAGE(0);
178 /*
179 * A memory fault, but the filesystem has some outstanding
180 * mapped blocks. We need to use those blocks up to avoid
181 * leaking stale data in the file.
182 */
183 if (dio->page_errors == 0)
184 dio->page_errors = ret;
185 get_page(page);
186 dio->pages[0] = page;
187 sdio->head = 0;
188 sdio->tail = 1;
189 sdio->from = 0;
190 sdio->to = PAGE_SIZE;
191 return 0;
192 }
193
194 if (ret >= 0) {
195 iov_iter_advance(sdio->iter, ret);
196 ret += sdio->from;
197 sdio->head = 0;
198 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
199 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
200 return 0;
201 }
202 return ret;
203 }
204
205 /*
206 * Get another userspace page. Returns an ERR_PTR on error. Pages are
207 * buffered inside the dio so that we can call get_user_pages() against a
208 * decent number of pages, less frequently. To provide nicer use of the
209 * L1 cache.
210 */
dio_get_page(struct dio * dio,struct dio_submit * sdio)211 static inline struct page *dio_get_page(struct dio *dio,
212 struct dio_submit *sdio)
213 {
214 if (dio_pages_present(sdio) == 0) {
215 int ret;
216
217 ret = dio_refill_pages(dio, sdio);
218 if (ret)
219 return ERR_PTR(ret);
220 BUG_ON(dio_pages_present(sdio) == 0);
221 }
222 return dio->pages[sdio->head];
223 }
224
225 /*
226 * dio_complete() - called when all DIO BIO I/O has been completed
227 *
228 * This drops i_dio_count, lets interested parties know that a DIO operation
229 * has completed, and calculates the resulting return code for the operation.
230 *
231 * It lets the filesystem know if it registered an interest earlier via
232 * get_block. Pass the private field of the map buffer_head so that
233 * filesystems can use it to hold additional state between get_block calls and
234 * dio_complete.
235 */
dio_complete(struct dio * dio,ssize_t ret,unsigned int flags)236 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
237 {
238 loff_t offset = dio->iocb->ki_pos;
239 ssize_t transferred = 0;
240 int err;
241
242 /*
243 * AIO submission can race with bio completion to get here while
244 * expecting to have the last io completed by bio completion.
245 * In that case -EIOCBQUEUED is in fact not an error we want
246 * to preserve through this call.
247 */
248 if (ret == -EIOCBQUEUED)
249 ret = 0;
250
251 if (dio->result) {
252 transferred = dio->result;
253
254 /* Check for short read case */
255 if ((dio->op == REQ_OP_READ) &&
256 ((offset + transferred) > dio->i_size))
257 transferred = dio->i_size - offset;
258 /* ignore EFAULT if some IO has been done */
259 if (unlikely(ret == -EFAULT) && transferred)
260 ret = 0;
261 }
262
263 if (ret == 0)
264 ret = dio->page_errors;
265 if (ret == 0)
266 ret = dio->io_error;
267 if (ret == 0)
268 ret = transferred;
269
270 if (dio->end_io) {
271 // XXX: ki_pos??
272 err = dio->end_io(dio->iocb, offset, ret, dio->private);
273 if (err)
274 ret = err;
275 }
276
277 /*
278 * Try again to invalidate clean pages which might have been cached by
279 * non-direct readahead, or faulted in by get_user_pages() if the source
280 * of the write was an mmap'ed region of the file we're writing. Either
281 * one is a pretty crazy thing to do, so we don't support it 100%. If
282 * this invalidation fails, tough, the write still worked...
283 *
284 * And this page cache invalidation has to be after dio->end_io(), as
285 * some filesystems convert unwritten extents to real allocations in
286 * end_io() when necessary, otherwise a racing buffer read would cache
287 * zeros from unwritten extents.
288 */
289 if (flags & DIO_COMPLETE_INVALIDATE &&
290 ret > 0 && dio->op == REQ_OP_WRITE &&
291 dio->inode->i_mapping->nrpages) {
292 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
293 offset >> PAGE_SHIFT,
294 (offset + ret - 1) >> PAGE_SHIFT);
295 if (err)
296 dio_warn_stale_pagecache(dio->iocb->ki_filp);
297 }
298
299 inode_dio_end(dio->inode);
300
301 if (flags & DIO_COMPLETE_ASYNC) {
302 /*
303 * generic_write_sync expects ki_pos to have been updated
304 * already, but the submission path only does this for
305 * synchronous I/O.
306 */
307 dio->iocb->ki_pos += transferred;
308
309 if (ret > 0 && dio->op == REQ_OP_WRITE)
310 ret = generic_write_sync(dio->iocb, ret);
311 dio->iocb->ki_complete(dio->iocb, ret, 0);
312 }
313
314 kmem_cache_free(dio_cache, dio);
315 return ret;
316 }
317
dio_aio_complete_work(struct work_struct * work)318 static void dio_aio_complete_work(struct work_struct *work)
319 {
320 struct dio *dio = container_of(work, struct dio, complete_work);
321
322 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
323 }
324
325 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
326
327 /*
328 * Asynchronous IO callback.
329 */
dio_bio_end_aio(struct bio * bio)330 static void dio_bio_end_aio(struct bio *bio)
331 {
332 struct dio *dio = bio->bi_private;
333 unsigned long remaining;
334 unsigned long flags;
335 bool defer_completion = false;
336
337 /* cleanup the bio */
338 dio_bio_complete(dio, bio);
339
340 spin_lock_irqsave(&dio->bio_lock, flags);
341 remaining = --dio->refcount;
342 if (remaining == 1 && dio->waiter)
343 wake_up_process(dio->waiter);
344 spin_unlock_irqrestore(&dio->bio_lock, flags);
345
346 if (remaining == 0) {
347 /*
348 * Defer completion when defer_completion is set or
349 * when the inode has pages mapped and this is AIO write.
350 * We need to invalidate those pages because there is a
351 * chance they contain stale data in the case buffered IO
352 * went in between AIO submission and completion into the
353 * same region.
354 */
355 if (dio->result)
356 defer_completion = dio->defer_completion ||
357 (dio->op == REQ_OP_WRITE &&
358 dio->inode->i_mapping->nrpages);
359 if (defer_completion) {
360 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
361 queue_work(dio->inode->i_sb->s_dio_done_wq,
362 &dio->complete_work);
363 } else {
364 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
365 }
366 }
367 }
368
369 /*
370 * The BIO completion handler simply queues the BIO up for the process-context
371 * handler.
372 *
373 * During I/O bi_private points at the dio. After I/O, bi_private is used to
374 * implement a singly-linked list of completed BIOs, at dio->bio_list.
375 */
dio_bio_end_io(struct bio * bio)376 static void dio_bio_end_io(struct bio *bio)
377 {
378 struct dio *dio = bio->bi_private;
379 unsigned long flags;
380
381 spin_lock_irqsave(&dio->bio_lock, flags);
382 bio->bi_private = dio->bio_list;
383 dio->bio_list = bio;
384 if (--dio->refcount == 1 && dio->waiter)
385 wake_up_process(dio->waiter);
386 spin_unlock_irqrestore(&dio->bio_lock, flags);
387 }
388
389 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)390 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
391 struct block_device *bdev,
392 sector_t first_sector, int nr_vecs)
393 {
394 struct bio *bio;
395
396 /*
397 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
398 * we request a valid number of vectors.
399 */
400 bio = bio_alloc(GFP_KERNEL, nr_vecs);
401
402 bio_set_dev(bio, bdev);
403 bio->bi_iter.bi_sector = first_sector;
404 bio_set_op_attrs(bio, dio->op, dio->op_flags);
405 if (dio->is_async)
406 bio->bi_end_io = dio_bio_end_aio;
407 else
408 bio->bi_end_io = dio_bio_end_io;
409
410 bio->bi_write_hint = dio->iocb->ki_hint;
411
412 sdio->bio = bio;
413 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
414 }
415
416 /*
417 * In the AIO read case we speculatively dirty the pages before starting IO.
418 * During IO completion, any of these pages which happen to have been written
419 * back will be redirtied by bio_check_pages_dirty().
420 *
421 * bios hold a dio reference between submit_bio and ->end_io.
422 */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)423 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
424 {
425 struct bio *bio = sdio->bio;
426 unsigned long flags;
427
428 bio->bi_private = dio;
429
430 spin_lock_irqsave(&dio->bio_lock, flags);
431 dio->refcount++;
432 spin_unlock_irqrestore(&dio->bio_lock, flags);
433
434 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
435 bio_set_pages_dirty(bio);
436
437 dio->bio_disk = bio->bi_disk;
438
439 if (sdio->submit_io) {
440 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
441 dio->bio_cookie = BLK_QC_T_NONE;
442 } else
443 dio->bio_cookie = submit_bio(bio);
444
445 sdio->bio = NULL;
446 sdio->boundary = 0;
447 sdio->logical_offset_in_bio = 0;
448 }
449
450 /*
451 * Release any resources in case of a failure
452 */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)453 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
454 {
455 while (sdio->head < sdio->tail)
456 put_page(dio->pages[sdio->head++]);
457 }
458
459 /*
460 * Wait for the next BIO to complete. Remove it and return it. NULL is
461 * returned once all BIOs have been completed. This must only be called once
462 * all bios have been issued so that dio->refcount can only decrease. This
463 * requires that that the caller hold a reference on the dio.
464 */
dio_await_one(struct dio * dio)465 static struct bio *dio_await_one(struct dio *dio)
466 {
467 unsigned long flags;
468 struct bio *bio = NULL;
469
470 spin_lock_irqsave(&dio->bio_lock, flags);
471
472 /*
473 * Wait as long as the list is empty and there are bios in flight. bio
474 * completion drops the count, maybe adds to the list, and wakes while
475 * holding the bio_lock so we don't need set_current_state()'s barrier
476 * and can call it after testing our condition.
477 */
478 while (dio->refcount > 1 && dio->bio_list == NULL) {
479 __set_current_state(TASK_UNINTERRUPTIBLE);
480 dio->waiter = current;
481 spin_unlock_irqrestore(&dio->bio_lock, flags);
482 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
483 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
484 blk_io_schedule();
485 /* wake up sets us TASK_RUNNING */
486 spin_lock_irqsave(&dio->bio_lock, flags);
487 dio->waiter = NULL;
488 }
489 if (dio->bio_list) {
490 bio = dio->bio_list;
491 dio->bio_list = bio->bi_private;
492 }
493 spin_unlock_irqrestore(&dio->bio_lock, flags);
494 return bio;
495 }
496
497 /*
498 * Process one completed BIO. No locks are held.
499 */
dio_bio_complete(struct dio * dio,struct bio * bio)500 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
501 {
502 blk_status_t err = bio->bi_status;
503 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
504
505 if (err) {
506 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
507 dio->io_error = -EAGAIN;
508 else
509 dio->io_error = -EIO;
510 }
511
512 if (dio->is_async && should_dirty) {
513 bio_check_pages_dirty(bio); /* transfers ownership */
514 } else {
515 bio_release_pages(bio, should_dirty);
516 bio_put(bio);
517 }
518 return err;
519 }
520
521 /*
522 * Wait on and process all in-flight BIOs. This must only be called once
523 * all bios have been issued so that the refcount can only decrease.
524 * This just waits for all bios to make it through dio_bio_complete. IO
525 * errors are propagated through dio->io_error and should be propagated via
526 * dio_complete().
527 */
dio_await_completion(struct dio * dio)528 static void dio_await_completion(struct dio *dio)
529 {
530 struct bio *bio;
531 do {
532 bio = dio_await_one(dio);
533 if (bio)
534 dio_bio_complete(dio, bio);
535 } while (bio);
536 }
537
538 /*
539 * A really large O_DIRECT read or write can generate a lot of BIOs. So
540 * to keep the memory consumption sane we periodically reap any completed BIOs
541 * during the BIO generation phase.
542 *
543 * This also helps to limit the peak amount of pinned userspace memory.
544 */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)545 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
546 {
547 int ret = 0;
548
549 if (sdio->reap_counter++ >= 64) {
550 while (dio->bio_list) {
551 unsigned long flags;
552 struct bio *bio;
553 int ret2;
554
555 spin_lock_irqsave(&dio->bio_lock, flags);
556 bio = dio->bio_list;
557 dio->bio_list = bio->bi_private;
558 spin_unlock_irqrestore(&dio->bio_lock, flags);
559 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
560 if (ret == 0)
561 ret = ret2;
562 }
563 sdio->reap_counter = 0;
564 }
565 return ret;
566 }
567
568 /*
569 * Create workqueue for deferred direct IO completions. We allocate the
570 * workqueue when it's first needed. This avoids creating workqueue for
571 * filesystems that don't need it and also allows us to create the workqueue
572 * late enough so the we can include s_id in the name of the workqueue.
573 */
sb_init_dio_done_wq(struct super_block * sb)574 int sb_init_dio_done_wq(struct super_block *sb)
575 {
576 struct workqueue_struct *old;
577 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
578 WQ_MEM_RECLAIM, 0,
579 sb->s_id);
580 if (!wq)
581 return -ENOMEM;
582 /*
583 * This has to be atomic as more DIOs can race to create the workqueue
584 */
585 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
586 /* Someone created workqueue before us? Free ours... */
587 if (old)
588 destroy_workqueue(wq);
589 return 0;
590 }
591
dio_set_defer_completion(struct dio * dio)592 static int dio_set_defer_completion(struct dio *dio)
593 {
594 struct super_block *sb = dio->inode->i_sb;
595
596 if (dio->defer_completion)
597 return 0;
598 dio->defer_completion = true;
599 if (!sb->s_dio_done_wq)
600 return sb_init_dio_done_wq(sb);
601 return 0;
602 }
603
604 /*
605 * Call into the fs to map some more disk blocks. We record the current number
606 * of available blocks at sdio->blocks_available. These are in units of the
607 * fs blocksize, i_blocksize(inode).
608 *
609 * The fs is allowed to map lots of blocks at once. If it wants to do that,
610 * it uses the passed inode-relative block number as the file offset, as usual.
611 *
612 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
613 * has remaining to do. The fs should not map more than this number of blocks.
614 *
615 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
616 * indicate how much contiguous disk space has been made available at
617 * bh->b_blocknr.
618 *
619 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
620 * This isn't very efficient...
621 *
622 * In the case of filesystem holes: the fs may return an arbitrarily-large
623 * hole by returning an appropriate value in b_size and by clearing
624 * buffer_mapped(). However the direct-io code will only process holes one
625 * block at a time - it will repeatedly call get_block() as it walks the hole.
626 */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)627 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
628 struct buffer_head *map_bh)
629 {
630 int ret;
631 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
632 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
633 unsigned long fs_count; /* Number of filesystem-sized blocks */
634 int create;
635 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
636 loff_t i_size;
637
638 /*
639 * If there was a memory error and we've overwritten all the
640 * mapped blocks then we can now return that memory error
641 */
642 ret = dio->page_errors;
643 if (ret == 0) {
644 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
645 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
646 fs_endblk = (sdio->final_block_in_request - 1) >>
647 sdio->blkfactor;
648 fs_count = fs_endblk - fs_startblk + 1;
649
650 map_bh->b_state = 0;
651 map_bh->b_size = fs_count << i_blkbits;
652
653 /*
654 * For writes that could fill holes inside i_size on a
655 * DIO_SKIP_HOLES filesystem we forbid block creations: only
656 * overwrites are permitted. We will return early to the caller
657 * once we see an unmapped buffer head returned, and the caller
658 * will fall back to buffered I/O.
659 *
660 * Otherwise the decision is left to the get_blocks method,
661 * which may decide to handle it or also return an unmapped
662 * buffer head.
663 */
664 create = dio->op == REQ_OP_WRITE;
665 if (dio->flags & DIO_SKIP_HOLES) {
666 i_size = i_size_read(dio->inode);
667 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
668 create = 0;
669 }
670
671 ret = (*sdio->get_block)(dio->inode, fs_startblk,
672 map_bh, create);
673
674 /* Store for completion */
675 dio->private = map_bh->b_private;
676
677 if (ret == 0 && buffer_defer_completion(map_bh))
678 ret = dio_set_defer_completion(dio);
679 }
680 return ret;
681 }
682
683 /*
684 * There is no bio. Make one now.
685 */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)686 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
687 sector_t start_sector, struct buffer_head *map_bh)
688 {
689 sector_t sector;
690 int ret, nr_pages;
691
692 ret = dio_bio_reap(dio, sdio);
693 if (ret)
694 goto out;
695 sector = start_sector << (sdio->blkbits - 9);
696 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
697 BUG_ON(nr_pages <= 0);
698 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
699 sdio->boundary = 0;
700 out:
701 return ret;
702 }
703
704 /*
705 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
706 * that was successful then update final_block_in_bio and take a ref against
707 * the just-added page.
708 *
709 * Return zero on success. Non-zero means the caller needs to start a new BIO.
710 */
dio_bio_add_page(struct dio_submit * sdio)711 static inline int dio_bio_add_page(struct dio_submit *sdio)
712 {
713 int ret;
714
715 ret = bio_add_page(sdio->bio, sdio->cur_page,
716 sdio->cur_page_len, sdio->cur_page_offset);
717 if (ret == sdio->cur_page_len) {
718 /*
719 * Decrement count only, if we are done with this page
720 */
721 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
722 sdio->pages_in_io--;
723 get_page(sdio->cur_page);
724 sdio->final_block_in_bio = sdio->cur_page_block +
725 (sdio->cur_page_len >> sdio->blkbits);
726 ret = 0;
727 } else {
728 ret = 1;
729 }
730 return ret;
731 }
732
733 /*
734 * Put cur_page under IO. The section of cur_page which is described by
735 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
736 * starts on-disk at cur_page_block.
737 *
738 * We take a ref against the page here (on behalf of its presence in the bio).
739 *
740 * The caller of this function is responsible for removing cur_page from the
741 * dio, and for dropping the refcount which came from that presence.
742 */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)743 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
744 struct buffer_head *map_bh)
745 {
746 int ret = 0;
747
748 if (sdio->bio) {
749 loff_t cur_offset = sdio->cur_page_fs_offset;
750 loff_t bio_next_offset = sdio->logical_offset_in_bio +
751 sdio->bio->bi_iter.bi_size;
752
753 /*
754 * See whether this new request is contiguous with the old.
755 *
756 * Btrfs cannot handle having logically non-contiguous requests
757 * submitted. For example if you have
758 *
759 * Logical: [0-4095][HOLE][8192-12287]
760 * Physical: [0-4095] [4096-8191]
761 *
762 * We cannot submit those pages together as one BIO. So if our
763 * current logical offset in the file does not equal what would
764 * be the next logical offset in the bio, submit the bio we
765 * have.
766 */
767 if (sdio->final_block_in_bio != sdio->cur_page_block ||
768 cur_offset != bio_next_offset)
769 dio_bio_submit(dio, sdio);
770 }
771
772 if (sdio->bio == NULL) {
773 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
774 if (ret)
775 goto out;
776 }
777
778 if (dio_bio_add_page(sdio) != 0) {
779 dio_bio_submit(dio, sdio);
780 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
781 if (ret == 0) {
782 ret = dio_bio_add_page(sdio);
783 BUG_ON(ret != 0);
784 }
785 }
786 out:
787 return ret;
788 }
789
790 /*
791 * An autonomous function to put a chunk of a page under deferred IO.
792 *
793 * The caller doesn't actually know (or care) whether this piece of page is in
794 * a BIO, or is under IO or whatever. We just take care of all possible
795 * situations here. The separation between the logic of do_direct_IO() and
796 * that of submit_page_section() is important for clarity. Please don't break.
797 *
798 * The chunk of page starts on-disk at blocknr.
799 *
800 * We perform deferred IO, by recording the last-submitted page inside our
801 * private part of the dio structure. If possible, we just expand the IO
802 * across that page here.
803 *
804 * If that doesn't work out then we put the old page into the bio and add this
805 * page to the dio instead.
806 */
807 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)808 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
809 unsigned offset, unsigned len, sector_t blocknr,
810 struct buffer_head *map_bh)
811 {
812 int ret = 0;
813 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */
814
815 if (dio->op == REQ_OP_WRITE) {
816 /*
817 * Read accounting is performed in submit_bio()
818 */
819 task_io_account_write(len);
820 }
821
822 /*
823 * Can we just grow the current page's presence in the dio?
824 */
825 if (sdio->cur_page == page &&
826 sdio->cur_page_offset + sdio->cur_page_len == offset &&
827 sdio->cur_page_block +
828 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
829 sdio->cur_page_len += len;
830 goto out;
831 }
832
833 /*
834 * If there's a deferred page already there then send it.
835 */
836 if (sdio->cur_page) {
837 ret = dio_send_cur_page(dio, sdio, map_bh);
838 put_page(sdio->cur_page);
839 sdio->cur_page = NULL;
840 if (ret)
841 return ret;
842 }
843
844 get_page(page); /* It is in dio */
845 sdio->cur_page = page;
846 sdio->cur_page_offset = offset;
847 sdio->cur_page_len = len;
848 sdio->cur_page_block = blocknr;
849 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
850 out:
851 /*
852 * If boundary then we want to schedule the IO now to
853 * avoid metadata seeks.
854 */
855 if (boundary) {
856 ret = dio_send_cur_page(dio, sdio, map_bh);
857 if (sdio->bio)
858 dio_bio_submit(dio, sdio);
859 put_page(sdio->cur_page);
860 sdio->cur_page = NULL;
861 }
862 return ret;
863 }
864
865 /*
866 * If we are not writing the entire block and get_block() allocated
867 * the block for us, we need to fill-in the unused portion of the
868 * block with zeros. This happens only if user-buffer, fileoffset or
869 * io length is not filesystem block-size multiple.
870 *
871 * `end' is zero if we're doing the start of the IO, 1 at the end of the
872 * IO.
873 */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)874 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
875 int end, struct buffer_head *map_bh)
876 {
877 unsigned dio_blocks_per_fs_block;
878 unsigned this_chunk_blocks; /* In dio_blocks */
879 unsigned this_chunk_bytes;
880 struct page *page;
881
882 sdio->start_zero_done = 1;
883 if (!sdio->blkfactor || !buffer_new(map_bh))
884 return;
885
886 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
887 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
888
889 if (!this_chunk_blocks)
890 return;
891
892 /*
893 * We need to zero out part of an fs block. It is either at the
894 * beginning or the end of the fs block.
895 */
896 if (end)
897 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
898
899 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
900
901 page = ZERO_PAGE(0);
902 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
903 sdio->next_block_for_io, map_bh))
904 return;
905
906 sdio->next_block_for_io += this_chunk_blocks;
907 }
908
909 /*
910 * Walk the user pages, and the file, mapping blocks to disk and generating
911 * a sequence of (page,offset,len,block) mappings. These mappings are injected
912 * into submit_page_section(), which takes care of the next stage of submission
913 *
914 * Direct IO against a blockdev is different from a file. Because we can
915 * happily perform page-sized but 512-byte aligned IOs. It is important that
916 * blockdev IO be able to have fine alignment and large sizes.
917 *
918 * So what we do is to permit the ->get_block function to populate bh.b_size
919 * with the size of IO which is permitted at this offset and this i_blkbits.
920 *
921 * For best results, the blockdev should be set up with 512-byte i_blkbits and
922 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
923 * fine alignment but still allows this function to work in PAGE_SIZE units.
924 */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)925 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
926 struct buffer_head *map_bh)
927 {
928 const unsigned blkbits = sdio->blkbits;
929 const unsigned i_blkbits = blkbits + sdio->blkfactor;
930 int ret = 0;
931
932 while (sdio->block_in_file < sdio->final_block_in_request) {
933 struct page *page;
934 size_t from, to;
935
936 page = dio_get_page(dio, sdio);
937 if (IS_ERR(page)) {
938 ret = PTR_ERR(page);
939 goto out;
940 }
941 from = sdio->head ? 0 : sdio->from;
942 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
943 sdio->head++;
944
945 while (from < to) {
946 unsigned this_chunk_bytes; /* # of bytes mapped */
947 unsigned this_chunk_blocks; /* # of blocks */
948 unsigned u;
949
950 if (sdio->blocks_available == 0) {
951 /*
952 * Need to go and map some more disk
953 */
954 unsigned long blkmask;
955 unsigned long dio_remainder;
956
957 ret = get_more_blocks(dio, sdio, map_bh);
958 if (ret) {
959 put_page(page);
960 goto out;
961 }
962 if (!buffer_mapped(map_bh))
963 goto do_holes;
964
965 sdio->blocks_available =
966 map_bh->b_size >> blkbits;
967 sdio->next_block_for_io =
968 map_bh->b_blocknr << sdio->blkfactor;
969 if (buffer_new(map_bh)) {
970 clean_bdev_aliases(
971 map_bh->b_bdev,
972 map_bh->b_blocknr,
973 map_bh->b_size >> i_blkbits);
974 }
975
976 if (!sdio->blkfactor)
977 goto do_holes;
978
979 blkmask = (1 << sdio->blkfactor) - 1;
980 dio_remainder = (sdio->block_in_file & blkmask);
981
982 /*
983 * If we are at the start of IO and that IO
984 * starts partway into a fs-block,
985 * dio_remainder will be non-zero. If the IO
986 * is a read then we can simply advance the IO
987 * cursor to the first block which is to be
988 * read. But if the IO is a write and the
989 * block was newly allocated we cannot do that;
990 * the start of the fs block must be zeroed out
991 * on-disk
992 */
993 if (!buffer_new(map_bh))
994 sdio->next_block_for_io += dio_remainder;
995 sdio->blocks_available -= dio_remainder;
996 }
997 do_holes:
998 /* Handle holes */
999 if (!buffer_mapped(map_bh)) {
1000 loff_t i_size_aligned;
1001
1002 /* AKPM: eargh, -ENOTBLK is a hack */
1003 if (dio->op == REQ_OP_WRITE) {
1004 put_page(page);
1005 return -ENOTBLK;
1006 }
1007
1008 /*
1009 * Be sure to account for a partial block as the
1010 * last block in the file
1011 */
1012 i_size_aligned = ALIGN(i_size_read(dio->inode),
1013 1 << blkbits);
1014 if (sdio->block_in_file >=
1015 i_size_aligned >> blkbits) {
1016 /* We hit eof */
1017 put_page(page);
1018 goto out;
1019 }
1020 zero_user(page, from, 1 << blkbits);
1021 sdio->block_in_file++;
1022 from += 1 << blkbits;
1023 dio->result += 1 << blkbits;
1024 goto next_block;
1025 }
1026
1027 /*
1028 * If we're performing IO which has an alignment which
1029 * is finer than the underlying fs, go check to see if
1030 * we must zero out the start of this block.
1031 */
1032 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1033 dio_zero_block(dio, sdio, 0, map_bh);
1034
1035 /*
1036 * Work out, in this_chunk_blocks, how much disk we
1037 * can add to this page
1038 */
1039 this_chunk_blocks = sdio->blocks_available;
1040 u = (to - from) >> blkbits;
1041 if (this_chunk_blocks > u)
1042 this_chunk_blocks = u;
1043 u = sdio->final_block_in_request - sdio->block_in_file;
1044 if (this_chunk_blocks > u)
1045 this_chunk_blocks = u;
1046 this_chunk_bytes = this_chunk_blocks << blkbits;
1047 BUG_ON(this_chunk_bytes == 0);
1048
1049 if (this_chunk_blocks == sdio->blocks_available)
1050 sdio->boundary = buffer_boundary(map_bh);
1051 ret = submit_page_section(dio, sdio, page,
1052 from,
1053 this_chunk_bytes,
1054 sdio->next_block_for_io,
1055 map_bh);
1056 if (ret) {
1057 put_page(page);
1058 goto out;
1059 }
1060 sdio->next_block_for_io += this_chunk_blocks;
1061
1062 sdio->block_in_file += this_chunk_blocks;
1063 from += this_chunk_bytes;
1064 dio->result += this_chunk_bytes;
1065 sdio->blocks_available -= this_chunk_blocks;
1066 next_block:
1067 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1068 if (sdio->block_in_file == sdio->final_block_in_request)
1069 break;
1070 }
1071
1072 /* Drop the ref which was taken in get_user_pages() */
1073 put_page(page);
1074 }
1075 out:
1076 return ret;
1077 }
1078
drop_refcount(struct dio * dio)1079 static inline int drop_refcount(struct dio *dio)
1080 {
1081 int ret2;
1082 unsigned long flags;
1083
1084 /*
1085 * Sync will always be dropping the final ref and completing the
1086 * operation. AIO can if it was a broken operation described above or
1087 * in fact if all the bios race to complete before we get here. In
1088 * that case dio_complete() translates the EIOCBQUEUED into the proper
1089 * return code that the caller will hand to ->complete().
1090 *
1091 * This is managed by the bio_lock instead of being an atomic_t so that
1092 * completion paths can drop their ref and use the remaining count to
1093 * decide to wake the submission path atomically.
1094 */
1095 spin_lock_irqsave(&dio->bio_lock, flags);
1096 ret2 = --dio->refcount;
1097 spin_unlock_irqrestore(&dio->bio_lock, flags);
1098 return ret2;
1099 }
1100
1101 /*
1102 * This is a library function for use by filesystem drivers.
1103 *
1104 * The locking rules are governed by the flags parameter:
1105 * - if the flags value contains DIO_LOCKING we use a fancy locking
1106 * scheme for dumb filesystems.
1107 * For writes this function is called under i_mutex and returns with
1108 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1109 * taken and dropped again before returning.
1110 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1111 * internal locking but rather rely on the filesystem to synchronize
1112 * direct I/O reads/writes versus each other and truncate.
1113 *
1114 * To help with locking against truncate we incremented the i_dio_count
1115 * counter before starting direct I/O, and decrement it once we are done.
1116 * Truncate can wait for it to reach zero to provide exclusion. It is
1117 * expected that filesystem provide exclusion between new direct I/O
1118 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1119 * but other filesystems need to take care of this on their own.
1120 *
1121 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1122 * is always inlined. Otherwise gcc is unable to split the structure into
1123 * individual fields and will generate much worse code. This is important
1124 * for the whole file.
1125 */
1126 static inline ssize_t
do_blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1127 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1128 struct block_device *bdev, struct iov_iter *iter,
1129 get_block_t get_block, dio_iodone_t end_io,
1130 dio_submit_t submit_io, int flags)
1131 {
1132 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1133 unsigned blkbits = i_blkbits;
1134 unsigned blocksize_mask = (1 << blkbits) - 1;
1135 ssize_t retval = -EINVAL;
1136 const size_t count = iov_iter_count(iter);
1137 loff_t offset = iocb->ki_pos;
1138 const loff_t end = offset + count;
1139 struct dio *dio;
1140 struct dio_submit sdio = { 0, };
1141 struct buffer_head map_bh = { 0, };
1142 struct blk_plug plug;
1143 unsigned long align = offset | iov_iter_alignment(iter);
1144
1145 /*
1146 * Avoid references to bdev if not absolutely needed to give
1147 * the early prefetch in the caller enough time.
1148 */
1149
1150 /* watch out for a 0 len io from a tricksy fs */
1151 if (iov_iter_rw(iter) == READ && !count)
1152 return 0;
1153
1154 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1155 if (!dio)
1156 return -ENOMEM;
1157 /*
1158 * Believe it or not, zeroing out the page array caused a .5%
1159 * performance regression in a database benchmark. So, we take
1160 * care to only zero out what's needed.
1161 */
1162 memset(dio, 0, offsetof(struct dio, pages));
1163
1164 dio->flags = flags;
1165 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1166 /* will be released by direct_io_worker */
1167 inode_lock(inode);
1168 }
1169
1170 /* Once we sampled i_size check for reads beyond EOF */
1171 dio->i_size = i_size_read(inode);
1172 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1173 retval = 0;
1174 goto fail_dio;
1175 }
1176
1177 if (align & blocksize_mask) {
1178 if (bdev)
1179 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1180 blocksize_mask = (1 << blkbits) - 1;
1181 if (align & blocksize_mask)
1182 goto fail_dio;
1183 }
1184
1185 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1186 struct address_space *mapping = iocb->ki_filp->f_mapping;
1187
1188 retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1189 if (retval)
1190 goto fail_dio;
1191 }
1192
1193 /*
1194 * For file extending writes updating i_size before data writeouts
1195 * complete can expose uninitialized blocks in dumb filesystems.
1196 * In that case we need to wait for I/O completion even if asked
1197 * for an asynchronous write.
1198 */
1199 if (is_sync_kiocb(iocb))
1200 dio->is_async = false;
1201 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1202 dio->is_async = false;
1203 else
1204 dio->is_async = true;
1205
1206 dio->inode = inode;
1207 if (iov_iter_rw(iter) == WRITE) {
1208 dio->op = REQ_OP_WRITE;
1209 dio->op_flags = REQ_SYNC | REQ_IDLE;
1210 if (iocb->ki_flags & IOCB_NOWAIT)
1211 dio->op_flags |= REQ_NOWAIT;
1212 } else {
1213 dio->op = REQ_OP_READ;
1214 }
1215 if (iocb->ki_flags & IOCB_HIPRI)
1216 dio->op_flags |= REQ_HIPRI;
1217
1218 /*
1219 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1220 * so that we can call ->fsync.
1221 */
1222 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1223 retval = 0;
1224 if (iocb->ki_flags & IOCB_DSYNC)
1225 retval = dio_set_defer_completion(dio);
1226 else if (!dio->inode->i_sb->s_dio_done_wq) {
1227 /*
1228 * In case of AIO write racing with buffered read we
1229 * need to defer completion. We can't decide this now,
1230 * however the workqueue needs to be initialized here.
1231 */
1232 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1233 }
1234 if (retval)
1235 goto fail_dio;
1236 }
1237
1238 /*
1239 * Will be decremented at I/O completion time.
1240 */
1241 inode_dio_begin(inode);
1242
1243 retval = 0;
1244 sdio.blkbits = blkbits;
1245 sdio.blkfactor = i_blkbits - blkbits;
1246 sdio.block_in_file = offset >> blkbits;
1247
1248 sdio.get_block = get_block;
1249 dio->end_io = end_io;
1250 sdio.submit_io = submit_io;
1251 sdio.final_block_in_bio = -1;
1252 sdio.next_block_for_io = -1;
1253
1254 dio->iocb = iocb;
1255
1256 spin_lock_init(&dio->bio_lock);
1257 dio->refcount = 1;
1258
1259 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1260 sdio.iter = iter;
1261 sdio.final_block_in_request = end >> blkbits;
1262
1263 /*
1264 * In case of non-aligned buffers, we may need 2 more
1265 * pages since we need to zero out first and last block.
1266 */
1267 if (unlikely(sdio.blkfactor))
1268 sdio.pages_in_io = 2;
1269
1270 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1271
1272 blk_start_plug(&plug);
1273
1274 retval = do_direct_IO(dio, &sdio, &map_bh);
1275 if (retval)
1276 dio_cleanup(dio, &sdio);
1277
1278 if (retval == -ENOTBLK) {
1279 /*
1280 * The remaining part of the request will be
1281 * be handled by buffered I/O when we return
1282 */
1283 retval = 0;
1284 }
1285 /*
1286 * There may be some unwritten disk at the end of a part-written
1287 * fs-block-sized block. Go zero that now.
1288 */
1289 dio_zero_block(dio, &sdio, 1, &map_bh);
1290
1291 if (sdio.cur_page) {
1292 ssize_t ret2;
1293
1294 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1295 if (retval == 0)
1296 retval = ret2;
1297 put_page(sdio.cur_page);
1298 sdio.cur_page = NULL;
1299 }
1300 if (sdio.bio)
1301 dio_bio_submit(dio, &sdio);
1302
1303 blk_finish_plug(&plug);
1304
1305 /*
1306 * It is possible that, we return short IO due to end of file.
1307 * In that case, we need to release all the pages we got hold on.
1308 */
1309 dio_cleanup(dio, &sdio);
1310
1311 /*
1312 * All block lookups have been performed. For READ requests
1313 * we can let i_mutex go now that its achieved its purpose
1314 * of protecting us from looking up uninitialized blocks.
1315 */
1316 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1317 inode_unlock(dio->inode);
1318
1319 /*
1320 * The only time we want to leave bios in flight is when a successful
1321 * partial aio read or full aio write have been setup. In that case
1322 * bio completion will call aio_complete. The only time it's safe to
1323 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1324 * This had *better* be the only place that raises -EIOCBQUEUED.
1325 */
1326 BUG_ON(retval == -EIOCBQUEUED);
1327 if (dio->is_async && retval == 0 && dio->result &&
1328 (iov_iter_rw(iter) == READ || dio->result == count))
1329 retval = -EIOCBQUEUED;
1330 else
1331 dio_await_completion(dio);
1332
1333 if (drop_refcount(dio) == 0) {
1334 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1335 } else
1336 BUG_ON(retval != -EIOCBQUEUED);
1337
1338 return retval;
1339
1340 fail_dio:
1341 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1342 inode_unlock(inode);
1343
1344 kmem_cache_free(dio_cache, dio);
1345 return retval;
1346 }
1347
__blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1348 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1349 struct block_device *bdev, struct iov_iter *iter,
1350 get_block_t get_block,
1351 dio_iodone_t end_io, dio_submit_t submit_io,
1352 int flags)
1353 {
1354 /*
1355 * The block device state is needed in the end to finally
1356 * submit everything. Since it's likely to be cache cold
1357 * prefetch it here as first thing to hide some of the
1358 * latency.
1359 *
1360 * Attempt to prefetch the pieces we likely need later.
1361 */
1362 prefetch(&bdev->bd_disk->part_tbl);
1363 prefetch(bdev->bd_disk->queue);
1364 prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES);
1365
1366 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1367 end_io, submit_io, flags);
1368 }
1369
1370 EXPORT_SYMBOL(__blockdev_direct_IO);
1371
dio_init(void)1372 static __init int dio_init(void)
1373 {
1374 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1375 return 0;
1376 }
1377 module_init(dio_init)
1378