• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22 
23 static struct kmem_cache *ino_entry_slab;
24 struct kmem_cache *f2fs_inode_entry_slab;
25 
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
27 {
28 	f2fs_build_fault_attr(sbi, 0, 0);
29 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
30 	if (!end_io)
31 		f2fs_flush_merged_writes(sbi);
32 }
33 
34 /*
35  * We guarantee no failure on the returned page.
36  */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
38 {
39 	struct address_space *mapping = META_MAPPING(sbi);
40 	struct page *page = NULL;
41 repeat:
42 	page = f2fs_grab_cache_page(mapping, index, false);
43 	if (!page) {
44 		cond_resched();
45 		goto repeat;
46 	}
47 	f2fs_wait_on_page_writeback(page, META, true, true);
48 	if (!PageUptodate(page))
49 		SetPageUptodate(page);
50 	return page;
51 }
52 
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)53 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
54 							bool is_meta)
55 {
56 	struct address_space *mapping = META_MAPPING(sbi);
57 	struct page *page;
58 	struct f2fs_io_info fio = {
59 		.sbi = sbi,
60 		.type = META,
61 		.op = REQ_OP_READ,
62 		.op_flags = REQ_META | REQ_PRIO,
63 		.old_blkaddr = index,
64 		.new_blkaddr = index,
65 		.encrypted_page = NULL,
66 		.is_por = !is_meta,
67 	};
68 	int err;
69 
70 	if (unlikely(!is_meta))
71 		fio.op_flags &= ~REQ_META;
72 repeat:
73 	page = f2fs_grab_cache_page(mapping, index, false);
74 	if (!page) {
75 		cond_resched();
76 		goto repeat;
77 	}
78 	if (PageUptodate(page))
79 		goto out;
80 
81 	fio.page = page;
82 
83 	err = f2fs_submit_page_bio(&fio);
84 	if (err) {
85 		f2fs_put_page(page, 1);
86 		return ERR_PTR(err);
87 	}
88 
89 	f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
90 
91 	lock_page(page);
92 	if (unlikely(page->mapping != mapping)) {
93 		f2fs_put_page(page, 1);
94 		goto repeat;
95 	}
96 
97 	if (unlikely(!PageUptodate(page))) {
98 		f2fs_put_page(page, 1);
99 		return ERR_PTR(-EIO);
100 	}
101 out:
102 	return page;
103 }
104 
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)105 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
106 {
107 	return __get_meta_page(sbi, index, true);
108 }
109 
f2fs_get_meta_page_retry(struct f2fs_sb_info * sbi,pgoff_t index)110 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
111 {
112 	struct page *page;
113 	int count = 0;
114 
115 retry:
116 	page = __get_meta_page(sbi, index, true);
117 	if (IS_ERR(page)) {
118 		if (PTR_ERR(page) == -EIO &&
119 				++count <= DEFAULT_RETRY_IO_COUNT)
120 			goto retry;
121 		f2fs_stop_checkpoint(sbi, false);
122 	}
123 	return page;
124 }
125 
126 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)127 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
128 {
129 	return __get_meta_page(sbi, index, false);
130 }
131 
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)132 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
133 							int type)
134 {
135 	struct seg_entry *se;
136 	unsigned int segno, offset;
137 	bool exist;
138 
139 	if (type == DATA_GENERIC)
140 		return true;
141 
142 	segno = GET_SEGNO(sbi, blkaddr);
143 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
144 	se = get_seg_entry(sbi, segno);
145 
146 	exist = f2fs_test_bit(offset, se->cur_valid_map);
147 	if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
148 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
149 			 blkaddr, exist);
150 		set_sbi_flag(sbi, SBI_NEED_FSCK);
151 		return exist;
152 	}
153 
154 	if (!exist && type == DATA_GENERIC_ENHANCE) {
155 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
156 			 blkaddr, exist);
157 		set_sbi_flag(sbi, SBI_NEED_FSCK);
158 		dump_stack();
159 	}
160 	return exist;
161 }
162 
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)163 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
164 					block_t blkaddr, int type)
165 {
166 	switch (type) {
167 	case META_NAT:
168 		break;
169 	case META_SIT:
170 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
171 			return false;
172 		break;
173 	case META_SSA:
174 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
175 			blkaddr < SM_I(sbi)->ssa_blkaddr))
176 			return false;
177 		break;
178 	case META_CP:
179 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
180 			blkaddr < __start_cp_addr(sbi)))
181 			return false;
182 		break;
183 	case META_POR:
184 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
185 			blkaddr < MAIN_BLKADDR(sbi)))
186 			return false;
187 		break;
188 	case DATA_GENERIC:
189 	case DATA_GENERIC_ENHANCE:
190 	case DATA_GENERIC_ENHANCE_READ:
191 	case DATA_GENERIC_ENHANCE_UPDATE:
192 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
193 				blkaddr < MAIN_BLKADDR(sbi))) {
194 			f2fs_warn(sbi, "access invalid blkaddr:%u",
195 				  blkaddr);
196 			set_sbi_flag(sbi, SBI_NEED_FSCK);
197 			dump_stack();
198 			return false;
199 		} else {
200 			return __is_bitmap_valid(sbi, blkaddr, type);
201 		}
202 		break;
203 	case META_GENERIC:
204 		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
205 			blkaddr >= MAIN_BLKADDR(sbi)))
206 			return false;
207 		break;
208 	default:
209 		BUG();
210 	}
211 
212 	return true;
213 }
214 
215 /*
216  * Readahead CP/NAT/SIT/SSA/POR pages
217  */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)218 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
219 							int type, bool sync)
220 {
221 	struct page *page;
222 	block_t blkno = start;
223 	struct f2fs_io_info fio = {
224 		.sbi = sbi,
225 		.type = META,
226 		.op = REQ_OP_READ,
227 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
228 		.encrypted_page = NULL,
229 		.in_list = false,
230 		.is_por = (type == META_POR),
231 	};
232 	struct blk_plug plug;
233 	int err;
234 
235 	if (unlikely(type == META_POR))
236 		fio.op_flags &= ~REQ_META;
237 
238 	blk_start_plug(&plug);
239 	for (; nrpages-- > 0; blkno++) {
240 
241 		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
242 			goto out;
243 
244 		switch (type) {
245 		case META_NAT:
246 			if (unlikely(blkno >=
247 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
248 				blkno = 0;
249 			/* get nat block addr */
250 			fio.new_blkaddr = current_nat_addr(sbi,
251 					blkno * NAT_ENTRY_PER_BLOCK);
252 			break;
253 		case META_SIT:
254 			if (unlikely(blkno >= TOTAL_SEGS(sbi)))
255 				goto out;
256 			/* get sit block addr */
257 			fio.new_blkaddr = current_sit_addr(sbi,
258 					blkno * SIT_ENTRY_PER_BLOCK);
259 			break;
260 		case META_SSA:
261 		case META_CP:
262 		case META_POR:
263 			fio.new_blkaddr = blkno;
264 			break;
265 		default:
266 			BUG();
267 		}
268 
269 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
270 						fio.new_blkaddr, false);
271 		if (!page)
272 			continue;
273 		if (PageUptodate(page)) {
274 			f2fs_put_page(page, 1);
275 			continue;
276 		}
277 
278 		fio.page = page;
279 		err = f2fs_submit_page_bio(&fio);
280 		f2fs_put_page(page, err ? 1 : 0);
281 
282 		if (!err)
283 			f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
284 	}
285 out:
286 	blk_finish_plug(&plug);
287 	return blkno - start;
288 }
289 
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)290 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
291 {
292 	struct page *page;
293 	bool readahead = false;
294 
295 	page = find_get_page(META_MAPPING(sbi), index);
296 	if (!page || !PageUptodate(page))
297 		readahead = true;
298 	f2fs_put_page(page, 0);
299 
300 	if (readahead)
301 		f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
302 }
303 
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)304 static int __f2fs_write_meta_page(struct page *page,
305 				struct writeback_control *wbc,
306 				enum iostat_type io_type)
307 {
308 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
309 
310 	trace_f2fs_writepage(page, META);
311 
312 	if (unlikely(f2fs_cp_error(sbi)))
313 		goto redirty_out;
314 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
315 		goto redirty_out;
316 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
317 		goto redirty_out;
318 
319 	f2fs_do_write_meta_page(sbi, page, io_type);
320 	dec_page_count(sbi, F2FS_DIRTY_META);
321 
322 	if (wbc->for_reclaim)
323 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
324 
325 	unlock_page(page);
326 
327 	if (unlikely(f2fs_cp_error(sbi)))
328 		f2fs_submit_merged_write(sbi, META);
329 
330 	return 0;
331 
332 redirty_out:
333 	redirty_page_for_writepage(wbc, page);
334 	return AOP_WRITEPAGE_ACTIVATE;
335 }
336 
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)337 static int f2fs_write_meta_page(struct page *page,
338 				struct writeback_control *wbc)
339 {
340 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
341 }
342 
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)343 static int f2fs_write_meta_pages(struct address_space *mapping,
344 				struct writeback_control *wbc)
345 {
346 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
347 	long diff, written;
348 
349 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
350 		goto skip_write;
351 
352 	/* collect a number of dirty meta pages and write together */
353 	if (wbc->sync_mode != WB_SYNC_ALL &&
354 			get_pages(sbi, F2FS_DIRTY_META) <
355 					nr_pages_to_skip(sbi, META))
356 		goto skip_write;
357 
358 	/* if locked failed, cp will flush dirty pages instead */
359 	if (!mutex_trylock(&sbi->cp_mutex))
360 		goto skip_write;
361 
362 	trace_f2fs_writepages(mapping->host, wbc, META);
363 	diff = nr_pages_to_write(sbi, META, wbc);
364 	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
365 	mutex_unlock(&sbi->cp_mutex);
366 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
367 	return 0;
368 
369 skip_write:
370 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
371 	trace_f2fs_writepages(mapping->host, wbc, META);
372 	return 0;
373 }
374 
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)375 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
376 				long nr_to_write, enum iostat_type io_type)
377 {
378 	struct address_space *mapping = META_MAPPING(sbi);
379 	pgoff_t index = 0, prev = ULONG_MAX;
380 	struct pagevec pvec;
381 	long nwritten = 0;
382 	int nr_pages;
383 	struct writeback_control wbc = {
384 		.for_reclaim = 0,
385 	};
386 	struct blk_plug plug;
387 
388 	pagevec_init(&pvec);
389 
390 	blk_start_plug(&plug);
391 
392 	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 				PAGECACHE_TAG_DIRTY))) {
394 		int i;
395 
396 		for (i = 0; i < nr_pages; i++) {
397 			struct page *page = pvec.pages[i];
398 
399 			if (prev == ULONG_MAX)
400 				prev = page->index - 1;
401 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
402 				pagevec_release(&pvec);
403 				goto stop;
404 			}
405 
406 			lock_page(page);
407 
408 			if (unlikely(page->mapping != mapping)) {
409 continue_unlock:
410 				unlock_page(page);
411 				continue;
412 			}
413 			if (!PageDirty(page)) {
414 				/* someone wrote it for us */
415 				goto continue_unlock;
416 			}
417 
418 			f2fs_wait_on_page_writeback(page, META, true, true);
419 
420 			if (!clear_page_dirty_for_io(page))
421 				goto continue_unlock;
422 
423 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
424 				unlock_page(page);
425 				break;
426 			}
427 			nwritten++;
428 			prev = page->index;
429 			if (unlikely(nwritten >= nr_to_write))
430 				break;
431 		}
432 		pagevec_release(&pvec);
433 		cond_resched();
434 	}
435 stop:
436 	if (nwritten)
437 		f2fs_submit_merged_write(sbi, type);
438 
439 	blk_finish_plug(&plug);
440 
441 	return nwritten;
442 }
443 
f2fs_set_meta_page_dirty(struct page * page)444 static int f2fs_set_meta_page_dirty(struct page *page)
445 {
446 	trace_f2fs_set_page_dirty(page, META);
447 
448 	if (!PageUptodate(page))
449 		SetPageUptodate(page);
450 	if (!PageDirty(page)) {
451 		__set_page_dirty_nobuffers(page);
452 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
453 		f2fs_set_page_private(page, 0);
454 		f2fs_trace_pid(page);
455 		return 1;
456 	}
457 	return 0;
458 }
459 
460 const struct address_space_operations f2fs_meta_aops = {
461 	.writepage	= f2fs_write_meta_page,
462 	.writepages	= f2fs_write_meta_pages,
463 	.set_page_dirty	= f2fs_set_meta_page_dirty,
464 	.invalidatepage = f2fs_invalidate_page,
465 	.releasepage	= f2fs_release_page,
466 #ifdef CONFIG_MIGRATION
467 	.migratepage    = f2fs_migrate_page,
468 #endif
469 };
470 
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)471 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
472 						unsigned int devidx, int type)
473 {
474 	struct inode_management *im = &sbi->im[type];
475 	struct ino_entry *e, *tmp;
476 
477 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
478 
479 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
480 
481 	spin_lock(&im->ino_lock);
482 	e = radix_tree_lookup(&im->ino_root, ino);
483 	if (!e) {
484 		e = tmp;
485 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
486 			f2fs_bug_on(sbi, 1);
487 
488 		memset(e, 0, sizeof(struct ino_entry));
489 		e->ino = ino;
490 
491 		list_add_tail(&e->list, &im->ino_list);
492 		if (type != ORPHAN_INO)
493 			im->ino_num++;
494 	}
495 
496 	if (type == FLUSH_INO)
497 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
498 
499 	spin_unlock(&im->ino_lock);
500 	radix_tree_preload_end();
501 
502 	if (e != tmp)
503 		kmem_cache_free(ino_entry_slab, tmp);
504 }
505 
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)506 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
507 {
508 	struct inode_management *im = &sbi->im[type];
509 	struct ino_entry *e;
510 
511 	spin_lock(&im->ino_lock);
512 	e = radix_tree_lookup(&im->ino_root, ino);
513 	if (e) {
514 		list_del(&e->list);
515 		radix_tree_delete(&im->ino_root, ino);
516 		im->ino_num--;
517 		spin_unlock(&im->ino_lock);
518 		kmem_cache_free(ino_entry_slab, e);
519 		return;
520 	}
521 	spin_unlock(&im->ino_lock);
522 }
523 
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)524 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
525 {
526 	/* add new dirty ino entry into list */
527 	__add_ino_entry(sbi, ino, 0, type);
528 }
529 
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)530 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
531 {
532 	/* remove dirty ino entry from list */
533 	__remove_ino_entry(sbi, ino, type);
534 }
535 
536 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)537 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
538 {
539 	struct inode_management *im = &sbi->im[mode];
540 	struct ino_entry *e;
541 
542 	spin_lock(&im->ino_lock);
543 	e = radix_tree_lookup(&im->ino_root, ino);
544 	spin_unlock(&im->ino_lock);
545 	return e ? true : false;
546 }
547 
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)548 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
549 {
550 	struct ino_entry *e, *tmp;
551 	int i;
552 
553 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
554 		struct inode_management *im = &sbi->im[i];
555 
556 		spin_lock(&im->ino_lock);
557 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
558 			list_del(&e->list);
559 			radix_tree_delete(&im->ino_root, e->ino);
560 			kmem_cache_free(ino_entry_slab, e);
561 			im->ino_num--;
562 		}
563 		spin_unlock(&im->ino_lock);
564 	}
565 }
566 
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)567 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
568 					unsigned int devidx, int type)
569 {
570 	__add_ino_entry(sbi, ino, devidx, type);
571 }
572 
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)573 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
574 					unsigned int devidx, int type)
575 {
576 	struct inode_management *im = &sbi->im[type];
577 	struct ino_entry *e;
578 	bool is_dirty = false;
579 
580 	spin_lock(&im->ino_lock);
581 	e = radix_tree_lookup(&im->ino_root, ino);
582 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
583 		is_dirty = true;
584 	spin_unlock(&im->ino_lock);
585 	return is_dirty;
586 }
587 
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)588 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
589 {
590 	struct inode_management *im = &sbi->im[ORPHAN_INO];
591 	int err = 0;
592 
593 	spin_lock(&im->ino_lock);
594 
595 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
596 		spin_unlock(&im->ino_lock);
597 		f2fs_show_injection_info(sbi, FAULT_ORPHAN);
598 		return -ENOSPC;
599 	}
600 
601 	if (unlikely(im->ino_num >= sbi->max_orphans))
602 		err = -ENOSPC;
603 	else
604 		im->ino_num++;
605 	spin_unlock(&im->ino_lock);
606 
607 	return err;
608 }
609 
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)610 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
611 {
612 	struct inode_management *im = &sbi->im[ORPHAN_INO];
613 
614 	spin_lock(&im->ino_lock);
615 	f2fs_bug_on(sbi, im->ino_num == 0);
616 	im->ino_num--;
617 	spin_unlock(&im->ino_lock);
618 }
619 
f2fs_add_orphan_inode(struct inode * inode)620 void f2fs_add_orphan_inode(struct inode *inode)
621 {
622 	/* add new orphan ino entry into list */
623 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
624 	f2fs_update_inode_page(inode);
625 }
626 
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)627 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
628 {
629 	/* remove orphan entry from orphan list */
630 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
631 }
632 
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)633 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
634 {
635 	struct inode *inode;
636 	struct node_info ni;
637 	int err;
638 
639 	inode = f2fs_iget_retry(sbi->sb, ino);
640 	if (IS_ERR(inode)) {
641 		/*
642 		 * there should be a bug that we can't find the entry
643 		 * to orphan inode.
644 		 */
645 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
646 		return PTR_ERR(inode);
647 	}
648 
649 	err = dquot_initialize(inode);
650 	if (err) {
651 		iput(inode);
652 		goto err_out;
653 	}
654 
655 	clear_nlink(inode);
656 
657 	/* truncate all the data during iput */
658 	iput(inode);
659 
660 	err = f2fs_get_node_info(sbi, ino, &ni);
661 	if (err)
662 		goto err_out;
663 
664 	/* ENOMEM was fully retried in f2fs_evict_inode. */
665 	if (ni.blk_addr != NULL_ADDR) {
666 		err = -EIO;
667 		goto err_out;
668 	}
669 	return 0;
670 
671 err_out:
672 	set_sbi_flag(sbi, SBI_NEED_FSCK);
673 	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
674 		  __func__, ino);
675 	return err;
676 }
677 
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)678 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
679 {
680 	block_t start_blk, orphan_blocks, i, j;
681 	unsigned int s_flags = sbi->sb->s_flags;
682 	int err = 0;
683 #ifdef CONFIG_QUOTA
684 	int quota_enabled;
685 #endif
686 
687 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
688 		return 0;
689 
690 	if (bdev_read_only(sbi->sb->s_bdev)) {
691 		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
692 		return 0;
693 	}
694 
695 	if (s_flags & SB_RDONLY) {
696 		f2fs_info(sbi, "orphan cleanup on readonly fs");
697 		sbi->sb->s_flags &= ~SB_RDONLY;
698 	}
699 
700 #ifdef CONFIG_QUOTA
701 	/* Needed for iput() to work correctly and not trash data */
702 	sbi->sb->s_flags |= SB_ACTIVE;
703 
704 	/*
705 	 * Turn on quotas which were not enabled for read-only mounts if
706 	 * filesystem has quota feature, so that they are updated correctly.
707 	 */
708 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
709 #endif
710 
711 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
712 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
713 
714 	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
715 
716 	for (i = 0; i < orphan_blocks; i++) {
717 		struct page *page;
718 		struct f2fs_orphan_block *orphan_blk;
719 
720 		page = f2fs_get_meta_page(sbi, start_blk + i);
721 		if (IS_ERR(page)) {
722 			err = PTR_ERR(page);
723 			goto out;
724 		}
725 
726 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
727 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
728 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
729 			err = recover_orphan_inode(sbi, ino);
730 			if (err) {
731 				f2fs_put_page(page, 1);
732 				goto out;
733 			}
734 		}
735 		f2fs_put_page(page, 1);
736 	}
737 	/* clear Orphan Flag */
738 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
739 out:
740 	set_sbi_flag(sbi, SBI_IS_RECOVERED);
741 
742 #ifdef CONFIG_QUOTA
743 	/* Turn quotas off */
744 	if (quota_enabled)
745 		f2fs_quota_off_umount(sbi->sb);
746 #endif
747 	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
748 
749 	return err;
750 }
751 
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)752 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
753 {
754 	struct list_head *head;
755 	struct f2fs_orphan_block *orphan_blk = NULL;
756 	unsigned int nentries = 0;
757 	unsigned short index = 1;
758 	unsigned short orphan_blocks;
759 	struct page *page = NULL;
760 	struct ino_entry *orphan = NULL;
761 	struct inode_management *im = &sbi->im[ORPHAN_INO];
762 
763 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
764 
765 	/*
766 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
767 	 * orphan inode operations are covered under f2fs_lock_op().
768 	 * And, spin_lock should be avoided due to page operations below.
769 	 */
770 	head = &im->ino_list;
771 
772 	/* loop for each orphan inode entry and write them in Jornal block */
773 	list_for_each_entry(orphan, head, list) {
774 		if (!page) {
775 			page = f2fs_grab_meta_page(sbi, start_blk++);
776 			orphan_blk =
777 				(struct f2fs_orphan_block *)page_address(page);
778 			memset(orphan_blk, 0, sizeof(*orphan_blk));
779 		}
780 
781 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
782 
783 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
784 			/*
785 			 * an orphan block is full of 1020 entries,
786 			 * then we need to flush current orphan blocks
787 			 * and bring another one in memory
788 			 */
789 			orphan_blk->blk_addr = cpu_to_le16(index);
790 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
791 			orphan_blk->entry_count = cpu_to_le32(nentries);
792 			set_page_dirty(page);
793 			f2fs_put_page(page, 1);
794 			index++;
795 			nentries = 0;
796 			page = NULL;
797 		}
798 	}
799 
800 	if (page) {
801 		orphan_blk->blk_addr = cpu_to_le16(index);
802 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
803 		orphan_blk->entry_count = cpu_to_le32(nentries);
804 		set_page_dirty(page);
805 		f2fs_put_page(page, 1);
806 	}
807 }
808 
f2fs_checkpoint_chksum(struct f2fs_sb_info * sbi,struct f2fs_checkpoint * ckpt)809 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
810 						struct f2fs_checkpoint *ckpt)
811 {
812 	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
813 	__u32 chksum;
814 
815 	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
816 	if (chksum_ofs < CP_CHKSUM_OFFSET) {
817 		chksum_ofs += sizeof(chksum);
818 		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
819 						F2FS_BLKSIZE - chksum_ofs);
820 	}
821 	return chksum;
822 }
823 
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)824 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
825 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
826 		unsigned long long *version)
827 {
828 	size_t crc_offset = 0;
829 	__u32 crc;
830 
831 	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
832 	if (IS_ERR(*cp_page))
833 		return PTR_ERR(*cp_page);
834 
835 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
836 
837 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
838 	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
839 			crc_offset > CP_CHKSUM_OFFSET) {
840 		f2fs_put_page(*cp_page, 1);
841 		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
842 		return -EINVAL;
843 	}
844 
845 	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
846 	if (crc != cur_cp_crc(*cp_block)) {
847 		f2fs_put_page(*cp_page, 1);
848 		f2fs_warn(sbi, "invalid crc value");
849 		return -EINVAL;
850 	}
851 
852 	*version = cur_cp_version(*cp_block);
853 	return 0;
854 }
855 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)856 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
857 				block_t cp_addr, unsigned long long *version)
858 {
859 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
860 	struct f2fs_checkpoint *cp_block = NULL;
861 	unsigned long long cur_version = 0, pre_version = 0;
862 	unsigned int cp_blocks;
863 	int err;
864 
865 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
866 					&cp_page_1, version);
867 	if (err)
868 		return NULL;
869 
870 	cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
871 
872 	if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
873 		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
874 			  le32_to_cpu(cp_block->cp_pack_total_block_count));
875 		goto invalid_cp;
876 	}
877 	pre_version = *version;
878 
879 	cp_addr += cp_blocks - 1;
880 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
881 					&cp_page_2, version);
882 	if (err)
883 		goto invalid_cp;
884 	cur_version = *version;
885 
886 	if (cur_version == pre_version) {
887 		*version = cur_version;
888 		f2fs_put_page(cp_page_2, 1);
889 		return cp_page_1;
890 	}
891 	f2fs_put_page(cp_page_2, 1);
892 invalid_cp:
893 	f2fs_put_page(cp_page_1, 1);
894 	return NULL;
895 }
896 
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)897 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
898 {
899 	struct f2fs_checkpoint *cp_block;
900 	struct f2fs_super_block *fsb = sbi->raw_super;
901 	struct page *cp1, *cp2, *cur_page;
902 	unsigned long blk_size = sbi->blocksize;
903 	unsigned long long cp1_version = 0, cp2_version = 0;
904 	unsigned long long cp_start_blk_no;
905 	unsigned int cp_blks = 1 + __cp_payload(sbi);
906 	block_t cp_blk_no;
907 	int i;
908 	int err;
909 
910 	sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
911 				  GFP_KERNEL);
912 	if (!sbi->ckpt)
913 		return -ENOMEM;
914 	/*
915 	 * Finding out valid cp block involves read both
916 	 * sets( cp pack 1 and cp pack 2)
917 	 */
918 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
919 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
920 
921 	/* The second checkpoint pack should start at the next segment */
922 	cp_start_blk_no += ((unsigned long long)1) <<
923 				le32_to_cpu(fsb->log_blocks_per_seg);
924 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
925 
926 	if (cp1 && cp2) {
927 		if (ver_after(cp2_version, cp1_version))
928 			cur_page = cp2;
929 		else
930 			cur_page = cp1;
931 	} else if (cp1) {
932 		cur_page = cp1;
933 	} else if (cp2) {
934 		cur_page = cp2;
935 	} else {
936 		err = -EFSCORRUPTED;
937 		goto fail_no_cp;
938 	}
939 
940 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
941 	memcpy(sbi->ckpt, cp_block, blk_size);
942 
943 	if (cur_page == cp1)
944 		sbi->cur_cp_pack = 1;
945 	else
946 		sbi->cur_cp_pack = 2;
947 
948 	/* Sanity checking of checkpoint */
949 	if (f2fs_sanity_check_ckpt(sbi)) {
950 		err = -EFSCORRUPTED;
951 		goto free_fail_no_cp;
952 	}
953 
954 	if (cp_blks <= 1)
955 		goto done;
956 
957 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
958 	if (cur_page == cp2)
959 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
960 
961 	for (i = 1; i < cp_blks; i++) {
962 		void *sit_bitmap_ptr;
963 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
964 
965 		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
966 		if (IS_ERR(cur_page)) {
967 			err = PTR_ERR(cur_page);
968 			goto free_fail_no_cp;
969 		}
970 		sit_bitmap_ptr = page_address(cur_page);
971 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
972 		f2fs_put_page(cur_page, 1);
973 	}
974 done:
975 	f2fs_put_page(cp1, 1);
976 	f2fs_put_page(cp2, 1);
977 	return 0;
978 
979 free_fail_no_cp:
980 	f2fs_put_page(cp1, 1);
981 	f2fs_put_page(cp2, 1);
982 fail_no_cp:
983 	kvfree(sbi->ckpt);
984 	return err;
985 }
986 
__add_dirty_inode(struct inode * inode,enum inode_type type)987 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
988 {
989 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
990 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
991 
992 	if (is_inode_flag_set(inode, flag))
993 		return;
994 
995 	set_inode_flag(inode, flag);
996 	if (!f2fs_is_volatile_file(inode))
997 		list_add_tail(&F2FS_I(inode)->dirty_list,
998 						&sbi->inode_list[type]);
999 	stat_inc_dirty_inode(sbi, type);
1000 }
1001 
__remove_dirty_inode(struct inode * inode,enum inode_type type)1002 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1003 {
1004 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1005 
1006 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1007 		return;
1008 
1009 	list_del_init(&F2FS_I(inode)->dirty_list);
1010 	clear_inode_flag(inode, flag);
1011 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1012 }
1013 
f2fs_update_dirty_page(struct inode * inode,struct page * page)1014 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1015 {
1016 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1017 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1018 
1019 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1020 			!S_ISLNK(inode->i_mode))
1021 		return;
1022 
1023 	spin_lock(&sbi->inode_lock[type]);
1024 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1025 		__add_dirty_inode(inode, type);
1026 	inode_inc_dirty_pages(inode);
1027 	spin_unlock(&sbi->inode_lock[type]);
1028 
1029 	f2fs_set_page_private(page, 0);
1030 	f2fs_trace_pid(page);
1031 }
1032 
f2fs_remove_dirty_inode(struct inode * inode)1033 void f2fs_remove_dirty_inode(struct inode *inode)
1034 {
1035 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1037 
1038 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1039 			!S_ISLNK(inode->i_mode))
1040 		return;
1041 
1042 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1043 		return;
1044 
1045 	spin_lock(&sbi->inode_lock[type]);
1046 	__remove_dirty_inode(inode, type);
1047 	spin_unlock(&sbi->inode_lock[type]);
1048 }
1049 
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type,bool from_cp)1050 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1051 						bool from_cp)
1052 {
1053 	struct list_head *head;
1054 	struct inode *inode;
1055 	struct f2fs_inode_info *fi;
1056 	bool is_dir = (type == DIR_INODE);
1057 	unsigned long ino = 0;
1058 
1059 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1060 				get_pages(sbi, is_dir ?
1061 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1062 retry:
1063 	if (unlikely(f2fs_cp_error(sbi))) {
1064 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1065 				get_pages(sbi, is_dir ?
1066 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1067 		return -EIO;
1068 	}
1069 
1070 	spin_lock(&sbi->inode_lock[type]);
1071 
1072 	head = &sbi->inode_list[type];
1073 	if (list_empty(head)) {
1074 		spin_unlock(&sbi->inode_lock[type]);
1075 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1076 				get_pages(sbi, is_dir ?
1077 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1078 		return 0;
1079 	}
1080 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1081 	inode = igrab(&fi->vfs_inode);
1082 	spin_unlock(&sbi->inode_lock[type]);
1083 	if (inode) {
1084 		unsigned long cur_ino = inode->i_ino;
1085 
1086 		if (from_cp)
1087 			F2FS_I(inode)->cp_task = current;
1088 		F2FS_I(inode)->wb_task = current;
1089 
1090 		filemap_fdatawrite(inode->i_mapping);
1091 
1092 		F2FS_I(inode)->wb_task = NULL;
1093 		if (from_cp)
1094 			F2FS_I(inode)->cp_task = NULL;
1095 
1096 		iput(inode);
1097 		/* We need to give cpu to another writers. */
1098 		if (ino == cur_ino)
1099 			cond_resched();
1100 		else
1101 			ino = cur_ino;
1102 	} else {
1103 		/*
1104 		 * We should submit bio, since it exists several
1105 		 * wribacking dentry pages in the freeing inode.
1106 		 */
1107 		f2fs_submit_merged_write(sbi, DATA);
1108 		cond_resched();
1109 	}
1110 	goto retry;
1111 }
1112 
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1113 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1114 {
1115 	struct list_head *head = &sbi->inode_list[DIRTY_META];
1116 	struct inode *inode;
1117 	struct f2fs_inode_info *fi;
1118 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1119 
1120 	while (total--) {
1121 		if (unlikely(f2fs_cp_error(sbi)))
1122 			return -EIO;
1123 
1124 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1125 		if (list_empty(head)) {
1126 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1127 			return 0;
1128 		}
1129 		fi = list_first_entry(head, struct f2fs_inode_info,
1130 							gdirty_list);
1131 		inode = igrab(&fi->vfs_inode);
1132 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1133 		if (inode) {
1134 			sync_inode_metadata(inode, 0);
1135 
1136 			/* it's on eviction */
1137 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1138 				f2fs_update_inode_page(inode);
1139 			iput(inode);
1140 		}
1141 	}
1142 	return 0;
1143 }
1144 
__prepare_cp_block(struct f2fs_sb_info * sbi)1145 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1146 {
1147 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1148 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1149 	nid_t last_nid = nm_i->next_scan_nid;
1150 
1151 	next_free_nid(sbi, &last_nid);
1152 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1153 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1154 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1155 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1156 }
1157 
__need_flush_quota(struct f2fs_sb_info * sbi)1158 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1159 {
1160 	bool ret = false;
1161 
1162 	if (!is_journalled_quota(sbi))
1163 		return false;
1164 
1165 	if (!down_write_trylock(&sbi->quota_sem))
1166 		return true;
1167 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1168 		ret = false;
1169 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1170 		ret = false;
1171 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1172 		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1173 		ret = true;
1174 	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1175 		ret = true;
1176 	}
1177 	up_write(&sbi->quota_sem);
1178 	return ret;
1179 }
1180 
1181 /*
1182  * Freeze all the FS-operations for checkpoint.
1183  */
block_operations(struct f2fs_sb_info * sbi)1184 static int block_operations(struct f2fs_sb_info *sbi)
1185 {
1186 	struct writeback_control wbc = {
1187 		.sync_mode = WB_SYNC_ALL,
1188 		.nr_to_write = LONG_MAX,
1189 		.for_reclaim = 0,
1190 	};
1191 	int err = 0, cnt = 0;
1192 
1193 	/*
1194 	 * Let's flush inline_data in dirty node pages.
1195 	 */
1196 	f2fs_flush_inline_data(sbi);
1197 
1198 retry_flush_quotas:
1199 	f2fs_lock_all(sbi);
1200 	if (__need_flush_quota(sbi)) {
1201 		int locked;
1202 
1203 		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1204 			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1205 			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1206 			goto retry_flush_dents;
1207 		}
1208 		f2fs_unlock_all(sbi);
1209 
1210 		/* only failed during mount/umount/freeze/quotactl */
1211 		locked = down_read_trylock(&sbi->sb->s_umount);
1212 		f2fs_quota_sync(sbi->sb, -1);
1213 		if (locked)
1214 			up_read(&sbi->sb->s_umount);
1215 		cond_resched();
1216 		goto retry_flush_quotas;
1217 	}
1218 
1219 retry_flush_dents:
1220 	/* write all the dirty dentry pages */
1221 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1222 		f2fs_unlock_all(sbi);
1223 		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1224 		if (err)
1225 			return err;
1226 		cond_resched();
1227 		goto retry_flush_quotas;
1228 	}
1229 
1230 	/*
1231 	 * POR: we should ensure that there are no dirty node pages
1232 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1233 	 */
1234 	down_write(&sbi->node_change);
1235 
1236 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1237 		up_write(&sbi->node_change);
1238 		f2fs_unlock_all(sbi);
1239 		err = f2fs_sync_inode_meta(sbi);
1240 		if (err)
1241 			return err;
1242 		cond_resched();
1243 		goto retry_flush_quotas;
1244 	}
1245 
1246 retry_flush_nodes:
1247 	down_write(&sbi->node_write);
1248 
1249 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1250 		up_write(&sbi->node_write);
1251 		atomic_inc(&sbi->wb_sync_req[NODE]);
1252 		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1253 		atomic_dec(&sbi->wb_sync_req[NODE]);
1254 		if (err) {
1255 			up_write(&sbi->node_change);
1256 			f2fs_unlock_all(sbi);
1257 			return err;
1258 		}
1259 		cond_resched();
1260 		goto retry_flush_nodes;
1261 	}
1262 
1263 	/*
1264 	 * sbi->node_change is used only for AIO write_begin path which produces
1265 	 * dirty node blocks and some checkpoint values by block allocation.
1266 	 */
1267 	__prepare_cp_block(sbi);
1268 	up_write(&sbi->node_change);
1269 	return err;
1270 }
1271 
unblock_operations(struct f2fs_sb_info * sbi)1272 static void unblock_operations(struct f2fs_sb_info *sbi)
1273 {
1274 	up_write(&sbi->node_write);
1275 	f2fs_unlock_all(sbi);
1276 }
1277 
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1278 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1279 {
1280 	DEFINE_WAIT(wait);
1281 
1282 	for (;;) {
1283 		if (!get_pages(sbi, type))
1284 			break;
1285 
1286 		if (unlikely(f2fs_cp_error(sbi)))
1287 			break;
1288 
1289 		if (type == F2FS_DIRTY_META)
1290 			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1291 							FS_CP_META_IO);
1292 		else if (type == F2FS_WB_CP_DATA)
1293 			f2fs_submit_merged_write(sbi, DATA);
1294 
1295 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1296 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1297 	}
1298 	finish_wait(&sbi->cp_wait, &wait);
1299 }
1300 
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1301 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1302 {
1303 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1304 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1305 	unsigned long flags;
1306 
1307 	spin_lock_irqsave(&sbi->cp_lock, flags);
1308 
1309 	if ((cpc->reason & CP_UMOUNT) &&
1310 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1311 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1312 		disable_nat_bits(sbi, false);
1313 
1314 	if (cpc->reason & CP_TRIMMED)
1315 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1316 	else
1317 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1318 
1319 	if (cpc->reason & CP_UMOUNT)
1320 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1321 	else
1322 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1323 
1324 	if (cpc->reason & CP_FASTBOOT)
1325 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1326 	else
1327 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1328 
1329 	if (orphan_num)
1330 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1331 	else
1332 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1333 
1334 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1335 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1336 
1337 	if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1338 		__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1339 	else
1340 		__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1341 
1342 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1343 		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1344 	else
1345 		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1346 
1347 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1348 		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1349 	else
1350 		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1351 
1352 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1353 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1354 	else
1355 		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1356 
1357 	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1358 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1359 
1360 	/* set this flag to activate crc|cp_ver for recovery */
1361 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1362 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1363 
1364 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1365 }
1366 
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1367 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1368 	void *src, block_t blk_addr)
1369 {
1370 	struct writeback_control wbc = {
1371 		.for_reclaim = 0,
1372 	};
1373 
1374 	/*
1375 	 * pagevec_lookup_tag and lock_page again will take
1376 	 * some extra time. Therefore, f2fs_update_meta_pages and
1377 	 * f2fs_sync_meta_pages are combined in this function.
1378 	 */
1379 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1380 	int err;
1381 
1382 	f2fs_wait_on_page_writeback(page, META, true, true);
1383 
1384 	memcpy(page_address(page), src, PAGE_SIZE);
1385 
1386 	set_page_dirty(page);
1387 	if (unlikely(!clear_page_dirty_for_io(page)))
1388 		f2fs_bug_on(sbi, 1);
1389 
1390 	/* writeout cp pack 2 page */
1391 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1392 	if (unlikely(err && f2fs_cp_error(sbi))) {
1393 		f2fs_put_page(page, 1);
1394 		return;
1395 	}
1396 
1397 	f2fs_bug_on(sbi, err);
1398 	f2fs_put_page(page, 0);
1399 
1400 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1401 	f2fs_submit_merged_write(sbi, META_FLUSH);
1402 }
1403 
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1404 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1405 {
1406 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1407 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1408 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1409 	block_t start_blk;
1410 	unsigned int data_sum_blocks, orphan_blocks;
1411 	__u32 crc32 = 0;
1412 	int i;
1413 	int cp_payload_blks = __cp_payload(sbi);
1414 	struct super_block *sb = sbi->sb;
1415 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1416 	u64 kbytes_written;
1417 	int err;
1418 
1419 	/* Flush all the NAT/SIT pages */
1420 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1421 
1422 	/* start to update checkpoint, cp ver is already updated previously */
1423 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1424 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1425 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1426 		ckpt->cur_node_segno[i] =
1427 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1428 		ckpt->cur_node_blkoff[i] =
1429 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1430 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1431 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1432 	}
1433 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1434 		ckpt->cur_data_segno[i] =
1435 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1436 		ckpt->cur_data_blkoff[i] =
1437 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1438 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1439 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1440 	}
1441 
1442 	/* 2 cp + n data seg summary + orphan inode blocks */
1443 	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1444 	spin_lock_irqsave(&sbi->cp_lock, flags);
1445 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1446 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1447 	else
1448 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1449 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1450 
1451 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1452 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1453 			orphan_blocks);
1454 
1455 	if (__remain_node_summaries(cpc->reason))
1456 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1457 				cp_payload_blks + data_sum_blocks +
1458 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1459 	else
1460 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1461 				cp_payload_blks + data_sum_blocks +
1462 				orphan_blocks);
1463 
1464 	/* update ckpt flag for checkpoint */
1465 	update_ckpt_flags(sbi, cpc);
1466 
1467 	/* update SIT/NAT bitmap */
1468 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1469 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1470 
1471 	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1472 	*((__le32 *)((unsigned char *)ckpt +
1473 				le32_to_cpu(ckpt->checksum_offset)))
1474 				= cpu_to_le32(crc32);
1475 
1476 	start_blk = __start_cp_next_addr(sbi);
1477 
1478 	/* write nat bits */
1479 	if (enabled_nat_bits(sbi, cpc)) {
1480 		__u64 cp_ver = cur_cp_version(ckpt);
1481 		block_t blk;
1482 
1483 		cp_ver |= ((__u64)crc32 << 32);
1484 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1485 
1486 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1487 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1488 			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1489 					(i << F2FS_BLKSIZE_BITS), blk + i);
1490 	}
1491 
1492 	/* write out checkpoint buffer at block 0 */
1493 	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1494 
1495 	for (i = 1; i < 1 + cp_payload_blks; i++)
1496 		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1497 							start_blk++);
1498 
1499 	if (orphan_num) {
1500 		write_orphan_inodes(sbi, start_blk);
1501 		start_blk += orphan_blocks;
1502 	}
1503 
1504 	f2fs_write_data_summaries(sbi, start_blk);
1505 	start_blk += data_sum_blocks;
1506 
1507 	/* Record write statistics in the hot node summary */
1508 	kbytes_written = sbi->kbytes_written;
1509 	if (sb->s_bdev->bd_part)
1510 		kbytes_written += BD_PART_WRITTEN(sbi);
1511 
1512 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1513 
1514 	if (__remain_node_summaries(cpc->reason)) {
1515 		f2fs_write_node_summaries(sbi, start_blk);
1516 		start_blk += NR_CURSEG_NODE_TYPE;
1517 	}
1518 
1519 	/* update user_block_counts */
1520 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1521 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1522 
1523 	/* Here, we have one bio having CP pack except cp pack 2 page */
1524 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1525 	/* Wait for all dirty meta pages to be submitted for IO */
1526 	f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1527 
1528 	/* wait for previous submitted meta pages writeback */
1529 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1530 
1531 	/* flush all device cache */
1532 	err = f2fs_flush_device_cache(sbi);
1533 	if (err)
1534 		return err;
1535 
1536 	/* barrier and flush checkpoint cp pack 2 page if it can */
1537 	commit_checkpoint(sbi, ckpt, start_blk);
1538 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1539 
1540 	/*
1541 	 * invalidate intermediate page cache borrowed from meta inode which are
1542 	 * used for migration of encrypted, verity or compressed inode's blocks.
1543 	 */
1544 	if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1545 		f2fs_sb_has_compression(sbi))
1546 		invalidate_mapping_pages(META_MAPPING(sbi),
1547 				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1548 
1549 	f2fs_release_ino_entry(sbi, false);
1550 
1551 	f2fs_reset_fsync_node_info(sbi);
1552 
1553 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1554 	clear_sbi_flag(sbi, SBI_NEED_CP);
1555 	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1556 
1557 	spin_lock(&sbi->stat_lock);
1558 	sbi->unusable_block_count = 0;
1559 	spin_unlock(&sbi->stat_lock);
1560 
1561 	__set_cp_next_pack(sbi);
1562 
1563 	/*
1564 	 * redirty superblock if metadata like node page or inode cache is
1565 	 * updated during writing checkpoint.
1566 	 */
1567 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1568 			get_pages(sbi, F2FS_DIRTY_IMETA))
1569 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1570 
1571 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1572 
1573 	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1574 }
1575 
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1576 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1577 {
1578 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1579 	unsigned long long ckpt_ver;
1580 	int err = 0;
1581 
1582 	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1583 		return -EROFS;
1584 
1585 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1586 		if (cpc->reason != CP_PAUSE)
1587 			return 0;
1588 		f2fs_warn(sbi, "Start checkpoint disabled!");
1589 	}
1590 	if (cpc->reason != CP_RESIZE)
1591 		mutex_lock(&sbi->cp_mutex);
1592 
1593 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1594 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1595 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1596 		goto out;
1597 	if (unlikely(f2fs_cp_error(sbi))) {
1598 		err = -EIO;
1599 		goto out;
1600 	}
1601 
1602 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1603 
1604 	err = block_operations(sbi);
1605 	if (err)
1606 		goto out;
1607 
1608 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1609 
1610 	f2fs_flush_merged_writes(sbi);
1611 
1612 	/* this is the case of multiple fstrims without any changes */
1613 	if (cpc->reason & CP_DISCARD) {
1614 		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1615 			unblock_operations(sbi);
1616 			goto out;
1617 		}
1618 
1619 		if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1620 				SIT_I(sbi)->dirty_sentries == 0 &&
1621 				prefree_segments(sbi) == 0) {
1622 			f2fs_flush_sit_entries(sbi, cpc);
1623 			f2fs_clear_prefree_segments(sbi, cpc);
1624 			unblock_operations(sbi);
1625 			goto out;
1626 		}
1627 	}
1628 
1629 	/*
1630 	 * update checkpoint pack index
1631 	 * Increase the version number so that
1632 	 * SIT entries and seg summaries are written at correct place
1633 	 */
1634 	ckpt_ver = cur_cp_version(ckpt);
1635 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1636 
1637 	/* write cached NAT/SIT entries to NAT/SIT area */
1638 	err = f2fs_flush_nat_entries(sbi, cpc);
1639 	if (err)
1640 		goto stop;
1641 
1642 	f2fs_flush_sit_entries(sbi, cpc);
1643 
1644 	/* save inmem log status */
1645 	f2fs_save_inmem_curseg(sbi);
1646 
1647 	err = do_checkpoint(sbi, cpc);
1648 	if (err)
1649 		f2fs_release_discard_addrs(sbi);
1650 	else
1651 		f2fs_clear_prefree_segments(sbi, cpc);
1652 
1653 	f2fs_restore_inmem_curseg(sbi);
1654 stop:
1655 	unblock_operations(sbi);
1656 	stat_inc_cp_count(sbi->stat_info);
1657 
1658 	if (cpc->reason & CP_RECOVERY)
1659 		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1660 
1661 	/* update CP_TIME to trigger checkpoint periodically */
1662 	f2fs_update_time(sbi, CP_TIME);
1663 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1664 out:
1665 	if (cpc->reason != CP_RESIZE)
1666 		mutex_unlock(&sbi->cp_mutex);
1667 	return err;
1668 }
1669 
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1670 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1671 {
1672 	int i;
1673 
1674 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1675 		struct inode_management *im = &sbi->im[i];
1676 
1677 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1678 		spin_lock_init(&im->ino_lock);
1679 		INIT_LIST_HEAD(&im->ino_list);
1680 		im->ino_num = 0;
1681 	}
1682 
1683 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1684 			NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1685 				F2FS_ORPHANS_PER_BLOCK;
1686 }
1687 
f2fs_create_checkpoint_caches(void)1688 int __init f2fs_create_checkpoint_caches(void)
1689 {
1690 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1691 			sizeof(struct ino_entry));
1692 	if (!ino_entry_slab)
1693 		return -ENOMEM;
1694 	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1695 			sizeof(struct inode_entry));
1696 	if (!f2fs_inode_entry_slab) {
1697 		kmem_cache_destroy(ino_entry_slab);
1698 		return -ENOMEM;
1699 	}
1700 	return 0;
1701 }
1702 
f2fs_destroy_checkpoint_caches(void)1703 void f2fs_destroy_checkpoint_caches(void)
1704 {
1705 	kmem_cache_destroy(ino_entry_slab);
1706 	kmem_cache_destroy(f2fs_inode_entry_slab);
1707 }
1708