1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs extent cache support
4 *
5 * Copyright (c) 2015 Motorola Mobility
6 * Copyright (c) 2015 Samsung Electronics
7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
8 * Chao Yu <chao2.yu@samsung.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15 #include "node.h"
16 #include <trace/events/f2fs.h>
17
__lookup_rb_tree_fast(struct rb_entry * cached_re,unsigned int ofs)18 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
19 unsigned int ofs)
20 {
21 if (cached_re) {
22 if (cached_re->ofs <= ofs &&
23 cached_re->ofs + cached_re->len > ofs) {
24 return cached_re;
25 }
26 }
27 return NULL;
28 }
29
__lookup_rb_tree_slow(struct rb_root_cached * root,unsigned int ofs)30 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root,
31 unsigned int ofs)
32 {
33 struct rb_node *node = root->rb_root.rb_node;
34 struct rb_entry *re;
35
36 while (node) {
37 re = rb_entry(node, struct rb_entry, rb_node);
38
39 if (ofs < re->ofs)
40 node = node->rb_left;
41 else if (ofs >= re->ofs + re->len)
42 node = node->rb_right;
43 else
44 return re;
45 }
46 return NULL;
47 }
48
f2fs_lookup_rb_tree(struct rb_root_cached * root,struct rb_entry * cached_re,unsigned int ofs)49 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
50 struct rb_entry *cached_re, unsigned int ofs)
51 {
52 struct rb_entry *re;
53
54 re = __lookup_rb_tree_fast(cached_re, ofs);
55 if (!re)
56 return __lookup_rb_tree_slow(root, ofs);
57
58 return re;
59 }
60
f2fs_lookup_rb_tree_ext(struct f2fs_sb_info * sbi,struct rb_root_cached * root,struct rb_node ** parent,unsigned long long key,bool * leftmost)61 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
62 struct rb_root_cached *root,
63 struct rb_node **parent,
64 unsigned long long key, bool *leftmost)
65 {
66 struct rb_node **p = &root->rb_root.rb_node;
67 struct rb_entry *re;
68
69 while (*p) {
70 *parent = *p;
71 re = rb_entry(*parent, struct rb_entry, rb_node);
72
73 if (key < re->key) {
74 p = &(*p)->rb_left;
75 } else {
76 p = &(*p)->rb_right;
77 *leftmost = false;
78 }
79 }
80
81 return p;
82 }
83
f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info * sbi,struct rb_root_cached * root,struct rb_node ** parent,unsigned int ofs,bool * leftmost)84 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
85 struct rb_root_cached *root,
86 struct rb_node **parent,
87 unsigned int ofs, bool *leftmost)
88 {
89 struct rb_node **p = &root->rb_root.rb_node;
90 struct rb_entry *re;
91
92 while (*p) {
93 *parent = *p;
94 re = rb_entry(*parent, struct rb_entry, rb_node);
95
96 if (ofs < re->ofs) {
97 p = &(*p)->rb_left;
98 } else if (ofs >= re->ofs + re->len) {
99 p = &(*p)->rb_right;
100 *leftmost = false;
101 } else {
102 f2fs_bug_on(sbi, 1);
103 }
104 }
105
106 return p;
107 }
108
109 /*
110 * lookup rb entry in position of @ofs in rb-tree,
111 * if hit, return the entry, otherwise, return NULL
112 * @prev_ex: extent before ofs
113 * @next_ex: extent after ofs
114 * @insert_p: insert point for new extent at ofs
115 * in order to simpfy the insertion after.
116 * tree must stay unchanged between lookup and insertion.
117 */
f2fs_lookup_rb_tree_ret(struct rb_root_cached * root,struct rb_entry * cached_re,unsigned int ofs,struct rb_entry ** prev_entry,struct rb_entry ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent,bool force,bool * leftmost)118 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
119 struct rb_entry *cached_re,
120 unsigned int ofs,
121 struct rb_entry **prev_entry,
122 struct rb_entry **next_entry,
123 struct rb_node ***insert_p,
124 struct rb_node **insert_parent,
125 bool force, bool *leftmost)
126 {
127 struct rb_node **pnode = &root->rb_root.rb_node;
128 struct rb_node *parent = NULL, *tmp_node;
129 struct rb_entry *re = cached_re;
130
131 *insert_p = NULL;
132 *insert_parent = NULL;
133 *prev_entry = NULL;
134 *next_entry = NULL;
135
136 if (RB_EMPTY_ROOT(&root->rb_root))
137 return NULL;
138
139 if (re) {
140 if (re->ofs <= ofs && re->ofs + re->len > ofs)
141 goto lookup_neighbors;
142 }
143
144 if (leftmost)
145 *leftmost = true;
146
147 while (*pnode) {
148 parent = *pnode;
149 re = rb_entry(*pnode, struct rb_entry, rb_node);
150
151 if (ofs < re->ofs) {
152 pnode = &(*pnode)->rb_left;
153 } else if (ofs >= re->ofs + re->len) {
154 pnode = &(*pnode)->rb_right;
155 if (leftmost)
156 *leftmost = false;
157 } else {
158 goto lookup_neighbors;
159 }
160 }
161
162 *insert_p = pnode;
163 *insert_parent = parent;
164
165 re = rb_entry(parent, struct rb_entry, rb_node);
166 tmp_node = parent;
167 if (parent && ofs > re->ofs)
168 tmp_node = rb_next(parent);
169 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
170
171 tmp_node = parent;
172 if (parent && ofs < re->ofs)
173 tmp_node = rb_prev(parent);
174 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
175 return NULL;
176
177 lookup_neighbors:
178 if (ofs == re->ofs || force) {
179 /* lookup prev node for merging backward later */
180 tmp_node = rb_prev(&re->rb_node);
181 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
182 }
183 if (ofs == re->ofs + re->len - 1 || force) {
184 /* lookup next node for merging frontward later */
185 tmp_node = rb_next(&re->rb_node);
186 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
187 }
188 return re;
189 }
190
f2fs_check_rb_tree_consistence(struct f2fs_sb_info * sbi,struct rb_root_cached * root,bool check_key)191 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
192 struct rb_root_cached *root, bool check_key)
193 {
194 #ifdef CONFIG_F2FS_CHECK_FS
195 struct rb_node *cur = rb_first_cached(root), *next;
196 struct rb_entry *cur_re, *next_re;
197
198 if (!cur)
199 return true;
200
201 while (cur) {
202 next = rb_next(cur);
203 if (!next)
204 return true;
205
206 cur_re = rb_entry(cur, struct rb_entry, rb_node);
207 next_re = rb_entry(next, struct rb_entry, rb_node);
208
209 if (check_key) {
210 if (cur_re->key > next_re->key) {
211 f2fs_info(sbi, "inconsistent rbtree, "
212 "cur(%llu) next(%llu)",
213 cur_re->key, next_re->key);
214 return false;
215 }
216 goto next;
217 }
218
219 if (cur_re->ofs + cur_re->len > next_re->ofs) {
220 f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)",
221 cur_re->ofs, cur_re->len,
222 next_re->ofs, next_re->len);
223 return false;
224 }
225 next:
226 cur = next;
227 }
228 #endif
229 return true;
230 }
231
232 static struct kmem_cache *extent_tree_slab;
233 static struct kmem_cache *extent_node_slab;
234
__attach_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct rb_node * parent,struct rb_node ** p,bool leftmost)235 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
236 struct extent_tree *et, struct extent_info *ei,
237 struct rb_node *parent, struct rb_node **p,
238 bool leftmost)
239 {
240 struct extent_node *en;
241
242 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
243 if (!en)
244 return NULL;
245
246 en->ei = *ei;
247 INIT_LIST_HEAD(&en->list);
248 en->et = et;
249
250 rb_link_node(&en->rb_node, parent, p);
251 rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
252 atomic_inc(&et->node_cnt);
253 atomic_inc(&sbi->total_ext_node);
254 return en;
255 }
256
__detach_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_node * en)257 static void __detach_extent_node(struct f2fs_sb_info *sbi,
258 struct extent_tree *et, struct extent_node *en)
259 {
260 rb_erase_cached(&en->rb_node, &et->root);
261 atomic_dec(&et->node_cnt);
262 atomic_dec(&sbi->total_ext_node);
263
264 if (et->cached_en == en)
265 et->cached_en = NULL;
266 kmem_cache_free(extent_node_slab, en);
267 }
268
269 /*
270 * Flow to release an extent_node:
271 * 1. list_del_init
272 * 2. __detach_extent_node
273 * 3. kmem_cache_free.
274 */
__release_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_node * en)275 static void __release_extent_node(struct f2fs_sb_info *sbi,
276 struct extent_tree *et, struct extent_node *en)
277 {
278 spin_lock(&sbi->extent_lock);
279 f2fs_bug_on(sbi, list_empty(&en->list));
280 list_del_init(&en->list);
281 spin_unlock(&sbi->extent_lock);
282
283 __detach_extent_node(sbi, et, en);
284 }
285
__grab_extent_tree(struct inode * inode)286 static struct extent_tree *__grab_extent_tree(struct inode *inode)
287 {
288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
289 struct extent_tree *et;
290 nid_t ino = inode->i_ino;
291
292 mutex_lock(&sbi->extent_tree_lock);
293 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
294 if (!et) {
295 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
296 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
297 memset(et, 0, sizeof(struct extent_tree));
298 et->ino = ino;
299 et->root = RB_ROOT_CACHED;
300 et->cached_en = NULL;
301 rwlock_init(&et->lock);
302 INIT_LIST_HEAD(&et->list);
303 atomic_set(&et->node_cnt, 0);
304 atomic_inc(&sbi->total_ext_tree);
305 } else {
306 atomic_dec(&sbi->total_zombie_tree);
307 list_del_init(&et->list);
308 }
309 mutex_unlock(&sbi->extent_tree_lock);
310
311 /* never died until evict_inode */
312 F2FS_I(inode)->extent_tree = et;
313
314 return et;
315 }
316
__init_extent_tree(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei)317 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
318 struct extent_tree *et, struct extent_info *ei)
319 {
320 struct rb_node **p = &et->root.rb_root.rb_node;
321 struct extent_node *en;
322
323 en = __attach_extent_node(sbi, et, ei, NULL, p, true);
324 if (!en)
325 return NULL;
326
327 et->largest = en->ei;
328 et->cached_en = en;
329 return en;
330 }
331
__free_extent_tree(struct f2fs_sb_info * sbi,struct extent_tree * et)332 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
333 struct extent_tree *et)
334 {
335 struct rb_node *node, *next;
336 struct extent_node *en;
337 unsigned int count = atomic_read(&et->node_cnt);
338
339 node = rb_first_cached(&et->root);
340 while (node) {
341 next = rb_next(node);
342 en = rb_entry(node, struct extent_node, rb_node);
343 __release_extent_node(sbi, et, en);
344 node = next;
345 }
346
347 return count - atomic_read(&et->node_cnt);
348 }
349
__drop_largest_extent(struct extent_tree * et,pgoff_t fofs,unsigned int len)350 static void __drop_largest_extent(struct extent_tree *et,
351 pgoff_t fofs, unsigned int len)
352 {
353 if (fofs < et->largest.fofs + et->largest.len &&
354 fofs + len > et->largest.fofs) {
355 et->largest.len = 0;
356 et->largest_updated = true;
357 }
358 }
359
360 /* return true, if inode page is changed */
__f2fs_init_extent_tree(struct inode * inode,struct page * ipage)361 static void __f2fs_init_extent_tree(struct inode *inode, struct page *ipage)
362 {
363 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
364 struct f2fs_extent *i_ext = ipage ? &F2FS_INODE(ipage)->i_ext : NULL;
365 struct extent_tree *et;
366 struct extent_node *en;
367 struct extent_info ei;
368
369 if (!f2fs_may_extent_tree(inode)) {
370 /* drop largest extent */
371 if (i_ext && i_ext->len) {
372 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
373 i_ext->len = 0;
374 set_page_dirty(ipage);
375 return;
376 }
377 return;
378 }
379
380 et = __grab_extent_tree(inode);
381
382 if (!i_ext || !i_ext->len)
383 return;
384
385 get_extent_info(&ei, i_ext);
386
387 write_lock(&et->lock);
388 if (atomic_read(&et->node_cnt))
389 goto out;
390
391 en = __init_extent_tree(sbi, et, &ei);
392 if (en) {
393 spin_lock(&sbi->extent_lock);
394 list_add_tail(&en->list, &sbi->extent_list);
395 spin_unlock(&sbi->extent_lock);
396 }
397 out:
398 write_unlock(&et->lock);
399 }
400
f2fs_init_extent_tree(struct inode * inode,struct page * ipage)401 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage)
402 {
403 __f2fs_init_extent_tree(inode, ipage);
404
405 if (!F2FS_I(inode)->extent_tree)
406 set_inode_flag(inode, FI_NO_EXTENT);
407 }
408
f2fs_lookup_extent_tree(struct inode * inode,pgoff_t pgofs,struct extent_info * ei)409 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
410 struct extent_info *ei)
411 {
412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
413 struct extent_tree *et = F2FS_I(inode)->extent_tree;
414 struct extent_node *en;
415 bool ret = false;
416
417 if (!et)
418 return false;
419
420 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
421
422 read_lock(&et->lock);
423
424 if (et->largest.fofs <= pgofs &&
425 et->largest.fofs + et->largest.len > pgofs) {
426 *ei = et->largest;
427 ret = true;
428 stat_inc_largest_node_hit(sbi);
429 goto out;
430 }
431
432 en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
433 (struct rb_entry *)et->cached_en, pgofs);
434 if (!en)
435 goto out;
436
437 if (en == et->cached_en)
438 stat_inc_cached_node_hit(sbi);
439 else
440 stat_inc_rbtree_node_hit(sbi);
441
442 *ei = en->ei;
443 spin_lock(&sbi->extent_lock);
444 if (!list_empty(&en->list)) {
445 list_move_tail(&en->list, &sbi->extent_list);
446 et->cached_en = en;
447 }
448 spin_unlock(&sbi->extent_lock);
449 ret = true;
450 out:
451 stat_inc_total_hit(sbi);
452 read_unlock(&et->lock);
453
454 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
455 return ret;
456 }
457
__try_merge_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct extent_node * prev_ex,struct extent_node * next_ex)458 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
459 struct extent_tree *et, struct extent_info *ei,
460 struct extent_node *prev_ex,
461 struct extent_node *next_ex)
462 {
463 struct extent_node *en = NULL;
464
465 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
466 prev_ex->ei.len += ei->len;
467 ei = &prev_ex->ei;
468 en = prev_ex;
469 }
470
471 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
472 next_ex->ei.fofs = ei->fofs;
473 next_ex->ei.blk = ei->blk;
474 next_ex->ei.len += ei->len;
475 if (en)
476 __release_extent_node(sbi, et, prev_ex);
477
478 en = next_ex;
479 }
480
481 if (!en)
482 return NULL;
483
484 __try_update_largest_extent(et, en);
485
486 spin_lock(&sbi->extent_lock);
487 if (!list_empty(&en->list)) {
488 list_move_tail(&en->list, &sbi->extent_list);
489 et->cached_en = en;
490 }
491 spin_unlock(&sbi->extent_lock);
492 return en;
493 }
494
__insert_extent_tree(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct rb_node ** insert_p,struct rb_node * insert_parent,bool leftmost)495 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
496 struct extent_tree *et, struct extent_info *ei,
497 struct rb_node **insert_p,
498 struct rb_node *insert_parent,
499 bool leftmost)
500 {
501 struct rb_node **p;
502 struct rb_node *parent = NULL;
503 struct extent_node *en = NULL;
504
505 if (insert_p && insert_parent) {
506 parent = insert_parent;
507 p = insert_p;
508 goto do_insert;
509 }
510
511 leftmost = true;
512
513 p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent,
514 ei->fofs, &leftmost);
515 do_insert:
516 en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
517 if (!en)
518 return NULL;
519
520 __try_update_largest_extent(et, en);
521
522 /* update in global extent list */
523 spin_lock(&sbi->extent_lock);
524 list_add_tail(&en->list, &sbi->extent_list);
525 et->cached_en = en;
526 spin_unlock(&sbi->extent_lock);
527 return en;
528 }
529
f2fs_update_extent_tree_range(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int len)530 static void f2fs_update_extent_tree_range(struct inode *inode,
531 pgoff_t fofs, block_t blkaddr, unsigned int len)
532 {
533 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
534 struct extent_tree *et = F2FS_I(inode)->extent_tree;
535 struct extent_node *en = NULL, *en1 = NULL;
536 struct extent_node *prev_en = NULL, *next_en = NULL;
537 struct extent_info ei, dei, prev;
538 struct rb_node **insert_p = NULL, *insert_parent = NULL;
539 unsigned int end = fofs + len;
540 unsigned int pos = (unsigned int)fofs;
541 bool updated = false;
542 bool leftmost = false;
543
544 if (!et)
545 return;
546
547 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
548
549 write_lock(&et->lock);
550
551 if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
552 write_unlock(&et->lock);
553 return;
554 }
555
556 prev = et->largest;
557 dei.len = 0;
558
559 /*
560 * drop largest extent before lookup, in case it's already
561 * been shrunk from extent tree
562 */
563 __drop_largest_extent(et, fofs, len);
564
565 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
566 en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
567 (struct rb_entry *)et->cached_en, fofs,
568 (struct rb_entry **)&prev_en,
569 (struct rb_entry **)&next_en,
570 &insert_p, &insert_parent, false,
571 &leftmost);
572 if (!en)
573 en = next_en;
574
575 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
576 while (en && en->ei.fofs < end) {
577 unsigned int org_end;
578 int parts = 0; /* # of parts current extent split into */
579
580 next_en = en1 = NULL;
581
582 dei = en->ei;
583 org_end = dei.fofs + dei.len;
584 f2fs_bug_on(sbi, pos >= org_end);
585
586 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
587 en->ei.len = pos - en->ei.fofs;
588 prev_en = en;
589 parts = 1;
590 }
591
592 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
593 if (parts) {
594 set_extent_info(&ei, end,
595 end - dei.fofs + dei.blk,
596 org_end - end);
597 en1 = __insert_extent_tree(sbi, et, &ei,
598 NULL, NULL, true);
599 next_en = en1;
600 } else {
601 en->ei.fofs = end;
602 en->ei.blk += end - dei.fofs;
603 en->ei.len -= end - dei.fofs;
604 next_en = en;
605 }
606 parts++;
607 }
608
609 if (!next_en) {
610 struct rb_node *node = rb_next(&en->rb_node);
611
612 next_en = rb_entry_safe(node, struct extent_node,
613 rb_node);
614 }
615
616 if (parts)
617 __try_update_largest_extent(et, en);
618 else
619 __release_extent_node(sbi, et, en);
620
621 /*
622 * if original extent is split into zero or two parts, extent
623 * tree has been altered by deletion or insertion, therefore
624 * invalidate pointers regard to tree.
625 */
626 if (parts != 1) {
627 insert_p = NULL;
628 insert_parent = NULL;
629 }
630 en = next_en;
631 }
632
633 /* 3. update extent in extent cache */
634 if (blkaddr) {
635
636 set_extent_info(&ei, fofs, blkaddr, len);
637 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
638 __insert_extent_tree(sbi, et, &ei,
639 insert_p, insert_parent, leftmost);
640
641 /* give up extent_cache, if split and small updates happen */
642 if (dei.len >= 1 &&
643 prev.len < F2FS_MIN_EXTENT_LEN &&
644 et->largest.len < F2FS_MIN_EXTENT_LEN) {
645 et->largest.len = 0;
646 et->largest_updated = true;
647 set_inode_flag(inode, FI_NO_EXTENT);
648 }
649 }
650
651 if (is_inode_flag_set(inode, FI_NO_EXTENT))
652 __free_extent_tree(sbi, et);
653
654 if (et->largest_updated) {
655 et->largest_updated = false;
656 updated = true;
657 }
658
659 write_unlock(&et->lock);
660
661 if (updated)
662 f2fs_mark_inode_dirty_sync(inode, true);
663 }
664
f2fs_shrink_extent_tree(struct f2fs_sb_info * sbi,int nr_shrink)665 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
666 {
667 struct extent_tree *et, *next;
668 struct extent_node *en;
669 unsigned int node_cnt = 0, tree_cnt = 0;
670 int remained;
671
672 if (!test_opt(sbi, EXTENT_CACHE))
673 return 0;
674
675 if (!atomic_read(&sbi->total_zombie_tree))
676 goto free_node;
677
678 if (!mutex_trylock(&sbi->extent_tree_lock))
679 goto out;
680
681 /* 1. remove unreferenced extent tree */
682 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
683 if (atomic_read(&et->node_cnt)) {
684 write_lock(&et->lock);
685 node_cnt += __free_extent_tree(sbi, et);
686 write_unlock(&et->lock);
687 }
688 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
689 list_del_init(&et->list);
690 radix_tree_delete(&sbi->extent_tree_root, et->ino);
691 kmem_cache_free(extent_tree_slab, et);
692 atomic_dec(&sbi->total_ext_tree);
693 atomic_dec(&sbi->total_zombie_tree);
694 tree_cnt++;
695
696 if (node_cnt + tree_cnt >= nr_shrink)
697 goto unlock_out;
698 cond_resched();
699 }
700 mutex_unlock(&sbi->extent_tree_lock);
701
702 free_node:
703 /* 2. remove LRU extent entries */
704 if (!mutex_trylock(&sbi->extent_tree_lock))
705 goto out;
706
707 remained = nr_shrink - (node_cnt + tree_cnt);
708
709 spin_lock(&sbi->extent_lock);
710 for (; remained > 0; remained--) {
711 if (list_empty(&sbi->extent_list))
712 break;
713 en = list_first_entry(&sbi->extent_list,
714 struct extent_node, list);
715 et = en->et;
716 if (!write_trylock(&et->lock)) {
717 /* refresh this extent node's position in extent list */
718 list_move_tail(&en->list, &sbi->extent_list);
719 continue;
720 }
721
722 list_del_init(&en->list);
723 spin_unlock(&sbi->extent_lock);
724
725 __detach_extent_node(sbi, et, en);
726
727 write_unlock(&et->lock);
728 node_cnt++;
729 spin_lock(&sbi->extent_lock);
730 }
731 spin_unlock(&sbi->extent_lock);
732
733 unlock_out:
734 mutex_unlock(&sbi->extent_tree_lock);
735 out:
736 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
737
738 return node_cnt + tree_cnt;
739 }
740
f2fs_destroy_extent_node(struct inode * inode)741 unsigned int f2fs_destroy_extent_node(struct inode *inode)
742 {
743 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
744 struct extent_tree *et = F2FS_I(inode)->extent_tree;
745 unsigned int node_cnt = 0;
746
747 if (!et || !atomic_read(&et->node_cnt))
748 return 0;
749
750 write_lock(&et->lock);
751 node_cnt = __free_extent_tree(sbi, et);
752 write_unlock(&et->lock);
753
754 return node_cnt;
755 }
756
f2fs_drop_extent_tree(struct inode * inode)757 void f2fs_drop_extent_tree(struct inode *inode)
758 {
759 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
760 struct extent_tree *et = F2FS_I(inode)->extent_tree;
761 bool updated = false;
762
763 if (!f2fs_may_extent_tree(inode))
764 return;
765
766 write_lock(&et->lock);
767 set_inode_flag(inode, FI_NO_EXTENT);
768 __free_extent_tree(sbi, et);
769 if (et->largest.len) {
770 et->largest.len = 0;
771 updated = true;
772 }
773 write_unlock(&et->lock);
774 if (updated)
775 f2fs_mark_inode_dirty_sync(inode, true);
776 }
777
f2fs_destroy_extent_tree(struct inode * inode)778 void f2fs_destroy_extent_tree(struct inode *inode)
779 {
780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
781 struct extent_tree *et = F2FS_I(inode)->extent_tree;
782 unsigned int node_cnt = 0;
783
784 if (!et)
785 return;
786
787 if (inode->i_nlink && !is_bad_inode(inode) &&
788 atomic_read(&et->node_cnt)) {
789 mutex_lock(&sbi->extent_tree_lock);
790 list_add_tail(&et->list, &sbi->zombie_list);
791 atomic_inc(&sbi->total_zombie_tree);
792 mutex_unlock(&sbi->extent_tree_lock);
793 return;
794 }
795
796 /* free all extent info belong to this extent tree */
797 node_cnt = f2fs_destroy_extent_node(inode);
798
799 /* delete extent tree entry in radix tree */
800 mutex_lock(&sbi->extent_tree_lock);
801 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
802 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
803 kmem_cache_free(extent_tree_slab, et);
804 atomic_dec(&sbi->total_ext_tree);
805 mutex_unlock(&sbi->extent_tree_lock);
806
807 F2FS_I(inode)->extent_tree = NULL;
808
809 trace_f2fs_destroy_extent_tree(inode, node_cnt);
810 }
811
f2fs_lookup_extent_cache(struct inode * inode,pgoff_t pgofs,struct extent_info * ei)812 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
813 struct extent_info *ei)
814 {
815 if (!f2fs_may_extent_tree(inode))
816 return false;
817
818 return f2fs_lookup_extent_tree(inode, pgofs, ei);
819 }
820
f2fs_update_extent_cache(struct dnode_of_data * dn)821 void f2fs_update_extent_cache(struct dnode_of_data *dn)
822 {
823 pgoff_t fofs;
824 block_t blkaddr;
825
826 if (!f2fs_may_extent_tree(dn->inode))
827 return;
828
829 if (dn->data_blkaddr == NEW_ADDR)
830 blkaddr = NULL_ADDR;
831 else
832 blkaddr = dn->data_blkaddr;
833
834 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
835 dn->ofs_in_node;
836 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
837 }
838
f2fs_update_extent_cache_range(struct dnode_of_data * dn,pgoff_t fofs,block_t blkaddr,unsigned int len)839 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
840 pgoff_t fofs, block_t blkaddr, unsigned int len)
841
842 {
843 if (!f2fs_may_extent_tree(dn->inode))
844 return;
845
846 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
847 }
848
f2fs_init_extent_cache_info(struct f2fs_sb_info * sbi)849 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
850 {
851 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
852 mutex_init(&sbi->extent_tree_lock);
853 INIT_LIST_HEAD(&sbi->extent_list);
854 spin_lock_init(&sbi->extent_lock);
855 atomic_set(&sbi->total_ext_tree, 0);
856 INIT_LIST_HEAD(&sbi->zombie_list);
857 atomic_set(&sbi->total_zombie_tree, 0);
858 atomic_set(&sbi->total_ext_node, 0);
859 }
860
f2fs_create_extent_cache(void)861 int __init f2fs_create_extent_cache(void)
862 {
863 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
864 sizeof(struct extent_tree));
865 if (!extent_tree_slab)
866 return -ENOMEM;
867 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
868 sizeof(struct extent_node));
869 if (!extent_node_slab) {
870 kmem_cache_destroy(extent_tree_slab);
871 return -ENOMEM;
872 }
873 return 0;
874 }
875
f2fs_destroy_extent_cache(void)876 void f2fs_destroy_extent_cache(void)
877 {
878 kmem_cache_destroy(extent_node_slab);
879 kmem_cache_destroy(extent_tree_slab);
880 }
881