• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @mv: Pointer to mean/variance structure to update
28  * @sample: New data to include
29  *
30  * @delta is the difference between the current rtt sample and the
31  * running average srtt. We add 1/8 of that to the srtt in order to
32  * update the current srtt estimate. The variance estimate is a bit
33  * more complicated. We subtract the current variance estimate from
34  * the abs value of the @delta and add 1/4 of that to the running
35  * total.  That's equivalent to 3/4 of the current variance
36  * estimate plus 1/4 of the abs of @delta.
37  *
38  * Note that the index points at the array entry containing the smoothed
39  * mean value, and the variance is always in the following entry
40  *
41  * Reference: TCP/IP Illustrated, vol 2, p. 831,832
42  * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
43  * they are not scaled fixed point.
44  */
45 
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)46 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
47 				     s64 sample)
48 {
49 	s64 delta = sample - s->stats[index];
50 	s->stats[index] += (delta >> 3);
51 	index++;
52 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
53 }
54 
55 /**
56  * gfs2_update_reply_times - Update locking statistics
57  * @gl: The glock to update
58  *
59  * This assumes that gl->gl_dstamp has been set earlier.
60  *
61  * The rtt (lock round trip time) is an estimate of the time
62  * taken to perform a dlm lock request. We update it on each
63  * reply from the dlm.
64  *
65  * The blocking flag is set on the glock for all dlm requests
66  * which may potentially block due to lock requests from other nodes.
67  * DLM requests where the current lock state is exclusive, the
68  * requested state is null (or unlocked) or where the TRY or
69  * TRY_1CB flags are set are classified as non-blocking. All
70  * other DLM requests are counted as (potentially) blocking.
71  */
gfs2_update_reply_times(struct gfs2_glock * gl)72 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
73 {
74 	struct gfs2_pcpu_lkstats *lks;
75 	const unsigned gltype = gl->gl_name.ln_type;
76 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
77 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
78 	s64 rtt;
79 
80 	preempt_disable();
81 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
82 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
83 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
84 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
85 	preempt_enable();
86 
87 	trace_gfs2_glock_lock_time(gl, rtt);
88 }
89 
90 /**
91  * gfs2_update_request_times - Update locking statistics
92  * @gl: The glock to update
93  *
94  * The irt (lock inter-request times) measures the average time
95  * between requests to the dlm. It is updated immediately before
96  * each dlm call.
97  */
98 
gfs2_update_request_times(struct gfs2_glock * gl)99 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
100 {
101 	struct gfs2_pcpu_lkstats *lks;
102 	const unsigned gltype = gl->gl_name.ln_type;
103 	ktime_t dstamp;
104 	s64 irt;
105 
106 	preempt_disable();
107 	dstamp = gl->gl_dstamp;
108 	gl->gl_dstamp = ktime_get_real();
109 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
110 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
111 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
112 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
113 	preempt_enable();
114 }
115 
gdlm_ast(void * arg)116 static void gdlm_ast(void *arg)
117 {
118 	struct gfs2_glock *gl = arg;
119 	unsigned ret = gl->gl_state;
120 
121 	gfs2_update_reply_times(gl);
122 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
123 
124 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
125 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
126 
127 	switch (gl->gl_lksb.sb_status) {
128 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
129 		if (gl->gl_ops->go_free)
130 			gl->gl_ops->go_free(gl);
131 		gfs2_glock_free(gl);
132 		return;
133 	case -DLM_ECANCEL: /* Cancel while getting lock */
134 		ret |= LM_OUT_CANCELED;
135 		goto out;
136 	case -EAGAIN: /* Try lock fails */
137 	case -EDEADLK: /* Deadlock detected */
138 		goto out;
139 	case -ETIMEDOUT: /* Canceled due to timeout */
140 		ret |= LM_OUT_ERROR;
141 		goto out;
142 	case 0: /* Success */
143 		break;
144 	default: /* Something unexpected */
145 		BUG();
146 	}
147 
148 	ret = gl->gl_req;
149 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
150 		if (gl->gl_req == LM_ST_SHARED)
151 			ret = LM_ST_DEFERRED;
152 		else if (gl->gl_req == LM_ST_DEFERRED)
153 			ret = LM_ST_SHARED;
154 		else
155 			BUG();
156 	}
157 
158 	set_bit(GLF_INITIAL, &gl->gl_flags);
159 	gfs2_glock_complete(gl, ret);
160 	return;
161 out:
162 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
163 		gl->gl_lksb.sb_lkid = 0;
164 	gfs2_glock_complete(gl, ret);
165 }
166 
gdlm_bast(void * arg,int mode)167 static void gdlm_bast(void *arg, int mode)
168 {
169 	struct gfs2_glock *gl = arg;
170 
171 	switch (mode) {
172 	case DLM_LOCK_EX:
173 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
174 		break;
175 	case DLM_LOCK_CW:
176 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
177 		break;
178 	case DLM_LOCK_PR:
179 		gfs2_glock_cb(gl, LM_ST_SHARED);
180 		break;
181 	default:
182 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
183 		BUG();
184 	}
185 }
186 
187 /* convert gfs lock-state to dlm lock-mode */
188 
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)189 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
190 {
191 	switch (lmstate) {
192 	case LM_ST_UNLOCKED:
193 		return DLM_LOCK_NL;
194 	case LM_ST_EXCLUSIVE:
195 		return DLM_LOCK_EX;
196 	case LM_ST_DEFERRED:
197 		return DLM_LOCK_CW;
198 	case LM_ST_SHARED:
199 		return DLM_LOCK_PR;
200 	}
201 	fs_err(sdp, "unknown LM state %d\n", lmstate);
202 	BUG();
203 	return -1;
204 }
205 
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)206 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
207 		      const int req)
208 {
209 	u32 lkf = 0;
210 
211 	if (gl->gl_lksb.sb_lvbptr)
212 		lkf |= DLM_LKF_VALBLK;
213 
214 	if (gfs_flags & LM_FLAG_TRY)
215 		lkf |= DLM_LKF_NOQUEUE;
216 
217 	if (gfs_flags & LM_FLAG_TRY_1CB) {
218 		lkf |= DLM_LKF_NOQUEUE;
219 		lkf |= DLM_LKF_NOQUEUEBAST;
220 	}
221 
222 	if (gfs_flags & LM_FLAG_PRIORITY) {
223 		lkf |= DLM_LKF_NOORDER;
224 		lkf |= DLM_LKF_HEADQUE;
225 	}
226 
227 	if (gfs_flags & LM_FLAG_ANY) {
228 		if (req == DLM_LOCK_PR)
229 			lkf |= DLM_LKF_ALTCW;
230 		else if (req == DLM_LOCK_CW)
231 			lkf |= DLM_LKF_ALTPR;
232 		else
233 			BUG();
234 	}
235 
236 	if (gl->gl_lksb.sb_lkid != 0) {
237 		lkf |= DLM_LKF_CONVERT;
238 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
239 			lkf |= DLM_LKF_QUECVT;
240 	}
241 
242 	return lkf;
243 }
244 
gfs2_reverse_hex(char * c,u64 value)245 static void gfs2_reverse_hex(char *c, u64 value)
246 {
247 	*c = '0';
248 	while (value) {
249 		*c-- = hex_asc[value & 0x0f];
250 		value >>= 4;
251 	}
252 }
253 
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)254 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
255 		     unsigned int flags)
256 {
257 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
258 	int req;
259 	u32 lkf;
260 	char strname[GDLM_STRNAME_BYTES] = "";
261 
262 	req = make_mode(gl->gl_name.ln_sbd, req_state);
263 	lkf = make_flags(gl, flags, req);
264 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
265 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
266 	if (gl->gl_lksb.sb_lkid) {
267 		gfs2_update_request_times(gl);
268 	} else {
269 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
270 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
271 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
272 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
273 		gl->gl_dstamp = ktime_get_real();
274 	}
275 	/*
276 	 * Submit the actual lock request.
277 	 */
278 
279 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
280 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
281 }
282 
gdlm_put_lock(struct gfs2_glock * gl)283 static void gdlm_put_lock(struct gfs2_glock *gl)
284 {
285 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
286 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
287 	int error;
288 
289 	if (gl->gl_lksb.sb_lkid == 0) {
290 		gfs2_glock_free(gl);
291 		return;
292 	}
293 
294 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
295 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
296 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
297 	gfs2_update_request_times(gl);
298 
299 	/* don't want to call dlm if we've unmounted the lock protocol */
300 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
301 		gfs2_glock_free(gl);
302 		return;
303 	}
304 	/* don't want to skip dlm_unlock writing the lvb when lock has one */
305 
306 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
307 	    !gl->gl_lksb.sb_lvbptr) {
308 		gfs2_glock_free(gl);
309 		return;
310 	}
311 
312 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
313 			   NULL, gl);
314 	if (error) {
315 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
316 		       gl->gl_name.ln_type,
317 		       (unsigned long long)gl->gl_name.ln_number, error);
318 		return;
319 	}
320 }
321 
gdlm_cancel(struct gfs2_glock * gl)322 static void gdlm_cancel(struct gfs2_glock *gl)
323 {
324 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
325 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
326 }
327 
328 /*
329  * dlm/gfs2 recovery coordination using dlm_recover callbacks
330  *
331  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
332  *  1. dlm_controld sees lockspace members change
333  *  2. dlm_controld blocks dlm-kernel locking activity
334  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
335  *  4. dlm_controld starts and finishes its own user level recovery
336  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
337  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
338  *  7. dlm_recoverd does its own lock recovery
339  *  8. dlm_recoverd unblocks dlm-kernel locking activity
340  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
341  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
342  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
343  * 12. gfs2_recover dequeues and recovers journals of failed nodes
344  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
345  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
346  * 15. gfs2_control unblocks normal locking when all journals are recovered
347  *
348  * - failures during recovery
349  *
350  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
351  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
352  * recovering for a prior failure.  gfs2_control needs a way to detect
353  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
354  * the recover_block and recover_start values.
355  *
356  * recover_done() provides a new lockspace generation number each time it
357  * is called (step 9).  This generation number is saved as recover_start.
358  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
359  * recover_block = recover_start.  So, while recover_block is equal to
360  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
361  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
362  *
363  * - more specific gfs2 steps in sequence above
364  *
365  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
366  *  6. recover_slot records any failed jids (maybe none)
367  *  9. recover_done sets recover_start = new generation number
368  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
369  * 12. gfs2_recover does journal recoveries for failed jids identified above
370  * 14. gfs2_control clears control_lock lvb bits for recovered jids
371  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
372  *     again) then do nothing, otherwise if recover_start > recover_block
373  *     then clear BLOCK_LOCKS.
374  *
375  * - parallel recovery steps across all nodes
376  *
377  * All nodes attempt to update the control_lock lvb with the new generation
378  * number and jid bits, but only the first to get the control_lock EX will
379  * do so; others will see that it's already done (lvb already contains new
380  * generation number.)
381  *
382  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
383  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
384  * . One node gets control_lock first and writes the lvb, others see it's done
385  * . All nodes attempt to recover jids for which they see control_lock bits set
386  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
387  * . All nodes will eventually see all lvb bits clear and unblock locks
388  *
389  * - is there a problem with clearing an lvb bit that should be set
390  *   and missing a journal recovery?
391  *
392  * 1. jid fails
393  * 2. lvb bit set for step 1
394  * 3. jid recovered for step 1
395  * 4. jid taken again (new mount)
396  * 5. jid fails (for step 4)
397  * 6. lvb bit set for step 5 (will already be set)
398  * 7. lvb bit cleared for step 3
399  *
400  * This is not a problem because the failure in step 5 does not
401  * require recovery, because the mount in step 4 could not have
402  * progressed far enough to unblock locks and access the fs.  The
403  * control_mount() function waits for all recoveries to be complete
404  * for the latest lockspace generation before ever unblocking locks
405  * and returning.  The mount in step 4 waits until the recovery in
406  * step 1 is done.
407  *
408  * - special case of first mounter: first node to mount the fs
409  *
410  * The first node to mount a gfs2 fs needs to check all the journals
411  * and recover any that need recovery before other nodes are allowed
412  * to mount the fs.  (Others may begin mounting, but they must wait
413  * for the first mounter to be done before taking locks on the fs
414  * or accessing the fs.)  This has two parts:
415  *
416  * 1. The mounted_lock tells a node it's the first to mount the fs.
417  * Each node holds the mounted_lock in PR while it's mounted.
418  * Each node tries to acquire the mounted_lock in EX when it mounts.
419  * If a node is granted the mounted_lock EX it means there are no
420  * other mounted nodes (no PR locks exist), and it is the first mounter.
421  * The mounted_lock is demoted to PR when first recovery is done, so
422  * others will fail to get an EX lock, but will get a PR lock.
423  *
424  * 2. The control_lock blocks others in control_mount() while the first
425  * mounter is doing first mount recovery of all journals.
426  * A mounting node needs to acquire control_lock in EX mode before
427  * it can proceed.  The first mounter holds control_lock in EX while doing
428  * the first mount recovery, blocking mounts from other nodes, then demotes
429  * control_lock to NL when it's done (others_may_mount/first_done),
430  * allowing other nodes to continue mounting.
431  *
432  * first mounter:
433  * control_lock EX/NOQUEUE success
434  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
435  * set first=1
436  * do first mounter recovery
437  * mounted_lock EX->PR
438  * control_lock EX->NL, write lvb generation
439  *
440  * other mounter:
441  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
442  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
443  * mounted_lock PR/NOQUEUE success
444  * read lvb generation
445  * control_lock EX->NL
446  * set first=0
447  *
448  * - mount during recovery
449  *
450  * If a node mounts while others are doing recovery (not first mounter),
451  * the mounting node will get its initial recover_done() callback without
452  * having seen any previous failures/callbacks.
453  *
454  * It must wait for all recoveries preceding its mount to be finished
455  * before it unblocks locks.  It does this by repeating the "other mounter"
456  * steps above until the lvb generation number is >= its mount generation
457  * number (from initial recover_done) and all lvb bits are clear.
458  *
459  * - control_lock lvb format
460  *
461  * 4 bytes generation number: the latest dlm lockspace generation number
462  * from recover_done callback.  Indicates the jid bitmap has been updated
463  * to reflect all slot failures through that generation.
464  * 4 bytes unused.
465  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
466  * that jid N needs recovery.
467  */
468 
469 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
470 
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)471 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
472 			     char *lvb_bits)
473 {
474 	__le32 gen;
475 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
476 	memcpy(&gen, lvb_bits, sizeof(__le32));
477 	*lvb_gen = le32_to_cpu(gen);
478 }
479 
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)480 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
481 			      char *lvb_bits)
482 {
483 	__le32 gen;
484 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
485 	gen = cpu_to_le32(lvb_gen);
486 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
487 }
488 
all_jid_bits_clear(char * lvb)489 static int all_jid_bits_clear(char *lvb)
490 {
491 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
492 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
493 }
494 
sync_wait_cb(void * arg)495 static void sync_wait_cb(void *arg)
496 {
497 	struct lm_lockstruct *ls = arg;
498 	complete(&ls->ls_sync_wait);
499 }
500 
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)501 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
502 {
503 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
504 	int error;
505 
506 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
507 	if (error) {
508 		fs_err(sdp, "%s lkid %x error %d\n",
509 		       name, lksb->sb_lkid, error);
510 		return error;
511 	}
512 
513 	wait_for_completion(&ls->ls_sync_wait);
514 
515 	if (lksb->sb_status != -DLM_EUNLOCK) {
516 		fs_err(sdp, "%s lkid %x status %d\n",
517 		       name, lksb->sb_lkid, lksb->sb_status);
518 		return -1;
519 	}
520 	return 0;
521 }
522 
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)523 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
524 		     unsigned int num, struct dlm_lksb *lksb, char *name)
525 {
526 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
527 	char strname[GDLM_STRNAME_BYTES];
528 	int error, status;
529 
530 	memset(strname, 0, GDLM_STRNAME_BYTES);
531 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
532 
533 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
534 			 strname, GDLM_STRNAME_BYTES - 1,
535 			 0, sync_wait_cb, ls, NULL);
536 	if (error) {
537 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
538 		       name, lksb->sb_lkid, flags, mode, error);
539 		return error;
540 	}
541 
542 	wait_for_completion(&ls->ls_sync_wait);
543 
544 	status = lksb->sb_status;
545 
546 	if (status && status != -EAGAIN) {
547 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
548 		       name, lksb->sb_lkid, flags, mode, status);
549 	}
550 
551 	return status;
552 }
553 
mounted_unlock(struct gfs2_sbd * sdp)554 static int mounted_unlock(struct gfs2_sbd *sdp)
555 {
556 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
557 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
558 }
559 
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)560 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
561 {
562 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
563 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
564 			 &ls->ls_mounted_lksb, "mounted_lock");
565 }
566 
control_unlock(struct gfs2_sbd * sdp)567 static int control_unlock(struct gfs2_sbd *sdp)
568 {
569 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
570 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
571 }
572 
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)573 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
574 {
575 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
576 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
577 			 &ls->ls_control_lksb, "control_lock");
578 }
579 
580 /**
581  * remote_withdraw - react to a node withdrawing from the file system
582  * @sdp: The superblock
583  */
remote_withdraw(struct gfs2_sbd * sdp)584 static void remote_withdraw(struct gfs2_sbd *sdp)
585 {
586 	struct gfs2_jdesc *jd;
587 	int ret = 0, count = 0;
588 
589 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
590 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
591 			continue;
592 		ret = gfs2_recover_journal(jd, true);
593 		if (ret)
594 			break;
595 		count++;
596 	}
597 
598 	/* Now drop the additional reference we acquired */
599 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
600 }
601 
gfs2_control_func(struct work_struct * work)602 static void gfs2_control_func(struct work_struct *work)
603 {
604 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
605 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
606 	uint32_t block_gen, start_gen, lvb_gen, flags;
607 	int recover_set = 0;
608 	int write_lvb = 0;
609 	int recover_size;
610 	int i, error;
611 
612 	/* First check for other nodes that may have done a withdraw. */
613 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
614 		remote_withdraw(sdp);
615 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
616 		return;
617 	}
618 
619 	spin_lock(&ls->ls_recover_spin);
620 	/*
621 	 * No MOUNT_DONE means we're still mounting; control_mount()
622 	 * will set this flag, after which this thread will take over
623 	 * all further clearing of BLOCK_LOCKS.
624 	 *
625 	 * FIRST_MOUNT means this node is doing first mounter recovery,
626 	 * for which recovery control is handled by
627 	 * control_mount()/control_first_done(), not this thread.
628 	 */
629 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
630 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
631 		spin_unlock(&ls->ls_recover_spin);
632 		return;
633 	}
634 	block_gen = ls->ls_recover_block;
635 	start_gen = ls->ls_recover_start;
636 	spin_unlock(&ls->ls_recover_spin);
637 
638 	/*
639 	 * Equal block_gen and start_gen implies we are between
640 	 * recover_prep and recover_done callbacks, which means
641 	 * dlm recovery is in progress and dlm locking is blocked.
642 	 * There's no point trying to do any work until recover_done.
643 	 */
644 
645 	if (block_gen == start_gen)
646 		return;
647 
648 	/*
649 	 * Propagate recover_submit[] and recover_result[] to lvb:
650 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
651 	 * gfs2_recover adds to recover_result[] journal recovery results
652 	 *
653 	 * set lvb bit for jids in recover_submit[] if the lvb has not
654 	 * yet been updated for the generation of the failure
655 	 *
656 	 * clear lvb bit for jids in recover_result[] if the result of
657 	 * the journal recovery is SUCCESS
658 	 */
659 
660 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
661 	if (error) {
662 		fs_err(sdp, "control lock EX error %d\n", error);
663 		return;
664 	}
665 
666 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
667 
668 	spin_lock(&ls->ls_recover_spin);
669 	if (block_gen != ls->ls_recover_block ||
670 	    start_gen != ls->ls_recover_start) {
671 		fs_info(sdp, "recover generation %u block1 %u %u\n",
672 			start_gen, block_gen, ls->ls_recover_block);
673 		spin_unlock(&ls->ls_recover_spin);
674 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
675 		return;
676 	}
677 
678 	recover_size = ls->ls_recover_size;
679 
680 	if (lvb_gen <= start_gen) {
681 		/*
682 		 * Clear lvb bits for jids we've successfully recovered.
683 		 * Because all nodes attempt to recover failed journals,
684 		 * a journal can be recovered multiple times successfully
685 		 * in succession.  Only the first will really do recovery,
686 		 * the others find it clean, but still report a successful
687 		 * recovery.  So, another node may have already recovered
688 		 * the jid and cleared the lvb bit for it.
689 		 */
690 		for (i = 0; i < recover_size; i++) {
691 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
692 				continue;
693 
694 			ls->ls_recover_result[i] = 0;
695 
696 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
697 				continue;
698 
699 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
700 			write_lvb = 1;
701 		}
702 	}
703 
704 	if (lvb_gen == start_gen) {
705 		/*
706 		 * Failed slots before start_gen are already set in lvb.
707 		 */
708 		for (i = 0; i < recover_size; i++) {
709 			if (!ls->ls_recover_submit[i])
710 				continue;
711 			if (ls->ls_recover_submit[i] < lvb_gen)
712 				ls->ls_recover_submit[i] = 0;
713 		}
714 	} else if (lvb_gen < start_gen) {
715 		/*
716 		 * Failed slots before start_gen are not yet set in lvb.
717 		 */
718 		for (i = 0; i < recover_size; i++) {
719 			if (!ls->ls_recover_submit[i])
720 				continue;
721 			if (ls->ls_recover_submit[i] < start_gen) {
722 				ls->ls_recover_submit[i] = 0;
723 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
724 			}
725 		}
726 		/* even if there are no bits to set, we need to write the
727 		   latest generation to the lvb */
728 		write_lvb = 1;
729 	} else {
730 		/*
731 		 * we should be getting a recover_done() for lvb_gen soon
732 		 */
733 	}
734 	spin_unlock(&ls->ls_recover_spin);
735 
736 	if (write_lvb) {
737 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
738 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
739 	} else {
740 		flags = DLM_LKF_CONVERT;
741 	}
742 
743 	error = control_lock(sdp, DLM_LOCK_NL, flags);
744 	if (error) {
745 		fs_err(sdp, "control lock NL error %d\n", error);
746 		return;
747 	}
748 
749 	/*
750 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
751 	 * and clear a jid bit in the lvb if the recovery is a success.
752 	 * Eventually all journals will be recovered, all jid bits will
753 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
754 	 */
755 
756 	for (i = 0; i < recover_size; i++) {
757 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
758 			fs_info(sdp, "recover generation %u jid %d\n",
759 				start_gen, i);
760 			gfs2_recover_set(sdp, i);
761 			recover_set++;
762 		}
763 	}
764 	if (recover_set)
765 		return;
766 
767 	/*
768 	 * No more jid bits set in lvb, all recovery is done, unblock locks
769 	 * (unless a new recover_prep callback has occured blocking locks
770 	 * again while working above)
771 	 */
772 
773 	spin_lock(&ls->ls_recover_spin);
774 	if (ls->ls_recover_block == block_gen &&
775 	    ls->ls_recover_start == start_gen) {
776 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
777 		spin_unlock(&ls->ls_recover_spin);
778 		fs_info(sdp, "recover generation %u done\n", start_gen);
779 		gfs2_glock_thaw(sdp);
780 	} else {
781 		fs_info(sdp, "recover generation %u block2 %u %u\n",
782 			start_gen, block_gen, ls->ls_recover_block);
783 		spin_unlock(&ls->ls_recover_spin);
784 	}
785 }
786 
control_mount(struct gfs2_sbd * sdp)787 static int control_mount(struct gfs2_sbd *sdp)
788 {
789 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
790 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
791 	int mounted_mode;
792 	int retries = 0;
793 	int error;
794 
795 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
796 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
797 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
798 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
799 	init_completion(&ls->ls_sync_wait);
800 
801 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
802 
803 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
804 	if (error) {
805 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
806 		return error;
807 	}
808 
809 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
810 	if (error) {
811 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
812 		control_unlock(sdp);
813 		return error;
814 	}
815 	mounted_mode = DLM_LOCK_NL;
816 
817 restart:
818 	if (retries++ && signal_pending(current)) {
819 		error = -EINTR;
820 		goto fail;
821 	}
822 
823 	/*
824 	 * We always start with both locks in NL. control_lock is
825 	 * demoted to NL below so we don't need to do it here.
826 	 */
827 
828 	if (mounted_mode != DLM_LOCK_NL) {
829 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
830 		if (error)
831 			goto fail;
832 		mounted_mode = DLM_LOCK_NL;
833 	}
834 
835 	/*
836 	 * Other nodes need to do some work in dlm recovery and gfs2_control
837 	 * before the recover_done and control_lock will be ready for us below.
838 	 * A delay here is not required but often avoids having to retry.
839 	 */
840 
841 	msleep_interruptible(500);
842 
843 	/*
844 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
845 	 * control_lock lvb keeps track of any pending journal recoveries.
846 	 * mounted_lock indicates if any other nodes have the fs mounted.
847 	 */
848 
849 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
850 	if (error == -EAGAIN) {
851 		goto restart;
852 	} else if (error) {
853 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
854 		goto fail;
855 	}
856 
857 	/**
858 	 * If we're a spectator, we don't want to take the lock in EX because
859 	 * we cannot do the first-mount responsibility it implies: recovery.
860 	 */
861 	if (sdp->sd_args.ar_spectator)
862 		goto locks_done;
863 
864 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
865 	if (!error) {
866 		mounted_mode = DLM_LOCK_EX;
867 		goto locks_done;
868 	} else if (error != -EAGAIN) {
869 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
870 		goto fail;
871 	}
872 
873 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
874 	if (!error) {
875 		mounted_mode = DLM_LOCK_PR;
876 		goto locks_done;
877 	} else {
878 		/* not even -EAGAIN should happen here */
879 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
880 		goto fail;
881 	}
882 
883 locks_done:
884 	/*
885 	 * If we got both locks above in EX, then we're the first mounter.
886 	 * If not, then we need to wait for the control_lock lvb to be
887 	 * updated by other mounted nodes to reflect our mount generation.
888 	 *
889 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
890 	 * but in cases where all existing nodes leave/fail before mounting
891 	 * nodes finish control_mount, then all nodes will be mounting and
892 	 * lvb_gen will be non-zero.
893 	 */
894 
895 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
896 
897 	if (lvb_gen == 0xFFFFFFFF) {
898 		/* special value to force mount attempts to fail */
899 		fs_err(sdp, "control_mount control_lock disabled\n");
900 		error = -EINVAL;
901 		goto fail;
902 	}
903 
904 	if (mounted_mode == DLM_LOCK_EX) {
905 		/* first mounter, keep both EX while doing first recovery */
906 		spin_lock(&ls->ls_recover_spin);
907 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
908 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
909 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
910 		spin_unlock(&ls->ls_recover_spin);
911 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
912 		return 0;
913 	}
914 
915 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
916 	if (error)
917 		goto fail;
918 
919 	/*
920 	 * We are not first mounter, now we need to wait for the control_lock
921 	 * lvb generation to be >= the generation from our first recover_done
922 	 * and all lvb bits to be clear (no pending journal recoveries.)
923 	 */
924 
925 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
926 		/* journals need recovery, wait until all are clear */
927 		fs_info(sdp, "control_mount wait for journal recovery\n");
928 		goto restart;
929 	}
930 
931 	spin_lock(&ls->ls_recover_spin);
932 	block_gen = ls->ls_recover_block;
933 	start_gen = ls->ls_recover_start;
934 	mount_gen = ls->ls_recover_mount;
935 
936 	if (lvb_gen < mount_gen) {
937 		/* wait for mounted nodes to update control_lock lvb to our
938 		   generation, which might include new recovery bits set */
939 		if (sdp->sd_args.ar_spectator) {
940 			fs_info(sdp, "Recovery is required. Waiting for a "
941 				"non-spectator to mount.\n");
942 			msleep_interruptible(1000);
943 		} else {
944 			fs_info(sdp, "control_mount wait1 block %u start %u "
945 				"mount %u lvb %u flags %lx\n", block_gen,
946 				start_gen, mount_gen, lvb_gen,
947 				ls->ls_recover_flags);
948 		}
949 		spin_unlock(&ls->ls_recover_spin);
950 		goto restart;
951 	}
952 
953 	if (lvb_gen != start_gen) {
954 		/* wait for mounted nodes to update control_lock lvb to the
955 		   latest recovery generation */
956 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
957 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
958 			lvb_gen, ls->ls_recover_flags);
959 		spin_unlock(&ls->ls_recover_spin);
960 		goto restart;
961 	}
962 
963 	if (block_gen == start_gen) {
964 		/* dlm recovery in progress, wait for it to finish */
965 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
966 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
967 			lvb_gen, ls->ls_recover_flags);
968 		spin_unlock(&ls->ls_recover_spin);
969 		goto restart;
970 	}
971 
972 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
973 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
974 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
975 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
976 	spin_unlock(&ls->ls_recover_spin);
977 	return 0;
978 
979 fail:
980 	mounted_unlock(sdp);
981 	control_unlock(sdp);
982 	return error;
983 }
984 
control_first_done(struct gfs2_sbd * sdp)985 static int control_first_done(struct gfs2_sbd *sdp)
986 {
987 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
988 	uint32_t start_gen, block_gen;
989 	int error;
990 
991 restart:
992 	spin_lock(&ls->ls_recover_spin);
993 	start_gen = ls->ls_recover_start;
994 	block_gen = ls->ls_recover_block;
995 
996 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
997 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
998 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
999 		/* sanity check, should not happen */
1000 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1001 		       start_gen, block_gen, ls->ls_recover_flags);
1002 		spin_unlock(&ls->ls_recover_spin);
1003 		control_unlock(sdp);
1004 		return -1;
1005 	}
1006 
1007 	if (start_gen == block_gen) {
1008 		/*
1009 		 * Wait for the end of a dlm recovery cycle to switch from
1010 		 * first mounter recovery.  We can ignore any recover_slot
1011 		 * callbacks between the recover_prep and next recover_done
1012 		 * because we are still the first mounter and any failed nodes
1013 		 * have not fully mounted, so they don't need recovery.
1014 		 */
1015 		spin_unlock(&ls->ls_recover_spin);
1016 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1017 
1018 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1019 			    TASK_UNINTERRUPTIBLE);
1020 		goto restart;
1021 	}
1022 
1023 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1024 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1025 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1026 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1027 	spin_unlock(&ls->ls_recover_spin);
1028 
1029 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1030 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1031 
1032 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1033 	if (error)
1034 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1035 
1036 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1037 	if (error)
1038 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1039 
1040 	return error;
1041 }
1042 
1043 /*
1044  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1045  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1046  * gfs2 jids start at 0, so jid = slot - 1)
1047  */
1048 
1049 #define RECOVER_SIZE_INC 16
1050 
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1051 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1052 			    int num_slots)
1053 {
1054 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1055 	uint32_t *submit = NULL;
1056 	uint32_t *result = NULL;
1057 	uint32_t old_size, new_size;
1058 	int i, max_jid;
1059 
1060 	if (!ls->ls_lvb_bits) {
1061 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1062 		if (!ls->ls_lvb_bits)
1063 			return -ENOMEM;
1064 	}
1065 
1066 	max_jid = 0;
1067 	for (i = 0; i < num_slots; i++) {
1068 		if (max_jid < slots[i].slot - 1)
1069 			max_jid = slots[i].slot - 1;
1070 	}
1071 
1072 	old_size = ls->ls_recover_size;
1073 	new_size = old_size;
1074 	while (new_size < max_jid + 1)
1075 		new_size += RECOVER_SIZE_INC;
1076 	if (new_size == old_size)
1077 		return 0;
1078 
1079 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1080 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1081 	if (!submit || !result) {
1082 		kfree(submit);
1083 		kfree(result);
1084 		return -ENOMEM;
1085 	}
1086 
1087 	spin_lock(&ls->ls_recover_spin);
1088 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1089 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1090 	kfree(ls->ls_recover_submit);
1091 	kfree(ls->ls_recover_result);
1092 	ls->ls_recover_submit = submit;
1093 	ls->ls_recover_result = result;
1094 	ls->ls_recover_size = new_size;
1095 	spin_unlock(&ls->ls_recover_spin);
1096 	return 0;
1097 }
1098 
free_recover_size(struct lm_lockstruct * ls)1099 static void free_recover_size(struct lm_lockstruct *ls)
1100 {
1101 	kfree(ls->ls_lvb_bits);
1102 	kfree(ls->ls_recover_submit);
1103 	kfree(ls->ls_recover_result);
1104 	ls->ls_recover_submit = NULL;
1105 	ls->ls_recover_result = NULL;
1106 	ls->ls_recover_size = 0;
1107 	ls->ls_lvb_bits = NULL;
1108 }
1109 
1110 /* dlm calls before it does lock recovery */
1111 
gdlm_recover_prep(void * arg)1112 static void gdlm_recover_prep(void *arg)
1113 {
1114 	struct gfs2_sbd *sdp = arg;
1115 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1116 
1117 	if (gfs2_withdrawn(sdp)) {
1118 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1119 		return;
1120 	}
1121 	spin_lock(&ls->ls_recover_spin);
1122 	ls->ls_recover_block = ls->ls_recover_start;
1123 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1124 
1125 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1126 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1127 		spin_unlock(&ls->ls_recover_spin);
1128 		return;
1129 	}
1130 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1131 	spin_unlock(&ls->ls_recover_spin);
1132 }
1133 
1134 /* dlm calls after recover_prep has been completed on all lockspace members;
1135    identifies slot/jid of failed member */
1136 
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1137 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1138 {
1139 	struct gfs2_sbd *sdp = arg;
1140 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1141 	int jid = slot->slot - 1;
1142 
1143 	if (gfs2_withdrawn(sdp)) {
1144 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1145 		       jid);
1146 		return;
1147 	}
1148 	spin_lock(&ls->ls_recover_spin);
1149 	if (ls->ls_recover_size < jid + 1) {
1150 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1151 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1152 		spin_unlock(&ls->ls_recover_spin);
1153 		return;
1154 	}
1155 
1156 	if (ls->ls_recover_submit[jid]) {
1157 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1158 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1159 	}
1160 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1161 	spin_unlock(&ls->ls_recover_spin);
1162 }
1163 
1164 /* dlm calls after recover_slot and after it completes lock recovery */
1165 
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1166 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1167 			      int our_slot, uint32_t generation)
1168 {
1169 	struct gfs2_sbd *sdp = arg;
1170 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1171 
1172 	if (gfs2_withdrawn(sdp)) {
1173 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1174 		return;
1175 	}
1176 	/* ensure the ls jid arrays are large enough */
1177 	set_recover_size(sdp, slots, num_slots);
1178 
1179 	spin_lock(&ls->ls_recover_spin);
1180 	ls->ls_recover_start = generation;
1181 
1182 	if (!ls->ls_recover_mount) {
1183 		ls->ls_recover_mount = generation;
1184 		ls->ls_jid = our_slot - 1;
1185 	}
1186 
1187 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1188 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1189 
1190 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1191 	smp_mb__after_atomic();
1192 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1193 	spin_unlock(&ls->ls_recover_spin);
1194 }
1195 
1196 /* gfs2_recover thread has a journal recovery result */
1197 
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1198 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1199 				 unsigned int result)
1200 {
1201 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1202 
1203 	if (gfs2_withdrawn(sdp)) {
1204 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1205 		       jid);
1206 		return;
1207 	}
1208 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1209 		return;
1210 
1211 	/* don't care about the recovery of own journal during mount */
1212 	if (jid == ls->ls_jid)
1213 		return;
1214 
1215 	spin_lock(&ls->ls_recover_spin);
1216 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1217 		spin_unlock(&ls->ls_recover_spin);
1218 		return;
1219 	}
1220 	if (ls->ls_recover_size < jid + 1) {
1221 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1222 		       jid, ls->ls_recover_size);
1223 		spin_unlock(&ls->ls_recover_spin);
1224 		return;
1225 	}
1226 
1227 	fs_info(sdp, "recover jid %d result %s\n", jid,
1228 		result == LM_RD_GAVEUP ? "busy" : "success");
1229 
1230 	ls->ls_recover_result[jid] = result;
1231 
1232 	/* GAVEUP means another node is recovering the journal; delay our
1233 	   next attempt to recover it, to give the other node a chance to
1234 	   finish before trying again */
1235 
1236 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1237 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1238 				   result == LM_RD_GAVEUP ? HZ : 0);
1239 	spin_unlock(&ls->ls_recover_spin);
1240 }
1241 
1242 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1243 	.recover_prep = gdlm_recover_prep,
1244 	.recover_slot = gdlm_recover_slot,
1245 	.recover_done = gdlm_recover_done,
1246 };
1247 
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1248 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1249 {
1250 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1251 	char cluster[GFS2_LOCKNAME_LEN];
1252 	const char *fsname;
1253 	uint32_t flags;
1254 	int error, ops_result;
1255 
1256 	/*
1257 	 * initialize everything
1258 	 */
1259 
1260 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1261 	spin_lock_init(&ls->ls_recover_spin);
1262 	ls->ls_recover_flags = 0;
1263 	ls->ls_recover_mount = 0;
1264 	ls->ls_recover_start = 0;
1265 	ls->ls_recover_block = 0;
1266 	ls->ls_recover_size = 0;
1267 	ls->ls_recover_submit = NULL;
1268 	ls->ls_recover_result = NULL;
1269 	ls->ls_lvb_bits = NULL;
1270 
1271 	error = set_recover_size(sdp, NULL, 0);
1272 	if (error)
1273 		goto fail;
1274 
1275 	/*
1276 	 * prepare dlm_new_lockspace args
1277 	 */
1278 
1279 	fsname = strchr(table, ':');
1280 	if (!fsname) {
1281 		fs_info(sdp, "no fsname found\n");
1282 		error = -EINVAL;
1283 		goto fail_free;
1284 	}
1285 	memset(cluster, 0, sizeof(cluster));
1286 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1287 	fsname++;
1288 
1289 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1290 
1291 	/*
1292 	 * create/join lockspace
1293 	 */
1294 
1295 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1296 				  &gdlm_lockspace_ops, sdp, &ops_result,
1297 				  &ls->ls_dlm);
1298 	if (error) {
1299 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1300 		goto fail_free;
1301 	}
1302 
1303 	if (ops_result < 0) {
1304 		/*
1305 		 * dlm does not support ops callbacks,
1306 		 * old dlm_controld/gfs_controld are used, try without ops.
1307 		 */
1308 		fs_info(sdp, "dlm lockspace ops not used\n");
1309 		free_recover_size(ls);
1310 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1311 		return 0;
1312 	}
1313 
1314 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1315 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1316 		error = -EINVAL;
1317 		goto fail_release;
1318 	}
1319 
1320 	/*
1321 	 * control_mount() uses control_lock to determine first mounter,
1322 	 * and for later mounts, waits for any recoveries to be cleared.
1323 	 */
1324 
1325 	error = control_mount(sdp);
1326 	if (error) {
1327 		fs_err(sdp, "mount control error %d\n", error);
1328 		goto fail_release;
1329 	}
1330 
1331 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1332 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1333 	smp_mb__after_atomic();
1334 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1335 	return 0;
1336 
1337 fail_release:
1338 	dlm_release_lockspace(ls->ls_dlm, 2);
1339 fail_free:
1340 	free_recover_size(ls);
1341 fail:
1342 	return error;
1343 }
1344 
gdlm_first_done(struct gfs2_sbd * sdp)1345 static void gdlm_first_done(struct gfs2_sbd *sdp)
1346 {
1347 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1348 	int error;
1349 
1350 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1351 		return;
1352 
1353 	error = control_first_done(sdp);
1354 	if (error)
1355 		fs_err(sdp, "mount first_done error %d\n", error);
1356 }
1357 
gdlm_unmount(struct gfs2_sbd * sdp)1358 static void gdlm_unmount(struct gfs2_sbd *sdp)
1359 {
1360 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1361 
1362 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1363 		goto release;
1364 
1365 	/* wait for gfs2_control_wq to be done with this mount */
1366 
1367 	spin_lock(&ls->ls_recover_spin);
1368 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1369 	spin_unlock(&ls->ls_recover_spin);
1370 	flush_delayed_work(&sdp->sd_control_work);
1371 
1372 	/* mounted_lock and control_lock will be purged in dlm recovery */
1373 release:
1374 	if (ls->ls_dlm) {
1375 		dlm_release_lockspace(ls->ls_dlm, 2);
1376 		ls->ls_dlm = NULL;
1377 	}
1378 
1379 	free_recover_size(ls);
1380 }
1381 
1382 static const match_table_t dlm_tokens = {
1383 	{ Opt_jid, "jid=%d"},
1384 	{ Opt_id, "id=%d"},
1385 	{ Opt_first, "first=%d"},
1386 	{ Opt_nodir, "nodir=%d"},
1387 	{ Opt_err, NULL },
1388 };
1389 
1390 const struct lm_lockops gfs2_dlm_ops = {
1391 	.lm_proto_name = "lock_dlm",
1392 	.lm_mount = gdlm_mount,
1393 	.lm_first_done = gdlm_first_done,
1394 	.lm_recovery_result = gdlm_recovery_result,
1395 	.lm_unmount = gdlm_unmount,
1396 	.lm_put_lock = gdlm_put_lock,
1397 	.lm_lock = gdlm_lock,
1398 	.lm_cancel = gdlm_cancel,
1399 	.lm_tokens = &dlm_tokens,
1400 };
1401 
1402