• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) International Business Machines Corp., 2000-2004
4  */
5 
6 /*
7  *	jfs_dtree.c: directory B+-tree manager
8  *
9  * B+-tree with variable length key directory:
10  *
11  * each directory page is structured as an array of 32-byte
12  * directory entry slots initialized as a freelist
13  * to avoid search/compaction of free space at insertion.
14  * when an entry is inserted, a number of slots are allocated
15  * from the freelist as required to store variable length data
16  * of the entry; when the entry is deleted, slots of the entry
17  * are returned to freelist.
18  *
19  * leaf entry stores full name as key and file serial number
20  * (aka inode number) as data.
21  * internal/router entry stores sufffix compressed name
22  * as key and simple extent descriptor as data.
23  *
24  * each directory page maintains a sorted entry index table
25  * which stores the start slot index of sorted entries
26  * to allow binary search on the table.
27  *
28  * directory starts as a root/leaf page in on-disk inode
29  * inline data area.
30  * when it becomes full, it starts a leaf of a external extent
31  * of length of 1 block. each time the first leaf becomes full,
32  * it is extended rather than split (its size is doubled),
33  * until its length becoms 4 KBytes, from then the extent is split
34  * with new 4 Kbyte extent when it becomes full
35  * to reduce external fragmentation of small directories.
36  *
37  * blah, blah, blah, for linear scan of directory in pieces by
38  * readdir().
39  *
40  *
41  *	case-insensitive directory file system
42  *
43  * names are stored in case-sensitive way in leaf entry.
44  * but stored, searched and compared in case-insensitive (uppercase) order
45  * (i.e., both search key and entry key are folded for search/compare):
46  * (note that case-sensitive order is BROKEN in storage, e.g.,
47  *  sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
48  *
49  *  entries which folds to the same key makes up a equivalent class
50  *  whose members are stored as contiguous cluster (may cross page boundary)
51  *  but whose order is arbitrary and acts as duplicate, e.g.,
52  *  abc, Abc, aBc, abC)
53  *
54  * once match is found at leaf, requires scan forward/backward
55  * either for, in case-insensitive search, duplicate
56  * or for, in case-sensitive search, for exact match
57  *
58  * router entry must be created/stored in case-insensitive way
59  * in internal entry:
60  * (right most key of left page and left most key of right page
61  * are folded, and its suffix compression is propagated as router
62  * key in parent)
63  * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
64  * should be made the router key for the split)
65  *
66  * case-insensitive search:
67  *
68  *	fold search key;
69  *
70  *	case-insensitive search of B-tree:
71  *	for internal entry, router key is already folded;
72  *	for leaf entry, fold the entry key before comparison.
73  *
74  *	if (leaf entry case-insensitive match found)
75  *		if (next entry satisfies case-insensitive match)
76  *			return EDUPLICATE;
77  *		if (prev entry satisfies case-insensitive match)
78  *			return EDUPLICATE;
79  *		return match;
80  *	else
81  *		return no match;
82  *
83  *	serialization:
84  * target directory inode lock is being held on entry/exit
85  * of all main directory service routines.
86  *
87  *	log based recovery:
88  */
89 
90 #include <linux/fs.h>
91 #include <linux/quotaops.h>
92 #include <linux/slab.h>
93 #include "jfs_incore.h"
94 #include "jfs_superblock.h"
95 #include "jfs_filsys.h"
96 #include "jfs_metapage.h"
97 #include "jfs_dmap.h"
98 #include "jfs_unicode.h"
99 #include "jfs_debug.h"
100 
101 /* dtree split parameter */
102 struct dtsplit {
103 	struct metapage *mp;
104 	s16 index;
105 	s16 nslot;
106 	struct component_name *key;
107 	ddata_t *data;
108 	struct pxdlist *pxdlist;
109 };
110 
111 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
112 
113 /* get page buffer for specified block address */
114 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)				\
115 do {									\
116 	BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot);	\
117 	if (!(RC)) {							\
118 		if (((P)->header.nextindex >				\
119 		     (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \
120 		    ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT))) {	\
121 			BT_PUTPAGE(MP);					\
122 			jfs_error((IP)->i_sb,				\
123 				  "DT_GETPAGE: dtree page corrupt\n");	\
124 			MP = NULL;					\
125 			RC = -EIO;					\
126 		}							\
127 	}								\
128 } while (0)
129 
130 /* for consistency */
131 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
132 
133 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
134 	BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
135 
136 /*
137  * forward references
138  */
139 static int dtSplitUp(tid_t tid, struct inode *ip,
140 		     struct dtsplit * split, struct btstack * btstack);
141 
142 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
143 		       struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
144 
145 static int dtExtendPage(tid_t tid, struct inode *ip,
146 			struct dtsplit * split, struct btstack * btstack);
147 
148 static int dtSplitRoot(tid_t tid, struct inode *ip,
149 		       struct dtsplit * split, struct metapage ** rmpp);
150 
151 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
152 		      dtpage_t * fp, struct btstack * btstack);
153 
154 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
155 
156 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
157 
158 static int dtReadNext(struct inode *ip,
159 		      loff_t * offset, struct btstack * btstack);
160 
161 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
162 
163 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
164 		     int flag);
165 
166 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
167 		     int flag);
168 
169 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
170 			      int ri, struct component_name * key, int flag);
171 
172 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
173 			  ddata_t * data, struct dt_lock **);
174 
175 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
176 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
177 			int do_index);
178 
179 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
180 
181 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
182 
183 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
184 
185 #define ciToUpper(c)	UniStrupr((c)->name)
186 
187 /*
188  *	read_index_page()
189  *
190  *	Reads a page of a directory's index table.
191  *	Having metadata mapped into the directory inode's address space
192  *	presents a multitude of problems.  We avoid this by mapping to
193  *	the absolute address space outside of the *_metapage routines
194  */
read_index_page(struct inode * inode,s64 blkno)195 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
196 {
197 	int rc;
198 	s64 xaddr;
199 	int xflag;
200 	s32 xlen;
201 
202 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
203 	if (rc || (xaddr == 0))
204 		return NULL;
205 
206 	return read_metapage(inode, xaddr, PSIZE, 1);
207 }
208 
209 /*
210  *	get_index_page()
211  *
212  *	Same as get_index_page(), but get's a new page without reading
213  */
get_index_page(struct inode * inode,s64 blkno)214 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
215 {
216 	int rc;
217 	s64 xaddr;
218 	int xflag;
219 	s32 xlen;
220 
221 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
222 	if (rc || (xaddr == 0))
223 		return NULL;
224 
225 	return get_metapage(inode, xaddr, PSIZE, 1);
226 }
227 
228 /*
229  *	find_index()
230  *
231  *	Returns dtree page containing directory table entry for specified
232  *	index and pointer to its entry.
233  *
234  *	mp must be released by caller.
235  */
find_index(struct inode * ip,u32 index,struct metapage ** mp,s64 * lblock)236 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
237 					 struct metapage ** mp, s64 *lblock)
238 {
239 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
240 	s64 blkno;
241 	s64 offset;
242 	int page_offset;
243 	struct dir_table_slot *slot;
244 	static int maxWarnings = 10;
245 
246 	if (index < 2) {
247 		if (maxWarnings) {
248 			jfs_warn("find_entry called with index = %d", index);
249 			maxWarnings--;
250 		}
251 		return NULL;
252 	}
253 
254 	if (index >= jfs_ip->next_index) {
255 		jfs_warn("find_entry called with index >= next_index");
256 		return NULL;
257 	}
258 
259 	if (jfs_dirtable_inline(ip)) {
260 		/*
261 		 * Inline directory table
262 		 */
263 		*mp = NULL;
264 		slot = &jfs_ip->i_dirtable[index - 2];
265 	} else {
266 		offset = (index - 2) * sizeof(struct dir_table_slot);
267 		page_offset = offset & (PSIZE - 1);
268 		blkno = ((offset + 1) >> L2PSIZE) <<
269 		    JFS_SBI(ip->i_sb)->l2nbperpage;
270 
271 		if (*mp && (*lblock != blkno)) {
272 			release_metapage(*mp);
273 			*mp = NULL;
274 		}
275 		if (!(*mp)) {
276 			*lblock = blkno;
277 			*mp = read_index_page(ip, blkno);
278 		}
279 		if (!(*mp)) {
280 			jfs_err("free_index: error reading directory table");
281 			return NULL;
282 		}
283 
284 		slot =
285 		    (struct dir_table_slot *) ((char *) (*mp)->data +
286 					       page_offset);
287 	}
288 	return slot;
289 }
290 
lock_index(tid_t tid,struct inode * ip,struct metapage * mp,u32 index)291 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
292 			      u32 index)
293 {
294 	struct tlock *tlck;
295 	struct linelock *llck;
296 	struct lv *lv;
297 
298 	tlck = txLock(tid, ip, mp, tlckDATA);
299 	llck = (struct linelock *) tlck->lock;
300 
301 	if (llck->index >= llck->maxcnt)
302 		llck = txLinelock(llck);
303 	lv = &llck->lv[llck->index];
304 
305 	/*
306 	 *	Linelock slot size is twice the size of directory table
307 	 *	slot size.  512 entries per page.
308 	 */
309 	lv->offset = ((index - 2) & 511) >> 1;
310 	lv->length = 1;
311 	llck->index++;
312 }
313 
314 /*
315  *	add_index()
316  *
317  *	Adds an entry to the directory index table.  This is used to provide
318  *	each directory entry with a persistent index in which to resume
319  *	directory traversals
320  */
add_index(tid_t tid,struct inode * ip,s64 bn,int slot)321 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
322 {
323 	struct super_block *sb = ip->i_sb;
324 	struct jfs_sb_info *sbi = JFS_SBI(sb);
325 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
326 	u64 blkno;
327 	struct dir_table_slot *dirtab_slot;
328 	u32 index;
329 	struct linelock *llck;
330 	struct lv *lv;
331 	struct metapage *mp;
332 	s64 offset;
333 	uint page_offset;
334 	struct tlock *tlck;
335 	s64 xaddr;
336 
337 	ASSERT(DO_INDEX(ip));
338 
339 	if (jfs_ip->next_index < 2) {
340 		jfs_warn("add_index: next_index = %d.  Resetting!",
341 			   jfs_ip->next_index);
342 		jfs_ip->next_index = 2;
343 	}
344 
345 	index = jfs_ip->next_index++;
346 
347 	if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
348 		/*
349 		 * i_size reflects size of index table, or 8 bytes per entry.
350 		 */
351 		ip->i_size = (loff_t) (index - 1) << 3;
352 
353 		/*
354 		 * dir table fits inline within inode
355 		 */
356 		dirtab_slot = &jfs_ip->i_dirtable[index-2];
357 		dirtab_slot->flag = DIR_INDEX_VALID;
358 		dirtab_slot->slot = slot;
359 		DTSaddress(dirtab_slot, bn);
360 
361 		set_cflag(COMMIT_Dirtable, ip);
362 
363 		return index;
364 	}
365 	if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
366 		struct dir_table_slot temp_table[12];
367 
368 		/*
369 		 * It's time to move the inline table to an external
370 		 * page and begin to build the xtree
371 		 */
372 		if (dquot_alloc_block(ip, sbi->nbperpage))
373 			goto clean_up;
374 		if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
375 			dquot_free_block(ip, sbi->nbperpage);
376 			goto clean_up;
377 		}
378 
379 		/*
380 		 * Save the table, we're going to overwrite it with the
381 		 * xtree root
382 		 */
383 		memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
384 
385 		/*
386 		 * Initialize empty x-tree
387 		 */
388 		xtInitRoot(tid, ip);
389 
390 		/*
391 		 * Add the first block to the xtree
392 		 */
393 		if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
394 			/* This really shouldn't fail */
395 			jfs_warn("add_index: xtInsert failed!");
396 			memcpy(&jfs_ip->i_dirtable, temp_table,
397 			       sizeof (temp_table));
398 			dbFree(ip, xaddr, sbi->nbperpage);
399 			dquot_free_block(ip, sbi->nbperpage);
400 			goto clean_up;
401 		}
402 		ip->i_size = PSIZE;
403 
404 		mp = get_index_page(ip, 0);
405 		if (!mp) {
406 			jfs_err("add_index: get_metapage failed!");
407 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
408 			memcpy(&jfs_ip->i_dirtable, temp_table,
409 			       sizeof (temp_table));
410 			goto clean_up;
411 		}
412 		tlck = txLock(tid, ip, mp, tlckDATA);
413 		llck = (struct linelock *) & tlck->lock;
414 		ASSERT(llck->index == 0);
415 		lv = &llck->lv[0];
416 
417 		lv->offset = 0;
418 		lv->length = 6;	/* tlckDATA slot size is 16 bytes */
419 		llck->index++;
420 
421 		memcpy(mp->data, temp_table, sizeof(temp_table));
422 
423 		mark_metapage_dirty(mp);
424 		release_metapage(mp);
425 
426 		/*
427 		 * Logging is now directed by xtree tlocks
428 		 */
429 		clear_cflag(COMMIT_Dirtable, ip);
430 	}
431 
432 	offset = (index - 2) * sizeof(struct dir_table_slot);
433 	page_offset = offset & (PSIZE - 1);
434 	blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
435 	if (page_offset == 0) {
436 		/*
437 		 * This will be the beginning of a new page
438 		 */
439 		xaddr = 0;
440 		if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
441 			jfs_warn("add_index: xtInsert failed!");
442 			goto clean_up;
443 		}
444 		ip->i_size += PSIZE;
445 
446 		if ((mp = get_index_page(ip, blkno)))
447 			memset(mp->data, 0, PSIZE);	/* Just looks better */
448 		else
449 			xtTruncate(tid, ip, offset, COMMIT_PWMAP);
450 	} else
451 		mp = read_index_page(ip, blkno);
452 
453 	if (!mp) {
454 		jfs_err("add_index: get/read_metapage failed!");
455 		goto clean_up;
456 	}
457 
458 	lock_index(tid, ip, mp, index);
459 
460 	dirtab_slot =
461 	    (struct dir_table_slot *) ((char *) mp->data + page_offset);
462 	dirtab_slot->flag = DIR_INDEX_VALID;
463 	dirtab_slot->slot = slot;
464 	DTSaddress(dirtab_slot, bn);
465 
466 	mark_metapage_dirty(mp);
467 	release_metapage(mp);
468 
469 	return index;
470 
471       clean_up:
472 
473 	jfs_ip->next_index--;
474 
475 	return 0;
476 }
477 
478 /*
479  *	free_index()
480  *
481  *	Marks an entry to the directory index table as free.
482  */
free_index(tid_t tid,struct inode * ip,u32 index,u32 next)483 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
484 {
485 	struct dir_table_slot *dirtab_slot;
486 	s64 lblock;
487 	struct metapage *mp = NULL;
488 
489 	dirtab_slot = find_index(ip, index, &mp, &lblock);
490 
491 	if (!dirtab_slot)
492 		return;
493 
494 	dirtab_slot->flag = DIR_INDEX_FREE;
495 	dirtab_slot->slot = dirtab_slot->addr1 = 0;
496 	dirtab_slot->addr2 = cpu_to_le32(next);
497 
498 	if (mp) {
499 		lock_index(tid, ip, mp, index);
500 		mark_metapage_dirty(mp);
501 		release_metapage(mp);
502 	} else
503 		set_cflag(COMMIT_Dirtable, ip);
504 }
505 
506 /*
507  *	modify_index()
508  *
509  *	Changes an entry in the directory index table
510  */
modify_index(tid_t tid,struct inode * ip,u32 index,s64 bn,int slot,struct metapage ** mp,s64 * lblock)511 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
512 			 int slot, struct metapage ** mp, s64 *lblock)
513 {
514 	struct dir_table_slot *dirtab_slot;
515 
516 	dirtab_slot = find_index(ip, index, mp, lblock);
517 
518 	if (!dirtab_slot)
519 		return;
520 
521 	DTSaddress(dirtab_slot, bn);
522 	dirtab_slot->slot = slot;
523 
524 	if (*mp) {
525 		lock_index(tid, ip, *mp, index);
526 		mark_metapage_dirty(*mp);
527 	} else
528 		set_cflag(COMMIT_Dirtable, ip);
529 }
530 
531 /*
532  *	read_index()
533  *
534  *	reads a directory table slot
535  */
read_index(struct inode * ip,u32 index,struct dir_table_slot * dirtab_slot)536 static int read_index(struct inode *ip, u32 index,
537 		     struct dir_table_slot * dirtab_slot)
538 {
539 	s64 lblock;
540 	struct metapage *mp = NULL;
541 	struct dir_table_slot *slot;
542 
543 	slot = find_index(ip, index, &mp, &lblock);
544 	if (!slot) {
545 		return -EIO;
546 	}
547 
548 	memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
549 
550 	if (mp)
551 		release_metapage(mp);
552 
553 	return 0;
554 }
555 
556 /*
557  *	dtSearch()
558  *
559  * function:
560  *	Search for the entry with specified key
561  *
562  * parameter:
563  *
564  * return: 0 - search result on stack, leaf page pinned;
565  *	   errno - I/O error
566  */
dtSearch(struct inode * ip,struct component_name * key,ino_t * data,struct btstack * btstack,int flag)567 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
568 	     struct btstack * btstack, int flag)
569 {
570 	int rc = 0;
571 	int cmp = 1;		/* init for empty page */
572 	s64 bn;
573 	struct metapage *mp;
574 	dtpage_t *p;
575 	s8 *stbl;
576 	int base, index, lim;
577 	struct btframe *btsp;
578 	pxd_t *pxd;
579 	int psize = 288;	/* initial in-line directory */
580 	ino_t inumber;
581 	struct component_name ciKey;
582 	struct super_block *sb = ip->i_sb;
583 
584 	ciKey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
585 				   GFP_NOFS);
586 	if (!ciKey.name) {
587 		rc = -ENOMEM;
588 		goto dtSearch_Exit2;
589 	}
590 
591 
592 	/* uppercase search key for c-i directory */
593 	UniStrcpy(ciKey.name, key->name);
594 	ciKey.namlen = key->namlen;
595 
596 	/* only uppercase if case-insensitive support is on */
597 	if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
598 		ciToUpper(&ciKey);
599 	}
600 	BT_CLR(btstack);	/* reset stack */
601 
602 	/* init level count for max pages to split */
603 	btstack->nsplit = 1;
604 
605 	/*
606 	 *	search down tree from root:
607 	 *
608 	 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
609 	 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
610 	 *
611 	 * if entry with search key K is not found
612 	 * internal page search find the entry with largest key Ki
613 	 * less than K which point to the child page to search;
614 	 * leaf page search find the entry with smallest key Kj
615 	 * greater than K so that the returned index is the position of
616 	 * the entry to be shifted right for insertion of new entry.
617 	 * for empty tree, search key is greater than any key of the tree.
618 	 *
619 	 * by convention, root bn = 0.
620 	 */
621 	for (bn = 0;;) {
622 		/* get/pin the page to search */
623 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
624 		if (rc)
625 			goto dtSearch_Exit1;
626 
627 		/* get sorted entry table of the page */
628 		stbl = DT_GETSTBL(p);
629 
630 		/*
631 		 * binary search with search key K on the current page.
632 		 */
633 		for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
634 			index = base + (lim >> 1);
635 
636 			if (p->header.flag & BT_LEAF) {
637 				/* uppercase leaf name to compare */
638 				cmp =
639 				    ciCompare(&ciKey, p, stbl[index],
640 					      JFS_SBI(sb)->mntflag);
641 			} else {
642 				/* router key is in uppercase */
643 
644 				cmp = dtCompare(&ciKey, p, stbl[index]);
645 
646 
647 			}
648 			if (cmp == 0) {
649 				/*
650 				 *	search hit
651 				 */
652 				/* search hit - leaf page:
653 				 * return the entry found
654 				 */
655 				if (p->header.flag & BT_LEAF) {
656 					inumber = le32_to_cpu(
657 			((struct ldtentry *) & p->slot[stbl[index]])->inumber);
658 
659 					/*
660 					 * search for JFS_LOOKUP
661 					 */
662 					if (flag == JFS_LOOKUP) {
663 						*data = inumber;
664 						rc = 0;
665 						goto out;
666 					}
667 
668 					/*
669 					 * search for JFS_CREATE
670 					 */
671 					if (flag == JFS_CREATE) {
672 						*data = inumber;
673 						rc = -EEXIST;
674 						goto out;
675 					}
676 
677 					/*
678 					 * search for JFS_REMOVE or JFS_RENAME
679 					 */
680 					if ((flag == JFS_REMOVE ||
681 					     flag == JFS_RENAME) &&
682 					    *data != inumber) {
683 						rc = -ESTALE;
684 						goto out;
685 					}
686 
687 					/*
688 					 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
689 					 */
690 					/* save search result */
691 					*data = inumber;
692 					btsp = btstack->top;
693 					btsp->bn = bn;
694 					btsp->index = index;
695 					btsp->mp = mp;
696 
697 					rc = 0;
698 					goto dtSearch_Exit1;
699 				}
700 
701 				/* search hit - internal page:
702 				 * descend/search its child page
703 				 */
704 				goto getChild;
705 			}
706 
707 			if (cmp > 0) {
708 				base = index + 1;
709 				--lim;
710 			}
711 		}
712 
713 		/*
714 		 *	search miss
715 		 *
716 		 * base is the smallest index with key (Kj) greater than
717 		 * search key (K) and may be zero or (maxindex + 1) index.
718 		 */
719 		/*
720 		 * search miss - leaf page
721 		 *
722 		 * return location of entry (base) where new entry with
723 		 * search key K is to be inserted.
724 		 */
725 		if (p->header.flag & BT_LEAF) {
726 			/*
727 			 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
728 			 */
729 			if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
730 			    flag == JFS_RENAME) {
731 				rc = -ENOENT;
732 				goto out;
733 			}
734 
735 			/*
736 			 * search for JFS_CREATE|JFS_FINDDIR:
737 			 *
738 			 * save search result
739 			 */
740 			*data = 0;
741 			btsp = btstack->top;
742 			btsp->bn = bn;
743 			btsp->index = base;
744 			btsp->mp = mp;
745 
746 			rc = 0;
747 			goto dtSearch_Exit1;
748 		}
749 
750 		/*
751 		 * search miss - internal page
752 		 *
753 		 * if base is non-zero, decrement base by one to get the parent
754 		 * entry of the child page to search.
755 		 */
756 		index = base ? base - 1 : base;
757 
758 		/*
759 		 * go down to child page
760 		 */
761 	      getChild:
762 		/* update max. number of pages to split */
763 		if (BT_STACK_FULL(btstack)) {
764 			/* Something's corrupted, mark filesystem dirty so
765 			 * chkdsk will fix it.
766 			 */
767 			jfs_error(sb, "stack overrun!\n");
768 			BT_STACK_DUMP(btstack);
769 			rc = -EIO;
770 			goto out;
771 		}
772 		btstack->nsplit++;
773 
774 		/* push (bn, index) of the parent page/entry */
775 		BT_PUSH(btstack, bn, index);
776 
777 		/* get the child page block number */
778 		pxd = (pxd_t *) & p->slot[stbl[index]];
779 		bn = addressPXD(pxd);
780 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
781 
782 		/* unpin the parent page */
783 		DT_PUTPAGE(mp);
784 	}
785 
786       out:
787 	DT_PUTPAGE(mp);
788 
789       dtSearch_Exit1:
790 
791 	kfree(ciKey.name);
792 
793       dtSearch_Exit2:
794 
795 	return rc;
796 }
797 
798 
799 /*
800  *	dtInsert()
801  *
802  * function: insert an entry to directory tree
803  *
804  * parameter:
805  *
806  * return: 0 - success;
807  *	   errno - failure;
808  */
dtInsert(tid_t tid,struct inode * ip,struct component_name * name,ino_t * fsn,struct btstack * btstack)809 int dtInsert(tid_t tid, struct inode *ip,
810 	 struct component_name * name, ino_t * fsn, struct btstack * btstack)
811 {
812 	int rc = 0;
813 	struct metapage *mp;	/* meta-page buffer */
814 	dtpage_t *p;		/* base B+-tree index page */
815 	s64 bn;
816 	int index;
817 	struct dtsplit split;	/* split information */
818 	ddata_t data;
819 	struct dt_lock *dtlck;
820 	int n;
821 	struct tlock *tlck;
822 	struct lv *lv;
823 
824 	/*
825 	 *	retrieve search result
826 	 *
827 	 * dtSearch() returns (leaf page pinned, index at which to insert).
828 	 * n.b. dtSearch() may return index of (maxindex + 1) of
829 	 * the full page.
830 	 */
831 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
832 
833 	/*
834 	 *	insert entry for new key
835 	 */
836 	if (DO_INDEX(ip)) {
837 		if (JFS_IP(ip)->next_index == DIREND) {
838 			DT_PUTPAGE(mp);
839 			return -EMLINK;
840 		}
841 		n = NDTLEAF(name->namlen);
842 		data.leaf.tid = tid;
843 		data.leaf.ip = ip;
844 	} else {
845 		n = NDTLEAF_LEGACY(name->namlen);
846 		data.leaf.ip = NULL;	/* signifies legacy directory format */
847 	}
848 	data.leaf.ino = *fsn;
849 
850 	/*
851 	 *	leaf page does not have enough room for new entry:
852 	 *
853 	 *	extend/split the leaf page;
854 	 *
855 	 * dtSplitUp() will insert the entry and unpin the leaf page.
856 	 */
857 	if (n > p->header.freecnt) {
858 		split.mp = mp;
859 		split.index = index;
860 		split.nslot = n;
861 		split.key = name;
862 		split.data = &data;
863 		rc = dtSplitUp(tid, ip, &split, btstack);
864 		return rc;
865 	}
866 
867 	/*
868 	 *	leaf page does have enough room for new entry:
869 	 *
870 	 *	insert the new data entry into the leaf page;
871 	 */
872 	BT_MARK_DIRTY(mp, ip);
873 	/*
874 	 * acquire a transaction lock on the leaf page
875 	 */
876 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
877 	dtlck = (struct dt_lock *) & tlck->lock;
878 	ASSERT(dtlck->index == 0);
879 	lv = & dtlck->lv[0];
880 
881 	/* linelock header */
882 	lv->offset = 0;
883 	lv->length = 1;
884 	dtlck->index++;
885 
886 	dtInsertEntry(p, index, name, &data, &dtlck);
887 
888 	/* linelock stbl of non-root leaf page */
889 	if (!(p->header.flag & BT_ROOT)) {
890 		if (dtlck->index >= dtlck->maxcnt)
891 			dtlck = (struct dt_lock *) txLinelock(dtlck);
892 		lv = & dtlck->lv[dtlck->index];
893 		n = index >> L2DTSLOTSIZE;
894 		lv->offset = p->header.stblindex + n;
895 		lv->length =
896 		    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
897 		dtlck->index++;
898 	}
899 
900 	/* unpin the leaf page */
901 	DT_PUTPAGE(mp);
902 
903 	return 0;
904 }
905 
906 
907 /*
908  *	dtSplitUp()
909  *
910  * function: propagate insertion bottom up;
911  *
912  * parameter:
913  *
914  * return: 0 - success;
915  *	   errno - failure;
916  *	leaf page unpinned;
917  */
dtSplitUp(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)918 static int dtSplitUp(tid_t tid,
919 	  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
920 {
921 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
922 	int rc = 0;
923 	struct metapage *smp;
924 	dtpage_t *sp;		/* split page */
925 	struct metapage *rmp;
926 	dtpage_t *rp;		/* new right page split from sp */
927 	pxd_t rpxd;		/* new right page extent descriptor */
928 	struct metapage *lmp;
929 	dtpage_t *lp;		/* left child page */
930 	int skip;		/* index of entry of insertion */
931 	struct btframe *parent;	/* parent page entry on traverse stack */
932 	s64 xaddr, nxaddr;
933 	int xlen, xsize;
934 	struct pxdlist pxdlist;
935 	pxd_t *pxd;
936 	struct component_name key = { 0, NULL };
937 	ddata_t *data = split->data;
938 	int n;
939 	struct dt_lock *dtlck;
940 	struct tlock *tlck;
941 	struct lv *lv;
942 	int quota_allocation = 0;
943 
944 	/* get split page */
945 	smp = split->mp;
946 	sp = DT_PAGE(ip, smp);
947 
948 	key.name = kmalloc_array(JFS_NAME_MAX + 2, sizeof(wchar_t), GFP_NOFS);
949 	if (!key.name) {
950 		DT_PUTPAGE(smp);
951 		rc = -ENOMEM;
952 		goto dtSplitUp_Exit;
953 	}
954 
955 	/*
956 	 *	split leaf page
957 	 *
958 	 * The split routines insert the new entry, and
959 	 * acquire txLock as appropriate.
960 	 */
961 	/*
962 	 *	split root leaf page:
963 	 */
964 	if (sp->header.flag & BT_ROOT) {
965 		/*
966 		 * allocate a single extent child page
967 		 */
968 		xlen = 1;
969 		n = sbi->bsize >> L2DTSLOTSIZE;
970 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
971 		n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
972 		if (n <= split->nslot)
973 			xlen++;
974 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
975 			DT_PUTPAGE(smp);
976 			goto freeKeyName;
977 		}
978 
979 		pxdlist.maxnpxd = 1;
980 		pxdlist.npxd = 0;
981 		pxd = &pxdlist.pxd[0];
982 		PXDaddress(pxd, xaddr);
983 		PXDlength(pxd, xlen);
984 		split->pxdlist = &pxdlist;
985 		rc = dtSplitRoot(tid, ip, split, &rmp);
986 
987 		if (rc)
988 			dbFree(ip, xaddr, xlen);
989 		else
990 			DT_PUTPAGE(rmp);
991 
992 		DT_PUTPAGE(smp);
993 
994 		if (!DO_INDEX(ip))
995 			ip->i_size = xlen << sbi->l2bsize;
996 
997 		goto freeKeyName;
998 	}
999 
1000 	/*
1001 	 *	extend first leaf page
1002 	 *
1003 	 * extend the 1st extent if less than buffer page size
1004 	 * (dtExtendPage() reurns leaf page unpinned)
1005 	 */
1006 	pxd = &sp->header.self;
1007 	xlen = lengthPXD(pxd);
1008 	xsize = xlen << sbi->l2bsize;
1009 	if (xsize < PSIZE) {
1010 		xaddr = addressPXD(pxd);
1011 		n = xsize >> L2DTSLOTSIZE;
1012 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
1013 		if ((n + sp->header.freecnt) <= split->nslot)
1014 			n = xlen + (xlen << 1);
1015 		else
1016 			n = xlen;
1017 
1018 		/* Allocate blocks to quota. */
1019 		rc = dquot_alloc_block(ip, n);
1020 		if (rc)
1021 			goto extendOut;
1022 		quota_allocation += n;
1023 
1024 		if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1025 				    (s64) n, &nxaddr)))
1026 			goto extendOut;
1027 
1028 		pxdlist.maxnpxd = 1;
1029 		pxdlist.npxd = 0;
1030 		pxd = &pxdlist.pxd[0];
1031 		PXDaddress(pxd, nxaddr);
1032 		PXDlength(pxd, xlen + n);
1033 		split->pxdlist = &pxdlist;
1034 		if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1035 			nxaddr = addressPXD(pxd);
1036 			if (xaddr != nxaddr) {
1037 				/* free relocated extent */
1038 				xlen = lengthPXD(pxd);
1039 				dbFree(ip, nxaddr, (s64) xlen);
1040 			} else {
1041 				/* free extended delta */
1042 				xlen = lengthPXD(pxd) - n;
1043 				xaddr = addressPXD(pxd) + xlen;
1044 				dbFree(ip, xaddr, (s64) n);
1045 			}
1046 		} else if (!DO_INDEX(ip))
1047 			ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1048 
1049 
1050 	      extendOut:
1051 		DT_PUTPAGE(smp);
1052 		goto freeKeyName;
1053 	}
1054 
1055 	/*
1056 	 *	split leaf page <sp> into <sp> and a new right page <rp>.
1057 	 *
1058 	 * return <rp> pinned and its extent descriptor <rpxd>
1059 	 */
1060 	/*
1061 	 * allocate new directory page extent and
1062 	 * new index page(s) to cover page split(s)
1063 	 *
1064 	 * allocation hint: ?
1065 	 */
1066 	n = btstack->nsplit;
1067 	pxdlist.maxnpxd = pxdlist.npxd = 0;
1068 	xlen = sbi->nbperpage;
1069 	for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1070 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1071 			PXDaddress(pxd, xaddr);
1072 			PXDlength(pxd, xlen);
1073 			pxdlist.maxnpxd++;
1074 			continue;
1075 		}
1076 
1077 		DT_PUTPAGE(smp);
1078 
1079 		/* undo allocation */
1080 		goto splitOut;
1081 	}
1082 
1083 	split->pxdlist = &pxdlist;
1084 	if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1085 		DT_PUTPAGE(smp);
1086 
1087 		/* undo allocation */
1088 		goto splitOut;
1089 	}
1090 
1091 	if (!DO_INDEX(ip))
1092 		ip->i_size += PSIZE;
1093 
1094 	/*
1095 	 * propagate up the router entry for the leaf page just split
1096 	 *
1097 	 * insert a router entry for the new page into the parent page,
1098 	 * propagate the insert/split up the tree by walking back the stack
1099 	 * of (bn of parent page, index of child page entry in parent page)
1100 	 * that were traversed during the search for the page that split.
1101 	 *
1102 	 * the propagation of insert/split up the tree stops if the root
1103 	 * splits or the page inserted into doesn't have to split to hold
1104 	 * the new entry.
1105 	 *
1106 	 * the parent entry for the split page remains the same, and
1107 	 * a new entry is inserted at its right with the first key and
1108 	 * block number of the new right page.
1109 	 *
1110 	 * There are a maximum of 4 pages pinned at any time:
1111 	 * two children, left parent and right parent (when the parent splits).
1112 	 * keep the child pages pinned while working on the parent.
1113 	 * make sure that all pins are released at exit.
1114 	 */
1115 	while ((parent = BT_POP(btstack)) != NULL) {
1116 		/* parent page specified by stack frame <parent> */
1117 
1118 		/* keep current child pages (<lp>, <rp>) pinned */
1119 		lmp = smp;
1120 		lp = sp;
1121 
1122 		/*
1123 		 * insert router entry in parent for new right child page <rp>
1124 		 */
1125 		/* get the parent page <sp> */
1126 		DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1127 		if (rc) {
1128 			DT_PUTPAGE(lmp);
1129 			DT_PUTPAGE(rmp);
1130 			goto splitOut;
1131 		}
1132 
1133 		/*
1134 		 * The new key entry goes ONE AFTER the index of parent entry,
1135 		 * because the split was to the right.
1136 		 */
1137 		skip = parent->index + 1;
1138 
1139 		/*
1140 		 * compute the key for the router entry
1141 		 *
1142 		 * key suffix compression:
1143 		 * for internal pages that have leaf pages as children,
1144 		 * retain only what's needed to distinguish between
1145 		 * the new entry and the entry on the page to its left.
1146 		 * If the keys compare equal, retain the entire key.
1147 		 *
1148 		 * note that compression is performed only at computing
1149 		 * router key at the lowest internal level.
1150 		 * further compression of the key between pairs of higher
1151 		 * level internal pages loses too much information and
1152 		 * the search may fail.
1153 		 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1154 		 * results in two adjacent parent entries (a)(xx).
1155 		 * if split occurs between these two entries, and
1156 		 * if compression is applied, the router key of parent entry
1157 		 * of right page (x) will divert search for x into right
1158 		 * subtree and miss x in the left subtree.)
1159 		 *
1160 		 * the entire key must be retained for the next-to-leftmost
1161 		 * internal key at any level of the tree, or search may fail
1162 		 * (e.g., ?)
1163 		 */
1164 		switch (rp->header.flag & BT_TYPE) {
1165 		case BT_LEAF:
1166 			/*
1167 			 * compute the length of prefix for suffix compression
1168 			 * between last entry of left page and first entry
1169 			 * of right page
1170 			 */
1171 			if ((sp->header.flag & BT_ROOT && skip > 1) ||
1172 			    sp->header.prev != 0 || skip > 1) {
1173 				/* compute uppercase router prefix key */
1174 				rc = ciGetLeafPrefixKey(lp,
1175 							lp->header.nextindex-1,
1176 							rp, 0, &key,
1177 							sbi->mntflag);
1178 				if (rc) {
1179 					DT_PUTPAGE(lmp);
1180 					DT_PUTPAGE(rmp);
1181 					DT_PUTPAGE(smp);
1182 					goto splitOut;
1183 				}
1184 			} else {
1185 				/* next to leftmost entry of
1186 				   lowest internal level */
1187 
1188 				/* compute uppercase router key */
1189 				dtGetKey(rp, 0, &key, sbi->mntflag);
1190 				key.name[key.namlen] = 0;
1191 
1192 				if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1193 					ciToUpper(&key);
1194 			}
1195 
1196 			n = NDTINTERNAL(key.namlen);
1197 			break;
1198 
1199 		case BT_INTERNAL:
1200 			dtGetKey(rp, 0, &key, sbi->mntflag);
1201 			n = NDTINTERNAL(key.namlen);
1202 			break;
1203 
1204 		default:
1205 			jfs_err("dtSplitUp(): UFO!");
1206 			break;
1207 		}
1208 
1209 		/* unpin left child page */
1210 		DT_PUTPAGE(lmp);
1211 
1212 		/*
1213 		 * compute the data for the router entry
1214 		 */
1215 		data->xd = rpxd;	/* child page xd */
1216 
1217 		/*
1218 		 * parent page is full - split the parent page
1219 		 */
1220 		if (n > sp->header.freecnt) {
1221 			/* init for parent page split */
1222 			split->mp = smp;
1223 			split->index = skip;	/* index at insert */
1224 			split->nslot = n;
1225 			split->key = &key;
1226 			/* split->data = data; */
1227 
1228 			/* unpin right child page */
1229 			DT_PUTPAGE(rmp);
1230 
1231 			/* The split routines insert the new entry,
1232 			 * acquire txLock as appropriate.
1233 			 * return <rp> pinned and its block number <rbn>.
1234 			 */
1235 			rc = (sp->header.flag & BT_ROOT) ?
1236 			    dtSplitRoot(tid, ip, split, &rmp) :
1237 			    dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1238 			if (rc) {
1239 				DT_PUTPAGE(smp);
1240 				goto splitOut;
1241 			}
1242 
1243 			/* smp and rmp are pinned */
1244 		}
1245 		/*
1246 		 * parent page is not full - insert router entry in parent page
1247 		 */
1248 		else {
1249 			BT_MARK_DIRTY(smp, ip);
1250 			/*
1251 			 * acquire a transaction lock on the parent page
1252 			 */
1253 			tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1254 			dtlck = (struct dt_lock *) & tlck->lock;
1255 			ASSERT(dtlck->index == 0);
1256 			lv = & dtlck->lv[0];
1257 
1258 			/* linelock header */
1259 			lv->offset = 0;
1260 			lv->length = 1;
1261 			dtlck->index++;
1262 
1263 			/* linelock stbl of non-root parent page */
1264 			if (!(sp->header.flag & BT_ROOT)) {
1265 				lv++;
1266 				n = skip >> L2DTSLOTSIZE;
1267 				lv->offset = sp->header.stblindex + n;
1268 				lv->length =
1269 				    ((sp->header.nextindex -
1270 				      1) >> L2DTSLOTSIZE) - n + 1;
1271 				dtlck->index++;
1272 			}
1273 
1274 			dtInsertEntry(sp, skip, &key, data, &dtlck);
1275 
1276 			/* exit propagate up */
1277 			break;
1278 		}
1279 	}
1280 
1281 	/* unpin current split and its right page */
1282 	DT_PUTPAGE(smp);
1283 	DT_PUTPAGE(rmp);
1284 
1285 	/*
1286 	 * free remaining extents allocated for split
1287 	 */
1288       splitOut:
1289 	n = pxdlist.npxd;
1290 	pxd = &pxdlist.pxd[n];
1291 	for (; n < pxdlist.maxnpxd; n++, pxd++)
1292 		dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1293 
1294       freeKeyName:
1295 	kfree(key.name);
1296 
1297 	/* Rollback quota allocation */
1298 	if (rc && quota_allocation)
1299 		dquot_free_block(ip, quota_allocation);
1300 
1301       dtSplitUp_Exit:
1302 
1303 	return rc;
1304 }
1305 
1306 
1307 /*
1308  *	dtSplitPage()
1309  *
1310  * function: Split a non-root page of a btree.
1311  *
1312  * parameter:
1313  *
1314  * return: 0 - success;
1315  *	   errno - failure;
1316  *	return split and new page pinned;
1317  */
dtSplitPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp,dtpage_t ** rpp,pxd_t * rpxdp)1318 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1319 	    struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1320 {
1321 	int rc = 0;
1322 	struct metapage *smp;
1323 	dtpage_t *sp;
1324 	struct metapage *rmp;
1325 	dtpage_t *rp;		/* new right page allocated */
1326 	s64 rbn;		/* new right page block number */
1327 	struct metapage *mp;
1328 	dtpage_t *p;
1329 	s64 nextbn;
1330 	struct pxdlist *pxdlist;
1331 	pxd_t *pxd;
1332 	int skip, nextindex, half, left, nxt, off, si;
1333 	struct ldtentry *ldtentry;
1334 	struct idtentry *idtentry;
1335 	u8 *stbl;
1336 	struct dtslot *f;
1337 	int fsi, stblsize;
1338 	int n;
1339 	struct dt_lock *sdtlck, *rdtlck;
1340 	struct tlock *tlck;
1341 	struct dt_lock *dtlck;
1342 	struct lv *slv, *rlv, *lv;
1343 
1344 	/* get split page */
1345 	smp = split->mp;
1346 	sp = DT_PAGE(ip, smp);
1347 
1348 	/*
1349 	 * allocate the new right page for the split
1350 	 */
1351 	pxdlist = split->pxdlist;
1352 	pxd = &pxdlist->pxd[pxdlist->npxd];
1353 	pxdlist->npxd++;
1354 	rbn = addressPXD(pxd);
1355 	rmp = get_metapage(ip, rbn, PSIZE, 1);
1356 	if (rmp == NULL)
1357 		return -EIO;
1358 
1359 	/* Allocate blocks to quota. */
1360 	rc = dquot_alloc_block(ip, lengthPXD(pxd));
1361 	if (rc) {
1362 		release_metapage(rmp);
1363 		return rc;
1364 	}
1365 
1366 	jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1367 
1368 	BT_MARK_DIRTY(rmp, ip);
1369 	/*
1370 	 * acquire a transaction lock on the new right page
1371 	 */
1372 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1373 	rdtlck = (struct dt_lock *) & tlck->lock;
1374 
1375 	rp = (dtpage_t *) rmp->data;
1376 	*rpp = rp;
1377 	rp->header.self = *pxd;
1378 
1379 	BT_MARK_DIRTY(smp, ip);
1380 	/*
1381 	 * acquire a transaction lock on the split page
1382 	 *
1383 	 * action:
1384 	 */
1385 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1386 	sdtlck = (struct dt_lock *) & tlck->lock;
1387 
1388 	/* linelock header of split page */
1389 	ASSERT(sdtlck->index == 0);
1390 	slv = & sdtlck->lv[0];
1391 	slv->offset = 0;
1392 	slv->length = 1;
1393 	sdtlck->index++;
1394 
1395 	/*
1396 	 * initialize/update sibling pointers between sp and rp
1397 	 */
1398 	nextbn = le64_to_cpu(sp->header.next);
1399 	rp->header.next = cpu_to_le64(nextbn);
1400 	rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1401 	sp->header.next = cpu_to_le64(rbn);
1402 
1403 	/*
1404 	 * initialize new right page
1405 	 */
1406 	rp->header.flag = sp->header.flag;
1407 
1408 	/* compute sorted entry table at start of extent data area */
1409 	rp->header.nextindex = 0;
1410 	rp->header.stblindex = 1;
1411 
1412 	n = PSIZE >> L2DTSLOTSIZE;
1413 	rp->header.maxslot = n;
1414 	stblsize = (n + 31) >> L2DTSLOTSIZE;	/* in unit of slot */
1415 
1416 	/* init freelist */
1417 	fsi = rp->header.stblindex + stblsize;
1418 	rp->header.freelist = fsi;
1419 	rp->header.freecnt = rp->header.maxslot - fsi;
1420 
1421 	/*
1422 	 *	sequential append at tail: append without split
1423 	 *
1424 	 * If splitting the last page on a level because of appending
1425 	 * a entry to it (skip is maxentry), it's likely that the access is
1426 	 * sequential. Adding an empty page on the side of the level is less
1427 	 * work and can push the fill factor much higher than normal.
1428 	 * If we're wrong it's no big deal, we'll just do the split the right
1429 	 * way next time.
1430 	 * (It may look like it's equally easy to do a similar hack for
1431 	 * reverse sorted data, that is, split the tree left,
1432 	 * but it's not. Be my guest.)
1433 	 */
1434 	if (nextbn == 0 && split->index == sp->header.nextindex) {
1435 		/* linelock header + stbl (first slot) of new page */
1436 		rlv = & rdtlck->lv[rdtlck->index];
1437 		rlv->offset = 0;
1438 		rlv->length = 2;
1439 		rdtlck->index++;
1440 
1441 		/*
1442 		 * initialize freelist of new right page
1443 		 */
1444 		f = &rp->slot[fsi];
1445 		for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1446 			f->next = fsi;
1447 		f->next = -1;
1448 
1449 		/* insert entry at the first entry of the new right page */
1450 		dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1451 
1452 		goto out;
1453 	}
1454 
1455 	/*
1456 	 *	non-sequential insert (at possibly middle page)
1457 	 */
1458 
1459 	/*
1460 	 * update prev pointer of previous right sibling page;
1461 	 */
1462 	if (nextbn != 0) {
1463 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1464 		if (rc) {
1465 			discard_metapage(rmp);
1466 			return rc;
1467 		}
1468 
1469 		BT_MARK_DIRTY(mp, ip);
1470 		/*
1471 		 * acquire a transaction lock on the next page
1472 		 */
1473 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1474 		jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1475 			tlck, ip, mp);
1476 		dtlck = (struct dt_lock *) & tlck->lock;
1477 
1478 		/* linelock header of previous right sibling page */
1479 		lv = & dtlck->lv[dtlck->index];
1480 		lv->offset = 0;
1481 		lv->length = 1;
1482 		dtlck->index++;
1483 
1484 		p->header.prev = cpu_to_le64(rbn);
1485 
1486 		DT_PUTPAGE(mp);
1487 	}
1488 
1489 	/*
1490 	 * split the data between the split and right pages.
1491 	 */
1492 	skip = split->index;
1493 	half = (PSIZE >> L2DTSLOTSIZE) >> 1;	/* swag */
1494 	left = 0;
1495 
1496 	/*
1497 	 *	compute fill factor for split pages
1498 	 *
1499 	 * <nxt> traces the next entry to move to rp
1500 	 * <off> traces the next entry to stay in sp
1501 	 */
1502 	stbl = (u8 *) & sp->slot[sp->header.stblindex];
1503 	nextindex = sp->header.nextindex;
1504 	for (nxt = off = 0; nxt < nextindex; ++off) {
1505 		if (off == skip)
1506 			/* check for fill factor with new entry size */
1507 			n = split->nslot;
1508 		else {
1509 			si = stbl[nxt];
1510 			switch (sp->header.flag & BT_TYPE) {
1511 			case BT_LEAF:
1512 				ldtentry = (struct ldtentry *) & sp->slot[si];
1513 				if (DO_INDEX(ip))
1514 					n = NDTLEAF(ldtentry->namlen);
1515 				else
1516 					n = NDTLEAF_LEGACY(ldtentry->
1517 							   namlen);
1518 				break;
1519 
1520 			case BT_INTERNAL:
1521 				idtentry = (struct idtentry *) & sp->slot[si];
1522 				n = NDTINTERNAL(idtentry->namlen);
1523 				break;
1524 
1525 			default:
1526 				break;
1527 			}
1528 
1529 			++nxt;	/* advance to next entry to move in sp */
1530 		}
1531 
1532 		left += n;
1533 		if (left >= half)
1534 			break;
1535 	}
1536 
1537 	/* <nxt> poins to the 1st entry to move */
1538 
1539 	/*
1540 	 *	move entries to right page
1541 	 *
1542 	 * dtMoveEntry() initializes rp and reserves entry for insertion
1543 	 *
1544 	 * split page moved out entries are linelocked;
1545 	 * new/right page moved in entries are linelocked;
1546 	 */
1547 	/* linelock header + stbl of new right page */
1548 	rlv = & rdtlck->lv[rdtlck->index];
1549 	rlv->offset = 0;
1550 	rlv->length = 5;
1551 	rdtlck->index++;
1552 
1553 	dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1554 
1555 	sp->header.nextindex = nxt;
1556 
1557 	/*
1558 	 * finalize freelist of new right page
1559 	 */
1560 	fsi = rp->header.freelist;
1561 	f = &rp->slot[fsi];
1562 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1563 		f->next = fsi;
1564 	f->next = -1;
1565 
1566 	/*
1567 	 * Update directory index table for entries now in right page
1568 	 */
1569 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1570 		s64 lblock;
1571 
1572 		mp = NULL;
1573 		stbl = DT_GETSTBL(rp);
1574 		for (n = 0; n < rp->header.nextindex; n++) {
1575 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1576 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1577 				     rbn, n, &mp, &lblock);
1578 		}
1579 		if (mp)
1580 			release_metapage(mp);
1581 	}
1582 
1583 	/*
1584 	 * the skipped index was on the left page,
1585 	 */
1586 	if (skip <= off) {
1587 		/* insert the new entry in the split page */
1588 		dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1589 
1590 		/* linelock stbl of split page */
1591 		if (sdtlck->index >= sdtlck->maxcnt)
1592 			sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1593 		slv = & sdtlck->lv[sdtlck->index];
1594 		n = skip >> L2DTSLOTSIZE;
1595 		slv->offset = sp->header.stblindex + n;
1596 		slv->length =
1597 		    ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1598 		sdtlck->index++;
1599 	}
1600 	/*
1601 	 * the skipped index was on the right page,
1602 	 */
1603 	else {
1604 		/* adjust the skip index to reflect the new position */
1605 		skip -= nxt;
1606 
1607 		/* insert the new entry in the right page */
1608 		dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1609 	}
1610 
1611       out:
1612 	*rmpp = rmp;
1613 	*rpxdp = *pxd;
1614 
1615 	return rc;
1616 }
1617 
1618 
1619 /*
1620  *	dtExtendPage()
1621  *
1622  * function: extend 1st/only directory leaf page
1623  *
1624  * parameter:
1625  *
1626  * return: 0 - success;
1627  *	   errno - failure;
1628  *	return extended page pinned;
1629  */
dtExtendPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)1630 static int dtExtendPage(tid_t tid,
1631 	     struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1632 {
1633 	struct super_block *sb = ip->i_sb;
1634 	int rc;
1635 	struct metapage *smp, *pmp, *mp;
1636 	dtpage_t *sp, *pp;
1637 	struct pxdlist *pxdlist;
1638 	pxd_t *pxd, *tpxd;
1639 	int xlen, xsize;
1640 	int newstblindex, newstblsize;
1641 	int oldstblindex, oldstblsize;
1642 	int fsi, last;
1643 	struct dtslot *f;
1644 	struct btframe *parent;
1645 	int n;
1646 	struct dt_lock *dtlck;
1647 	s64 xaddr, txaddr;
1648 	struct tlock *tlck;
1649 	struct pxd_lock *pxdlock;
1650 	struct lv *lv;
1651 	uint type;
1652 	struct ldtentry *ldtentry;
1653 	u8 *stbl;
1654 
1655 	/* get page to extend */
1656 	smp = split->mp;
1657 	sp = DT_PAGE(ip, smp);
1658 
1659 	/* get parent/root page */
1660 	parent = BT_POP(btstack);
1661 	DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1662 	if (rc)
1663 		return (rc);
1664 
1665 	/*
1666 	 *	extend the extent
1667 	 */
1668 	pxdlist = split->pxdlist;
1669 	pxd = &pxdlist->pxd[pxdlist->npxd];
1670 	pxdlist->npxd++;
1671 
1672 	xaddr = addressPXD(pxd);
1673 	tpxd = &sp->header.self;
1674 	txaddr = addressPXD(tpxd);
1675 	/* in-place extension */
1676 	if (xaddr == txaddr) {
1677 		type = tlckEXTEND;
1678 	}
1679 	/* relocation */
1680 	else {
1681 		type = tlckNEW;
1682 
1683 		/* save moved extent descriptor for later free */
1684 		tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1685 		pxdlock = (struct pxd_lock *) & tlck->lock;
1686 		pxdlock->flag = mlckFREEPXD;
1687 		pxdlock->pxd = sp->header.self;
1688 		pxdlock->index = 1;
1689 
1690 		/*
1691 		 * Update directory index table to reflect new page address
1692 		 */
1693 		if (DO_INDEX(ip)) {
1694 			s64 lblock;
1695 
1696 			mp = NULL;
1697 			stbl = DT_GETSTBL(sp);
1698 			for (n = 0; n < sp->header.nextindex; n++) {
1699 				ldtentry =
1700 				    (struct ldtentry *) & sp->slot[stbl[n]];
1701 				modify_index(tid, ip,
1702 					     le32_to_cpu(ldtentry->index),
1703 					     xaddr, n, &mp, &lblock);
1704 			}
1705 			if (mp)
1706 				release_metapage(mp);
1707 		}
1708 	}
1709 
1710 	/*
1711 	 *	extend the page
1712 	 */
1713 	sp->header.self = *pxd;
1714 
1715 	jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1716 
1717 	BT_MARK_DIRTY(smp, ip);
1718 	/*
1719 	 * acquire a transaction lock on the extended/leaf page
1720 	 */
1721 	tlck = txLock(tid, ip, smp, tlckDTREE | type);
1722 	dtlck = (struct dt_lock *) & tlck->lock;
1723 	lv = & dtlck->lv[0];
1724 
1725 	/* update buffer extent descriptor of extended page */
1726 	xlen = lengthPXD(pxd);
1727 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1728 
1729 	/*
1730 	 * copy old stbl to new stbl at start of extended area
1731 	 */
1732 	oldstblindex = sp->header.stblindex;
1733 	oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1734 	newstblindex = sp->header.maxslot;
1735 	n = xsize >> L2DTSLOTSIZE;
1736 	newstblsize = (n + 31) >> L2DTSLOTSIZE;
1737 	memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1738 	       sp->header.nextindex);
1739 
1740 	/*
1741 	 * in-line extension: linelock old area of extended page
1742 	 */
1743 	if (type == tlckEXTEND) {
1744 		/* linelock header */
1745 		lv->offset = 0;
1746 		lv->length = 1;
1747 		dtlck->index++;
1748 		lv++;
1749 
1750 		/* linelock new stbl of extended page */
1751 		lv->offset = newstblindex;
1752 		lv->length = newstblsize;
1753 	}
1754 	/*
1755 	 * relocation: linelock whole relocated area
1756 	 */
1757 	else {
1758 		lv->offset = 0;
1759 		lv->length = sp->header.maxslot + newstblsize;
1760 	}
1761 
1762 	dtlck->index++;
1763 
1764 	sp->header.maxslot = n;
1765 	sp->header.stblindex = newstblindex;
1766 	/* sp->header.nextindex remains the same */
1767 
1768 	/*
1769 	 * add old stbl region at head of freelist
1770 	 */
1771 	fsi = oldstblindex;
1772 	f = &sp->slot[fsi];
1773 	last = sp->header.freelist;
1774 	for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1775 		f->next = last;
1776 		last = fsi;
1777 	}
1778 	sp->header.freelist = last;
1779 	sp->header.freecnt += oldstblsize;
1780 
1781 	/*
1782 	 * append free region of newly extended area at tail of freelist
1783 	 */
1784 	/* init free region of newly extended area */
1785 	fsi = n = newstblindex + newstblsize;
1786 	f = &sp->slot[fsi];
1787 	for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1788 		f->next = fsi;
1789 	f->next = -1;
1790 
1791 	/* append new free region at tail of old freelist */
1792 	fsi = sp->header.freelist;
1793 	if (fsi == -1)
1794 		sp->header.freelist = n;
1795 	else {
1796 		do {
1797 			f = &sp->slot[fsi];
1798 			fsi = f->next;
1799 		} while (fsi != -1);
1800 
1801 		f->next = n;
1802 	}
1803 
1804 	sp->header.freecnt += sp->header.maxslot - n;
1805 
1806 	/*
1807 	 * insert the new entry
1808 	 */
1809 	dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1810 
1811 	BT_MARK_DIRTY(pmp, ip);
1812 	/*
1813 	 * linelock any freeslots residing in old extent
1814 	 */
1815 	if (type == tlckEXTEND) {
1816 		n = sp->header.maxslot >> 2;
1817 		if (sp->header.freelist < n)
1818 			dtLinelockFreelist(sp, n, &dtlck);
1819 	}
1820 
1821 	/*
1822 	 *	update parent entry on the parent/root page
1823 	 */
1824 	/*
1825 	 * acquire a transaction lock on the parent/root page
1826 	 */
1827 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1828 	dtlck = (struct dt_lock *) & tlck->lock;
1829 	lv = & dtlck->lv[dtlck->index];
1830 
1831 	/* linelock parent entry - 1st slot */
1832 	lv->offset = 1;
1833 	lv->length = 1;
1834 	dtlck->index++;
1835 
1836 	/* update the parent pxd for page extension */
1837 	tpxd = (pxd_t *) & pp->slot[1];
1838 	*tpxd = *pxd;
1839 
1840 	DT_PUTPAGE(pmp);
1841 	return 0;
1842 }
1843 
1844 
1845 /*
1846  *	dtSplitRoot()
1847  *
1848  * function:
1849  *	split the full root page into
1850  *	original/root/split page and new right page
1851  *	i.e., root remains fixed in tree anchor (inode) and
1852  *	the root is copied to a single new right child page
1853  *	since root page << non-root page, and
1854  *	the split root page contains a single entry for the
1855  *	new right child page.
1856  *
1857  * parameter:
1858  *
1859  * return: 0 - success;
1860  *	   errno - failure;
1861  *	return new page pinned;
1862  */
dtSplitRoot(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp)1863 static int dtSplitRoot(tid_t tid,
1864 	    struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1865 {
1866 	struct super_block *sb = ip->i_sb;
1867 	struct metapage *smp;
1868 	dtroot_t *sp;
1869 	struct metapage *rmp;
1870 	dtpage_t *rp;
1871 	s64 rbn;
1872 	int xlen;
1873 	int xsize;
1874 	struct dtslot *f;
1875 	s8 *stbl;
1876 	int fsi, stblsize, n;
1877 	struct idtentry *s;
1878 	pxd_t *ppxd;
1879 	struct pxdlist *pxdlist;
1880 	pxd_t *pxd;
1881 	struct dt_lock *dtlck;
1882 	struct tlock *tlck;
1883 	struct lv *lv;
1884 	int rc;
1885 
1886 	/* get split root page */
1887 	smp = split->mp;
1888 	sp = &JFS_IP(ip)->i_dtroot;
1889 
1890 	/*
1891 	 *	allocate/initialize a single (right) child page
1892 	 *
1893 	 * N.B. at first split, a one (or two) block to fit new entry
1894 	 * is allocated; at subsequent split, a full page is allocated;
1895 	 */
1896 	pxdlist = split->pxdlist;
1897 	pxd = &pxdlist->pxd[pxdlist->npxd];
1898 	pxdlist->npxd++;
1899 	rbn = addressPXD(pxd);
1900 	xlen = lengthPXD(pxd);
1901 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1902 	rmp = get_metapage(ip, rbn, xsize, 1);
1903 	if (!rmp)
1904 		return -EIO;
1905 
1906 	rp = rmp->data;
1907 
1908 	/* Allocate blocks to quota. */
1909 	rc = dquot_alloc_block(ip, lengthPXD(pxd));
1910 	if (rc) {
1911 		release_metapage(rmp);
1912 		return rc;
1913 	}
1914 
1915 	BT_MARK_DIRTY(rmp, ip);
1916 	/*
1917 	 * acquire a transaction lock on the new right page
1918 	 */
1919 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1920 	dtlck = (struct dt_lock *) & tlck->lock;
1921 
1922 	rp->header.flag =
1923 	    (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1924 	rp->header.self = *pxd;
1925 
1926 	/* initialize sibling pointers */
1927 	rp->header.next = 0;
1928 	rp->header.prev = 0;
1929 
1930 	/*
1931 	 *	move in-line root page into new right page extent
1932 	 */
1933 	/* linelock header + copied entries + new stbl (1st slot) in new page */
1934 	ASSERT(dtlck->index == 0);
1935 	lv = & dtlck->lv[0];
1936 	lv->offset = 0;
1937 	lv->length = 10;	/* 1 + 8 + 1 */
1938 	dtlck->index++;
1939 
1940 	n = xsize >> L2DTSLOTSIZE;
1941 	rp->header.maxslot = n;
1942 	stblsize = (n + 31) >> L2DTSLOTSIZE;
1943 
1944 	/* copy old stbl to new stbl at start of extended area */
1945 	rp->header.stblindex = DTROOTMAXSLOT;
1946 	stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1947 	memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1948 	rp->header.nextindex = sp->header.nextindex;
1949 
1950 	/* copy old data area to start of new data area */
1951 	memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1952 
1953 	/*
1954 	 * append free region of newly extended area at tail of freelist
1955 	 */
1956 	/* init free region of newly extended area */
1957 	fsi = n = DTROOTMAXSLOT + stblsize;
1958 	f = &rp->slot[fsi];
1959 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1960 		f->next = fsi;
1961 	f->next = -1;
1962 
1963 	/* append new free region at tail of old freelist */
1964 	fsi = sp->header.freelist;
1965 	if (fsi == -1)
1966 		rp->header.freelist = n;
1967 	else {
1968 		rp->header.freelist = fsi;
1969 
1970 		do {
1971 			f = &rp->slot[fsi];
1972 			fsi = f->next;
1973 		} while (fsi != -1);
1974 
1975 		f->next = n;
1976 	}
1977 
1978 	rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1979 
1980 	/*
1981 	 * Update directory index table for entries now in right page
1982 	 */
1983 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1984 		s64 lblock;
1985 		struct metapage *mp = NULL;
1986 		struct ldtentry *ldtentry;
1987 
1988 		stbl = DT_GETSTBL(rp);
1989 		for (n = 0; n < rp->header.nextindex; n++) {
1990 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1991 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1992 				     rbn, n, &mp, &lblock);
1993 		}
1994 		if (mp)
1995 			release_metapage(mp);
1996 	}
1997 	/*
1998 	 * insert the new entry into the new right/child page
1999 	 * (skip index in the new right page will not change)
2000 	 */
2001 	dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2002 
2003 	/*
2004 	 *	reset parent/root page
2005 	 *
2006 	 * set the 1st entry offset to 0, which force the left-most key
2007 	 * at any level of the tree to be less than any search key.
2008 	 *
2009 	 * The btree comparison code guarantees that the left-most key on any
2010 	 * level of the tree is never used, so it doesn't need to be filled in.
2011 	 */
2012 	BT_MARK_DIRTY(smp, ip);
2013 	/*
2014 	 * acquire a transaction lock on the root page (in-memory inode)
2015 	 */
2016 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2017 	dtlck = (struct dt_lock *) & tlck->lock;
2018 
2019 	/* linelock root */
2020 	ASSERT(dtlck->index == 0);
2021 	lv = & dtlck->lv[0];
2022 	lv->offset = 0;
2023 	lv->length = DTROOTMAXSLOT;
2024 	dtlck->index++;
2025 
2026 	/* update page header of root */
2027 	if (sp->header.flag & BT_LEAF) {
2028 		sp->header.flag &= ~BT_LEAF;
2029 		sp->header.flag |= BT_INTERNAL;
2030 	}
2031 
2032 	/* init the first entry */
2033 	s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2034 	ppxd = (pxd_t *) s;
2035 	*ppxd = *pxd;
2036 	s->next = -1;
2037 	s->namlen = 0;
2038 
2039 	stbl = sp->header.stbl;
2040 	stbl[0] = DTENTRYSTART;
2041 	sp->header.nextindex = 1;
2042 
2043 	/* init freelist */
2044 	fsi = DTENTRYSTART + 1;
2045 	f = &sp->slot[fsi];
2046 
2047 	/* init free region of remaining area */
2048 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2049 		f->next = fsi;
2050 	f->next = -1;
2051 
2052 	sp->header.freelist = DTENTRYSTART + 1;
2053 	sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2054 
2055 	*rmpp = rmp;
2056 
2057 	return 0;
2058 }
2059 
2060 
2061 /*
2062  *	dtDelete()
2063  *
2064  * function: delete the entry(s) referenced by a key.
2065  *
2066  * parameter:
2067  *
2068  * return:
2069  */
dtDelete(tid_t tid,struct inode * ip,struct component_name * key,ino_t * ino,int flag)2070 int dtDelete(tid_t tid,
2071 	 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2072 {
2073 	int rc = 0;
2074 	s64 bn;
2075 	struct metapage *mp, *imp;
2076 	dtpage_t *p;
2077 	int index;
2078 	struct btstack btstack;
2079 	struct dt_lock *dtlck;
2080 	struct tlock *tlck;
2081 	struct lv *lv;
2082 	int i;
2083 	struct ldtentry *ldtentry;
2084 	u8 *stbl;
2085 	u32 table_index, next_index;
2086 	struct metapage *nmp;
2087 	dtpage_t *np;
2088 
2089 	/*
2090 	 *	search for the entry to delete:
2091 	 *
2092 	 * dtSearch() returns (leaf page pinned, index at which to delete).
2093 	 */
2094 	if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2095 		return rc;
2096 
2097 	/* retrieve search result */
2098 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2099 
2100 	/*
2101 	 * We need to find put the index of the next entry into the
2102 	 * directory index table in order to resume a readdir from this
2103 	 * entry.
2104 	 */
2105 	if (DO_INDEX(ip)) {
2106 		stbl = DT_GETSTBL(p);
2107 		ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2108 		table_index = le32_to_cpu(ldtentry->index);
2109 		if (index == (p->header.nextindex - 1)) {
2110 			/*
2111 			 * Last entry in this leaf page
2112 			 */
2113 			if ((p->header.flag & BT_ROOT)
2114 			    || (p->header.next == 0))
2115 				next_index = -1;
2116 			else {
2117 				/* Read next leaf page */
2118 				DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2119 					   nmp, PSIZE, np, rc);
2120 				if (rc)
2121 					next_index = -1;
2122 				else {
2123 					stbl = DT_GETSTBL(np);
2124 					ldtentry =
2125 					    (struct ldtentry *) & np->
2126 					    slot[stbl[0]];
2127 					next_index =
2128 					    le32_to_cpu(ldtentry->index);
2129 					DT_PUTPAGE(nmp);
2130 				}
2131 			}
2132 		} else {
2133 			ldtentry =
2134 			    (struct ldtentry *) & p->slot[stbl[index + 1]];
2135 			next_index = le32_to_cpu(ldtentry->index);
2136 		}
2137 		free_index(tid, ip, table_index, next_index);
2138 	}
2139 	/*
2140 	 * the leaf page becomes empty, delete the page
2141 	 */
2142 	if (p->header.nextindex == 1) {
2143 		/* delete empty page */
2144 		rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2145 	}
2146 	/*
2147 	 * the leaf page has other entries remaining:
2148 	 *
2149 	 * delete the entry from the leaf page.
2150 	 */
2151 	else {
2152 		BT_MARK_DIRTY(mp, ip);
2153 		/*
2154 		 * acquire a transaction lock on the leaf page
2155 		 */
2156 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2157 		dtlck = (struct dt_lock *) & tlck->lock;
2158 
2159 		/*
2160 		 * Do not assume that dtlck->index will be zero.  During a
2161 		 * rename within a directory, this transaction may have
2162 		 * modified this page already when adding the new entry.
2163 		 */
2164 
2165 		/* linelock header */
2166 		if (dtlck->index >= dtlck->maxcnt)
2167 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2168 		lv = & dtlck->lv[dtlck->index];
2169 		lv->offset = 0;
2170 		lv->length = 1;
2171 		dtlck->index++;
2172 
2173 		/* linelock stbl of non-root leaf page */
2174 		if (!(p->header.flag & BT_ROOT)) {
2175 			if (dtlck->index >= dtlck->maxcnt)
2176 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2177 			lv = & dtlck->lv[dtlck->index];
2178 			i = index >> L2DTSLOTSIZE;
2179 			lv->offset = p->header.stblindex + i;
2180 			lv->length =
2181 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2182 			    i + 1;
2183 			dtlck->index++;
2184 		}
2185 
2186 		/* free the leaf entry */
2187 		dtDeleteEntry(p, index, &dtlck);
2188 
2189 		/*
2190 		 * Update directory index table for entries moved in stbl
2191 		 */
2192 		if (DO_INDEX(ip) && index < p->header.nextindex) {
2193 			s64 lblock;
2194 
2195 			imp = NULL;
2196 			stbl = DT_GETSTBL(p);
2197 			for (i = index; i < p->header.nextindex; i++) {
2198 				ldtentry =
2199 				    (struct ldtentry *) & p->slot[stbl[i]];
2200 				modify_index(tid, ip,
2201 					     le32_to_cpu(ldtentry->index),
2202 					     bn, i, &imp, &lblock);
2203 			}
2204 			if (imp)
2205 				release_metapage(imp);
2206 		}
2207 
2208 		DT_PUTPAGE(mp);
2209 	}
2210 
2211 	return rc;
2212 }
2213 
2214 
2215 /*
2216  *	dtDeleteUp()
2217  *
2218  * function:
2219  *	free empty pages as propagating deletion up the tree
2220  *
2221  * parameter:
2222  *
2223  * return:
2224  */
dtDeleteUp(tid_t tid,struct inode * ip,struct metapage * fmp,dtpage_t * fp,struct btstack * btstack)2225 static int dtDeleteUp(tid_t tid, struct inode *ip,
2226 	   struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2227 {
2228 	int rc = 0;
2229 	struct metapage *mp;
2230 	dtpage_t *p;
2231 	int index, nextindex;
2232 	int xlen;
2233 	struct btframe *parent;
2234 	struct dt_lock *dtlck;
2235 	struct tlock *tlck;
2236 	struct lv *lv;
2237 	struct pxd_lock *pxdlock;
2238 	int i;
2239 
2240 	/*
2241 	 *	keep the root leaf page which has become empty
2242 	 */
2243 	if (BT_IS_ROOT(fmp)) {
2244 		/*
2245 		 * reset the root
2246 		 *
2247 		 * dtInitRoot() acquires txlock on the root
2248 		 */
2249 		dtInitRoot(tid, ip, PARENT(ip));
2250 
2251 		DT_PUTPAGE(fmp);
2252 
2253 		return 0;
2254 	}
2255 
2256 	/*
2257 	 *	free the non-root leaf page
2258 	 */
2259 	/*
2260 	 * acquire a transaction lock on the page
2261 	 *
2262 	 * write FREEXTENT|NOREDOPAGE log record
2263 	 * N.B. linelock is overlaid as freed extent descriptor, and
2264 	 * the buffer page is freed;
2265 	 */
2266 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2267 	pxdlock = (struct pxd_lock *) & tlck->lock;
2268 	pxdlock->flag = mlckFREEPXD;
2269 	pxdlock->pxd = fp->header.self;
2270 	pxdlock->index = 1;
2271 
2272 	/* update sibling pointers */
2273 	if ((rc = dtRelink(tid, ip, fp))) {
2274 		BT_PUTPAGE(fmp);
2275 		return rc;
2276 	}
2277 
2278 	xlen = lengthPXD(&fp->header.self);
2279 
2280 	/* Free quota allocation. */
2281 	dquot_free_block(ip, xlen);
2282 
2283 	/* free/invalidate its buffer page */
2284 	discard_metapage(fmp);
2285 
2286 	/*
2287 	 *	propagate page deletion up the directory tree
2288 	 *
2289 	 * If the delete from the parent page makes it empty,
2290 	 * continue all the way up the tree.
2291 	 * stop if the root page is reached (which is never deleted) or
2292 	 * if the entry deletion does not empty the page.
2293 	 */
2294 	while ((parent = BT_POP(btstack)) != NULL) {
2295 		/* pin the parent page <sp> */
2296 		DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2297 		if (rc)
2298 			return rc;
2299 
2300 		/*
2301 		 * free the extent of the child page deleted
2302 		 */
2303 		index = parent->index;
2304 
2305 		/*
2306 		 * delete the entry for the child page from parent
2307 		 */
2308 		nextindex = p->header.nextindex;
2309 
2310 		/*
2311 		 * the parent has the single entry being deleted:
2312 		 *
2313 		 * free the parent page which has become empty.
2314 		 */
2315 		if (nextindex == 1) {
2316 			/*
2317 			 * keep the root internal page which has become empty
2318 			 */
2319 			if (p->header.flag & BT_ROOT) {
2320 				/*
2321 				 * reset the root
2322 				 *
2323 				 * dtInitRoot() acquires txlock on the root
2324 				 */
2325 				dtInitRoot(tid, ip, PARENT(ip));
2326 
2327 				DT_PUTPAGE(mp);
2328 
2329 				return 0;
2330 			}
2331 			/*
2332 			 * free the parent page
2333 			 */
2334 			else {
2335 				/*
2336 				 * acquire a transaction lock on the page
2337 				 *
2338 				 * write FREEXTENT|NOREDOPAGE log record
2339 				 */
2340 				tlck =
2341 				    txMaplock(tid, ip,
2342 					      tlckDTREE | tlckFREE);
2343 				pxdlock = (struct pxd_lock *) & tlck->lock;
2344 				pxdlock->flag = mlckFREEPXD;
2345 				pxdlock->pxd = p->header.self;
2346 				pxdlock->index = 1;
2347 
2348 				/* update sibling pointers */
2349 				if ((rc = dtRelink(tid, ip, p))) {
2350 					DT_PUTPAGE(mp);
2351 					return rc;
2352 				}
2353 
2354 				xlen = lengthPXD(&p->header.self);
2355 
2356 				/* Free quota allocation */
2357 				dquot_free_block(ip, xlen);
2358 
2359 				/* free/invalidate its buffer page */
2360 				discard_metapage(mp);
2361 
2362 				/* propagate up */
2363 				continue;
2364 			}
2365 		}
2366 
2367 		/*
2368 		 * the parent has other entries remaining:
2369 		 *
2370 		 * delete the router entry from the parent page.
2371 		 */
2372 		BT_MARK_DIRTY(mp, ip);
2373 		/*
2374 		 * acquire a transaction lock on the page
2375 		 *
2376 		 * action: router entry deletion
2377 		 */
2378 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2379 		dtlck = (struct dt_lock *) & tlck->lock;
2380 
2381 		/* linelock header */
2382 		if (dtlck->index >= dtlck->maxcnt)
2383 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2384 		lv = & dtlck->lv[dtlck->index];
2385 		lv->offset = 0;
2386 		lv->length = 1;
2387 		dtlck->index++;
2388 
2389 		/* linelock stbl of non-root leaf page */
2390 		if (!(p->header.flag & BT_ROOT)) {
2391 			if (dtlck->index < dtlck->maxcnt)
2392 				lv++;
2393 			else {
2394 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2395 				lv = & dtlck->lv[0];
2396 			}
2397 			i = index >> L2DTSLOTSIZE;
2398 			lv->offset = p->header.stblindex + i;
2399 			lv->length =
2400 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2401 			    i + 1;
2402 			dtlck->index++;
2403 		}
2404 
2405 		/* free the router entry */
2406 		dtDeleteEntry(p, index, &dtlck);
2407 
2408 		/* reset key of new leftmost entry of level (for consistency) */
2409 		if (index == 0 &&
2410 		    ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2411 			dtTruncateEntry(p, 0, &dtlck);
2412 
2413 		/* unpin the parent page */
2414 		DT_PUTPAGE(mp);
2415 
2416 		/* exit propagation up */
2417 		break;
2418 	}
2419 
2420 	if (!DO_INDEX(ip))
2421 		ip->i_size -= PSIZE;
2422 
2423 	return 0;
2424 }
2425 
2426 #ifdef _NOTYET
2427 /*
2428  * NAME:	dtRelocate()
2429  *
2430  * FUNCTION:	relocate dtpage (internal or leaf) of directory;
2431  *		This function is mainly used by defragfs utility.
2432  */
dtRelocate(tid_t tid,struct inode * ip,s64 lmxaddr,pxd_t * opxd,s64 nxaddr)2433 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2434 	       s64 nxaddr)
2435 {
2436 	int rc = 0;
2437 	struct metapage *mp, *pmp, *lmp, *rmp;
2438 	dtpage_t *p, *pp, *rp = 0, *lp= 0;
2439 	s64 bn;
2440 	int index;
2441 	struct btstack btstack;
2442 	pxd_t *pxd;
2443 	s64 oxaddr, nextbn, prevbn;
2444 	int xlen, xsize;
2445 	struct tlock *tlck;
2446 	struct dt_lock *dtlck;
2447 	struct pxd_lock *pxdlock;
2448 	s8 *stbl;
2449 	struct lv *lv;
2450 
2451 	oxaddr = addressPXD(opxd);
2452 	xlen = lengthPXD(opxd);
2453 
2454 	jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2455 		   (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2456 		   xlen);
2457 
2458 	/*
2459 	 *	1. get the internal parent dtpage covering
2460 	 *	router entry for the tartget page to be relocated;
2461 	 */
2462 	rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2463 	if (rc)
2464 		return rc;
2465 
2466 	/* retrieve search result */
2467 	DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2468 	jfs_info("dtRelocate: parent router entry validated.");
2469 
2470 	/*
2471 	 *	2. relocate the target dtpage
2472 	 */
2473 	/* read in the target page from src extent */
2474 	DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2475 	if (rc) {
2476 		/* release the pinned parent page */
2477 		DT_PUTPAGE(pmp);
2478 		return rc;
2479 	}
2480 
2481 	/*
2482 	 * read in sibling pages if any to update sibling pointers;
2483 	 */
2484 	rmp = NULL;
2485 	if (p->header.next) {
2486 		nextbn = le64_to_cpu(p->header.next);
2487 		DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2488 		if (rc) {
2489 			DT_PUTPAGE(mp);
2490 			DT_PUTPAGE(pmp);
2491 			return (rc);
2492 		}
2493 	}
2494 
2495 	lmp = NULL;
2496 	if (p->header.prev) {
2497 		prevbn = le64_to_cpu(p->header.prev);
2498 		DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2499 		if (rc) {
2500 			DT_PUTPAGE(mp);
2501 			DT_PUTPAGE(pmp);
2502 			if (rmp)
2503 				DT_PUTPAGE(rmp);
2504 			return (rc);
2505 		}
2506 	}
2507 
2508 	/* at this point, all xtpages to be updated are in memory */
2509 
2510 	/*
2511 	 * update sibling pointers of sibling dtpages if any;
2512 	 */
2513 	if (lmp) {
2514 		tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2515 		dtlck = (struct dt_lock *) & tlck->lock;
2516 		/* linelock header */
2517 		ASSERT(dtlck->index == 0);
2518 		lv = & dtlck->lv[0];
2519 		lv->offset = 0;
2520 		lv->length = 1;
2521 		dtlck->index++;
2522 
2523 		lp->header.next = cpu_to_le64(nxaddr);
2524 		DT_PUTPAGE(lmp);
2525 	}
2526 
2527 	if (rmp) {
2528 		tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2529 		dtlck = (struct dt_lock *) & tlck->lock;
2530 		/* linelock header */
2531 		ASSERT(dtlck->index == 0);
2532 		lv = & dtlck->lv[0];
2533 		lv->offset = 0;
2534 		lv->length = 1;
2535 		dtlck->index++;
2536 
2537 		rp->header.prev = cpu_to_le64(nxaddr);
2538 		DT_PUTPAGE(rmp);
2539 	}
2540 
2541 	/*
2542 	 * update the target dtpage to be relocated
2543 	 *
2544 	 * write LOG_REDOPAGE of LOG_NEW type for dst page
2545 	 * for the whole target page (logredo() will apply
2546 	 * after image and update bmap for allocation of the
2547 	 * dst extent), and update bmap for allocation of
2548 	 * the dst extent;
2549 	 */
2550 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2551 	dtlck = (struct dt_lock *) & tlck->lock;
2552 	/* linelock header */
2553 	ASSERT(dtlck->index == 0);
2554 	lv = & dtlck->lv[0];
2555 
2556 	/* update the self address in the dtpage header */
2557 	pxd = &p->header.self;
2558 	PXDaddress(pxd, nxaddr);
2559 
2560 	/* the dst page is the same as the src page, i.e.,
2561 	 * linelock for afterimage of the whole page;
2562 	 */
2563 	lv->offset = 0;
2564 	lv->length = p->header.maxslot;
2565 	dtlck->index++;
2566 
2567 	/* update the buffer extent descriptor of the dtpage */
2568 	xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2569 
2570 	/* unpin the relocated page */
2571 	DT_PUTPAGE(mp);
2572 	jfs_info("dtRelocate: target dtpage relocated.");
2573 
2574 	/* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2575 	 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2576 	 * will also force a bmap update ).
2577 	 */
2578 
2579 	/*
2580 	 *	3. acquire maplock for the source extent to be freed;
2581 	 */
2582 	/* for dtpage relocation, write a LOG_NOREDOPAGE record
2583 	 * for the source dtpage (logredo() will init NoRedoPage
2584 	 * filter and will also update bmap for free of the source
2585 	 * dtpage), and upadte bmap for free of the source dtpage;
2586 	 */
2587 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2588 	pxdlock = (struct pxd_lock *) & tlck->lock;
2589 	pxdlock->flag = mlckFREEPXD;
2590 	PXDaddress(&pxdlock->pxd, oxaddr);
2591 	PXDlength(&pxdlock->pxd, xlen);
2592 	pxdlock->index = 1;
2593 
2594 	/*
2595 	 *	4. update the parent router entry for relocation;
2596 	 *
2597 	 * acquire tlck for the parent entry covering the target dtpage;
2598 	 * write LOG_REDOPAGE to apply after image only;
2599 	 */
2600 	jfs_info("dtRelocate: update parent router entry.");
2601 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2602 	dtlck = (struct dt_lock *) & tlck->lock;
2603 	lv = & dtlck->lv[dtlck->index];
2604 
2605 	/* update the PXD with the new address */
2606 	stbl = DT_GETSTBL(pp);
2607 	pxd = (pxd_t *) & pp->slot[stbl[index]];
2608 	PXDaddress(pxd, nxaddr);
2609 	lv->offset = stbl[index];
2610 	lv->length = 1;
2611 	dtlck->index++;
2612 
2613 	/* unpin the parent dtpage */
2614 	DT_PUTPAGE(pmp);
2615 
2616 	return rc;
2617 }
2618 
2619 /*
2620  * NAME:	dtSearchNode()
2621  *
2622  * FUNCTION:	Search for an dtpage containing a specified address
2623  *		This function is mainly used by defragfs utility.
2624  *
2625  * NOTE:	Search result on stack, the found page is pinned at exit.
2626  *		The result page must be an internal dtpage.
2627  *		lmxaddr give the address of the left most page of the
2628  *		dtree level, in which the required dtpage resides.
2629  */
dtSearchNode(struct inode * ip,s64 lmxaddr,pxd_t * kpxd,struct btstack * btstack)2630 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2631 			struct btstack * btstack)
2632 {
2633 	int rc = 0;
2634 	s64 bn;
2635 	struct metapage *mp;
2636 	dtpage_t *p;
2637 	int psize = 288;	/* initial in-line directory */
2638 	s8 *stbl;
2639 	int i;
2640 	pxd_t *pxd;
2641 	struct btframe *btsp;
2642 
2643 	BT_CLR(btstack);	/* reset stack */
2644 
2645 	/*
2646 	 *	descend tree to the level with specified leftmost page
2647 	 *
2648 	 *  by convention, root bn = 0.
2649 	 */
2650 	for (bn = 0;;) {
2651 		/* get/pin the page to search */
2652 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
2653 		if (rc)
2654 			return rc;
2655 
2656 		/* does the xaddr of leftmost page of the levevl
2657 		 * matches levevl search key ?
2658 		 */
2659 		if (p->header.flag & BT_ROOT) {
2660 			if (lmxaddr == 0)
2661 				break;
2662 		} else if (addressPXD(&p->header.self) == lmxaddr)
2663 			break;
2664 
2665 		/*
2666 		 * descend down to leftmost child page
2667 		 */
2668 		if (p->header.flag & BT_LEAF) {
2669 			DT_PUTPAGE(mp);
2670 			return -ESTALE;
2671 		}
2672 
2673 		/* get the leftmost entry */
2674 		stbl = DT_GETSTBL(p);
2675 		pxd = (pxd_t *) & p->slot[stbl[0]];
2676 
2677 		/* get the child page block address */
2678 		bn = addressPXD(pxd);
2679 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2680 		/* unpin the parent page */
2681 		DT_PUTPAGE(mp);
2682 	}
2683 
2684 	/*
2685 	 *	search each page at the current levevl
2686 	 */
2687       loop:
2688 	stbl = DT_GETSTBL(p);
2689 	for (i = 0; i < p->header.nextindex; i++) {
2690 		pxd = (pxd_t *) & p->slot[stbl[i]];
2691 
2692 		/* found the specified router entry */
2693 		if (addressPXD(pxd) == addressPXD(kpxd) &&
2694 		    lengthPXD(pxd) == lengthPXD(kpxd)) {
2695 			btsp = btstack->top;
2696 			btsp->bn = bn;
2697 			btsp->index = i;
2698 			btsp->mp = mp;
2699 
2700 			return 0;
2701 		}
2702 	}
2703 
2704 	/* get the right sibling page if any */
2705 	if (p->header.next)
2706 		bn = le64_to_cpu(p->header.next);
2707 	else {
2708 		DT_PUTPAGE(mp);
2709 		return -ESTALE;
2710 	}
2711 
2712 	/* unpin current page */
2713 	DT_PUTPAGE(mp);
2714 
2715 	/* get the right sibling page */
2716 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2717 	if (rc)
2718 		return rc;
2719 
2720 	goto loop;
2721 }
2722 #endif /* _NOTYET */
2723 
2724 /*
2725  *	dtRelink()
2726  *
2727  * function:
2728  *	link around a freed page.
2729  *
2730  * parameter:
2731  *	fp:	page to be freed
2732  *
2733  * return:
2734  */
dtRelink(tid_t tid,struct inode * ip,dtpage_t * p)2735 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2736 {
2737 	int rc;
2738 	struct metapage *mp;
2739 	s64 nextbn, prevbn;
2740 	struct tlock *tlck;
2741 	struct dt_lock *dtlck;
2742 	struct lv *lv;
2743 
2744 	nextbn = le64_to_cpu(p->header.next);
2745 	prevbn = le64_to_cpu(p->header.prev);
2746 
2747 	/* update prev pointer of the next page */
2748 	if (nextbn != 0) {
2749 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2750 		if (rc)
2751 			return rc;
2752 
2753 		BT_MARK_DIRTY(mp, ip);
2754 		/*
2755 		 * acquire a transaction lock on the next page
2756 		 *
2757 		 * action: update prev pointer;
2758 		 */
2759 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2760 		jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2761 			tlck, ip, mp);
2762 		dtlck = (struct dt_lock *) & tlck->lock;
2763 
2764 		/* linelock header */
2765 		if (dtlck->index >= dtlck->maxcnt)
2766 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2767 		lv = & dtlck->lv[dtlck->index];
2768 		lv->offset = 0;
2769 		lv->length = 1;
2770 		dtlck->index++;
2771 
2772 		p->header.prev = cpu_to_le64(prevbn);
2773 		DT_PUTPAGE(mp);
2774 	}
2775 
2776 	/* update next pointer of the previous page */
2777 	if (prevbn != 0) {
2778 		DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2779 		if (rc)
2780 			return rc;
2781 
2782 		BT_MARK_DIRTY(mp, ip);
2783 		/*
2784 		 * acquire a transaction lock on the prev page
2785 		 *
2786 		 * action: update next pointer;
2787 		 */
2788 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2789 		jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2790 			tlck, ip, mp);
2791 		dtlck = (struct dt_lock *) & tlck->lock;
2792 
2793 		/* linelock header */
2794 		if (dtlck->index >= dtlck->maxcnt)
2795 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2796 		lv = & dtlck->lv[dtlck->index];
2797 		lv->offset = 0;
2798 		lv->length = 1;
2799 		dtlck->index++;
2800 
2801 		p->header.next = cpu_to_le64(nextbn);
2802 		DT_PUTPAGE(mp);
2803 	}
2804 
2805 	return 0;
2806 }
2807 
2808 
2809 /*
2810  *	dtInitRoot()
2811  *
2812  * initialize directory root (inline in inode)
2813  */
dtInitRoot(tid_t tid,struct inode * ip,u32 idotdot)2814 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2815 {
2816 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2817 	dtroot_t *p;
2818 	int fsi;
2819 	struct dtslot *f;
2820 	struct tlock *tlck;
2821 	struct dt_lock *dtlck;
2822 	struct lv *lv;
2823 	u16 xflag_save;
2824 
2825 	/*
2826 	 * If this was previously an non-empty directory, we need to remove
2827 	 * the old directory table.
2828 	 */
2829 	if (DO_INDEX(ip)) {
2830 		if (!jfs_dirtable_inline(ip)) {
2831 			struct tblock *tblk = tid_to_tblock(tid);
2832 			/*
2833 			 * We're playing games with the tid's xflag.  If
2834 			 * we're removing a regular file, the file's xtree
2835 			 * is committed with COMMIT_PMAP, but we always
2836 			 * commit the directories xtree with COMMIT_PWMAP.
2837 			 */
2838 			xflag_save = tblk->xflag;
2839 			tblk->xflag = 0;
2840 			/*
2841 			 * xtTruncate isn't guaranteed to fully truncate
2842 			 * the xtree.  The caller needs to check i_size
2843 			 * after committing the transaction to see if
2844 			 * additional truncation is needed.  The
2845 			 * COMMIT_Stale flag tells caller that we
2846 			 * initiated the truncation.
2847 			 */
2848 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2849 			set_cflag(COMMIT_Stale, ip);
2850 
2851 			tblk->xflag = xflag_save;
2852 		} else
2853 			ip->i_size = 1;
2854 
2855 		jfs_ip->next_index = 2;
2856 	} else
2857 		ip->i_size = IDATASIZE;
2858 
2859 	/*
2860 	 * acquire a transaction lock on the root
2861 	 *
2862 	 * action: directory initialization;
2863 	 */
2864 	tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2865 		      tlckDTREE | tlckENTRY | tlckBTROOT);
2866 	dtlck = (struct dt_lock *) & tlck->lock;
2867 
2868 	/* linelock root */
2869 	ASSERT(dtlck->index == 0);
2870 	lv = & dtlck->lv[0];
2871 	lv->offset = 0;
2872 	lv->length = DTROOTMAXSLOT;
2873 	dtlck->index++;
2874 
2875 	p = &jfs_ip->i_dtroot;
2876 
2877 	p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2878 
2879 	p->header.nextindex = 0;
2880 
2881 	/* init freelist */
2882 	fsi = 1;
2883 	f = &p->slot[fsi];
2884 
2885 	/* init data area of root */
2886 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2887 		f->next = fsi;
2888 	f->next = -1;
2889 
2890 	p->header.freelist = 1;
2891 	p->header.freecnt = 8;
2892 
2893 	/* init '..' entry */
2894 	p->header.idotdot = cpu_to_le32(idotdot);
2895 
2896 	return;
2897 }
2898 
2899 /*
2900  *	add_missing_indices()
2901  *
2902  * function: Fix dtree page in which one or more entries has an invalid index.
2903  *	     fsck.jfs should really fix this, but it currently does not.
2904  *	     Called from jfs_readdir when bad index is detected.
2905  */
add_missing_indices(struct inode * inode,s64 bn)2906 static void add_missing_indices(struct inode *inode, s64 bn)
2907 {
2908 	struct ldtentry *d;
2909 	struct dt_lock *dtlck;
2910 	int i;
2911 	uint index;
2912 	struct lv *lv;
2913 	struct metapage *mp;
2914 	dtpage_t *p;
2915 	int rc;
2916 	s8 *stbl;
2917 	tid_t tid;
2918 	struct tlock *tlck;
2919 
2920 	tid = txBegin(inode->i_sb, 0);
2921 
2922 	DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2923 
2924 	if (rc) {
2925 		printk(KERN_ERR "DT_GETPAGE failed!\n");
2926 		goto end;
2927 	}
2928 	BT_MARK_DIRTY(mp, inode);
2929 
2930 	ASSERT(p->header.flag & BT_LEAF);
2931 
2932 	tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2933 	if (BT_IS_ROOT(mp))
2934 		tlck->type |= tlckBTROOT;
2935 
2936 	dtlck = (struct dt_lock *) &tlck->lock;
2937 
2938 	stbl = DT_GETSTBL(p);
2939 	for (i = 0; i < p->header.nextindex; i++) {
2940 		d = (struct ldtentry *) &p->slot[stbl[i]];
2941 		index = le32_to_cpu(d->index);
2942 		if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2943 			d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2944 			if (dtlck->index >= dtlck->maxcnt)
2945 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2946 			lv = &dtlck->lv[dtlck->index];
2947 			lv->offset = stbl[i];
2948 			lv->length = 1;
2949 			dtlck->index++;
2950 		}
2951 	}
2952 
2953 	DT_PUTPAGE(mp);
2954 	(void) txCommit(tid, 1, &inode, 0);
2955 end:
2956 	txEnd(tid);
2957 }
2958 
2959 /*
2960  * Buffer to hold directory entry info while traversing a dtree page
2961  * before being fed to the filldir function
2962  */
2963 struct jfs_dirent {
2964 	loff_t position;
2965 	int ino;
2966 	u16 name_len;
2967 	char name[];
2968 };
2969 
2970 /*
2971  * function to determine next variable-sized jfs_dirent in buffer
2972  */
next_jfs_dirent(struct jfs_dirent * dirent)2973 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2974 {
2975 	return (struct jfs_dirent *)
2976 		((char *)dirent +
2977 		 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2978 		   sizeof (loff_t) - 1) &
2979 		  ~(sizeof (loff_t) - 1)));
2980 }
2981 
2982 /*
2983  *	jfs_readdir()
2984  *
2985  * function: read directory entries sequentially
2986  *	from the specified entry offset
2987  *
2988  * parameter:
2989  *
2990  * return: offset = (pn, index) of start entry
2991  *	of next jfs_readdir()/dtRead()
2992  */
jfs_readdir(struct file * file,struct dir_context * ctx)2993 int jfs_readdir(struct file *file, struct dir_context *ctx)
2994 {
2995 	struct inode *ip = file_inode(file);
2996 	struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
2997 	int rc = 0;
2998 	loff_t dtpos;	/* legacy OS/2 style position */
2999 	struct dtoffset {
3000 		s16 pn;
3001 		s16 index;
3002 		s32 unused;
3003 	} *dtoffset = (struct dtoffset *) &dtpos;
3004 	s64 bn;
3005 	struct metapage *mp;
3006 	dtpage_t *p;
3007 	int index;
3008 	s8 *stbl;
3009 	struct btstack btstack;
3010 	int i, next;
3011 	struct ldtentry *d;
3012 	struct dtslot *t;
3013 	int d_namleft, len, outlen;
3014 	unsigned long dirent_buf;
3015 	char *name_ptr;
3016 	u32 dir_index;
3017 	int do_index = 0;
3018 	uint loop_count = 0;
3019 	struct jfs_dirent *jfs_dirent;
3020 	int jfs_dirents;
3021 	int overflow, fix_page, page_fixed = 0;
3022 	static int unique_pos = 2;	/* If we can't fix broken index */
3023 
3024 	if (ctx->pos == DIREND)
3025 		return 0;
3026 
3027 	if (DO_INDEX(ip)) {
3028 		/*
3029 		 * persistent index is stored in directory entries.
3030 		 * Special cases:	 0 = .
3031 		 *			 1 = ..
3032 		 *			-1 = End of directory
3033 		 */
3034 		do_index = 1;
3035 
3036 		dir_index = (u32) ctx->pos;
3037 
3038 		/*
3039 		 * NFSv4 reserves cookies 1 and 2 for . and .. so the value
3040 		 * we return to the vfs is one greater than the one we use
3041 		 * internally.
3042 		 */
3043 		if (dir_index)
3044 			dir_index--;
3045 
3046 		if (dir_index > 1) {
3047 			struct dir_table_slot dirtab_slot;
3048 
3049 			if (dtEmpty(ip) ||
3050 			    (dir_index >= JFS_IP(ip)->next_index)) {
3051 				/* Stale position.  Directory has shrunk */
3052 				ctx->pos = DIREND;
3053 				return 0;
3054 			}
3055 		      repeat:
3056 			rc = read_index(ip, dir_index, &dirtab_slot);
3057 			if (rc) {
3058 				ctx->pos = DIREND;
3059 				return rc;
3060 			}
3061 			if (dirtab_slot.flag == DIR_INDEX_FREE) {
3062 				if (loop_count++ > JFS_IP(ip)->next_index) {
3063 					jfs_err("jfs_readdir detected infinite loop!");
3064 					ctx->pos = DIREND;
3065 					return 0;
3066 				}
3067 				dir_index = le32_to_cpu(dirtab_slot.addr2);
3068 				if (dir_index == -1) {
3069 					ctx->pos = DIREND;
3070 					return 0;
3071 				}
3072 				goto repeat;
3073 			}
3074 			bn = addressDTS(&dirtab_slot);
3075 			index = dirtab_slot.slot;
3076 			DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3077 			if (rc) {
3078 				ctx->pos = DIREND;
3079 				return 0;
3080 			}
3081 			if (p->header.flag & BT_INTERNAL) {
3082 				jfs_err("jfs_readdir: bad index table");
3083 				DT_PUTPAGE(mp);
3084 				ctx->pos = DIREND;
3085 				return 0;
3086 			}
3087 		} else {
3088 			if (dir_index == 0) {
3089 				/*
3090 				 * self "."
3091 				 */
3092 				ctx->pos = 1;
3093 				if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
3094 					return 0;
3095 			}
3096 			/*
3097 			 * parent ".."
3098 			 */
3099 			ctx->pos = 2;
3100 			if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
3101 				return 0;
3102 
3103 			/*
3104 			 * Find first entry of left-most leaf
3105 			 */
3106 			if (dtEmpty(ip)) {
3107 				ctx->pos = DIREND;
3108 				return 0;
3109 			}
3110 
3111 			if ((rc = dtReadFirst(ip, &btstack)))
3112 				return rc;
3113 
3114 			DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3115 		}
3116 	} else {
3117 		/*
3118 		 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3119 		 *
3120 		 * pn = 0; index = 1:	First entry "."
3121 		 * pn = 0; index = 2:	Second entry ".."
3122 		 * pn > 0:		Real entries, pn=1 -> leftmost page
3123 		 * pn = index = -1:	No more entries
3124 		 */
3125 		dtpos = ctx->pos;
3126 		if (dtpos < 2) {
3127 			/* build "." entry */
3128 			ctx->pos = 1;
3129 			if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
3130 				return 0;
3131 			dtoffset->index = 2;
3132 			ctx->pos = dtpos;
3133 		}
3134 
3135 		if (dtoffset->pn == 0) {
3136 			if (dtoffset->index == 2) {
3137 				/* build ".." entry */
3138 				if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
3139 					return 0;
3140 			} else {
3141 				jfs_err("jfs_readdir called with invalid offset!");
3142 			}
3143 			dtoffset->pn = 1;
3144 			dtoffset->index = 0;
3145 			ctx->pos = dtpos;
3146 		}
3147 
3148 		if (dtEmpty(ip)) {
3149 			ctx->pos = DIREND;
3150 			return 0;
3151 		}
3152 
3153 		if ((rc = dtReadNext(ip, &ctx->pos, &btstack))) {
3154 			jfs_err("jfs_readdir: unexpected rc = %d from dtReadNext",
3155 				rc);
3156 			ctx->pos = DIREND;
3157 			return 0;
3158 		}
3159 		/* get start leaf page and index */
3160 		DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3161 
3162 		/* offset beyond directory eof ? */
3163 		if (bn < 0) {
3164 			ctx->pos = DIREND;
3165 			return 0;
3166 		}
3167 	}
3168 
3169 	dirent_buf = __get_free_page(GFP_KERNEL);
3170 	if (dirent_buf == 0) {
3171 		DT_PUTPAGE(mp);
3172 		jfs_warn("jfs_readdir: __get_free_page failed!");
3173 		ctx->pos = DIREND;
3174 		return -ENOMEM;
3175 	}
3176 
3177 	while (1) {
3178 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3179 		jfs_dirents = 0;
3180 		overflow = fix_page = 0;
3181 
3182 		stbl = DT_GETSTBL(p);
3183 
3184 		for (i = index; i < p->header.nextindex; i++) {
3185 			d = (struct ldtentry *) & p->slot[stbl[i]];
3186 
3187 			if (((long) jfs_dirent + d->namlen + 1) >
3188 			    (dirent_buf + PAGE_SIZE)) {
3189 				/* DBCS codepages could overrun dirent_buf */
3190 				index = i;
3191 				overflow = 1;
3192 				break;
3193 			}
3194 
3195 			d_namleft = d->namlen;
3196 			name_ptr = jfs_dirent->name;
3197 			jfs_dirent->ino = le32_to_cpu(d->inumber);
3198 
3199 			if (do_index) {
3200 				len = min(d_namleft, DTLHDRDATALEN);
3201 				jfs_dirent->position = le32_to_cpu(d->index);
3202 				/*
3203 				 * d->index should always be valid, but it
3204 				 * isn't.  fsck.jfs doesn't create the
3205 				 * directory index for the lost+found
3206 				 * directory.  Rather than let it go,
3207 				 * we can try to fix it.
3208 				 */
3209 				if ((jfs_dirent->position < 2) ||
3210 				    (jfs_dirent->position >=
3211 				     JFS_IP(ip)->next_index)) {
3212 					if (!page_fixed && !isReadOnly(ip)) {
3213 						fix_page = 1;
3214 						/*
3215 						 * setting overflow and setting
3216 						 * index to i will cause the
3217 						 * same page to be processed
3218 						 * again starting here
3219 						 */
3220 						overflow = 1;
3221 						index = i;
3222 						break;
3223 					}
3224 					jfs_dirent->position = unique_pos++;
3225 				}
3226 				/*
3227 				 * We add 1 to the index because we may
3228 				 * use a value of 2 internally, and NFSv4
3229 				 * doesn't like that.
3230 				 */
3231 				jfs_dirent->position++;
3232 			} else {
3233 				jfs_dirent->position = dtpos;
3234 				len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3235 			}
3236 
3237 			/* copy the name of head/only segment */
3238 			outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3239 						   codepage);
3240 			jfs_dirent->name_len = outlen;
3241 
3242 			/* copy name in the additional segment(s) */
3243 			next = d->next;
3244 			while (next >= 0) {
3245 				t = (struct dtslot *) & p->slot[next];
3246 				name_ptr += outlen;
3247 				d_namleft -= len;
3248 				/* Sanity Check */
3249 				if (d_namleft == 0) {
3250 					jfs_error(ip->i_sb,
3251 						  "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n",
3252 						  (long)ip->i_ino,
3253 						  (long long)bn,
3254 						  i);
3255 					goto skip_one;
3256 				}
3257 				len = min(d_namleft, DTSLOTDATALEN);
3258 				outlen = jfs_strfromUCS_le(name_ptr, t->name,
3259 							   len, codepage);
3260 				jfs_dirent->name_len += outlen;
3261 
3262 				next = t->next;
3263 			}
3264 
3265 			jfs_dirents++;
3266 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3267 skip_one:
3268 			if (!do_index)
3269 				dtoffset->index++;
3270 		}
3271 
3272 		if (!overflow) {
3273 			/* Point to next leaf page */
3274 			if (p->header.flag & BT_ROOT)
3275 				bn = 0;
3276 			else {
3277 				bn = le64_to_cpu(p->header.next);
3278 				index = 0;
3279 				/* update offset (pn:index) for new page */
3280 				if (!do_index) {
3281 					dtoffset->pn++;
3282 					dtoffset->index = 0;
3283 				}
3284 			}
3285 			page_fixed = 0;
3286 		}
3287 
3288 		/* unpin previous leaf page */
3289 		DT_PUTPAGE(mp);
3290 
3291 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3292 		while (jfs_dirents--) {
3293 			ctx->pos = jfs_dirent->position;
3294 			if (!dir_emit(ctx, jfs_dirent->name,
3295 				    jfs_dirent->name_len,
3296 				    jfs_dirent->ino, DT_UNKNOWN))
3297 				goto out;
3298 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3299 		}
3300 
3301 		if (fix_page) {
3302 			add_missing_indices(ip, bn);
3303 			page_fixed = 1;
3304 		}
3305 
3306 		if (!overflow && (bn == 0)) {
3307 			ctx->pos = DIREND;
3308 			break;
3309 		}
3310 
3311 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3312 		if (rc) {
3313 			free_page(dirent_buf);
3314 			return rc;
3315 		}
3316 	}
3317 
3318       out:
3319 	free_page(dirent_buf);
3320 
3321 	return rc;
3322 }
3323 
3324 
3325 /*
3326  *	dtReadFirst()
3327  *
3328  * function: get the leftmost page of the directory
3329  */
dtReadFirst(struct inode * ip,struct btstack * btstack)3330 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3331 {
3332 	int rc = 0;
3333 	s64 bn;
3334 	int psize = 288;	/* initial in-line directory */
3335 	struct metapage *mp;
3336 	dtpage_t *p;
3337 	s8 *stbl;
3338 	struct btframe *btsp;
3339 	pxd_t *xd;
3340 
3341 	BT_CLR(btstack);	/* reset stack */
3342 
3343 	/*
3344 	 *	descend leftmost path of the tree
3345 	 *
3346 	 * by convention, root bn = 0.
3347 	 */
3348 	for (bn = 0;;) {
3349 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
3350 		if (rc)
3351 			return rc;
3352 
3353 		/*
3354 		 * leftmost leaf page
3355 		 */
3356 		if (p->header.flag & BT_LEAF) {
3357 			/* return leftmost entry */
3358 			btsp = btstack->top;
3359 			btsp->bn = bn;
3360 			btsp->index = 0;
3361 			btsp->mp = mp;
3362 
3363 			return 0;
3364 		}
3365 
3366 		/*
3367 		 * descend down to leftmost child page
3368 		 */
3369 		if (BT_STACK_FULL(btstack)) {
3370 			DT_PUTPAGE(mp);
3371 			jfs_error(ip->i_sb, "btstack overrun\n");
3372 			BT_STACK_DUMP(btstack);
3373 			return -EIO;
3374 		}
3375 		/* push (bn, index) of the parent page/entry */
3376 		BT_PUSH(btstack, bn, 0);
3377 
3378 		/* get the leftmost entry */
3379 		stbl = DT_GETSTBL(p);
3380 		xd = (pxd_t *) & p->slot[stbl[0]];
3381 
3382 		/* get the child page block address */
3383 		bn = addressPXD(xd);
3384 		psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3385 
3386 		/* unpin the parent page */
3387 		DT_PUTPAGE(mp);
3388 	}
3389 }
3390 
3391 
3392 /*
3393  *	dtReadNext()
3394  *
3395  * function: get the page of the specified offset (pn:index)
3396  *
3397  * return: if (offset > eof), bn = -1;
3398  *
3399  * note: if index > nextindex of the target leaf page,
3400  * start with 1st entry of next leaf page;
3401  */
dtReadNext(struct inode * ip,loff_t * offset,struct btstack * btstack)3402 static int dtReadNext(struct inode *ip, loff_t * offset,
3403 		      struct btstack * btstack)
3404 {
3405 	int rc = 0;
3406 	struct dtoffset {
3407 		s16 pn;
3408 		s16 index;
3409 		s32 unused;
3410 	} *dtoffset = (struct dtoffset *) offset;
3411 	s64 bn;
3412 	struct metapage *mp;
3413 	dtpage_t *p;
3414 	int index;
3415 	int pn;
3416 	s8 *stbl;
3417 	struct btframe *btsp, *parent;
3418 	pxd_t *xd;
3419 
3420 	/*
3421 	 * get leftmost leaf page pinned
3422 	 */
3423 	if ((rc = dtReadFirst(ip, btstack)))
3424 		return rc;
3425 
3426 	/* get leaf page */
3427 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3428 
3429 	/* get the start offset (pn:index) */
3430 	pn = dtoffset->pn - 1;	/* Now pn = 0 represents leftmost leaf */
3431 	index = dtoffset->index;
3432 
3433 	/* start at leftmost page ? */
3434 	if (pn == 0) {
3435 		/* offset beyond eof ? */
3436 		if (index < p->header.nextindex)
3437 			goto out;
3438 
3439 		if (p->header.flag & BT_ROOT) {
3440 			bn = -1;
3441 			goto out;
3442 		}
3443 
3444 		/* start with 1st entry of next leaf page */
3445 		dtoffset->pn++;
3446 		dtoffset->index = index = 0;
3447 		goto a;
3448 	}
3449 
3450 	/* start at non-leftmost page: scan parent pages for large pn */
3451 	if (p->header.flag & BT_ROOT) {
3452 		bn = -1;
3453 		goto out;
3454 	}
3455 
3456 	/* start after next leaf page ? */
3457 	if (pn > 1)
3458 		goto b;
3459 
3460 	/* get leaf page pn = 1 */
3461       a:
3462 	bn = le64_to_cpu(p->header.next);
3463 
3464 	/* unpin leaf page */
3465 	DT_PUTPAGE(mp);
3466 
3467 	/* offset beyond eof ? */
3468 	if (bn == 0) {
3469 		bn = -1;
3470 		goto out;
3471 	}
3472 
3473 	goto c;
3474 
3475 	/*
3476 	 * scan last internal page level to get target leaf page
3477 	 */
3478       b:
3479 	/* unpin leftmost leaf page */
3480 	DT_PUTPAGE(mp);
3481 
3482 	/* get left most parent page */
3483 	btsp = btstack->top;
3484 	parent = btsp - 1;
3485 	bn = parent->bn;
3486 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3487 	if (rc)
3488 		return rc;
3489 
3490 	/* scan parent pages at last internal page level */
3491 	while (pn >= p->header.nextindex) {
3492 		pn -= p->header.nextindex;
3493 
3494 		/* get next parent page address */
3495 		bn = le64_to_cpu(p->header.next);
3496 
3497 		/* unpin current parent page */
3498 		DT_PUTPAGE(mp);
3499 
3500 		/* offset beyond eof ? */
3501 		if (bn == 0) {
3502 			bn = -1;
3503 			goto out;
3504 		}
3505 
3506 		/* get next parent page */
3507 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3508 		if (rc)
3509 			return rc;
3510 
3511 		/* update parent page stack frame */
3512 		parent->bn = bn;
3513 	}
3514 
3515 	/* get leaf page address */
3516 	stbl = DT_GETSTBL(p);
3517 	xd = (pxd_t *) & p->slot[stbl[pn]];
3518 	bn = addressPXD(xd);
3519 
3520 	/* unpin parent page */
3521 	DT_PUTPAGE(mp);
3522 
3523 	/*
3524 	 * get target leaf page
3525 	 */
3526       c:
3527 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3528 	if (rc)
3529 		return rc;
3530 
3531 	/*
3532 	 * leaf page has been completed:
3533 	 * start with 1st entry of next leaf page
3534 	 */
3535 	if (index >= p->header.nextindex) {
3536 		bn = le64_to_cpu(p->header.next);
3537 
3538 		/* unpin leaf page */
3539 		DT_PUTPAGE(mp);
3540 
3541 		/* offset beyond eof ? */
3542 		if (bn == 0) {
3543 			bn = -1;
3544 			goto out;
3545 		}
3546 
3547 		/* get next leaf page */
3548 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3549 		if (rc)
3550 			return rc;
3551 
3552 		/* start with 1st entry of next leaf page */
3553 		dtoffset->pn++;
3554 		dtoffset->index = 0;
3555 	}
3556 
3557       out:
3558 	/* return target leaf page pinned */
3559 	btsp = btstack->top;
3560 	btsp->bn = bn;
3561 	btsp->index = dtoffset->index;
3562 	btsp->mp = mp;
3563 
3564 	return 0;
3565 }
3566 
3567 
3568 /*
3569  *	dtCompare()
3570  *
3571  * function: compare search key with an internal entry
3572  *
3573  * return:
3574  *	< 0 if k is < record
3575  *	= 0 if k is = record
3576  *	> 0 if k is > record
3577  */
dtCompare(struct component_name * key,dtpage_t * p,int si)3578 static int dtCompare(struct component_name * key,	/* search key */
3579 		     dtpage_t * p,	/* directory page */
3580 		     int si)
3581 {				/* entry slot index */
3582 	wchar_t *kname;
3583 	__le16 *name;
3584 	int klen, namlen, len, rc;
3585 	struct idtentry *ih;
3586 	struct dtslot *t;
3587 
3588 	/*
3589 	 * force the left-most key on internal pages, at any level of
3590 	 * the tree, to be less than any search key.
3591 	 * this obviates having to update the leftmost key on an internal
3592 	 * page when the user inserts a new key in the tree smaller than
3593 	 * anything that has been stored.
3594 	 *
3595 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3596 	 * at any internal page at any level of the tree,
3597 	 * it descends to child of the entry anyway -
3598 	 * ? make the entry as min size dummy entry)
3599 	 *
3600 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3601 	 * return (1);
3602 	 */
3603 
3604 	kname = key->name;
3605 	klen = key->namlen;
3606 
3607 	ih = (struct idtentry *) & p->slot[si];
3608 	si = ih->next;
3609 	name = ih->name;
3610 	namlen = ih->namlen;
3611 	len = min(namlen, DTIHDRDATALEN);
3612 
3613 	/* compare with head/only segment */
3614 	len = min(klen, len);
3615 	if ((rc = UniStrncmp_le(kname, name, len)))
3616 		return rc;
3617 
3618 	klen -= len;
3619 	namlen -= len;
3620 
3621 	/* compare with additional segment(s) */
3622 	kname += len;
3623 	while (klen > 0 && namlen > 0) {
3624 		/* compare with next name segment */
3625 		t = (struct dtslot *) & p->slot[si];
3626 		len = min(namlen, DTSLOTDATALEN);
3627 		len = min(klen, len);
3628 		name = t->name;
3629 		if ((rc = UniStrncmp_le(kname, name, len)))
3630 			return rc;
3631 
3632 		klen -= len;
3633 		namlen -= len;
3634 		kname += len;
3635 		si = t->next;
3636 	}
3637 
3638 	return (klen - namlen);
3639 }
3640 
3641 
3642 
3643 
3644 /*
3645  *	ciCompare()
3646  *
3647  * function: compare search key with an (leaf/internal) entry
3648  *
3649  * return:
3650  *	< 0 if k is < record
3651  *	= 0 if k is = record
3652  *	> 0 if k is > record
3653  */
ciCompare(struct component_name * key,dtpage_t * p,int si,int flag)3654 static int ciCompare(struct component_name * key,	/* search key */
3655 		     dtpage_t * p,	/* directory page */
3656 		     int si,	/* entry slot index */
3657 		     int flag)
3658 {
3659 	wchar_t *kname, x;
3660 	__le16 *name;
3661 	int klen, namlen, len, rc;
3662 	struct ldtentry *lh;
3663 	struct idtentry *ih;
3664 	struct dtslot *t;
3665 	int i;
3666 
3667 	/*
3668 	 * force the left-most key on internal pages, at any level of
3669 	 * the tree, to be less than any search key.
3670 	 * this obviates having to update the leftmost key on an internal
3671 	 * page when the user inserts a new key in the tree smaller than
3672 	 * anything that has been stored.
3673 	 *
3674 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3675 	 * at any internal page at any level of the tree,
3676 	 * it descends to child of the entry anyway -
3677 	 * ? make the entry as min size dummy entry)
3678 	 *
3679 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3680 	 * return (1);
3681 	 */
3682 
3683 	kname = key->name;
3684 	klen = key->namlen;
3685 
3686 	/*
3687 	 * leaf page entry
3688 	 */
3689 	if (p->header.flag & BT_LEAF) {
3690 		lh = (struct ldtentry *) & p->slot[si];
3691 		si = lh->next;
3692 		name = lh->name;
3693 		namlen = lh->namlen;
3694 		if (flag & JFS_DIR_INDEX)
3695 			len = min(namlen, DTLHDRDATALEN);
3696 		else
3697 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3698 	}
3699 	/*
3700 	 * internal page entry
3701 	 */
3702 	else {
3703 		ih = (struct idtentry *) & p->slot[si];
3704 		si = ih->next;
3705 		name = ih->name;
3706 		namlen = ih->namlen;
3707 		len = min(namlen, DTIHDRDATALEN);
3708 	}
3709 
3710 	/* compare with head/only segment */
3711 	len = min(klen, len);
3712 	for (i = 0; i < len; i++, kname++, name++) {
3713 		/* only uppercase if case-insensitive support is on */
3714 		if ((flag & JFS_OS2) == JFS_OS2)
3715 			x = UniToupper(le16_to_cpu(*name));
3716 		else
3717 			x = le16_to_cpu(*name);
3718 		if ((rc = *kname - x))
3719 			return rc;
3720 	}
3721 
3722 	klen -= len;
3723 	namlen -= len;
3724 
3725 	/* compare with additional segment(s) */
3726 	while (klen > 0 && namlen > 0) {
3727 		/* compare with next name segment */
3728 		t = (struct dtslot *) & p->slot[si];
3729 		len = min(namlen, DTSLOTDATALEN);
3730 		len = min(klen, len);
3731 		name = t->name;
3732 		for (i = 0; i < len; i++, kname++, name++) {
3733 			/* only uppercase if case-insensitive support is on */
3734 			if ((flag & JFS_OS2) == JFS_OS2)
3735 				x = UniToupper(le16_to_cpu(*name));
3736 			else
3737 				x = le16_to_cpu(*name);
3738 
3739 			if ((rc = *kname - x))
3740 				return rc;
3741 		}
3742 
3743 		klen -= len;
3744 		namlen -= len;
3745 		si = t->next;
3746 	}
3747 
3748 	return (klen - namlen);
3749 }
3750 
3751 
3752 /*
3753  *	ciGetLeafPrefixKey()
3754  *
3755  * function: compute prefix of suffix compression
3756  *	     from two adjacent leaf entries
3757  *	     across page boundary
3758  *
3759  * return: non-zero on error
3760  *
3761  */
ciGetLeafPrefixKey(dtpage_t * lp,int li,dtpage_t * rp,int ri,struct component_name * key,int flag)3762 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3763 			       int ri, struct component_name * key, int flag)
3764 {
3765 	int klen, namlen;
3766 	wchar_t *pl, *pr, *kname;
3767 	struct component_name lkey;
3768 	struct component_name rkey;
3769 
3770 	lkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3771 					GFP_KERNEL);
3772 	if (lkey.name == NULL)
3773 		return -ENOMEM;
3774 
3775 	rkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3776 					GFP_KERNEL);
3777 	if (rkey.name == NULL) {
3778 		kfree(lkey.name);
3779 		return -ENOMEM;
3780 	}
3781 
3782 	/* get left and right key */
3783 	dtGetKey(lp, li, &lkey, flag);
3784 	lkey.name[lkey.namlen] = 0;
3785 
3786 	if ((flag & JFS_OS2) == JFS_OS2)
3787 		ciToUpper(&lkey);
3788 
3789 	dtGetKey(rp, ri, &rkey, flag);
3790 	rkey.name[rkey.namlen] = 0;
3791 
3792 
3793 	if ((flag & JFS_OS2) == JFS_OS2)
3794 		ciToUpper(&rkey);
3795 
3796 	/* compute prefix */
3797 	klen = 0;
3798 	kname = key->name;
3799 	namlen = min(lkey.namlen, rkey.namlen);
3800 	for (pl = lkey.name, pr = rkey.name;
3801 	     namlen; pl++, pr++, namlen--, klen++, kname++) {
3802 		*kname = *pr;
3803 		if (*pl != *pr) {
3804 			key->namlen = klen + 1;
3805 			goto free_names;
3806 		}
3807 	}
3808 
3809 	/* l->namlen <= r->namlen since l <= r */
3810 	if (lkey.namlen < rkey.namlen) {
3811 		*kname = *pr;
3812 		key->namlen = klen + 1;
3813 	} else			/* l->namelen == r->namelen */
3814 		key->namlen = klen;
3815 
3816 free_names:
3817 	kfree(lkey.name);
3818 	kfree(rkey.name);
3819 	return 0;
3820 }
3821 
3822 
3823 
3824 /*
3825  *	dtGetKey()
3826  *
3827  * function: get key of the entry
3828  */
dtGetKey(dtpage_t * p,int i,struct component_name * key,int flag)3829 static void dtGetKey(dtpage_t * p, int i,	/* entry index */
3830 		     struct component_name * key, int flag)
3831 {
3832 	int si;
3833 	s8 *stbl;
3834 	struct ldtentry *lh;
3835 	struct idtentry *ih;
3836 	struct dtslot *t;
3837 	int namlen, len;
3838 	wchar_t *kname;
3839 	__le16 *name;
3840 
3841 	/* get entry */
3842 	stbl = DT_GETSTBL(p);
3843 	si = stbl[i];
3844 	if (p->header.flag & BT_LEAF) {
3845 		lh = (struct ldtentry *) & p->slot[si];
3846 		si = lh->next;
3847 		namlen = lh->namlen;
3848 		name = lh->name;
3849 		if (flag & JFS_DIR_INDEX)
3850 			len = min(namlen, DTLHDRDATALEN);
3851 		else
3852 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3853 	} else {
3854 		ih = (struct idtentry *) & p->slot[si];
3855 		si = ih->next;
3856 		namlen = ih->namlen;
3857 		name = ih->name;
3858 		len = min(namlen, DTIHDRDATALEN);
3859 	}
3860 
3861 	key->namlen = namlen;
3862 	kname = key->name;
3863 
3864 	/*
3865 	 * move head/only segment
3866 	 */
3867 	UniStrncpy_from_le(kname, name, len);
3868 
3869 	/*
3870 	 * move additional segment(s)
3871 	 */
3872 	while (si >= 0) {
3873 		/* get next segment */
3874 		t = &p->slot[si];
3875 		kname += len;
3876 		namlen -= len;
3877 		len = min(namlen, DTSLOTDATALEN);
3878 		UniStrncpy_from_le(kname, t->name, len);
3879 
3880 		si = t->next;
3881 	}
3882 }
3883 
3884 
3885 /*
3886  *	dtInsertEntry()
3887  *
3888  * function: allocate free slot(s) and
3889  *	     write a leaf/internal entry
3890  *
3891  * return: entry slot index
3892  */
dtInsertEntry(dtpage_t * p,int index,struct component_name * key,ddata_t * data,struct dt_lock ** dtlock)3893 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3894 			  ddata_t * data, struct dt_lock ** dtlock)
3895 {
3896 	struct dtslot *h, *t;
3897 	struct ldtentry *lh = NULL;
3898 	struct idtentry *ih = NULL;
3899 	int hsi, fsi, klen, len, nextindex;
3900 	wchar_t *kname;
3901 	__le16 *name;
3902 	s8 *stbl;
3903 	pxd_t *xd;
3904 	struct dt_lock *dtlck = *dtlock;
3905 	struct lv *lv;
3906 	int xsi, n;
3907 	s64 bn = 0;
3908 	struct metapage *mp = NULL;
3909 
3910 	klen = key->namlen;
3911 	kname = key->name;
3912 
3913 	/* allocate a free slot */
3914 	hsi = fsi = p->header.freelist;
3915 	h = &p->slot[fsi];
3916 	p->header.freelist = h->next;
3917 	--p->header.freecnt;
3918 
3919 	/* open new linelock */
3920 	if (dtlck->index >= dtlck->maxcnt)
3921 		dtlck = (struct dt_lock *) txLinelock(dtlck);
3922 
3923 	lv = & dtlck->lv[dtlck->index];
3924 	lv->offset = hsi;
3925 
3926 	/* write head/only segment */
3927 	if (p->header.flag & BT_LEAF) {
3928 		lh = (struct ldtentry *) h;
3929 		lh->next = h->next;
3930 		lh->inumber = cpu_to_le32(data->leaf.ino);
3931 		lh->namlen = klen;
3932 		name = lh->name;
3933 		if (data->leaf.ip) {
3934 			len = min(klen, DTLHDRDATALEN);
3935 			if (!(p->header.flag & BT_ROOT))
3936 				bn = addressPXD(&p->header.self);
3937 			lh->index = cpu_to_le32(add_index(data->leaf.tid,
3938 							  data->leaf.ip,
3939 							  bn, index));
3940 		} else
3941 			len = min(klen, DTLHDRDATALEN_LEGACY);
3942 	} else {
3943 		ih = (struct idtentry *) h;
3944 		ih->next = h->next;
3945 		xd = (pxd_t *) ih;
3946 		*xd = data->xd;
3947 		ih->namlen = klen;
3948 		name = ih->name;
3949 		len = min(klen, DTIHDRDATALEN);
3950 	}
3951 
3952 	UniStrncpy_to_le(name, kname, len);
3953 
3954 	n = 1;
3955 	xsi = hsi;
3956 
3957 	/* write additional segment(s) */
3958 	t = h;
3959 	klen -= len;
3960 	while (klen) {
3961 		/* get free slot */
3962 		fsi = p->header.freelist;
3963 		t = &p->slot[fsi];
3964 		p->header.freelist = t->next;
3965 		--p->header.freecnt;
3966 
3967 		/* is next slot contiguous ? */
3968 		if (fsi != xsi + 1) {
3969 			/* close current linelock */
3970 			lv->length = n;
3971 			dtlck->index++;
3972 
3973 			/* open new linelock */
3974 			if (dtlck->index < dtlck->maxcnt)
3975 				lv++;
3976 			else {
3977 				dtlck = (struct dt_lock *) txLinelock(dtlck);
3978 				lv = & dtlck->lv[0];
3979 			}
3980 
3981 			lv->offset = fsi;
3982 			n = 0;
3983 		}
3984 
3985 		kname += len;
3986 		len = min(klen, DTSLOTDATALEN);
3987 		UniStrncpy_to_le(t->name, kname, len);
3988 
3989 		n++;
3990 		xsi = fsi;
3991 		klen -= len;
3992 	}
3993 
3994 	/* close current linelock */
3995 	lv->length = n;
3996 	dtlck->index++;
3997 
3998 	*dtlock = dtlck;
3999 
4000 	/* terminate last/only segment */
4001 	if (h == t) {
4002 		/* single segment entry */
4003 		if (p->header.flag & BT_LEAF)
4004 			lh->next = -1;
4005 		else
4006 			ih->next = -1;
4007 	} else
4008 		/* multi-segment entry */
4009 		t->next = -1;
4010 
4011 	/* if insert into middle, shift right succeeding entries in stbl */
4012 	stbl = DT_GETSTBL(p);
4013 	nextindex = p->header.nextindex;
4014 	if (index < nextindex) {
4015 		memmove(stbl + index + 1, stbl + index, nextindex - index);
4016 
4017 		if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4018 			s64 lblock;
4019 
4020 			/*
4021 			 * Need to update slot number for entries that moved
4022 			 * in the stbl
4023 			 */
4024 			mp = NULL;
4025 			for (n = index + 1; n <= nextindex; n++) {
4026 				lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4027 				modify_index(data->leaf.tid, data->leaf.ip,
4028 					     le32_to_cpu(lh->index), bn, n,
4029 					     &mp, &lblock);
4030 			}
4031 			if (mp)
4032 				release_metapage(mp);
4033 		}
4034 	}
4035 
4036 	stbl[index] = hsi;
4037 
4038 	/* advance next available entry index of stbl */
4039 	++p->header.nextindex;
4040 }
4041 
4042 
4043 /*
4044  *	dtMoveEntry()
4045  *
4046  * function: move entries from split/left page to new/right page
4047  *
4048  *	nextindex of dst page and freelist/freecnt of both pages
4049  *	are updated.
4050  */
dtMoveEntry(dtpage_t * sp,int si,dtpage_t * dp,struct dt_lock ** sdtlock,struct dt_lock ** ddtlock,int do_index)4051 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4052 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4053 			int do_index)
4054 {
4055 	int ssi, next;		/* src slot index */
4056 	int di;			/* dst entry index */
4057 	int dsi;		/* dst slot index */
4058 	s8 *sstbl, *dstbl;	/* sorted entry table */
4059 	int snamlen, len;
4060 	struct ldtentry *slh, *dlh = NULL;
4061 	struct idtentry *sih, *dih = NULL;
4062 	struct dtslot *h, *s, *d;
4063 	struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4064 	struct lv *slv, *dlv;
4065 	int xssi, ns, nd;
4066 	int sfsi;
4067 
4068 	sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4069 	dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4070 
4071 	dsi = dp->header.freelist;	/* first (whole page) free slot */
4072 	sfsi = sp->header.freelist;
4073 
4074 	/* linelock destination entry slot */
4075 	dlv = & ddtlck->lv[ddtlck->index];
4076 	dlv->offset = dsi;
4077 
4078 	/* linelock source entry slot */
4079 	slv = & sdtlck->lv[sdtlck->index];
4080 	slv->offset = sstbl[si];
4081 	xssi = slv->offset - 1;
4082 
4083 	/*
4084 	 * move entries
4085 	 */
4086 	ns = nd = 0;
4087 	for (di = 0; si < sp->header.nextindex; si++, di++) {
4088 		ssi = sstbl[si];
4089 		dstbl[di] = dsi;
4090 
4091 		/* is next slot contiguous ? */
4092 		if (ssi != xssi + 1) {
4093 			/* close current linelock */
4094 			slv->length = ns;
4095 			sdtlck->index++;
4096 
4097 			/* open new linelock */
4098 			if (sdtlck->index < sdtlck->maxcnt)
4099 				slv++;
4100 			else {
4101 				sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4102 				slv = & sdtlck->lv[0];
4103 			}
4104 
4105 			slv->offset = ssi;
4106 			ns = 0;
4107 		}
4108 
4109 		/*
4110 		 * move head/only segment of an entry
4111 		 */
4112 		/* get dst slot */
4113 		h = d = &dp->slot[dsi];
4114 
4115 		/* get src slot and move */
4116 		s = &sp->slot[ssi];
4117 		if (sp->header.flag & BT_LEAF) {
4118 			/* get source entry */
4119 			slh = (struct ldtentry *) s;
4120 			dlh = (struct ldtentry *) h;
4121 			snamlen = slh->namlen;
4122 
4123 			if (do_index) {
4124 				len = min(snamlen, DTLHDRDATALEN);
4125 				dlh->index = slh->index; /* little-endian */
4126 			} else
4127 				len = min(snamlen, DTLHDRDATALEN_LEGACY);
4128 
4129 			memcpy(dlh, slh, 6 + len * 2);
4130 
4131 			next = slh->next;
4132 
4133 			/* update dst head/only segment next field */
4134 			dsi++;
4135 			dlh->next = dsi;
4136 		} else {
4137 			sih = (struct idtentry *) s;
4138 			snamlen = sih->namlen;
4139 
4140 			len = min(snamlen, DTIHDRDATALEN);
4141 			dih = (struct idtentry *) h;
4142 			memcpy(dih, sih, 10 + len * 2);
4143 			next = sih->next;
4144 
4145 			dsi++;
4146 			dih->next = dsi;
4147 		}
4148 
4149 		/* free src head/only segment */
4150 		s->next = sfsi;
4151 		s->cnt = 1;
4152 		sfsi = ssi;
4153 
4154 		ns++;
4155 		nd++;
4156 		xssi = ssi;
4157 
4158 		/*
4159 		 * move additional segment(s) of the entry
4160 		 */
4161 		snamlen -= len;
4162 		while ((ssi = next) >= 0) {
4163 			/* is next slot contiguous ? */
4164 			if (ssi != xssi + 1) {
4165 				/* close current linelock */
4166 				slv->length = ns;
4167 				sdtlck->index++;
4168 
4169 				/* open new linelock */
4170 				if (sdtlck->index < sdtlck->maxcnt)
4171 					slv++;
4172 				else {
4173 					sdtlck =
4174 					    (struct dt_lock *)
4175 					    txLinelock(sdtlck);
4176 					slv = & sdtlck->lv[0];
4177 				}
4178 
4179 				slv->offset = ssi;
4180 				ns = 0;
4181 			}
4182 
4183 			/* get next source segment */
4184 			s = &sp->slot[ssi];
4185 
4186 			/* get next destination free slot */
4187 			d++;
4188 
4189 			len = min(snamlen, DTSLOTDATALEN);
4190 			UniStrncpy_le(d->name, s->name, len);
4191 
4192 			ns++;
4193 			nd++;
4194 			xssi = ssi;
4195 
4196 			dsi++;
4197 			d->next = dsi;
4198 
4199 			/* free source segment */
4200 			next = s->next;
4201 			s->next = sfsi;
4202 			s->cnt = 1;
4203 			sfsi = ssi;
4204 
4205 			snamlen -= len;
4206 		}		/* end while */
4207 
4208 		/* terminate dst last/only segment */
4209 		if (h == d) {
4210 			/* single segment entry */
4211 			if (dp->header.flag & BT_LEAF)
4212 				dlh->next = -1;
4213 			else
4214 				dih->next = -1;
4215 		} else
4216 			/* multi-segment entry */
4217 			d->next = -1;
4218 	}			/* end for */
4219 
4220 	/* close current linelock */
4221 	slv->length = ns;
4222 	sdtlck->index++;
4223 	*sdtlock = sdtlck;
4224 
4225 	dlv->length = nd;
4226 	ddtlck->index++;
4227 	*ddtlock = ddtlck;
4228 
4229 	/* update source header */
4230 	sp->header.freelist = sfsi;
4231 	sp->header.freecnt += nd;
4232 
4233 	/* update destination header */
4234 	dp->header.nextindex = di;
4235 
4236 	dp->header.freelist = dsi;
4237 	dp->header.freecnt -= nd;
4238 }
4239 
4240 
4241 /*
4242  *	dtDeleteEntry()
4243  *
4244  * function: free a (leaf/internal) entry
4245  *
4246  * log freelist header, stbl, and each segment slot of entry
4247  * (even though last/only segment next field is modified,
4248  * physical image logging requires all segment slots of
4249  * the entry logged to avoid applying previous updates
4250  * to the same slots)
4251  */
dtDeleteEntry(dtpage_t * p,int fi,struct dt_lock ** dtlock)4252 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4253 {
4254 	int fsi;		/* free entry slot index */
4255 	s8 *stbl;
4256 	struct dtslot *t;
4257 	int si, freecnt;
4258 	struct dt_lock *dtlck = *dtlock;
4259 	struct lv *lv;
4260 	int xsi, n;
4261 
4262 	/* get free entry slot index */
4263 	stbl = DT_GETSTBL(p);
4264 	fsi = stbl[fi];
4265 
4266 	/* open new linelock */
4267 	if (dtlck->index >= dtlck->maxcnt)
4268 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4269 	lv = & dtlck->lv[dtlck->index];
4270 
4271 	lv->offset = fsi;
4272 
4273 	/* get the head/only segment */
4274 	t = &p->slot[fsi];
4275 	if (p->header.flag & BT_LEAF)
4276 		si = ((struct ldtentry *) t)->next;
4277 	else
4278 		si = ((struct idtentry *) t)->next;
4279 	t->next = si;
4280 	t->cnt = 1;
4281 
4282 	n = freecnt = 1;
4283 	xsi = fsi;
4284 
4285 	/* find the last/only segment */
4286 	while (si >= 0) {
4287 		/* is next slot contiguous ? */
4288 		if (si != xsi + 1) {
4289 			/* close current linelock */
4290 			lv->length = n;
4291 			dtlck->index++;
4292 
4293 			/* open new linelock */
4294 			if (dtlck->index < dtlck->maxcnt)
4295 				lv++;
4296 			else {
4297 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4298 				lv = & dtlck->lv[0];
4299 			}
4300 
4301 			lv->offset = si;
4302 			n = 0;
4303 		}
4304 
4305 		n++;
4306 		xsi = si;
4307 		freecnt++;
4308 
4309 		t = &p->slot[si];
4310 		t->cnt = 1;
4311 		si = t->next;
4312 	}
4313 
4314 	/* close current linelock */
4315 	lv->length = n;
4316 	dtlck->index++;
4317 
4318 	*dtlock = dtlck;
4319 
4320 	/* update freelist */
4321 	t->next = p->header.freelist;
4322 	p->header.freelist = fsi;
4323 	p->header.freecnt += freecnt;
4324 
4325 	/* if delete from middle,
4326 	 * shift left the succedding entries in the stbl
4327 	 */
4328 	si = p->header.nextindex;
4329 	if (fi < si - 1)
4330 		memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4331 
4332 	p->header.nextindex--;
4333 }
4334 
4335 
4336 /*
4337  *	dtTruncateEntry()
4338  *
4339  * function: truncate a (leaf/internal) entry
4340  *
4341  * log freelist header, stbl, and each segment slot of entry
4342  * (even though last/only segment next field is modified,
4343  * physical image logging requires all segment slots of
4344  * the entry logged to avoid applying previous updates
4345  * to the same slots)
4346  */
dtTruncateEntry(dtpage_t * p,int ti,struct dt_lock ** dtlock)4347 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4348 {
4349 	int tsi;		/* truncate entry slot index */
4350 	s8 *stbl;
4351 	struct dtslot *t;
4352 	int si, freecnt;
4353 	struct dt_lock *dtlck = *dtlock;
4354 	struct lv *lv;
4355 	int fsi, xsi, n;
4356 
4357 	/* get free entry slot index */
4358 	stbl = DT_GETSTBL(p);
4359 	tsi = stbl[ti];
4360 
4361 	/* open new linelock */
4362 	if (dtlck->index >= dtlck->maxcnt)
4363 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4364 	lv = & dtlck->lv[dtlck->index];
4365 
4366 	lv->offset = tsi;
4367 
4368 	/* get the head/only segment */
4369 	t = &p->slot[tsi];
4370 	ASSERT(p->header.flag & BT_INTERNAL);
4371 	((struct idtentry *) t)->namlen = 0;
4372 	si = ((struct idtentry *) t)->next;
4373 	((struct idtentry *) t)->next = -1;
4374 
4375 	n = 1;
4376 	freecnt = 0;
4377 	fsi = si;
4378 	xsi = tsi;
4379 
4380 	/* find the last/only segment */
4381 	while (si >= 0) {
4382 		/* is next slot contiguous ? */
4383 		if (si != xsi + 1) {
4384 			/* close current linelock */
4385 			lv->length = n;
4386 			dtlck->index++;
4387 
4388 			/* open new linelock */
4389 			if (dtlck->index < dtlck->maxcnt)
4390 				lv++;
4391 			else {
4392 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4393 				lv = & dtlck->lv[0];
4394 			}
4395 
4396 			lv->offset = si;
4397 			n = 0;
4398 		}
4399 
4400 		n++;
4401 		xsi = si;
4402 		freecnt++;
4403 
4404 		t = &p->slot[si];
4405 		t->cnt = 1;
4406 		si = t->next;
4407 	}
4408 
4409 	/* close current linelock */
4410 	lv->length = n;
4411 	dtlck->index++;
4412 
4413 	*dtlock = dtlck;
4414 
4415 	/* update freelist */
4416 	if (freecnt == 0)
4417 		return;
4418 	t->next = p->header.freelist;
4419 	p->header.freelist = fsi;
4420 	p->header.freecnt += freecnt;
4421 }
4422 
4423 
4424 /*
4425  *	dtLinelockFreelist()
4426  */
dtLinelockFreelist(dtpage_t * p,int m,struct dt_lock ** dtlock)4427 static void dtLinelockFreelist(dtpage_t * p,	/* directory page */
4428 			       int m,	/* max slot index */
4429 			       struct dt_lock ** dtlock)
4430 {
4431 	int fsi;		/* free entry slot index */
4432 	struct dtslot *t;
4433 	int si;
4434 	struct dt_lock *dtlck = *dtlock;
4435 	struct lv *lv;
4436 	int xsi, n;
4437 
4438 	/* get free entry slot index */
4439 	fsi = p->header.freelist;
4440 
4441 	/* open new linelock */
4442 	if (dtlck->index >= dtlck->maxcnt)
4443 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4444 	lv = & dtlck->lv[dtlck->index];
4445 
4446 	lv->offset = fsi;
4447 
4448 	n = 1;
4449 	xsi = fsi;
4450 
4451 	t = &p->slot[fsi];
4452 	si = t->next;
4453 
4454 	/* find the last/only segment */
4455 	while (si < m && si >= 0) {
4456 		/* is next slot contiguous ? */
4457 		if (si != xsi + 1) {
4458 			/* close current linelock */
4459 			lv->length = n;
4460 			dtlck->index++;
4461 
4462 			/* open new linelock */
4463 			if (dtlck->index < dtlck->maxcnt)
4464 				lv++;
4465 			else {
4466 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4467 				lv = & dtlck->lv[0];
4468 			}
4469 
4470 			lv->offset = si;
4471 			n = 0;
4472 		}
4473 
4474 		n++;
4475 		xsi = si;
4476 
4477 		t = &p->slot[si];
4478 		si = t->next;
4479 	}
4480 
4481 	/* close current linelock */
4482 	lv->length = n;
4483 	dtlck->index++;
4484 
4485 	*dtlock = dtlck;
4486 }
4487 
4488 
4489 /*
4490  * NAME: dtModify
4491  *
4492  * FUNCTION: Modify the inode number part of a directory entry
4493  *
4494  * PARAMETERS:
4495  *	tid	- Transaction id
4496  *	ip	- Inode of parent directory
4497  *	key	- Name of entry to be modified
4498  *	orig_ino	- Original inode number expected in entry
4499  *	new_ino	- New inode number to put into entry
4500  *	flag	- JFS_RENAME
4501  *
4502  * RETURNS:
4503  *	-ESTALE	- If entry found does not match orig_ino passed in
4504  *	-ENOENT	- If no entry can be found to match key
4505  *	0	- If successfully modified entry
4506  */
dtModify(tid_t tid,struct inode * ip,struct component_name * key,ino_t * orig_ino,ino_t new_ino,int flag)4507 int dtModify(tid_t tid, struct inode *ip,
4508 	 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4509 {
4510 	int rc;
4511 	s64 bn;
4512 	struct metapage *mp;
4513 	dtpage_t *p;
4514 	int index;
4515 	struct btstack btstack;
4516 	struct tlock *tlck;
4517 	struct dt_lock *dtlck;
4518 	struct lv *lv;
4519 	s8 *stbl;
4520 	int entry_si;		/* entry slot index */
4521 	struct ldtentry *entry;
4522 
4523 	/*
4524 	 *	search for the entry to modify:
4525 	 *
4526 	 * dtSearch() returns (leaf page pinned, index at which to modify).
4527 	 */
4528 	if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4529 		return rc;
4530 
4531 	/* retrieve search result */
4532 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4533 
4534 	BT_MARK_DIRTY(mp, ip);
4535 	/*
4536 	 * acquire a transaction lock on the leaf page of named entry
4537 	 */
4538 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4539 	dtlck = (struct dt_lock *) & tlck->lock;
4540 
4541 	/* get slot index of the entry */
4542 	stbl = DT_GETSTBL(p);
4543 	entry_si = stbl[index];
4544 
4545 	/* linelock entry */
4546 	ASSERT(dtlck->index == 0);
4547 	lv = & dtlck->lv[0];
4548 	lv->offset = entry_si;
4549 	lv->length = 1;
4550 	dtlck->index++;
4551 
4552 	/* get the head/only segment */
4553 	entry = (struct ldtentry *) & p->slot[entry_si];
4554 
4555 	/* substitute the inode number of the entry */
4556 	entry->inumber = cpu_to_le32(new_ino);
4557 
4558 	/* unpin the leaf page */
4559 	DT_PUTPAGE(mp);
4560 
4561 	return 0;
4562 }
4563