1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Simple file system for zoned block devices exposing zones as files.
4 *
5 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6 */
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24
25 #include "zonefs.h"
26
zonefs_zone_mgmt(struct inode * inode,enum req_opf op)27 static inline int zonefs_zone_mgmt(struct inode *inode,
28 enum req_opf op)
29 {
30 struct zonefs_inode_info *zi = ZONEFS_I(inode);
31 int ret;
32
33 lockdep_assert_held(&zi->i_truncate_mutex);
34
35 /*
36 * With ZNS drives, closing an explicitly open zone that has not been
37 * written will change the zone state to "closed", that is, the zone
38 * will remain active. Since this can then cause failure of explicit
39 * open operation on other zones if the drive active zone resources
40 * are exceeded, make sure that the zone does not remain active by
41 * resetting it.
42 */
43 if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
44 op = REQ_OP_ZONE_RESET;
45
46 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
47 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
48 if (ret) {
49 zonefs_err(inode->i_sb,
50 "Zone management operation %s at %llu failed %d\n",
51 blk_op_str(op), zi->i_zsector, ret);
52 return ret;
53 }
54
55 return 0;
56 }
57
zonefs_i_size_write(struct inode * inode,loff_t isize)58 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
59 {
60 struct zonefs_inode_info *zi = ZONEFS_I(inode);
61
62 i_size_write(inode, isize);
63 /*
64 * A full zone is no longer open/active and does not need
65 * explicit closing.
66 */
67 if (isize >= zi->i_max_size)
68 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
69 }
70
zonefs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)71 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
72 loff_t length, unsigned int flags,
73 struct iomap *iomap, struct iomap *srcmap)
74 {
75 struct zonefs_inode_info *zi = ZONEFS_I(inode);
76 struct super_block *sb = inode->i_sb;
77 loff_t isize;
78
79 /*
80 * All blocks are always mapped below EOF. If reading past EOF,
81 * act as if there is a hole up to the file maximum size.
82 */
83 mutex_lock(&zi->i_truncate_mutex);
84 iomap->bdev = inode->i_sb->s_bdev;
85 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
86 isize = i_size_read(inode);
87 if (iomap->offset >= isize) {
88 iomap->type = IOMAP_HOLE;
89 iomap->addr = IOMAP_NULL_ADDR;
90 iomap->length = length;
91 } else {
92 iomap->type = IOMAP_MAPPED;
93 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
94 iomap->length = isize - iomap->offset;
95 }
96 mutex_unlock(&zi->i_truncate_mutex);
97
98 return 0;
99 }
100
101 static const struct iomap_ops zonefs_read_iomap_ops = {
102 .iomap_begin = zonefs_read_iomap_begin,
103 };
104
zonefs_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)105 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
106 loff_t length, unsigned int flags,
107 struct iomap *iomap, struct iomap *srcmap)
108 {
109 struct zonefs_inode_info *zi = ZONEFS_I(inode);
110 struct super_block *sb = inode->i_sb;
111 loff_t isize;
112
113 /* All write I/Os should always be within the file maximum size */
114 if (WARN_ON_ONCE(offset + length > zi->i_max_size))
115 return -EIO;
116
117 /*
118 * Sequential zones can only accept direct writes. This is already
119 * checked when writes are issued, so warn if we see a page writeback
120 * operation.
121 */
122 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
123 !(flags & IOMAP_DIRECT)))
124 return -EIO;
125
126 /*
127 * For conventional zones, all blocks are always mapped. For sequential
128 * zones, all blocks after always mapped below the inode size (zone
129 * write pointer) and unwriten beyond.
130 */
131 mutex_lock(&zi->i_truncate_mutex);
132 iomap->bdev = inode->i_sb->s_bdev;
133 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
134 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
135 isize = i_size_read(inode);
136 if (iomap->offset >= isize) {
137 iomap->type = IOMAP_UNWRITTEN;
138 iomap->length = zi->i_max_size - iomap->offset;
139 } else {
140 iomap->type = IOMAP_MAPPED;
141 iomap->length = isize - iomap->offset;
142 }
143 mutex_unlock(&zi->i_truncate_mutex);
144
145 return 0;
146 }
147
148 static const struct iomap_ops zonefs_write_iomap_ops = {
149 .iomap_begin = zonefs_write_iomap_begin,
150 };
151
zonefs_readpage(struct file * unused,struct page * page)152 static int zonefs_readpage(struct file *unused, struct page *page)
153 {
154 return iomap_readpage(page, &zonefs_read_iomap_ops);
155 }
156
zonefs_readahead(struct readahead_control * rac)157 static void zonefs_readahead(struct readahead_control *rac)
158 {
159 iomap_readahead(rac, &zonefs_read_iomap_ops);
160 }
161
162 /*
163 * Map blocks for page writeback. This is used only on conventional zone files,
164 * which implies that the page range can only be within the fixed inode size.
165 */
zonefs_write_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)166 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
167 struct inode *inode, loff_t offset)
168 {
169 struct zonefs_inode_info *zi = ZONEFS_I(inode);
170
171 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
172 return -EIO;
173 if (WARN_ON_ONCE(offset >= i_size_read(inode)))
174 return -EIO;
175
176 /* If the mapping is already OK, nothing needs to be done */
177 if (offset >= wpc->iomap.offset &&
178 offset < wpc->iomap.offset + wpc->iomap.length)
179 return 0;
180
181 return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
182 IOMAP_WRITE, &wpc->iomap, NULL);
183 }
184
185 static const struct iomap_writeback_ops zonefs_writeback_ops = {
186 .map_blocks = zonefs_write_map_blocks,
187 };
188
zonefs_writepage(struct page * page,struct writeback_control * wbc)189 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
190 {
191 struct iomap_writepage_ctx wpc = { };
192
193 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
194 }
195
zonefs_writepages(struct address_space * mapping,struct writeback_control * wbc)196 static int zonefs_writepages(struct address_space *mapping,
197 struct writeback_control *wbc)
198 {
199 struct iomap_writepage_ctx wpc = { };
200
201 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
202 }
203
zonefs_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)204 static int zonefs_swap_activate(struct swap_info_struct *sis,
205 struct file *swap_file, sector_t *span)
206 {
207 struct inode *inode = file_inode(swap_file);
208 struct zonefs_inode_info *zi = ZONEFS_I(inode);
209
210 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
211 zonefs_err(inode->i_sb,
212 "swap file: not a conventional zone file\n");
213 return -EINVAL;
214 }
215
216 return iomap_swapfile_activate(sis, swap_file, span,
217 &zonefs_read_iomap_ops);
218 }
219
220 static const struct address_space_operations zonefs_file_aops = {
221 .readpage = zonefs_readpage,
222 .readahead = zonefs_readahead,
223 .writepage = zonefs_writepage,
224 .writepages = zonefs_writepages,
225 .set_page_dirty = iomap_set_page_dirty,
226 .releasepage = iomap_releasepage,
227 .invalidatepage = iomap_invalidatepage,
228 .migratepage = iomap_migrate_page,
229 .is_partially_uptodate = iomap_is_partially_uptodate,
230 .error_remove_page = generic_error_remove_page,
231 .direct_IO = noop_direct_IO,
232 .swap_activate = zonefs_swap_activate,
233 };
234
zonefs_update_stats(struct inode * inode,loff_t new_isize)235 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
236 {
237 struct super_block *sb = inode->i_sb;
238 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
239 loff_t old_isize = i_size_read(inode);
240 loff_t nr_blocks;
241
242 if (new_isize == old_isize)
243 return;
244
245 spin_lock(&sbi->s_lock);
246
247 /*
248 * This may be called for an update after an IO error.
249 * So beware of the values seen.
250 */
251 if (new_isize < old_isize) {
252 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
253 if (sbi->s_used_blocks > nr_blocks)
254 sbi->s_used_blocks -= nr_blocks;
255 else
256 sbi->s_used_blocks = 0;
257 } else {
258 sbi->s_used_blocks +=
259 (new_isize - old_isize) >> sb->s_blocksize_bits;
260 if (sbi->s_used_blocks > sbi->s_blocks)
261 sbi->s_used_blocks = sbi->s_blocks;
262 }
263
264 spin_unlock(&sbi->s_lock);
265 }
266
267 /*
268 * Check a zone condition and adjust its file inode access permissions for
269 * offline and readonly zones. Return the inode size corresponding to the
270 * amount of readable data in the zone.
271 */
zonefs_check_zone_condition(struct inode * inode,struct blk_zone * zone,bool warn,bool mount)272 static loff_t zonefs_check_zone_condition(struct inode *inode,
273 struct blk_zone *zone, bool warn,
274 bool mount)
275 {
276 struct zonefs_inode_info *zi = ZONEFS_I(inode);
277
278 switch (zone->cond) {
279 case BLK_ZONE_COND_OFFLINE:
280 /*
281 * Dead zone: make the inode immutable, disable all accesses
282 * and set the file size to 0 (zone wp set to zone start).
283 */
284 if (warn)
285 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
286 inode->i_ino);
287 inode->i_flags |= S_IMMUTABLE;
288 inode->i_mode &= ~0777;
289 zone->wp = zone->start;
290 return 0;
291 case BLK_ZONE_COND_READONLY:
292 /*
293 * The write pointer of read-only zones is invalid. If such a
294 * zone is found during mount, the file size cannot be retrieved
295 * so we treat the zone as offline (mount == true case).
296 * Otherwise, keep the file size as it was when last updated
297 * so that the user can recover data. In both cases, writes are
298 * always disabled for the zone.
299 */
300 if (warn)
301 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
302 inode->i_ino);
303 inode->i_flags |= S_IMMUTABLE;
304 if (mount) {
305 zone->cond = BLK_ZONE_COND_OFFLINE;
306 inode->i_mode &= ~0777;
307 zone->wp = zone->start;
308 return 0;
309 }
310 inode->i_mode &= ~0222;
311 return i_size_read(inode);
312 case BLK_ZONE_COND_FULL:
313 /* The write pointer of full zones is invalid. */
314 return zi->i_max_size;
315 default:
316 if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
317 return zi->i_max_size;
318 return (zone->wp - zone->start) << SECTOR_SHIFT;
319 }
320 }
321
322 struct zonefs_ioerr_data {
323 struct inode *inode;
324 bool write;
325 };
326
zonefs_io_error_cb(struct blk_zone * zone,unsigned int idx,void * data)327 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
328 void *data)
329 {
330 struct zonefs_ioerr_data *err = data;
331 struct inode *inode = err->inode;
332 struct zonefs_inode_info *zi = ZONEFS_I(inode);
333 struct super_block *sb = inode->i_sb;
334 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
335 loff_t isize, data_size;
336
337 /*
338 * Check the zone condition: if the zone is not "bad" (offline or
339 * read-only), read errors are simply signaled to the IO issuer as long
340 * as there is no inconsistency between the inode size and the amount of
341 * data writen in the zone (data_size).
342 */
343 data_size = zonefs_check_zone_condition(inode, zone, true, false);
344 isize = i_size_read(inode);
345 if (zone->cond != BLK_ZONE_COND_OFFLINE &&
346 zone->cond != BLK_ZONE_COND_READONLY &&
347 !err->write && isize == data_size)
348 return 0;
349
350 /*
351 * At this point, we detected either a bad zone or an inconsistency
352 * between the inode size and the amount of data written in the zone.
353 * For the latter case, the cause may be a write IO error or an external
354 * action on the device. Two error patterns exist:
355 * 1) The inode size is lower than the amount of data in the zone:
356 * a write operation partially failed and data was writen at the end
357 * of the file. This can happen in the case of a large direct IO
358 * needing several BIOs and/or write requests to be processed.
359 * 2) The inode size is larger than the amount of data in the zone:
360 * this can happen with a deferred write error with the use of the
361 * device side write cache after getting successful write IO
362 * completions. Other possibilities are (a) an external corruption,
363 * e.g. an application reset the zone directly, or (b) the device
364 * has a serious problem (e.g. firmware bug).
365 *
366 * In all cases, warn about inode size inconsistency and handle the
367 * IO error according to the zone condition and to the mount options.
368 */
369 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
370 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
371 inode->i_ino, isize, data_size);
372
373 /*
374 * First handle bad zones signaled by hardware. The mount options
375 * errors=zone-ro and errors=zone-offline result in changing the
376 * zone condition to read-only and offline respectively, as if the
377 * condition was signaled by the hardware.
378 */
379 if (zone->cond == BLK_ZONE_COND_OFFLINE ||
380 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
381 zonefs_warn(sb, "inode %lu: read/write access disabled\n",
382 inode->i_ino);
383 if (zone->cond != BLK_ZONE_COND_OFFLINE) {
384 zone->cond = BLK_ZONE_COND_OFFLINE;
385 data_size = zonefs_check_zone_condition(inode, zone,
386 false, false);
387 }
388 } else if (zone->cond == BLK_ZONE_COND_READONLY ||
389 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
390 zonefs_warn(sb, "inode %lu: write access disabled\n",
391 inode->i_ino);
392 if (zone->cond != BLK_ZONE_COND_READONLY) {
393 zone->cond = BLK_ZONE_COND_READONLY;
394 data_size = zonefs_check_zone_condition(inode, zone,
395 false, false);
396 }
397 } else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO &&
398 data_size > isize) {
399 /* Do not expose garbage data */
400 data_size = isize;
401 }
402
403 /*
404 * If the filesystem is mounted with the explicit-open mount option, we
405 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
406 * the read-only or offline condition, to avoid attempting an explicit
407 * close of the zone when the inode file is closed.
408 */
409 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
410 (zone->cond == BLK_ZONE_COND_OFFLINE ||
411 zone->cond == BLK_ZONE_COND_READONLY))
412 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
413
414 /*
415 * If error=remount-ro was specified, any error result in remounting
416 * the volume as read-only.
417 */
418 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
419 zonefs_warn(sb, "remounting filesystem read-only\n");
420 sb->s_flags |= SB_RDONLY;
421 }
422
423 /*
424 * Update block usage stats and the inode size to prevent access to
425 * invalid data.
426 */
427 zonefs_update_stats(inode, data_size);
428 zonefs_i_size_write(inode, data_size);
429 zi->i_wpoffset = data_size;
430
431 return 0;
432 }
433
434 /*
435 * When an file IO error occurs, check the file zone to see if there is a change
436 * in the zone condition (e.g. offline or read-only). For a failed write to a
437 * sequential zone, the zone write pointer position must also be checked to
438 * eventually correct the file size and zonefs inode write pointer offset
439 * (which can be out of sync with the drive due to partial write failures).
440 */
__zonefs_io_error(struct inode * inode,bool write)441 static void __zonefs_io_error(struct inode *inode, bool write)
442 {
443 struct zonefs_inode_info *zi = ZONEFS_I(inode);
444 struct super_block *sb = inode->i_sb;
445 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
446 unsigned int noio_flag;
447 unsigned int nr_zones = 1;
448 struct zonefs_ioerr_data err = {
449 .inode = inode,
450 .write = write,
451 };
452 int ret;
453
454 /*
455 * The only files that have more than one zone are conventional zone
456 * files with aggregated conventional zones, for which the inode zone
457 * size is always larger than the device zone size.
458 */
459 if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev))
460 nr_zones = zi->i_zone_size >>
461 (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
462
463 /*
464 * Memory allocations in blkdev_report_zones() can trigger a memory
465 * reclaim which may in turn cause a recursion into zonefs as well as
466 * struct request allocations for the same device. The former case may
467 * end up in a deadlock on the inode truncate mutex, while the latter
468 * may prevent IO forward progress. Executing the report zones under
469 * the GFP_NOIO context avoids both problems.
470 */
471 noio_flag = memalloc_noio_save();
472 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
473 zonefs_io_error_cb, &err);
474 if (ret != nr_zones)
475 zonefs_err(sb, "Get inode %lu zone information failed %d\n",
476 inode->i_ino, ret);
477 memalloc_noio_restore(noio_flag);
478 }
479
zonefs_io_error(struct inode * inode,bool write)480 static void zonefs_io_error(struct inode *inode, bool write)
481 {
482 struct zonefs_inode_info *zi = ZONEFS_I(inode);
483
484 mutex_lock(&zi->i_truncate_mutex);
485 __zonefs_io_error(inode, write);
486 mutex_unlock(&zi->i_truncate_mutex);
487 }
488
zonefs_file_truncate(struct inode * inode,loff_t isize)489 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
490 {
491 struct zonefs_inode_info *zi = ZONEFS_I(inode);
492 loff_t old_isize;
493 enum req_opf op;
494 int ret = 0;
495
496 /*
497 * Only sequential zone files can be truncated and truncation is allowed
498 * only down to a 0 size, which is equivalent to a zone reset, and to
499 * the maximum file size, which is equivalent to a zone finish.
500 */
501 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
502 return -EPERM;
503
504 if (!isize)
505 op = REQ_OP_ZONE_RESET;
506 else if (isize == zi->i_max_size)
507 op = REQ_OP_ZONE_FINISH;
508 else
509 return -EPERM;
510
511 inode_dio_wait(inode);
512
513 /* Serialize against page faults */
514 down_write(&zi->i_mmap_sem);
515
516 /* Serialize against zonefs_iomap_begin() */
517 mutex_lock(&zi->i_truncate_mutex);
518
519 old_isize = i_size_read(inode);
520 if (isize == old_isize)
521 goto unlock;
522
523 ret = zonefs_zone_mgmt(inode, op);
524 if (ret)
525 goto unlock;
526
527 /*
528 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
529 * take care of open zones.
530 */
531 if (zi->i_flags & ZONEFS_ZONE_OPEN) {
532 /*
533 * Truncating a zone to EMPTY or FULL is the equivalent of
534 * closing the zone. For a truncation to 0, we need to
535 * re-open the zone to ensure new writes can be processed.
536 * For a truncation to the maximum file size, the zone is
537 * closed and writes cannot be accepted anymore, so clear
538 * the open flag.
539 */
540 if (!isize)
541 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
542 else
543 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
544 }
545
546 zonefs_update_stats(inode, isize);
547 truncate_setsize(inode, isize);
548 zi->i_wpoffset = isize;
549
550 unlock:
551 mutex_unlock(&zi->i_truncate_mutex);
552 up_write(&zi->i_mmap_sem);
553
554 return ret;
555 }
556
zonefs_inode_setattr(struct dentry * dentry,struct iattr * iattr)557 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr)
558 {
559 struct inode *inode = d_inode(dentry);
560 int ret;
561
562 if (unlikely(IS_IMMUTABLE(inode)))
563 return -EPERM;
564
565 ret = setattr_prepare(dentry, iattr);
566 if (ret)
567 return ret;
568
569 /*
570 * Since files and directories cannot be created nor deleted, do not
571 * allow setting any write attributes on the sub-directories grouping
572 * files by zone type.
573 */
574 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
575 (iattr->ia_mode & 0222))
576 return -EPERM;
577
578 if (((iattr->ia_valid & ATTR_UID) &&
579 !uid_eq(iattr->ia_uid, inode->i_uid)) ||
580 ((iattr->ia_valid & ATTR_GID) &&
581 !gid_eq(iattr->ia_gid, inode->i_gid))) {
582 ret = dquot_transfer(inode, iattr);
583 if (ret)
584 return ret;
585 }
586
587 if (iattr->ia_valid & ATTR_SIZE) {
588 ret = zonefs_file_truncate(inode, iattr->ia_size);
589 if (ret)
590 return ret;
591 }
592
593 setattr_copy(inode, iattr);
594
595 return 0;
596 }
597
598 static const struct inode_operations zonefs_file_inode_operations = {
599 .setattr = zonefs_inode_setattr,
600 };
601
zonefs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)602 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
603 int datasync)
604 {
605 struct inode *inode = file_inode(file);
606 int ret = 0;
607
608 if (unlikely(IS_IMMUTABLE(inode)))
609 return -EPERM;
610
611 /*
612 * Since only direct writes are allowed in sequential files, page cache
613 * flush is needed only for conventional zone files.
614 */
615 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
616 ret = file_write_and_wait_range(file, start, end);
617 if (!ret)
618 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
619
620 if (ret)
621 zonefs_io_error(inode, true);
622
623 return ret;
624 }
625
zonefs_filemap_fault(struct vm_fault * vmf)626 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf)
627 {
628 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file));
629 vm_fault_t ret;
630
631 down_read(&zi->i_mmap_sem);
632 ret = filemap_fault(vmf);
633 up_read(&zi->i_mmap_sem);
634
635 return ret;
636 }
637
zonefs_filemap_page_mkwrite(struct vm_fault * vmf)638 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
639 {
640 struct inode *inode = file_inode(vmf->vma->vm_file);
641 struct zonefs_inode_info *zi = ZONEFS_I(inode);
642 vm_fault_t ret;
643
644 if (unlikely(IS_IMMUTABLE(inode)))
645 return VM_FAULT_SIGBUS;
646
647 /*
648 * Sanity check: only conventional zone files can have shared
649 * writeable mappings.
650 */
651 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
652 return VM_FAULT_NOPAGE;
653
654 sb_start_pagefault(inode->i_sb);
655 file_update_time(vmf->vma->vm_file);
656
657 /* Serialize against truncates */
658 down_read(&zi->i_mmap_sem);
659 ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
660 up_read(&zi->i_mmap_sem);
661
662 sb_end_pagefault(inode->i_sb);
663 return ret;
664 }
665
666 static const struct vm_operations_struct zonefs_file_vm_ops = {
667 .fault = zonefs_filemap_fault,
668 .map_pages = filemap_map_pages,
669 .page_mkwrite = zonefs_filemap_page_mkwrite,
670 };
671
zonefs_file_mmap(struct file * file,struct vm_area_struct * vma)672 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
673 {
674 /*
675 * Conventional zones accept random writes, so their files can support
676 * shared writable mappings. For sequential zone files, only read
677 * mappings are possible since there are no guarantees for write
678 * ordering between msync() and page cache writeback.
679 */
680 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
681 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
682 return -EINVAL;
683
684 file_accessed(file);
685 vma->vm_ops = &zonefs_file_vm_ops;
686
687 return 0;
688 }
689
zonefs_file_llseek(struct file * file,loff_t offset,int whence)690 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
691 {
692 loff_t isize = i_size_read(file_inode(file));
693
694 /*
695 * Seeks are limited to below the zone size for conventional zones
696 * and below the zone write pointer for sequential zones. In both
697 * cases, this limit is the inode size.
698 */
699 return generic_file_llseek_size(file, offset, whence, isize, isize);
700 }
701
zonefs_file_write_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)702 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
703 int error, unsigned int flags)
704 {
705 struct inode *inode = file_inode(iocb->ki_filp);
706 struct zonefs_inode_info *zi = ZONEFS_I(inode);
707
708 if (error) {
709 zonefs_io_error(inode, true);
710 return error;
711 }
712
713 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
714 /*
715 * Note that we may be seeing completions out of order,
716 * but that is not a problem since a write completed
717 * successfully necessarily means that all preceding writes
718 * were also successful. So we can safely increase the inode
719 * size to the write end location.
720 */
721 mutex_lock(&zi->i_truncate_mutex);
722 if (i_size_read(inode) < iocb->ki_pos + size) {
723 zonefs_update_stats(inode, iocb->ki_pos + size);
724 zonefs_i_size_write(inode, iocb->ki_pos + size);
725 }
726 mutex_unlock(&zi->i_truncate_mutex);
727 }
728
729 return 0;
730 }
731
732 static const struct iomap_dio_ops zonefs_write_dio_ops = {
733 .end_io = zonefs_file_write_dio_end_io,
734 };
735
zonefs_file_dio_append(struct kiocb * iocb,struct iov_iter * from)736 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
737 {
738 struct inode *inode = file_inode(iocb->ki_filp);
739 struct zonefs_inode_info *zi = ZONEFS_I(inode);
740 struct block_device *bdev = inode->i_sb->s_bdev;
741 unsigned int max;
742 struct bio *bio;
743 ssize_t size;
744 int nr_pages;
745 ssize_t ret;
746
747 max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
748 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
749 iov_iter_truncate(from, max);
750
751 nr_pages = iov_iter_npages(from, BIO_MAX_PAGES);
752 if (!nr_pages)
753 return 0;
754
755 bio = bio_alloc_bioset(GFP_NOFS, nr_pages, &fs_bio_set);
756 if (!bio)
757 return -ENOMEM;
758
759 bio_set_dev(bio, bdev);
760 bio->bi_iter.bi_sector = zi->i_zsector;
761 bio->bi_write_hint = iocb->ki_hint;
762 bio->bi_ioprio = iocb->ki_ioprio;
763 bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
764 if (iocb->ki_flags & IOCB_DSYNC)
765 bio->bi_opf |= REQ_FUA;
766
767 ret = bio_iov_iter_get_pages(bio, from);
768 if (unlikely(ret))
769 goto out_release;
770
771 size = bio->bi_iter.bi_size;
772 task_io_account_write(size);
773
774 if (iocb->ki_flags & IOCB_HIPRI)
775 bio_set_polled(bio, iocb);
776
777 ret = submit_bio_wait(bio);
778
779 /*
780 * If the file zone was written underneath the file system, the zone
781 * write pointer may not be where we expect it to be, but the zone
782 * append write can still succeed. So check manually that we wrote where
783 * we intended to, that is, at zi->i_wpoffset.
784 */
785 if (!ret) {
786 sector_t wpsector =
787 zi->i_zsector + (zi->i_wpoffset >> SECTOR_SHIFT);
788
789 if (bio->bi_iter.bi_sector != wpsector) {
790 zonefs_warn(inode->i_sb,
791 "Corrupted write pointer %llu for zone at %llu\n",
792 wpsector, zi->i_zsector);
793 ret = -EIO;
794 }
795 }
796
797 zonefs_file_write_dio_end_io(iocb, size, ret, 0);
798
799 out_release:
800 bio_release_pages(bio, false);
801 bio_put(bio);
802
803 if (ret >= 0) {
804 iocb->ki_pos += size;
805 return size;
806 }
807
808 return ret;
809 }
810
811 /*
812 * Do not exceed the LFS limits nor the file zone size. If pos is under the
813 * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
814 */
zonefs_write_check_limits(struct file * file,loff_t pos,loff_t count)815 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
816 loff_t count)
817 {
818 struct inode *inode = file_inode(file);
819 struct zonefs_inode_info *zi = ZONEFS_I(inode);
820 loff_t limit = rlimit(RLIMIT_FSIZE);
821 loff_t max_size = zi->i_max_size;
822
823 if (limit != RLIM_INFINITY) {
824 if (pos >= limit) {
825 send_sig(SIGXFSZ, current, 0);
826 return -EFBIG;
827 }
828 count = min(count, limit - pos);
829 }
830
831 if (!(file->f_flags & O_LARGEFILE))
832 max_size = min_t(loff_t, MAX_NON_LFS, max_size);
833
834 if (unlikely(pos >= max_size))
835 return -EFBIG;
836
837 return min(count, max_size - pos);
838 }
839
zonefs_write_checks(struct kiocb * iocb,struct iov_iter * from)840 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
841 {
842 struct file *file = iocb->ki_filp;
843 struct inode *inode = file_inode(file);
844 struct zonefs_inode_info *zi = ZONEFS_I(inode);
845 loff_t count;
846
847 if (IS_SWAPFILE(inode))
848 return -ETXTBSY;
849
850 if (!iov_iter_count(from))
851 return 0;
852
853 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
854 return -EINVAL;
855
856 if (iocb->ki_flags & IOCB_APPEND) {
857 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
858 return -EINVAL;
859 mutex_lock(&zi->i_truncate_mutex);
860 iocb->ki_pos = zi->i_wpoffset;
861 mutex_unlock(&zi->i_truncate_mutex);
862 }
863
864 count = zonefs_write_check_limits(file, iocb->ki_pos,
865 iov_iter_count(from));
866 if (count < 0)
867 return count;
868
869 iov_iter_truncate(from, count);
870 return iov_iter_count(from);
871 }
872
873 /*
874 * Handle direct writes. For sequential zone files, this is the only possible
875 * write path. For these files, check that the user is issuing writes
876 * sequentially from the end of the file. This code assumes that the block layer
877 * delivers write requests to the device in sequential order. This is always the
878 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
879 * elevator feature is being used (e.g. mq-deadline). The block layer always
880 * automatically select such an elevator for zoned block devices during the
881 * device initialization.
882 */
zonefs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)883 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
884 {
885 struct inode *inode = file_inode(iocb->ki_filp);
886 struct zonefs_inode_info *zi = ZONEFS_I(inode);
887 struct super_block *sb = inode->i_sb;
888 bool sync = is_sync_kiocb(iocb);
889 bool append = false;
890 ssize_t ret, count;
891
892 /*
893 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
894 * as this can cause write reordering (e.g. the first aio gets EAGAIN
895 * on the inode lock but the second goes through but is now unaligned).
896 */
897 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
898 (iocb->ki_flags & IOCB_NOWAIT))
899 return -EOPNOTSUPP;
900
901 if (iocb->ki_flags & IOCB_NOWAIT) {
902 if (!inode_trylock(inode))
903 return -EAGAIN;
904 } else {
905 inode_lock(inode);
906 }
907
908 count = zonefs_write_checks(iocb, from);
909 if (count <= 0) {
910 ret = count;
911 goto inode_unlock;
912 }
913
914 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
915 ret = -EINVAL;
916 goto inode_unlock;
917 }
918
919 /* Enforce sequential writes (append only) in sequential zones */
920 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
921 mutex_lock(&zi->i_truncate_mutex);
922 if (iocb->ki_pos != zi->i_wpoffset) {
923 mutex_unlock(&zi->i_truncate_mutex);
924 ret = -EINVAL;
925 goto inode_unlock;
926 }
927 mutex_unlock(&zi->i_truncate_mutex);
928 append = sync;
929 }
930
931 if (append)
932 ret = zonefs_file_dio_append(iocb, from);
933 else
934 ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
935 &zonefs_write_dio_ops, sync);
936 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
937 (ret > 0 || ret == -EIOCBQUEUED)) {
938 if (ret > 0)
939 count = ret;
940 mutex_lock(&zi->i_truncate_mutex);
941 zi->i_wpoffset += count;
942 mutex_unlock(&zi->i_truncate_mutex);
943 }
944
945 inode_unlock:
946 inode_unlock(inode);
947
948 return ret;
949 }
950
zonefs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)951 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
952 struct iov_iter *from)
953 {
954 struct inode *inode = file_inode(iocb->ki_filp);
955 struct zonefs_inode_info *zi = ZONEFS_I(inode);
956 ssize_t ret;
957
958 /*
959 * Direct IO writes are mandatory for sequential zone files so that the
960 * write IO issuing order is preserved.
961 */
962 if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
963 return -EIO;
964
965 if (iocb->ki_flags & IOCB_NOWAIT) {
966 if (!inode_trylock(inode))
967 return -EAGAIN;
968 } else {
969 inode_lock(inode);
970 }
971
972 ret = zonefs_write_checks(iocb, from);
973 if (ret <= 0)
974 goto inode_unlock;
975
976 ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
977 if (ret > 0)
978 iocb->ki_pos += ret;
979 else if (ret == -EIO)
980 zonefs_io_error(inode, true);
981
982 inode_unlock:
983 inode_unlock(inode);
984 if (ret > 0)
985 ret = generic_write_sync(iocb, ret);
986
987 return ret;
988 }
989
zonefs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)990 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
991 {
992 struct inode *inode = file_inode(iocb->ki_filp);
993
994 if (unlikely(IS_IMMUTABLE(inode)))
995 return -EPERM;
996
997 if (sb_rdonly(inode->i_sb))
998 return -EROFS;
999
1000 /* Write operations beyond the zone size are not allowed */
1001 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
1002 return -EFBIG;
1003
1004 if (iocb->ki_flags & IOCB_DIRECT) {
1005 ssize_t ret = zonefs_file_dio_write(iocb, from);
1006 if (ret != -ENOTBLK)
1007 return ret;
1008 }
1009
1010 return zonefs_file_buffered_write(iocb, from);
1011 }
1012
zonefs_file_read_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)1013 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
1014 int error, unsigned int flags)
1015 {
1016 if (error) {
1017 zonefs_io_error(file_inode(iocb->ki_filp), false);
1018 return error;
1019 }
1020
1021 return 0;
1022 }
1023
1024 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1025 .end_io = zonefs_file_read_dio_end_io,
1026 };
1027
zonefs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1028 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1029 {
1030 struct inode *inode = file_inode(iocb->ki_filp);
1031 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1032 struct super_block *sb = inode->i_sb;
1033 loff_t isize;
1034 ssize_t ret;
1035
1036 /* Offline zones cannot be read */
1037 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1038 return -EPERM;
1039
1040 if (iocb->ki_pos >= zi->i_max_size)
1041 return 0;
1042
1043 if (iocb->ki_flags & IOCB_NOWAIT) {
1044 if (!inode_trylock_shared(inode))
1045 return -EAGAIN;
1046 } else {
1047 inode_lock_shared(inode);
1048 }
1049
1050 /* Limit read operations to written data */
1051 mutex_lock(&zi->i_truncate_mutex);
1052 isize = i_size_read(inode);
1053 if (iocb->ki_pos >= isize) {
1054 mutex_unlock(&zi->i_truncate_mutex);
1055 ret = 0;
1056 goto inode_unlock;
1057 }
1058 iov_iter_truncate(to, isize - iocb->ki_pos);
1059 mutex_unlock(&zi->i_truncate_mutex);
1060
1061 if (iocb->ki_flags & IOCB_DIRECT) {
1062 size_t count = iov_iter_count(to);
1063
1064 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1065 ret = -EINVAL;
1066 goto inode_unlock;
1067 }
1068 file_accessed(iocb->ki_filp);
1069 ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1070 &zonefs_read_dio_ops, is_sync_kiocb(iocb));
1071 } else {
1072 ret = generic_file_read_iter(iocb, to);
1073 if (ret == -EIO)
1074 zonefs_io_error(inode, false);
1075 }
1076
1077 inode_unlock:
1078 inode_unlock_shared(inode);
1079
1080 return ret;
1081 }
1082
zonefs_file_use_exp_open(struct inode * inode,struct file * file)1083 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1084 {
1085 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1086 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1087
1088 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1089 return false;
1090
1091 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1092 return false;
1093
1094 if (!(file->f_mode & FMODE_WRITE))
1095 return false;
1096
1097 return true;
1098 }
1099
zonefs_open_zone(struct inode * inode)1100 static int zonefs_open_zone(struct inode *inode)
1101 {
1102 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1103 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1104 int ret = 0;
1105
1106 mutex_lock(&zi->i_truncate_mutex);
1107
1108 if (!zi->i_wr_refcnt) {
1109 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1110 atomic_dec(&sbi->s_open_zones);
1111 ret = -EBUSY;
1112 goto unlock;
1113 }
1114
1115 if (i_size_read(inode) < zi->i_max_size) {
1116 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1117 if (ret) {
1118 atomic_dec(&sbi->s_open_zones);
1119 goto unlock;
1120 }
1121 zi->i_flags |= ZONEFS_ZONE_OPEN;
1122 }
1123 }
1124
1125 zi->i_wr_refcnt++;
1126
1127 unlock:
1128 mutex_unlock(&zi->i_truncate_mutex);
1129
1130 return ret;
1131 }
1132
zonefs_file_open(struct inode * inode,struct file * file)1133 static int zonefs_file_open(struct inode *inode, struct file *file)
1134 {
1135 int ret;
1136
1137 ret = generic_file_open(inode, file);
1138 if (ret)
1139 return ret;
1140
1141 if (zonefs_file_use_exp_open(inode, file))
1142 return zonefs_open_zone(inode);
1143
1144 return 0;
1145 }
1146
zonefs_close_zone(struct inode * inode)1147 static void zonefs_close_zone(struct inode *inode)
1148 {
1149 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1150 int ret = 0;
1151
1152 mutex_lock(&zi->i_truncate_mutex);
1153 zi->i_wr_refcnt--;
1154 if (!zi->i_wr_refcnt) {
1155 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1156 struct super_block *sb = inode->i_sb;
1157
1158 /*
1159 * If the file zone is full, it is not open anymore and we only
1160 * need to decrement the open count.
1161 */
1162 if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1163 goto dec;
1164
1165 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1166 if (ret) {
1167 __zonefs_io_error(inode, false);
1168 /*
1169 * Leaving zones explicitly open may lead to a state
1170 * where most zones cannot be written (zone resources
1171 * exhausted). So take preventive action by remounting
1172 * read-only.
1173 */
1174 if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1175 !(sb->s_flags & SB_RDONLY)) {
1176 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1177 sb->s_flags |= SB_RDONLY;
1178 }
1179 }
1180 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1181 dec:
1182 atomic_dec(&sbi->s_open_zones);
1183 }
1184 mutex_unlock(&zi->i_truncate_mutex);
1185 }
1186
zonefs_file_release(struct inode * inode,struct file * file)1187 static int zonefs_file_release(struct inode *inode, struct file *file)
1188 {
1189 /*
1190 * If we explicitly open a zone we must close it again as well, but the
1191 * zone management operation can fail (either due to an IO error or as
1192 * the zone has gone offline or read-only). Make sure we don't fail the
1193 * close(2) for user-space.
1194 */
1195 if (zonefs_file_use_exp_open(inode, file))
1196 zonefs_close_zone(inode);
1197
1198 return 0;
1199 }
1200
1201 static const struct file_operations zonefs_file_operations = {
1202 .open = zonefs_file_open,
1203 .release = zonefs_file_release,
1204 .fsync = zonefs_file_fsync,
1205 .mmap = zonefs_file_mmap,
1206 .llseek = zonefs_file_llseek,
1207 .read_iter = zonefs_file_read_iter,
1208 .write_iter = zonefs_file_write_iter,
1209 .splice_read = generic_file_splice_read,
1210 .splice_write = iter_file_splice_write,
1211 .iopoll = iomap_dio_iopoll,
1212 };
1213
1214 static struct kmem_cache *zonefs_inode_cachep;
1215
zonefs_alloc_inode(struct super_block * sb)1216 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1217 {
1218 struct zonefs_inode_info *zi;
1219
1220 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1221 if (!zi)
1222 return NULL;
1223
1224 inode_init_once(&zi->i_vnode);
1225 mutex_init(&zi->i_truncate_mutex);
1226 init_rwsem(&zi->i_mmap_sem);
1227 zi->i_wr_refcnt = 0;
1228 zi->i_flags = 0;
1229
1230 return &zi->i_vnode;
1231 }
1232
zonefs_free_inode(struct inode * inode)1233 static void zonefs_free_inode(struct inode *inode)
1234 {
1235 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1236 }
1237
1238 /*
1239 * File system stat.
1240 */
zonefs_statfs(struct dentry * dentry,struct kstatfs * buf)1241 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1242 {
1243 struct super_block *sb = dentry->d_sb;
1244 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1245 enum zonefs_ztype t;
1246 u64 fsid;
1247
1248 buf->f_type = ZONEFS_MAGIC;
1249 buf->f_bsize = sb->s_blocksize;
1250 buf->f_namelen = ZONEFS_NAME_MAX;
1251
1252 spin_lock(&sbi->s_lock);
1253
1254 buf->f_blocks = sbi->s_blocks;
1255 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1256 buf->f_bfree = 0;
1257 else
1258 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1259 buf->f_bavail = buf->f_bfree;
1260
1261 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1262 if (sbi->s_nr_files[t])
1263 buf->f_files += sbi->s_nr_files[t] + 1;
1264 }
1265 buf->f_ffree = 0;
1266
1267 spin_unlock(&sbi->s_lock);
1268
1269 fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^
1270 le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64));
1271 buf->f_fsid = u64_to_fsid(fsid);
1272
1273 return 0;
1274 }
1275
1276 enum {
1277 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1278 Opt_explicit_open, Opt_err,
1279 };
1280
1281 static const match_table_t tokens = {
1282 { Opt_errors_ro, "errors=remount-ro"},
1283 { Opt_errors_zro, "errors=zone-ro"},
1284 { Opt_errors_zol, "errors=zone-offline"},
1285 { Opt_errors_repair, "errors=repair"},
1286 { Opt_explicit_open, "explicit-open" },
1287 { Opt_err, NULL}
1288 };
1289
zonefs_parse_options(struct super_block * sb,char * options)1290 static int zonefs_parse_options(struct super_block *sb, char *options)
1291 {
1292 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1293 substring_t args[MAX_OPT_ARGS];
1294 char *p;
1295
1296 if (!options)
1297 return 0;
1298
1299 while ((p = strsep(&options, ",")) != NULL) {
1300 int token;
1301
1302 if (!*p)
1303 continue;
1304
1305 token = match_token(p, tokens, args);
1306 switch (token) {
1307 case Opt_errors_ro:
1308 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1309 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1310 break;
1311 case Opt_errors_zro:
1312 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1313 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1314 break;
1315 case Opt_errors_zol:
1316 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1317 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1318 break;
1319 case Opt_errors_repair:
1320 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1321 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1322 break;
1323 case Opt_explicit_open:
1324 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1325 break;
1326 default:
1327 return -EINVAL;
1328 }
1329 }
1330
1331 return 0;
1332 }
1333
zonefs_show_options(struct seq_file * seq,struct dentry * root)1334 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1335 {
1336 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1337
1338 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1339 seq_puts(seq, ",errors=remount-ro");
1340 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1341 seq_puts(seq, ",errors=zone-ro");
1342 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1343 seq_puts(seq, ",errors=zone-offline");
1344 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1345 seq_puts(seq, ",errors=repair");
1346
1347 return 0;
1348 }
1349
zonefs_remount(struct super_block * sb,int * flags,char * data)1350 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1351 {
1352 sync_filesystem(sb);
1353
1354 return zonefs_parse_options(sb, data);
1355 }
1356
1357 static const struct super_operations zonefs_sops = {
1358 .alloc_inode = zonefs_alloc_inode,
1359 .free_inode = zonefs_free_inode,
1360 .statfs = zonefs_statfs,
1361 .remount_fs = zonefs_remount,
1362 .show_options = zonefs_show_options,
1363 };
1364
1365 static const struct inode_operations zonefs_dir_inode_operations = {
1366 .lookup = simple_lookup,
1367 .setattr = zonefs_inode_setattr,
1368 };
1369
zonefs_init_dir_inode(struct inode * parent,struct inode * inode,enum zonefs_ztype type)1370 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1371 enum zonefs_ztype type)
1372 {
1373 struct super_block *sb = parent->i_sb;
1374
1375 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1376 inode_init_owner(inode, parent, S_IFDIR | 0555);
1377 inode->i_op = &zonefs_dir_inode_operations;
1378 inode->i_fop = &simple_dir_operations;
1379 set_nlink(inode, 2);
1380 inc_nlink(parent);
1381 }
1382
zonefs_init_file_inode(struct inode * inode,struct blk_zone * zone,enum zonefs_ztype type)1383 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1384 enum zonefs_ztype type)
1385 {
1386 struct super_block *sb = inode->i_sb;
1387 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1388 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1389 int ret = 0;
1390
1391 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1392 inode->i_mode = S_IFREG | sbi->s_perm;
1393
1394 zi->i_ztype = type;
1395 zi->i_zsector = zone->start;
1396 zi->i_zone_size = zone->len << SECTOR_SHIFT;
1397 if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1398 !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1399 zonefs_err(sb,
1400 "zone size %llu doesn't match device's zone sectors %llu\n",
1401 zi->i_zone_size,
1402 bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1403 return -EINVAL;
1404 }
1405
1406 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1407 zone->capacity << SECTOR_SHIFT);
1408 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1409
1410 inode->i_uid = sbi->s_uid;
1411 inode->i_gid = sbi->s_gid;
1412 inode->i_size = zi->i_wpoffset;
1413 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1414
1415 inode->i_op = &zonefs_file_inode_operations;
1416 inode->i_fop = &zonefs_file_operations;
1417 inode->i_mapping->a_ops = &zonefs_file_aops;
1418
1419 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1420 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1421 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1422
1423 /*
1424 * For sequential zones, make sure that any open zone is closed first
1425 * to ensure that the initial number of open zones is 0, in sync with
1426 * the open zone accounting done when the mount option
1427 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1428 */
1429 if (type == ZONEFS_ZTYPE_SEQ &&
1430 (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1431 zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1432 mutex_lock(&zi->i_truncate_mutex);
1433 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1434 mutex_unlock(&zi->i_truncate_mutex);
1435 }
1436
1437 return ret;
1438 }
1439
zonefs_create_inode(struct dentry * parent,const char * name,struct blk_zone * zone,enum zonefs_ztype type)1440 static struct dentry *zonefs_create_inode(struct dentry *parent,
1441 const char *name, struct blk_zone *zone,
1442 enum zonefs_ztype type)
1443 {
1444 struct inode *dir = d_inode(parent);
1445 struct dentry *dentry;
1446 struct inode *inode;
1447 int ret = -ENOMEM;
1448
1449 dentry = d_alloc_name(parent, name);
1450 if (!dentry)
1451 return ERR_PTR(ret);
1452
1453 inode = new_inode(parent->d_sb);
1454 if (!inode)
1455 goto dput;
1456
1457 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1458 if (zone) {
1459 ret = zonefs_init_file_inode(inode, zone, type);
1460 if (ret) {
1461 iput(inode);
1462 goto dput;
1463 }
1464 } else {
1465 zonefs_init_dir_inode(dir, inode, type);
1466 }
1467
1468 d_add(dentry, inode);
1469 dir->i_size++;
1470
1471 return dentry;
1472
1473 dput:
1474 dput(dentry);
1475
1476 return ERR_PTR(ret);
1477 }
1478
1479 struct zonefs_zone_data {
1480 struct super_block *sb;
1481 unsigned int nr_zones[ZONEFS_ZTYPE_MAX];
1482 struct blk_zone *zones;
1483 };
1484
1485 /*
1486 * Create a zone group and populate it with zone files.
1487 */
zonefs_create_zgroup(struct zonefs_zone_data * zd,enum zonefs_ztype type)1488 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1489 enum zonefs_ztype type)
1490 {
1491 struct super_block *sb = zd->sb;
1492 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1493 struct blk_zone *zone, *next, *end;
1494 const char *zgroup_name;
1495 char *file_name;
1496 struct dentry *dir, *dent;
1497 unsigned int n = 0;
1498 int ret;
1499
1500 /* If the group is empty, there is nothing to do */
1501 if (!zd->nr_zones[type])
1502 return 0;
1503
1504 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1505 if (!file_name)
1506 return -ENOMEM;
1507
1508 if (type == ZONEFS_ZTYPE_CNV)
1509 zgroup_name = "cnv";
1510 else
1511 zgroup_name = "seq";
1512
1513 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1514 if (IS_ERR(dir)) {
1515 ret = PTR_ERR(dir);
1516 goto free;
1517 }
1518
1519 /*
1520 * The first zone contains the super block: skip it.
1521 */
1522 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1523 for (zone = &zd->zones[1]; zone < end; zone = next) {
1524
1525 next = zone + 1;
1526 if (zonefs_zone_type(zone) != type)
1527 continue;
1528
1529 /*
1530 * For conventional zones, contiguous zones can be aggregated
1531 * together to form larger files. Note that this overwrites the
1532 * length of the first zone of the set of contiguous zones
1533 * aggregated together. If one offline or read-only zone is
1534 * found, assume that all zones aggregated have the same
1535 * condition.
1536 */
1537 if (type == ZONEFS_ZTYPE_CNV &&
1538 (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1539 for (; next < end; next++) {
1540 if (zonefs_zone_type(next) != type)
1541 break;
1542 zone->len += next->len;
1543 zone->capacity += next->capacity;
1544 if (next->cond == BLK_ZONE_COND_READONLY &&
1545 zone->cond != BLK_ZONE_COND_OFFLINE)
1546 zone->cond = BLK_ZONE_COND_READONLY;
1547 else if (next->cond == BLK_ZONE_COND_OFFLINE)
1548 zone->cond = BLK_ZONE_COND_OFFLINE;
1549 }
1550 if (zone->capacity != zone->len) {
1551 zonefs_err(sb, "Invalid conventional zone capacity\n");
1552 ret = -EINVAL;
1553 goto free;
1554 }
1555 }
1556
1557 /*
1558 * Use the file number within its group as file name.
1559 */
1560 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1561 dent = zonefs_create_inode(dir, file_name, zone, type);
1562 if (IS_ERR(dent)) {
1563 ret = PTR_ERR(dent);
1564 goto free;
1565 }
1566
1567 n++;
1568 }
1569
1570 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1571 zgroup_name, n, n > 1 ? "s" : "");
1572
1573 sbi->s_nr_files[type] = n;
1574 ret = 0;
1575
1576 free:
1577 kfree(file_name);
1578
1579 return ret;
1580 }
1581
zonefs_get_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)1582 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1583 void *data)
1584 {
1585 struct zonefs_zone_data *zd = data;
1586
1587 /*
1588 * Count the number of usable zones: the first zone at index 0 contains
1589 * the super block and is ignored.
1590 */
1591 switch (zone->type) {
1592 case BLK_ZONE_TYPE_CONVENTIONAL:
1593 zone->wp = zone->start + zone->len;
1594 if (idx)
1595 zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1596 break;
1597 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1598 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1599 if (idx)
1600 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1601 break;
1602 default:
1603 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1604 zone->type);
1605 return -EIO;
1606 }
1607
1608 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1609
1610 return 0;
1611 }
1612
zonefs_get_zone_info(struct zonefs_zone_data * zd)1613 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1614 {
1615 struct block_device *bdev = zd->sb->s_bdev;
1616 int ret;
1617
1618 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1619 sizeof(struct blk_zone), GFP_KERNEL);
1620 if (!zd->zones)
1621 return -ENOMEM;
1622
1623 /* Get zones information from the device */
1624 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1625 zonefs_get_zone_info_cb, zd);
1626 if (ret < 0) {
1627 zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1628 return ret;
1629 }
1630
1631 if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1632 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1633 ret, blkdev_nr_zones(bdev->bd_disk));
1634 return -EIO;
1635 }
1636
1637 return 0;
1638 }
1639
zonefs_cleanup_zone_info(struct zonefs_zone_data * zd)1640 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1641 {
1642 kvfree(zd->zones);
1643 }
1644
1645 /*
1646 * Read super block information from the device.
1647 */
zonefs_read_super(struct super_block * sb)1648 static int zonefs_read_super(struct super_block *sb)
1649 {
1650 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1651 struct zonefs_super *super;
1652 u32 crc, stored_crc;
1653 struct page *page;
1654 struct bio_vec bio_vec;
1655 struct bio bio;
1656 int ret;
1657
1658 page = alloc_page(GFP_KERNEL);
1659 if (!page)
1660 return -ENOMEM;
1661
1662 bio_init(&bio, &bio_vec, 1);
1663 bio.bi_iter.bi_sector = 0;
1664 bio.bi_opf = REQ_OP_READ;
1665 bio_set_dev(&bio, sb->s_bdev);
1666 bio_add_page(&bio, page, PAGE_SIZE, 0);
1667
1668 ret = submit_bio_wait(&bio);
1669 if (ret)
1670 goto free_page;
1671
1672 super = kmap(page);
1673
1674 ret = -EINVAL;
1675 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1676 goto unmap;
1677
1678 stored_crc = le32_to_cpu(super->s_crc);
1679 super->s_crc = 0;
1680 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1681 if (crc != stored_crc) {
1682 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1683 crc, stored_crc);
1684 goto unmap;
1685 }
1686
1687 sbi->s_features = le64_to_cpu(super->s_features);
1688 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1689 zonefs_err(sb, "Unknown features set 0x%llx\n",
1690 sbi->s_features);
1691 goto unmap;
1692 }
1693
1694 if (sbi->s_features & ZONEFS_F_UID) {
1695 sbi->s_uid = make_kuid(current_user_ns(),
1696 le32_to_cpu(super->s_uid));
1697 if (!uid_valid(sbi->s_uid)) {
1698 zonefs_err(sb, "Invalid UID feature\n");
1699 goto unmap;
1700 }
1701 }
1702
1703 if (sbi->s_features & ZONEFS_F_GID) {
1704 sbi->s_gid = make_kgid(current_user_ns(),
1705 le32_to_cpu(super->s_gid));
1706 if (!gid_valid(sbi->s_gid)) {
1707 zonefs_err(sb, "Invalid GID feature\n");
1708 goto unmap;
1709 }
1710 }
1711
1712 if (sbi->s_features & ZONEFS_F_PERM)
1713 sbi->s_perm = le32_to_cpu(super->s_perm);
1714
1715 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1716 zonefs_err(sb, "Reserved area is being used\n");
1717 goto unmap;
1718 }
1719
1720 import_uuid(&sbi->s_uuid, super->s_uuid);
1721 ret = 0;
1722
1723 unmap:
1724 kunmap(page);
1725 free_page:
1726 __free_page(page);
1727
1728 return ret;
1729 }
1730
1731 /*
1732 * Check that the device is zoned. If it is, get the list of zones and create
1733 * sub-directories and files according to the device zone configuration and
1734 * format options.
1735 */
zonefs_fill_super(struct super_block * sb,void * data,int silent)1736 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1737 {
1738 struct zonefs_zone_data zd;
1739 struct zonefs_sb_info *sbi;
1740 struct inode *inode;
1741 enum zonefs_ztype t;
1742 int ret;
1743
1744 if (!bdev_is_zoned(sb->s_bdev)) {
1745 zonefs_err(sb, "Not a zoned block device\n");
1746 return -EINVAL;
1747 }
1748
1749 /*
1750 * Initialize super block information: the maximum file size is updated
1751 * when the zone files are created so that the format option
1752 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1753 * beyond the zone size is taken into account.
1754 */
1755 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1756 if (!sbi)
1757 return -ENOMEM;
1758
1759 spin_lock_init(&sbi->s_lock);
1760 sb->s_fs_info = sbi;
1761 sb->s_magic = ZONEFS_MAGIC;
1762 sb->s_maxbytes = 0;
1763 sb->s_op = &zonefs_sops;
1764 sb->s_time_gran = 1;
1765
1766 /*
1767 * The block size is set to the device physical sector size to ensure
1768 * that write operations on 512e devices (512B logical block and 4KB
1769 * physical block) are always aligned to the device physical blocks,
1770 * as mandated by the ZBC/ZAC specifications.
1771 */
1772 sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev));
1773 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1774 sbi->s_uid = GLOBAL_ROOT_UID;
1775 sbi->s_gid = GLOBAL_ROOT_GID;
1776 sbi->s_perm = 0640;
1777 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1778 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1779 atomic_set(&sbi->s_open_zones, 0);
1780
1781 ret = zonefs_read_super(sb);
1782 if (ret)
1783 return ret;
1784
1785 ret = zonefs_parse_options(sb, data);
1786 if (ret)
1787 return ret;
1788
1789 memset(&zd, 0, sizeof(struct zonefs_zone_data));
1790 zd.sb = sb;
1791 ret = zonefs_get_zone_info(&zd);
1792 if (ret)
1793 goto cleanup;
1794
1795 zonefs_info(sb, "Mounting %u zones",
1796 blkdev_nr_zones(sb->s_bdev->bd_disk));
1797
1798 if (!sbi->s_max_open_zones &&
1799 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1800 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1801 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1802 }
1803
1804 /* Create root directory inode */
1805 ret = -ENOMEM;
1806 inode = new_inode(sb);
1807 if (!inode)
1808 goto cleanup;
1809
1810 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1811 inode->i_mode = S_IFDIR | 0555;
1812 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1813 inode->i_op = &zonefs_dir_inode_operations;
1814 inode->i_fop = &simple_dir_operations;
1815 set_nlink(inode, 2);
1816
1817 sb->s_root = d_make_root(inode);
1818 if (!sb->s_root)
1819 goto cleanup;
1820
1821 /* Create and populate files in zone groups directories */
1822 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1823 ret = zonefs_create_zgroup(&zd, t);
1824 if (ret)
1825 break;
1826 }
1827
1828 cleanup:
1829 zonefs_cleanup_zone_info(&zd);
1830
1831 return ret;
1832 }
1833
zonefs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1834 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1835 int flags, const char *dev_name, void *data)
1836 {
1837 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1838 }
1839
zonefs_kill_super(struct super_block * sb)1840 static void zonefs_kill_super(struct super_block *sb)
1841 {
1842 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1843
1844 if (sb->s_root)
1845 d_genocide(sb->s_root);
1846 kill_block_super(sb);
1847 kfree(sbi);
1848 }
1849
1850 /*
1851 * File system definition and registration.
1852 */
1853 static struct file_system_type zonefs_type = {
1854 .owner = THIS_MODULE,
1855 .name = "zonefs",
1856 .mount = zonefs_mount,
1857 .kill_sb = zonefs_kill_super,
1858 .fs_flags = FS_REQUIRES_DEV,
1859 };
1860
zonefs_init_inodecache(void)1861 static int __init zonefs_init_inodecache(void)
1862 {
1863 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1864 sizeof(struct zonefs_inode_info), 0,
1865 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1866 NULL);
1867 if (zonefs_inode_cachep == NULL)
1868 return -ENOMEM;
1869 return 0;
1870 }
1871
zonefs_destroy_inodecache(void)1872 static void zonefs_destroy_inodecache(void)
1873 {
1874 /*
1875 * Make sure all delayed rcu free inodes are flushed before we
1876 * destroy the inode cache.
1877 */
1878 rcu_barrier();
1879 kmem_cache_destroy(zonefs_inode_cachep);
1880 }
1881
zonefs_init(void)1882 static int __init zonefs_init(void)
1883 {
1884 int ret;
1885
1886 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1887
1888 ret = zonefs_init_inodecache();
1889 if (ret)
1890 return ret;
1891
1892 ret = register_filesystem(&zonefs_type);
1893 if (ret) {
1894 zonefs_destroy_inodecache();
1895 return ret;
1896 }
1897
1898 return 0;
1899 }
1900
zonefs_exit(void)1901 static void __exit zonefs_exit(void)
1902 {
1903 zonefs_destroy_inodecache();
1904 unregister_filesystem(&zonefs_type);
1905 }
1906
1907 MODULE_AUTHOR("Damien Le Moal");
1908 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1909 MODULE_LICENSE("GPL");
1910 MODULE_ALIAS_FS("zonefs");
1911 module_init(zonefs_init);
1912 module_exit(zonefs_exit);
1913