• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
zonefs_zone_mgmt(struct inode * inode,enum req_opf op)27 static inline int zonefs_zone_mgmt(struct inode *inode,
28 				   enum req_opf op)
29 {
30 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
31 	int ret;
32 
33 	lockdep_assert_held(&zi->i_truncate_mutex);
34 
35 	/*
36 	 * With ZNS drives, closing an explicitly open zone that has not been
37 	 * written will change the zone state to "closed", that is, the zone
38 	 * will remain active. Since this can then cause failure of explicit
39 	 * open operation on other zones if the drive active zone resources
40 	 * are exceeded, make sure that the zone does not remain active by
41 	 * resetting it.
42 	 */
43 	if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
44 		op = REQ_OP_ZONE_RESET;
45 
46 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
47 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
48 	if (ret) {
49 		zonefs_err(inode->i_sb,
50 			   "Zone management operation %s at %llu failed %d\n",
51 			   blk_op_str(op), zi->i_zsector, ret);
52 		return ret;
53 	}
54 
55 	return 0;
56 }
57 
zonefs_i_size_write(struct inode * inode,loff_t isize)58 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
59 {
60 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
61 
62 	i_size_write(inode, isize);
63 	/*
64 	 * A full zone is no longer open/active and does not need
65 	 * explicit closing.
66 	 */
67 	if (isize >= zi->i_max_size)
68 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
69 }
70 
zonefs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)71 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
72 				   loff_t length, unsigned int flags,
73 				   struct iomap *iomap, struct iomap *srcmap)
74 {
75 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
76 	struct super_block *sb = inode->i_sb;
77 	loff_t isize;
78 
79 	/*
80 	 * All blocks are always mapped below EOF. If reading past EOF,
81 	 * act as if there is a hole up to the file maximum size.
82 	 */
83 	mutex_lock(&zi->i_truncate_mutex);
84 	iomap->bdev = inode->i_sb->s_bdev;
85 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
86 	isize = i_size_read(inode);
87 	if (iomap->offset >= isize) {
88 		iomap->type = IOMAP_HOLE;
89 		iomap->addr = IOMAP_NULL_ADDR;
90 		iomap->length = length;
91 	} else {
92 		iomap->type = IOMAP_MAPPED;
93 		iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
94 		iomap->length = isize - iomap->offset;
95 	}
96 	mutex_unlock(&zi->i_truncate_mutex);
97 
98 	return 0;
99 }
100 
101 static const struct iomap_ops zonefs_read_iomap_ops = {
102 	.iomap_begin	= zonefs_read_iomap_begin,
103 };
104 
zonefs_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)105 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
106 				    loff_t length, unsigned int flags,
107 				    struct iomap *iomap, struct iomap *srcmap)
108 {
109 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
110 	struct super_block *sb = inode->i_sb;
111 	loff_t isize;
112 
113 	/* All write I/Os should always be within the file maximum size */
114 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
115 		return -EIO;
116 
117 	/*
118 	 * Sequential zones can only accept direct writes. This is already
119 	 * checked when writes are issued, so warn if we see a page writeback
120 	 * operation.
121 	 */
122 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
123 			 !(flags & IOMAP_DIRECT)))
124 		return -EIO;
125 
126 	/*
127 	 * For conventional zones, all blocks are always mapped. For sequential
128 	 * zones, all blocks after always mapped below the inode size (zone
129 	 * write pointer) and unwriten beyond.
130 	 */
131 	mutex_lock(&zi->i_truncate_mutex);
132 	iomap->bdev = inode->i_sb->s_bdev;
133 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
134 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
135 	isize = i_size_read(inode);
136 	if (iomap->offset >= isize) {
137 		iomap->type = IOMAP_UNWRITTEN;
138 		iomap->length = zi->i_max_size - iomap->offset;
139 	} else {
140 		iomap->type = IOMAP_MAPPED;
141 		iomap->length = isize - iomap->offset;
142 	}
143 	mutex_unlock(&zi->i_truncate_mutex);
144 
145 	return 0;
146 }
147 
148 static const struct iomap_ops zonefs_write_iomap_ops = {
149 	.iomap_begin	= zonefs_write_iomap_begin,
150 };
151 
zonefs_readpage(struct file * unused,struct page * page)152 static int zonefs_readpage(struct file *unused, struct page *page)
153 {
154 	return iomap_readpage(page, &zonefs_read_iomap_ops);
155 }
156 
zonefs_readahead(struct readahead_control * rac)157 static void zonefs_readahead(struct readahead_control *rac)
158 {
159 	iomap_readahead(rac, &zonefs_read_iomap_ops);
160 }
161 
162 /*
163  * Map blocks for page writeback. This is used only on conventional zone files,
164  * which implies that the page range can only be within the fixed inode size.
165  */
zonefs_write_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)166 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
167 				   struct inode *inode, loff_t offset)
168 {
169 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
170 
171 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
172 		return -EIO;
173 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
174 		return -EIO;
175 
176 	/* If the mapping is already OK, nothing needs to be done */
177 	if (offset >= wpc->iomap.offset &&
178 	    offset < wpc->iomap.offset + wpc->iomap.length)
179 		return 0;
180 
181 	return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
182 					IOMAP_WRITE, &wpc->iomap, NULL);
183 }
184 
185 static const struct iomap_writeback_ops zonefs_writeback_ops = {
186 	.map_blocks		= zonefs_write_map_blocks,
187 };
188 
zonefs_writepage(struct page * page,struct writeback_control * wbc)189 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
190 {
191 	struct iomap_writepage_ctx wpc = { };
192 
193 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
194 }
195 
zonefs_writepages(struct address_space * mapping,struct writeback_control * wbc)196 static int zonefs_writepages(struct address_space *mapping,
197 			     struct writeback_control *wbc)
198 {
199 	struct iomap_writepage_ctx wpc = { };
200 
201 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
202 }
203 
zonefs_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)204 static int zonefs_swap_activate(struct swap_info_struct *sis,
205 				struct file *swap_file, sector_t *span)
206 {
207 	struct inode *inode = file_inode(swap_file);
208 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
209 
210 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
211 		zonefs_err(inode->i_sb,
212 			   "swap file: not a conventional zone file\n");
213 		return -EINVAL;
214 	}
215 
216 	return iomap_swapfile_activate(sis, swap_file, span,
217 				       &zonefs_read_iomap_ops);
218 }
219 
220 static const struct address_space_operations zonefs_file_aops = {
221 	.readpage		= zonefs_readpage,
222 	.readahead		= zonefs_readahead,
223 	.writepage		= zonefs_writepage,
224 	.writepages		= zonefs_writepages,
225 	.set_page_dirty		= iomap_set_page_dirty,
226 	.releasepage		= iomap_releasepage,
227 	.invalidatepage		= iomap_invalidatepage,
228 	.migratepage		= iomap_migrate_page,
229 	.is_partially_uptodate	= iomap_is_partially_uptodate,
230 	.error_remove_page	= generic_error_remove_page,
231 	.direct_IO		= noop_direct_IO,
232 	.swap_activate		= zonefs_swap_activate,
233 };
234 
zonefs_update_stats(struct inode * inode,loff_t new_isize)235 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
236 {
237 	struct super_block *sb = inode->i_sb;
238 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
239 	loff_t old_isize = i_size_read(inode);
240 	loff_t nr_blocks;
241 
242 	if (new_isize == old_isize)
243 		return;
244 
245 	spin_lock(&sbi->s_lock);
246 
247 	/*
248 	 * This may be called for an update after an IO error.
249 	 * So beware of the values seen.
250 	 */
251 	if (new_isize < old_isize) {
252 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
253 		if (sbi->s_used_blocks > nr_blocks)
254 			sbi->s_used_blocks -= nr_blocks;
255 		else
256 			sbi->s_used_blocks = 0;
257 	} else {
258 		sbi->s_used_blocks +=
259 			(new_isize - old_isize) >> sb->s_blocksize_bits;
260 		if (sbi->s_used_blocks > sbi->s_blocks)
261 			sbi->s_used_blocks = sbi->s_blocks;
262 	}
263 
264 	spin_unlock(&sbi->s_lock);
265 }
266 
267 /*
268  * Check a zone condition and adjust its file inode access permissions for
269  * offline and readonly zones. Return the inode size corresponding to the
270  * amount of readable data in the zone.
271  */
zonefs_check_zone_condition(struct inode * inode,struct blk_zone * zone,bool warn,bool mount)272 static loff_t zonefs_check_zone_condition(struct inode *inode,
273 					  struct blk_zone *zone, bool warn,
274 					  bool mount)
275 {
276 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
277 
278 	switch (zone->cond) {
279 	case BLK_ZONE_COND_OFFLINE:
280 		/*
281 		 * Dead zone: make the inode immutable, disable all accesses
282 		 * and set the file size to 0 (zone wp set to zone start).
283 		 */
284 		if (warn)
285 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
286 				    inode->i_ino);
287 		inode->i_flags |= S_IMMUTABLE;
288 		inode->i_mode &= ~0777;
289 		zone->wp = zone->start;
290 		return 0;
291 	case BLK_ZONE_COND_READONLY:
292 		/*
293 		 * The write pointer of read-only zones is invalid. If such a
294 		 * zone is found during mount, the file size cannot be retrieved
295 		 * so we treat the zone as offline (mount == true case).
296 		 * Otherwise, keep the file size as it was when last updated
297 		 * so that the user can recover data. In both cases, writes are
298 		 * always disabled for the zone.
299 		 */
300 		if (warn)
301 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
302 				    inode->i_ino);
303 		inode->i_flags |= S_IMMUTABLE;
304 		if (mount) {
305 			zone->cond = BLK_ZONE_COND_OFFLINE;
306 			inode->i_mode &= ~0777;
307 			zone->wp = zone->start;
308 			return 0;
309 		}
310 		inode->i_mode &= ~0222;
311 		return i_size_read(inode);
312 	case BLK_ZONE_COND_FULL:
313 		/* The write pointer of full zones is invalid. */
314 		return zi->i_max_size;
315 	default:
316 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
317 			return zi->i_max_size;
318 		return (zone->wp - zone->start) << SECTOR_SHIFT;
319 	}
320 }
321 
322 struct zonefs_ioerr_data {
323 	struct inode	*inode;
324 	bool		write;
325 };
326 
zonefs_io_error_cb(struct blk_zone * zone,unsigned int idx,void * data)327 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
328 			      void *data)
329 {
330 	struct zonefs_ioerr_data *err = data;
331 	struct inode *inode = err->inode;
332 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
333 	struct super_block *sb = inode->i_sb;
334 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
335 	loff_t isize, data_size;
336 
337 	/*
338 	 * Check the zone condition: if the zone is not "bad" (offline or
339 	 * read-only), read errors are simply signaled to the IO issuer as long
340 	 * as there is no inconsistency between the inode size and the amount of
341 	 * data writen in the zone (data_size).
342 	 */
343 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
344 	isize = i_size_read(inode);
345 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
346 	    zone->cond != BLK_ZONE_COND_READONLY &&
347 	    !err->write && isize == data_size)
348 		return 0;
349 
350 	/*
351 	 * At this point, we detected either a bad zone or an inconsistency
352 	 * between the inode size and the amount of data written in the zone.
353 	 * For the latter case, the cause may be a write IO error or an external
354 	 * action on the device. Two error patterns exist:
355 	 * 1) The inode size is lower than the amount of data in the zone:
356 	 *    a write operation partially failed and data was writen at the end
357 	 *    of the file. This can happen in the case of a large direct IO
358 	 *    needing several BIOs and/or write requests to be processed.
359 	 * 2) The inode size is larger than the amount of data in the zone:
360 	 *    this can happen with a deferred write error with the use of the
361 	 *    device side write cache after getting successful write IO
362 	 *    completions. Other possibilities are (a) an external corruption,
363 	 *    e.g. an application reset the zone directly, or (b) the device
364 	 *    has a serious problem (e.g. firmware bug).
365 	 *
366 	 * In all cases, warn about inode size inconsistency and handle the
367 	 * IO error according to the zone condition and to the mount options.
368 	 */
369 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
370 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
371 			    inode->i_ino, isize, data_size);
372 
373 	/*
374 	 * First handle bad zones signaled by hardware. The mount options
375 	 * errors=zone-ro and errors=zone-offline result in changing the
376 	 * zone condition to read-only and offline respectively, as if the
377 	 * condition was signaled by the hardware.
378 	 */
379 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
380 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
381 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
382 			    inode->i_ino);
383 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
384 			zone->cond = BLK_ZONE_COND_OFFLINE;
385 			data_size = zonefs_check_zone_condition(inode, zone,
386 								false, false);
387 		}
388 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
389 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
390 		zonefs_warn(sb, "inode %lu: write access disabled\n",
391 			    inode->i_ino);
392 		if (zone->cond != BLK_ZONE_COND_READONLY) {
393 			zone->cond = BLK_ZONE_COND_READONLY;
394 			data_size = zonefs_check_zone_condition(inode, zone,
395 								false, false);
396 		}
397 	} else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO &&
398 		   data_size > isize) {
399 		/* Do not expose garbage data */
400 		data_size = isize;
401 	}
402 
403 	/*
404 	 * If the filesystem is mounted with the explicit-open mount option, we
405 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
406 	 * the read-only or offline condition, to avoid attempting an explicit
407 	 * close of the zone when the inode file is closed.
408 	 */
409 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
410 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
411 	     zone->cond == BLK_ZONE_COND_READONLY))
412 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
413 
414 	/*
415 	 * If error=remount-ro was specified, any error result in remounting
416 	 * the volume as read-only.
417 	 */
418 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
419 		zonefs_warn(sb, "remounting filesystem read-only\n");
420 		sb->s_flags |= SB_RDONLY;
421 	}
422 
423 	/*
424 	 * Update block usage stats and the inode size  to prevent access to
425 	 * invalid data.
426 	 */
427 	zonefs_update_stats(inode, data_size);
428 	zonefs_i_size_write(inode, data_size);
429 	zi->i_wpoffset = data_size;
430 
431 	return 0;
432 }
433 
434 /*
435  * When an file IO error occurs, check the file zone to see if there is a change
436  * in the zone condition (e.g. offline or read-only). For a failed write to a
437  * sequential zone, the zone write pointer position must also be checked to
438  * eventually correct the file size and zonefs inode write pointer offset
439  * (which can be out of sync with the drive due to partial write failures).
440  */
__zonefs_io_error(struct inode * inode,bool write)441 static void __zonefs_io_error(struct inode *inode, bool write)
442 {
443 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
444 	struct super_block *sb = inode->i_sb;
445 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
446 	unsigned int noio_flag;
447 	unsigned int nr_zones = 1;
448 	struct zonefs_ioerr_data err = {
449 		.inode = inode,
450 		.write = write,
451 	};
452 	int ret;
453 
454 	/*
455 	 * The only files that have more than one zone are conventional zone
456 	 * files with aggregated conventional zones, for which the inode zone
457 	 * size is always larger than the device zone size.
458 	 */
459 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev))
460 		nr_zones = zi->i_zone_size >>
461 			(sbi->s_zone_sectors_shift + SECTOR_SHIFT);
462 
463 	/*
464 	 * Memory allocations in blkdev_report_zones() can trigger a memory
465 	 * reclaim which may in turn cause a recursion into zonefs as well as
466 	 * struct request allocations for the same device. The former case may
467 	 * end up in a deadlock on the inode truncate mutex, while the latter
468 	 * may prevent IO forward progress. Executing the report zones under
469 	 * the GFP_NOIO context avoids both problems.
470 	 */
471 	noio_flag = memalloc_noio_save();
472 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
473 				  zonefs_io_error_cb, &err);
474 	if (ret != nr_zones)
475 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
476 			   inode->i_ino, ret);
477 	memalloc_noio_restore(noio_flag);
478 }
479 
zonefs_io_error(struct inode * inode,bool write)480 static void zonefs_io_error(struct inode *inode, bool write)
481 {
482 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
483 
484 	mutex_lock(&zi->i_truncate_mutex);
485 	__zonefs_io_error(inode, write);
486 	mutex_unlock(&zi->i_truncate_mutex);
487 }
488 
zonefs_file_truncate(struct inode * inode,loff_t isize)489 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
490 {
491 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
492 	loff_t old_isize;
493 	enum req_opf op;
494 	int ret = 0;
495 
496 	/*
497 	 * Only sequential zone files can be truncated and truncation is allowed
498 	 * only down to a 0 size, which is equivalent to a zone reset, and to
499 	 * the maximum file size, which is equivalent to a zone finish.
500 	 */
501 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
502 		return -EPERM;
503 
504 	if (!isize)
505 		op = REQ_OP_ZONE_RESET;
506 	else if (isize == zi->i_max_size)
507 		op = REQ_OP_ZONE_FINISH;
508 	else
509 		return -EPERM;
510 
511 	inode_dio_wait(inode);
512 
513 	/* Serialize against page faults */
514 	down_write(&zi->i_mmap_sem);
515 
516 	/* Serialize against zonefs_iomap_begin() */
517 	mutex_lock(&zi->i_truncate_mutex);
518 
519 	old_isize = i_size_read(inode);
520 	if (isize == old_isize)
521 		goto unlock;
522 
523 	ret = zonefs_zone_mgmt(inode, op);
524 	if (ret)
525 		goto unlock;
526 
527 	/*
528 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
529 	 * take care of open zones.
530 	 */
531 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
532 		/*
533 		 * Truncating a zone to EMPTY or FULL is the equivalent of
534 		 * closing the zone. For a truncation to 0, we need to
535 		 * re-open the zone to ensure new writes can be processed.
536 		 * For a truncation to the maximum file size, the zone is
537 		 * closed and writes cannot be accepted anymore, so clear
538 		 * the open flag.
539 		 */
540 		if (!isize)
541 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
542 		else
543 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
544 	}
545 
546 	zonefs_update_stats(inode, isize);
547 	truncate_setsize(inode, isize);
548 	zi->i_wpoffset = isize;
549 
550 unlock:
551 	mutex_unlock(&zi->i_truncate_mutex);
552 	up_write(&zi->i_mmap_sem);
553 
554 	return ret;
555 }
556 
zonefs_inode_setattr(struct dentry * dentry,struct iattr * iattr)557 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr)
558 {
559 	struct inode *inode = d_inode(dentry);
560 	int ret;
561 
562 	if (unlikely(IS_IMMUTABLE(inode)))
563 		return -EPERM;
564 
565 	ret = setattr_prepare(dentry, iattr);
566 	if (ret)
567 		return ret;
568 
569 	/*
570 	 * Since files and directories cannot be created nor deleted, do not
571 	 * allow setting any write attributes on the sub-directories grouping
572 	 * files by zone type.
573 	 */
574 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
575 	    (iattr->ia_mode & 0222))
576 		return -EPERM;
577 
578 	if (((iattr->ia_valid & ATTR_UID) &&
579 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
580 	    ((iattr->ia_valid & ATTR_GID) &&
581 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
582 		ret = dquot_transfer(inode, iattr);
583 		if (ret)
584 			return ret;
585 	}
586 
587 	if (iattr->ia_valid & ATTR_SIZE) {
588 		ret = zonefs_file_truncate(inode, iattr->ia_size);
589 		if (ret)
590 			return ret;
591 	}
592 
593 	setattr_copy(inode, iattr);
594 
595 	return 0;
596 }
597 
598 static const struct inode_operations zonefs_file_inode_operations = {
599 	.setattr	= zonefs_inode_setattr,
600 };
601 
zonefs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)602 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
603 			     int datasync)
604 {
605 	struct inode *inode = file_inode(file);
606 	int ret = 0;
607 
608 	if (unlikely(IS_IMMUTABLE(inode)))
609 		return -EPERM;
610 
611 	/*
612 	 * Since only direct writes are allowed in sequential files, page cache
613 	 * flush is needed only for conventional zone files.
614 	 */
615 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
616 		ret = file_write_and_wait_range(file, start, end);
617 	if (!ret)
618 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
619 
620 	if (ret)
621 		zonefs_io_error(inode, true);
622 
623 	return ret;
624 }
625 
zonefs_filemap_fault(struct vm_fault * vmf)626 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf)
627 {
628 	struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file));
629 	vm_fault_t ret;
630 
631 	down_read(&zi->i_mmap_sem);
632 	ret = filemap_fault(vmf);
633 	up_read(&zi->i_mmap_sem);
634 
635 	return ret;
636 }
637 
zonefs_filemap_page_mkwrite(struct vm_fault * vmf)638 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
639 {
640 	struct inode *inode = file_inode(vmf->vma->vm_file);
641 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
642 	vm_fault_t ret;
643 
644 	if (unlikely(IS_IMMUTABLE(inode)))
645 		return VM_FAULT_SIGBUS;
646 
647 	/*
648 	 * Sanity check: only conventional zone files can have shared
649 	 * writeable mappings.
650 	 */
651 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
652 		return VM_FAULT_NOPAGE;
653 
654 	sb_start_pagefault(inode->i_sb);
655 	file_update_time(vmf->vma->vm_file);
656 
657 	/* Serialize against truncates */
658 	down_read(&zi->i_mmap_sem);
659 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
660 	up_read(&zi->i_mmap_sem);
661 
662 	sb_end_pagefault(inode->i_sb);
663 	return ret;
664 }
665 
666 static const struct vm_operations_struct zonefs_file_vm_ops = {
667 	.fault		= zonefs_filemap_fault,
668 	.map_pages	= filemap_map_pages,
669 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
670 };
671 
zonefs_file_mmap(struct file * file,struct vm_area_struct * vma)672 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
673 {
674 	/*
675 	 * Conventional zones accept random writes, so their files can support
676 	 * shared writable mappings. For sequential zone files, only read
677 	 * mappings are possible since there are no guarantees for write
678 	 * ordering between msync() and page cache writeback.
679 	 */
680 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
681 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
682 		return -EINVAL;
683 
684 	file_accessed(file);
685 	vma->vm_ops = &zonefs_file_vm_ops;
686 
687 	return 0;
688 }
689 
zonefs_file_llseek(struct file * file,loff_t offset,int whence)690 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
691 {
692 	loff_t isize = i_size_read(file_inode(file));
693 
694 	/*
695 	 * Seeks are limited to below the zone size for conventional zones
696 	 * and below the zone write pointer for sequential zones. In both
697 	 * cases, this limit is the inode size.
698 	 */
699 	return generic_file_llseek_size(file, offset, whence, isize, isize);
700 }
701 
zonefs_file_write_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)702 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
703 					int error, unsigned int flags)
704 {
705 	struct inode *inode = file_inode(iocb->ki_filp);
706 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
707 
708 	if (error) {
709 		zonefs_io_error(inode, true);
710 		return error;
711 	}
712 
713 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
714 		/*
715 		 * Note that we may be seeing completions out of order,
716 		 * but that is not a problem since a write completed
717 		 * successfully necessarily means that all preceding writes
718 		 * were also successful. So we can safely increase the inode
719 		 * size to the write end location.
720 		 */
721 		mutex_lock(&zi->i_truncate_mutex);
722 		if (i_size_read(inode) < iocb->ki_pos + size) {
723 			zonefs_update_stats(inode, iocb->ki_pos + size);
724 			zonefs_i_size_write(inode, iocb->ki_pos + size);
725 		}
726 		mutex_unlock(&zi->i_truncate_mutex);
727 	}
728 
729 	return 0;
730 }
731 
732 static const struct iomap_dio_ops zonefs_write_dio_ops = {
733 	.end_io			= zonefs_file_write_dio_end_io,
734 };
735 
zonefs_file_dio_append(struct kiocb * iocb,struct iov_iter * from)736 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
737 {
738 	struct inode *inode = file_inode(iocb->ki_filp);
739 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
740 	struct block_device *bdev = inode->i_sb->s_bdev;
741 	unsigned int max;
742 	struct bio *bio;
743 	ssize_t size;
744 	int nr_pages;
745 	ssize_t ret;
746 
747 	max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
748 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
749 	iov_iter_truncate(from, max);
750 
751 	nr_pages = iov_iter_npages(from, BIO_MAX_PAGES);
752 	if (!nr_pages)
753 		return 0;
754 
755 	bio = bio_alloc_bioset(GFP_NOFS, nr_pages, &fs_bio_set);
756 	if (!bio)
757 		return -ENOMEM;
758 
759 	bio_set_dev(bio, bdev);
760 	bio->bi_iter.bi_sector = zi->i_zsector;
761 	bio->bi_write_hint = iocb->ki_hint;
762 	bio->bi_ioprio = iocb->ki_ioprio;
763 	bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
764 	if (iocb->ki_flags & IOCB_DSYNC)
765 		bio->bi_opf |= REQ_FUA;
766 
767 	ret = bio_iov_iter_get_pages(bio, from);
768 	if (unlikely(ret))
769 		goto out_release;
770 
771 	size = bio->bi_iter.bi_size;
772 	task_io_account_write(size);
773 
774 	if (iocb->ki_flags & IOCB_HIPRI)
775 		bio_set_polled(bio, iocb);
776 
777 	ret = submit_bio_wait(bio);
778 
779 	/*
780 	 * If the file zone was written underneath the file system, the zone
781 	 * write pointer may not be where we expect it to be, but the zone
782 	 * append write can still succeed. So check manually that we wrote where
783 	 * we intended to, that is, at zi->i_wpoffset.
784 	 */
785 	if (!ret) {
786 		sector_t wpsector =
787 			zi->i_zsector + (zi->i_wpoffset >> SECTOR_SHIFT);
788 
789 		if (bio->bi_iter.bi_sector != wpsector) {
790 			zonefs_warn(inode->i_sb,
791 				"Corrupted write pointer %llu for zone at %llu\n",
792 				wpsector, zi->i_zsector);
793 			ret = -EIO;
794 		}
795 	}
796 
797 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
798 
799 out_release:
800 	bio_release_pages(bio, false);
801 	bio_put(bio);
802 
803 	if (ret >= 0) {
804 		iocb->ki_pos += size;
805 		return size;
806 	}
807 
808 	return ret;
809 }
810 
811 /*
812  * Do not exceed the LFS limits nor the file zone size. If pos is under the
813  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
814  */
zonefs_write_check_limits(struct file * file,loff_t pos,loff_t count)815 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
816 					loff_t count)
817 {
818 	struct inode *inode = file_inode(file);
819 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
820 	loff_t limit = rlimit(RLIMIT_FSIZE);
821 	loff_t max_size = zi->i_max_size;
822 
823 	if (limit != RLIM_INFINITY) {
824 		if (pos >= limit) {
825 			send_sig(SIGXFSZ, current, 0);
826 			return -EFBIG;
827 		}
828 		count = min(count, limit - pos);
829 	}
830 
831 	if (!(file->f_flags & O_LARGEFILE))
832 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
833 
834 	if (unlikely(pos >= max_size))
835 		return -EFBIG;
836 
837 	return min(count, max_size - pos);
838 }
839 
zonefs_write_checks(struct kiocb * iocb,struct iov_iter * from)840 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
841 {
842 	struct file *file = iocb->ki_filp;
843 	struct inode *inode = file_inode(file);
844 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
845 	loff_t count;
846 
847 	if (IS_SWAPFILE(inode))
848 		return -ETXTBSY;
849 
850 	if (!iov_iter_count(from))
851 		return 0;
852 
853 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
854 		return -EINVAL;
855 
856 	if (iocb->ki_flags & IOCB_APPEND) {
857 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
858 			return -EINVAL;
859 		mutex_lock(&zi->i_truncate_mutex);
860 		iocb->ki_pos = zi->i_wpoffset;
861 		mutex_unlock(&zi->i_truncate_mutex);
862 	}
863 
864 	count = zonefs_write_check_limits(file, iocb->ki_pos,
865 					  iov_iter_count(from));
866 	if (count < 0)
867 		return count;
868 
869 	iov_iter_truncate(from, count);
870 	return iov_iter_count(from);
871 }
872 
873 /*
874  * Handle direct writes. For sequential zone files, this is the only possible
875  * write path. For these files, check that the user is issuing writes
876  * sequentially from the end of the file. This code assumes that the block layer
877  * delivers write requests to the device in sequential order. This is always the
878  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
879  * elevator feature is being used (e.g. mq-deadline). The block layer always
880  * automatically select such an elevator for zoned block devices during the
881  * device initialization.
882  */
zonefs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)883 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
884 {
885 	struct inode *inode = file_inode(iocb->ki_filp);
886 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
887 	struct super_block *sb = inode->i_sb;
888 	bool sync = is_sync_kiocb(iocb);
889 	bool append = false;
890 	ssize_t ret, count;
891 
892 	/*
893 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
894 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
895 	 * on the inode lock but the second goes through but is now unaligned).
896 	 */
897 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
898 	    (iocb->ki_flags & IOCB_NOWAIT))
899 		return -EOPNOTSUPP;
900 
901 	if (iocb->ki_flags & IOCB_NOWAIT) {
902 		if (!inode_trylock(inode))
903 			return -EAGAIN;
904 	} else {
905 		inode_lock(inode);
906 	}
907 
908 	count = zonefs_write_checks(iocb, from);
909 	if (count <= 0) {
910 		ret = count;
911 		goto inode_unlock;
912 	}
913 
914 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
915 		ret = -EINVAL;
916 		goto inode_unlock;
917 	}
918 
919 	/* Enforce sequential writes (append only) in sequential zones */
920 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
921 		mutex_lock(&zi->i_truncate_mutex);
922 		if (iocb->ki_pos != zi->i_wpoffset) {
923 			mutex_unlock(&zi->i_truncate_mutex);
924 			ret = -EINVAL;
925 			goto inode_unlock;
926 		}
927 		mutex_unlock(&zi->i_truncate_mutex);
928 		append = sync;
929 	}
930 
931 	if (append)
932 		ret = zonefs_file_dio_append(iocb, from);
933 	else
934 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
935 				   &zonefs_write_dio_ops, sync);
936 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
937 	    (ret > 0 || ret == -EIOCBQUEUED)) {
938 		if (ret > 0)
939 			count = ret;
940 		mutex_lock(&zi->i_truncate_mutex);
941 		zi->i_wpoffset += count;
942 		mutex_unlock(&zi->i_truncate_mutex);
943 	}
944 
945 inode_unlock:
946 	inode_unlock(inode);
947 
948 	return ret;
949 }
950 
zonefs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)951 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
952 					  struct iov_iter *from)
953 {
954 	struct inode *inode = file_inode(iocb->ki_filp);
955 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
956 	ssize_t ret;
957 
958 	/*
959 	 * Direct IO writes are mandatory for sequential zone files so that the
960 	 * write IO issuing order is preserved.
961 	 */
962 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
963 		return -EIO;
964 
965 	if (iocb->ki_flags & IOCB_NOWAIT) {
966 		if (!inode_trylock(inode))
967 			return -EAGAIN;
968 	} else {
969 		inode_lock(inode);
970 	}
971 
972 	ret = zonefs_write_checks(iocb, from);
973 	if (ret <= 0)
974 		goto inode_unlock;
975 
976 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
977 	if (ret > 0)
978 		iocb->ki_pos += ret;
979 	else if (ret == -EIO)
980 		zonefs_io_error(inode, true);
981 
982 inode_unlock:
983 	inode_unlock(inode);
984 	if (ret > 0)
985 		ret = generic_write_sync(iocb, ret);
986 
987 	return ret;
988 }
989 
zonefs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)990 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
991 {
992 	struct inode *inode = file_inode(iocb->ki_filp);
993 
994 	if (unlikely(IS_IMMUTABLE(inode)))
995 		return -EPERM;
996 
997 	if (sb_rdonly(inode->i_sb))
998 		return -EROFS;
999 
1000 	/* Write operations beyond the zone size are not allowed */
1001 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
1002 		return -EFBIG;
1003 
1004 	if (iocb->ki_flags & IOCB_DIRECT) {
1005 		ssize_t ret = zonefs_file_dio_write(iocb, from);
1006 		if (ret != -ENOTBLK)
1007 			return ret;
1008 	}
1009 
1010 	return zonefs_file_buffered_write(iocb, from);
1011 }
1012 
zonefs_file_read_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)1013 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
1014 				       int error, unsigned int flags)
1015 {
1016 	if (error) {
1017 		zonefs_io_error(file_inode(iocb->ki_filp), false);
1018 		return error;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1025 	.end_io			= zonefs_file_read_dio_end_io,
1026 };
1027 
zonefs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1028 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1029 {
1030 	struct inode *inode = file_inode(iocb->ki_filp);
1031 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1032 	struct super_block *sb = inode->i_sb;
1033 	loff_t isize;
1034 	ssize_t ret;
1035 
1036 	/* Offline zones cannot be read */
1037 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1038 		return -EPERM;
1039 
1040 	if (iocb->ki_pos >= zi->i_max_size)
1041 		return 0;
1042 
1043 	if (iocb->ki_flags & IOCB_NOWAIT) {
1044 		if (!inode_trylock_shared(inode))
1045 			return -EAGAIN;
1046 	} else {
1047 		inode_lock_shared(inode);
1048 	}
1049 
1050 	/* Limit read operations to written data */
1051 	mutex_lock(&zi->i_truncate_mutex);
1052 	isize = i_size_read(inode);
1053 	if (iocb->ki_pos >= isize) {
1054 		mutex_unlock(&zi->i_truncate_mutex);
1055 		ret = 0;
1056 		goto inode_unlock;
1057 	}
1058 	iov_iter_truncate(to, isize - iocb->ki_pos);
1059 	mutex_unlock(&zi->i_truncate_mutex);
1060 
1061 	if (iocb->ki_flags & IOCB_DIRECT) {
1062 		size_t count = iov_iter_count(to);
1063 
1064 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1065 			ret = -EINVAL;
1066 			goto inode_unlock;
1067 		}
1068 		file_accessed(iocb->ki_filp);
1069 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1070 				   &zonefs_read_dio_ops, is_sync_kiocb(iocb));
1071 	} else {
1072 		ret = generic_file_read_iter(iocb, to);
1073 		if (ret == -EIO)
1074 			zonefs_io_error(inode, false);
1075 	}
1076 
1077 inode_unlock:
1078 	inode_unlock_shared(inode);
1079 
1080 	return ret;
1081 }
1082 
zonefs_file_use_exp_open(struct inode * inode,struct file * file)1083 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1084 {
1085 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1086 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1087 
1088 	if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1089 		return false;
1090 
1091 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1092 		return false;
1093 
1094 	if (!(file->f_mode & FMODE_WRITE))
1095 		return false;
1096 
1097 	return true;
1098 }
1099 
zonefs_open_zone(struct inode * inode)1100 static int zonefs_open_zone(struct inode *inode)
1101 {
1102 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1103 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1104 	int ret = 0;
1105 
1106 	mutex_lock(&zi->i_truncate_mutex);
1107 
1108 	if (!zi->i_wr_refcnt) {
1109 		if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1110 			atomic_dec(&sbi->s_open_zones);
1111 			ret = -EBUSY;
1112 			goto unlock;
1113 		}
1114 
1115 		if (i_size_read(inode) < zi->i_max_size) {
1116 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1117 			if (ret) {
1118 				atomic_dec(&sbi->s_open_zones);
1119 				goto unlock;
1120 			}
1121 			zi->i_flags |= ZONEFS_ZONE_OPEN;
1122 		}
1123 	}
1124 
1125 	zi->i_wr_refcnt++;
1126 
1127 unlock:
1128 	mutex_unlock(&zi->i_truncate_mutex);
1129 
1130 	return ret;
1131 }
1132 
zonefs_file_open(struct inode * inode,struct file * file)1133 static int zonefs_file_open(struct inode *inode, struct file *file)
1134 {
1135 	int ret;
1136 
1137 	ret = generic_file_open(inode, file);
1138 	if (ret)
1139 		return ret;
1140 
1141 	if (zonefs_file_use_exp_open(inode, file))
1142 		return zonefs_open_zone(inode);
1143 
1144 	return 0;
1145 }
1146 
zonefs_close_zone(struct inode * inode)1147 static void zonefs_close_zone(struct inode *inode)
1148 {
1149 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1150 	int ret = 0;
1151 
1152 	mutex_lock(&zi->i_truncate_mutex);
1153 	zi->i_wr_refcnt--;
1154 	if (!zi->i_wr_refcnt) {
1155 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1156 		struct super_block *sb = inode->i_sb;
1157 
1158 		/*
1159 		 * If the file zone is full, it is not open anymore and we only
1160 		 * need to decrement the open count.
1161 		 */
1162 		if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1163 			goto dec;
1164 
1165 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1166 		if (ret) {
1167 			__zonefs_io_error(inode, false);
1168 			/*
1169 			 * Leaving zones explicitly open may lead to a state
1170 			 * where most zones cannot be written (zone resources
1171 			 * exhausted). So take preventive action by remounting
1172 			 * read-only.
1173 			 */
1174 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1175 			    !(sb->s_flags & SB_RDONLY)) {
1176 				zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1177 				sb->s_flags |= SB_RDONLY;
1178 			}
1179 		}
1180 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1181 dec:
1182 		atomic_dec(&sbi->s_open_zones);
1183 	}
1184 	mutex_unlock(&zi->i_truncate_mutex);
1185 }
1186 
zonefs_file_release(struct inode * inode,struct file * file)1187 static int zonefs_file_release(struct inode *inode, struct file *file)
1188 {
1189 	/*
1190 	 * If we explicitly open a zone we must close it again as well, but the
1191 	 * zone management operation can fail (either due to an IO error or as
1192 	 * the zone has gone offline or read-only). Make sure we don't fail the
1193 	 * close(2) for user-space.
1194 	 */
1195 	if (zonefs_file_use_exp_open(inode, file))
1196 		zonefs_close_zone(inode);
1197 
1198 	return 0;
1199 }
1200 
1201 static const struct file_operations zonefs_file_operations = {
1202 	.open		= zonefs_file_open,
1203 	.release	= zonefs_file_release,
1204 	.fsync		= zonefs_file_fsync,
1205 	.mmap		= zonefs_file_mmap,
1206 	.llseek		= zonefs_file_llseek,
1207 	.read_iter	= zonefs_file_read_iter,
1208 	.write_iter	= zonefs_file_write_iter,
1209 	.splice_read	= generic_file_splice_read,
1210 	.splice_write	= iter_file_splice_write,
1211 	.iopoll		= iomap_dio_iopoll,
1212 };
1213 
1214 static struct kmem_cache *zonefs_inode_cachep;
1215 
zonefs_alloc_inode(struct super_block * sb)1216 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1217 {
1218 	struct zonefs_inode_info *zi;
1219 
1220 	zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1221 	if (!zi)
1222 		return NULL;
1223 
1224 	inode_init_once(&zi->i_vnode);
1225 	mutex_init(&zi->i_truncate_mutex);
1226 	init_rwsem(&zi->i_mmap_sem);
1227 	zi->i_wr_refcnt = 0;
1228 	zi->i_flags = 0;
1229 
1230 	return &zi->i_vnode;
1231 }
1232 
zonefs_free_inode(struct inode * inode)1233 static void zonefs_free_inode(struct inode *inode)
1234 {
1235 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1236 }
1237 
1238 /*
1239  * File system stat.
1240  */
zonefs_statfs(struct dentry * dentry,struct kstatfs * buf)1241 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1242 {
1243 	struct super_block *sb = dentry->d_sb;
1244 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1245 	enum zonefs_ztype t;
1246 	u64 fsid;
1247 
1248 	buf->f_type = ZONEFS_MAGIC;
1249 	buf->f_bsize = sb->s_blocksize;
1250 	buf->f_namelen = ZONEFS_NAME_MAX;
1251 
1252 	spin_lock(&sbi->s_lock);
1253 
1254 	buf->f_blocks = sbi->s_blocks;
1255 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1256 		buf->f_bfree = 0;
1257 	else
1258 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1259 	buf->f_bavail = buf->f_bfree;
1260 
1261 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1262 		if (sbi->s_nr_files[t])
1263 			buf->f_files += sbi->s_nr_files[t] + 1;
1264 	}
1265 	buf->f_ffree = 0;
1266 
1267 	spin_unlock(&sbi->s_lock);
1268 
1269 	fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^
1270 		le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64));
1271 	buf->f_fsid = u64_to_fsid(fsid);
1272 
1273 	return 0;
1274 }
1275 
1276 enum {
1277 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1278 	Opt_explicit_open, Opt_err,
1279 };
1280 
1281 static const match_table_t tokens = {
1282 	{ Opt_errors_ro,	"errors=remount-ro"},
1283 	{ Opt_errors_zro,	"errors=zone-ro"},
1284 	{ Opt_errors_zol,	"errors=zone-offline"},
1285 	{ Opt_errors_repair,	"errors=repair"},
1286 	{ Opt_explicit_open,	"explicit-open" },
1287 	{ Opt_err,		NULL}
1288 };
1289 
zonefs_parse_options(struct super_block * sb,char * options)1290 static int zonefs_parse_options(struct super_block *sb, char *options)
1291 {
1292 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1293 	substring_t args[MAX_OPT_ARGS];
1294 	char *p;
1295 
1296 	if (!options)
1297 		return 0;
1298 
1299 	while ((p = strsep(&options, ",")) != NULL) {
1300 		int token;
1301 
1302 		if (!*p)
1303 			continue;
1304 
1305 		token = match_token(p, tokens, args);
1306 		switch (token) {
1307 		case Opt_errors_ro:
1308 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1309 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1310 			break;
1311 		case Opt_errors_zro:
1312 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1313 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1314 			break;
1315 		case Opt_errors_zol:
1316 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1317 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1318 			break;
1319 		case Opt_errors_repair:
1320 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1321 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1322 			break;
1323 		case Opt_explicit_open:
1324 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1325 			break;
1326 		default:
1327 			return -EINVAL;
1328 		}
1329 	}
1330 
1331 	return 0;
1332 }
1333 
zonefs_show_options(struct seq_file * seq,struct dentry * root)1334 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1335 {
1336 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1337 
1338 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1339 		seq_puts(seq, ",errors=remount-ro");
1340 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1341 		seq_puts(seq, ",errors=zone-ro");
1342 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1343 		seq_puts(seq, ",errors=zone-offline");
1344 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1345 		seq_puts(seq, ",errors=repair");
1346 
1347 	return 0;
1348 }
1349 
zonefs_remount(struct super_block * sb,int * flags,char * data)1350 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1351 {
1352 	sync_filesystem(sb);
1353 
1354 	return zonefs_parse_options(sb, data);
1355 }
1356 
1357 static const struct super_operations zonefs_sops = {
1358 	.alloc_inode	= zonefs_alloc_inode,
1359 	.free_inode	= zonefs_free_inode,
1360 	.statfs		= zonefs_statfs,
1361 	.remount_fs	= zonefs_remount,
1362 	.show_options	= zonefs_show_options,
1363 };
1364 
1365 static const struct inode_operations zonefs_dir_inode_operations = {
1366 	.lookup		= simple_lookup,
1367 	.setattr	= zonefs_inode_setattr,
1368 };
1369 
zonefs_init_dir_inode(struct inode * parent,struct inode * inode,enum zonefs_ztype type)1370 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1371 				  enum zonefs_ztype type)
1372 {
1373 	struct super_block *sb = parent->i_sb;
1374 
1375 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1376 	inode_init_owner(inode, parent, S_IFDIR | 0555);
1377 	inode->i_op = &zonefs_dir_inode_operations;
1378 	inode->i_fop = &simple_dir_operations;
1379 	set_nlink(inode, 2);
1380 	inc_nlink(parent);
1381 }
1382 
zonefs_init_file_inode(struct inode * inode,struct blk_zone * zone,enum zonefs_ztype type)1383 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1384 				  enum zonefs_ztype type)
1385 {
1386 	struct super_block *sb = inode->i_sb;
1387 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1388 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1389 	int ret = 0;
1390 
1391 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1392 	inode->i_mode = S_IFREG | sbi->s_perm;
1393 
1394 	zi->i_ztype = type;
1395 	zi->i_zsector = zone->start;
1396 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1397 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1398 	    !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1399 		zonefs_err(sb,
1400 			   "zone size %llu doesn't match device's zone sectors %llu\n",
1401 			   zi->i_zone_size,
1402 			   bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1403 		return -EINVAL;
1404 	}
1405 
1406 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1407 			       zone->capacity << SECTOR_SHIFT);
1408 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1409 
1410 	inode->i_uid = sbi->s_uid;
1411 	inode->i_gid = sbi->s_gid;
1412 	inode->i_size = zi->i_wpoffset;
1413 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1414 
1415 	inode->i_op = &zonefs_file_inode_operations;
1416 	inode->i_fop = &zonefs_file_operations;
1417 	inode->i_mapping->a_ops = &zonefs_file_aops;
1418 
1419 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1420 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1421 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1422 
1423 	/*
1424 	 * For sequential zones, make sure that any open zone is closed first
1425 	 * to ensure that the initial number of open zones is 0, in sync with
1426 	 * the open zone accounting done when the mount option
1427 	 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1428 	 */
1429 	if (type == ZONEFS_ZTYPE_SEQ &&
1430 	    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1431 	     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1432 		mutex_lock(&zi->i_truncate_mutex);
1433 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1434 		mutex_unlock(&zi->i_truncate_mutex);
1435 	}
1436 
1437 	return ret;
1438 }
1439 
zonefs_create_inode(struct dentry * parent,const char * name,struct blk_zone * zone,enum zonefs_ztype type)1440 static struct dentry *zonefs_create_inode(struct dentry *parent,
1441 					const char *name, struct blk_zone *zone,
1442 					enum zonefs_ztype type)
1443 {
1444 	struct inode *dir = d_inode(parent);
1445 	struct dentry *dentry;
1446 	struct inode *inode;
1447 	int ret = -ENOMEM;
1448 
1449 	dentry = d_alloc_name(parent, name);
1450 	if (!dentry)
1451 		return ERR_PTR(ret);
1452 
1453 	inode = new_inode(parent->d_sb);
1454 	if (!inode)
1455 		goto dput;
1456 
1457 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1458 	if (zone) {
1459 		ret = zonefs_init_file_inode(inode, zone, type);
1460 		if (ret) {
1461 			iput(inode);
1462 			goto dput;
1463 		}
1464 	} else {
1465 		zonefs_init_dir_inode(dir, inode, type);
1466 	}
1467 
1468 	d_add(dentry, inode);
1469 	dir->i_size++;
1470 
1471 	return dentry;
1472 
1473 dput:
1474 	dput(dentry);
1475 
1476 	return ERR_PTR(ret);
1477 }
1478 
1479 struct zonefs_zone_data {
1480 	struct super_block	*sb;
1481 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1482 	struct blk_zone		*zones;
1483 };
1484 
1485 /*
1486  * Create a zone group and populate it with zone files.
1487  */
zonefs_create_zgroup(struct zonefs_zone_data * zd,enum zonefs_ztype type)1488 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1489 				enum zonefs_ztype type)
1490 {
1491 	struct super_block *sb = zd->sb;
1492 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1493 	struct blk_zone *zone, *next, *end;
1494 	const char *zgroup_name;
1495 	char *file_name;
1496 	struct dentry *dir, *dent;
1497 	unsigned int n = 0;
1498 	int ret;
1499 
1500 	/* If the group is empty, there is nothing to do */
1501 	if (!zd->nr_zones[type])
1502 		return 0;
1503 
1504 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1505 	if (!file_name)
1506 		return -ENOMEM;
1507 
1508 	if (type == ZONEFS_ZTYPE_CNV)
1509 		zgroup_name = "cnv";
1510 	else
1511 		zgroup_name = "seq";
1512 
1513 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1514 	if (IS_ERR(dir)) {
1515 		ret = PTR_ERR(dir);
1516 		goto free;
1517 	}
1518 
1519 	/*
1520 	 * The first zone contains the super block: skip it.
1521 	 */
1522 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1523 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1524 
1525 		next = zone + 1;
1526 		if (zonefs_zone_type(zone) != type)
1527 			continue;
1528 
1529 		/*
1530 		 * For conventional zones, contiguous zones can be aggregated
1531 		 * together to form larger files. Note that this overwrites the
1532 		 * length of the first zone of the set of contiguous zones
1533 		 * aggregated together. If one offline or read-only zone is
1534 		 * found, assume that all zones aggregated have the same
1535 		 * condition.
1536 		 */
1537 		if (type == ZONEFS_ZTYPE_CNV &&
1538 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1539 			for (; next < end; next++) {
1540 				if (zonefs_zone_type(next) != type)
1541 					break;
1542 				zone->len += next->len;
1543 				zone->capacity += next->capacity;
1544 				if (next->cond == BLK_ZONE_COND_READONLY &&
1545 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1546 					zone->cond = BLK_ZONE_COND_READONLY;
1547 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1548 					zone->cond = BLK_ZONE_COND_OFFLINE;
1549 			}
1550 			if (zone->capacity != zone->len) {
1551 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1552 				ret = -EINVAL;
1553 				goto free;
1554 			}
1555 		}
1556 
1557 		/*
1558 		 * Use the file number within its group as file name.
1559 		 */
1560 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1561 		dent = zonefs_create_inode(dir, file_name, zone, type);
1562 		if (IS_ERR(dent)) {
1563 			ret = PTR_ERR(dent);
1564 			goto free;
1565 		}
1566 
1567 		n++;
1568 	}
1569 
1570 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1571 		    zgroup_name, n, n > 1 ? "s" : "");
1572 
1573 	sbi->s_nr_files[type] = n;
1574 	ret = 0;
1575 
1576 free:
1577 	kfree(file_name);
1578 
1579 	return ret;
1580 }
1581 
zonefs_get_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)1582 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1583 				   void *data)
1584 {
1585 	struct zonefs_zone_data *zd = data;
1586 
1587 	/*
1588 	 * Count the number of usable zones: the first zone at index 0 contains
1589 	 * the super block and is ignored.
1590 	 */
1591 	switch (zone->type) {
1592 	case BLK_ZONE_TYPE_CONVENTIONAL:
1593 		zone->wp = zone->start + zone->len;
1594 		if (idx)
1595 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1596 		break;
1597 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1598 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1599 		if (idx)
1600 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1601 		break;
1602 	default:
1603 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1604 			   zone->type);
1605 		return -EIO;
1606 	}
1607 
1608 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1609 
1610 	return 0;
1611 }
1612 
zonefs_get_zone_info(struct zonefs_zone_data * zd)1613 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1614 {
1615 	struct block_device *bdev = zd->sb->s_bdev;
1616 	int ret;
1617 
1618 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1619 			     sizeof(struct blk_zone), GFP_KERNEL);
1620 	if (!zd->zones)
1621 		return -ENOMEM;
1622 
1623 	/* Get zones information from the device */
1624 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1625 				  zonefs_get_zone_info_cb, zd);
1626 	if (ret < 0) {
1627 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1628 		return ret;
1629 	}
1630 
1631 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1632 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1633 			   ret, blkdev_nr_zones(bdev->bd_disk));
1634 		return -EIO;
1635 	}
1636 
1637 	return 0;
1638 }
1639 
zonefs_cleanup_zone_info(struct zonefs_zone_data * zd)1640 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1641 {
1642 	kvfree(zd->zones);
1643 }
1644 
1645 /*
1646  * Read super block information from the device.
1647  */
zonefs_read_super(struct super_block * sb)1648 static int zonefs_read_super(struct super_block *sb)
1649 {
1650 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1651 	struct zonefs_super *super;
1652 	u32 crc, stored_crc;
1653 	struct page *page;
1654 	struct bio_vec bio_vec;
1655 	struct bio bio;
1656 	int ret;
1657 
1658 	page = alloc_page(GFP_KERNEL);
1659 	if (!page)
1660 		return -ENOMEM;
1661 
1662 	bio_init(&bio, &bio_vec, 1);
1663 	bio.bi_iter.bi_sector = 0;
1664 	bio.bi_opf = REQ_OP_READ;
1665 	bio_set_dev(&bio, sb->s_bdev);
1666 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1667 
1668 	ret = submit_bio_wait(&bio);
1669 	if (ret)
1670 		goto free_page;
1671 
1672 	super = kmap(page);
1673 
1674 	ret = -EINVAL;
1675 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1676 		goto unmap;
1677 
1678 	stored_crc = le32_to_cpu(super->s_crc);
1679 	super->s_crc = 0;
1680 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1681 	if (crc != stored_crc) {
1682 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1683 			   crc, stored_crc);
1684 		goto unmap;
1685 	}
1686 
1687 	sbi->s_features = le64_to_cpu(super->s_features);
1688 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1689 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1690 			   sbi->s_features);
1691 		goto unmap;
1692 	}
1693 
1694 	if (sbi->s_features & ZONEFS_F_UID) {
1695 		sbi->s_uid = make_kuid(current_user_ns(),
1696 				       le32_to_cpu(super->s_uid));
1697 		if (!uid_valid(sbi->s_uid)) {
1698 			zonefs_err(sb, "Invalid UID feature\n");
1699 			goto unmap;
1700 		}
1701 	}
1702 
1703 	if (sbi->s_features & ZONEFS_F_GID) {
1704 		sbi->s_gid = make_kgid(current_user_ns(),
1705 				       le32_to_cpu(super->s_gid));
1706 		if (!gid_valid(sbi->s_gid)) {
1707 			zonefs_err(sb, "Invalid GID feature\n");
1708 			goto unmap;
1709 		}
1710 	}
1711 
1712 	if (sbi->s_features & ZONEFS_F_PERM)
1713 		sbi->s_perm = le32_to_cpu(super->s_perm);
1714 
1715 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1716 		zonefs_err(sb, "Reserved area is being used\n");
1717 		goto unmap;
1718 	}
1719 
1720 	import_uuid(&sbi->s_uuid, super->s_uuid);
1721 	ret = 0;
1722 
1723 unmap:
1724 	kunmap(page);
1725 free_page:
1726 	__free_page(page);
1727 
1728 	return ret;
1729 }
1730 
1731 /*
1732  * Check that the device is zoned. If it is, get the list of zones and create
1733  * sub-directories and files according to the device zone configuration and
1734  * format options.
1735  */
zonefs_fill_super(struct super_block * sb,void * data,int silent)1736 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1737 {
1738 	struct zonefs_zone_data zd;
1739 	struct zonefs_sb_info *sbi;
1740 	struct inode *inode;
1741 	enum zonefs_ztype t;
1742 	int ret;
1743 
1744 	if (!bdev_is_zoned(sb->s_bdev)) {
1745 		zonefs_err(sb, "Not a zoned block device\n");
1746 		return -EINVAL;
1747 	}
1748 
1749 	/*
1750 	 * Initialize super block information: the maximum file size is updated
1751 	 * when the zone files are created so that the format option
1752 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1753 	 * beyond the zone size is taken into account.
1754 	 */
1755 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1756 	if (!sbi)
1757 		return -ENOMEM;
1758 
1759 	spin_lock_init(&sbi->s_lock);
1760 	sb->s_fs_info = sbi;
1761 	sb->s_magic = ZONEFS_MAGIC;
1762 	sb->s_maxbytes = 0;
1763 	sb->s_op = &zonefs_sops;
1764 	sb->s_time_gran	= 1;
1765 
1766 	/*
1767 	 * The block size is set to the device physical sector size to ensure
1768 	 * that write operations on 512e devices (512B logical block and 4KB
1769 	 * physical block) are always aligned to the device physical blocks,
1770 	 * as mandated by the ZBC/ZAC specifications.
1771 	 */
1772 	sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev));
1773 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1774 	sbi->s_uid = GLOBAL_ROOT_UID;
1775 	sbi->s_gid = GLOBAL_ROOT_GID;
1776 	sbi->s_perm = 0640;
1777 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1778 	sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1779 	atomic_set(&sbi->s_open_zones, 0);
1780 
1781 	ret = zonefs_read_super(sb);
1782 	if (ret)
1783 		return ret;
1784 
1785 	ret = zonefs_parse_options(sb, data);
1786 	if (ret)
1787 		return ret;
1788 
1789 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1790 	zd.sb = sb;
1791 	ret = zonefs_get_zone_info(&zd);
1792 	if (ret)
1793 		goto cleanup;
1794 
1795 	zonefs_info(sb, "Mounting %u zones",
1796 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1797 
1798 	if (!sbi->s_max_open_zones &&
1799 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1800 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1801 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1802 	}
1803 
1804 	/* Create root directory inode */
1805 	ret = -ENOMEM;
1806 	inode = new_inode(sb);
1807 	if (!inode)
1808 		goto cleanup;
1809 
1810 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1811 	inode->i_mode = S_IFDIR | 0555;
1812 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1813 	inode->i_op = &zonefs_dir_inode_operations;
1814 	inode->i_fop = &simple_dir_operations;
1815 	set_nlink(inode, 2);
1816 
1817 	sb->s_root = d_make_root(inode);
1818 	if (!sb->s_root)
1819 		goto cleanup;
1820 
1821 	/* Create and populate files in zone groups directories */
1822 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1823 		ret = zonefs_create_zgroup(&zd, t);
1824 		if (ret)
1825 			break;
1826 	}
1827 
1828 cleanup:
1829 	zonefs_cleanup_zone_info(&zd);
1830 
1831 	return ret;
1832 }
1833 
zonefs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1834 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1835 				   int flags, const char *dev_name, void *data)
1836 {
1837 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1838 }
1839 
zonefs_kill_super(struct super_block * sb)1840 static void zonefs_kill_super(struct super_block *sb)
1841 {
1842 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1843 
1844 	if (sb->s_root)
1845 		d_genocide(sb->s_root);
1846 	kill_block_super(sb);
1847 	kfree(sbi);
1848 }
1849 
1850 /*
1851  * File system definition and registration.
1852  */
1853 static struct file_system_type zonefs_type = {
1854 	.owner		= THIS_MODULE,
1855 	.name		= "zonefs",
1856 	.mount		= zonefs_mount,
1857 	.kill_sb	= zonefs_kill_super,
1858 	.fs_flags	= FS_REQUIRES_DEV,
1859 };
1860 
zonefs_init_inodecache(void)1861 static int __init zonefs_init_inodecache(void)
1862 {
1863 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1864 			sizeof(struct zonefs_inode_info), 0,
1865 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1866 			NULL);
1867 	if (zonefs_inode_cachep == NULL)
1868 		return -ENOMEM;
1869 	return 0;
1870 }
1871 
zonefs_destroy_inodecache(void)1872 static void zonefs_destroy_inodecache(void)
1873 {
1874 	/*
1875 	 * Make sure all delayed rcu free inodes are flushed before we
1876 	 * destroy the inode cache.
1877 	 */
1878 	rcu_barrier();
1879 	kmem_cache_destroy(zonefs_inode_cachep);
1880 }
1881 
zonefs_init(void)1882 static int __init zonefs_init(void)
1883 {
1884 	int ret;
1885 
1886 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1887 
1888 	ret = zonefs_init_inodecache();
1889 	if (ret)
1890 		return ret;
1891 
1892 	ret = register_filesystem(&zonefs_type);
1893 	if (ret) {
1894 		zonefs_destroy_inodecache();
1895 		return ret;
1896 	}
1897 
1898 	return 0;
1899 }
1900 
zonefs_exit(void)1901 static void __exit zonefs_exit(void)
1902 {
1903 	zonefs_destroy_inodecache();
1904 	unregister_filesystem(&zonefs_type);
1905 }
1906 
1907 MODULE_AUTHOR("Damien Le Moal");
1908 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1909 MODULE_LICENSE("GPL");
1910 MODULE_ALIAS_FS("zonefs");
1911 module_init(zonefs_init);
1912 module_exit(zonefs_exit);
1913