1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "../fs/internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 struct wait_queue_entry wait;
490 };
491
492 struct io_poll_update {
493 struct file *file;
494 u64 old_user_data;
495 u64 new_user_data;
496 __poll_t events;
497 bool update_events;
498 bool update_user_data;
499 };
500
501 struct io_close {
502 struct file *file;
503 int fd;
504 u32 file_slot;
505 };
506
507 struct io_timeout_data {
508 struct io_kiocb *req;
509 struct hrtimer timer;
510 struct timespec64 ts;
511 enum hrtimer_mode mode;
512 u32 flags;
513 };
514
515 struct io_accept {
516 struct file *file;
517 struct sockaddr __user *addr;
518 int __user *addr_len;
519 int flags;
520 u32 file_slot;
521 unsigned long nofile;
522 };
523
524 struct io_sync {
525 struct file *file;
526 loff_t len;
527 loff_t off;
528 int flags;
529 int mode;
530 };
531
532 struct io_cancel {
533 struct file *file;
534 u64 addr;
535 };
536
537 struct io_timeout {
538 struct file *file;
539 u32 off;
540 u32 target_seq;
541 struct list_head list;
542 /* head of the link, used by linked timeouts only */
543 struct io_kiocb *head;
544 /* for linked completions */
545 struct io_kiocb *prev;
546 };
547
548 struct io_timeout_rem {
549 struct file *file;
550 u64 addr;
551
552 /* timeout update */
553 struct timespec64 ts;
554 u32 flags;
555 bool ltimeout;
556 };
557
558 struct io_rw {
559 /* NOTE: kiocb has the file as the first member, so don't do it here */
560 struct kiocb kiocb;
561 u64 addr;
562 u64 len;
563 };
564
565 struct io_connect {
566 struct file *file;
567 struct sockaddr __user *addr;
568 int addr_len;
569 };
570
571 struct io_sr_msg {
572 struct file *file;
573 union {
574 struct compat_msghdr __user *umsg_compat;
575 struct user_msghdr __user *umsg;
576 void __user *buf;
577 };
578 int msg_flags;
579 int bgid;
580 size_t len;
581 size_t done_io;
582 struct io_buffer *kbuf;
583 };
584
585 struct io_open {
586 struct file *file;
587 int dfd;
588 u32 file_slot;
589 struct filename *filename;
590 struct open_how how;
591 unsigned long nofile;
592 };
593
594 struct io_rsrc_update {
595 struct file *file;
596 u64 arg;
597 u32 nr_args;
598 u32 offset;
599 };
600
601 struct io_fadvise {
602 struct file *file;
603 u64 offset;
604 u32 len;
605 u32 advice;
606 };
607
608 struct io_madvise {
609 struct file *file;
610 u64 addr;
611 u32 len;
612 u32 advice;
613 };
614
615 struct io_epoll {
616 struct file *file;
617 int epfd;
618 int op;
619 int fd;
620 struct epoll_event event;
621 };
622
623 struct io_splice {
624 struct file *file_out;
625 loff_t off_out;
626 loff_t off_in;
627 u64 len;
628 int splice_fd_in;
629 unsigned int flags;
630 };
631
632 struct io_provide_buf {
633 struct file *file;
634 __u64 addr;
635 __u32 len;
636 __u32 bgid;
637 __u16 nbufs;
638 __u16 bid;
639 };
640
641 struct io_statx {
642 struct file *file;
643 int dfd;
644 unsigned int mask;
645 unsigned int flags;
646 const char __user *filename;
647 struct statx __user *buffer;
648 };
649
650 struct io_shutdown {
651 struct file *file;
652 int how;
653 };
654
655 struct io_rename {
656 struct file *file;
657 int old_dfd;
658 int new_dfd;
659 struct filename *oldpath;
660 struct filename *newpath;
661 int flags;
662 };
663
664 struct io_unlink {
665 struct file *file;
666 int dfd;
667 int flags;
668 struct filename *filename;
669 };
670
671 struct io_mkdir {
672 struct file *file;
673 int dfd;
674 umode_t mode;
675 struct filename *filename;
676 };
677
678 struct io_symlink {
679 struct file *file;
680 int new_dfd;
681 struct filename *oldpath;
682 struct filename *newpath;
683 };
684
685 struct io_hardlink {
686 struct file *file;
687 int old_dfd;
688 int new_dfd;
689 struct filename *oldpath;
690 struct filename *newpath;
691 int flags;
692 };
693
694 struct io_completion {
695 struct file *file;
696 u32 cflags;
697 };
698
699 struct io_async_connect {
700 struct sockaddr_storage address;
701 };
702
703 struct io_async_msghdr {
704 struct iovec fast_iov[UIO_FASTIOV];
705 /* points to an allocated iov, if NULL we use fast_iov instead */
706 struct iovec *free_iov;
707 struct sockaddr __user *uaddr;
708 struct msghdr msg;
709 struct sockaddr_storage addr;
710 };
711
712 struct io_async_rw {
713 struct iovec fast_iov[UIO_FASTIOV];
714 const struct iovec *free_iovec;
715 struct iov_iter iter;
716 struct iov_iter_state iter_state;
717 size_t bytes_done;
718 struct wait_page_queue wpq;
719 };
720
721 enum {
722 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
723 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
724 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
725 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
726 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
727 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
728
729 /* first byte is taken by user flags, shift it to not overlap */
730 REQ_F_FAIL_BIT = 8,
731 REQ_F_INFLIGHT_BIT,
732 REQ_F_CUR_POS_BIT,
733 REQ_F_NOWAIT_BIT,
734 REQ_F_LINK_TIMEOUT_BIT,
735 REQ_F_NEED_CLEANUP_BIT,
736 REQ_F_POLLED_BIT,
737 REQ_F_BUFFER_SELECTED_BIT,
738 REQ_F_COMPLETE_INLINE_BIT,
739 REQ_F_REISSUE_BIT,
740 REQ_F_CREDS_BIT,
741 REQ_F_REFCOUNT_BIT,
742 REQ_F_ARM_LTIMEOUT_BIT,
743 REQ_F_PARTIAL_IO_BIT,
744 /* keep async read/write and isreg together and in order */
745 REQ_F_NOWAIT_READ_BIT,
746 REQ_F_NOWAIT_WRITE_BIT,
747 REQ_F_ISREG_BIT,
748
749 /* not a real bit, just to check we're not overflowing the space */
750 __REQ_F_LAST_BIT,
751 };
752
753 enum {
754 /* ctx owns file */
755 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
756 /* drain existing IO first */
757 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
758 /* linked sqes */
759 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
760 /* doesn't sever on completion < 0 */
761 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
762 /* IOSQE_ASYNC */
763 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
764 /* IOSQE_BUFFER_SELECT */
765 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
766
767 /* fail rest of links */
768 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
769 /* on inflight list, should be cancelled and waited on exit reliably */
770 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
771 /* read/write uses file position */
772 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
773 /* must not punt to workers */
774 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
775 /* has or had linked timeout */
776 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
777 /* needs cleanup */
778 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
779 /* already went through poll handler */
780 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
781 /* buffer already selected */
782 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
783 /* completion is deferred through io_comp_state */
784 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
785 /* caller should reissue async */
786 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
787 /* supports async reads */
788 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
789 /* supports async writes */
790 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
791 /* regular file */
792 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
793 /* has creds assigned */
794 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
795 /* skip refcounting if not set */
796 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
797 /* there is a linked timeout that has to be armed */
798 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
799 /* request has already done partial IO */
800 REQ_F_PARTIAL_IO = BIT(REQ_F_PARTIAL_IO_BIT),
801 };
802
803 struct async_poll {
804 struct io_poll_iocb poll;
805 struct io_poll_iocb *double_poll;
806 };
807
808 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
809
810 struct io_task_work {
811 union {
812 struct io_wq_work_node node;
813 struct llist_node fallback_node;
814 };
815 io_req_tw_func_t func;
816 };
817
818 enum {
819 IORING_RSRC_FILE = 0,
820 IORING_RSRC_BUFFER = 1,
821 };
822
823 /*
824 * NOTE! Each of the iocb union members has the file pointer
825 * as the first entry in their struct definition. So you can
826 * access the file pointer through any of the sub-structs,
827 * or directly as just 'ki_filp' in this struct.
828 */
829 struct io_kiocb {
830 union {
831 struct file *file;
832 struct io_rw rw;
833 struct io_poll_iocb poll;
834 struct io_poll_update poll_update;
835 struct io_accept accept;
836 struct io_sync sync;
837 struct io_cancel cancel;
838 struct io_timeout timeout;
839 struct io_timeout_rem timeout_rem;
840 struct io_connect connect;
841 struct io_sr_msg sr_msg;
842 struct io_open open;
843 struct io_close close;
844 struct io_rsrc_update rsrc_update;
845 struct io_fadvise fadvise;
846 struct io_madvise madvise;
847 struct io_epoll epoll;
848 struct io_splice splice;
849 struct io_provide_buf pbuf;
850 struct io_statx statx;
851 struct io_shutdown shutdown;
852 struct io_rename rename;
853 struct io_unlink unlink;
854 struct io_mkdir mkdir;
855 struct io_symlink symlink;
856 struct io_hardlink hardlink;
857 /* use only after cleaning per-op data, see io_clean_op() */
858 struct io_completion compl;
859 };
860
861 /* opcode allocated if it needs to store data for async defer */
862 void *async_data;
863 u8 opcode;
864 /* polled IO has completed */
865 u8 iopoll_completed;
866
867 u16 buf_index;
868 u32 result;
869
870 struct io_ring_ctx *ctx;
871 unsigned int flags;
872 atomic_t refs;
873 struct task_struct *task;
874 u64 user_data;
875
876 struct io_kiocb *link;
877 struct percpu_ref *fixed_rsrc_refs;
878
879 /* used with ctx->iopoll_list with reads/writes */
880 struct list_head inflight_entry;
881 struct io_task_work io_task_work;
882 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
883 struct hlist_node hash_node;
884 struct async_poll *apoll;
885 struct io_wq_work work;
886 const struct cred *creds;
887
888 /* store used ubuf, so we can prevent reloading */
889 struct io_mapped_ubuf *imu;
890 /* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
891 struct io_buffer *kbuf;
892 atomic_t poll_refs;
893 };
894
895 struct io_tctx_node {
896 struct list_head ctx_node;
897 struct task_struct *task;
898 struct io_ring_ctx *ctx;
899 };
900
901 struct io_defer_entry {
902 struct list_head list;
903 struct io_kiocb *req;
904 u32 seq;
905 };
906
907 struct io_op_def {
908 /* needs req->file assigned */
909 unsigned needs_file : 1;
910 /* hash wq insertion if file is a regular file */
911 unsigned hash_reg_file : 1;
912 /* unbound wq insertion if file is a non-regular file */
913 unsigned unbound_nonreg_file : 1;
914 /* opcode is not supported by this kernel */
915 unsigned not_supported : 1;
916 /* set if opcode supports polled "wait" */
917 unsigned pollin : 1;
918 unsigned pollout : 1;
919 /* op supports buffer selection */
920 unsigned buffer_select : 1;
921 /* do prep async if is going to be punted */
922 unsigned needs_async_setup : 1;
923 /* should block plug */
924 unsigned plug : 1;
925 /* size of async data needed, if any */
926 unsigned short async_size;
927 };
928
929 static const struct io_op_def io_op_defs[] = {
930 [IORING_OP_NOP] = {},
931 [IORING_OP_READV] = {
932 .needs_file = 1,
933 .unbound_nonreg_file = 1,
934 .pollin = 1,
935 .buffer_select = 1,
936 .needs_async_setup = 1,
937 .plug = 1,
938 .async_size = sizeof(struct io_async_rw),
939 },
940 [IORING_OP_WRITEV] = {
941 .needs_file = 1,
942 .hash_reg_file = 1,
943 .unbound_nonreg_file = 1,
944 .pollout = 1,
945 .needs_async_setup = 1,
946 .plug = 1,
947 .async_size = sizeof(struct io_async_rw),
948 },
949 [IORING_OP_FSYNC] = {
950 .needs_file = 1,
951 },
952 [IORING_OP_READ_FIXED] = {
953 .needs_file = 1,
954 .unbound_nonreg_file = 1,
955 .pollin = 1,
956 .plug = 1,
957 .async_size = sizeof(struct io_async_rw),
958 },
959 [IORING_OP_WRITE_FIXED] = {
960 .needs_file = 1,
961 .hash_reg_file = 1,
962 .unbound_nonreg_file = 1,
963 .pollout = 1,
964 .plug = 1,
965 .async_size = sizeof(struct io_async_rw),
966 },
967 [IORING_OP_POLL_ADD] = {
968 .needs_file = 1,
969 .unbound_nonreg_file = 1,
970 },
971 [IORING_OP_POLL_REMOVE] = {},
972 [IORING_OP_SYNC_FILE_RANGE] = {
973 .needs_file = 1,
974 },
975 [IORING_OP_SENDMSG] = {
976 .needs_file = 1,
977 .unbound_nonreg_file = 1,
978 .pollout = 1,
979 .needs_async_setup = 1,
980 .async_size = sizeof(struct io_async_msghdr),
981 },
982 [IORING_OP_RECVMSG] = {
983 .needs_file = 1,
984 .unbound_nonreg_file = 1,
985 .pollin = 1,
986 .buffer_select = 1,
987 .needs_async_setup = 1,
988 .async_size = sizeof(struct io_async_msghdr),
989 },
990 [IORING_OP_TIMEOUT] = {
991 .async_size = sizeof(struct io_timeout_data),
992 },
993 [IORING_OP_TIMEOUT_REMOVE] = {
994 /* used by timeout updates' prep() */
995 },
996 [IORING_OP_ACCEPT] = {
997 .needs_file = 1,
998 .unbound_nonreg_file = 1,
999 .pollin = 1,
1000 },
1001 [IORING_OP_ASYNC_CANCEL] = {},
1002 [IORING_OP_LINK_TIMEOUT] = {
1003 .async_size = sizeof(struct io_timeout_data),
1004 },
1005 [IORING_OP_CONNECT] = {
1006 .needs_file = 1,
1007 .unbound_nonreg_file = 1,
1008 .pollout = 1,
1009 .needs_async_setup = 1,
1010 .async_size = sizeof(struct io_async_connect),
1011 },
1012 [IORING_OP_FALLOCATE] = {
1013 .needs_file = 1,
1014 },
1015 [IORING_OP_OPENAT] = {},
1016 [IORING_OP_CLOSE] = {},
1017 [IORING_OP_FILES_UPDATE] = {},
1018 [IORING_OP_STATX] = {},
1019 [IORING_OP_READ] = {
1020 .needs_file = 1,
1021 .unbound_nonreg_file = 1,
1022 .pollin = 1,
1023 .buffer_select = 1,
1024 .plug = 1,
1025 .async_size = sizeof(struct io_async_rw),
1026 },
1027 [IORING_OP_WRITE] = {
1028 .needs_file = 1,
1029 .hash_reg_file = 1,
1030 .unbound_nonreg_file = 1,
1031 .pollout = 1,
1032 .plug = 1,
1033 .async_size = sizeof(struct io_async_rw),
1034 },
1035 [IORING_OP_FADVISE] = {
1036 .needs_file = 1,
1037 },
1038 [IORING_OP_MADVISE] = {},
1039 [IORING_OP_SEND] = {
1040 .needs_file = 1,
1041 .unbound_nonreg_file = 1,
1042 .pollout = 1,
1043 },
1044 [IORING_OP_RECV] = {
1045 .needs_file = 1,
1046 .unbound_nonreg_file = 1,
1047 .pollin = 1,
1048 .buffer_select = 1,
1049 },
1050 [IORING_OP_OPENAT2] = {
1051 },
1052 [IORING_OP_EPOLL_CTL] = {
1053 .unbound_nonreg_file = 1,
1054 },
1055 [IORING_OP_SPLICE] = {
1056 .needs_file = 1,
1057 .hash_reg_file = 1,
1058 .unbound_nonreg_file = 1,
1059 },
1060 [IORING_OP_PROVIDE_BUFFERS] = {},
1061 [IORING_OP_REMOVE_BUFFERS] = {},
1062 [IORING_OP_TEE] = {
1063 .needs_file = 1,
1064 .hash_reg_file = 1,
1065 .unbound_nonreg_file = 1,
1066 },
1067 [IORING_OP_SHUTDOWN] = {
1068 .needs_file = 1,
1069 },
1070 [IORING_OP_RENAMEAT] = {},
1071 [IORING_OP_UNLINKAT] = {},
1072 };
1073
1074 /* requests with any of those set should undergo io_disarm_next() */
1075 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1076
1077 static bool io_disarm_next(struct io_kiocb *req);
1078 static void io_uring_del_tctx_node(unsigned long index);
1079 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1080 struct task_struct *task,
1081 bool cancel_all);
1082 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1083
1084 static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1085
1086 static void io_put_req(struct io_kiocb *req);
1087 static void io_put_req_deferred(struct io_kiocb *req);
1088 static void io_dismantle_req(struct io_kiocb *req);
1089 static void io_queue_linked_timeout(struct io_kiocb *req);
1090 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1091 struct io_uring_rsrc_update2 *up,
1092 unsigned nr_args);
1093 static void io_clean_op(struct io_kiocb *req);
1094 static struct file *io_file_get(struct io_ring_ctx *ctx,
1095 struct io_kiocb *req, int fd, bool fixed,
1096 unsigned int issue_flags);
1097 static void __io_queue_sqe(struct io_kiocb *req);
1098 static void io_rsrc_put_work(struct work_struct *work);
1099
1100 static void io_req_task_queue(struct io_kiocb *req);
1101 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1102 static int io_req_prep_async(struct io_kiocb *req);
1103
1104 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1105 unsigned int issue_flags, u32 slot_index);
1106 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1107
1108 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1109
1110 static struct kmem_cache *req_cachep;
1111
1112 static const struct file_operations io_uring_fops;
1113
io_uring_get_socket(struct file * file)1114 struct sock *io_uring_get_socket(struct file *file)
1115 {
1116 #if defined(CONFIG_UNIX)
1117 if (file->f_op == &io_uring_fops) {
1118 struct io_ring_ctx *ctx = file->private_data;
1119
1120 return ctx->ring_sock->sk;
1121 }
1122 #endif
1123 return NULL;
1124 }
1125 EXPORT_SYMBOL(io_uring_get_socket);
1126
io_tw_lock(struct io_ring_ctx * ctx,bool * locked)1127 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1128 {
1129 if (!*locked) {
1130 mutex_lock(&ctx->uring_lock);
1131 *locked = true;
1132 }
1133 }
1134
1135 #define io_for_each_link(pos, head) \
1136 for (pos = (head); pos; pos = pos->link)
1137
1138 /*
1139 * Shamelessly stolen from the mm implementation of page reference checking,
1140 * see commit f958d7b528b1 for details.
1141 */
1142 #define req_ref_zero_or_close_to_overflow(req) \
1143 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1144
req_ref_inc_not_zero(struct io_kiocb * req)1145 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1146 {
1147 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1148 return atomic_inc_not_zero(&req->refs);
1149 }
1150
req_ref_put_and_test(struct io_kiocb * req)1151 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1152 {
1153 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1154 return true;
1155
1156 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1157 return atomic_dec_and_test(&req->refs);
1158 }
1159
req_ref_get(struct io_kiocb * req)1160 static inline void req_ref_get(struct io_kiocb *req)
1161 {
1162 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1163 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1164 atomic_inc(&req->refs);
1165 }
1166
__io_req_set_refcount(struct io_kiocb * req,int nr)1167 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1168 {
1169 if (!(req->flags & REQ_F_REFCOUNT)) {
1170 req->flags |= REQ_F_REFCOUNT;
1171 atomic_set(&req->refs, nr);
1172 }
1173 }
1174
io_req_set_refcount(struct io_kiocb * req)1175 static inline void io_req_set_refcount(struct io_kiocb *req)
1176 {
1177 __io_req_set_refcount(req, 1);
1178 }
1179
io_req_set_rsrc_node(struct io_kiocb * req)1180 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1181 {
1182 struct io_ring_ctx *ctx = req->ctx;
1183
1184 if (!req->fixed_rsrc_refs) {
1185 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1186 percpu_ref_get(req->fixed_rsrc_refs);
1187 }
1188 }
1189
io_refs_resurrect(struct percpu_ref * ref,struct completion * compl)1190 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1191 {
1192 bool got = percpu_ref_tryget(ref);
1193
1194 /* already at zero, wait for ->release() */
1195 if (!got)
1196 wait_for_completion(compl);
1197 percpu_ref_resurrect(ref);
1198 if (got)
1199 percpu_ref_put(ref);
1200 }
1201
io_match_task(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1202 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1203 bool cancel_all)
1204 __must_hold(&req->ctx->timeout_lock)
1205 {
1206 struct io_kiocb *req;
1207
1208 if (task && head->task != task)
1209 return false;
1210 if (cancel_all)
1211 return true;
1212
1213 io_for_each_link(req, head) {
1214 if (req->flags & REQ_F_INFLIGHT)
1215 return true;
1216 }
1217 return false;
1218 }
1219
io_match_linked(struct io_kiocb * head)1220 static bool io_match_linked(struct io_kiocb *head)
1221 {
1222 struct io_kiocb *req;
1223
1224 io_for_each_link(req, head) {
1225 if (req->flags & REQ_F_INFLIGHT)
1226 return true;
1227 }
1228 return false;
1229 }
1230
1231 /*
1232 * As io_match_task() but protected against racing with linked timeouts.
1233 * User must not hold timeout_lock.
1234 */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1235 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1236 bool cancel_all)
1237 {
1238 bool matched;
1239
1240 if (task && head->task != task)
1241 return false;
1242 if (cancel_all)
1243 return true;
1244
1245 if (head->flags & REQ_F_LINK_TIMEOUT) {
1246 struct io_ring_ctx *ctx = head->ctx;
1247
1248 /* protect against races with linked timeouts */
1249 spin_lock_irq(&ctx->timeout_lock);
1250 matched = io_match_linked(head);
1251 spin_unlock_irq(&ctx->timeout_lock);
1252 } else {
1253 matched = io_match_linked(head);
1254 }
1255 return matched;
1256 }
1257
req_set_fail(struct io_kiocb * req)1258 static inline void req_set_fail(struct io_kiocb *req)
1259 {
1260 req->flags |= REQ_F_FAIL;
1261 }
1262
req_fail_link_node(struct io_kiocb * req,int res)1263 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1264 {
1265 req_set_fail(req);
1266 req->result = res;
1267 }
1268
io_ring_ctx_ref_free(struct percpu_ref * ref)1269 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1270 {
1271 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1272
1273 complete(&ctx->ref_comp);
1274 }
1275
io_is_timeout_noseq(struct io_kiocb * req)1276 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1277 {
1278 return !req->timeout.off;
1279 }
1280
io_fallback_req_func(struct work_struct * work)1281 static void io_fallback_req_func(struct work_struct *work)
1282 {
1283 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1284 fallback_work.work);
1285 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1286 struct io_kiocb *req, *tmp;
1287 bool locked = false;
1288
1289 percpu_ref_get(&ctx->refs);
1290 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1291 req->io_task_work.func(req, &locked);
1292
1293 if (locked) {
1294 if (ctx->submit_state.compl_nr)
1295 io_submit_flush_completions(ctx);
1296 mutex_unlock(&ctx->uring_lock);
1297 }
1298 percpu_ref_put(&ctx->refs);
1299
1300 }
1301
io_ring_ctx_alloc(struct io_uring_params * p)1302 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1303 {
1304 struct io_ring_ctx *ctx;
1305 int hash_bits;
1306
1307 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1308 if (!ctx)
1309 return NULL;
1310
1311 /*
1312 * Use 5 bits less than the max cq entries, that should give us around
1313 * 32 entries per hash list if totally full and uniformly spread.
1314 */
1315 hash_bits = ilog2(p->cq_entries);
1316 hash_bits -= 5;
1317 if (hash_bits <= 0)
1318 hash_bits = 1;
1319 ctx->cancel_hash_bits = hash_bits;
1320 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1321 GFP_KERNEL);
1322 if (!ctx->cancel_hash)
1323 goto err;
1324 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1325
1326 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1327 if (!ctx->dummy_ubuf)
1328 goto err;
1329 /* set invalid range, so io_import_fixed() fails meeting it */
1330 ctx->dummy_ubuf->ubuf = -1UL;
1331
1332 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1333 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1334 goto err;
1335
1336 ctx->flags = p->flags;
1337 init_waitqueue_head(&ctx->sqo_sq_wait);
1338 INIT_LIST_HEAD(&ctx->sqd_list);
1339 init_waitqueue_head(&ctx->poll_wait);
1340 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1341 init_completion(&ctx->ref_comp);
1342 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1343 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1344 mutex_init(&ctx->uring_lock);
1345 init_waitqueue_head(&ctx->cq_wait);
1346 spin_lock_init(&ctx->completion_lock);
1347 spin_lock_init(&ctx->timeout_lock);
1348 INIT_LIST_HEAD(&ctx->iopoll_list);
1349 INIT_LIST_HEAD(&ctx->defer_list);
1350 INIT_LIST_HEAD(&ctx->timeout_list);
1351 INIT_LIST_HEAD(&ctx->ltimeout_list);
1352 spin_lock_init(&ctx->rsrc_ref_lock);
1353 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1354 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1355 init_llist_head(&ctx->rsrc_put_llist);
1356 INIT_LIST_HEAD(&ctx->tctx_list);
1357 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1358 INIT_LIST_HEAD(&ctx->locked_free_list);
1359 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1360 return ctx;
1361 err:
1362 kfree(ctx->dummy_ubuf);
1363 kfree(ctx->cancel_hash);
1364 kfree(ctx);
1365 return NULL;
1366 }
1367
io_account_cq_overflow(struct io_ring_ctx * ctx)1368 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1369 {
1370 struct io_rings *r = ctx->rings;
1371
1372 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1373 ctx->cq_extra--;
1374 }
1375
req_need_defer(struct io_kiocb * req,u32 seq)1376 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1377 {
1378 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1379 struct io_ring_ctx *ctx = req->ctx;
1380
1381 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1382 }
1383
1384 return false;
1385 }
1386
1387 #define FFS_ASYNC_READ 0x1UL
1388 #define FFS_ASYNC_WRITE 0x2UL
1389 #ifdef CONFIG_64BIT
1390 #define FFS_ISREG 0x4UL
1391 #else
1392 #define FFS_ISREG 0x0UL
1393 #endif
1394 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1395
io_req_ffs_set(struct io_kiocb * req)1396 static inline bool io_req_ffs_set(struct io_kiocb *req)
1397 {
1398 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1399 }
1400
io_req_track_inflight(struct io_kiocb * req)1401 static void io_req_track_inflight(struct io_kiocb *req)
1402 {
1403 if (!(req->flags & REQ_F_INFLIGHT)) {
1404 req->flags |= REQ_F_INFLIGHT;
1405 atomic_inc(&req->task->io_uring->inflight_tracked);
1406 }
1407 }
1408
__io_prep_linked_timeout(struct io_kiocb * req)1409 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1410 {
1411 if (WARN_ON_ONCE(!req->link))
1412 return NULL;
1413
1414 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1415 req->flags |= REQ_F_LINK_TIMEOUT;
1416
1417 /* linked timeouts should have two refs once prep'ed */
1418 io_req_set_refcount(req);
1419 __io_req_set_refcount(req->link, 2);
1420 return req->link;
1421 }
1422
io_prep_linked_timeout(struct io_kiocb * req)1423 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1424 {
1425 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1426 return NULL;
1427 return __io_prep_linked_timeout(req);
1428 }
1429
io_prep_async_work(struct io_kiocb * req)1430 static void io_prep_async_work(struct io_kiocb *req)
1431 {
1432 const struct io_op_def *def = &io_op_defs[req->opcode];
1433 struct io_ring_ctx *ctx = req->ctx;
1434
1435 if (!(req->flags & REQ_F_CREDS)) {
1436 req->flags |= REQ_F_CREDS;
1437 req->creds = get_current_cred();
1438 }
1439
1440 req->work.list.next = NULL;
1441 req->work.flags = 0;
1442 if (req->flags & REQ_F_FORCE_ASYNC)
1443 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1444
1445 if (req->flags & REQ_F_ISREG) {
1446 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1447 io_wq_hash_work(&req->work, file_inode(req->file));
1448 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1449 if (def->unbound_nonreg_file)
1450 req->work.flags |= IO_WQ_WORK_UNBOUND;
1451 }
1452 }
1453
io_prep_async_link(struct io_kiocb * req)1454 static void io_prep_async_link(struct io_kiocb *req)
1455 {
1456 struct io_kiocb *cur;
1457
1458 if (req->flags & REQ_F_LINK_TIMEOUT) {
1459 struct io_ring_ctx *ctx = req->ctx;
1460
1461 spin_lock_irq(&ctx->timeout_lock);
1462 io_for_each_link(cur, req)
1463 io_prep_async_work(cur);
1464 spin_unlock_irq(&ctx->timeout_lock);
1465 } else {
1466 io_for_each_link(cur, req)
1467 io_prep_async_work(cur);
1468 }
1469 }
1470
io_queue_async_work(struct io_kiocb * req,bool * locked)1471 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1472 {
1473 struct io_ring_ctx *ctx = req->ctx;
1474 struct io_kiocb *link = io_prep_linked_timeout(req);
1475 struct io_uring_task *tctx = req->task->io_uring;
1476
1477 /* must not take the lock, NULL it as a precaution */
1478 locked = NULL;
1479
1480 BUG_ON(!tctx);
1481 BUG_ON(!tctx->io_wq);
1482
1483 /* init ->work of the whole link before punting */
1484 io_prep_async_link(req);
1485
1486 /*
1487 * Not expected to happen, but if we do have a bug where this _can_
1488 * happen, catch it here and ensure the request is marked as
1489 * canceled. That will make io-wq go through the usual work cancel
1490 * procedure rather than attempt to run this request (or create a new
1491 * worker for it).
1492 */
1493 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1494 req->work.flags |= IO_WQ_WORK_CANCEL;
1495
1496 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1497 &req->work, req->flags);
1498 io_wq_enqueue(tctx->io_wq, &req->work);
1499 if (link)
1500 io_queue_linked_timeout(link);
1501 }
1502
io_kill_timeout(struct io_kiocb * req,int status)1503 static void io_kill_timeout(struct io_kiocb *req, int status)
1504 __must_hold(&req->ctx->completion_lock)
1505 __must_hold(&req->ctx->timeout_lock)
1506 {
1507 struct io_timeout_data *io = req->async_data;
1508
1509 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1510 if (status)
1511 req_set_fail(req);
1512 atomic_set(&req->ctx->cq_timeouts,
1513 atomic_read(&req->ctx->cq_timeouts) + 1);
1514 list_del_init(&req->timeout.list);
1515 io_fill_cqe_req(req, status, 0);
1516 io_put_req_deferred(req);
1517 }
1518 }
1519
io_queue_deferred(struct io_ring_ctx * ctx)1520 static void io_queue_deferred(struct io_ring_ctx *ctx)
1521 {
1522 while (!list_empty(&ctx->defer_list)) {
1523 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1524 struct io_defer_entry, list);
1525
1526 if (req_need_defer(de->req, de->seq))
1527 break;
1528 list_del_init(&de->list);
1529 io_req_task_queue(de->req);
1530 kfree(de);
1531 }
1532 }
1533
io_flush_timeouts(struct io_ring_ctx * ctx)1534 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1535 __must_hold(&ctx->completion_lock)
1536 {
1537 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1538 struct io_kiocb *req, *tmp;
1539
1540 spin_lock_irq(&ctx->timeout_lock);
1541 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1542 u32 events_needed, events_got;
1543
1544 if (io_is_timeout_noseq(req))
1545 break;
1546
1547 /*
1548 * Since seq can easily wrap around over time, subtract
1549 * the last seq at which timeouts were flushed before comparing.
1550 * Assuming not more than 2^31-1 events have happened since,
1551 * these subtractions won't have wrapped, so we can check if
1552 * target is in [last_seq, current_seq] by comparing the two.
1553 */
1554 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1555 events_got = seq - ctx->cq_last_tm_flush;
1556 if (events_got < events_needed)
1557 break;
1558
1559 io_kill_timeout(req, 0);
1560 }
1561 ctx->cq_last_tm_flush = seq;
1562 spin_unlock_irq(&ctx->timeout_lock);
1563 }
1564
__io_commit_cqring_flush(struct io_ring_ctx * ctx)1565 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1566 {
1567 if (ctx->off_timeout_used)
1568 io_flush_timeouts(ctx);
1569 if (ctx->drain_active)
1570 io_queue_deferred(ctx);
1571 }
1572
io_commit_cqring(struct io_ring_ctx * ctx)1573 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1574 {
1575 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1576 __io_commit_cqring_flush(ctx);
1577 /* order cqe stores with ring update */
1578 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1579 }
1580
io_sqring_full(struct io_ring_ctx * ctx)1581 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1582 {
1583 struct io_rings *r = ctx->rings;
1584
1585 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1586 }
1587
__io_cqring_events(struct io_ring_ctx * ctx)1588 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1589 {
1590 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1591 }
1592
io_get_cqe(struct io_ring_ctx * ctx)1593 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1594 {
1595 struct io_rings *rings = ctx->rings;
1596 unsigned tail, mask = ctx->cq_entries - 1;
1597
1598 /*
1599 * writes to the cq entry need to come after reading head; the
1600 * control dependency is enough as we're using WRITE_ONCE to
1601 * fill the cq entry
1602 */
1603 if (__io_cqring_events(ctx) == ctx->cq_entries)
1604 return NULL;
1605
1606 tail = ctx->cached_cq_tail++;
1607 return &rings->cqes[tail & mask];
1608 }
1609
io_should_trigger_evfd(struct io_ring_ctx * ctx)1610 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1611 {
1612 if (likely(!ctx->cq_ev_fd))
1613 return false;
1614 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1615 return false;
1616 return !ctx->eventfd_async || io_wq_current_is_worker();
1617 }
1618
1619 /*
1620 * This should only get called when at least one event has been posted.
1621 * Some applications rely on the eventfd notification count only changing
1622 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1623 * 1:1 relationship between how many times this function is called (and
1624 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1625 */
io_cqring_ev_posted(struct io_ring_ctx * ctx)1626 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1627 {
1628 /*
1629 * wake_up_all() may seem excessive, but io_wake_function() and
1630 * io_should_wake() handle the termination of the loop and only
1631 * wake as many waiters as we need to.
1632 */
1633 if (wq_has_sleeper(&ctx->cq_wait))
1634 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1635 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1636 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1637 wake_up(&ctx->sq_data->wait);
1638 if (io_should_trigger_evfd(ctx))
1639 eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1640 if (waitqueue_active(&ctx->poll_wait))
1641 __wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1642 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1643 }
1644
io_cqring_ev_posted_iopoll(struct io_ring_ctx * ctx)1645 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1646 {
1647 /* see waitqueue_active() comment */
1648 smp_mb();
1649
1650 if (ctx->flags & IORING_SETUP_SQPOLL) {
1651 if (waitqueue_active(&ctx->cq_wait))
1652 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1653 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1654 }
1655 if (io_should_trigger_evfd(ctx))
1656 eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1657 if (waitqueue_active(&ctx->poll_wait))
1658 __wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1659 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1660 }
1661
1662 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool force)1663 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1664 {
1665 bool all_flushed, posted;
1666
1667 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1668 return false;
1669
1670 posted = false;
1671 spin_lock(&ctx->completion_lock);
1672 while (!list_empty(&ctx->cq_overflow_list)) {
1673 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1674 struct io_overflow_cqe *ocqe;
1675
1676 if (!cqe && !force)
1677 break;
1678 ocqe = list_first_entry(&ctx->cq_overflow_list,
1679 struct io_overflow_cqe, list);
1680 if (cqe)
1681 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1682 else
1683 io_account_cq_overflow(ctx);
1684
1685 posted = true;
1686 list_del(&ocqe->list);
1687 kfree(ocqe);
1688 }
1689
1690 all_flushed = list_empty(&ctx->cq_overflow_list);
1691 if (all_flushed) {
1692 clear_bit(0, &ctx->check_cq_overflow);
1693 WRITE_ONCE(ctx->rings->sq_flags,
1694 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1695 }
1696
1697 if (posted)
1698 io_commit_cqring(ctx);
1699 spin_unlock(&ctx->completion_lock);
1700 if (posted)
1701 io_cqring_ev_posted(ctx);
1702 return all_flushed;
1703 }
1704
io_cqring_overflow_flush(struct io_ring_ctx * ctx)1705 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1706 {
1707 bool ret = true;
1708
1709 if (test_bit(0, &ctx->check_cq_overflow)) {
1710 /* iopoll syncs against uring_lock, not completion_lock */
1711 if (ctx->flags & IORING_SETUP_IOPOLL)
1712 mutex_lock(&ctx->uring_lock);
1713 ret = __io_cqring_overflow_flush(ctx, false);
1714 if (ctx->flags & IORING_SETUP_IOPOLL)
1715 mutex_unlock(&ctx->uring_lock);
1716 }
1717
1718 return ret;
1719 }
1720
1721 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task,int nr)1722 static inline void io_put_task(struct task_struct *task, int nr)
1723 {
1724 struct io_uring_task *tctx = task->io_uring;
1725
1726 if (likely(task == current)) {
1727 tctx->cached_refs += nr;
1728 } else {
1729 percpu_counter_sub(&tctx->inflight, nr);
1730 if (unlikely(atomic_read(&tctx->in_idle)))
1731 wake_up(&tctx->wait);
1732 put_task_struct_many(task, nr);
1733 }
1734 }
1735
io_task_refs_refill(struct io_uring_task * tctx)1736 static void io_task_refs_refill(struct io_uring_task *tctx)
1737 {
1738 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1739
1740 percpu_counter_add(&tctx->inflight, refill);
1741 refcount_add(refill, ¤t->usage);
1742 tctx->cached_refs += refill;
1743 }
1744
io_get_task_refs(int nr)1745 static inline void io_get_task_refs(int nr)
1746 {
1747 struct io_uring_task *tctx = current->io_uring;
1748
1749 tctx->cached_refs -= nr;
1750 if (unlikely(tctx->cached_refs < 0))
1751 io_task_refs_refill(tctx);
1752 }
1753
io_uring_drop_tctx_refs(struct task_struct * task)1754 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1755 {
1756 struct io_uring_task *tctx = task->io_uring;
1757 unsigned int refs = tctx->cached_refs;
1758
1759 if (refs) {
1760 tctx->cached_refs = 0;
1761 percpu_counter_sub(&tctx->inflight, refs);
1762 put_task_struct_many(task, refs);
1763 }
1764 }
1765
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1766 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1767 s32 res, u32 cflags)
1768 {
1769 struct io_overflow_cqe *ocqe;
1770
1771 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1772 if (!ocqe) {
1773 /*
1774 * If we're in ring overflow flush mode, or in task cancel mode,
1775 * or cannot allocate an overflow entry, then we need to drop it
1776 * on the floor.
1777 */
1778 io_account_cq_overflow(ctx);
1779 return false;
1780 }
1781 if (list_empty(&ctx->cq_overflow_list)) {
1782 set_bit(0, &ctx->check_cq_overflow);
1783 WRITE_ONCE(ctx->rings->sq_flags,
1784 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1785
1786 }
1787 ocqe->cqe.user_data = user_data;
1788 ocqe->cqe.res = res;
1789 ocqe->cqe.flags = cflags;
1790 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1791 return true;
1792 }
1793
__io_fill_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1794 static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
1795 s32 res, u32 cflags)
1796 {
1797 struct io_uring_cqe *cqe;
1798
1799 trace_io_uring_complete(ctx, user_data, res, cflags);
1800
1801 /*
1802 * If we can't get a cq entry, userspace overflowed the
1803 * submission (by quite a lot). Increment the overflow count in
1804 * the ring.
1805 */
1806 cqe = io_get_cqe(ctx);
1807 if (likely(cqe)) {
1808 WRITE_ONCE(cqe->user_data, user_data);
1809 WRITE_ONCE(cqe->res, res);
1810 WRITE_ONCE(cqe->flags, cflags);
1811 return true;
1812 }
1813 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1814 }
1815
io_fill_cqe_req(struct io_kiocb * req,s32 res,u32 cflags)1816 static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
1817 {
1818 __io_fill_cqe(req->ctx, req->user_data, res, cflags);
1819 }
1820
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1821 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
1822 s32 res, u32 cflags)
1823 {
1824 ctx->cq_extra++;
1825 return __io_fill_cqe(ctx, user_data, res, cflags);
1826 }
1827
io_req_complete_post(struct io_kiocb * req,s32 res,u32 cflags)1828 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1829 u32 cflags)
1830 {
1831 struct io_ring_ctx *ctx = req->ctx;
1832
1833 spin_lock(&ctx->completion_lock);
1834 __io_fill_cqe(ctx, req->user_data, res, cflags);
1835 /*
1836 * If we're the last reference to this request, add to our locked
1837 * free_list cache.
1838 */
1839 if (req_ref_put_and_test(req)) {
1840 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1841 if (req->flags & IO_DISARM_MASK)
1842 io_disarm_next(req);
1843 if (req->link) {
1844 io_req_task_queue(req->link);
1845 req->link = NULL;
1846 }
1847 }
1848 io_dismantle_req(req);
1849 io_put_task(req->task, 1);
1850 list_add(&req->inflight_entry, &ctx->locked_free_list);
1851 ctx->locked_free_nr++;
1852 } else {
1853 if (!percpu_ref_tryget(&ctx->refs))
1854 req = NULL;
1855 }
1856 io_commit_cqring(ctx);
1857 spin_unlock(&ctx->completion_lock);
1858
1859 if (req) {
1860 io_cqring_ev_posted(ctx);
1861 percpu_ref_put(&ctx->refs);
1862 }
1863 }
1864
io_req_needs_clean(struct io_kiocb * req)1865 static inline bool io_req_needs_clean(struct io_kiocb *req)
1866 {
1867 return req->flags & IO_REQ_CLEAN_FLAGS;
1868 }
1869
io_req_complete_state(struct io_kiocb * req,s32 res,u32 cflags)1870 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1871 u32 cflags)
1872 {
1873 if (io_req_needs_clean(req))
1874 io_clean_op(req);
1875 req->result = res;
1876 req->compl.cflags = cflags;
1877 req->flags |= REQ_F_COMPLETE_INLINE;
1878 }
1879
__io_req_complete(struct io_kiocb * req,unsigned issue_flags,s32 res,u32 cflags)1880 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1881 s32 res, u32 cflags)
1882 {
1883 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1884 io_req_complete_state(req, res, cflags);
1885 else
1886 io_req_complete_post(req, res, cflags);
1887 }
1888
io_req_complete(struct io_kiocb * req,s32 res)1889 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1890 {
1891 __io_req_complete(req, 0, res, 0);
1892 }
1893
io_req_complete_failed(struct io_kiocb * req,s32 res)1894 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1895 {
1896 req_set_fail(req);
1897 io_req_complete_post(req, res, 0);
1898 }
1899
io_req_complete_fail_submit(struct io_kiocb * req)1900 static void io_req_complete_fail_submit(struct io_kiocb *req)
1901 {
1902 /*
1903 * We don't submit, fail them all, for that replace hardlinks with
1904 * normal links. Extra REQ_F_LINK is tolerated.
1905 */
1906 req->flags &= ~REQ_F_HARDLINK;
1907 req->flags |= REQ_F_LINK;
1908 io_req_complete_failed(req, req->result);
1909 }
1910
1911 /*
1912 * Don't initialise the fields below on every allocation, but do that in
1913 * advance and keep them valid across allocations.
1914 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1915 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1916 {
1917 req->ctx = ctx;
1918 req->link = NULL;
1919 req->async_data = NULL;
1920 /* not necessary, but safer to zero */
1921 req->result = 0;
1922 }
1923
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1924 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1925 struct io_submit_state *state)
1926 {
1927 spin_lock(&ctx->completion_lock);
1928 list_splice_init(&ctx->locked_free_list, &state->free_list);
1929 ctx->locked_free_nr = 0;
1930 spin_unlock(&ctx->completion_lock);
1931 }
1932
1933 /* Returns true IFF there are requests in the cache */
io_flush_cached_reqs(struct io_ring_ctx * ctx)1934 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1935 {
1936 struct io_submit_state *state = &ctx->submit_state;
1937 int nr;
1938
1939 /*
1940 * If we have more than a batch's worth of requests in our IRQ side
1941 * locked cache, grab the lock and move them over to our submission
1942 * side cache.
1943 */
1944 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1945 io_flush_cached_locked_reqs(ctx, state);
1946
1947 nr = state->free_reqs;
1948 while (!list_empty(&state->free_list)) {
1949 struct io_kiocb *req = list_first_entry(&state->free_list,
1950 struct io_kiocb, inflight_entry);
1951
1952 list_del(&req->inflight_entry);
1953 state->reqs[nr++] = req;
1954 if (nr == ARRAY_SIZE(state->reqs))
1955 break;
1956 }
1957
1958 state->free_reqs = nr;
1959 return nr != 0;
1960 }
1961
1962 /*
1963 * A request might get retired back into the request caches even before opcode
1964 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1965 * Because of that, io_alloc_req() should be called only under ->uring_lock
1966 * and with extra caution to not get a request that is still worked on.
1967 */
io_alloc_req(struct io_ring_ctx * ctx)1968 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1969 __must_hold(&ctx->uring_lock)
1970 {
1971 struct io_submit_state *state = &ctx->submit_state;
1972 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1973 int ret, i;
1974
1975 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1976
1977 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1978 goto got_req;
1979
1980 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1981 state->reqs);
1982
1983 /*
1984 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1985 * retry single alloc to be on the safe side.
1986 */
1987 if (unlikely(ret <= 0)) {
1988 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1989 if (!state->reqs[0])
1990 return NULL;
1991 ret = 1;
1992 }
1993
1994 for (i = 0; i < ret; i++)
1995 io_preinit_req(state->reqs[i], ctx);
1996 state->free_reqs = ret;
1997 got_req:
1998 state->free_reqs--;
1999 return state->reqs[state->free_reqs];
2000 }
2001
io_put_file(struct file * file)2002 static inline void io_put_file(struct file *file)
2003 {
2004 if (file)
2005 fput(file);
2006 }
2007
io_dismantle_req(struct io_kiocb * req)2008 static void io_dismantle_req(struct io_kiocb *req)
2009 {
2010 unsigned int flags = req->flags;
2011
2012 if (io_req_needs_clean(req))
2013 io_clean_op(req);
2014 if (!(flags & REQ_F_FIXED_FILE))
2015 io_put_file(req->file);
2016 if (req->fixed_rsrc_refs)
2017 percpu_ref_put(req->fixed_rsrc_refs);
2018 if (req->async_data) {
2019 kfree(req->async_data);
2020 req->async_data = NULL;
2021 }
2022 }
2023
__io_free_req(struct io_kiocb * req)2024 static void __io_free_req(struct io_kiocb *req)
2025 {
2026 struct io_ring_ctx *ctx = req->ctx;
2027
2028 io_dismantle_req(req);
2029 io_put_task(req->task, 1);
2030
2031 spin_lock(&ctx->completion_lock);
2032 list_add(&req->inflight_entry, &ctx->locked_free_list);
2033 ctx->locked_free_nr++;
2034 spin_unlock(&ctx->completion_lock);
2035
2036 percpu_ref_put(&ctx->refs);
2037 }
2038
io_remove_next_linked(struct io_kiocb * req)2039 static inline void io_remove_next_linked(struct io_kiocb *req)
2040 {
2041 struct io_kiocb *nxt = req->link;
2042
2043 req->link = nxt->link;
2044 nxt->link = NULL;
2045 }
2046
io_kill_linked_timeout(struct io_kiocb * req)2047 static bool io_kill_linked_timeout(struct io_kiocb *req)
2048 __must_hold(&req->ctx->completion_lock)
2049 __must_hold(&req->ctx->timeout_lock)
2050 {
2051 struct io_kiocb *link = req->link;
2052
2053 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2054 struct io_timeout_data *io = link->async_data;
2055
2056 io_remove_next_linked(req);
2057 link->timeout.head = NULL;
2058 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2059 list_del(&link->timeout.list);
2060 io_fill_cqe_req(link, -ECANCELED, 0);
2061 io_put_req_deferred(link);
2062 return true;
2063 }
2064 }
2065 return false;
2066 }
2067
io_fail_links(struct io_kiocb * req)2068 static void io_fail_links(struct io_kiocb *req)
2069 __must_hold(&req->ctx->completion_lock)
2070 {
2071 struct io_kiocb *nxt, *link = req->link;
2072
2073 req->link = NULL;
2074 while (link) {
2075 long res = -ECANCELED;
2076
2077 if (link->flags & REQ_F_FAIL)
2078 res = link->result;
2079
2080 nxt = link->link;
2081 link->link = NULL;
2082
2083 trace_io_uring_fail_link(req, link);
2084 io_fill_cqe_req(link, res, 0);
2085 io_put_req_deferred(link);
2086 link = nxt;
2087 }
2088 }
2089
io_disarm_next(struct io_kiocb * req)2090 static bool io_disarm_next(struct io_kiocb *req)
2091 __must_hold(&req->ctx->completion_lock)
2092 {
2093 bool posted = false;
2094
2095 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2096 struct io_kiocb *link = req->link;
2097
2098 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2099 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2100 io_remove_next_linked(req);
2101 io_fill_cqe_req(link, -ECANCELED, 0);
2102 io_put_req_deferred(link);
2103 posted = true;
2104 }
2105 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2106 struct io_ring_ctx *ctx = req->ctx;
2107
2108 spin_lock_irq(&ctx->timeout_lock);
2109 posted = io_kill_linked_timeout(req);
2110 spin_unlock_irq(&ctx->timeout_lock);
2111 }
2112 if (unlikely((req->flags & REQ_F_FAIL) &&
2113 !(req->flags & REQ_F_HARDLINK))) {
2114 posted |= (req->link != NULL);
2115 io_fail_links(req);
2116 }
2117 return posted;
2118 }
2119
__io_req_find_next(struct io_kiocb * req)2120 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2121 {
2122 struct io_kiocb *nxt;
2123
2124 /*
2125 * If LINK is set, we have dependent requests in this chain. If we
2126 * didn't fail this request, queue the first one up, moving any other
2127 * dependencies to the next request. In case of failure, fail the rest
2128 * of the chain.
2129 */
2130 if (req->flags & IO_DISARM_MASK) {
2131 struct io_ring_ctx *ctx = req->ctx;
2132 bool posted;
2133
2134 spin_lock(&ctx->completion_lock);
2135 posted = io_disarm_next(req);
2136 if (posted)
2137 io_commit_cqring(req->ctx);
2138 spin_unlock(&ctx->completion_lock);
2139 if (posted)
2140 io_cqring_ev_posted(ctx);
2141 }
2142 nxt = req->link;
2143 req->link = NULL;
2144 return nxt;
2145 }
2146
io_req_find_next(struct io_kiocb * req)2147 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2148 {
2149 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2150 return NULL;
2151 return __io_req_find_next(req);
2152 }
2153
ctx_flush_and_put(struct io_ring_ctx * ctx,bool * locked)2154 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2155 {
2156 if (!ctx)
2157 return;
2158 if (*locked) {
2159 if (ctx->submit_state.compl_nr)
2160 io_submit_flush_completions(ctx);
2161 mutex_unlock(&ctx->uring_lock);
2162 *locked = false;
2163 }
2164 percpu_ref_put(&ctx->refs);
2165 }
2166
tctx_task_work(struct callback_head * cb)2167 static void tctx_task_work(struct callback_head *cb)
2168 {
2169 bool locked = false;
2170 struct io_ring_ctx *ctx = NULL;
2171 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2172 task_work);
2173
2174 while (1) {
2175 struct io_wq_work_node *node;
2176
2177 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2178 io_submit_flush_completions(ctx);
2179
2180 spin_lock_irq(&tctx->task_lock);
2181 node = tctx->task_list.first;
2182 INIT_WQ_LIST(&tctx->task_list);
2183 if (!node)
2184 tctx->task_running = false;
2185 spin_unlock_irq(&tctx->task_lock);
2186 if (!node)
2187 break;
2188
2189 do {
2190 struct io_wq_work_node *next = node->next;
2191 struct io_kiocb *req = container_of(node, struct io_kiocb,
2192 io_task_work.node);
2193
2194 if (req->ctx != ctx) {
2195 ctx_flush_and_put(ctx, &locked);
2196 ctx = req->ctx;
2197 /* if not contended, grab and improve batching */
2198 locked = mutex_trylock(&ctx->uring_lock);
2199 percpu_ref_get(&ctx->refs);
2200 }
2201 req->io_task_work.func(req, &locked);
2202 node = next;
2203 } while (node);
2204
2205 cond_resched();
2206 }
2207
2208 ctx_flush_and_put(ctx, &locked);
2209
2210 /* relaxed read is enough as only the task itself sets ->in_idle */
2211 if (unlikely(atomic_read(&tctx->in_idle)))
2212 io_uring_drop_tctx_refs(current);
2213 }
2214
io_req_task_work_add(struct io_kiocb * req)2215 static void io_req_task_work_add(struct io_kiocb *req)
2216 {
2217 struct task_struct *tsk = req->task;
2218 struct io_uring_task *tctx = tsk->io_uring;
2219 enum task_work_notify_mode notify;
2220 struct io_wq_work_node *node;
2221 unsigned long flags;
2222 bool running;
2223
2224 WARN_ON_ONCE(!tctx);
2225
2226 spin_lock_irqsave(&tctx->task_lock, flags);
2227 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2228 running = tctx->task_running;
2229 if (!running)
2230 tctx->task_running = true;
2231 spin_unlock_irqrestore(&tctx->task_lock, flags);
2232
2233 /* task_work already pending, we're done */
2234 if (running)
2235 return;
2236
2237 /*
2238 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2239 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2240 * processing task_work. There's no reliable way to tell if TWA_RESUME
2241 * will do the job.
2242 */
2243 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2244 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2245 wake_up_process(tsk);
2246 return;
2247 }
2248
2249 spin_lock_irqsave(&tctx->task_lock, flags);
2250 tctx->task_running = false;
2251 node = tctx->task_list.first;
2252 INIT_WQ_LIST(&tctx->task_list);
2253 spin_unlock_irqrestore(&tctx->task_lock, flags);
2254
2255 while (node) {
2256 req = container_of(node, struct io_kiocb, io_task_work.node);
2257 node = node->next;
2258 if (llist_add(&req->io_task_work.fallback_node,
2259 &req->ctx->fallback_llist))
2260 schedule_delayed_work(&req->ctx->fallback_work, 1);
2261 }
2262 }
2263
io_req_task_cancel(struct io_kiocb * req,bool * locked)2264 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2265 {
2266 struct io_ring_ctx *ctx = req->ctx;
2267
2268 /* not needed for normal modes, but SQPOLL depends on it */
2269 io_tw_lock(ctx, locked);
2270 io_req_complete_failed(req, req->result);
2271 }
2272
io_req_task_submit(struct io_kiocb * req,bool * locked)2273 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2274 {
2275 struct io_ring_ctx *ctx = req->ctx;
2276
2277 io_tw_lock(ctx, locked);
2278 /* req->task == current here, checking PF_EXITING is safe */
2279 if (likely(!(req->task->flags & PF_EXITING)))
2280 __io_queue_sqe(req);
2281 else
2282 io_req_complete_failed(req, -EFAULT);
2283 }
2284
io_req_task_queue_fail(struct io_kiocb * req,int ret)2285 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2286 {
2287 req->result = ret;
2288 req->io_task_work.func = io_req_task_cancel;
2289 io_req_task_work_add(req);
2290 }
2291
io_req_task_queue(struct io_kiocb * req)2292 static void io_req_task_queue(struct io_kiocb *req)
2293 {
2294 req->io_task_work.func = io_req_task_submit;
2295 io_req_task_work_add(req);
2296 }
2297
io_req_task_queue_reissue(struct io_kiocb * req)2298 static void io_req_task_queue_reissue(struct io_kiocb *req)
2299 {
2300 req->io_task_work.func = io_queue_async_work;
2301 io_req_task_work_add(req);
2302 }
2303
io_queue_next(struct io_kiocb * req)2304 static inline void io_queue_next(struct io_kiocb *req)
2305 {
2306 struct io_kiocb *nxt = io_req_find_next(req);
2307
2308 if (nxt)
2309 io_req_task_queue(nxt);
2310 }
2311
io_free_req(struct io_kiocb * req)2312 static void io_free_req(struct io_kiocb *req)
2313 {
2314 io_queue_next(req);
2315 __io_free_req(req);
2316 }
2317
io_free_req_work(struct io_kiocb * req,bool * locked)2318 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2319 {
2320 io_free_req(req);
2321 }
2322
2323 struct req_batch {
2324 struct task_struct *task;
2325 int task_refs;
2326 int ctx_refs;
2327 };
2328
io_init_req_batch(struct req_batch * rb)2329 static inline void io_init_req_batch(struct req_batch *rb)
2330 {
2331 rb->task_refs = 0;
2332 rb->ctx_refs = 0;
2333 rb->task = NULL;
2334 }
2335
io_req_free_batch_finish(struct io_ring_ctx * ctx,struct req_batch * rb)2336 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2337 struct req_batch *rb)
2338 {
2339 if (rb->ctx_refs)
2340 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2341 if (rb->task)
2342 io_put_task(rb->task, rb->task_refs);
2343 }
2344
io_req_free_batch(struct req_batch * rb,struct io_kiocb * req,struct io_submit_state * state)2345 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2346 struct io_submit_state *state)
2347 {
2348 io_queue_next(req);
2349 io_dismantle_req(req);
2350
2351 if (req->task != rb->task) {
2352 if (rb->task)
2353 io_put_task(rb->task, rb->task_refs);
2354 rb->task = req->task;
2355 rb->task_refs = 0;
2356 }
2357 rb->task_refs++;
2358 rb->ctx_refs++;
2359
2360 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2361 state->reqs[state->free_reqs++] = req;
2362 else
2363 list_add(&req->inflight_entry, &state->free_list);
2364 }
2365
io_submit_flush_completions(struct io_ring_ctx * ctx)2366 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2367 __must_hold(&ctx->uring_lock)
2368 {
2369 struct io_submit_state *state = &ctx->submit_state;
2370 int i, nr = state->compl_nr;
2371 struct req_batch rb;
2372
2373 spin_lock(&ctx->completion_lock);
2374 for (i = 0; i < nr; i++) {
2375 struct io_kiocb *req = state->compl_reqs[i];
2376
2377 __io_fill_cqe(ctx, req->user_data, req->result,
2378 req->compl.cflags);
2379 }
2380 io_commit_cqring(ctx);
2381 spin_unlock(&ctx->completion_lock);
2382 io_cqring_ev_posted(ctx);
2383
2384 io_init_req_batch(&rb);
2385 for (i = 0; i < nr; i++) {
2386 struct io_kiocb *req = state->compl_reqs[i];
2387
2388 if (req_ref_put_and_test(req))
2389 io_req_free_batch(&rb, req, &ctx->submit_state);
2390 }
2391
2392 io_req_free_batch_finish(ctx, &rb);
2393 state->compl_nr = 0;
2394 }
2395
2396 /*
2397 * Drop reference to request, return next in chain (if there is one) if this
2398 * was the last reference to this request.
2399 */
io_put_req_find_next(struct io_kiocb * req)2400 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2401 {
2402 struct io_kiocb *nxt = NULL;
2403
2404 if (req_ref_put_and_test(req)) {
2405 nxt = io_req_find_next(req);
2406 __io_free_req(req);
2407 }
2408 return nxt;
2409 }
2410
io_put_req(struct io_kiocb * req)2411 static inline void io_put_req(struct io_kiocb *req)
2412 {
2413 if (req_ref_put_and_test(req))
2414 io_free_req(req);
2415 }
2416
io_put_req_deferred(struct io_kiocb * req)2417 static inline void io_put_req_deferred(struct io_kiocb *req)
2418 {
2419 if (req_ref_put_and_test(req)) {
2420 req->io_task_work.func = io_free_req_work;
2421 io_req_task_work_add(req);
2422 }
2423 }
2424
io_cqring_events(struct io_ring_ctx * ctx)2425 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2426 {
2427 /* See comment at the top of this file */
2428 smp_rmb();
2429 return __io_cqring_events(ctx);
2430 }
2431
io_sqring_entries(struct io_ring_ctx * ctx)2432 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2433 {
2434 struct io_rings *rings = ctx->rings;
2435
2436 /* make sure SQ entry isn't read before tail */
2437 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2438 }
2439
io_put_kbuf(struct io_kiocb * req,struct io_buffer * kbuf)2440 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2441 {
2442 unsigned int cflags;
2443
2444 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2445 cflags |= IORING_CQE_F_BUFFER;
2446 req->flags &= ~REQ_F_BUFFER_SELECTED;
2447 kfree(kbuf);
2448 return cflags;
2449 }
2450
io_put_rw_kbuf(struct io_kiocb * req)2451 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2452 {
2453 struct io_buffer *kbuf;
2454
2455 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2456 return 0;
2457 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2458 return io_put_kbuf(req, kbuf);
2459 }
2460
io_run_task_work(void)2461 static inline bool io_run_task_work(void)
2462 {
2463 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2464 __set_current_state(TASK_RUNNING);
2465 tracehook_notify_signal();
2466 return true;
2467 }
2468
2469 return false;
2470 }
2471
2472 /*
2473 * Find and free completed poll iocbs
2474 */
io_iopoll_complete(struct io_ring_ctx * ctx,unsigned int * nr_events,struct list_head * done)2475 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2476 struct list_head *done)
2477 {
2478 struct req_batch rb;
2479 struct io_kiocb *req;
2480
2481 /* order with ->result store in io_complete_rw_iopoll() */
2482 smp_rmb();
2483
2484 io_init_req_batch(&rb);
2485 while (!list_empty(done)) {
2486 struct io_uring_cqe *cqe;
2487 unsigned cflags;
2488
2489 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2490 list_del(&req->inflight_entry);
2491 cflags = io_put_rw_kbuf(req);
2492 (*nr_events)++;
2493
2494 cqe = io_get_cqe(ctx);
2495 if (cqe) {
2496 WRITE_ONCE(cqe->user_data, req->user_data);
2497 WRITE_ONCE(cqe->res, req->result);
2498 WRITE_ONCE(cqe->flags, cflags);
2499 } else {
2500 spin_lock(&ctx->completion_lock);
2501 io_cqring_event_overflow(ctx, req->user_data,
2502 req->result, cflags);
2503 spin_unlock(&ctx->completion_lock);
2504 }
2505
2506 if (req_ref_put_and_test(req))
2507 io_req_free_batch(&rb, req, &ctx->submit_state);
2508 }
2509
2510 io_commit_cqring(ctx);
2511 io_cqring_ev_posted_iopoll(ctx);
2512 io_req_free_batch_finish(ctx, &rb);
2513 }
2514
io_do_iopoll(struct io_ring_ctx * ctx,unsigned int * nr_events,long min)2515 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2516 long min)
2517 {
2518 struct io_kiocb *req, *tmp;
2519 LIST_HEAD(done);
2520 bool spin;
2521
2522 /*
2523 * Only spin for completions if we don't have multiple devices hanging
2524 * off our complete list, and we're under the requested amount.
2525 */
2526 spin = !ctx->poll_multi_queue && *nr_events < min;
2527
2528 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2529 struct kiocb *kiocb = &req->rw.kiocb;
2530 int ret;
2531
2532 /*
2533 * Move completed and retryable entries to our local lists.
2534 * If we find a request that requires polling, break out
2535 * and complete those lists first, if we have entries there.
2536 */
2537 if (READ_ONCE(req->iopoll_completed)) {
2538 list_move_tail(&req->inflight_entry, &done);
2539 continue;
2540 }
2541 if (!list_empty(&done))
2542 break;
2543
2544 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2545 if (unlikely(ret < 0))
2546 return ret;
2547 else if (ret)
2548 spin = false;
2549
2550 /* iopoll may have completed current req */
2551 if (READ_ONCE(req->iopoll_completed))
2552 list_move_tail(&req->inflight_entry, &done);
2553 }
2554
2555 if (!list_empty(&done))
2556 io_iopoll_complete(ctx, nr_events, &done);
2557
2558 return 0;
2559 }
2560
2561 /*
2562 * We can't just wait for polled events to come to us, we have to actively
2563 * find and complete them.
2564 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)2565 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2566 {
2567 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2568 return;
2569
2570 mutex_lock(&ctx->uring_lock);
2571 while (!list_empty(&ctx->iopoll_list)) {
2572 unsigned int nr_events = 0;
2573
2574 io_do_iopoll(ctx, &nr_events, 0);
2575
2576 /* let it sleep and repeat later if can't complete a request */
2577 if (nr_events == 0)
2578 break;
2579 /*
2580 * Ensure we allow local-to-the-cpu processing to take place,
2581 * in this case we need to ensure that we reap all events.
2582 * Also let task_work, etc. to progress by releasing the mutex
2583 */
2584 if (need_resched()) {
2585 mutex_unlock(&ctx->uring_lock);
2586 cond_resched();
2587 mutex_lock(&ctx->uring_lock);
2588 }
2589 }
2590 mutex_unlock(&ctx->uring_lock);
2591 }
2592
io_iopoll_check(struct io_ring_ctx * ctx,long min)2593 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2594 {
2595 unsigned int nr_events = 0;
2596 int ret = 0;
2597
2598 /*
2599 * We disallow the app entering submit/complete with polling, but we
2600 * still need to lock the ring to prevent racing with polled issue
2601 * that got punted to a workqueue.
2602 */
2603 mutex_lock(&ctx->uring_lock);
2604 /*
2605 * Don't enter poll loop if we already have events pending.
2606 * If we do, we can potentially be spinning for commands that
2607 * already triggered a CQE (eg in error).
2608 */
2609 if (test_bit(0, &ctx->check_cq_overflow))
2610 __io_cqring_overflow_flush(ctx, false);
2611 if (io_cqring_events(ctx))
2612 goto out;
2613 do {
2614 /*
2615 * If a submit got punted to a workqueue, we can have the
2616 * application entering polling for a command before it gets
2617 * issued. That app will hold the uring_lock for the duration
2618 * of the poll right here, so we need to take a breather every
2619 * now and then to ensure that the issue has a chance to add
2620 * the poll to the issued list. Otherwise we can spin here
2621 * forever, while the workqueue is stuck trying to acquire the
2622 * very same mutex.
2623 */
2624 if (list_empty(&ctx->iopoll_list)) {
2625 u32 tail = ctx->cached_cq_tail;
2626
2627 mutex_unlock(&ctx->uring_lock);
2628 io_run_task_work();
2629 mutex_lock(&ctx->uring_lock);
2630
2631 /* some requests don't go through iopoll_list */
2632 if (tail != ctx->cached_cq_tail ||
2633 list_empty(&ctx->iopoll_list))
2634 break;
2635 }
2636 ret = io_do_iopoll(ctx, &nr_events, min);
2637 } while (!ret && nr_events < min && !need_resched());
2638 out:
2639 mutex_unlock(&ctx->uring_lock);
2640 return ret;
2641 }
2642
kiocb_end_write(struct io_kiocb * req)2643 static void kiocb_end_write(struct io_kiocb *req)
2644 {
2645 /*
2646 * Tell lockdep we inherited freeze protection from submission
2647 * thread.
2648 */
2649 if (req->flags & REQ_F_ISREG) {
2650 struct super_block *sb = file_inode(req->file)->i_sb;
2651
2652 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2653 sb_end_write(sb);
2654 }
2655 }
2656
2657 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb * req)2658 static bool io_resubmit_prep(struct io_kiocb *req)
2659 {
2660 struct io_async_rw *rw = req->async_data;
2661
2662 if (!rw)
2663 return !io_req_prep_async(req);
2664 iov_iter_restore(&rw->iter, &rw->iter_state);
2665 return true;
2666 }
2667
io_rw_should_reissue(struct io_kiocb * req)2668 static bool io_rw_should_reissue(struct io_kiocb *req)
2669 {
2670 umode_t mode = file_inode(req->file)->i_mode;
2671 struct io_ring_ctx *ctx = req->ctx;
2672
2673 if (!S_ISBLK(mode) && !S_ISREG(mode))
2674 return false;
2675 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2676 !(ctx->flags & IORING_SETUP_IOPOLL)))
2677 return false;
2678 /*
2679 * If ref is dying, we might be running poll reap from the exit work.
2680 * Don't attempt to reissue from that path, just let it fail with
2681 * -EAGAIN.
2682 */
2683 if (percpu_ref_is_dying(&ctx->refs))
2684 return false;
2685 /*
2686 * Play it safe and assume not safe to re-import and reissue if we're
2687 * not in the original thread group (or in task context).
2688 */
2689 if (!same_thread_group(req->task, current) || !in_task())
2690 return false;
2691 return true;
2692 }
2693 #else
io_resubmit_prep(struct io_kiocb * req)2694 static bool io_resubmit_prep(struct io_kiocb *req)
2695 {
2696 return false;
2697 }
io_rw_should_reissue(struct io_kiocb * req)2698 static bool io_rw_should_reissue(struct io_kiocb *req)
2699 {
2700 return false;
2701 }
2702 #endif
2703
2704 /*
2705 * Trigger the notifications after having done some IO, and finish the write
2706 * accounting, if any.
2707 */
io_req_io_end(struct io_kiocb * req)2708 static void io_req_io_end(struct io_kiocb *req)
2709 {
2710 struct io_rw *rw = &req->rw;
2711
2712 if (rw->kiocb.ki_flags & IOCB_WRITE) {
2713 kiocb_end_write(req);
2714 fsnotify_modify(req->file);
2715 } else {
2716 fsnotify_access(req->file);
2717 }
2718 }
2719
__io_complete_rw_common(struct io_kiocb * req,long res)2720 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2721 {
2722 if (res != req->result) {
2723 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2724 io_rw_should_reissue(req)) {
2725 /*
2726 * Reissue will start accounting again, finish the
2727 * current cycle.
2728 */
2729 io_req_io_end(req);
2730 req->flags |= REQ_F_REISSUE;
2731 return true;
2732 }
2733 req_set_fail(req);
2734 req->result = res;
2735 }
2736 return false;
2737 }
2738
io_fixup_rw_res(struct io_kiocb * req,long res)2739 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
2740 {
2741 struct io_async_rw *io = req->async_data;
2742
2743 /* add previously done IO, if any */
2744 if (io && io->bytes_done > 0) {
2745 if (res < 0)
2746 res = io->bytes_done;
2747 else
2748 res += io->bytes_done;
2749 }
2750 return res;
2751 }
2752
io_req_task_complete(struct io_kiocb * req,bool * locked)2753 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2754 {
2755 unsigned int cflags = io_put_rw_kbuf(req);
2756 int res = req->result;
2757
2758 if (*locked) {
2759 struct io_ring_ctx *ctx = req->ctx;
2760 struct io_submit_state *state = &ctx->submit_state;
2761
2762 io_req_complete_state(req, res, cflags);
2763 state->compl_reqs[state->compl_nr++] = req;
2764 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2765 io_submit_flush_completions(ctx);
2766 } else {
2767 io_req_complete_post(req, res, cflags);
2768 }
2769 }
2770
io_req_rw_complete(struct io_kiocb * req,bool * locked)2771 static void io_req_rw_complete(struct io_kiocb *req, bool *locked)
2772 {
2773 io_req_io_end(req);
2774 io_req_task_complete(req, locked);
2775 }
2776
io_complete_rw(struct kiocb * kiocb,long res,long res2)2777 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2778 {
2779 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2780
2781 if (__io_complete_rw_common(req, res))
2782 return;
2783 req->result = io_fixup_rw_res(req, res);
2784 req->io_task_work.func = io_req_rw_complete;
2785 io_req_task_work_add(req);
2786 }
2787
io_complete_rw_iopoll(struct kiocb * kiocb,long res,long res2)2788 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2789 {
2790 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2791
2792 if (kiocb->ki_flags & IOCB_WRITE)
2793 kiocb_end_write(req);
2794 if (unlikely(res != req->result)) {
2795 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2796 req->flags |= REQ_F_REISSUE;
2797 return;
2798 }
2799 }
2800
2801 WRITE_ONCE(req->result, res);
2802 /* order with io_iopoll_complete() checking ->result */
2803 smp_wmb();
2804 WRITE_ONCE(req->iopoll_completed, 1);
2805 }
2806
2807 /*
2808 * After the iocb has been issued, it's safe to be found on the poll list.
2809 * Adding the kiocb to the list AFTER submission ensures that we don't
2810 * find it from a io_do_iopoll() thread before the issuer is done
2811 * accessing the kiocb cookie.
2812 */
io_iopoll_req_issued(struct io_kiocb * req)2813 static void io_iopoll_req_issued(struct io_kiocb *req)
2814 {
2815 struct io_ring_ctx *ctx = req->ctx;
2816 const bool in_async = io_wq_current_is_worker();
2817
2818 /* workqueue context doesn't hold uring_lock, grab it now */
2819 if (unlikely(in_async))
2820 mutex_lock(&ctx->uring_lock);
2821
2822 /*
2823 * Track whether we have multiple files in our lists. This will impact
2824 * how we do polling eventually, not spinning if we're on potentially
2825 * different devices.
2826 */
2827 if (list_empty(&ctx->iopoll_list)) {
2828 ctx->poll_multi_queue = false;
2829 } else if (!ctx->poll_multi_queue) {
2830 struct io_kiocb *list_req;
2831 unsigned int queue_num0, queue_num1;
2832
2833 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2834 inflight_entry);
2835
2836 if (list_req->file != req->file) {
2837 ctx->poll_multi_queue = true;
2838 } else {
2839 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2840 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2841 if (queue_num0 != queue_num1)
2842 ctx->poll_multi_queue = true;
2843 }
2844 }
2845
2846 /*
2847 * For fast devices, IO may have already completed. If it has, add
2848 * it to the front so we find it first.
2849 */
2850 if (READ_ONCE(req->iopoll_completed))
2851 list_add(&req->inflight_entry, &ctx->iopoll_list);
2852 else
2853 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2854
2855 if (unlikely(in_async)) {
2856 /*
2857 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2858 * in sq thread task context or in io worker task context. If
2859 * current task context is sq thread, we don't need to check
2860 * whether should wake up sq thread.
2861 */
2862 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2863 wq_has_sleeper(&ctx->sq_data->wait))
2864 wake_up(&ctx->sq_data->wait);
2865
2866 mutex_unlock(&ctx->uring_lock);
2867 }
2868 }
2869
io_bdev_nowait(struct block_device * bdev)2870 static bool io_bdev_nowait(struct block_device *bdev)
2871 {
2872 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2873 }
2874
2875 /*
2876 * If we tracked the file through the SCM inflight mechanism, we could support
2877 * any file. For now, just ensure that anything potentially problematic is done
2878 * inline.
2879 */
__io_file_supports_nowait(struct file * file,int rw)2880 static bool __io_file_supports_nowait(struct file *file, int rw)
2881 {
2882 umode_t mode = file_inode(file)->i_mode;
2883
2884 if (S_ISBLK(mode)) {
2885 if (IS_ENABLED(CONFIG_BLOCK) &&
2886 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2887 return true;
2888 return false;
2889 }
2890 if (S_ISSOCK(mode))
2891 return true;
2892 if (S_ISREG(mode)) {
2893 if (IS_ENABLED(CONFIG_BLOCK) &&
2894 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2895 file->f_op != &io_uring_fops)
2896 return true;
2897 return false;
2898 }
2899
2900 /* any ->read/write should understand O_NONBLOCK */
2901 if (file->f_flags & O_NONBLOCK)
2902 return true;
2903
2904 if (!(file->f_mode & FMODE_NOWAIT))
2905 return false;
2906
2907 if (rw == READ)
2908 return file->f_op->read_iter != NULL;
2909
2910 return file->f_op->write_iter != NULL;
2911 }
2912
io_file_supports_nowait(struct io_kiocb * req,int rw)2913 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2914 {
2915 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2916 return true;
2917 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2918 return true;
2919
2920 return __io_file_supports_nowait(req->file, rw);
2921 }
2922
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int rw)2923 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2924 int rw)
2925 {
2926 struct io_ring_ctx *ctx = req->ctx;
2927 struct kiocb *kiocb = &req->rw.kiocb;
2928 struct file *file = req->file;
2929 unsigned ioprio;
2930 int ret;
2931
2932 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2933 req->flags |= REQ_F_ISREG;
2934
2935 kiocb->ki_pos = READ_ONCE(sqe->off);
2936 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2937 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2938 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2939 if (unlikely(ret))
2940 return ret;
2941
2942 /*
2943 * If the file is marked O_NONBLOCK, still allow retry for it if it
2944 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2945 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2946 */
2947 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2948 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2949 req->flags |= REQ_F_NOWAIT;
2950
2951 ioprio = READ_ONCE(sqe->ioprio);
2952 if (ioprio) {
2953 ret = ioprio_check_cap(ioprio);
2954 if (ret)
2955 return ret;
2956
2957 kiocb->ki_ioprio = ioprio;
2958 } else
2959 kiocb->ki_ioprio = get_current_ioprio();
2960
2961 if (ctx->flags & IORING_SETUP_IOPOLL) {
2962 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2963 !kiocb->ki_filp->f_op->iopoll)
2964 return -EOPNOTSUPP;
2965
2966 kiocb->ki_flags |= IOCB_HIPRI;
2967 kiocb->ki_complete = io_complete_rw_iopoll;
2968 req->iopoll_completed = 0;
2969 } else {
2970 if (kiocb->ki_flags & IOCB_HIPRI)
2971 return -EINVAL;
2972 kiocb->ki_complete = io_complete_rw;
2973 }
2974
2975 /* used for fixed read/write too - just read unconditionally */
2976 req->buf_index = READ_ONCE(sqe->buf_index);
2977 req->imu = NULL;
2978
2979 if (req->opcode == IORING_OP_READ_FIXED ||
2980 req->opcode == IORING_OP_WRITE_FIXED) {
2981 struct io_ring_ctx *ctx = req->ctx;
2982 u16 index;
2983
2984 if (unlikely(req->buf_index >= ctx->nr_user_bufs))
2985 return -EFAULT;
2986 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
2987 req->imu = ctx->user_bufs[index];
2988 io_req_set_rsrc_node(req);
2989 }
2990
2991 req->rw.addr = READ_ONCE(sqe->addr);
2992 req->rw.len = READ_ONCE(sqe->len);
2993 return 0;
2994 }
2995
io_rw_done(struct kiocb * kiocb,ssize_t ret)2996 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2997 {
2998 switch (ret) {
2999 case -EIOCBQUEUED:
3000 break;
3001 case -ERESTARTSYS:
3002 case -ERESTARTNOINTR:
3003 case -ERESTARTNOHAND:
3004 case -ERESTART_RESTARTBLOCK:
3005 /*
3006 * We can't just restart the syscall, since previously
3007 * submitted sqes may already be in progress. Just fail this
3008 * IO with EINTR.
3009 */
3010 ret = -EINTR;
3011 fallthrough;
3012 default:
3013 kiocb->ki_complete(kiocb, ret, 0);
3014 }
3015 }
3016
io_kiocb_update_pos(struct io_kiocb * req)3017 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
3018 {
3019 struct kiocb *kiocb = &req->rw.kiocb;
3020
3021 if (kiocb->ki_pos != -1)
3022 return &kiocb->ki_pos;
3023
3024 if (!(req->file->f_mode & FMODE_STREAM)) {
3025 req->flags |= REQ_F_CUR_POS;
3026 kiocb->ki_pos = req->file->f_pos;
3027 return &kiocb->ki_pos;
3028 }
3029
3030 kiocb->ki_pos = 0;
3031 return NULL;
3032 }
3033
kiocb_done(struct kiocb * kiocb,ssize_t ret,unsigned int issue_flags)3034 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3035 unsigned int issue_flags)
3036 {
3037 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3038
3039 if (req->flags & REQ_F_CUR_POS)
3040 req->file->f_pos = kiocb->ki_pos;
3041 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw)) {
3042 if (!__io_complete_rw_common(req, ret)) {
3043 /*
3044 * Safe to call io_end from here as we're inline
3045 * from the submission path.
3046 */
3047 io_req_io_end(req);
3048 __io_req_complete(req, issue_flags,
3049 io_fixup_rw_res(req, ret),
3050 io_put_rw_kbuf(req));
3051 }
3052 } else {
3053 io_rw_done(kiocb, ret);
3054 }
3055
3056 if (req->flags & REQ_F_REISSUE) {
3057 req->flags &= ~REQ_F_REISSUE;
3058 if (io_resubmit_prep(req)) {
3059 io_req_task_queue_reissue(req);
3060 } else {
3061 unsigned int cflags = io_put_rw_kbuf(req);
3062 struct io_ring_ctx *ctx = req->ctx;
3063
3064 ret = io_fixup_rw_res(req, ret);
3065 req_set_fail(req);
3066 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3067 mutex_lock(&ctx->uring_lock);
3068 __io_req_complete(req, issue_flags, ret, cflags);
3069 mutex_unlock(&ctx->uring_lock);
3070 } else {
3071 __io_req_complete(req, issue_flags, ret, cflags);
3072 }
3073 }
3074 }
3075 }
3076
__io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter,struct io_mapped_ubuf * imu)3077 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3078 struct io_mapped_ubuf *imu)
3079 {
3080 size_t len = req->rw.len;
3081 u64 buf_end, buf_addr = req->rw.addr;
3082 size_t offset;
3083
3084 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3085 return -EFAULT;
3086 /* not inside the mapped region */
3087 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3088 return -EFAULT;
3089
3090 /*
3091 * May not be a start of buffer, set size appropriately
3092 * and advance us to the beginning.
3093 */
3094 offset = buf_addr - imu->ubuf;
3095 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3096
3097 if (offset) {
3098 /*
3099 * Don't use iov_iter_advance() here, as it's really slow for
3100 * using the latter parts of a big fixed buffer - it iterates
3101 * over each segment manually. We can cheat a bit here, because
3102 * we know that:
3103 *
3104 * 1) it's a BVEC iter, we set it up
3105 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3106 * first and last bvec
3107 *
3108 * So just find our index, and adjust the iterator afterwards.
3109 * If the offset is within the first bvec (or the whole first
3110 * bvec, just use iov_iter_advance(). This makes it easier
3111 * since we can just skip the first segment, which may not
3112 * be PAGE_SIZE aligned.
3113 */
3114 const struct bio_vec *bvec = imu->bvec;
3115
3116 if (offset <= bvec->bv_len) {
3117 iov_iter_advance(iter, offset);
3118 } else {
3119 unsigned long seg_skip;
3120
3121 /* skip first vec */
3122 offset -= bvec->bv_len;
3123 seg_skip = 1 + (offset >> PAGE_SHIFT);
3124
3125 iter->bvec = bvec + seg_skip;
3126 iter->nr_segs -= seg_skip;
3127 iter->count -= bvec->bv_len + offset;
3128 iter->iov_offset = offset & ~PAGE_MASK;
3129 }
3130 }
3131
3132 return 0;
3133 }
3134
io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter)3135 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3136 {
3137 if (WARN_ON_ONCE(!req->imu))
3138 return -EFAULT;
3139 return __io_import_fixed(req, rw, iter, req->imu);
3140 }
3141
io_ring_submit_unlock(struct io_ring_ctx * ctx,bool needs_lock)3142 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3143 {
3144 if (needs_lock)
3145 mutex_unlock(&ctx->uring_lock);
3146 }
3147
io_ring_submit_lock(struct io_ring_ctx * ctx,bool needs_lock)3148 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3149 {
3150 /*
3151 * "Normal" inline submissions always hold the uring_lock, since we
3152 * grab it from the system call. Same is true for the SQPOLL offload.
3153 * The only exception is when we've detached the request and issue it
3154 * from an async worker thread, grab the lock for that case.
3155 */
3156 if (needs_lock)
3157 mutex_lock(&ctx->uring_lock);
3158 }
3159
io_buffer_select(struct io_kiocb * req,size_t * len,int bgid,struct io_buffer * kbuf,bool needs_lock)3160 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3161 int bgid, struct io_buffer *kbuf,
3162 bool needs_lock)
3163 {
3164 struct io_buffer *head;
3165
3166 if (req->flags & REQ_F_BUFFER_SELECTED)
3167 return kbuf;
3168
3169 io_ring_submit_lock(req->ctx, needs_lock);
3170
3171 lockdep_assert_held(&req->ctx->uring_lock);
3172
3173 head = xa_load(&req->ctx->io_buffers, bgid);
3174 if (head) {
3175 if (!list_empty(&head->list)) {
3176 kbuf = list_last_entry(&head->list, struct io_buffer,
3177 list);
3178 list_del(&kbuf->list);
3179 } else {
3180 kbuf = head;
3181 xa_erase(&req->ctx->io_buffers, bgid);
3182 }
3183 if (*len > kbuf->len)
3184 *len = kbuf->len;
3185 } else {
3186 kbuf = ERR_PTR(-ENOBUFS);
3187 }
3188
3189 io_ring_submit_unlock(req->ctx, needs_lock);
3190
3191 return kbuf;
3192 }
3193
io_rw_buffer_select(struct io_kiocb * req,size_t * len,bool needs_lock)3194 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3195 bool needs_lock)
3196 {
3197 struct io_buffer *kbuf;
3198 u16 bgid;
3199
3200 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3201 bgid = req->buf_index;
3202 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3203 if (IS_ERR(kbuf))
3204 return kbuf;
3205 req->rw.addr = (u64) (unsigned long) kbuf;
3206 req->flags |= REQ_F_BUFFER_SELECTED;
3207 return u64_to_user_ptr(kbuf->addr);
3208 }
3209
3210 #ifdef CONFIG_COMPAT
io_compat_import(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3211 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3212 bool needs_lock)
3213 {
3214 struct compat_iovec __user *uiov;
3215 compat_ssize_t clen;
3216 void __user *buf;
3217 ssize_t len;
3218
3219 uiov = u64_to_user_ptr(req->rw.addr);
3220 if (!access_ok(uiov, sizeof(*uiov)))
3221 return -EFAULT;
3222 if (__get_user(clen, &uiov->iov_len))
3223 return -EFAULT;
3224 if (clen < 0)
3225 return -EINVAL;
3226
3227 len = clen;
3228 buf = io_rw_buffer_select(req, &len, needs_lock);
3229 if (IS_ERR(buf))
3230 return PTR_ERR(buf);
3231 iov[0].iov_base = buf;
3232 iov[0].iov_len = (compat_size_t) len;
3233 return 0;
3234 }
3235 #endif
3236
__io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3237 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3238 bool needs_lock)
3239 {
3240 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3241 void __user *buf;
3242 ssize_t len;
3243
3244 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3245 return -EFAULT;
3246
3247 len = iov[0].iov_len;
3248 if (len < 0)
3249 return -EINVAL;
3250 buf = io_rw_buffer_select(req, &len, needs_lock);
3251 if (IS_ERR(buf))
3252 return PTR_ERR(buf);
3253 iov[0].iov_base = buf;
3254 iov[0].iov_len = len;
3255 return 0;
3256 }
3257
io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3258 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3259 bool needs_lock)
3260 {
3261 if (req->flags & REQ_F_BUFFER_SELECTED) {
3262 struct io_buffer *kbuf;
3263
3264 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3265 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3266 iov[0].iov_len = kbuf->len;
3267 return 0;
3268 }
3269 if (req->rw.len != 1)
3270 return -EINVAL;
3271
3272 #ifdef CONFIG_COMPAT
3273 if (req->ctx->compat)
3274 return io_compat_import(req, iov, needs_lock);
3275 #endif
3276
3277 return __io_iov_buffer_select(req, iov, needs_lock);
3278 }
3279
io_import_iovec(int rw,struct io_kiocb * req,struct iovec ** iovec,struct iov_iter * iter,bool needs_lock)3280 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3281 struct iov_iter *iter, bool needs_lock)
3282 {
3283 void __user *buf = u64_to_user_ptr(req->rw.addr);
3284 size_t sqe_len = req->rw.len;
3285 u8 opcode = req->opcode;
3286 ssize_t ret;
3287
3288 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3289 *iovec = NULL;
3290 return io_import_fixed(req, rw, iter);
3291 }
3292
3293 /* buffer index only valid with fixed read/write, or buffer select */
3294 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3295 return -EINVAL;
3296
3297 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3298 if (req->flags & REQ_F_BUFFER_SELECT) {
3299 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3300 if (IS_ERR(buf))
3301 return PTR_ERR(buf);
3302 req->rw.len = sqe_len;
3303 }
3304
3305 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3306 *iovec = NULL;
3307 return ret;
3308 }
3309
3310 if (req->flags & REQ_F_BUFFER_SELECT) {
3311 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3312 if (!ret)
3313 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3314 *iovec = NULL;
3315 return ret;
3316 }
3317
3318 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3319 req->ctx->compat);
3320 }
3321
io_kiocb_ppos(struct kiocb * kiocb)3322 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3323 {
3324 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3325 }
3326
3327 /*
3328 * For files that don't have ->read_iter() and ->write_iter(), handle them
3329 * by looping over ->read() or ->write() manually.
3330 */
loop_rw_iter(int rw,struct io_kiocb * req,struct iov_iter * iter)3331 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3332 {
3333 struct kiocb *kiocb = &req->rw.kiocb;
3334 struct file *file = req->file;
3335 ssize_t ret = 0;
3336 loff_t *ppos;
3337
3338 /*
3339 * Don't support polled IO through this interface, and we can't
3340 * support non-blocking either. For the latter, this just causes
3341 * the kiocb to be handled from an async context.
3342 */
3343 if (kiocb->ki_flags & IOCB_HIPRI)
3344 return -EOPNOTSUPP;
3345 if (kiocb->ki_flags & IOCB_NOWAIT)
3346 return -EAGAIN;
3347
3348 ppos = io_kiocb_ppos(kiocb);
3349
3350 while (iov_iter_count(iter)) {
3351 struct iovec iovec;
3352 ssize_t nr;
3353
3354 if (!iov_iter_is_bvec(iter)) {
3355 iovec = iov_iter_iovec(iter);
3356 } else {
3357 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3358 iovec.iov_len = req->rw.len;
3359 }
3360
3361 if (rw == READ) {
3362 nr = file->f_op->read(file, iovec.iov_base,
3363 iovec.iov_len, ppos);
3364 } else {
3365 nr = file->f_op->write(file, iovec.iov_base,
3366 iovec.iov_len, ppos);
3367 }
3368
3369 if (nr < 0) {
3370 if (!ret)
3371 ret = nr;
3372 break;
3373 }
3374 ret += nr;
3375 if (!iov_iter_is_bvec(iter)) {
3376 iov_iter_advance(iter, nr);
3377 } else {
3378 req->rw.addr += nr;
3379 req->rw.len -= nr;
3380 if (!req->rw.len)
3381 break;
3382 }
3383 if (nr != iovec.iov_len)
3384 break;
3385 }
3386
3387 return ret;
3388 }
3389
io_req_map_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter)3390 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3391 const struct iovec *fast_iov, struct iov_iter *iter)
3392 {
3393 struct io_async_rw *rw = req->async_data;
3394
3395 memcpy(&rw->iter, iter, sizeof(*iter));
3396 rw->free_iovec = iovec;
3397 rw->bytes_done = 0;
3398 /* can only be fixed buffers, no need to do anything */
3399 if (iov_iter_is_bvec(iter))
3400 return;
3401 if (!iovec) {
3402 unsigned iov_off = 0;
3403
3404 rw->iter.iov = rw->fast_iov;
3405 if (iter->iov != fast_iov) {
3406 iov_off = iter->iov - fast_iov;
3407 rw->iter.iov += iov_off;
3408 }
3409 if (rw->fast_iov != fast_iov)
3410 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3411 sizeof(struct iovec) * iter->nr_segs);
3412 } else {
3413 req->flags |= REQ_F_NEED_CLEANUP;
3414 }
3415 }
3416
io_alloc_async_data(struct io_kiocb * req)3417 static inline int io_alloc_async_data(struct io_kiocb *req)
3418 {
3419 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3420 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3421 return req->async_data == NULL;
3422 }
3423
io_setup_async_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter,bool force)3424 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3425 const struct iovec *fast_iov,
3426 struct iov_iter *iter, bool force)
3427 {
3428 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3429 return 0;
3430 if (!req->async_data) {
3431 struct io_async_rw *iorw;
3432
3433 if (io_alloc_async_data(req)) {
3434 kfree(iovec);
3435 return -ENOMEM;
3436 }
3437
3438 io_req_map_rw(req, iovec, fast_iov, iter);
3439 iorw = req->async_data;
3440 /* we've copied and mapped the iter, ensure state is saved */
3441 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3442 }
3443 return 0;
3444 }
3445
io_rw_prep_async(struct io_kiocb * req,int rw)3446 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3447 {
3448 struct io_async_rw *iorw = req->async_data;
3449 struct iovec *iov = iorw->fast_iov;
3450 int ret;
3451
3452 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3453 if (unlikely(ret < 0))
3454 return ret;
3455
3456 iorw->bytes_done = 0;
3457 iorw->free_iovec = iov;
3458 if (iov)
3459 req->flags |= REQ_F_NEED_CLEANUP;
3460 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3461 return 0;
3462 }
3463
io_read_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3464 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3465 {
3466 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3467 return -EBADF;
3468 return io_prep_rw(req, sqe, READ);
3469 }
3470
3471 /*
3472 * This is our waitqueue callback handler, registered through lock_page_async()
3473 * when we initially tried to do the IO with the iocb armed our waitqueue.
3474 * This gets called when the page is unlocked, and we generally expect that to
3475 * happen when the page IO is completed and the page is now uptodate. This will
3476 * queue a task_work based retry of the operation, attempting to copy the data
3477 * again. If the latter fails because the page was NOT uptodate, then we will
3478 * do a thread based blocking retry of the operation. That's the unexpected
3479 * slow path.
3480 */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)3481 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3482 int sync, void *arg)
3483 {
3484 struct wait_page_queue *wpq;
3485 struct io_kiocb *req = wait->private;
3486 struct wait_page_key *key = arg;
3487
3488 wpq = container_of(wait, struct wait_page_queue, wait);
3489
3490 if (!wake_page_match(wpq, key))
3491 return 0;
3492
3493 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3494 list_del_init(&wait->entry);
3495 io_req_task_queue(req);
3496 return 1;
3497 }
3498
3499 /*
3500 * This controls whether a given IO request should be armed for async page
3501 * based retry. If we return false here, the request is handed to the async
3502 * worker threads for retry. If we're doing buffered reads on a regular file,
3503 * we prepare a private wait_page_queue entry and retry the operation. This
3504 * will either succeed because the page is now uptodate and unlocked, or it
3505 * will register a callback when the page is unlocked at IO completion. Through
3506 * that callback, io_uring uses task_work to setup a retry of the operation.
3507 * That retry will attempt the buffered read again. The retry will generally
3508 * succeed, or in rare cases where it fails, we then fall back to using the
3509 * async worker threads for a blocking retry.
3510 */
io_rw_should_retry(struct io_kiocb * req)3511 static bool io_rw_should_retry(struct io_kiocb *req)
3512 {
3513 struct io_async_rw *rw = req->async_data;
3514 struct wait_page_queue *wait = &rw->wpq;
3515 struct kiocb *kiocb = &req->rw.kiocb;
3516
3517 /* never retry for NOWAIT, we just complete with -EAGAIN */
3518 if (req->flags & REQ_F_NOWAIT)
3519 return false;
3520
3521 /* Only for buffered IO */
3522 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3523 return false;
3524
3525 /*
3526 * just use poll if we can, and don't attempt if the fs doesn't
3527 * support callback based unlocks
3528 */
3529 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3530 return false;
3531
3532 wait->wait.func = io_async_buf_func;
3533 wait->wait.private = req;
3534 wait->wait.flags = 0;
3535 INIT_LIST_HEAD(&wait->wait.entry);
3536 kiocb->ki_flags |= IOCB_WAITQ;
3537 kiocb->ki_flags &= ~IOCB_NOWAIT;
3538 kiocb->ki_waitq = wait;
3539 return true;
3540 }
3541
io_iter_do_read(struct io_kiocb * req,struct iov_iter * iter)3542 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3543 {
3544 if (req->file->f_op->read_iter)
3545 return call_read_iter(req->file, &req->rw.kiocb, iter);
3546 else if (req->file->f_op->read)
3547 return loop_rw_iter(READ, req, iter);
3548 else
3549 return -EINVAL;
3550 }
3551
need_read_all(struct io_kiocb * req)3552 static bool need_read_all(struct io_kiocb *req)
3553 {
3554 return req->flags & REQ_F_ISREG ||
3555 S_ISBLK(file_inode(req->file)->i_mode);
3556 }
3557
io_read(struct io_kiocb * req,unsigned int issue_flags)3558 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3559 {
3560 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3561 struct kiocb *kiocb = &req->rw.kiocb;
3562 struct iov_iter __iter, *iter = &__iter;
3563 struct io_async_rw *rw = req->async_data;
3564 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3565 struct iov_iter_state __state, *state;
3566 ssize_t ret, ret2;
3567 loff_t *ppos;
3568
3569 if (rw) {
3570 iter = &rw->iter;
3571 state = &rw->iter_state;
3572 /*
3573 * We come here from an earlier attempt, restore our state to
3574 * match in case it doesn't. It's cheap enough that we don't
3575 * need to make this conditional.
3576 */
3577 iov_iter_restore(iter, state);
3578 iovec = NULL;
3579 } else {
3580 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3581 if (ret < 0)
3582 return ret;
3583 state = &__state;
3584 iov_iter_save_state(iter, state);
3585 }
3586 req->result = iov_iter_count(iter);
3587
3588 /* Ensure we clear previously set non-block flag */
3589 if (!force_nonblock)
3590 kiocb->ki_flags &= ~IOCB_NOWAIT;
3591 else
3592 kiocb->ki_flags |= IOCB_NOWAIT;
3593
3594 /* If the file doesn't support async, just async punt */
3595 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3596 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3597 return ret ?: -EAGAIN;
3598 }
3599
3600 ppos = io_kiocb_update_pos(req);
3601
3602 ret = rw_verify_area(READ, req->file, ppos, req->result);
3603 if (unlikely(ret)) {
3604 kfree(iovec);
3605 return ret;
3606 }
3607
3608 ret = io_iter_do_read(req, iter);
3609
3610 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3611 req->flags &= ~REQ_F_REISSUE;
3612 /* IOPOLL retry should happen for io-wq threads */
3613 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3614 goto done;
3615 /* no retry on NONBLOCK nor RWF_NOWAIT */
3616 if (req->flags & REQ_F_NOWAIT)
3617 goto done;
3618 ret = 0;
3619 } else if (ret == -EIOCBQUEUED) {
3620 goto out_free;
3621 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3622 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3623 /* read all, failed, already did sync or don't want to retry */
3624 goto done;
3625 }
3626
3627 /*
3628 * Don't depend on the iter state matching what was consumed, or being
3629 * untouched in case of error. Restore it and we'll advance it
3630 * manually if we need to.
3631 */
3632 iov_iter_restore(iter, state);
3633
3634 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3635 if (ret2)
3636 return ret2;
3637
3638 iovec = NULL;
3639 rw = req->async_data;
3640 /*
3641 * Now use our persistent iterator and state, if we aren't already.
3642 * We've restored and mapped the iter to match.
3643 */
3644 if (iter != &rw->iter) {
3645 iter = &rw->iter;
3646 state = &rw->iter_state;
3647 }
3648
3649 do {
3650 /*
3651 * We end up here because of a partial read, either from
3652 * above or inside this loop. Advance the iter by the bytes
3653 * that were consumed.
3654 */
3655 iov_iter_advance(iter, ret);
3656 if (!iov_iter_count(iter))
3657 break;
3658 rw->bytes_done += ret;
3659 iov_iter_save_state(iter, state);
3660
3661 /* if we can retry, do so with the callbacks armed */
3662 if (!io_rw_should_retry(req)) {
3663 kiocb->ki_flags &= ~IOCB_WAITQ;
3664 return -EAGAIN;
3665 }
3666
3667 req->result = iov_iter_count(iter);
3668 /*
3669 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3670 * we get -EIOCBQUEUED, then we'll get a notification when the
3671 * desired page gets unlocked. We can also get a partial read
3672 * here, and if we do, then just retry at the new offset.
3673 */
3674 ret = io_iter_do_read(req, iter);
3675 if (ret == -EIOCBQUEUED)
3676 return 0;
3677 /* we got some bytes, but not all. retry. */
3678 kiocb->ki_flags &= ~IOCB_WAITQ;
3679 iov_iter_restore(iter, state);
3680 } while (ret > 0);
3681 done:
3682 kiocb_done(kiocb, ret, issue_flags);
3683 out_free:
3684 /* it's faster to check here then delegate to kfree */
3685 if (iovec)
3686 kfree(iovec);
3687 return 0;
3688 }
3689
io_write_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3690 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3691 {
3692 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3693 return -EBADF;
3694 return io_prep_rw(req, sqe, WRITE);
3695 }
3696
io_write(struct io_kiocb * req,unsigned int issue_flags)3697 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3698 {
3699 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3700 struct kiocb *kiocb = &req->rw.kiocb;
3701 struct iov_iter __iter, *iter = &__iter;
3702 struct io_async_rw *rw = req->async_data;
3703 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3704 struct iov_iter_state __state, *state;
3705 ssize_t ret, ret2;
3706 loff_t *ppos;
3707
3708 if (rw) {
3709 iter = &rw->iter;
3710 state = &rw->iter_state;
3711 iov_iter_restore(iter, state);
3712 iovec = NULL;
3713 } else {
3714 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3715 if (ret < 0)
3716 return ret;
3717 state = &__state;
3718 iov_iter_save_state(iter, state);
3719 }
3720 req->result = iov_iter_count(iter);
3721
3722 /* Ensure we clear previously set non-block flag */
3723 if (!force_nonblock)
3724 kiocb->ki_flags &= ~IOCB_NOWAIT;
3725 else
3726 kiocb->ki_flags |= IOCB_NOWAIT;
3727
3728 /* If the file doesn't support async, just async punt */
3729 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3730 goto copy_iov;
3731
3732 /* file path doesn't support NOWAIT for non-direct_IO */
3733 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3734 (req->flags & REQ_F_ISREG))
3735 goto copy_iov;
3736
3737 ppos = io_kiocb_update_pos(req);
3738
3739 ret = rw_verify_area(WRITE, req->file, ppos, req->result);
3740 if (unlikely(ret))
3741 goto out_free;
3742
3743 /*
3744 * Open-code file_start_write here to grab freeze protection,
3745 * which will be released by another thread in
3746 * io_complete_rw(). Fool lockdep by telling it the lock got
3747 * released so that it doesn't complain about the held lock when
3748 * we return to userspace.
3749 */
3750 if (req->flags & REQ_F_ISREG) {
3751 sb_start_write(file_inode(req->file)->i_sb);
3752 __sb_writers_release(file_inode(req->file)->i_sb,
3753 SB_FREEZE_WRITE);
3754 }
3755 kiocb->ki_flags |= IOCB_WRITE;
3756
3757 if (req->file->f_op->write_iter)
3758 ret2 = call_write_iter(req->file, kiocb, iter);
3759 else if (req->file->f_op->write)
3760 ret2 = loop_rw_iter(WRITE, req, iter);
3761 else
3762 ret2 = -EINVAL;
3763
3764 if (req->flags & REQ_F_REISSUE) {
3765 req->flags &= ~REQ_F_REISSUE;
3766 ret2 = -EAGAIN;
3767 }
3768
3769 /*
3770 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3771 * retry them without IOCB_NOWAIT.
3772 */
3773 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3774 ret2 = -EAGAIN;
3775 /* no retry on NONBLOCK nor RWF_NOWAIT */
3776 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3777 goto done;
3778 if (!force_nonblock || ret2 != -EAGAIN) {
3779 /* IOPOLL retry should happen for io-wq threads */
3780 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3781 goto copy_iov;
3782 done:
3783 kiocb_done(kiocb, ret2, issue_flags);
3784 } else {
3785 copy_iov:
3786 iov_iter_restore(iter, state);
3787 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3788 if (!ret) {
3789 if (kiocb->ki_flags & IOCB_WRITE)
3790 kiocb_end_write(req);
3791 return -EAGAIN;
3792 }
3793 return ret;
3794 }
3795 out_free:
3796 /* it's reportedly faster than delegating the null check to kfree() */
3797 if (iovec)
3798 kfree(iovec);
3799 return ret;
3800 }
3801
io_renameat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3802 static int io_renameat_prep(struct io_kiocb *req,
3803 const struct io_uring_sqe *sqe)
3804 {
3805 struct io_rename *ren = &req->rename;
3806 const char __user *oldf, *newf;
3807
3808 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3809 return -EINVAL;
3810 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3811 return -EINVAL;
3812 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3813 return -EBADF;
3814
3815 ren->old_dfd = READ_ONCE(sqe->fd);
3816 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3817 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3818 ren->new_dfd = READ_ONCE(sqe->len);
3819 ren->flags = READ_ONCE(sqe->rename_flags);
3820
3821 ren->oldpath = getname(oldf);
3822 if (IS_ERR(ren->oldpath))
3823 return PTR_ERR(ren->oldpath);
3824
3825 ren->newpath = getname(newf);
3826 if (IS_ERR(ren->newpath)) {
3827 putname(ren->oldpath);
3828 return PTR_ERR(ren->newpath);
3829 }
3830
3831 req->flags |= REQ_F_NEED_CLEANUP;
3832 return 0;
3833 }
3834
io_renameat(struct io_kiocb * req,unsigned int issue_flags)3835 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3836 {
3837 struct io_rename *ren = &req->rename;
3838 int ret;
3839
3840 if (issue_flags & IO_URING_F_NONBLOCK)
3841 return -EAGAIN;
3842
3843 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3844 ren->newpath, ren->flags);
3845
3846 req->flags &= ~REQ_F_NEED_CLEANUP;
3847 if (ret < 0)
3848 req_set_fail(req);
3849 io_req_complete(req, ret);
3850 return 0;
3851 }
3852
io_unlinkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3853 static int io_unlinkat_prep(struct io_kiocb *req,
3854 const struct io_uring_sqe *sqe)
3855 {
3856 struct io_unlink *un = &req->unlink;
3857 const char __user *fname;
3858
3859 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3860 return -EINVAL;
3861 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3862 sqe->splice_fd_in)
3863 return -EINVAL;
3864 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3865 return -EBADF;
3866
3867 un->dfd = READ_ONCE(sqe->fd);
3868
3869 un->flags = READ_ONCE(sqe->unlink_flags);
3870 if (un->flags & ~AT_REMOVEDIR)
3871 return -EINVAL;
3872
3873 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3874 un->filename = getname(fname);
3875 if (IS_ERR(un->filename))
3876 return PTR_ERR(un->filename);
3877
3878 req->flags |= REQ_F_NEED_CLEANUP;
3879 return 0;
3880 }
3881
io_unlinkat(struct io_kiocb * req,unsigned int issue_flags)3882 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3883 {
3884 struct io_unlink *un = &req->unlink;
3885 int ret;
3886
3887 if (issue_flags & IO_URING_F_NONBLOCK)
3888 return -EAGAIN;
3889
3890 if (un->flags & AT_REMOVEDIR)
3891 ret = do_rmdir(un->dfd, un->filename);
3892 else
3893 ret = do_unlinkat(un->dfd, un->filename);
3894
3895 req->flags &= ~REQ_F_NEED_CLEANUP;
3896 if (ret < 0)
3897 req_set_fail(req);
3898 io_req_complete(req, ret);
3899 return 0;
3900 }
3901
io_shutdown_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3902 static int io_shutdown_prep(struct io_kiocb *req,
3903 const struct io_uring_sqe *sqe)
3904 {
3905 #if defined(CONFIG_NET)
3906 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3907 return -EINVAL;
3908 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3909 sqe->buf_index || sqe->splice_fd_in))
3910 return -EINVAL;
3911
3912 req->shutdown.how = READ_ONCE(sqe->len);
3913 return 0;
3914 #else
3915 return -EOPNOTSUPP;
3916 #endif
3917 }
3918
io_shutdown(struct io_kiocb * req,unsigned int issue_flags)3919 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3920 {
3921 #if defined(CONFIG_NET)
3922 struct socket *sock;
3923 int ret;
3924
3925 if (issue_flags & IO_URING_F_NONBLOCK)
3926 return -EAGAIN;
3927
3928 sock = sock_from_file(req->file, &ret);
3929 if (unlikely(!sock))
3930 return ret;
3931
3932 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3933 if (ret < 0)
3934 req_set_fail(req);
3935 io_req_complete(req, ret);
3936 return 0;
3937 #else
3938 return -EOPNOTSUPP;
3939 #endif
3940 }
3941
__io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3942 static int __io_splice_prep(struct io_kiocb *req,
3943 const struct io_uring_sqe *sqe)
3944 {
3945 struct io_splice *sp = &req->splice;
3946 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3947
3948 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3949 return -EINVAL;
3950
3951 sp->len = READ_ONCE(sqe->len);
3952 sp->flags = READ_ONCE(sqe->splice_flags);
3953 if (unlikely(sp->flags & ~valid_flags))
3954 return -EINVAL;
3955 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
3956 return 0;
3957 }
3958
io_tee_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3959 static int io_tee_prep(struct io_kiocb *req,
3960 const struct io_uring_sqe *sqe)
3961 {
3962 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3963 return -EINVAL;
3964 return __io_splice_prep(req, sqe);
3965 }
3966
io_tee(struct io_kiocb * req,unsigned int issue_flags)3967 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3968 {
3969 struct io_splice *sp = &req->splice;
3970 struct file *out = sp->file_out;
3971 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3972 struct file *in;
3973 long ret = 0;
3974
3975 if (issue_flags & IO_URING_F_NONBLOCK)
3976 return -EAGAIN;
3977
3978 in = io_file_get(req->ctx, req, sp->splice_fd_in,
3979 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
3980 if (!in) {
3981 ret = -EBADF;
3982 goto done;
3983 }
3984
3985 if (sp->len)
3986 ret = do_tee(in, out, sp->len, flags);
3987
3988 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3989 io_put_file(in);
3990 done:
3991 if (ret != sp->len)
3992 req_set_fail(req);
3993 io_req_complete(req, ret);
3994 return 0;
3995 }
3996
io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3997 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3998 {
3999 struct io_splice *sp = &req->splice;
4000
4001 sp->off_in = READ_ONCE(sqe->splice_off_in);
4002 sp->off_out = READ_ONCE(sqe->off);
4003 return __io_splice_prep(req, sqe);
4004 }
4005
io_splice(struct io_kiocb * req,unsigned int issue_flags)4006 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4007 {
4008 struct io_splice *sp = &req->splice;
4009 struct file *out = sp->file_out;
4010 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4011 loff_t *poff_in, *poff_out;
4012 struct file *in;
4013 long ret = 0;
4014
4015 if (issue_flags & IO_URING_F_NONBLOCK)
4016 return -EAGAIN;
4017
4018 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4019 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4020 if (!in) {
4021 ret = -EBADF;
4022 goto done;
4023 }
4024
4025 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4026 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4027
4028 if (sp->len)
4029 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4030
4031 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4032 io_put_file(in);
4033 done:
4034 if (ret != sp->len)
4035 req_set_fail(req);
4036 io_req_complete(req, ret);
4037 return 0;
4038 }
4039
4040 /*
4041 * IORING_OP_NOP just posts a completion event, nothing else.
4042 */
io_nop(struct io_kiocb * req,unsigned int issue_flags)4043 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4044 {
4045 struct io_ring_ctx *ctx = req->ctx;
4046
4047 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4048 return -EINVAL;
4049
4050 __io_req_complete(req, issue_flags, 0, 0);
4051 return 0;
4052 }
4053
io_fsync_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4054 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4055 {
4056 struct io_ring_ctx *ctx = req->ctx;
4057
4058 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4059 return -EINVAL;
4060 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4061 sqe->splice_fd_in))
4062 return -EINVAL;
4063
4064 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4065 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4066 return -EINVAL;
4067
4068 req->sync.off = READ_ONCE(sqe->off);
4069 req->sync.len = READ_ONCE(sqe->len);
4070 return 0;
4071 }
4072
io_fsync(struct io_kiocb * req,unsigned int issue_flags)4073 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4074 {
4075 loff_t end = req->sync.off + req->sync.len;
4076 int ret;
4077
4078 /* fsync always requires a blocking context */
4079 if (issue_flags & IO_URING_F_NONBLOCK)
4080 return -EAGAIN;
4081
4082 ret = vfs_fsync_range(req->file, req->sync.off,
4083 end > 0 ? end : LLONG_MAX,
4084 req->sync.flags & IORING_FSYNC_DATASYNC);
4085 if (ret < 0)
4086 req_set_fail(req);
4087 io_req_complete(req, ret);
4088 return 0;
4089 }
4090
io_fallocate_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4091 static int io_fallocate_prep(struct io_kiocb *req,
4092 const struct io_uring_sqe *sqe)
4093 {
4094 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4095 sqe->splice_fd_in)
4096 return -EINVAL;
4097 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4098 return -EINVAL;
4099
4100 req->sync.off = READ_ONCE(sqe->off);
4101 req->sync.len = READ_ONCE(sqe->addr);
4102 req->sync.mode = READ_ONCE(sqe->len);
4103 return 0;
4104 }
4105
io_fallocate(struct io_kiocb * req,unsigned int issue_flags)4106 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4107 {
4108 int ret;
4109
4110 /* fallocate always requiring blocking context */
4111 if (issue_flags & IO_URING_F_NONBLOCK)
4112 return -EAGAIN;
4113 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4114 req->sync.len);
4115 if (ret < 0)
4116 req_set_fail(req);
4117 else
4118 fsnotify_modify(req->file);
4119 io_req_complete(req, ret);
4120 return 0;
4121 }
4122
__io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4123 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4124 {
4125 const char __user *fname;
4126 int ret;
4127
4128 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4129 return -EINVAL;
4130 if (unlikely(sqe->ioprio || sqe->buf_index))
4131 return -EINVAL;
4132 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4133 return -EBADF;
4134
4135 /* open.how should be already initialised */
4136 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4137 req->open.how.flags |= O_LARGEFILE;
4138
4139 req->open.dfd = READ_ONCE(sqe->fd);
4140 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4141 req->open.filename = getname(fname);
4142 if (IS_ERR(req->open.filename)) {
4143 ret = PTR_ERR(req->open.filename);
4144 req->open.filename = NULL;
4145 return ret;
4146 }
4147
4148 req->open.file_slot = READ_ONCE(sqe->file_index);
4149 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4150 return -EINVAL;
4151
4152 req->open.nofile = rlimit(RLIMIT_NOFILE);
4153 req->flags |= REQ_F_NEED_CLEANUP;
4154 return 0;
4155 }
4156
io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4157 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4158 {
4159 u64 mode = READ_ONCE(sqe->len);
4160 u64 flags = READ_ONCE(sqe->open_flags);
4161
4162 req->open.how = build_open_how(flags, mode);
4163 return __io_openat_prep(req, sqe);
4164 }
4165
io_openat2_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4166 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4167 {
4168 struct open_how __user *how;
4169 size_t len;
4170 int ret;
4171
4172 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4173 len = READ_ONCE(sqe->len);
4174 if (len < OPEN_HOW_SIZE_VER0)
4175 return -EINVAL;
4176
4177 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4178 len);
4179 if (ret)
4180 return ret;
4181
4182 return __io_openat_prep(req, sqe);
4183 }
4184
io_openat2(struct io_kiocb * req,unsigned int issue_flags)4185 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4186 {
4187 struct open_flags op;
4188 struct file *file;
4189 bool resolve_nonblock, nonblock_set;
4190 bool fixed = !!req->open.file_slot;
4191 int ret;
4192
4193 ret = build_open_flags(&req->open.how, &op);
4194 if (ret)
4195 goto err;
4196 nonblock_set = op.open_flag & O_NONBLOCK;
4197 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4198 if (issue_flags & IO_URING_F_NONBLOCK) {
4199 /*
4200 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4201 * it'll always -EAGAIN
4202 */
4203 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4204 return -EAGAIN;
4205 op.lookup_flags |= LOOKUP_CACHED;
4206 op.open_flag |= O_NONBLOCK;
4207 }
4208
4209 if (!fixed) {
4210 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4211 if (ret < 0)
4212 goto err;
4213 }
4214
4215 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4216 if (IS_ERR(file)) {
4217 /*
4218 * We could hang on to this 'fd' on retrying, but seems like
4219 * marginal gain for something that is now known to be a slower
4220 * path. So just put it, and we'll get a new one when we retry.
4221 */
4222 if (!fixed)
4223 put_unused_fd(ret);
4224
4225 ret = PTR_ERR(file);
4226 /* only retry if RESOLVE_CACHED wasn't already set by application */
4227 if (ret == -EAGAIN &&
4228 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4229 return -EAGAIN;
4230 goto err;
4231 }
4232
4233 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4234 file->f_flags &= ~O_NONBLOCK;
4235 fsnotify_open(file);
4236
4237 if (!fixed)
4238 fd_install(ret, file);
4239 else
4240 ret = io_install_fixed_file(req, file, issue_flags,
4241 req->open.file_slot - 1);
4242 err:
4243 putname(req->open.filename);
4244 req->flags &= ~REQ_F_NEED_CLEANUP;
4245 if (ret < 0)
4246 req_set_fail(req);
4247 __io_req_complete(req, issue_flags, ret, 0);
4248 return 0;
4249 }
4250
io_openat(struct io_kiocb * req,unsigned int issue_flags)4251 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4252 {
4253 return io_openat2(req, issue_flags);
4254 }
4255
io_remove_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4256 static int io_remove_buffers_prep(struct io_kiocb *req,
4257 const struct io_uring_sqe *sqe)
4258 {
4259 struct io_provide_buf *p = &req->pbuf;
4260 u64 tmp;
4261
4262 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4263 sqe->splice_fd_in)
4264 return -EINVAL;
4265
4266 tmp = READ_ONCE(sqe->fd);
4267 if (!tmp || tmp > USHRT_MAX)
4268 return -EINVAL;
4269
4270 memset(p, 0, sizeof(*p));
4271 p->nbufs = tmp;
4272 p->bgid = READ_ONCE(sqe->buf_group);
4273 return 0;
4274 }
4275
__io_remove_buffers(struct io_ring_ctx * ctx,struct io_buffer * buf,int bgid,unsigned nbufs)4276 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4277 int bgid, unsigned nbufs)
4278 {
4279 unsigned i = 0;
4280
4281 /* shouldn't happen */
4282 if (!nbufs)
4283 return 0;
4284
4285 /* the head kbuf is the list itself */
4286 while (!list_empty(&buf->list)) {
4287 struct io_buffer *nxt;
4288
4289 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4290 list_del(&nxt->list);
4291 kfree(nxt);
4292 if (++i == nbufs)
4293 return i;
4294 cond_resched();
4295 }
4296 i++;
4297 kfree(buf);
4298 xa_erase(&ctx->io_buffers, bgid);
4299
4300 return i;
4301 }
4302
io_remove_buffers(struct io_kiocb * req,unsigned int issue_flags)4303 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4304 {
4305 struct io_provide_buf *p = &req->pbuf;
4306 struct io_ring_ctx *ctx = req->ctx;
4307 struct io_buffer *head;
4308 int ret = 0;
4309 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4310
4311 io_ring_submit_lock(ctx, !force_nonblock);
4312
4313 lockdep_assert_held(&ctx->uring_lock);
4314
4315 ret = -ENOENT;
4316 head = xa_load(&ctx->io_buffers, p->bgid);
4317 if (head)
4318 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4319 if (ret < 0)
4320 req_set_fail(req);
4321
4322 /* complete before unlock, IOPOLL may need the lock */
4323 __io_req_complete(req, issue_flags, ret, 0);
4324 io_ring_submit_unlock(ctx, !force_nonblock);
4325 return 0;
4326 }
4327
io_provide_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4328 static int io_provide_buffers_prep(struct io_kiocb *req,
4329 const struct io_uring_sqe *sqe)
4330 {
4331 unsigned long size, tmp_check;
4332 struct io_provide_buf *p = &req->pbuf;
4333 u64 tmp;
4334
4335 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4336 return -EINVAL;
4337
4338 tmp = READ_ONCE(sqe->fd);
4339 if (!tmp || tmp > USHRT_MAX)
4340 return -E2BIG;
4341 p->nbufs = tmp;
4342 p->addr = READ_ONCE(sqe->addr);
4343 p->len = READ_ONCE(sqe->len);
4344
4345 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4346 &size))
4347 return -EOVERFLOW;
4348 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4349 return -EOVERFLOW;
4350
4351 size = (unsigned long)p->len * p->nbufs;
4352 if (!access_ok(u64_to_user_ptr(p->addr), size))
4353 return -EFAULT;
4354
4355 p->bgid = READ_ONCE(sqe->buf_group);
4356 tmp = READ_ONCE(sqe->off);
4357 if (tmp > USHRT_MAX)
4358 return -E2BIG;
4359 p->bid = tmp;
4360 return 0;
4361 }
4362
io_add_buffers(struct io_provide_buf * pbuf,struct io_buffer ** head)4363 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4364 {
4365 struct io_buffer *buf;
4366 u64 addr = pbuf->addr;
4367 int i, bid = pbuf->bid;
4368
4369 for (i = 0; i < pbuf->nbufs; i++) {
4370 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4371 if (!buf)
4372 break;
4373
4374 buf->addr = addr;
4375 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4376 buf->bid = bid;
4377 addr += pbuf->len;
4378 bid++;
4379 if (!*head) {
4380 INIT_LIST_HEAD(&buf->list);
4381 *head = buf;
4382 } else {
4383 list_add_tail(&buf->list, &(*head)->list);
4384 }
4385 cond_resched();
4386 }
4387
4388 return i ? i : -ENOMEM;
4389 }
4390
io_provide_buffers(struct io_kiocb * req,unsigned int issue_flags)4391 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4392 {
4393 struct io_provide_buf *p = &req->pbuf;
4394 struct io_ring_ctx *ctx = req->ctx;
4395 struct io_buffer *head, *list;
4396 int ret = 0;
4397 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4398
4399 io_ring_submit_lock(ctx, !force_nonblock);
4400
4401 lockdep_assert_held(&ctx->uring_lock);
4402
4403 list = head = xa_load(&ctx->io_buffers, p->bgid);
4404
4405 ret = io_add_buffers(p, &head);
4406 if (ret >= 0 && !list) {
4407 ret = xa_insert(&ctx->io_buffers, p->bgid, head,
4408 GFP_KERNEL_ACCOUNT);
4409 if (ret < 0)
4410 __io_remove_buffers(ctx, head, p->bgid, -1U);
4411 }
4412 if (ret < 0)
4413 req_set_fail(req);
4414 /* complete before unlock, IOPOLL may need the lock */
4415 __io_req_complete(req, issue_flags, ret, 0);
4416 io_ring_submit_unlock(ctx, !force_nonblock);
4417 return 0;
4418 }
4419
io_epoll_ctl_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4420 static int io_epoll_ctl_prep(struct io_kiocb *req,
4421 const struct io_uring_sqe *sqe)
4422 {
4423 #if defined(CONFIG_EPOLL)
4424 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4425 return -EINVAL;
4426 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4427 return -EINVAL;
4428
4429 req->epoll.epfd = READ_ONCE(sqe->fd);
4430 req->epoll.op = READ_ONCE(sqe->len);
4431 req->epoll.fd = READ_ONCE(sqe->off);
4432
4433 if (ep_op_has_event(req->epoll.op)) {
4434 struct epoll_event __user *ev;
4435
4436 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4437 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4438 return -EFAULT;
4439 }
4440
4441 return 0;
4442 #else
4443 return -EOPNOTSUPP;
4444 #endif
4445 }
4446
io_epoll_ctl(struct io_kiocb * req,unsigned int issue_flags)4447 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4448 {
4449 #if defined(CONFIG_EPOLL)
4450 struct io_epoll *ie = &req->epoll;
4451 int ret;
4452 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4453
4454 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4455 if (force_nonblock && ret == -EAGAIN)
4456 return -EAGAIN;
4457
4458 if (ret < 0)
4459 req_set_fail(req);
4460 __io_req_complete(req, issue_flags, ret, 0);
4461 return 0;
4462 #else
4463 return -EOPNOTSUPP;
4464 #endif
4465 }
4466
io_madvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4467 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4468 {
4469 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4470 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4471 return -EINVAL;
4472 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4473 return -EINVAL;
4474
4475 req->madvise.addr = READ_ONCE(sqe->addr);
4476 req->madvise.len = READ_ONCE(sqe->len);
4477 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4478 return 0;
4479 #else
4480 return -EOPNOTSUPP;
4481 #endif
4482 }
4483
io_madvise(struct io_kiocb * req,unsigned int issue_flags)4484 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4485 {
4486 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4487 struct io_madvise *ma = &req->madvise;
4488 int ret;
4489
4490 if (issue_flags & IO_URING_F_NONBLOCK)
4491 return -EAGAIN;
4492
4493 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4494 if (ret < 0)
4495 req_set_fail(req);
4496 io_req_complete(req, ret);
4497 return 0;
4498 #else
4499 return -EOPNOTSUPP;
4500 #endif
4501 }
4502
io_fadvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4503 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4504 {
4505 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4506 return -EINVAL;
4507 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4508 return -EINVAL;
4509
4510 req->fadvise.offset = READ_ONCE(sqe->off);
4511 req->fadvise.len = READ_ONCE(sqe->len);
4512 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4513 return 0;
4514 }
4515
io_fadvise(struct io_kiocb * req,unsigned int issue_flags)4516 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4517 {
4518 struct io_fadvise *fa = &req->fadvise;
4519 int ret;
4520
4521 if (issue_flags & IO_URING_F_NONBLOCK) {
4522 switch (fa->advice) {
4523 case POSIX_FADV_NORMAL:
4524 case POSIX_FADV_RANDOM:
4525 case POSIX_FADV_SEQUENTIAL:
4526 break;
4527 default:
4528 return -EAGAIN;
4529 }
4530 }
4531
4532 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4533 if (ret < 0)
4534 req_set_fail(req);
4535 __io_req_complete(req, issue_flags, ret, 0);
4536 return 0;
4537 }
4538
io_statx_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4539 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4540 {
4541 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4542 return -EINVAL;
4543 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4544 return -EINVAL;
4545 if (req->flags & REQ_F_FIXED_FILE)
4546 return -EBADF;
4547
4548 req->statx.dfd = READ_ONCE(sqe->fd);
4549 req->statx.mask = READ_ONCE(sqe->len);
4550 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4551 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4552 req->statx.flags = READ_ONCE(sqe->statx_flags);
4553
4554 return 0;
4555 }
4556
io_statx(struct io_kiocb * req,unsigned int issue_flags)4557 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4558 {
4559 struct io_statx *ctx = &req->statx;
4560 int ret;
4561
4562 if (issue_flags & IO_URING_F_NONBLOCK)
4563 return -EAGAIN;
4564
4565 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4566 ctx->buffer);
4567
4568 if (ret < 0)
4569 req_set_fail(req);
4570 io_req_complete(req, ret);
4571 return 0;
4572 }
4573
io_close_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4574 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4575 {
4576 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4577 return -EINVAL;
4578 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4579 sqe->rw_flags || sqe->buf_index)
4580 return -EINVAL;
4581 if (req->flags & REQ_F_FIXED_FILE)
4582 return -EBADF;
4583
4584 req->close.fd = READ_ONCE(sqe->fd);
4585 req->close.file_slot = READ_ONCE(sqe->file_index);
4586 if (req->close.file_slot && req->close.fd)
4587 return -EINVAL;
4588
4589 return 0;
4590 }
4591
io_close(struct io_kiocb * req,unsigned int issue_flags)4592 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4593 {
4594 struct files_struct *files = current->files;
4595 struct io_close *close = &req->close;
4596 struct fdtable *fdt;
4597 struct file *file = NULL;
4598 int ret = -EBADF;
4599
4600 if (req->close.file_slot) {
4601 ret = io_close_fixed(req, issue_flags);
4602 goto err;
4603 }
4604
4605 spin_lock(&files->file_lock);
4606 fdt = files_fdtable(files);
4607 if (close->fd >= fdt->max_fds) {
4608 spin_unlock(&files->file_lock);
4609 goto err;
4610 }
4611 file = fdt->fd[close->fd];
4612 if (!file || file->f_op == &io_uring_fops) {
4613 spin_unlock(&files->file_lock);
4614 file = NULL;
4615 goto err;
4616 }
4617
4618 /* if the file has a flush method, be safe and punt to async */
4619 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4620 spin_unlock(&files->file_lock);
4621 return -EAGAIN;
4622 }
4623
4624 ret = __close_fd_get_file(close->fd, &file);
4625 spin_unlock(&files->file_lock);
4626 if (ret < 0) {
4627 if (ret == -ENOENT)
4628 ret = -EBADF;
4629 goto err;
4630 }
4631
4632 /* No ->flush() or already async, safely close from here */
4633 ret = filp_close(file, current->files);
4634 err:
4635 if (ret < 0)
4636 req_set_fail(req);
4637 if (file)
4638 fput(file);
4639 __io_req_complete(req, issue_flags, ret, 0);
4640 return 0;
4641 }
4642
io_sfr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4643 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4644 {
4645 struct io_ring_ctx *ctx = req->ctx;
4646
4647 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4648 return -EINVAL;
4649 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4650 sqe->splice_fd_in))
4651 return -EINVAL;
4652
4653 req->sync.off = READ_ONCE(sqe->off);
4654 req->sync.len = READ_ONCE(sqe->len);
4655 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4656 return 0;
4657 }
4658
io_sync_file_range(struct io_kiocb * req,unsigned int issue_flags)4659 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4660 {
4661 int ret;
4662
4663 /* sync_file_range always requires a blocking context */
4664 if (issue_flags & IO_URING_F_NONBLOCK)
4665 return -EAGAIN;
4666
4667 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4668 req->sync.flags);
4669 if (ret < 0)
4670 req_set_fail(req);
4671 io_req_complete(req, ret);
4672 return 0;
4673 }
4674
4675 #if defined(CONFIG_NET)
io_net_retry(struct socket * sock,int flags)4676 static bool io_net_retry(struct socket *sock, int flags)
4677 {
4678 if (!(flags & MSG_WAITALL))
4679 return false;
4680 return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
4681 }
4682
io_setup_async_msg(struct io_kiocb * req,struct io_async_msghdr * kmsg)4683 static int io_setup_async_msg(struct io_kiocb *req,
4684 struct io_async_msghdr *kmsg)
4685 {
4686 struct io_async_msghdr *async_msg = req->async_data;
4687
4688 if (async_msg)
4689 return -EAGAIN;
4690 if (io_alloc_async_data(req)) {
4691 kfree(kmsg->free_iov);
4692 return -ENOMEM;
4693 }
4694 async_msg = req->async_data;
4695 req->flags |= REQ_F_NEED_CLEANUP;
4696 memcpy(async_msg, kmsg, sizeof(*kmsg));
4697 if (async_msg->msg.msg_name)
4698 async_msg->msg.msg_name = &async_msg->addr;
4699 /* if were using fast_iov, set it to the new one */
4700 if (!kmsg->free_iov) {
4701 size_t fast_idx = kmsg->msg.msg_iter.iov - kmsg->fast_iov;
4702 async_msg->msg.msg_iter.iov = &async_msg->fast_iov[fast_idx];
4703 }
4704
4705 return -EAGAIN;
4706 }
4707
io_sendmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4708 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4709 struct io_async_msghdr *iomsg)
4710 {
4711 iomsg->msg.msg_name = &iomsg->addr;
4712 iomsg->free_iov = iomsg->fast_iov;
4713 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4714 req->sr_msg.msg_flags, &iomsg->free_iov);
4715 }
4716
io_sendmsg_prep_async(struct io_kiocb * req)4717 static int io_sendmsg_prep_async(struct io_kiocb *req)
4718 {
4719 int ret;
4720
4721 ret = io_sendmsg_copy_hdr(req, req->async_data);
4722 if (!ret)
4723 req->flags |= REQ_F_NEED_CLEANUP;
4724 return ret;
4725 }
4726
io_sendmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4727 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4728 {
4729 struct io_sr_msg *sr = &req->sr_msg;
4730
4731 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4732 return -EINVAL;
4733 if (unlikely(sqe->addr2 || sqe->file_index))
4734 return -EINVAL;
4735 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4736 return -EINVAL;
4737
4738 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4739 sr->len = READ_ONCE(sqe->len);
4740 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4741 if (sr->msg_flags & MSG_DONTWAIT)
4742 req->flags |= REQ_F_NOWAIT;
4743
4744 #ifdef CONFIG_COMPAT
4745 if (req->ctx->compat)
4746 sr->msg_flags |= MSG_CMSG_COMPAT;
4747 #endif
4748 sr->done_io = 0;
4749 return 0;
4750 }
4751
io_sendmsg(struct io_kiocb * req,unsigned int issue_flags)4752 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4753 {
4754 struct io_async_msghdr iomsg, *kmsg;
4755 struct io_sr_msg *sr = &req->sr_msg;
4756 struct socket *sock;
4757 unsigned flags;
4758 int min_ret = 0;
4759 int ret;
4760
4761 sock = sock_from_file(req->file, &ret);
4762 if (unlikely(!sock))
4763 return ret;
4764
4765 kmsg = req->async_data;
4766 if (!kmsg) {
4767 ret = io_sendmsg_copy_hdr(req, &iomsg);
4768 if (ret)
4769 return ret;
4770 kmsg = &iomsg;
4771 }
4772
4773 flags = req->sr_msg.msg_flags;
4774 if (issue_flags & IO_URING_F_NONBLOCK)
4775 flags |= MSG_DONTWAIT;
4776 if (flags & MSG_WAITALL)
4777 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4778
4779 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4780
4781 if (ret < min_ret) {
4782 if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4783 return io_setup_async_msg(req, kmsg);
4784 if (ret == -ERESTARTSYS)
4785 ret = -EINTR;
4786 if (ret > 0 && io_net_retry(sock, flags)) {
4787 sr->done_io += ret;
4788 req->flags |= REQ_F_PARTIAL_IO;
4789 return io_setup_async_msg(req, kmsg);
4790 }
4791 req_set_fail(req);
4792 }
4793 /* fast path, check for non-NULL to avoid function call */
4794 if (kmsg->free_iov)
4795 kfree(kmsg->free_iov);
4796 req->flags &= ~REQ_F_NEED_CLEANUP;
4797 if (ret >= 0)
4798 ret += sr->done_io;
4799 else if (sr->done_io)
4800 ret = sr->done_io;
4801 __io_req_complete(req, issue_flags, ret, 0);
4802 return 0;
4803 }
4804
io_send(struct io_kiocb * req,unsigned int issue_flags)4805 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4806 {
4807 struct io_sr_msg *sr = &req->sr_msg;
4808 struct msghdr msg;
4809 struct iovec iov;
4810 struct socket *sock;
4811 unsigned flags;
4812 int min_ret = 0;
4813 int ret;
4814
4815 sock = sock_from_file(req->file, &ret);
4816 if (unlikely(!sock))
4817 return ret;
4818
4819 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4820 if (unlikely(ret))
4821 return ret;
4822
4823 msg.msg_name = NULL;
4824 msg.msg_control = NULL;
4825 msg.msg_controllen = 0;
4826 msg.msg_namelen = 0;
4827
4828 flags = req->sr_msg.msg_flags;
4829 if (issue_flags & IO_URING_F_NONBLOCK)
4830 flags |= MSG_DONTWAIT;
4831 if (flags & MSG_WAITALL)
4832 min_ret = iov_iter_count(&msg.msg_iter);
4833
4834 msg.msg_flags = flags;
4835 ret = sock_sendmsg(sock, &msg);
4836 if (ret < min_ret) {
4837 if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4838 return -EAGAIN;
4839 if (ret == -ERESTARTSYS)
4840 ret = -EINTR;
4841 if (ret > 0 && io_net_retry(sock, flags)) {
4842 sr->len -= ret;
4843 sr->buf += ret;
4844 sr->done_io += ret;
4845 req->flags |= REQ_F_PARTIAL_IO;
4846 return -EAGAIN;
4847 }
4848 req_set_fail(req);
4849 }
4850 if (ret >= 0)
4851 ret += sr->done_io;
4852 else if (sr->done_io)
4853 ret = sr->done_io;
4854 __io_req_complete(req, issue_flags, ret, 0);
4855 return 0;
4856 }
4857
__io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4858 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4859 struct io_async_msghdr *iomsg)
4860 {
4861 struct io_sr_msg *sr = &req->sr_msg;
4862 struct iovec __user *uiov;
4863 size_t iov_len;
4864 int ret;
4865
4866 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4867 &iomsg->uaddr, &uiov, &iov_len);
4868 if (ret)
4869 return ret;
4870
4871 if (req->flags & REQ_F_BUFFER_SELECT) {
4872 if (iov_len > 1)
4873 return -EINVAL;
4874 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4875 return -EFAULT;
4876 sr->len = iomsg->fast_iov[0].iov_len;
4877 iomsg->free_iov = NULL;
4878 } else {
4879 iomsg->free_iov = iomsg->fast_iov;
4880 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4881 &iomsg->free_iov, &iomsg->msg.msg_iter,
4882 false);
4883 if (ret > 0)
4884 ret = 0;
4885 }
4886
4887 return ret;
4888 }
4889
4890 #ifdef CONFIG_COMPAT
__io_compat_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4891 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4892 struct io_async_msghdr *iomsg)
4893 {
4894 struct io_sr_msg *sr = &req->sr_msg;
4895 struct compat_iovec __user *uiov;
4896 compat_uptr_t ptr;
4897 compat_size_t len;
4898 int ret;
4899
4900 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4901 &ptr, &len);
4902 if (ret)
4903 return ret;
4904
4905 uiov = compat_ptr(ptr);
4906 if (req->flags & REQ_F_BUFFER_SELECT) {
4907 compat_ssize_t clen;
4908
4909 if (len > 1)
4910 return -EINVAL;
4911 if (!access_ok(uiov, sizeof(*uiov)))
4912 return -EFAULT;
4913 if (__get_user(clen, &uiov->iov_len))
4914 return -EFAULT;
4915 if (clen < 0)
4916 return -EINVAL;
4917 sr->len = clen;
4918 iomsg->free_iov = NULL;
4919 } else {
4920 iomsg->free_iov = iomsg->fast_iov;
4921 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4922 UIO_FASTIOV, &iomsg->free_iov,
4923 &iomsg->msg.msg_iter, true);
4924 if (ret < 0)
4925 return ret;
4926 }
4927
4928 return 0;
4929 }
4930 #endif
4931
io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4932 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4933 struct io_async_msghdr *iomsg)
4934 {
4935 iomsg->msg.msg_name = &iomsg->addr;
4936
4937 #ifdef CONFIG_COMPAT
4938 if (req->ctx->compat)
4939 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4940 #endif
4941
4942 return __io_recvmsg_copy_hdr(req, iomsg);
4943 }
4944
io_recv_buffer_select(struct io_kiocb * req,bool needs_lock)4945 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4946 bool needs_lock)
4947 {
4948 struct io_sr_msg *sr = &req->sr_msg;
4949 struct io_buffer *kbuf;
4950
4951 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4952 if (IS_ERR(kbuf))
4953 return kbuf;
4954
4955 sr->kbuf = kbuf;
4956 req->flags |= REQ_F_BUFFER_SELECTED;
4957 return kbuf;
4958 }
4959
io_put_recv_kbuf(struct io_kiocb * req)4960 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4961 {
4962 return io_put_kbuf(req, req->sr_msg.kbuf);
4963 }
4964
io_recvmsg_prep_async(struct io_kiocb * req)4965 static int io_recvmsg_prep_async(struct io_kiocb *req)
4966 {
4967 int ret;
4968
4969 ret = io_recvmsg_copy_hdr(req, req->async_data);
4970 if (!ret)
4971 req->flags |= REQ_F_NEED_CLEANUP;
4972 return ret;
4973 }
4974
io_recvmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4975 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4976 {
4977 struct io_sr_msg *sr = &req->sr_msg;
4978
4979 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4980 return -EINVAL;
4981 if (unlikely(sqe->addr2 || sqe->file_index))
4982 return -EINVAL;
4983 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4984 return -EINVAL;
4985
4986 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4987 sr->len = READ_ONCE(sqe->len);
4988 sr->bgid = READ_ONCE(sqe->buf_group);
4989 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4990 if (sr->msg_flags & MSG_DONTWAIT)
4991 req->flags |= REQ_F_NOWAIT;
4992
4993 #ifdef CONFIG_COMPAT
4994 if (req->ctx->compat)
4995 sr->msg_flags |= MSG_CMSG_COMPAT;
4996 #endif
4997 sr->done_io = 0;
4998 return 0;
4999 }
5000
io_recvmsg(struct io_kiocb * req,unsigned int issue_flags)5001 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5002 {
5003 struct io_async_msghdr iomsg, *kmsg;
5004 struct io_sr_msg *sr = &req->sr_msg;
5005 struct socket *sock;
5006 struct io_buffer *kbuf;
5007 unsigned flags;
5008 int min_ret = 0;
5009 int ret, cflags = 0;
5010 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5011
5012 sock = sock_from_file(req->file, &ret);
5013 if (unlikely(!sock))
5014 return ret;
5015
5016 kmsg = req->async_data;
5017 if (!kmsg) {
5018 ret = io_recvmsg_copy_hdr(req, &iomsg);
5019 if (ret)
5020 return ret;
5021 kmsg = &iomsg;
5022 }
5023
5024 if (req->flags & REQ_F_BUFFER_SELECT) {
5025 kbuf = io_recv_buffer_select(req, !force_nonblock);
5026 if (IS_ERR(kbuf))
5027 return PTR_ERR(kbuf);
5028 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5029 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5030 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5031 1, req->sr_msg.len);
5032 }
5033
5034 flags = req->sr_msg.msg_flags;
5035 if (force_nonblock)
5036 flags |= MSG_DONTWAIT;
5037 if (flags & MSG_WAITALL)
5038 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5039
5040 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5041 kmsg->uaddr, flags);
5042 if (ret < min_ret) {
5043 if (ret == -EAGAIN && force_nonblock)
5044 return io_setup_async_msg(req, kmsg);
5045 if (ret == -ERESTARTSYS)
5046 ret = -EINTR;
5047 if (ret > 0 && io_net_retry(sock, flags)) {
5048 sr->done_io += ret;
5049 req->flags |= REQ_F_PARTIAL_IO;
5050 return io_setup_async_msg(req, kmsg);
5051 }
5052 req_set_fail(req);
5053 } else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5054 req_set_fail(req);
5055 }
5056
5057 if (req->flags & REQ_F_BUFFER_SELECTED)
5058 cflags = io_put_recv_kbuf(req);
5059 /* fast path, check for non-NULL to avoid function call */
5060 if (kmsg->free_iov)
5061 kfree(kmsg->free_iov);
5062 req->flags &= ~REQ_F_NEED_CLEANUP;
5063 if (ret >= 0)
5064 ret += sr->done_io;
5065 else if (sr->done_io)
5066 ret = sr->done_io;
5067 __io_req_complete(req, issue_flags, ret, cflags);
5068 return 0;
5069 }
5070
io_recv(struct io_kiocb * req,unsigned int issue_flags)5071 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5072 {
5073 struct io_buffer *kbuf;
5074 struct io_sr_msg *sr = &req->sr_msg;
5075 struct msghdr msg;
5076 void __user *buf = sr->buf;
5077 struct socket *sock;
5078 struct iovec iov;
5079 unsigned flags;
5080 int min_ret = 0;
5081 int ret, cflags = 0;
5082 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5083
5084 sock = sock_from_file(req->file, &ret);
5085 if (unlikely(!sock))
5086 return ret;
5087
5088 if (req->flags & REQ_F_BUFFER_SELECT) {
5089 kbuf = io_recv_buffer_select(req, !force_nonblock);
5090 if (IS_ERR(kbuf))
5091 return PTR_ERR(kbuf);
5092 buf = u64_to_user_ptr(kbuf->addr);
5093 }
5094
5095 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5096 if (unlikely(ret))
5097 goto out_free;
5098
5099 msg.msg_name = NULL;
5100 msg.msg_control = NULL;
5101 msg.msg_controllen = 0;
5102 msg.msg_namelen = 0;
5103 msg.msg_iocb = NULL;
5104 msg.msg_flags = 0;
5105
5106 flags = req->sr_msg.msg_flags;
5107 if (force_nonblock)
5108 flags |= MSG_DONTWAIT;
5109 if (flags & MSG_WAITALL)
5110 min_ret = iov_iter_count(&msg.msg_iter);
5111
5112 ret = sock_recvmsg(sock, &msg, flags);
5113 if (ret < min_ret) {
5114 if (ret == -EAGAIN && force_nonblock)
5115 return -EAGAIN;
5116 if (ret == -ERESTARTSYS)
5117 ret = -EINTR;
5118 if (ret > 0 && io_net_retry(sock, flags)) {
5119 sr->len -= ret;
5120 sr->buf += ret;
5121 sr->done_io += ret;
5122 req->flags |= REQ_F_PARTIAL_IO;
5123 return -EAGAIN;
5124 }
5125 req_set_fail(req);
5126 } else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5127 out_free:
5128 req_set_fail(req);
5129 }
5130 if (req->flags & REQ_F_BUFFER_SELECTED)
5131 cflags = io_put_recv_kbuf(req);
5132 if (ret >= 0)
5133 ret += sr->done_io;
5134 else if (sr->done_io)
5135 ret = sr->done_io;
5136 __io_req_complete(req, issue_flags, ret, cflags);
5137 return 0;
5138 }
5139
io_accept_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5140 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5141 {
5142 struct io_accept *accept = &req->accept;
5143
5144 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5145 return -EINVAL;
5146 if (sqe->ioprio || sqe->len || sqe->buf_index)
5147 return -EINVAL;
5148
5149 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5150 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5151 accept->flags = READ_ONCE(sqe->accept_flags);
5152 accept->nofile = rlimit(RLIMIT_NOFILE);
5153
5154 accept->file_slot = READ_ONCE(sqe->file_index);
5155 if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5156 return -EINVAL;
5157 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5158 return -EINVAL;
5159 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5160 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5161 return 0;
5162 }
5163
io_accept(struct io_kiocb * req,unsigned int issue_flags)5164 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5165 {
5166 struct io_accept *accept = &req->accept;
5167 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5168 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5169 bool fixed = !!accept->file_slot;
5170 struct file *file;
5171 int ret, fd;
5172
5173 if (!fixed) {
5174 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5175 if (unlikely(fd < 0))
5176 return fd;
5177 }
5178 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5179 accept->flags);
5180
5181 if (IS_ERR(file)) {
5182 if (!fixed)
5183 put_unused_fd(fd);
5184 ret = PTR_ERR(file);
5185 /* safe to retry */
5186 req->flags |= REQ_F_PARTIAL_IO;
5187 if (ret == -EAGAIN && force_nonblock)
5188 return -EAGAIN;
5189 if (ret == -ERESTARTSYS)
5190 ret = -EINTR;
5191 req_set_fail(req);
5192 } else if (!fixed) {
5193 fd_install(fd, file);
5194 ret = fd;
5195 } else {
5196 ret = io_install_fixed_file(req, file, issue_flags,
5197 accept->file_slot - 1);
5198 }
5199 __io_req_complete(req, issue_flags, ret, 0);
5200 return 0;
5201 }
5202
io_connect_prep_async(struct io_kiocb * req)5203 static int io_connect_prep_async(struct io_kiocb *req)
5204 {
5205 struct io_async_connect *io = req->async_data;
5206 struct io_connect *conn = &req->connect;
5207
5208 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5209 }
5210
io_connect_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5211 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5212 {
5213 struct io_connect *conn = &req->connect;
5214
5215 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5216 return -EINVAL;
5217 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5218 sqe->splice_fd_in)
5219 return -EINVAL;
5220
5221 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5222 conn->addr_len = READ_ONCE(sqe->addr2);
5223 return 0;
5224 }
5225
io_connect(struct io_kiocb * req,unsigned int issue_flags)5226 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5227 {
5228 struct io_async_connect __io, *io;
5229 unsigned file_flags;
5230 int ret;
5231 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5232
5233 if (req->async_data) {
5234 io = req->async_data;
5235 } else {
5236 ret = move_addr_to_kernel(req->connect.addr,
5237 req->connect.addr_len,
5238 &__io.address);
5239 if (ret)
5240 goto out;
5241 io = &__io;
5242 }
5243
5244 file_flags = force_nonblock ? O_NONBLOCK : 0;
5245
5246 ret = __sys_connect_file(req->file, &io->address,
5247 req->connect.addr_len, file_flags);
5248 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5249 if (req->async_data)
5250 return -EAGAIN;
5251 if (io_alloc_async_data(req)) {
5252 ret = -ENOMEM;
5253 goto out;
5254 }
5255 memcpy(req->async_data, &__io, sizeof(__io));
5256 return -EAGAIN;
5257 }
5258 if (ret == -ERESTARTSYS)
5259 ret = -EINTR;
5260 out:
5261 if (ret < 0)
5262 req_set_fail(req);
5263 __io_req_complete(req, issue_flags, ret, 0);
5264 return 0;
5265 }
5266 #else /* !CONFIG_NET */
5267 #define IO_NETOP_FN(op) \
5268 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5269 { \
5270 return -EOPNOTSUPP; \
5271 }
5272
5273 #define IO_NETOP_PREP(op) \
5274 IO_NETOP_FN(op) \
5275 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5276 { \
5277 return -EOPNOTSUPP; \
5278 } \
5279
5280 #define IO_NETOP_PREP_ASYNC(op) \
5281 IO_NETOP_PREP(op) \
5282 static int io_##op##_prep_async(struct io_kiocb *req) \
5283 { \
5284 return -EOPNOTSUPP; \
5285 }
5286
5287 IO_NETOP_PREP_ASYNC(sendmsg);
5288 IO_NETOP_PREP_ASYNC(recvmsg);
5289 IO_NETOP_PREP_ASYNC(connect);
5290 IO_NETOP_PREP(accept);
5291 IO_NETOP_FN(send);
5292 IO_NETOP_FN(recv);
5293 #endif /* CONFIG_NET */
5294
5295 struct io_poll_table {
5296 struct poll_table_struct pt;
5297 struct io_kiocb *req;
5298 int nr_entries;
5299 int error;
5300 };
5301
5302 #define IO_POLL_CANCEL_FLAG BIT(31)
5303 #define IO_POLL_RETRY_FLAG BIT(30)
5304 #define IO_POLL_REF_MASK GENMASK(29, 0)
5305
5306 /*
5307 * We usually have 1-2 refs taken, 128 is more than enough and we want to
5308 * maximise the margin between this amount and the moment when it overflows.
5309 */
5310 #define IO_POLL_REF_BIAS 128
5311
io_poll_get_ownership_slowpath(struct io_kiocb * req)5312 static bool io_poll_get_ownership_slowpath(struct io_kiocb *req)
5313 {
5314 int v;
5315
5316 /*
5317 * poll_refs are already elevated and we don't have much hope for
5318 * grabbing the ownership. Instead of incrementing set a retry flag
5319 * to notify the loop that there might have been some change.
5320 */
5321 v = atomic_fetch_or(IO_POLL_RETRY_FLAG, &req->poll_refs);
5322 if (v & IO_POLL_REF_MASK)
5323 return false;
5324 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5325 }
5326
5327 /*
5328 * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
5329 * bump it and acquire ownership. It's disallowed to modify requests while not
5330 * owning it, that prevents from races for enqueueing task_work's and b/w
5331 * arming poll and wakeups.
5332 */
io_poll_get_ownership(struct io_kiocb * req)5333 static inline bool io_poll_get_ownership(struct io_kiocb *req)
5334 {
5335 if (unlikely(atomic_read(&req->poll_refs) >= IO_POLL_REF_BIAS))
5336 return io_poll_get_ownership_slowpath(req);
5337 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5338 }
5339
io_poll_mark_cancelled(struct io_kiocb * req)5340 static void io_poll_mark_cancelled(struct io_kiocb *req)
5341 {
5342 atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
5343 }
5344
io_poll_get_double(struct io_kiocb * req)5345 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5346 {
5347 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5348 if (req->opcode == IORING_OP_POLL_ADD)
5349 return req->async_data;
5350 return req->apoll->double_poll;
5351 }
5352
io_poll_get_single(struct io_kiocb * req)5353 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5354 {
5355 if (req->opcode == IORING_OP_POLL_ADD)
5356 return &req->poll;
5357 return &req->apoll->poll;
5358 }
5359
io_poll_req_insert(struct io_kiocb * req)5360 static void io_poll_req_insert(struct io_kiocb *req)
5361 {
5362 struct io_ring_ctx *ctx = req->ctx;
5363 struct hlist_head *list;
5364
5365 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5366 hlist_add_head(&req->hash_node, list);
5367 }
5368
io_init_poll_iocb(struct io_poll_iocb * poll,__poll_t events,wait_queue_func_t wake_func)5369 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5370 wait_queue_func_t wake_func)
5371 {
5372 poll->head = NULL;
5373 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5374 /* mask in events that we always want/need */
5375 poll->events = events | IO_POLL_UNMASK;
5376 INIT_LIST_HEAD(&poll->wait.entry);
5377 init_waitqueue_func_entry(&poll->wait, wake_func);
5378 }
5379
io_poll_remove_entry(struct io_poll_iocb * poll)5380 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
5381 {
5382 struct wait_queue_head *head = smp_load_acquire(&poll->head);
5383
5384 if (head) {
5385 spin_lock_irq(&head->lock);
5386 list_del_init(&poll->wait.entry);
5387 poll->head = NULL;
5388 spin_unlock_irq(&head->lock);
5389 }
5390 }
5391
io_poll_remove_entries(struct io_kiocb * req)5392 static void io_poll_remove_entries(struct io_kiocb *req)
5393 {
5394 struct io_poll_iocb *poll = io_poll_get_single(req);
5395 struct io_poll_iocb *poll_double = io_poll_get_double(req);
5396
5397 /*
5398 * While we hold the waitqueue lock and the waitqueue is nonempty,
5399 * wake_up_pollfree() will wait for us. However, taking the waitqueue
5400 * lock in the first place can race with the waitqueue being freed.
5401 *
5402 * We solve this as eventpoll does: by taking advantage of the fact that
5403 * all users of wake_up_pollfree() will RCU-delay the actual free. If
5404 * we enter rcu_read_lock() and see that the pointer to the queue is
5405 * non-NULL, we can then lock it without the memory being freed out from
5406 * under us.
5407 *
5408 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
5409 * case the caller deletes the entry from the queue, leaving it empty.
5410 * In that case, only RCU prevents the queue memory from being freed.
5411 */
5412 rcu_read_lock();
5413 io_poll_remove_entry(poll);
5414 if (poll_double)
5415 io_poll_remove_entry(poll_double);
5416 rcu_read_unlock();
5417 }
5418
5419 /*
5420 * All poll tw should go through this. Checks for poll events, manages
5421 * references, does rewait, etc.
5422 *
5423 * Returns a negative error on failure. >0 when no action require, which is
5424 * either spurious wakeup or multishot CQE is served. 0 when it's done with
5425 * the request, then the mask is stored in req->result.
5426 */
io_poll_check_events(struct io_kiocb * req)5427 static int io_poll_check_events(struct io_kiocb *req)
5428 {
5429 struct io_ring_ctx *ctx = req->ctx;
5430 struct io_poll_iocb *poll = io_poll_get_single(req);
5431 int v;
5432
5433 /* req->task == current here, checking PF_EXITING is safe */
5434 if (unlikely(req->task->flags & PF_EXITING))
5435 io_poll_mark_cancelled(req);
5436
5437 do {
5438 v = atomic_read(&req->poll_refs);
5439
5440 /* tw handler should be the owner, and so have some references */
5441 if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
5442 return 0;
5443 if (v & IO_POLL_CANCEL_FLAG)
5444 return -ECANCELED;
5445 /*
5446 * cqe.res contains only events of the first wake up
5447 * and all others are be lost. Redo vfs_poll() to get
5448 * up to date state.
5449 */
5450 if ((v & IO_POLL_REF_MASK) != 1)
5451 req->result = 0;
5452 if (v & IO_POLL_RETRY_FLAG) {
5453 req->result = 0;
5454 /*
5455 * We won't find new events that came in between
5456 * vfs_poll and the ref put unless we clear the
5457 * flag in advance.
5458 */
5459 atomic_andnot(IO_POLL_RETRY_FLAG, &req->poll_refs);
5460 v &= ~IO_POLL_RETRY_FLAG;
5461 }
5462
5463 if (!req->result) {
5464 struct poll_table_struct pt = { ._key = poll->events };
5465
5466 req->result = vfs_poll(req->file, &pt) & poll->events;
5467 }
5468
5469 /* multishot, just fill an CQE and proceed */
5470 if (req->result && !(poll->events & EPOLLONESHOT)) {
5471 __poll_t mask = mangle_poll(req->result & poll->events);
5472 bool filled;
5473
5474 spin_lock(&ctx->completion_lock);
5475 filled = io_fill_cqe_aux(ctx, req->user_data, mask,
5476 IORING_CQE_F_MORE);
5477 io_commit_cqring(ctx);
5478 spin_unlock(&ctx->completion_lock);
5479 if (unlikely(!filled))
5480 return -ECANCELED;
5481 io_cqring_ev_posted(ctx);
5482 } else if (req->result) {
5483 return 0;
5484 }
5485
5486 /* force the next iteration to vfs_poll() */
5487 req->result = 0;
5488
5489 /*
5490 * Release all references, retry if someone tried to restart
5491 * task_work while we were executing it.
5492 */
5493 } while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs) &
5494 IO_POLL_REF_MASK);
5495
5496 return 1;
5497 }
5498
io_poll_task_func(struct io_kiocb * req,bool * locked)5499 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5500 {
5501 struct io_ring_ctx *ctx = req->ctx;
5502 int ret;
5503
5504 ret = io_poll_check_events(req);
5505 if (ret > 0)
5506 return;
5507
5508 if (!ret) {
5509 req->result = mangle_poll(req->result & req->poll.events);
5510 } else {
5511 req->result = ret;
5512 req_set_fail(req);
5513 }
5514
5515 io_poll_remove_entries(req);
5516 spin_lock(&ctx->completion_lock);
5517 hash_del(&req->hash_node);
5518 spin_unlock(&ctx->completion_lock);
5519 io_req_complete_post(req, req->result, 0);
5520 }
5521
io_apoll_task_func(struct io_kiocb * req,bool * locked)5522 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
5523 {
5524 struct io_ring_ctx *ctx = req->ctx;
5525 int ret;
5526
5527 ret = io_poll_check_events(req);
5528 if (ret > 0)
5529 return;
5530
5531 io_poll_remove_entries(req);
5532 spin_lock(&ctx->completion_lock);
5533 hash_del(&req->hash_node);
5534 spin_unlock(&ctx->completion_lock);
5535
5536 if (!ret)
5537 io_req_task_submit(req, locked);
5538 else
5539 io_req_complete_failed(req, ret);
5540 }
5541
__io_poll_execute(struct io_kiocb * req,int mask)5542 static void __io_poll_execute(struct io_kiocb *req, int mask)
5543 {
5544 req->result = mask;
5545 if (req->opcode == IORING_OP_POLL_ADD)
5546 req->io_task_work.func = io_poll_task_func;
5547 else
5548 req->io_task_work.func = io_apoll_task_func;
5549
5550 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5551 io_req_task_work_add(req);
5552 }
5553
io_poll_execute(struct io_kiocb * req,int res)5554 static inline void io_poll_execute(struct io_kiocb *req, int res)
5555 {
5556 if (io_poll_get_ownership(req))
5557 __io_poll_execute(req, res);
5558 }
5559
io_poll_cancel_req(struct io_kiocb * req)5560 static void io_poll_cancel_req(struct io_kiocb *req)
5561 {
5562 io_poll_mark_cancelled(req);
5563 /* kick tw, which should complete the request */
5564 io_poll_execute(req, 0);
5565 }
5566
io_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)5567 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5568 void *key)
5569 {
5570 struct io_kiocb *req = wait->private;
5571 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
5572 wait);
5573 __poll_t mask = key_to_poll(key);
5574
5575 if (unlikely(mask & POLLFREE)) {
5576 io_poll_mark_cancelled(req);
5577 /* we have to kick tw in case it's not already */
5578 io_poll_execute(req, 0);
5579
5580 /*
5581 * If the waitqueue is being freed early but someone is already
5582 * holds ownership over it, we have to tear down the request as
5583 * best we can. That means immediately removing the request from
5584 * its waitqueue and preventing all further accesses to the
5585 * waitqueue via the request.
5586 */
5587 list_del_init(&poll->wait.entry);
5588
5589 /*
5590 * Careful: this *must* be the last step, since as soon
5591 * as req->head is NULL'ed out, the request can be
5592 * completed and freed, since aio_poll_complete_work()
5593 * will no longer need to take the waitqueue lock.
5594 */
5595 smp_store_release(&poll->head, NULL);
5596 return 1;
5597 }
5598
5599 /* for instances that support it check for an event match first */
5600 if (mask && !(mask & poll->events))
5601 return 0;
5602
5603 if (io_poll_get_ownership(req)) {
5604 /*
5605 * If we trigger a multishot poll off our own wakeup path,
5606 * disable multishot as there is a circular dependency between
5607 * CQ posting and triggering the event.
5608 */
5609 if (mask & EPOLL_URING_WAKE)
5610 poll->events |= EPOLLONESHOT;
5611
5612 __io_poll_execute(req, mask);
5613 }
5614 return 1;
5615 }
5616
__io_queue_proc(struct io_poll_iocb * poll,struct io_poll_table * pt,struct wait_queue_head * head,struct io_poll_iocb ** poll_ptr)5617 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5618 struct wait_queue_head *head,
5619 struct io_poll_iocb **poll_ptr)
5620 {
5621 struct io_kiocb *req = pt->req;
5622
5623 /*
5624 * The file being polled uses multiple waitqueues for poll handling
5625 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5626 * if this happens.
5627 */
5628 if (unlikely(pt->nr_entries)) {
5629 struct io_poll_iocb *first = poll;
5630
5631 /* double add on the same waitqueue head, ignore */
5632 if (first->head == head)
5633 return;
5634 /* already have a 2nd entry, fail a third attempt */
5635 if (*poll_ptr) {
5636 if ((*poll_ptr)->head == head)
5637 return;
5638 pt->error = -EINVAL;
5639 return;
5640 }
5641
5642 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5643 if (!poll) {
5644 pt->error = -ENOMEM;
5645 return;
5646 }
5647 io_init_poll_iocb(poll, first->events, first->wait.func);
5648 *poll_ptr = poll;
5649 }
5650
5651 pt->nr_entries++;
5652 poll->head = head;
5653 poll->wait.private = req;
5654
5655 if (poll->events & EPOLLEXCLUSIVE)
5656 add_wait_queue_exclusive(head, &poll->wait);
5657 else
5658 add_wait_queue(head, &poll->wait);
5659 }
5660
io_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5661 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5662 struct poll_table_struct *p)
5663 {
5664 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5665
5666 __io_queue_proc(&pt->req->poll, pt, head,
5667 (struct io_poll_iocb **) &pt->req->async_data);
5668 }
5669
__io_arm_poll_handler(struct io_kiocb * req,struct io_poll_iocb * poll,struct io_poll_table * ipt,__poll_t mask)5670 static int __io_arm_poll_handler(struct io_kiocb *req,
5671 struct io_poll_iocb *poll,
5672 struct io_poll_table *ipt, __poll_t mask)
5673 {
5674 struct io_ring_ctx *ctx = req->ctx;
5675
5676 INIT_HLIST_NODE(&req->hash_node);
5677 io_init_poll_iocb(poll, mask, io_poll_wake);
5678 poll->file = req->file;
5679 poll->wait.private = req;
5680
5681 ipt->pt._key = mask;
5682 ipt->req = req;
5683 ipt->error = 0;
5684 ipt->nr_entries = 0;
5685
5686 /*
5687 * Take the ownership to delay any tw execution up until we're done
5688 * with poll arming. see io_poll_get_ownership().
5689 */
5690 atomic_set(&req->poll_refs, 1);
5691 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5692
5693 if (mask && (poll->events & EPOLLONESHOT)) {
5694 io_poll_remove_entries(req);
5695 /* no one else has access to the req, forget about the ref */
5696 return mask;
5697 }
5698 if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
5699 io_poll_remove_entries(req);
5700 if (!ipt->error)
5701 ipt->error = -EINVAL;
5702 return 0;
5703 }
5704
5705 spin_lock(&ctx->completion_lock);
5706 io_poll_req_insert(req);
5707 spin_unlock(&ctx->completion_lock);
5708
5709 if (mask) {
5710 /* can't multishot if failed, just queue the event we've got */
5711 if (unlikely(ipt->error || !ipt->nr_entries)) {
5712 poll->events |= EPOLLONESHOT;
5713 ipt->error = 0;
5714 }
5715 __io_poll_execute(req, mask);
5716 return 0;
5717 }
5718
5719 /*
5720 * Try to release ownership. If we see a change of state, e.g.
5721 * poll was waken up, queue up a tw, it'll deal with it.
5722 */
5723 if (atomic_cmpxchg(&req->poll_refs, 1, 0) != 1)
5724 __io_poll_execute(req, 0);
5725 return 0;
5726 }
5727
io_async_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5728 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5729 struct poll_table_struct *p)
5730 {
5731 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5732 struct async_poll *apoll = pt->req->apoll;
5733
5734 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5735 }
5736
5737 enum {
5738 IO_APOLL_OK,
5739 IO_APOLL_ABORTED,
5740 IO_APOLL_READY
5741 };
5742
io_arm_poll_handler(struct io_kiocb * req)5743 static int io_arm_poll_handler(struct io_kiocb *req)
5744 {
5745 const struct io_op_def *def = &io_op_defs[req->opcode];
5746 struct io_ring_ctx *ctx = req->ctx;
5747 struct async_poll *apoll;
5748 struct io_poll_table ipt;
5749 __poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI;
5750 int ret;
5751
5752 if (!req->file || !file_can_poll(req->file))
5753 return IO_APOLL_ABORTED;
5754 if ((req->flags & (REQ_F_POLLED|REQ_F_PARTIAL_IO)) == REQ_F_POLLED)
5755 return IO_APOLL_ABORTED;
5756 if (!def->pollin && !def->pollout)
5757 return IO_APOLL_ABORTED;
5758
5759 if (def->pollin) {
5760 mask |= POLLIN | POLLRDNORM;
5761
5762 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5763 if ((req->opcode == IORING_OP_RECVMSG) &&
5764 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5765 mask &= ~POLLIN;
5766 } else {
5767 mask |= POLLOUT | POLLWRNORM;
5768 }
5769
5770 if (req->flags & REQ_F_POLLED) {
5771 apoll = req->apoll;
5772 kfree(apoll->double_poll);
5773 } else {
5774 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5775 }
5776 if (unlikely(!apoll))
5777 return IO_APOLL_ABORTED;
5778 apoll->double_poll = NULL;
5779 req->apoll = apoll;
5780 req->flags |= REQ_F_POLLED;
5781 ipt.pt._qproc = io_async_queue_proc;
5782
5783 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
5784 if (ret || ipt.error)
5785 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5786
5787 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5788 mask, apoll->poll.events);
5789 return IO_APOLL_OK;
5790 }
5791
5792 /*
5793 * Returns true if we found and killed one or more poll requests
5794 */
io_poll_remove_all(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)5795 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5796 bool cancel_all)
5797 {
5798 struct hlist_node *tmp;
5799 struct io_kiocb *req;
5800 bool found = false;
5801 int i;
5802
5803 spin_lock(&ctx->completion_lock);
5804 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5805 struct hlist_head *list;
5806
5807 list = &ctx->cancel_hash[i];
5808 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5809 if (io_match_task_safe(req, tsk, cancel_all)) {
5810 hlist_del_init(&req->hash_node);
5811 io_poll_cancel_req(req);
5812 found = true;
5813 }
5814 }
5815 }
5816 spin_unlock(&ctx->completion_lock);
5817 return found;
5818 }
5819
io_poll_find(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)5820 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5821 bool poll_only)
5822 __must_hold(&ctx->completion_lock)
5823 {
5824 struct hlist_head *list;
5825 struct io_kiocb *req;
5826
5827 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5828 hlist_for_each_entry(req, list, hash_node) {
5829 if (sqe_addr != req->user_data)
5830 continue;
5831 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5832 continue;
5833 return req;
5834 }
5835 return NULL;
5836 }
5837
io_poll_disarm(struct io_kiocb * req)5838 static bool io_poll_disarm(struct io_kiocb *req)
5839 __must_hold(&ctx->completion_lock)
5840 {
5841 if (!io_poll_get_ownership(req))
5842 return false;
5843 io_poll_remove_entries(req);
5844 hash_del(&req->hash_node);
5845 return true;
5846 }
5847
io_poll_cancel(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)5848 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5849 bool poll_only)
5850 __must_hold(&ctx->completion_lock)
5851 {
5852 struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only);
5853
5854 if (!req)
5855 return -ENOENT;
5856 io_poll_cancel_req(req);
5857 return 0;
5858 }
5859
io_poll_parse_events(const struct io_uring_sqe * sqe,unsigned int flags)5860 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5861 unsigned int flags)
5862 {
5863 u32 events;
5864
5865 events = READ_ONCE(sqe->poll32_events);
5866 #ifdef __BIG_ENDIAN
5867 events = swahw32(events);
5868 #endif
5869 if (!(flags & IORING_POLL_ADD_MULTI))
5870 events |= EPOLLONESHOT;
5871 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5872 }
5873
io_poll_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5874 static int io_poll_update_prep(struct io_kiocb *req,
5875 const struct io_uring_sqe *sqe)
5876 {
5877 struct io_poll_update *upd = &req->poll_update;
5878 u32 flags;
5879
5880 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5881 return -EINVAL;
5882 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5883 return -EINVAL;
5884 flags = READ_ONCE(sqe->len);
5885 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5886 IORING_POLL_ADD_MULTI))
5887 return -EINVAL;
5888 /* meaningless without update */
5889 if (flags == IORING_POLL_ADD_MULTI)
5890 return -EINVAL;
5891
5892 upd->old_user_data = READ_ONCE(sqe->addr);
5893 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5894 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5895
5896 upd->new_user_data = READ_ONCE(sqe->off);
5897 if (!upd->update_user_data && upd->new_user_data)
5898 return -EINVAL;
5899 if (upd->update_events)
5900 upd->events = io_poll_parse_events(sqe, flags);
5901 else if (sqe->poll32_events)
5902 return -EINVAL;
5903
5904 return 0;
5905 }
5906
io_poll_add_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5907 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5908 {
5909 struct io_poll_iocb *poll = &req->poll;
5910 u32 flags;
5911
5912 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5913 return -EINVAL;
5914 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5915 return -EINVAL;
5916 flags = READ_ONCE(sqe->len);
5917 if (flags & ~IORING_POLL_ADD_MULTI)
5918 return -EINVAL;
5919
5920 io_req_set_refcount(req);
5921 poll->events = io_poll_parse_events(sqe, flags);
5922 return 0;
5923 }
5924
io_poll_add(struct io_kiocb * req,unsigned int issue_flags)5925 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5926 {
5927 struct io_poll_iocb *poll = &req->poll;
5928 struct io_poll_table ipt;
5929 int ret;
5930
5931 ipt.pt._qproc = io_poll_queue_proc;
5932
5933 ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
5934 if (!ret && ipt.error)
5935 req_set_fail(req);
5936 ret = ret ?: ipt.error;
5937 if (ret)
5938 __io_req_complete(req, issue_flags, ret, 0);
5939 return 0;
5940 }
5941
io_poll_update(struct io_kiocb * req,unsigned int issue_flags)5942 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5943 {
5944 struct io_ring_ctx *ctx = req->ctx;
5945 struct io_kiocb *preq;
5946 int ret2, ret = 0;
5947
5948 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5949
5950 spin_lock(&ctx->completion_lock);
5951 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5952 if (!preq || !io_poll_disarm(preq)) {
5953 spin_unlock(&ctx->completion_lock);
5954 ret = preq ? -EALREADY : -ENOENT;
5955 goto out;
5956 }
5957 spin_unlock(&ctx->completion_lock);
5958
5959 if (req->poll_update.update_events || req->poll_update.update_user_data) {
5960 /* only mask one event flags, keep behavior flags */
5961 if (req->poll_update.update_events) {
5962 preq->poll.events &= ~0xffff;
5963 preq->poll.events |= req->poll_update.events & 0xffff;
5964 preq->poll.events |= IO_POLL_UNMASK;
5965 }
5966 if (req->poll_update.update_user_data)
5967 preq->user_data = req->poll_update.new_user_data;
5968
5969 ret2 = io_poll_add(preq, issue_flags);
5970 /* successfully updated, don't complete poll request */
5971 if (!ret2)
5972 goto out;
5973 }
5974 req_set_fail(preq);
5975 io_req_complete(preq, -ECANCELED);
5976 out:
5977 if (ret < 0)
5978 req_set_fail(req);
5979 /* complete update request, we're done with it */
5980 io_req_complete(req, ret);
5981 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5982 return 0;
5983 }
5984
io_req_task_timeout(struct io_kiocb * req,bool * locked)5985 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5986 {
5987 req_set_fail(req);
5988 io_req_complete_post(req, -ETIME, 0);
5989 }
5990
io_timeout_fn(struct hrtimer * timer)5991 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5992 {
5993 struct io_timeout_data *data = container_of(timer,
5994 struct io_timeout_data, timer);
5995 struct io_kiocb *req = data->req;
5996 struct io_ring_ctx *ctx = req->ctx;
5997 unsigned long flags;
5998
5999 spin_lock_irqsave(&ctx->timeout_lock, flags);
6000 list_del_init(&req->timeout.list);
6001 atomic_set(&req->ctx->cq_timeouts,
6002 atomic_read(&req->ctx->cq_timeouts) + 1);
6003 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6004
6005 req->io_task_work.func = io_req_task_timeout;
6006 io_req_task_work_add(req);
6007 return HRTIMER_NORESTART;
6008 }
6009
io_timeout_extract(struct io_ring_ctx * ctx,__u64 user_data)6010 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6011 __u64 user_data)
6012 __must_hold(&ctx->timeout_lock)
6013 {
6014 struct io_timeout_data *io;
6015 struct io_kiocb *req;
6016 bool found = false;
6017
6018 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6019 found = user_data == req->user_data;
6020 if (found)
6021 break;
6022 }
6023 if (!found)
6024 return ERR_PTR(-ENOENT);
6025
6026 io = req->async_data;
6027 if (hrtimer_try_to_cancel(&io->timer) == -1)
6028 return ERR_PTR(-EALREADY);
6029 list_del_init(&req->timeout.list);
6030 return req;
6031 }
6032
io_timeout_cancel(struct io_ring_ctx * ctx,__u64 user_data)6033 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6034 __must_hold(&ctx->completion_lock)
6035 __must_hold(&ctx->timeout_lock)
6036 {
6037 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6038
6039 if (IS_ERR(req))
6040 return PTR_ERR(req);
6041
6042 req_set_fail(req);
6043 io_fill_cqe_req(req, -ECANCELED, 0);
6044 io_put_req_deferred(req);
6045 return 0;
6046 }
6047
io_timeout_get_clock(struct io_timeout_data * data)6048 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6049 {
6050 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6051 case IORING_TIMEOUT_BOOTTIME:
6052 return CLOCK_BOOTTIME;
6053 case IORING_TIMEOUT_REALTIME:
6054 return CLOCK_REALTIME;
6055 default:
6056 /* can't happen, vetted at prep time */
6057 WARN_ON_ONCE(1);
6058 fallthrough;
6059 case 0:
6060 return CLOCK_MONOTONIC;
6061 }
6062 }
6063
io_linked_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)6064 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6065 struct timespec64 *ts, enum hrtimer_mode mode)
6066 __must_hold(&ctx->timeout_lock)
6067 {
6068 struct io_timeout_data *io;
6069 struct io_kiocb *req;
6070 bool found = false;
6071
6072 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6073 found = user_data == req->user_data;
6074 if (found)
6075 break;
6076 }
6077 if (!found)
6078 return -ENOENT;
6079
6080 io = req->async_data;
6081 if (hrtimer_try_to_cancel(&io->timer) == -1)
6082 return -EALREADY;
6083 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6084 io->timer.function = io_link_timeout_fn;
6085 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6086 return 0;
6087 }
6088
io_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)6089 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6090 struct timespec64 *ts, enum hrtimer_mode mode)
6091 __must_hold(&ctx->timeout_lock)
6092 {
6093 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6094 struct io_timeout_data *data;
6095
6096 if (IS_ERR(req))
6097 return PTR_ERR(req);
6098
6099 req->timeout.off = 0; /* noseq */
6100 data = req->async_data;
6101 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6102 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6103 data->timer.function = io_timeout_fn;
6104 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6105 return 0;
6106 }
6107
io_timeout_remove_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6108 static int io_timeout_remove_prep(struct io_kiocb *req,
6109 const struct io_uring_sqe *sqe)
6110 {
6111 struct io_timeout_rem *tr = &req->timeout_rem;
6112
6113 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6114 return -EINVAL;
6115 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6116 return -EINVAL;
6117 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6118 return -EINVAL;
6119
6120 tr->ltimeout = false;
6121 tr->addr = READ_ONCE(sqe->addr);
6122 tr->flags = READ_ONCE(sqe->timeout_flags);
6123 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6124 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6125 return -EINVAL;
6126 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6127 tr->ltimeout = true;
6128 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6129 return -EINVAL;
6130 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6131 return -EFAULT;
6132 } else if (tr->flags) {
6133 /* timeout removal doesn't support flags */
6134 return -EINVAL;
6135 }
6136
6137 return 0;
6138 }
6139
io_translate_timeout_mode(unsigned int flags)6140 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6141 {
6142 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6143 : HRTIMER_MODE_REL;
6144 }
6145
6146 /*
6147 * Remove or update an existing timeout command
6148 */
io_timeout_remove(struct io_kiocb * req,unsigned int issue_flags)6149 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6150 {
6151 struct io_timeout_rem *tr = &req->timeout_rem;
6152 struct io_ring_ctx *ctx = req->ctx;
6153 int ret;
6154
6155 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6156 spin_lock(&ctx->completion_lock);
6157 spin_lock_irq(&ctx->timeout_lock);
6158 ret = io_timeout_cancel(ctx, tr->addr);
6159 spin_unlock_irq(&ctx->timeout_lock);
6160 spin_unlock(&ctx->completion_lock);
6161 } else {
6162 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6163
6164 spin_lock_irq(&ctx->timeout_lock);
6165 if (tr->ltimeout)
6166 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6167 else
6168 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6169 spin_unlock_irq(&ctx->timeout_lock);
6170 }
6171
6172 if (ret < 0)
6173 req_set_fail(req);
6174 io_req_complete_post(req, ret, 0);
6175 return 0;
6176 }
6177
io_timeout_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool is_timeout_link)6178 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6179 bool is_timeout_link)
6180 {
6181 struct io_timeout_data *data;
6182 unsigned flags;
6183 u32 off = READ_ONCE(sqe->off);
6184
6185 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6186 return -EINVAL;
6187 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6188 sqe->splice_fd_in)
6189 return -EINVAL;
6190 if (off && is_timeout_link)
6191 return -EINVAL;
6192 flags = READ_ONCE(sqe->timeout_flags);
6193 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6194 return -EINVAL;
6195 /* more than one clock specified is invalid, obviously */
6196 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6197 return -EINVAL;
6198
6199 INIT_LIST_HEAD(&req->timeout.list);
6200 req->timeout.off = off;
6201 if (unlikely(off && !req->ctx->off_timeout_used))
6202 req->ctx->off_timeout_used = true;
6203
6204 if (!req->async_data && io_alloc_async_data(req))
6205 return -ENOMEM;
6206
6207 data = req->async_data;
6208 data->req = req;
6209 data->flags = flags;
6210
6211 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6212 return -EFAULT;
6213
6214 INIT_LIST_HEAD(&req->timeout.list);
6215 data->mode = io_translate_timeout_mode(flags);
6216 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6217
6218 if (is_timeout_link) {
6219 struct io_submit_link *link = &req->ctx->submit_state.link;
6220
6221 if (!link->head)
6222 return -EINVAL;
6223 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6224 return -EINVAL;
6225 req->timeout.head = link->last;
6226 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6227 }
6228 return 0;
6229 }
6230
io_timeout(struct io_kiocb * req,unsigned int issue_flags)6231 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6232 {
6233 struct io_ring_ctx *ctx = req->ctx;
6234 struct io_timeout_data *data = req->async_data;
6235 struct list_head *entry;
6236 u32 tail, off = req->timeout.off;
6237
6238 spin_lock_irq(&ctx->timeout_lock);
6239
6240 /*
6241 * sqe->off holds how many events that need to occur for this
6242 * timeout event to be satisfied. If it isn't set, then this is
6243 * a pure timeout request, sequence isn't used.
6244 */
6245 if (io_is_timeout_noseq(req)) {
6246 entry = ctx->timeout_list.prev;
6247 goto add;
6248 }
6249
6250 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6251 req->timeout.target_seq = tail + off;
6252
6253 /* Update the last seq here in case io_flush_timeouts() hasn't.
6254 * This is safe because ->completion_lock is held, and submissions
6255 * and completions are never mixed in the same ->completion_lock section.
6256 */
6257 ctx->cq_last_tm_flush = tail;
6258
6259 /*
6260 * Insertion sort, ensuring the first entry in the list is always
6261 * the one we need first.
6262 */
6263 list_for_each_prev(entry, &ctx->timeout_list) {
6264 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6265 timeout.list);
6266
6267 if (io_is_timeout_noseq(nxt))
6268 continue;
6269 /* nxt.seq is behind @tail, otherwise would've been completed */
6270 if (off >= nxt->timeout.target_seq - tail)
6271 break;
6272 }
6273 add:
6274 list_add(&req->timeout.list, entry);
6275 data->timer.function = io_timeout_fn;
6276 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6277 spin_unlock_irq(&ctx->timeout_lock);
6278 return 0;
6279 }
6280
6281 struct io_cancel_data {
6282 struct io_ring_ctx *ctx;
6283 u64 user_data;
6284 };
6285
io_cancel_cb(struct io_wq_work * work,void * data)6286 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6287 {
6288 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6289 struct io_cancel_data *cd = data;
6290
6291 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6292 }
6293
io_async_cancel_one(struct io_uring_task * tctx,u64 user_data,struct io_ring_ctx * ctx)6294 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6295 struct io_ring_ctx *ctx)
6296 {
6297 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6298 enum io_wq_cancel cancel_ret;
6299 int ret = 0;
6300
6301 if (!tctx || !tctx->io_wq)
6302 return -ENOENT;
6303
6304 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6305 switch (cancel_ret) {
6306 case IO_WQ_CANCEL_OK:
6307 ret = 0;
6308 break;
6309 case IO_WQ_CANCEL_RUNNING:
6310 ret = -EALREADY;
6311 break;
6312 case IO_WQ_CANCEL_NOTFOUND:
6313 ret = -ENOENT;
6314 break;
6315 }
6316
6317 return ret;
6318 }
6319
io_try_cancel_userdata(struct io_kiocb * req,u64 sqe_addr)6320 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6321 {
6322 struct io_ring_ctx *ctx = req->ctx;
6323 int ret;
6324
6325 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6326
6327 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6328 if (ret != -ENOENT)
6329 return ret;
6330
6331 spin_lock(&ctx->completion_lock);
6332 spin_lock_irq(&ctx->timeout_lock);
6333 ret = io_timeout_cancel(ctx, sqe_addr);
6334 spin_unlock_irq(&ctx->timeout_lock);
6335 if (ret != -ENOENT)
6336 goto out;
6337 ret = io_poll_cancel(ctx, sqe_addr, false);
6338 out:
6339 spin_unlock(&ctx->completion_lock);
6340 return ret;
6341 }
6342
io_async_cancel_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6343 static int io_async_cancel_prep(struct io_kiocb *req,
6344 const struct io_uring_sqe *sqe)
6345 {
6346 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6347 return -EINVAL;
6348 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6349 return -EINVAL;
6350 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6351 sqe->splice_fd_in)
6352 return -EINVAL;
6353
6354 req->cancel.addr = READ_ONCE(sqe->addr);
6355 return 0;
6356 }
6357
io_async_cancel(struct io_kiocb * req,unsigned int issue_flags)6358 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6359 {
6360 struct io_ring_ctx *ctx = req->ctx;
6361 u64 sqe_addr = req->cancel.addr;
6362 struct io_tctx_node *node;
6363 int ret;
6364
6365 ret = io_try_cancel_userdata(req, sqe_addr);
6366 if (ret != -ENOENT)
6367 goto done;
6368
6369 /* slow path, try all io-wq's */
6370 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6371 ret = -ENOENT;
6372 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6373 struct io_uring_task *tctx = node->task->io_uring;
6374
6375 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6376 if (ret != -ENOENT)
6377 break;
6378 }
6379 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6380 done:
6381 if (ret < 0)
6382 req_set_fail(req);
6383 io_req_complete_post(req, ret, 0);
6384 return 0;
6385 }
6386
io_rsrc_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6387 static int io_rsrc_update_prep(struct io_kiocb *req,
6388 const struct io_uring_sqe *sqe)
6389 {
6390 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6391 return -EINVAL;
6392 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6393 return -EINVAL;
6394
6395 req->rsrc_update.offset = READ_ONCE(sqe->off);
6396 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6397 if (!req->rsrc_update.nr_args)
6398 return -EINVAL;
6399 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6400 return 0;
6401 }
6402
io_files_update(struct io_kiocb * req,unsigned int issue_flags)6403 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6404 {
6405 struct io_ring_ctx *ctx = req->ctx;
6406 struct io_uring_rsrc_update2 up;
6407 int ret;
6408
6409 up.offset = req->rsrc_update.offset;
6410 up.data = req->rsrc_update.arg;
6411 up.nr = 0;
6412 up.tags = 0;
6413 up.resv = 0;
6414 up.resv2 = 0;
6415
6416 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6417 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6418 &up, req->rsrc_update.nr_args);
6419 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6420
6421 if (ret < 0)
6422 req_set_fail(req);
6423 __io_req_complete(req, issue_flags, ret, 0);
6424 return 0;
6425 }
6426
io_req_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6427 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6428 {
6429 switch (req->opcode) {
6430 case IORING_OP_NOP:
6431 return 0;
6432 case IORING_OP_READV:
6433 case IORING_OP_READ_FIXED:
6434 case IORING_OP_READ:
6435 return io_read_prep(req, sqe);
6436 case IORING_OP_WRITEV:
6437 case IORING_OP_WRITE_FIXED:
6438 case IORING_OP_WRITE:
6439 return io_write_prep(req, sqe);
6440 case IORING_OP_POLL_ADD:
6441 return io_poll_add_prep(req, sqe);
6442 case IORING_OP_POLL_REMOVE:
6443 return io_poll_update_prep(req, sqe);
6444 case IORING_OP_FSYNC:
6445 return io_fsync_prep(req, sqe);
6446 case IORING_OP_SYNC_FILE_RANGE:
6447 return io_sfr_prep(req, sqe);
6448 case IORING_OP_SENDMSG:
6449 case IORING_OP_SEND:
6450 return io_sendmsg_prep(req, sqe);
6451 case IORING_OP_RECVMSG:
6452 case IORING_OP_RECV:
6453 return io_recvmsg_prep(req, sqe);
6454 case IORING_OP_CONNECT:
6455 return io_connect_prep(req, sqe);
6456 case IORING_OP_TIMEOUT:
6457 return io_timeout_prep(req, sqe, false);
6458 case IORING_OP_TIMEOUT_REMOVE:
6459 return io_timeout_remove_prep(req, sqe);
6460 case IORING_OP_ASYNC_CANCEL:
6461 return io_async_cancel_prep(req, sqe);
6462 case IORING_OP_LINK_TIMEOUT:
6463 return io_timeout_prep(req, sqe, true);
6464 case IORING_OP_ACCEPT:
6465 return io_accept_prep(req, sqe);
6466 case IORING_OP_FALLOCATE:
6467 return io_fallocate_prep(req, sqe);
6468 case IORING_OP_OPENAT:
6469 return io_openat_prep(req, sqe);
6470 case IORING_OP_CLOSE:
6471 return io_close_prep(req, sqe);
6472 case IORING_OP_FILES_UPDATE:
6473 return io_rsrc_update_prep(req, sqe);
6474 case IORING_OP_STATX:
6475 return io_statx_prep(req, sqe);
6476 case IORING_OP_FADVISE:
6477 return io_fadvise_prep(req, sqe);
6478 case IORING_OP_MADVISE:
6479 return io_madvise_prep(req, sqe);
6480 case IORING_OP_OPENAT2:
6481 return io_openat2_prep(req, sqe);
6482 case IORING_OP_EPOLL_CTL:
6483 return io_epoll_ctl_prep(req, sqe);
6484 case IORING_OP_SPLICE:
6485 return io_splice_prep(req, sqe);
6486 case IORING_OP_PROVIDE_BUFFERS:
6487 return io_provide_buffers_prep(req, sqe);
6488 case IORING_OP_REMOVE_BUFFERS:
6489 return io_remove_buffers_prep(req, sqe);
6490 case IORING_OP_TEE:
6491 return io_tee_prep(req, sqe);
6492 case IORING_OP_SHUTDOWN:
6493 return io_shutdown_prep(req, sqe);
6494 case IORING_OP_RENAMEAT:
6495 return io_renameat_prep(req, sqe);
6496 case IORING_OP_UNLINKAT:
6497 return io_unlinkat_prep(req, sqe);
6498 }
6499
6500 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6501 req->opcode);
6502 return -EINVAL;
6503 }
6504
io_req_prep_async(struct io_kiocb * req)6505 static int io_req_prep_async(struct io_kiocb *req)
6506 {
6507 if (!io_op_defs[req->opcode].needs_async_setup)
6508 return 0;
6509 if (WARN_ON_ONCE(req->async_data))
6510 return -EFAULT;
6511 if (io_alloc_async_data(req))
6512 return -EAGAIN;
6513
6514 switch (req->opcode) {
6515 case IORING_OP_READV:
6516 return io_rw_prep_async(req, READ);
6517 case IORING_OP_WRITEV:
6518 return io_rw_prep_async(req, WRITE);
6519 case IORING_OP_SENDMSG:
6520 return io_sendmsg_prep_async(req);
6521 case IORING_OP_RECVMSG:
6522 return io_recvmsg_prep_async(req);
6523 case IORING_OP_CONNECT:
6524 return io_connect_prep_async(req);
6525 }
6526 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6527 req->opcode);
6528 return -EFAULT;
6529 }
6530
io_get_sequence(struct io_kiocb * req)6531 static u32 io_get_sequence(struct io_kiocb *req)
6532 {
6533 u32 seq = req->ctx->cached_sq_head;
6534
6535 /* need original cached_sq_head, but it was increased for each req */
6536 io_for_each_link(req, req)
6537 seq--;
6538 return seq;
6539 }
6540
io_drain_req(struct io_kiocb * req)6541 static bool io_drain_req(struct io_kiocb *req)
6542 {
6543 struct io_kiocb *pos;
6544 struct io_ring_ctx *ctx = req->ctx;
6545 struct io_defer_entry *de;
6546 int ret;
6547 u32 seq;
6548
6549 if (req->flags & REQ_F_FAIL) {
6550 io_req_complete_fail_submit(req);
6551 return true;
6552 }
6553
6554 /*
6555 * If we need to drain a request in the middle of a link, drain the
6556 * head request and the next request/link after the current link.
6557 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6558 * maintained for every request of our link.
6559 */
6560 if (ctx->drain_next) {
6561 req->flags |= REQ_F_IO_DRAIN;
6562 ctx->drain_next = false;
6563 }
6564 /* not interested in head, start from the first linked */
6565 io_for_each_link(pos, req->link) {
6566 if (pos->flags & REQ_F_IO_DRAIN) {
6567 ctx->drain_next = true;
6568 req->flags |= REQ_F_IO_DRAIN;
6569 break;
6570 }
6571 }
6572
6573 /* Still need defer if there is pending req in defer list. */
6574 spin_lock(&ctx->completion_lock);
6575 if (likely(list_empty_careful(&ctx->defer_list) &&
6576 !(req->flags & REQ_F_IO_DRAIN))) {
6577 spin_unlock(&ctx->completion_lock);
6578 ctx->drain_active = false;
6579 return false;
6580 }
6581 spin_unlock(&ctx->completion_lock);
6582
6583 seq = io_get_sequence(req);
6584 /* Still a chance to pass the sequence check */
6585 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6586 return false;
6587
6588 ret = io_req_prep_async(req);
6589 if (ret)
6590 goto fail;
6591 io_prep_async_link(req);
6592 de = kmalloc(sizeof(*de), GFP_KERNEL);
6593 if (!de) {
6594 ret = -ENOMEM;
6595 fail:
6596 io_req_complete_failed(req, ret);
6597 return true;
6598 }
6599
6600 spin_lock(&ctx->completion_lock);
6601 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6602 spin_unlock(&ctx->completion_lock);
6603 kfree(de);
6604 io_queue_async_work(req, NULL);
6605 return true;
6606 }
6607
6608 trace_io_uring_defer(ctx, req, req->user_data);
6609 de->req = req;
6610 de->seq = seq;
6611 list_add_tail(&de->list, &ctx->defer_list);
6612 spin_unlock(&ctx->completion_lock);
6613 return true;
6614 }
6615
io_clean_op(struct io_kiocb * req)6616 static void io_clean_op(struct io_kiocb *req)
6617 {
6618 if (req->flags & REQ_F_BUFFER_SELECTED) {
6619 switch (req->opcode) {
6620 case IORING_OP_READV:
6621 case IORING_OP_READ_FIXED:
6622 case IORING_OP_READ:
6623 kfree((void *)(unsigned long)req->rw.addr);
6624 break;
6625 case IORING_OP_RECVMSG:
6626 case IORING_OP_RECV:
6627 kfree(req->sr_msg.kbuf);
6628 break;
6629 }
6630 }
6631
6632 if (req->flags & REQ_F_NEED_CLEANUP) {
6633 switch (req->opcode) {
6634 case IORING_OP_READV:
6635 case IORING_OP_READ_FIXED:
6636 case IORING_OP_READ:
6637 case IORING_OP_WRITEV:
6638 case IORING_OP_WRITE_FIXED:
6639 case IORING_OP_WRITE: {
6640 struct io_async_rw *io = req->async_data;
6641
6642 kfree(io->free_iovec);
6643 break;
6644 }
6645 case IORING_OP_RECVMSG:
6646 case IORING_OP_SENDMSG: {
6647 struct io_async_msghdr *io = req->async_data;
6648
6649 kfree(io->free_iov);
6650 break;
6651 }
6652 case IORING_OP_OPENAT:
6653 case IORING_OP_OPENAT2:
6654 if (req->open.filename)
6655 putname(req->open.filename);
6656 break;
6657 case IORING_OP_RENAMEAT:
6658 putname(req->rename.oldpath);
6659 putname(req->rename.newpath);
6660 break;
6661 case IORING_OP_UNLINKAT:
6662 putname(req->unlink.filename);
6663 break;
6664 }
6665 }
6666 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6667 kfree(req->apoll->double_poll);
6668 kfree(req->apoll);
6669 req->apoll = NULL;
6670 }
6671 if (req->flags & REQ_F_INFLIGHT) {
6672 struct io_uring_task *tctx = req->task->io_uring;
6673
6674 atomic_dec(&tctx->inflight_tracked);
6675 }
6676 if (req->flags & REQ_F_CREDS)
6677 put_cred(req->creds);
6678
6679 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6680 }
6681
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)6682 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6683 {
6684 struct io_ring_ctx *ctx = req->ctx;
6685 const struct cred *creds = NULL;
6686 int ret;
6687
6688 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6689 creds = override_creds(req->creds);
6690
6691 switch (req->opcode) {
6692 case IORING_OP_NOP:
6693 ret = io_nop(req, issue_flags);
6694 break;
6695 case IORING_OP_READV:
6696 case IORING_OP_READ_FIXED:
6697 case IORING_OP_READ:
6698 ret = io_read(req, issue_flags);
6699 break;
6700 case IORING_OP_WRITEV:
6701 case IORING_OP_WRITE_FIXED:
6702 case IORING_OP_WRITE:
6703 ret = io_write(req, issue_flags);
6704 break;
6705 case IORING_OP_FSYNC:
6706 ret = io_fsync(req, issue_flags);
6707 break;
6708 case IORING_OP_POLL_ADD:
6709 ret = io_poll_add(req, issue_flags);
6710 break;
6711 case IORING_OP_POLL_REMOVE:
6712 ret = io_poll_update(req, issue_flags);
6713 break;
6714 case IORING_OP_SYNC_FILE_RANGE:
6715 ret = io_sync_file_range(req, issue_flags);
6716 break;
6717 case IORING_OP_SENDMSG:
6718 ret = io_sendmsg(req, issue_flags);
6719 break;
6720 case IORING_OP_SEND:
6721 ret = io_send(req, issue_flags);
6722 break;
6723 case IORING_OP_RECVMSG:
6724 ret = io_recvmsg(req, issue_flags);
6725 break;
6726 case IORING_OP_RECV:
6727 ret = io_recv(req, issue_flags);
6728 break;
6729 case IORING_OP_TIMEOUT:
6730 ret = io_timeout(req, issue_flags);
6731 break;
6732 case IORING_OP_TIMEOUT_REMOVE:
6733 ret = io_timeout_remove(req, issue_flags);
6734 break;
6735 case IORING_OP_ACCEPT:
6736 ret = io_accept(req, issue_flags);
6737 break;
6738 case IORING_OP_CONNECT:
6739 ret = io_connect(req, issue_flags);
6740 break;
6741 case IORING_OP_ASYNC_CANCEL:
6742 ret = io_async_cancel(req, issue_flags);
6743 break;
6744 case IORING_OP_FALLOCATE:
6745 ret = io_fallocate(req, issue_flags);
6746 break;
6747 case IORING_OP_OPENAT:
6748 ret = io_openat(req, issue_flags);
6749 break;
6750 case IORING_OP_CLOSE:
6751 ret = io_close(req, issue_flags);
6752 break;
6753 case IORING_OP_FILES_UPDATE:
6754 ret = io_files_update(req, issue_flags);
6755 break;
6756 case IORING_OP_STATX:
6757 ret = io_statx(req, issue_flags);
6758 break;
6759 case IORING_OP_FADVISE:
6760 ret = io_fadvise(req, issue_flags);
6761 break;
6762 case IORING_OP_MADVISE:
6763 ret = io_madvise(req, issue_flags);
6764 break;
6765 case IORING_OP_OPENAT2:
6766 ret = io_openat2(req, issue_flags);
6767 break;
6768 case IORING_OP_EPOLL_CTL:
6769 ret = io_epoll_ctl(req, issue_flags);
6770 break;
6771 case IORING_OP_SPLICE:
6772 ret = io_splice(req, issue_flags);
6773 break;
6774 case IORING_OP_PROVIDE_BUFFERS:
6775 ret = io_provide_buffers(req, issue_flags);
6776 break;
6777 case IORING_OP_REMOVE_BUFFERS:
6778 ret = io_remove_buffers(req, issue_flags);
6779 break;
6780 case IORING_OP_TEE:
6781 ret = io_tee(req, issue_flags);
6782 break;
6783 case IORING_OP_SHUTDOWN:
6784 ret = io_shutdown(req, issue_flags);
6785 break;
6786 case IORING_OP_RENAMEAT:
6787 ret = io_renameat(req, issue_flags);
6788 break;
6789 case IORING_OP_UNLINKAT:
6790 ret = io_unlinkat(req, issue_flags);
6791 break;
6792 default:
6793 ret = -EINVAL;
6794 break;
6795 }
6796
6797 if (creds)
6798 revert_creds(creds);
6799 if (ret)
6800 return ret;
6801 /* If the op doesn't have a file, we're not polling for it */
6802 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6803 io_iopoll_req_issued(req);
6804
6805 return 0;
6806 }
6807
io_wq_free_work(struct io_wq_work * work)6808 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6809 {
6810 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6811
6812 req = io_put_req_find_next(req);
6813 return req ? &req->work : NULL;
6814 }
6815
io_wq_submit_work(struct io_wq_work * work)6816 static void io_wq_submit_work(struct io_wq_work *work)
6817 {
6818 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6819 struct io_kiocb *timeout;
6820 int ret = 0;
6821
6822 /* one will be dropped by ->io_free_work() after returning to io-wq */
6823 if (!(req->flags & REQ_F_REFCOUNT))
6824 __io_req_set_refcount(req, 2);
6825 else
6826 req_ref_get(req);
6827
6828 timeout = io_prep_linked_timeout(req);
6829 if (timeout)
6830 io_queue_linked_timeout(timeout);
6831 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6832 if (work->flags & IO_WQ_WORK_CANCEL)
6833 ret = -ECANCELED;
6834
6835 if (!ret) {
6836 do {
6837 ret = io_issue_sqe(req, 0);
6838 /*
6839 * We can get EAGAIN for polled IO even though we're
6840 * forcing a sync submission from here, since we can't
6841 * wait for request slots on the block side.
6842 */
6843 if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6844 break;
6845 cond_resched();
6846 } while (1);
6847 }
6848
6849 /* avoid locking problems by failing it from a clean context */
6850 if (ret)
6851 io_req_task_queue_fail(req, ret);
6852 }
6853
io_fixed_file_slot(struct io_file_table * table,unsigned i)6854 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6855 unsigned i)
6856 {
6857 return &table->files[i];
6858 }
6859
io_file_from_index(struct io_ring_ctx * ctx,int index)6860 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6861 int index)
6862 {
6863 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6864
6865 return (struct file *) (slot->file_ptr & FFS_MASK);
6866 }
6867
io_fixed_file_set(struct io_fixed_file * file_slot,struct file * file)6868 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6869 {
6870 unsigned long file_ptr = (unsigned long) file;
6871
6872 if (__io_file_supports_nowait(file, READ))
6873 file_ptr |= FFS_ASYNC_READ;
6874 if (__io_file_supports_nowait(file, WRITE))
6875 file_ptr |= FFS_ASYNC_WRITE;
6876 if (S_ISREG(file_inode(file)->i_mode))
6877 file_ptr |= FFS_ISREG;
6878 file_slot->file_ptr = file_ptr;
6879 }
6880
io_file_get_fixed(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd,unsigned int issue_flags)6881 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6882 struct io_kiocb *req, int fd,
6883 unsigned int issue_flags)
6884 {
6885 struct file *file = NULL;
6886 unsigned long file_ptr;
6887
6888 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6889
6890 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6891 goto out;
6892 fd = array_index_nospec(fd, ctx->nr_user_files);
6893 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6894 file = (struct file *) (file_ptr & FFS_MASK);
6895 file_ptr &= ~FFS_MASK;
6896 /* mask in overlapping REQ_F and FFS bits */
6897 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6898 io_req_set_rsrc_node(req);
6899 out:
6900 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6901 return file;
6902 }
6903
io_file_get_normal(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd)6904 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6905 struct io_kiocb *req, int fd)
6906 {
6907 struct file *file = fget(fd);
6908
6909 trace_io_uring_file_get(ctx, fd);
6910
6911 /* we don't allow fixed io_uring files */
6912 if (file && unlikely(file->f_op == &io_uring_fops))
6913 io_req_track_inflight(req);
6914 return file;
6915 }
6916
io_file_get(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd,bool fixed,unsigned int issue_flags)6917 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6918 struct io_kiocb *req, int fd, bool fixed,
6919 unsigned int issue_flags)
6920 {
6921 if (fixed)
6922 return io_file_get_fixed(ctx, req, fd, issue_flags);
6923 else
6924 return io_file_get_normal(ctx, req, fd);
6925 }
6926
io_req_task_link_timeout(struct io_kiocb * req,bool * locked)6927 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6928 {
6929 struct io_kiocb *prev = req->timeout.prev;
6930 int ret = -ENOENT;
6931
6932 if (prev) {
6933 if (!(req->task->flags & PF_EXITING))
6934 ret = io_try_cancel_userdata(req, prev->user_data);
6935 io_req_complete_post(req, ret ?: -ETIME, 0);
6936 io_put_req(prev);
6937 } else {
6938 io_req_complete_post(req, -ETIME, 0);
6939 }
6940 }
6941
io_link_timeout_fn(struct hrtimer * timer)6942 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6943 {
6944 struct io_timeout_data *data = container_of(timer,
6945 struct io_timeout_data, timer);
6946 struct io_kiocb *prev, *req = data->req;
6947 struct io_ring_ctx *ctx = req->ctx;
6948 unsigned long flags;
6949
6950 spin_lock_irqsave(&ctx->timeout_lock, flags);
6951 prev = req->timeout.head;
6952 req->timeout.head = NULL;
6953
6954 /*
6955 * We don't expect the list to be empty, that will only happen if we
6956 * race with the completion of the linked work.
6957 */
6958 if (prev) {
6959 io_remove_next_linked(prev);
6960 if (!req_ref_inc_not_zero(prev))
6961 prev = NULL;
6962 }
6963 list_del(&req->timeout.list);
6964 req->timeout.prev = prev;
6965 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6966
6967 req->io_task_work.func = io_req_task_link_timeout;
6968 io_req_task_work_add(req);
6969 return HRTIMER_NORESTART;
6970 }
6971
io_queue_linked_timeout(struct io_kiocb * req)6972 static void io_queue_linked_timeout(struct io_kiocb *req)
6973 {
6974 struct io_ring_ctx *ctx = req->ctx;
6975
6976 spin_lock_irq(&ctx->timeout_lock);
6977 /*
6978 * If the back reference is NULL, then our linked request finished
6979 * before we got a chance to setup the timer
6980 */
6981 if (req->timeout.head) {
6982 struct io_timeout_data *data = req->async_data;
6983
6984 data->timer.function = io_link_timeout_fn;
6985 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6986 data->mode);
6987 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6988 }
6989 spin_unlock_irq(&ctx->timeout_lock);
6990 /* drop submission reference */
6991 io_put_req(req);
6992 }
6993
__io_queue_sqe(struct io_kiocb * req)6994 static void __io_queue_sqe(struct io_kiocb *req)
6995 __must_hold(&req->ctx->uring_lock)
6996 {
6997 struct io_kiocb *linked_timeout;
6998 int ret;
6999
7000 issue_sqe:
7001 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7002
7003 /*
7004 * We async punt it if the file wasn't marked NOWAIT, or if the file
7005 * doesn't support non-blocking read/write attempts
7006 */
7007 if (likely(!ret)) {
7008 if (req->flags & REQ_F_COMPLETE_INLINE) {
7009 struct io_ring_ctx *ctx = req->ctx;
7010 struct io_submit_state *state = &ctx->submit_state;
7011
7012 state->compl_reqs[state->compl_nr++] = req;
7013 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7014 io_submit_flush_completions(ctx);
7015 return;
7016 }
7017
7018 linked_timeout = io_prep_linked_timeout(req);
7019 if (linked_timeout)
7020 io_queue_linked_timeout(linked_timeout);
7021 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7022 linked_timeout = io_prep_linked_timeout(req);
7023
7024 switch (io_arm_poll_handler(req)) {
7025 case IO_APOLL_READY:
7026 if (linked_timeout)
7027 io_queue_linked_timeout(linked_timeout);
7028 goto issue_sqe;
7029 case IO_APOLL_ABORTED:
7030 /*
7031 * Queued up for async execution, worker will release
7032 * submit reference when the iocb is actually submitted.
7033 */
7034 io_queue_async_work(req, NULL);
7035 break;
7036 }
7037
7038 if (linked_timeout)
7039 io_queue_linked_timeout(linked_timeout);
7040 } else {
7041 io_req_complete_failed(req, ret);
7042 }
7043 }
7044
io_queue_sqe(struct io_kiocb * req)7045 static inline void io_queue_sqe(struct io_kiocb *req)
7046 __must_hold(&req->ctx->uring_lock)
7047 {
7048 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7049 return;
7050
7051 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7052 __io_queue_sqe(req);
7053 } else if (req->flags & REQ_F_FAIL) {
7054 io_req_complete_fail_submit(req);
7055 } else {
7056 int ret = io_req_prep_async(req);
7057
7058 if (unlikely(ret))
7059 io_req_complete_failed(req, ret);
7060 else
7061 io_queue_async_work(req, NULL);
7062 }
7063 }
7064
7065 /*
7066 * Check SQE restrictions (opcode and flags).
7067 *
7068 * Returns 'true' if SQE is allowed, 'false' otherwise.
7069 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)7070 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7071 struct io_kiocb *req,
7072 unsigned int sqe_flags)
7073 {
7074 if (likely(!ctx->restricted))
7075 return true;
7076
7077 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7078 return false;
7079
7080 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7081 ctx->restrictions.sqe_flags_required)
7082 return false;
7083
7084 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7085 ctx->restrictions.sqe_flags_required))
7086 return false;
7087
7088 return true;
7089 }
7090
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7091 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7092 const struct io_uring_sqe *sqe)
7093 __must_hold(&ctx->uring_lock)
7094 {
7095 struct io_submit_state *state;
7096 unsigned int sqe_flags;
7097 int personality, ret = 0;
7098
7099 /* req is partially pre-initialised, see io_preinit_req() */
7100 req->opcode = READ_ONCE(sqe->opcode);
7101 /* same numerical values with corresponding REQ_F_*, safe to copy */
7102 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7103 req->user_data = READ_ONCE(sqe->user_data);
7104 req->file = NULL;
7105 req->fixed_rsrc_refs = NULL;
7106 req->task = current;
7107
7108 /* enforce forwards compatibility on users */
7109 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7110 return -EINVAL;
7111 if (unlikely(req->opcode >= IORING_OP_LAST))
7112 return -EINVAL;
7113 if (!io_check_restriction(ctx, req, sqe_flags))
7114 return -EACCES;
7115
7116 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7117 !io_op_defs[req->opcode].buffer_select)
7118 return -EOPNOTSUPP;
7119 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7120 ctx->drain_active = true;
7121
7122 personality = READ_ONCE(sqe->personality);
7123 if (personality) {
7124 req->creds = xa_load(&ctx->personalities, personality);
7125 if (!req->creds)
7126 return -EINVAL;
7127 get_cred(req->creds);
7128 req->flags |= REQ_F_CREDS;
7129 }
7130 state = &ctx->submit_state;
7131
7132 /*
7133 * Plug now if we have more than 1 IO left after this, and the target
7134 * is potentially a read/write to block based storage.
7135 */
7136 if (!state->plug_started && state->ios_left > 1 &&
7137 io_op_defs[req->opcode].plug) {
7138 blk_start_plug(&state->plug);
7139 state->plug_started = true;
7140 }
7141
7142 if (io_op_defs[req->opcode].needs_file) {
7143 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7144 (sqe_flags & IOSQE_FIXED_FILE),
7145 IO_URING_F_NONBLOCK);
7146 if (unlikely(!req->file))
7147 ret = -EBADF;
7148 }
7149
7150 state->ios_left--;
7151 return ret;
7152 }
7153
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7154 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7155 const struct io_uring_sqe *sqe)
7156 __must_hold(&ctx->uring_lock)
7157 {
7158 struct io_submit_link *link = &ctx->submit_state.link;
7159 int ret;
7160
7161 ret = io_init_req(ctx, req, sqe);
7162 if (unlikely(ret)) {
7163 fail_req:
7164 /* fail even hard links since we don't submit */
7165 if (link->head) {
7166 /*
7167 * we can judge a link req is failed or cancelled by if
7168 * REQ_F_FAIL is set, but the head is an exception since
7169 * it may be set REQ_F_FAIL because of other req's failure
7170 * so let's leverage req->result to distinguish if a head
7171 * is set REQ_F_FAIL because of its failure or other req's
7172 * failure so that we can set the correct ret code for it.
7173 * init result here to avoid affecting the normal path.
7174 */
7175 if (!(link->head->flags & REQ_F_FAIL))
7176 req_fail_link_node(link->head, -ECANCELED);
7177 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7178 /*
7179 * the current req is a normal req, we should return
7180 * error and thus break the submittion loop.
7181 */
7182 io_req_complete_failed(req, ret);
7183 return ret;
7184 }
7185 req_fail_link_node(req, ret);
7186 } else {
7187 ret = io_req_prep(req, sqe);
7188 if (unlikely(ret))
7189 goto fail_req;
7190 }
7191
7192 /* don't need @sqe from now on */
7193 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7194 req->flags, true,
7195 ctx->flags & IORING_SETUP_SQPOLL);
7196
7197 /*
7198 * If we already have a head request, queue this one for async
7199 * submittal once the head completes. If we don't have a head but
7200 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7201 * submitted sync once the chain is complete. If none of those
7202 * conditions are true (normal request), then just queue it.
7203 */
7204 if (link->head) {
7205 struct io_kiocb *head = link->head;
7206
7207 if (!(req->flags & REQ_F_FAIL)) {
7208 ret = io_req_prep_async(req);
7209 if (unlikely(ret)) {
7210 req_fail_link_node(req, ret);
7211 if (!(head->flags & REQ_F_FAIL))
7212 req_fail_link_node(head, -ECANCELED);
7213 }
7214 }
7215 trace_io_uring_link(ctx, req, head);
7216 link->last->link = req;
7217 link->last = req;
7218
7219 /* last request of a link, enqueue the link */
7220 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7221 link->head = NULL;
7222 io_queue_sqe(head);
7223 }
7224 } else {
7225 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7226 link->head = req;
7227 link->last = req;
7228 } else {
7229 io_queue_sqe(req);
7230 }
7231 }
7232
7233 return 0;
7234 }
7235
7236 /*
7237 * Batched submission is done, ensure local IO is flushed out.
7238 */
io_submit_state_end(struct io_submit_state * state,struct io_ring_ctx * ctx)7239 static void io_submit_state_end(struct io_submit_state *state,
7240 struct io_ring_ctx *ctx)
7241 {
7242 if (state->link.head)
7243 io_queue_sqe(state->link.head);
7244 if (state->compl_nr)
7245 io_submit_flush_completions(ctx);
7246 if (state->plug_started)
7247 blk_finish_plug(&state->plug);
7248 }
7249
7250 /*
7251 * Start submission side cache.
7252 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)7253 static void io_submit_state_start(struct io_submit_state *state,
7254 unsigned int max_ios)
7255 {
7256 state->plug_started = false;
7257 state->ios_left = max_ios;
7258 /* set only head, no need to init link_last in advance */
7259 state->link.head = NULL;
7260 }
7261
io_commit_sqring(struct io_ring_ctx * ctx)7262 static void io_commit_sqring(struct io_ring_ctx *ctx)
7263 {
7264 struct io_rings *rings = ctx->rings;
7265
7266 /*
7267 * Ensure any loads from the SQEs are done at this point,
7268 * since once we write the new head, the application could
7269 * write new data to them.
7270 */
7271 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7272 }
7273
7274 /*
7275 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7276 * that is mapped by userspace. This means that care needs to be taken to
7277 * ensure that reads are stable, as we cannot rely on userspace always
7278 * being a good citizen. If members of the sqe are validated and then later
7279 * used, it's important that those reads are done through READ_ONCE() to
7280 * prevent a re-load down the line.
7281 */
io_get_sqe(struct io_ring_ctx * ctx)7282 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7283 {
7284 unsigned head, mask = ctx->sq_entries - 1;
7285 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7286
7287 /*
7288 * The cached sq head (or cq tail) serves two purposes:
7289 *
7290 * 1) allows us to batch the cost of updating the user visible
7291 * head updates.
7292 * 2) allows the kernel side to track the head on its own, even
7293 * though the application is the one updating it.
7294 */
7295 head = READ_ONCE(ctx->sq_array[sq_idx]);
7296 if (likely(head < ctx->sq_entries))
7297 return &ctx->sq_sqes[head];
7298
7299 /* drop invalid entries */
7300 ctx->cq_extra--;
7301 WRITE_ONCE(ctx->rings->sq_dropped,
7302 READ_ONCE(ctx->rings->sq_dropped) + 1);
7303 return NULL;
7304 }
7305
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)7306 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7307 __must_hold(&ctx->uring_lock)
7308 {
7309 int submitted = 0;
7310
7311 /* make sure SQ entry isn't read before tail */
7312 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7313 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7314 return -EAGAIN;
7315 io_get_task_refs(nr);
7316
7317 io_submit_state_start(&ctx->submit_state, nr);
7318 while (submitted < nr) {
7319 const struct io_uring_sqe *sqe;
7320 struct io_kiocb *req;
7321
7322 req = io_alloc_req(ctx);
7323 if (unlikely(!req)) {
7324 if (!submitted)
7325 submitted = -EAGAIN;
7326 break;
7327 }
7328 sqe = io_get_sqe(ctx);
7329 if (unlikely(!sqe)) {
7330 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7331 break;
7332 }
7333 /* will complete beyond this point, count as submitted */
7334 submitted++;
7335 if (io_submit_sqe(ctx, req, sqe))
7336 break;
7337 }
7338
7339 if (unlikely(submitted != nr)) {
7340 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7341 int unused = nr - ref_used;
7342
7343 current->io_uring->cached_refs += unused;
7344 percpu_ref_put_many(&ctx->refs, unused);
7345 }
7346
7347 io_submit_state_end(&ctx->submit_state, ctx);
7348 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7349 io_commit_sqring(ctx);
7350
7351 return submitted;
7352 }
7353
io_sqd_events_pending(struct io_sq_data * sqd)7354 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7355 {
7356 return READ_ONCE(sqd->state);
7357 }
7358
io_ring_set_wakeup_flag(struct io_ring_ctx * ctx)7359 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7360 {
7361 /* Tell userspace we may need a wakeup call */
7362 spin_lock(&ctx->completion_lock);
7363 WRITE_ONCE(ctx->rings->sq_flags,
7364 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7365 spin_unlock(&ctx->completion_lock);
7366 }
7367
io_ring_clear_wakeup_flag(struct io_ring_ctx * ctx)7368 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7369 {
7370 spin_lock(&ctx->completion_lock);
7371 WRITE_ONCE(ctx->rings->sq_flags,
7372 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7373 spin_unlock(&ctx->completion_lock);
7374 }
7375
__io_sq_thread(struct io_ring_ctx * ctx,bool cap_entries)7376 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7377 {
7378 unsigned int to_submit;
7379 int ret = 0;
7380
7381 to_submit = io_sqring_entries(ctx);
7382 /* if we're handling multiple rings, cap submit size for fairness */
7383 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7384 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7385
7386 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7387 unsigned nr_events = 0;
7388 const struct cred *creds = NULL;
7389
7390 if (ctx->sq_creds != current_cred())
7391 creds = override_creds(ctx->sq_creds);
7392
7393 mutex_lock(&ctx->uring_lock);
7394 if (!list_empty(&ctx->iopoll_list))
7395 io_do_iopoll(ctx, &nr_events, 0);
7396
7397 /*
7398 * Don't submit if refs are dying, good for io_uring_register(),
7399 * but also it is relied upon by io_ring_exit_work()
7400 */
7401 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7402 !(ctx->flags & IORING_SETUP_R_DISABLED))
7403 ret = io_submit_sqes(ctx, to_submit);
7404 mutex_unlock(&ctx->uring_lock);
7405
7406 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7407 wake_up(&ctx->sqo_sq_wait);
7408 if (creds)
7409 revert_creds(creds);
7410 }
7411
7412 return ret;
7413 }
7414
io_sqd_update_thread_idle(struct io_sq_data * sqd)7415 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7416 {
7417 struct io_ring_ctx *ctx;
7418 unsigned sq_thread_idle = 0;
7419
7420 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7421 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7422 sqd->sq_thread_idle = sq_thread_idle;
7423 }
7424
io_sqd_handle_event(struct io_sq_data * sqd)7425 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7426 {
7427 bool did_sig = false;
7428 struct ksignal ksig;
7429
7430 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7431 signal_pending(current)) {
7432 mutex_unlock(&sqd->lock);
7433 if (signal_pending(current))
7434 did_sig = get_signal(&ksig);
7435 cond_resched();
7436 mutex_lock(&sqd->lock);
7437 }
7438 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7439 }
7440
io_sq_thread(void * data)7441 static int io_sq_thread(void *data)
7442 {
7443 struct io_sq_data *sqd = data;
7444 struct io_ring_ctx *ctx;
7445 unsigned long timeout = 0;
7446 char buf[TASK_COMM_LEN];
7447 DEFINE_WAIT(wait);
7448
7449 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7450 set_task_comm(current, buf);
7451
7452 if (sqd->sq_cpu != -1)
7453 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7454 else
7455 set_cpus_allowed_ptr(current, cpu_online_mask);
7456 current->flags |= PF_NO_SETAFFINITY;
7457
7458 mutex_lock(&sqd->lock);
7459 while (1) {
7460 bool cap_entries, sqt_spin = false;
7461
7462 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7463 if (io_sqd_handle_event(sqd))
7464 break;
7465 timeout = jiffies + sqd->sq_thread_idle;
7466 }
7467
7468 cap_entries = !list_is_singular(&sqd->ctx_list);
7469 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7470 int ret = __io_sq_thread(ctx, cap_entries);
7471
7472 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7473 sqt_spin = true;
7474 }
7475 if (io_run_task_work())
7476 sqt_spin = true;
7477
7478 if (sqt_spin || !time_after(jiffies, timeout)) {
7479 cond_resched();
7480 if (sqt_spin)
7481 timeout = jiffies + sqd->sq_thread_idle;
7482 continue;
7483 }
7484
7485 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7486 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7487 bool needs_sched = true;
7488
7489 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7490 io_ring_set_wakeup_flag(ctx);
7491
7492 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7493 !list_empty_careful(&ctx->iopoll_list)) {
7494 needs_sched = false;
7495 break;
7496 }
7497 if (io_sqring_entries(ctx)) {
7498 needs_sched = false;
7499 break;
7500 }
7501 }
7502
7503 if (needs_sched) {
7504 mutex_unlock(&sqd->lock);
7505 schedule();
7506 mutex_lock(&sqd->lock);
7507 }
7508 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7509 io_ring_clear_wakeup_flag(ctx);
7510 }
7511
7512 finish_wait(&sqd->wait, &wait);
7513 timeout = jiffies + sqd->sq_thread_idle;
7514 }
7515
7516 io_uring_cancel_generic(true, sqd);
7517 sqd->thread = NULL;
7518 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7519 io_ring_set_wakeup_flag(ctx);
7520 io_run_task_work();
7521 mutex_unlock(&sqd->lock);
7522
7523 complete(&sqd->exited);
7524 do_exit(0);
7525 }
7526
7527 struct io_wait_queue {
7528 struct wait_queue_entry wq;
7529 struct io_ring_ctx *ctx;
7530 unsigned cq_tail;
7531 unsigned nr_timeouts;
7532 };
7533
io_should_wake(struct io_wait_queue * iowq)7534 static inline bool io_should_wake(struct io_wait_queue *iowq)
7535 {
7536 struct io_ring_ctx *ctx = iowq->ctx;
7537 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7538
7539 /*
7540 * Wake up if we have enough events, or if a timeout occurred since we
7541 * started waiting. For timeouts, we always want to return to userspace,
7542 * regardless of event count.
7543 */
7544 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7545 }
7546
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)7547 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7548 int wake_flags, void *key)
7549 {
7550 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7551 wq);
7552
7553 /*
7554 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7555 * the task, and the next invocation will do it.
7556 */
7557 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7558 return autoremove_wake_function(curr, mode, wake_flags, key);
7559 return -1;
7560 }
7561
io_run_task_work_sig(void)7562 static int io_run_task_work_sig(void)
7563 {
7564 if (io_run_task_work())
7565 return 1;
7566 if (!signal_pending(current))
7567 return 0;
7568 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7569 return -ERESTARTSYS;
7570 return -EINTR;
7571 }
7572
7573 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t * timeout)7574 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7575 struct io_wait_queue *iowq,
7576 ktime_t *timeout)
7577 {
7578 int ret;
7579
7580 /* make sure we run task_work before checking for signals */
7581 ret = io_run_task_work_sig();
7582 if (ret || io_should_wake(iowq))
7583 return ret;
7584 /* let the caller flush overflows, retry */
7585 if (test_bit(0, &ctx->check_cq_overflow))
7586 return 1;
7587
7588 if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS))
7589 return -ETIME;
7590 return 1;
7591 }
7592
7593 /*
7594 * Wait until events become available, if we don't already have some. The
7595 * application must reap them itself, as they reside on the shared cq ring.
7596 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)7597 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7598 const sigset_t __user *sig, size_t sigsz,
7599 struct __kernel_timespec __user *uts)
7600 {
7601 struct io_wait_queue iowq;
7602 struct io_rings *rings = ctx->rings;
7603 ktime_t timeout = KTIME_MAX;
7604 int ret;
7605
7606 do {
7607 io_cqring_overflow_flush(ctx);
7608 if (io_cqring_events(ctx) >= min_events)
7609 return 0;
7610 if (!io_run_task_work())
7611 break;
7612 } while (1);
7613
7614 if (uts) {
7615 struct timespec64 ts;
7616
7617 if (get_timespec64(&ts, uts))
7618 return -EFAULT;
7619 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7620 }
7621
7622 if (sig) {
7623 #ifdef CONFIG_COMPAT
7624 if (in_compat_syscall())
7625 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7626 sigsz);
7627 else
7628 #endif
7629 ret = set_user_sigmask(sig, sigsz);
7630
7631 if (ret)
7632 return ret;
7633 }
7634
7635 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7636 iowq.wq.private = current;
7637 INIT_LIST_HEAD(&iowq.wq.entry);
7638 iowq.ctx = ctx;
7639 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7640 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7641
7642 trace_io_uring_cqring_wait(ctx, min_events);
7643 do {
7644 /* if we can't even flush overflow, don't wait for more */
7645 if (!io_cqring_overflow_flush(ctx)) {
7646 ret = -EBUSY;
7647 break;
7648 }
7649 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7650 TASK_INTERRUPTIBLE);
7651 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7652 finish_wait(&ctx->cq_wait, &iowq.wq);
7653 cond_resched();
7654 } while (ret > 0);
7655
7656 restore_saved_sigmask_unless(ret == -EINTR);
7657
7658 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7659 }
7660
io_free_page_table(void ** table,size_t size)7661 static void io_free_page_table(void **table, size_t size)
7662 {
7663 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7664
7665 for (i = 0; i < nr_tables; i++)
7666 kfree(table[i]);
7667 kfree(table);
7668 }
7669
io_alloc_page_table(size_t size)7670 static void **io_alloc_page_table(size_t size)
7671 {
7672 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7673 size_t init_size = size;
7674 void **table;
7675
7676 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7677 if (!table)
7678 return NULL;
7679
7680 for (i = 0; i < nr_tables; i++) {
7681 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7682
7683 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7684 if (!table[i]) {
7685 io_free_page_table(table, init_size);
7686 return NULL;
7687 }
7688 size -= this_size;
7689 }
7690 return table;
7691 }
7692
io_rsrc_node_destroy(struct io_rsrc_node * ref_node)7693 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7694 {
7695 percpu_ref_exit(&ref_node->refs);
7696 kfree(ref_node);
7697 }
7698
io_rsrc_node_ref_zero(struct percpu_ref * ref)7699 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7700 {
7701 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7702 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7703 unsigned long flags;
7704 bool first_add = false;
7705 unsigned long delay = HZ;
7706
7707 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7708 node->done = true;
7709
7710 /* if we are mid-quiesce then do not delay */
7711 if (node->rsrc_data->quiesce)
7712 delay = 0;
7713
7714 while (!list_empty(&ctx->rsrc_ref_list)) {
7715 node = list_first_entry(&ctx->rsrc_ref_list,
7716 struct io_rsrc_node, node);
7717 /* recycle ref nodes in order */
7718 if (!node->done)
7719 break;
7720 list_del(&node->node);
7721 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7722 }
7723 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7724
7725 if (first_add)
7726 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7727 }
7728
io_rsrc_node_alloc(struct io_ring_ctx * ctx)7729 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7730 {
7731 struct io_rsrc_node *ref_node;
7732
7733 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7734 if (!ref_node)
7735 return NULL;
7736
7737 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7738 0, GFP_KERNEL)) {
7739 kfree(ref_node);
7740 return NULL;
7741 }
7742 INIT_LIST_HEAD(&ref_node->node);
7743 INIT_LIST_HEAD(&ref_node->rsrc_list);
7744 ref_node->done = false;
7745 return ref_node;
7746 }
7747
io_rsrc_node_switch(struct io_ring_ctx * ctx,struct io_rsrc_data * data_to_kill)7748 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7749 struct io_rsrc_data *data_to_kill)
7750 {
7751 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7752 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7753
7754 if (data_to_kill) {
7755 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7756
7757 rsrc_node->rsrc_data = data_to_kill;
7758 spin_lock_irq(&ctx->rsrc_ref_lock);
7759 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7760 spin_unlock_irq(&ctx->rsrc_ref_lock);
7761
7762 atomic_inc(&data_to_kill->refs);
7763 percpu_ref_kill(&rsrc_node->refs);
7764 ctx->rsrc_node = NULL;
7765 }
7766
7767 if (!ctx->rsrc_node) {
7768 ctx->rsrc_node = ctx->rsrc_backup_node;
7769 ctx->rsrc_backup_node = NULL;
7770 }
7771 }
7772
io_rsrc_node_switch_start(struct io_ring_ctx * ctx)7773 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7774 {
7775 if (ctx->rsrc_backup_node)
7776 return 0;
7777 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7778 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7779 }
7780
io_rsrc_ref_quiesce(struct io_rsrc_data * data,struct io_ring_ctx * ctx)7781 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7782 {
7783 int ret;
7784
7785 /* As we may drop ->uring_lock, other task may have started quiesce */
7786 if (data->quiesce)
7787 return -ENXIO;
7788
7789 data->quiesce = true;
7790 do {
7791 ret = io_rsrc_node_switch_start(ctx);
7792 if (ret)
7793 break;
7794 io_rsrc_node_switch(ctx, data);
7795
7796 /* kill initial ref, already quiesced if zero */
7797 if (atomic_dec_and_test(&data->refs))
7798 break;
7799 mutex_unlock(&ctx->uring_lock);
7800 flush_delayed_work(&ctx->rsrc_put_work);
7801 ret = wait_for_completion_interruptible(&data->done);
7802 if (!ret) {
7803 mutex_lock(&ctx->uring_lock);
7804 if (atomic_read(&data->refs) > 0) {
7805 /*
7806 * it has been revived by another thread while
7807 * we were unlocked
7808 */
7809 mutex_unlock(&ctx->uring_lock);
7810 } else {
7811 break;
7812 }
7813 }
7814
7815 atomic_inc(&data->refs);
7816 /* wait for all works potentially completing data->done */
7817 flush_delayed_work(&ctx->rsrc_put_work);
7818 reinit_completion(&data->done);
7819
7820 ret = io_run_task_work_sig();
7821 mutex_lock(&ctx->uring_lock);
7822 } while (ret >= 0);
7823 data->quiesce = false;
7824
7825 return ret;
7826 }
7827
io_get_tag_slot(struct io_rsrc_data * data,unsigned int idx)7828 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7829 {
7830 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7831 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7832
7833 return &data->tags[table_idx][off];
7834 }
7835
io_rsrc_data_free(struct io_rsrc_data * data)7836 static void io_rsrc_data_free(struct io_rsrc_data *data)
7837 {
7838 size_t size = data->nr * sizeof(data->tags[0][0]);
7839
7840 if (data->tags)
7841 io_free_page_table((void **)data->tags, size);
7842 kfree(data);
7843 }
7844
io_rsrc_data_alloc(struct io_ring_ctx * ctx,rsrc_put_fn * do_put,u64 __user * utags,unsigned nr,struct io_rsrc_data ** pdata)7845 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7846 u64 __user *utags, unsigned nr,
7847 struct io_rsrc_data **pdata)
7848 {
7849 struct io_rsrc_data *data;
7850 int ret = -ENOMEM;
7851 unsigned i;
7852
7853 data = kzalloc(sizeof(*data), GFP_KERNEL);
7854 if (!data)
7855 return -ENOMEM;
7856 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7857 if (!data->tags) {
7858 kfree(data);
7859 return -ENOMEM;
7860 }
7861
7862 data->nr = nr;
7863 data->ctx = ctx;
7864 data->do_put = do_put;
7865 if (utags) {
7866 ret = -EFAULT;
7867 for (i = 0; i < nr; i++) {
7868 u64 *tag_slot = io_get_tag_slot(data, i);
7869
7870 if (copy_from_user(tag_slot, &utags[i],
7871 sizeof(*tag_slot)))
7872 goto fail;
7873 }
7874 }
7875
7876 atomic_set(&data->refs, 1);
7877 init_completion(&data->done);
7878 *pdata = data;
7879 return 0;
7880 fail:
7881 io_rsrc_data_free(data);
7882 return ret;
7883 }
7884
io_alloc_file_tables(struct io_file_table * table,unsigned nr_files)7885 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7886 {
7887 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7888 GFP_KERNEL_ACCOUNT);
7889 return !!table->files;
7890 }
7891
io_free_file_tables(struct io_file_table * table)7892 static void io_free_file_tables(struct io_file_table *table)
7893 {
7894 kvfree(table->files);
7895 table->files = NULL;
7896 }
7897
__io_sqe_files_unregister(struct io_ring_ctx * ctx)7898 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7899 {
7900 #if defined(CONFIG_UNIX)
7901 if (ctx->ring_sock) {
7902 struct sock *sock = ctx->ring_sock->sk;
7903 struct sk_buff *skb;
7904
7905 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7906 kfree_skb(skb);
7907 }
7908 #else
7909 int i;
7910
7911 for (i = 0; i < ctx->nr_user_files; i++) {
7912 struct file *file;
7913
7914 file = io_file_from_index(ctx, i);
7915 if (file)
7916 fput(file);
7917 }
7918 #endif
7919 io_free_file_tables(&ctx->file_table);
7920 io_rsrc_data_free(ctx->file_data);
7921 ctx->file_data = NULL;
7922 ctx->nr_user_files = 0;
7923 }
7924
io_sqe_files_unregister(struct io_ring_ctx * ctx)7925 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7926 {
7927 unsigned nr = ctx->nr_user_files;
7928 int ret;
7929
7930 if (!ctx->file_data)
7931 return -ENXIO;
7932
7933 /*
7934 * Quiesce may unlock ->uring_lock, and while it's not held
7935 * prevent new requests using the table.
7936 */
7937 ctx->nr_user_files = 0;
7938 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7939 ctx->nr_user_files = nr;
7940 if (!ret)
7941 __io_sqe_files_unregister(ctx);
7942 return ret;
7943 }
7944
io_sq_thread_unpark(struct io_sq_data * sqd)7945 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7946 __releases(&sqd->lock)
7947 {
7948 WARN_ON_ONCE(sqd->thread == current);
7949
7950 /*
7951 * Do the dance but not conditional clear_bit() because it'd race with
7952 * other threads incrementing park_pending and setting the bit.
7953 */
7954 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7955 if (atomic_dec_return(&sqd->park_pending))
7956 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7957 mutex_unlock(&sqd->lock);
7958 }
7959
io_sq_thread_park(struct io_sq_data * sqd)7960 static void io_sq_thread_park(struct io_sq_data *sqd)
7961 __acquires(&sqd->lock)
7962 {
7963 WARN_ON_ONCE(sqd->thread == current);
7964
7965 atomic_inc(&sqd->park_pending);
7966 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7967 mutex_lock(&sqd->lock);
7968 if (sqd->thread)
7969 wake_up_process(sqd->thread);
7970 }
7971
io_sq_thread_stop(struct io_sq_data * sqd)7972 static void io_sq_thread_stop(struct io_sq_data *sqd)
7973 {
7974 WARN_ON_ONCE(sqd->thread == current);
7975 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7976
7977 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7978 mutex_lock(&sqd->lock);
7979 if (sqd->thread)
7980 wake_up_process(sqd->thread);
7981 mutex_unlock(&sqd->lock);
7982 wait_for_completion(&sqd->exited);
7983 }
7984
io_put_sq_data(struct io_sq_data * sqd)7985 static void io_put_sq_data(struct io_sq_data *sqd)
7986 {
7987 if (refcount_dec_and_test(&sqd->refs)) {
7988 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7989
7990 io_sq_thread_stop(sqd);
7991 kfree(sqd);
7992 }
7993 }
7994
io_sq_thread_finish(struct io_ring_ctx * ctx)7995 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7996 {
7997 struct io_sq_data *sqd = ctx->sq_data;
7998
7999 if (sqd) {
8000 io_sq_thread_park(sqd);
8001 list_del_init(&ctx->sqd_list);
8002 io_sqd_update_thread_idle(sqd);
8003 io_sq_thread_unpark(sqd);
8004
8005 io_put_sq_data(sqd);
8006 ctx->sq_data = NULL;
8007 }
8008 }
8009
io_attach_sq_data(struct io_uring_params * p)8010 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8011 {
8012 struct io_ring_ctx *ctx_attach;
8013 struct io_sq_data *sqd;
8014 struct fd f;
8015
8016 f = fdget(p->wq_fd);
8017 if (!f.file)
8018 return ERR_PTR(-ENXIO);
8019 if (f.file->f_op != &io_uring_fops) {
8020 fdput(f);
8021 return ERR_PTR(-EINVAL);
8022 }
8023
8024 ctx_attach = f.file->private_data;
8025 sqd = ctx_attach->sq_data;
8026 if (!sqd) {
8027 fdput(f);
8028 return ERR_PTR(-EINVAL);
8029 }
8030 if (sqd->task_tgid != current->tgid) {
8031 fdput(f);
8032 return ERR_PTR(-EPERM);
8033 }
8034
8035 refcount_inc(&sqd->refs);
8036 fdput(f);
8037 return sqd;
8038 }
8039
io_get_sq_data(struct io_uring_params * p,bool * attached)8040 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8041 bool *attached)
8042 {
8043 struct io_sq_data *sqd;
8044
8045 *attached = false;
8046 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8047 sqd = io_attach_sq_data(p);
8048 if (!IS_ERR(sqd)) {
8049 *attached = true;
8050 return sqd;
8051 }
8052 /* fall through for EPERM case, setup new sqd/task */
8053 if (PTR_ERR(sqd) != -EPERM)
8054 return sqd;
8055 }
8056
8057 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8058 if (!sqd)
8059 return ERR_PTR(-ENOMEM);
8060
8061 atomic_set(&sqd->park_pending, 0);
8062 refcount_set(&sqd->refs, 1);
8063 INIT_LIST_HEAD(&sqd->ctx_list);
8064 mutex_init(&sqd->lock);
8065 init_waitqueue_head(&sqd->wait);
8066 init_completion(&sqd->exited);
8067 return sqd;
8068 }
8069
8070 #if defined(CONFIG_UNIX)
8071 /*
8072 * Ensure the UNIX gc is aware of our file set, so we are certain that
8073 * the io_uring can be safely unregistered on process exit, even if we have
8074 * loops in the file referencing.
8075 */
__io_sqe_files_scm(struct io_ring_ctx * ctx,int nr,int offset)8076 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8077 {
8078 struct sock *sk = ctx->ring_sock->sk;
8079 struct scm_fp_list *fpl;
8080 struct sk_buff *skb;
8081 int i, nr_files;
8082
8083 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8084 if (!fpl)
8085 return -ENOMEM;
8086
8087 skb = alloc_skb(0, GFP_KERNEL);
8088 if (!skb) {
8089 kfree(fpl);
8090 return -ENOMEM;
8091 }
8092
8093 skb->sk = sk;
8094 skb->scm_io_uring = 1;
8095
8096 nr_files = 0;
8097 fpl->user = get_uid(current_user());
8098 for (i = 0; i < nr; i++) {
8099 struct file *file = io_file_from_index(ctx, i + offset);
8100
8101 if (!file)
8102 continue;
8103 fpl->fp[nr_files] = get_file(file);
8104 unix_inflight(fpl->user, fpl->fp[nr_files]);
8105 nr_files++;
8106 }
8107
8108 if (nr_files) {
8109 fpl->max = SCM_MAX_FD;
8110 fpl->count = nr_files;
8111 UNIXCB(skb).fp = fpl;
8112 skb->destructor = unix_destruct_scm;
8113 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8114 skb_queue_head(&sk->sk_receive_queue, skb);
8115
8116 for (i = 0; i < nr; i++) {
8117 struct file *file = io_file_from_index(ctx, i + offset);
8118
8119 if (file)
8120 fput(file);
8121 }
8122 } else {
8123 kfree_skb(skb);
8124 free_uid(fpl->user);
8125 kfree(fpl);
8126 }
8127
8128 return 0;
8129 }
8130
8131 /*
8132 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8133 * causes regular reference counting to break down. We rely on the UNIX
8134 * garbage collection to take care of this problem for us.
8135 */
io_sqe_files_scm(struct io_ring_ctx * ctx)8136 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8137 {
8138 unsigned left, total;
8139 int ret = 0;
8140
8141 total = 0;
8142 left = ctx->nr_user_files;
8143 while (left) {
8144 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8145
8146 ret = __io_sqe_files_scm(ctx, this_files, total);
8147 if (ret)
8148 break;
8149 left -= this_files;
8150 total += this_files;
8151 }
8152
8153 if (!ret)
8154 return 0;
8155
8156 while (total < ctx->nr_user_files) {
8157 struct file *file = io_file_from_index(ctx, total);
8158
8159 if (file)
8160 fput(file);
8161 total++;
8162 }
8163
8164 return ret;
8165 }
8166 #else
io_sqe_files_scm(struct io_ring_ctx * ctx)8167 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8168 {
8169 return 0;
8170 }
8171 #endif
8172
io_rsrc_file_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8173 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8174 {
8175 struct file *file = prsrc->file;
8176 #if defined(CONFIG_UNIX)
8177 struct sock *sock = ctx->ring_sock->sk;
8178 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8179 struct sk_buff *skb;
8180 int i;
8181
8182 __skb_queue_head_init(&list);
8183
8184 /*
8185 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8186 * remove this entry and rearrange the file array.
8187 */
8188 skb = skb_dequeue(head);
8189 while (skb) {
8190 struct scm_fp_list *fp;
8191
8192 fp = UNIXCB(skb).fp;
8193 for (i = 0; i < fp->count; i++) {
8194 int left;
8195
8196 if (fp->fp[i] != file)
8197 continue;
8198
8199 unix_notinflight(fp->user, fp->fp[i]);
8200 left = fp->count - 1 - i;
8201 if (left) {
8202 memmove(&fp->fp[i], &fp->fp[i + 1],
8203 left * sizeof(struct file *));
8204 }
8205 fp->count--;
8206 if (!fp->count) {
8207 kfree_skb(skb);
8208 skb = NULL;
8209 } else {
8210 __skb_queue_tail(&list, skb);
8211 }
8212 fput(file);
8213 file = NULL;
8214 break;
8215 }
8216
8217 if (!file)
8218 break;
8219
8220 __skb_queue_tail(&list, skb);
8221
8222 skb = skb_dequeue(head);
8223 }
8224
8225 if (skb_peek(&list)) {
8226 spin_lock_irq(&head->lock);
8227 while ((skb = __skb_dequeue(&list)) != NULL)
8228 __skb_queue_tail(head, skb);
8229 spin_unlock_irq(&head->lock);
8230 }
8231 #else
8232 fput(file);
8233 #endif
8234 }
8235
__io_rsrc_put_work(struct io_rsrc_node * ref_node)8236 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8237 {
8238 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8239 struct io_ring_ctx *ctx = rsrc_data->ctx;
8240 struct io_rsrc_put *prsrc, *tmp;
8241
8242 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8243 list_del(&prsrc->list);
8244
8245 if (prsrc->tag) {
8246 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8247
8248 io_ring_submit_lock(ctx, lock_ring);
8249 spin_lock(&ctx->completion_lock);
8250 io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8251 io_commit_cqring(ctx);
8252 spin_unlock(&ctx->completion_lock);
8253 io_cqring_ev_posted(ctx);
8254 io_ring_submit_unlock(ctx, lock_ring);
8255 }
8256
8257 rsrc_data->do_put(ctx, prsrc);
8258 kfree(prsrc);
8259 }
8260
8261 io_rsrc_node_destroy(ref_node);
8262 if (atomic_dec_and_test(&rsrc_data->refs))
8263 complete(&rsrc_data->done);
8264 }
8265
io_rsrc_put_work(struct work_struct * work)8266 static void io_rsrc_put_work(struct work_struct *work)
8267 {
8268 struct io_ring_ctx *ctx;
8269 struct llist_node *node;
8270
8271 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8272 node = llist_del_all(&ctx->rsrc_put_llist);
8273
8274 while (node) {
8275 struct io_rsrc_node *ref_node;
8276 struct llist_node *next = node->next;
8277
8278 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8279 __io_rsrc_put_work(ref_node);
8280 node = next;
8281 }
8282 }
8283
io_sqe_files_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args,u64 __user * tags)8284 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8285 unsigned nr_args, u64 __user *tags)
8286 {
8287 __s32 __user *fds = (__s32 __user *) arg;
8288 struct file *file;
8289 int fd, ret;
8290 unsigned i;
8291
8292 if (ctx->file_data)
8293 return -EBUSY;
8294 if (!nr_args)
8295 return -EINVAL;
8296 if (nr_args > IORING_MAX_FIXED_FILES)
8297 return -EMFILE;
8298 if (nr_args > rlimit(RLIMIT_NOFILE))
8299 return -EMFILE;
8300 ret = io_rsrc_node_switch_start(ctx);
8301 if (ret)
8302 return ret;
8303 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8304 &ctx->file_data);
8305 if (ret)
8306 return ret;
8307
8308 ret = -ENOMEM;
8309 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8310 goto out_free;
8311
8312 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8313 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8314 ret = -EFAULT;
8315 goto out_fput;
8316 }
8317 /* allow sparse sets */
8318 if (fd == -1) {
8319 ret = -EINVAL;
8320 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8321 goto out_fput;
8322 continue;
8323 }
8324
8325 file = fget(fd);
8326 ret = -EBADF;
8327 if (unlikely(!file))
8328 goto out_fput;
8329
8330 /*
8331 * Don't allow io_uring instances to be registered. If UNIX
8332 * isn't enabled, then this causes a reference cycle and this
8333 * instance can never get freed. If UNIX is enabled we'll
8334 * handle it just fine, but there's still no point in allowing
8335 * a ring fd as it doesn't support regular read/write anyway.
8336 */
8337 if (file->f_op == &io_uring_fops) {
8338 fput(file);
8339 goto out_fput;
8340 }
8341 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8342 }
8343
8344 ret = io_sqe_files_scm(ctx);
8345 if (ret) {
8346 __io_sqe_files_unregister(ctx);
8347 return ret;
8348 }
8349
8350 io_rsrc_node_switch(ctx, NULL);
8351 return ret;
8352 out_fput:
8353 for (i = 0; i < ctx->nr_user_files; i++) {
8354 file = io_file_from_index(ctx, i);
8355 if (file)
8356 fput(file);
8357 }
8358 io_free_file_tables(&ctx->file_table);
8359 ctx->nr_user_files = 0;
8360 out_free:
8361 io_rsrc_data_free(ctx->file_data);
8362 ctx->file_data = NULL;
8363 return ret;
8364 }
8365
io_sqe_file_register(struct io_ring_ctx * ctx,struct file * file,int index)8366 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8367 int index)
8368 {
8369 #if defined(CONFIG_UNIX)
8370 struct sock *sock = ctx->ring_sock->sk;
8371 struct sk_buff_head *head = &sock->sk_receive_queue;
8372 struct sk_buff *skb;
8373
8374 /*
8375 * See if we can merge this file into an existing skb SCM_RIGHTS
8376 * file set. If there's no room, fall back to allocating a new skb
8377 * and filling it in.
8378 */
8379 spin_lock_irq(&head->lock);
8380 skb = skb_peek(head);
8381 if (skb) {
8382 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8383
8384 if (fpl->count < SCM_MAX_FD) {
8385 __skb_unlink(skb, head);
8386 spin_unlock_irq(&head->lock);
8387 fpl->fp[fpl->count] = get_file(file);
8388 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8389 fpl->count++;
8390 spin_lock_irq(&head->lock);
8391 __skb_queue_head(head, skb);
8392 } else {
8393 skb = NULL;
8394 }
8395 }
8396 spin_unlock_irq(&head->lock);
8397
8398 if (skb) {
8399 fput(file);
8400 return 0;
8401 }
8402
8403 return __io_sqe_files_scm(ctx, 1, index);
8404 #else
8405 return 0;
8406 #endif
8407 }
8408
io_queue_rsrc_removal(struct io_rsrc_data * data,unsigned idx,struct io_rsrc_node * node,void * rsrc)8409 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8410 struct io_rsrc_node *node, void *rsrc)
8411 {
8412 u64 *tag_slot = io_get_tag_slot(data, idx);
8413 struct io_rsrc_put *prsrc;
8414
8415 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8416 if (!prsrc)
8417 return -ENOMEM;
8418
8419 prsrc->tag = *tag_slot;
8420 *tag_slot = 0;
8421 prsrc->rsrc = rsrc;
8422 list_add(&prsrc->list, &node->rsrc_list);
8423 return 0;
8424 }
8425
io_install_fixed_file(struct io_kiocb * req,struct file * file,unsigned int issue_flags,u32 slot_index)8426 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8427 unsigned int issue_flags, u32 slot_index)
8428 {
8429 struct io_ring_ctx *ctx = req->ctx;
8430 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8431 bool needs_switch = false;
8432 struct io_fixed_file *file_slot;
8433 int ret = -EBADF;
8434
8435 io_ring_submit_lock(ctx, !force_nonblock);
8436 if (file->f_op == &io_uring_fops)
8437 goto err;
8438 ret = -ENXIO;
8439 if (!ctx->file_data)
8440 goto err;
8441 ret = -EINVAL;
8442 if (slot_index >= ctx->nr_user_files)
8443 goto err;
8444
8445 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8446 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8447
8448 if (file_slot->file_ptr) {
8449 struct file *old_file;
8450
8451 ret = io_rsrc_node_switch_start(ctx);
8452 if (ret)
8453 goto err;
8454
8455 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8456 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8457 ctx->rsrc_node, old_file);
8458 if (ret)
8459 goto err;
8460 file_slot->file_ptr = 0;
8461 needs_switch = true;
8462 }
8463
8464 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8465 io_fixed_file_set(file_slot, file);
8466 ret = io_sqe_file_register(ctx, file, slot_index);
8467 if (ret) {
8468 file_slot->file_ptr = 0;
8469 goto err;
8470 }
8471
8472 ret = 0;
8473 err:
8474 if (needs_switch)
8475 io_rsrc_node_switch(ctx, ctx->file_data);
8476 io_ring_submit_unlock(ctx, !force_nonblock);
8477 if (ret)
8478 fput(file);
8479 return ret;
8480 }
8481
io_close_fixed(struct io_kiocb * req,unsigned int issue_flags)8482 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8483 {
8484 unsigned int offset = req->close.file_slot - 1;
8485 struct io_ring_ctx *ctx = req->ctx;
8486 struct io_fixed_file *file_slot;
8487 struct file *file;
8488 int ret;
8489
8490 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8491 ret = -ENXIO;
8492 if (unlikely(!ctx->file_data))
8493 goto out;
8494 ret = -EINVAL;
8495 if (offset >= ctx->nr_user_files)
8496 goto out;
8497 ret = io_rsrc_node_switch_start(ctx);
8498 if (ret)
8499 goto out;
8500
8501 offset = array_index_nospec(offset, ctx->nr_user_files);
8502 file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8503 ret = -EBADF;
8504 if (!file_slot->file_ptr)
8505 goto out;
8506
8507 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8508 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8509 if (ret)
8510 goto out;
8511
8512 file_slot->file_ptr = 0;
8513 io_rsrc_node_switch(ctx, ctx->file_data);
8514 ret = 0;
8515 out:
8516 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8517 return ret;
8518 }
8519
__io_sqe_files_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned nr_args)8520 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8521 struct io_uring_rsrc_update2 *up,
8522 unsigned nr_args)
8523 {
8524 u64 __user *tags = u64_to_user_ptr(up->tags);
8525 __s32 __user *fds = u64_to_user_ptr(up->data);
8526 struct io_rsrc_data *data = ctx->file_data;
8527 struct io_fixed_file *file_slot;
8528 struct file *file;
8529 int fd, i, err = 0;
8530 unsigned int done;
8531 bool needs_switch = false;
8532
8533 if (!ctx->file_data)
8534 return -ENXIO;
8535 if (up->offset + nr_args > ctx->nr_user_files)
8536 return -EINVAL;
8537
8538 for (done = 0; done < nr_args; done++) {
8539 u64 tag = 0;
8540
8541 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8542 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8543 err = -EFAULT;
8544 break;
8545 }
8546 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8547 err = -EINVAL;
8548 break;
8549 }
8550 if (fd == IORING_REGISTER_FILES_SKIP)
8551 continue;
8552
8553 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8554 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8555
8556 if (file_slot->file_ptr) {
8557 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8558 err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8559 if (err)
8560 break;
8561 file_slot->file_ptr = 0;
8562 needs_switch = true;
8563 }
8564 if (fd != -1) {
8565 file = fget(fd);
8566 if (!file) {
8567 err = -EBADF;
8568 break;
8569 }
8570 /*
8571 * Don't allow io_uring instances to be registered. If
8572 * UNIX isn't enabled, then this causes a reference
8573 * cycle and this instance can never get freed. If UNIX
8574 * is enabled we'll handle it just fine, but there's
8575 * still no point in allowing a ring fd as it doesn't
8576 * support regular read/write anyway.
8577 */
8578 if (file->f_op == &io_uring_fops) {
8579 fput(file);
8580 err = -EBADF;
8581 break;
8582 }
8583 *io_get_tag_slot(data, i) = tag;
8584 io_fixed_file_set(file_slot, file);
8585 err = io_sqe_file_register(ctx, file, i);
8586 if (err) {
8587 file_slot->file_ptr = 0;
8588 fput(file);
8589 break;
8590 }
8591 }
8592 }
8593
8594 if (needs_switch)
8595 io_rsrc_node_switch(ctx, data);
8596 return done ? done : err;
8597 }
8598
io_init_wq_offload(struct io_ring_ctx * ctx,struct task_struct * task)8599 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8600 struct task_struct *task)
8601 {
8602 struct io_wq_hash *hash;
8603 struct io_wq_data data;
8604 unsigned int concurrency;
8605
8606 mutex_lock(&ctx->uring_lock);
8607 hash = ctx->hash_map;
8608 if (!hash) {
8609 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8610 if (!hash) {
8611 mutex_unlock(&ctx->uring_lock);
8612 return ERR_PTR(-ENOMEM);
8613 }
8614 refcount_set(&hash->refs, 1);
8615 init_waitqueue_head(&hash->wait);
8616 ctx->hash_map = hash;
8617 }
8618 mutex_unlock(&ctx->uring_lock);
8619
8620 data.hash = hash;
8621 data.task = task;
8622 data.free_work = io_wq_free_work;
8623 data.do_work = io_wq_submit_work;
8624
8625 /* Do QD, or 4 * CPUS, whatever is smallest */
8626 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8627
8628 return io_wq_create(concurrency, &data);
8629 }
8630
io_uring_alloc_task_context(struct task_struct * task,struct io_ring_ctx * ctx)8631 static int io_uring_alloc_task_context(struct task_struct *task,
8632 struct io_ring_ctx *ctx)
8633 {
8634 struct io_uring_task *tctx;
8635 int ret;
8636
8637 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8638 if (unlikely(!tctx))
8639 return -ENOMEM;
8640
8641 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8642 if (unlikely(ret)) {
8643 kfree(tctx);
8644 return ret;
8645 }
8646
8647 tctx->io_wq = io_init_wq_offload(ctx, task);
8648 if (IS_ERR(tctx->io_wq)) {
8649 ret = PTR_ERR(tctx->io_wq);
8650 percpu_counter_destroy(&tctx->inflight);
8651 kfree(tctx);
8652 return ret;
8653 }
8654
8655 xa_init(&tctx->xa);
8656 init_waitqueue_head(&tctx->wait);
8657 atomic_set(&tctx->in_idle, 0);
8658 atomic_set(&tctx->inflight_tracked, 0);
8659 task->io_uring = tctx;
8660 spin_lock_init(&tctx->task_lock);
8661 INIT_WQ_LIST(&tctx->task_list);
8662 init_task_work(&tctx->task_work, tctx_task_work);
8663 return 0;
8664 }
8665
__io_uring_free(struct task_struct * tsk)8666 void __io_uring_free(struct task_struct *tsk)
8667 {
8668 struct io_uring_task *tctx = tsk->io_uring;
8669
8670 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8671 WARN_ON_ONCE(tctx->io_wq);
8672 WARN_ON_ONCE(tctx->cached_refs);
8673
8674 percpu_counter_destroy(&tctx->inflight);
8675 kfree(tctx);
8676 tsk->io_uring = NULL;
8677 }
8678
io_sq_offload_create(struct io_ring_ctx * ctx,struct io_uring_params * p)8679 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8680 struct io_uring_params *p)
8681 {
8682 int ret;
8683
8684 /* Retain compatibility with failing for an invalid attach attempt */
8685 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8686 IORING_SETUP_ATTACH_WQ) {
8687 struct fd f;
8688
8689 f = fdget(p->wq_fd);
8690 if (!f.file)
8691 return -ENXIO;
8692 if (f.file->f_op != &io_uring_fops) {
8693 fdput(f);
8694 return -EINVAL;
8695 }
8696 fdput(f);
8697 }
8698 if (ctx->flags & IORING_SETUP_SQPOLL) {
8699 struct task_struct *tsk;
8700 struct io_sq_data *sqd;
8701 bool attached;
8702
8703 sqd = io_get_sq_data(p, &attached);
8704 if (IS_ERR(sqd)) {
8705 ret = PTR_ERR(sqd);
8706 goto err;
8707 }
8708
8709 ctx->sq_creds = get_current_cred();
8710 ctx->sq_data = sqd;
8711 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8712 if (!ctx->sq_thread_idle)
8713 ctx->sq_thread_idle = HZ;
8714
8715 io_sq_thread_park(sqd);
8716 list_add(&ctx->sqd_list, &sqd->ctx_list);
8717 io_sqd_update_thread_idle(sqd);
8718 /* don't attach to a dying SQPOLL thread, would be racy */
8719 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8720 io_sq_thread_unpark(sqd);
8721
8722 if (ret < 0)
8723 goto err;
8724 if (attached)
8725 return 0;
8726
8727 if (p->flags & IORING_SETUP_SQ_AFF) {
8728 int cpu = p->sq_thread_cpu;
8729
8730 ret = -EINVAL;
8731 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8732 goto err_sqpoll;
8733 sqd->sq_cpu = cpu;
8734 } else {
8735 sqd->sq_cpu = -1;
8736 }
8737
8738 sqd->task_pid = current->pid;
8739 sqd->task_tgid = current->tgid;
8740 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8741 if (IS_ERR(tsk)) {
8742 ret = PTR_ERR(tsk);
8743 goto err_sqpoll;
8744 }
8745
8746 sqd->thread = tsk;
8747 ret = io_uring_alloc_task_context(tsk, ctx);
8748 wake_up_new_task(tsk);
8749 if (ret)
8750 goto err;
8751 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8752 /* Can't have SQ_AFF without SQPOLL */
8753 ret = -EINVAL;
8754 goto err;
8755 }
8756
8757 return 0;
8758 err_sqpoll:
8759 complete(&ctx->sq_data->exited);
8760 err:
8761 io_sq_thread_finish(ctx);
8762 return ret;
8763 }
8764
__io_unaccount_mem(struct user_struct * user,unsigned long nr_pages)8765 static inline void __io_unaccount_mem(struct user_struct *user,
8766 unsigned long nr_pages)
8767 {
8768 atomic_long_sub(nr_pages, &user->locked_vm);
8769 }
8770
__io_account_mem(struct user_struct * user,unsigned long nr_pages)8771 static inline int __io_account_mem(struct user_struct *user,
8772 unsigned long nr_pages)
8773 {
8774 unsigned long page_limit, cur_pages, new_pages;
8775
8776 /* Don't allow more pages than we can safely lock */
8777 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8778
8779 do {
8780 cur_pages = atomic_long_read(&user->locked_vm);
8781 new_pages = cur_pages + nr_pages;
8782 if (new_pages > page_limit)
8783 return -ENOMEM;
8784 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8785 new_pages) != cur_pages);
8786
8787 return 0;
8788 }
8789
io_unaccount_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)8790 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8791 {
8792 if (ctx->user)
8793 __io_unaccount_mem(ctx->user, nr_pages);
8794
8795 if (ctx->mm_account)
8796 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8797 }
8798
io_account_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)8799 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8800 {
8801 int ret;
8802
8803 if (ctx->user) {
8804 ret = __io_account_mem(ctx->user, nr_pages);
8805 if (ret)
8806 return ret;
8807 }
8808
8809 if (ctx->mm_account)
8810 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8811
8812 return 0;
8813 }
8814
io_mem_free(void * ptr)8815 static void io_mem_free(void *ptr)
8816 {
8817 struct page *page;
8818
8819 if (!ptr)
8820 return;
8821
8822 page = virt_to_head_page(ptr);
8823 if (put_page_testzero(page))
8824 free_compound_page(page);
8825 }
8826
io_mem_alloc(size_t size)8827 static void *io_mem_alloc(size_t size)
8828 {
8829 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8830
8831 return (void *) __get_free_pages(gfp, get_order(size));
8832 }
8833
rings_size(unsigned sq_entries,unsigned cq_entries,size_t * sq_offset)8834 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8835 size_t *sq_offset)
8836 {
8837 struct io_rings *rings;
8838 size_t off, sq_array_size;
8839
8840 off = struct_size(rings, cqes, cq_entries);
8841 if (off == SIZE_MAX)
8842 return SIZE_MAX;
8843
8844 #ifdef CONFIG_SMP
8845 off = ALIGN(off, SMP_CACHE_BYTES);
8846 if (off == 0)
8847 return SIZE_MAX;
8848 #endif
8849
8850 if (sq_offset)
8851 *sq_offset = off;
8852
8853 sq_array_size = array_size(sizeof(u32), sq_entries);
8854 if (sq_array_size == SIZE_MAX)
8855 return SIZE_MAX;
8856
8857 if (check_add_overflow(off, sq_array_size, &off))
8858 return SIZE_MAX;
8859
8860 return off;
8861 }
8862
io_buffer_unmap(struct io_ring_ctx * ctx,struct io_mapped_ubuf ** slot)8863 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8864 {
8865 struct io_mapped_ubuf *imu = *slot;
8866 unsigned int i;
8867
8868 if (imu != ctx->dummy_ubuf) {
8869 for (i = 0; i < imu->nr_bvecs; i++)
8870 unpin_user_page(imu->bvec[i].bv_page);
8871 if (imu->acct_pages)
8872 io_unaccount_mem(ctx, imu->acct_pages);
8873 kvfree(imu);
8874 }
8875 *slot = NULL;
8876 }
8877
io_rsrc_buf_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8878 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8879 {
8880 io_buffer_unmap(ctx, &prsrc->buf);
8881 prsrc->buf = NULL;
8882 }
8883
__io_sqe_buffers_unregister(struct io_ring_ctx * ctx)8884 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8885 {
8886 unsigned int i;
8887
8888 for (i = 0; i < ctx->nr_user_bufs; i++)
8889 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8890 kfree(ctx->user_bufs);
8891 io_rsrc_data_free(ctx->buf_data);
8892 ctx->user_bufs = NULL;
8893 ctx->buf_data = NULL;
8894 ctx->nr_user_bufs = 0;
8895 }
8896
io_sqe_buffers_unregister(struct io_ring_ctx * ctx)8897 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8898 {
8899 unsigned nr = ctx->nr_user_bufs;
8900 int ret;
8901
8902 if (!ctx->buf_data)
8903 return -ENXIO;
8904
8905 /*
8906 * Quiesce may unlock ->uring_lock, and while it's not held
8907 * prevent new requests using the table.
8908 */
8909 ctx->nr_user_bufs = 0;
8910 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8911 ctx->nr_user_bufs = nr;
8912 if (!ret)
8913 __io_sqe_buffers_unregister(ctx);
8914 return ret;
8915 }
8916
io_copy_iov(struct io_ring_ctx * ctx,struct iovec * dst,void __user * arg,unsigned index)8917 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8918 void __user *arg, unsigned index)
8919 {
8920 struct iovec __user *src;
8921
8922 #ifdef CONFIG_COMPAT
8923 if (ctx->compat) {
8924 struct compat_iovec __user *ciovs;
8925 struct compat_iovec ciov;
8926
8927 ciovs = (struct compat_iovec __user *) arg;
8928 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8929 return -EFAULT;
8930
8931 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8932 dst->iov_len = ciov.iov_len;
8933 return 0;
8934 }
8935 #endif
8936 src = (struct iovec __user *) arg;
8937 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8938 return -EFAULT;
8939 return 0;
8940 }
8941
8942 /*
8943 * Not super efficient, but this is just a registration time. And we do cache
8944 * the last compound head, so generally we'll only do a full search if we don't
8945 * match that one.
8946 *
8947 * We check if the given compound head page has already been accounted, to
8948 * avoid double accounting it. This allows us to account the full size of the
8949 * page, not just the constituent pages of a huge page.
8950 */
headpage_already_acct(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct page * hpage)8951 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8952 int nr_pages, struct page *hpage)
8953 {
8954 int i, j;
8955
8956 /* check current page array */
8957 for (i = 0; i < nr_pages; i++) {
8958 if (!PageCompound(pages[i]))
8959 continue;
8960 if (compound_head(pages[i]) == hpage)
8961 return true;
8962 }
8963
8964 /* check previously registered pages */
8965 for (i = 0; i < ctx->nr_user_bufs; i++) {
8966 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8967
8968 for (j = 0; j < imu->nr_bvecs; j++) {
8969 if (!PageCompound(imu->bvec[j].bv_page))
8970 continue;
8971 if (compound_head(imu->bvec[j].bv_page) == hpage)
8972 return true;
8973 }
8974 }
8975
8976 return false;
8977 }
8978
io_buffer_account_pin(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct io_mapped_ubuf * imu,struct page ** last_hpage)8979 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8980 int nr_pages, struct io_mapped_ubuf *imu,
8981 struct page **last_hpage)
8982 {
8983 int i, ret;
8984
8985 imu->acct_pages = 0;
8986 for (i = 0; i < nr_pages; i++) {
8987 if (!PageCompound(pages[i])) {
8988 imu->acct_pages++;
8989 } else {
8990 struct page *hpage;
8991
8992 hpage = compound_head(pages[i]);
8993 if (hpage == *last_hpage)
8994 continue;
8995 *last_hpage = hpage;
8996 if (headpage_already_acct(ctx, pages, i, hpage))
8997 continue;
8998 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8999 }
9000 }
9001
9002 if (!imu->acct_pages)
9003 return 0;
9004
9005 ret = io_account_mem(ctx, imu->acct_pages);
9006 if (ret)
9007 imu->acct_pages = 0;
9008 return ret;
9009 }
9010
io_sqe_buffer_register(struct io_ring_ctx * ctx,struct iovec * iov,struct io_mapped_ubuf ** pimu,struct page ** last_hpage)9011 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9012 struct io_mapped_ubuf **pimu,
9013 struct page **last_hpage)
9014 {
9015 struct io_mapped_ubuf *imu = NULL;
9016 struct vm_area_struct **vmas = NULL;
9017 struct page **pages = NULL;
9018 unsigned long off, start, end, ubuf;
9019 size_t size;
9020 int ret, pret, nr_pages, i;
9021
9022 if (!iov->iov_base) {
9023 *pimu = ctx->dummy_ubuf;
9024 return 0;
9025 }
9026
9027 ubuf = (unsigned long) iov->iov_base;
9028 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9029 start = ubuf >> PAGE_SHIFT;
9030 nr_pages = end - start;
9031
9032 *pimu = NULL;
9033 ret = -ENOMEM;
9034
9035 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9036 if (!pages)
9037 goto done;
9038
9039 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9040 GFP_KERNEL);
9041 if (!vmas)
9042 goto done;
9043
9044 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9045 if (!imu)
9046 goto done;
9047
9048 ret = 0;
9049 mmap_read_lock(current->mm);
9050 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9051 pages, vmas);
9052 if (pret == nr_pages) {
9053 /* don't support file backed memory */
9054 for (i = 0; i < nr_pages; i++) {
9055 struct vm_area_struct *vma = vmas[i];
9056
9057 if (vma_is_shmem(vma))
9058 continue;
9059 if (vma->vm_file &&
9060 !is_file_hugepages(vma->vm_file)) {
9061 ret = -EOPNOTSUPP;
9062 break;
9063 }
9064 }
9065 } else {
9066 ret = pret < 0 ? pret : -EFAULT;
9067 }
9068 mmap_read_unlock(current->mm);
9069 if (ret) {
9070 /*
9071 * if we did partial map, or found file backed vmas,
9072 * release any pages we did get
9073 */
9074 if (pret > 0)
9075 unpin_user_pages(pages, pret);
9076 goto done;
9077 }
9078
9079 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9080 if (ret) {
9081 unpin_user_pages(pages, pret);
9082 goto done;
9083 }
9084
9085 off = ubuf & ~PAGE_MASK;
9086 size = iov->iov_len;
9087 for (i = 0; i < nr_pages; i++) {
9088 size_t vec_len;
9089
9090 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9091 imu->bvec[i].bv_page = pages[i];
9092 imu->bvec[i].bv_len = vec_len;
9093 imu->bvec[i].bv_offset = off;
9094 off = 0;
9095 size -= vec_len;
9096 }
9097 /* store original address for later verification */
9098 imu->ubuf = ubuf;
9099 imu->ubuf_end = ubuf + iov->iov_len;
9100 imu->nr_bvecs = nr_pages;
9101 *pimu = imu;
9102 ret = 0;
9103 done:
9104 if (ret)
9105 kvfree(imu);
9106 kvfree(pages);
9107 kvfree(vmas);
9108 return ret;
9109 }
9110
io_buffers_map_alloc(struct io_ring_ctx * ctx,unsigned int nr_args)9111 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9112 {
9113 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9114 return ctx->user_bufs ? 0 : -ENOMEM;
9115 }
9116
io_buffer_validate(struct iovec * iov)9117 static int io_buffer_validate(struct iovec *iov)
9118 {
9119 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9120
9121 /*
9122 * Don't impose further limits on the size and buffer
9123 * constraints here, we'll -EINVAL later when IO is
9124 * submitted if they are wrong.
9125 */
9126 if (!iov->iov_base)
9127 return iov->iov_len ? -EFAULT : 0;
9128 if (!iov->iov_len)
9129 return -EFAULT;
9130
9131 /* arbitrary limit, but we need something */
9132 if (iov->iov_len > SZ_1G)
9133 return -EFAULT;
9134
9135 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9136 return -EOVERFLOW;
9137
9138 return 0;
9139 }
9140
io_sqe_buffers_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args,u64 __user * tags)9141 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9142 unsigned int nr_args, u64 __user *tags)
9143 {
9144 struct page *last_hpage = NULL;
9145 struct io_rsrc_data *data;
9146 int i, ret;
9147 struct iovec iov;
9148
9149 if (ctx->user_bufs)
9150 return -EBUSY;
9151 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9152 return -EINVAL;
9153 ret = io_rsrc_node_switch_start(ctx);
9154 if (ret)
9155 return ret;
9156 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9157 if (ret)
9158 return ret;
9159 ret = io_buffers_map_alloc(ctx, nr_args);
9160 if (ret) {
9161 io_rsrc_data_free(data);
9162 return ret;
9163 }
9164
9165 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9166 ret = io_copy_iov(ctx, &iov, arg, i);
9167 if (ret)
9168 break;
9169 ret = io_buffer_validate(&iov);
9170 if (ret)
9171 break;
9172 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9173 ret = -EINVAL;
9174 break;
9175 }
9176
9177 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9178 &last_hpage);
9179 if (ret)
9180 break;
9181 }
9182
9183 WARN_ON_ONCE(ctx->buf_data);
9184
9185 ctx->buf_data = data;
9186 if (ret)
9187 __io_sqe_buffers_unregister(ctx);
9188 else
9189 io_rsrc_node_switch(ctx, NULL);
9190 return ret;
9191 }
9192
__io_sqe_buffers_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned int nr_args)9193 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9194 struct io_uring_rsrc_update2 *up,
9195 unsigned int nr_args)
9196 {
9197 u64 __user *tags = u64_to_user_ptr(up->tags);
9198 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9199 struct page *last_hpage = NULL;
9200 bool needs_switch = false;
9201 __u32 done;
9202 int i, err;
9203
9204 if (!ctx->buf_data)
9205 return -ENXIO;
9206 if (up->offset + nr_args > ctx->nr_user_bufs)
9207 return -EINVAL;
9208
9209 for (done = 0; done < nr_args; done++) {
9210 struct io_mapped_ubuf *imu;
9211 int offset = up->offset + done;
9212 u64 tag = 0;
9213
9214 err = io_copy_iov(ctx, &iov, iovs, done);
9215 if (err)
9216 break;
9217 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9218 err = -EFAULT;
9219 break;
9220 }
9221 err = io_buffer_validate(&iov);
9222 if (err)
9223 break;
9224 if (!iov.iov_base && tag) {
9225 err = -EINVAL;
9226 break;
9227 }
9228 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9229 if (err)
9230 break;
9231
9232 i = array_index_nospec(offset, ctx->nr_user_bufs);
9233 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9234 err = io_queue_rsrc_removal(ctx->buf_data, i,
9235 ctx->rsrc_node, ctx->user_bufs[i]);
9236 if (unlikely(err)) {
9237 io_buffer_unmap(ctx, &imu);
9238 break;
9239 }
9240 ctx->user_bufs[i] = NULL;
9241 needs_switch = true;
9242 }
9243
9244 ctx->user_bufs[i] = imu;
9245 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9246 }
9247
9248 if (needs_switch)
9249 io_rsrc_node_switch(ctx, ctx->buf_data);
9250 return done ? done : err;
9251 }
9252
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg)9253 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9254 {
9255 __s32 __user *fds = arg;
9256 int fd;
9257
9258 if (ctx->cq_ev_fd)
9259 return -EBUSY;
9260
9261 if (copy_from_user(&fd, fds, sizeof(*fds)))
9262 return -EFAULT;
9263
9264 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9265 if (IS_ERR(ctx->cq_ev_fd)) {
9266 int ret = PTR_ERR(ctx->cq_ev_fd);
9267
9268 ctx->cq_ev_fd = NULL;
9269 return ret;
9270 }
9271
9272 return 0;
9273 }
9274
io_eventfd_unregister(struct io_ring_ctx * ctx)9275 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9276 {
9277 if (ctx->cq_ev_fd) {
9278 eventfd_ctx_put(ctx->cq_ev_fd);
9279 ctx->cq_ev_fd = NULL;
9280 return 0;
9281 }
9282
9283 return -ENXIO;
9284 }
9285
io_destroy_buffers(struct io_ring_ctx * ctx)9286 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9287 {
9288 struct io_buffer *buf;
9289 unsigned long index;
9290
9291 xa_for_each(&ctx->io_buffers, index, buf)
9292 __io_remove_buffers(ctx, buf, index, -1U);
9293 }
9294
io_req_cache_free(struct list_head * list)9295 static void io_req_cache_free(struct list_head *list)
9296 {
9297 struct io_kiocb *req, *nxt;
9298
9299 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9300 list_del(&req->inflight_entry);
9301 kmem_cache_free(req_cachep, req);
9302 }
9303 }
9304
io_req_caches_free(struct io_ring_ctx * ctx)9305 static void io_req_caches_free(struct io_ring_ctx *ctx)
9306 {
9307 struct io_submit_state *state = &ctx->submit_state;
9308
9309 mutex_lock(&ctx->uring_lock);
9310
9311 if (state->free_reqs) {
9312 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9313 state->free_reqs = 0;
9314 }
9315
9316 io_flush_cached_locked_reqs(ctx, state);
9317 io_req_cache_free(&state->free_list);
9318 mutex_unlock(&ctx->uring_lock);
9319 }
9320
io_wait_rsrc_data(struct io_rsrc_data * data)9321 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9322 {
9323 if (data && !atomic_dec_and_test(&data->refs))
9324 wait_for_completion(&data->done);
9325 }
9326
io_ring_ctx_free(struct io_ring_ctx * ctx)9327 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9328 {
9329 io_sq_thread_finish(ctx);
9330
9331 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9332 io_wait_rsrc_data(ctx->buf_data);
9333 io_wait_rsrc_data(ctx->file_data);
9334
9335 mutex_lock(&ctx->uring_lock);
9336 if (ctx->buf_data)
9337 __io_sqe_buffers_unregister(ctx);
9338 if (ctx->file_data)
9339 __io_sqe_files_unregister(ctx);
9340 if (ctx->rings)
9341 __io_cqring_overflow_flush(ctx, true);
9342 mutex_unlock(&ctx->uring_lock);
9343 io_eventfd_unregister(ctx);
9344 io_destroy_buffers(ctx);
9345 if (ctx->sq_creds)
9346 put_cred(ctx->sq_creds);
9347
9348 /* there are no registered resources left, nobody uses it */
9349 if (ctx->rsrc_node)
9350 io_rsrc_node_destroy(ctx->rsrc_node);
9351 if (ctx->rsrc_backup_node)
9352 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9353 flush_delayed_work(&ctx->rsrc_put_work);
9354
9355 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9356 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9357
9358 #if defined(CONFIG_UNIX)
9359 if (ctx->ring_sock) {
9360 ctx->ring_sock->file = NULL; /* so that iput() is called */
9361 sock_release(ctx->ring_sock);
9362 }
9363 #endif
9364 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9365
9366 if (ctx->mm_account) {
9367 mmdrop(ctx->mm_account);
9368 ctx->mm_account = NULL;
9369 }
9370
9371 io_mem_free(ctx->rings);
9372 io_mem_free(ctx->sq_sqes);
9373
9374 percpu_ref_exit(&ctx->refs);
9375 free_uid(ctx->user);
9376 io_req_caches_free(ctx);
9377 if (ctx->hash_map)
9378 io_wq_put_hash(ctx->hash_map);
9379 kfree(ctx->cancel_hash);
9380 kfree(ctx->dummy_ubuf);
9381 kfree(ctx);
9382 }
9383
io_uring_poll(struct file * file,poll_table * wait)9384 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9385 {
9386 struct io_ring_ctx *ctx = file->private_data;
9387 __poll_t mask = 0;
9388
9389 poll_wait(file, &ctx->poll_wait, wait);
9390 /*
9391 * synchronizes with barrier from wq_has_sleeper call in
9392 * io_commit_cqring
9393 */
9394 smp_rmb();
9395 if (!io_sqring_full(ctx))
9396 mask |= EPOLLOUT | EPOLLWRNORM;
9397
9398 /*
9399 * Don't flush cqring overflow list here, just do a simple check.
9400 * Otherwise there could possible be ABBA deadlock:
9401 * CPU0 CPU1
9402 * ---- ----
9403 * lock(&ctx->uring_lock);
9404 * lock(&ep->mtx);
9405 * lock(&ctx->uring_lock);
9406 * lock(&ep->mtx);
9407 *
9408 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9409 * pushs them to do the flush.
9410 */
9411 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9412 mask |= EPOLLIN | EPOLLRDNORM;
9413
9414 return mask;
9415 }
9416
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)9417 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9418 {
9419 const struct cred *creds;
9420
9421 creds = xa_erase(&ctx->personalities, id);
9422 if (creds) {
9423 put_cred(creds);
9424 return 0;
9425 }
9426
9427 return -EINVAL;
9428 }
9429
9430 struct io_tctx_exit {
9431 struct callback_head task_work;
9432 struct completion completion;
9433 struct io_ring_ctx *ctx;
9434 };
9435
io_tctx_exit_cb(struct callback_head * cb)9436 static void io_tctx_exit_cb(struct callback_head *cb)
9437 {
9438 struct io_uring_task *tctx = current->io_uring;
9439 struct io_tctx_exit *work;
9440
9441 work = container_of(cb, struct io_tctx_exit, task_work);
9442 /*
9443 * When @in_idle, we're in cancellation and it's racy to remove the
9444 * node. It'll be removed by the end of cancellation, just ignore it.
9445 * tctx can be NULL if the queueing of this task_work raced with
9446 * work cancelation off the exec path.
9447 */
9448 if (tctx && !atomic_read(&tctx->in_idle))
9449 io_uring_del_tctx_node((unsigned long)work->ctx);
9450 complete(&work->completion);
9451 }
9452
io_cancel_ctx_cb(struct io_wq_work * work,void * data)9453 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9454 {
9455 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9456
9457 return req->ctx == data;
9458 }
9459
io_ring_exit_work(struct work_struct * work)9460 static void io_ring_exit_work(struct work_struct *work)
9461 {
9462 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9463 unsigned long timeout = jiffies + HZ * 60 * 5;
9464 unsigned long interval = HZ / 20;
9465 struct io_tctx_exit exit;
9466 struct io_tctx_node *node;
9467 int ret;
9468
9469 /*
9470 * If we're doing polled IO and end up having requests being
9471 * submitted async (out-of-line), then completions can come in while
9472 * we're waiting for refs to drop. We need to reap these manually,
9473 * as nobody else will be looking for them.
9474 */
9475 do {
9476 io_uring_try_cancel_requests(ctx, NULL, true);
9477 if (ctx->sq_data) {
9478 struct io_sq_data *sqd = ctx->sq_data;
9479 struct task_struct *tsk;
9480
9481 io_sq_thread_park(sqd);
9482 tsk = sqd->thread;
9483 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9484 io_wq_cancel_cb(tsk->io_uring->io_wq,
9485 io_cancel_ctx_cb, ctx, true);
9486 io_sq_thread_unpark(sqd);
9487 }
9488
9489 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9490 /* there is little hope left, don't run it too often */
9491 interval = HZ * 60;
9492 }
9493 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9494
9495 init_completion(&exit.completion);
9496 init_task_work(&exit.task_work, io_tctx_exit_cb);
9497 exit.ctx = ctx;
9498 /*
9499 * Some may use context even when all refs and requests have been put,
9500 * and they are free to do so while still holding uring_lock or
9501 * completion_lock, see io_req_task_submit(). Apart from other work,
9502 * this lock/unlock section also waits them to finish.
9503 */
9504 mutex_lock(&ctx->uring_lock);
9505 while (!list_empty(&ctx->tctx_list)) {
9506 WARN_ON_ONCE(time_after(jiffies, timeout));
9507
9508 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9509 ctx_node);
9510 /* don't spin on a single task if cancellation failed */
9511 list_rotate_left(&ctx->tctx_list);
9512 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9513 if (WARN_ON_ONCE(ret))
9514 continue;
9515 wake_up_process(node->task);
9516
9517 mutex_unlock(&ctx->uring_lock);
9518 wait_for_completion(&exit.completion);
9519 mutex_lock(&ctx->uring_lock);
9520 }
9521 mutex_unlock(&ctx->uring_lock);
9522 spin_lock(&ctx->completion_lock);
9523 spin_unlock(&ctx->completion_lock);
9524
9525 io_ring_ctx_free(ctx);
9526 }
9527
9528 /* Returns true if we found and killed one or more timeouts */
io_kill_timeouts(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)9529 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9530 bool cancel_all)
9531 {
9532 struct io_kiocb *req, *tmp;
9533 int canceled = 0;
9534
9535 spin_lock(&ctx->completion_lock);
9536 spin_lock_irq(&ctx->timeout_lock);
9537 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9538 if (io_match_task(req, tsk, cancel_all)) {
9539 io_kill_timeout(req, -ECANCELED);
9540 canceled++;
9541 }
9542 }
9543 spin_unlock_irq(&ctx->timeout_lock);
9544 if (canceled != 0)
9545 io_commit_cqring(ctx);
9546 spin_unlock(&ctx->completion_lock);
9547 if (canceled != 0)
9548 io_cqring_ev_posted(ctx);
9549 return canceled != 0;
9550 }
9551
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)9552 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9553 {
9554 unsigned long index;
9555 struct creds *creds;
9556
9557 mutex_lock(&ctx->uring_lock);
9558 percpu_ref_kill(&ctx->refs);
9559 if (ctx->rings)
9560 __io_cqring_overflow_flush(ctx, true);
9561 xa_for_each(&ctx->personalities, index, creds)
9562 io_unregister_personality(ctx, index);
9563 mutex_unlock(&ctx->uring_lock);
9564
9565 io_kill_timeouts(ctx, NULL, true);
9566 io_poll_remove_all(ctx, NULL, true);
9567
9568 /* if we failed setting up the ctx, we might not have any rings */
9569 io_iopoll_try_reap_events(ctx);
9570
9571 /* drop cached put refs after potentially doing completions */
9572 if (current->io_uring)
9573 io_uring_drop_tctx_refs(current);
9574
9575 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9576 /*
9577 * Use system_unbound_wq to avoid spawning tons of event kworkers
9578 * if we're exiting a ton of rings at the same time. It just adds
9579 * noise and overhead, there's no discernable change in runtime
9580 * over using system_wq.
9581 */
9582 queue_work(system_unbound_wq, &ctx->exit_work);
9583 }
9584
io_uring_release(struct inode * inode,struct file * file)9585 static int io_uring_release(struct inode *inode, struct file *file)
9586 {
9587 struct io_ring_ctx *ctx = file->private_data;
9588
9589 file->private_data = NULL;
9590 io_ring_ctx_wait_and_kill(ctx);
9591 return 0;
9592 }
9593
9594 struct io_task_cancel {
9595 struct task_struct *task;
9596 bool all;
9597 };
9598
io_cancel_task_cb(struct io_wq_work * work,void * data)9599 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9600 {
9601 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9602 struct io_task_cancel *cancel = data;
9603
9604 return io_match_task_safe(req, cancel->task, cancel->all);
9605 }
9606
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9607 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9608 struct task_struct *task, bool cancel_all)
9609 {
9610 struct io_defer_entry *de;
9611 LIST_HEAD(list);
9612
9613 spin_lock(&ctx->completion_lock);
9614 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9615 if (io_match_task_safe(de->req, task, cancel_all)) {
9616 list_cut_position(&list, &ctx->defer_list, &de->list);
9617 break;
9618 }
9619 }
9620 spin_unlock(&ctx->completion_lock);
9621 if (list_empty(&list))
9622 return false;
9623
9624 while (!list_empty(&list)) {
9625 de = list_first_entry(&list, struct io_defer_entry, list);
9626 list_del_init(&de->list);
9627 io_req_complete_failed(de->req, -ECANCELED);
9628 kfree(de);
9629 }
9630 return true;
9631 }
9632
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)9633 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9634 {
9635 struct io_tctx_node *node;
9636 enum io_wq_cancel cret;
9637 bool ret = false;
9638
9639 mutex_lock(&ctx->uring_lock);
9640 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9641 struct io_uring_task *tctx = node->task->io_uring;
9642
9643 /*
9644 * io_wq will stay alive while we hold uring_lock, because it's
9645 * killed after ctx nodes, which requires to take the lock.
9646 */
9647 if (!tctx || !tctx->io_wq)
9648 continue;
9649 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9650 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9651 }
9652 mutex_unlock(&ctx->uring_lock);
9653
9654 return ret;
9655 }
9656
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9657 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9658 struct task_struct *task,
9659 bool cancel_all)
9660 {
9661 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9662 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9663
9664 while (1) {
9665 enum io_wq_cancel cret;
9666 bool ret = false;
9667
9668 if (!task) {
9669 ret |= io_uring_try_cancel_iowq(ctx);
9670 } else if (tctx && tctx->io_wq) {
9671 /*
9672 * Cancels requests of all rings, not only @ctx, but
9673 * it's fine as the task is in exit/exec.
9674 */
9675 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9676 &cancel, true);
9677 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9678 }
9679
9680 /* SQPOLL thread does its own polling */
9681 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9682 (ctx->sq_data && ctx->sq_data->thread == current)) {
9683 while (!list_empty_careful(&ctx->iopoll_list)) {
9684 io_iopoll_try_reap_events(ctx);
9685 ret = true;
9686 }
9687 }
9688
9689 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9690 ret |= io_poll_remove_all(ctx, task, cancel_all);
9691 ret |= io_kill_timeouts(ctx, task, cancel_all);
9692 if (task)
9693 ret |= io_run_task_work();
9694 if (!ret)
9695 break;
9696 cond_resched();
9697 }
9698 }
9699
__io_uring_add_tctx_node(struct io_ring_ctx * ctx)9700 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9701 {
9702 struct io_uring_task *tctx = current->io_uring;
9703 struct io_tctx_node *node;
9704 int ret;
9705
9706 if (unlikely(!tctx)) {
9707 ret = io_uring_alloc_task_context(current, ctx);
9708 if (unlikely(ret))
9709 return ret;
9710
9711 tctx = current->io_uring;
9712 if (ctx->iowq_limits_set) {
9713 unsigned int limits[2] = { ctx->iowq_limits[0],
9714 ctx->iowq_limits[1], };
9715
9716 ret = io_wq_max_workers(tctx->io_wq, limits);
9717 if (ret)
9718 return ret;
9719 }
9720 }
9721 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9722 node = kmalloc(sizeof(*node), GFP_KERNEL);
9723 if (!node)
9724 return -ENOMEM;
9725 node->ctx = ctx;
9726 node->task = current;
9727
9728 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9729 node, GFP_KERNEL));
9730 if (ret) {
9731 kfree(node);
9732 return ret;
9733 }
9734
9735 mutex_lock(&ctx->uring_lock);
9736 list_add(&node->ctx_node, &ctx->tctx_list);
9737 mutex_unlock(&ctx->uring_lock);
9738 }
9739 tctx->last = ctx;
9740 return 0;
9741 }
9742
9743 /*
9744 * Note that this task has used io_uring. We use it for cancelation purposes.
9745 */
io_uring_add_tctx_node(struct io_ring_ctx * ctx)9746 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9747 {
9748 struct io_uring_task *tctx = current->io_uring;
9749
9750 if (likely(tctx && tctx->last == ctx))
9751 return 0;
9752 return __io_uring_add_tctx_node(ctx);
9753 }
9754
9755 /*
9756 * Remove this io_uring_file -> task mapping.
9757 */
io_uring_del_tctx_node(unsigned long index)9758 static void io_uring_del_tctx_node(unsigned long index)
9759 {
9760 struct io_uring_task *tctx = current->io_uring;
9761 struct io_tctx_node *node;
9762
9763 if (!tctx)
9764 return;
9765 node = xa_erase(&tctx->xa, index);
9766 if (!node)
9767 return;
9768
9769 WARN_ON_ONCE(current != node->task);
9770 WARN_ON_ONCE(list_empty(&node->ctx_node));
9771
9772 mutex_lock(&node->ctx->uring_lock);
9773 list_del(&node->ctx_node);
9774 mutex_unlock(&node->ctx->uring_lock);
9775
9776 if (tctx->last == node->ctx)
9777 tctx->last = NULL;
9778 kfree(node);
9779 }
9780
io_uring_clean_tctx(struct io_uring_task * tctx)9781 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9782 {
9783 struct io_wq *wq = tctx->io_wq;
9784 struct io_tctx_node *node;
9785 unsigned long index;
9786
9787 xa_for_each(&tctx->xa, index, node) {
9788 io_uring_del_tctx_node(index);
9789 cond_resched();
9790 }
9791 if (wq) {
9792 /*
9793 * Must be after io_uring_del_task_file() (removes nodes under
9794 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9795 */
9796 io_wq_put_and_exit(wq);
9797 tctx->io_wq = NULL;
9798 }
9799 }
9800
tctx_inflight(struct io_uring_task * tctx,bool tracked)9801 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9802 {
9803 if (tracked)
9804 return atomic_read(&tctx->inflight_tracked);
9805 return percpu_counter_sum(&tctx->inflight);
9806 }
9807
9808 /*
9809 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9810 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9811 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)9812 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9813 {
9814 struct io_uring_task *tctx = current->io_uring;
9815 struct io_ring_ctx *ctx;
9816 s64 inflight;
9817 DEFINE_WAIT(wait);
9818
9819 WARN_ON_ONCE(sqd && sqd->thread != current);
9820
9821 if (!current->io_uring)
9822 return;
9823 if (tctx->io_wq)
9824 io_wq_exit_start(tctx->io_wq);
9825
9826 atomic_inc(&tctx->in_idle);
9827 do {
9828 io_uring_drop_tctx_refs(current);
9829 /* read completions before cancelations */
9830 inflight = tctx_inflight(tctx, !cancel_all);
9831 if (!inflight)
9832 break;
9833
9834 if (!sqd) {
9835 struct io_tctx_node *node;
9836 unsigned long index;
9837
9838 xa_for_each(&tctx->xa, index, node) {
9839 /* sqpoll task will cancel all its requests */
9840 if (node->ctx->sq_data)
9841 continue;
9842 io_uring_try_cancel_requests(node->ctx, current,
9843 cancel_all);
9844 }
9845 } else {
9846 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9847 io_uring_try_cancel_requests(ctx, current,
9848 cancel_all);
9849 }
9850
9851 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9852 io_run_task_work();
9853 io_uring_drop_tctx_refs(current);
9854
9855 /*
9856 * If we've seen completions, retry without waiting. This
9857 * avoids a race where a completion comes in before we did
9858 * prepare_to_wait().
9859 */
9860 if (inflight == tctx_inflight(tctx, !cancel_all))
9861 schedule();
9862 finish_wait(&tctx->wait, &wait);
9863 } while (1);
9864
9865 io_uring_clean_tctx(tctx);
9866 if (cancel_all) {
9867 /*
9868 * We shouldn't run task_works after cancel, so just leave
9869 * ->in_idle set for normal exit.
9870 */
9871 atomic_dec(&tctx->in_idle);
9872 /* for exec all current's requests should be gone, kill tctx */
9873 __io_uring_free(current);
9874 }
9875 }
9876
__io_uring_cancel(bool cancel_all)9877 void __io_uring_cancel(bool cancel_all)
9878 {
9879 io_uring_cancel_generic(cancel_all, NULL);
9880 }
9881
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)9882 static void *io_uring_validate_mmap_request(struct file *file,
9883 loff_t pgoff, size_t sz)
9884 {
9885 struct io_ring_ctx *ctx = file->private_data;
9886 loff_t offset = pgoff << PAGE_SHIFT;
9887 struct page *page;
9888 void *ptr;
9889
9890 switch (offset) {
9891 case IORING_OFF_SQ_RING:
9892 case IORING_OFF_CQ_RING:
9893 ptr = ctx->rings;
9894 break;
9895 case IORING_OFF_SQES:
9896 ptr = ctx->sq_sqes;
9897 break;
9898 default:
9899 return ERR_PTR(-EINVAL);
9900 }
9901
9902 page = virt_to_head_page(ptr);
9903 if (sz > page_size(page))
9904 return ERR_PTR(-EINVAL);
9905
9906 return ptr;
9907 }
9908
9909 #ifdef CONFIG_MMU
9910
io_uring_mmap(struct file * file,struct vm_area_struct * vma)9911 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9912 {
9913 size_t sz = vma->vm_end - vma->vm_start;
9914 unsigned long pfn;
9915 void *ptr;
9916
9917 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9918 if (IS_ERR(ptr))
9919 return PTR_ERR(ptr);
9920
9921 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9922 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9923 }
9924
9925 #else /* !CONFIG_MMU */
9926
io_uring_mmap(struct file * file,struct vm_area_struct * vma)9927 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9928 {
9929 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9930 }
9931
io_uring_nommu_mmap_capabilities(struct file * file)9932 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9933 {
9934 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9935 }
9936
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)9937 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9938 unsigned long addr, unsigned long len,
9939 unsigned long pgoff, unsigned long flags)
9940 {
9941 void *ptr;
9942
9943 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9944 if (IS_ERR(ptr))
9945 return PTR_ERR(ptr);
9946
9947 return (unsigned long) ptr;
9948 }
9949
9950 #endif /* !CONFIG_MMU */
9951
io_sqpoll_wait_sq(struct io_ring_ctx * ctx)9952 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9953 {
9954 DEFINE_WAIT(wait);
9955
9956 do {
9957 if (!io_sqring_full(ctx))
9958 break;
9959 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9960
9961 if (!io_sqring_full(ctx))
9962 break;
9963 schedule();
9964 } while (!signal_pending(current));
9965
9966 finish_wait(&ctx->sqo_sq_wait, &wait);
9967 return 0;
9968 }
9969
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)9970 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9971 struct __kernel_timespec __user **ts,
9972 const sigset_t __user **sig)
9973 {
9974 struct io_uring_getevents_arg arg;
9975
9976 /*
9977 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9978 * is just a pointer to the sigset_t.
9979 */
9980 if (!(flags & IORING_ENTER_EXT_ARG)) {
9981 *sig = (const sigset_t __user *) argp;
9982 *ts = NULL;
9983 return 0;
9984 }
9985
9986 /*
9987 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9988 * timespec and sigset_t pointers if good.
9989 */
9990 if (*argsz != sizeof(arg))
9991 return -EINVAL;
9992 if (copy_from_user(&arg, argp, sizeof(arg)))
9993 return -EFAULT;
9994 if (arg.pad)
9995 return -EINVAL;
9996 *sig = u64_to_user_ptr(arg.sigmask);
9997 *argsz = arg.sigmask_sz;
9998 *ts = u64_to_user_ptr(arg.ts);
9999 return 0;
10000 }
10001
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)10002 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
10003 u32, min_complete, u32, flags, const void __user *, argp,
10004 size_t, argsz)
10005 {
10006 struct io_ring_ctx *ctx;
10007 int submitted = 0;
10008 struct fd f;
10009 long ret;
10010
10011 io_run_task_work();
10012
10013 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10014 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10015 return -EINVAL;
10016
10017 f = fdget(fd);
10018 if (unlikely(!f.file))
10019 return -EBADF;
10020
10021 ret = -EOPNOTSUPP;
10022 if (unlikely(f.file->f_op != &io_uring_fops))
10023 goto out_fput;
10024
10025 ret = -ENXIO;
10026 ctx = f.file->private_data;
10027 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10028 goto out_fput;
10029
10030 ret = -EBADFD;
10031 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10032 goto out;
10033
10034 /*
10035 * For SQ polling, the thread will do all submissions and completions.
10036 * Just return the requested submit count, and wake the thread if
10037 * we were asked to.
10038 */
10039 ret = 0;
10040 if (ctx->flags & IORING_SETUP_SQPOLL) {
10041 io_cqring_overflow_flush(ctx);
10042
10043 if (unlikely(ctx->sq_data->thread == NULL)) {
10044 ret = -EOWNERDEAD;
10045 goto out;
10046 }
10047 if (flags & IORING_ENTER_SQ_WAKEUP)
10048 wake_up(&ctx->sq_data->wait);
10049 if (flags & IORING_ENTER_SQ_WAIT) {
10050 ret = io_sqpoll_wait_sq(ctx);
10051 if (ret)
10052 goto out;
10053 }
10054 submitted = to_submit;
10055 } else if (to_submit) {
10056 ret = io_uring_add_tctx_node(ctx);
10057 if (unlikely(ret))
10058 goto out;
10059 mutex_lock(&ctx->uring_lock);
10060 submitted = io_submit_sqes(ctx, to_submit);
10061 mutex_unlock(&ctx->uring_lock);
10062
10063 if (submitted != to_submit)
10064 goto out;
10065 }
10066 if (flags & IORING_ENTER_GETEVENTS) {
10067 const sigset_t __user *sig;
10068 struct __kernel_timespec __user *ts;
10069
10070 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10071 if (unlikely(ret))
10072 goto out;
10073
10074 min_complete = min(min_complete, ctx->cq_entries);
10075
10076 /*
10077 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10078 * space applications don't need to do io completion events
10079 * polling again, they can rely on io_sq_thread to do polling
10080 * work, which can reduce cpu usage and uring_lock contention.
10081 */
10082 if (ctx->flags & IORING_SETUP_IOPOLL &&
10083 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10084 ret = io_iopoll_check(ctx, min_complete);
10085 } else {
10086 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10087 }
10088 }
10089
10090 out:
10091 percpu_ref_put(&ctx->refs);
10092 out_fput:
10093 fdput(f);
10094 return submitted ? submitted : ret;
10095 }
10096
10097 #ifdef CONFIG_PROC_FS
io_uring_show_cred(struct seq_file * m,unsigned int id,const struct cred * cred)10098 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10099 const struct cred *cred)
10100 {
10101 struct user_namespace *uns = seq_user_ns(m);
10102 struct group_info *gi;
10103 kernel_cap_t cap;
10104 unsigned __capi;
10105 int g;
10106
10107 seq_printf(m, "%5d\n", id);
10108 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10109 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10110 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10111 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10112 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10113 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10114 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10115 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10116 seq_puts(m, "\n\tGroups:\t");
10117 gi = cred->group_info;
10118 for (g = 0; g < gi->ngroups; g++) {
10119 seq_put_decimal_ull(m, g ? " " : "",
10120 from_kgid_munged(uns, gi->gid[g]));
10121 }
10122 seq_puts(m, "\n\tCapEff:\t");
10123 cap = cred->cap_effective;
10124 CAP_FOR_EACH_U32(__capi)
10125 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10126 seq_putc(m, '\n');
10127 return 0;
10128 }
10129
__io_uring_show_fdinfo(struct io_ring_ctx * ctx,struct seq_file * m)10130 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10131 {
10132 struct io_sq_data *sq = NULL;
10133 bool has_lock;
10134 int i;
10135
10136 /*
10137 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10138 * since fdinfo case grabs it in the opposite direction of normal use
10139 * cases. If we fail to get the lock, we just don't iterate any
10140 * structures that could be going away outside the io_uring mutex.
10141 */
10142 has_lock = mutex_trylock(&ctx->uring_lock);
10143
10144 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10145 sq = ctx->sq_data;
10146 if (!sq->thread)
10147 sq = NULL;
10148 }
10149
10150 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10151 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10152 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10153 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10154 struct file *f = io_file_from_index(ctx, i);
10155
10156 if (f)
10157 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10158 else
10159 seq_printf(m, "%5u: <none>\n", i);
10160 }
10161 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10162 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10163 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10164 unsigned int len = buf->ubuf_end - buf->ubuf;
10165
10166 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10167 }
10168 if (has_lock && !xa_empty(&ctx->personalities)) {
10169 unsigned long index;
10170 const struct cred *cred;
10171
10172 seq_printf(m, "Personalities:\n");
10173 xa_for_each(&ctx->personalities, index, cred)
10174 io_uring_show_cred(m, index, cred);
10175 }
10176 seq_printf(m, "PollList:\n");
10177 spin_lock(&ctx->completion_lock);
10178 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10179 struct hlist_head *list = &ctx->cancel_hash[i];
10180 struct io_kiocb *req;
10181
10182 hlist_for_each_entry(req, list, hash_node)
10183 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10184 req->task->task_works != NULL);
10185 }
10186 spin_unlock(&ctx->completion_lock);
10187 if (has_lock)
10188 mutex_unlock(&ctx->uring_lock);
10189 }
10190
io_uring_show_fdinfo(struct seq_file * m,struct file * f)10191 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10192 {
10193 struct io_ring_ctx *ctx = f->private_data;
10194
10195 if (percpu_ref_tryget(&ctx->refs)) {
10196 __io_uring_show_fdinfo(ctx, m);
10197 percpu_ref_put(&ctx->refs);
10198 }
10199 }
10200 #endif
10201
10202 static const struct file_operations io_uring_fops = {
10203 .release = io_uring_release,
10204 .mmap = io_uring_mmap,
10205 #ifndef CONFIG_MMU
10206 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10207 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10208 #endif
10209 .poll = io_uring_poll,
10210 #ifdef CONFIG_PROC_FS
10211 .show_fdinfo = io_uring_show_fdinfo,
10212 #endif
10213 };
10214
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)10215 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10216 struct io_uring_params *p)
10217 {
10218 struct io_rings *rings;
10219 size_t size, sq_array_offset;
10220
10221 /* make sure these are sane, as we already accounted them */
10222 ctx->sq_entries = p->sq_entries;
10223 ctx->cq_entries = p->cq_entries;
10224
10225 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10226 if (size == SIZE_MAX)
10227 return -EOVERFLOW;
10228
10229 rings = io_mem_alloc(size);
10230 if (!rings)
10231 return -ENOMEM;
10232
10233 ctx->rings = rings;
10234 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10235 rings->sq_ring_mask = p->sq_entries - 1;
10236 rings->cq_ring_mask = p->cq_entries - 1;
10237 rings->sq_ring_entries = p->sq_entries;
10238 rings->cq_ring_entries = p->cq_entries;
10239
10240 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10241 if (size == SIZE_MAX) {
10242 io_mem_free(ctx->rings);
10243 ctx->rings = NULL;
10244 return -EOVERFLOW;
10245 }
10246
10247 ctx->sq_sqes = io_mem_alloc(size);
10248 if (!ctx->sq_sqes) {
10249 io_mem_free(ctx->rings);
10250 ctx->rings = NULL;
10251 return -ENOMEM;
10252 }
10253
10254 return 0;
10255 }
10256
io_uring_install_fd(struct io_ring_ctx * ctx,struct file * file)10257 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10258 {
10259 int ret, fd;
10260
10261 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10262 if (fd < 0)
10263 return fd;
10264
10265 ret = io_uring_add_tctx_node(ctx);
10266 if (ret) {
10267 put_unused_fd(fd);
10268 return ret;
10269 }
10270 fd_install(fd, file);
10271 return fd;
10272 }
10273
10274 /*
10275 * Allocate an anonymous fd, this is what constitutes the application
10276 * visible backing of an io_uring instance. The application mmaps this
10277 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10278 * we have to tie this fd to a socket for file garbage collection purposes.
10279 */
io_uring_get_file(struct io_ring_ctx * ctx)10280 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10281 {
10282 struct file *file;
10283 #if defined(CONFIG_UNIX)
10284 int ret;
10285
10286 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10287 &ctx->ring_sock);
10288 if (ret)
10289 return ERR_PTR(ret);
10290 #endif
10291
10292 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10293 O_RDWR | O_CLOEXEC);
10294 #if defined(CONFIG_UNIX)
10295 if (IS_ERR(file)) {
10296 sock_release(ctx->ring_sock);
10297 ctx->ring_sock = NULL;
10298 } else {
10299 ctx->ring_sock->file = file;
10300 }
10301 #endif
10302 return file;
10303 }
10304
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)10305 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10306 struct io_uring_params __user *params)
10307 {
10308 struct io_ring_ctx *ctx;
10309 struct file *file;
10310 int ret;
10311
10312 if (!entries)
10313 return -EINVAL;
10314 if (entries > IORING_MAX_ENTRIES) {
10315 if (!(p->flags & IORING_SETUP_CLAMP))
10316 return -EINVAL;
10317 entries = IORING_MAX_ENTRIES;
10318 }
10319
10320 /*
10321 * Use twice as many entries for the CQ ring. It's possible for the
10322 * application to drive a higher depth than the size of the SQ ring,
10323 * since the sqes are only used at submission time. This allows for
10324 * some flexibility in overcommitting a bit. If the application has
10325 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10326 * of CQ ring entries manually.
10327 */
10328 p->sq_entries = roundup_pow_of_two(entries);
10329 if (p->flags & IORING_SETUP_CQSIZE) {
10330 /*
10331 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10332 * to a power-of-two, if it isn't already. We do NOT impose
10333 * any cq vs sq ring sizing.
10334 */
10335 if (!p->cq_entries)
10336 return -EINVAL;
10337 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10338 if (!(p->flags & IORING_SETUP_CLAMP))
10339 return -EINVAL;
10340 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10341 }
10342 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10343 if (p->cq_entries < p->sq_entries)
10344 return -EINVAL;
10345 } else {
10346 p->cq_entries = 2 * p->sq_entries;
10347 }
10348
10349 ctx = io_ring_ctx_alloc(p);
10350 if (!ctx)
10351 return -ENOMEM;
10352 ctx->compat = in_compat_syscall();
10353 if (!capable(CAP_IPC_LOCK))
10354 ctx->user = get_uid(current_user());
10355
10356 /*
10357 * This is just grabbed for accounting purposes. When a process exits,
10358 * the mm is exited and dropped before the files, hence we need to hang
10359 * on to this mm purely for the purposes of being able to unaccount
10360 * memory (locked/pinned vm). It's not used for anything else.
10361 */
10362 mmgrab(current->mm);
10363 ctx->mm_account = current->mm;
10364
10365 ret = io_allocate_scq_urings(ctx, p);
10366 if (ret)
10367 goto err;
10368
10369 ret = io_sq_offload_create(ctx, p);
10370 if (ret)
10371 goto err;
10372 /* always set a rsrc node */
10373 ret = io_rsrc_node_switch_start(ctx);
10374 if (ret)
10375 goto err;
10376 io_rsrc_node_switch(ctx, NULL);
10377
10378 memset(&p->sq_off, 0, sizeof(p->sq_off));
10379 p->sq_off.head = offsetof(struct io_rings, sq.head);
10380 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10381 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10382 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10383 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10384 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10385 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10386
10387 memset(&p->cq_off, 0, sizeof(p->cq_off));
10388 p->cq_off.head = offsetof(struct io_rings, cq.head);
10389 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10390 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10391 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10392 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10393 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10394 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10395
10396 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10397 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10398 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10399 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10400 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10401 IORING_FEAT_RSRC_TAGS;
10402
10403 if (copy_to_user(params, p, sizeof(*p))) {
10404 ret = -EFAULT;
10405 goto err;
10406 }
10407
10408 file = io_uring_get_file(ctx);
10409 if (IS_ERR(file)) {
10410 ret = PTR_ERR(file);
10411 goto err;
10412 }
10413
10414 /*
10415 * Install ring fd as the very last thing, so we don't risk someone
10416 * having closed it before we finish setup
10417 */
10418 ret = io_uring_install_fd(ctx, file);
10419 if (ret < 0) {
10420 /* fput will clean it up */
10421 fput(file);
10422 return ret;
10423 }
10424
10425 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10426 return ret;
10427 err:
10428 io_ring_ctx_wait_and_kill(ctx);
10429 return ret;
10430 }
10431
10432 /*
10433 * Sets up an aio uring context, and returns the fd. Applications asks for a
10434 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10435 * params structure passed in.
10436 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)10437 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10438 {
10439 struct io_uring_params p;
10440 int i;
10441
10442 if (copy_from_user(&p, params, sizeof(p)))
10443 return -EFAULT;
10444 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10445 if (p.resv[i])
10446 return -EINVAL;
10447 }
10448
10449 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10450 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10451 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10452 IORING_SETUP_R_DISABLED))
10453 return -EINVAL;
10454
10455 return io_uring_create(entries, &p, params);
10456 }
10457
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)10458 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10459 struct io_uring_params __user *, params)
10460 {
10461 return io_uring_setup(entries, params);
10462 }
10463
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10464 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10465 {
10466 struct io_uring_probe *p;
10467 size_t size;
10468 int i, ret;
10469
10470 size = struct_size(p, ops, nr_args);
10471 if (size == SIZE_MAX)
10472 return -EOVERFLOW;
10473 p = kzalloc(size, GFP_KERNEL);
10474 if (!p)
10475 return -ENOMEM;
10476
10477 ret = -EFAULT;
10478 if (copy_from_user(p, arg, size))
10479 goto out;
10480 ret = -EINVAL;
10481 if (memchr_inv(p, 0, size))
10482 goto out;
10483
10484 p->last_op = IORING_OP_LAST - 1;
10485 if (nr_args > IORING_OP_LAST)
10486 nr_args = IORING_OP_LAST;
10487
10488 for (i = 0; i < nr_args; i++) {
10489 p->ops[i].op = i;
10490 if (!io_op_defs[i].not_supported)
10491 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10492 }
10493 p->ops_len = i;
10494
10495 ret = 0;
10496 if (copy_to_user(arg, p, size))
10497 ret = -EFAULT;
10498 out:
10499 kfree(p);
10500 return ret;
10501 }
10502
io_register_personality(struct io_ring_ctx * ctx)10503 static int io_register_personality(struct io_ring_ctx *ctx)
10504 {
10505 const struct cred *creds;
10506 u32 id;
10507 int ret;
10508
10509 creds = get_current_cred();
10510
10511 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10512 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10513 if (ret < 0) {
10514 put_cred(creds);
10515 return ret;
10516 }
10517 return id;
10518 }
10519
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)10520 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10521 unsigned int nr_args)
10522 {
10523 struct io_uring_restriction *res;
10524 size_t size;
10525 int i, ret;
10526
10527 /* Restrictions allowed only if rings started disabled */
10528 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10529 return -EBADFD;
10530
10531 /* We allow only a single restrictions registration */
10532 if (ctx->restrictions.registered)
10533 return -EBUSY;
10534
10535 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10536 return -EINVAL;
10537
10538 size = array_size(nr_args, sizeof(*res));
10539 if (size == SIZE_MAX)
10540 return -EOVERFLOW;
10541
10542 res = memdup_user(arg, size);
10543 if (IS_ERR(res))
10544 return PTR_ERR(res);
10545
10546 ret = 0;
10547
10548 for (i = 0; i < nr_args; i++) {
10549 switch (res[i].opcode) {
10550 case IORING_RESTRICTION_REGISTER_OP:
10551 if (res[i].register_op >= IORING_REGISTER_LAST) {
10552 ret = -EINVAL;
10553 goto out;
10554 }
10555
10556 __set_bit(res[i].register_op,
10557 ctx->restrictions.register_op);
10558 break;
10559 case IORING_RESTRICTION_SQE_OP:
10560 if (res[i].sqe_op >= IORING_OP_LAST) {
10561 ret = -EINVAL;
10562 goto out;
10563 }
10564
10565 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10566 break;
10567 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10568 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10569 break;
10570 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10571 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10572 break;
10573 default:
10574 ret = -EINVAL;
10575 goto out;
10576 }
10577 }
10578
10579 out:
10580 /* Reset all restrictions if an error happened */
10581 if (ret != 0)
10582 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10583 else
10584 ctx->restrictions.registered = true;
10585
10586 kfree(res);
10587 return ret;
10588 }
10589
io_register_enable_rings(struct io_ring_ctx * ctx)10590 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10591 {
10592 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10593 return -EBADFD;
10594
10595 if (ctx->restrictions.registered)
10596 ctx->restricted = 1;
10597
10598 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10599 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10600 wake_up(&ctx->sq_data->wait);
10601 return 0;
10602 }
10603
__io_register_rsrc_update(struct io_ring_ctx * ctx,unsigned type,struct io_uring_rsrc_update2 * up,unsigned nr_args)10604 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10605 struct io_uring_rsrc_update2 *up,
10606 unsigned nr_args)
10607 {
10608 __u32 tmp;
10609 int err;
10610
10611 if (check_add_overflow(up->offset, nr_args, &tmp))
10612 return -EOVERFLOW;
10613 err = io_rsrc_node_switch_start(ctx);
10614 if (err)
10615 return err;
10616
10617 switch (type) {
10618 case IORING_RSRC_FILE:
10619 return __io_sqe_files_update(ctx, up, nr_args);
10620 case IORING_RSRC_BUFFER:
10621 return __io_sqe_buffers_update(ctx, up, nr_args);
10622 }
10623 return -EINVAL;
10624 }
10625
io_register_files_update(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10626 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10627 unsigned nr_args)
10628 {
10629 struct io_uring_rsrc_update2 up;
10630
10631 if (!nr_args)
10632 return -EINVAL;
10633 memset(&up, 0, sizeof(up));
10634 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10635 return -EFAULT;
10636 if (up.resv || up.resv2)
10637 return -EINVAL;
10638 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10639 }
10640
io_register_rsrc_update(struct io_ring_ctx * ctx,void __user * arg,unsigned size,unsigned type)10641 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10642 unsigned size, unsigned type)
10643 {
10644 struct io_uring_rsrc_update2 up;
10645
10646 if (size != sizeof(up))
10647 return -EINVAL;
10648 if (copy_from_user(&up, arg, sizeof(up)))
10649 return -EFAULT;
10650 if (!up.nr || up.resv || up.resv2)
10651 return -EINVAL;
10652 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10653 }
10654
io_register_rsrc(struct io_ring_ctx * ctx,void __user * arg,unsigned int size,unsigned int type)10655 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10656 unsigned int size, unsigned int type)
10657 {
10658 struct io_uring_rsrc_register rr;
10659
10660 /* keep it extendible */
10661 if (size != sizeof(rr))
10662 return -EINVAL;
10663
10664 memset(&rr, 0, sizeof(rr));
10665 if (copy_from_user(&rr, arg, size))
10666 return -EFAULT;
10667 if (!rr.nr || rr.resv || rr.resv2)
10668 return -EINVAL;
10669
10670 switch (type) {
10671 case IORING_RSRC_FILE:
10672 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10673 rr.nr, u64_to_user_ptr(rr.tags));
10674 case IORING_RSRC_BUFFER:
10675 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10676 rr.nr, u64_to_user_ptr(rr.tags));
10677 }
10678 return -EINVAL;
10679 }
10680
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)10681 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10682 unsigned len)
10683 {
10684 struct io_uring_task *tctx = current->io_uring;
10685 cpumask_var_t new_mask;
10686 int ret;
10687
10688 if (!tctx || !tctx->io_wq)
10689 return -EINVAL;
10690
10691 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10692 return -ENOMEM;
10693
10694 cpumask_clear(new_mask);
10695 if (len > cpumask_size())
10696 len = cpumask_size();
10697
10698 #ifdef CONFIG_COMPAT
10699 if (in_compat_syscall()) {
10700 ret = compat_get_bitmap(cpumask_bits(new_mask),
10701 (const compat_ulong_t __user *)arg,
10702 len * 8 /* CHAR_BIT */);
10703 } else {
10704 ret = copy_from_user(new_mask, arg, len);
10705 }
10706 #else
10707 ret = copy_from_user(new_mask, arg, len);
10708 #endif
10709
10710 if (ret) {
10711 free_cpumask_var(new_mask);
10712 return -EFAULT;
10713 }
10714
10715 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10716 free_cpumask_var(new_mask);
10717 return ret;
10718 }
10719
io_unregister_iowq_aff(struct io_ring_ctx * ctx)10720 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10721 {
10722 struct io_uring_task *tctx = current->io_uring;
10723
10724 if (!tctx || !tctx->io_wq)
10725 return -EINVAL;
10726
10727 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10728 }
10729
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)10730 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10731 void __user *arg)
10732 __must_hold(&ctx->uring_lock)
10733 {
10734 struct io_tctx_node *node;
10735 struct io_uring_task *tctx = NULL;
10736 struct io_sq_data *sqd = NULL;
10737 __u32 new_count[2];
10738 int i, ret;
10739
10740 if (copy_from_user(new_count, arg, sizeof(new_count)))
10741 return -EFAULT;
10742 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10743 if (new_count[i] > INT_MAX)
10744 return -EINVAL;
10745
10746 if (ctx->flags & IORING_SETUP_SQPOLL) {
10747 sqd = ctx->sq_data;
10748 if (sqd) {
10749 /*
10750 * Observe the correct sqd->lock -> ctx->uring_lock
10751 * ordering. Fine to drop uring_lock here, we hold
10752 * a ref to the ctx.
10753 */
10754 refcount_inc(&sqd->refs);
10755 mutex_unlock(&ctx->uring_lock);
10756 mutex_lock(&sqd->lock);
10757 mutex_lock(&ctx->uring_lock);
10758 if (sqd->thread)
10759 tctx = sqd->thread->io_uring;
10760 }
10761 } else {
10762 tctx = current->io_uring;
10763 }
10764
10765 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10766
10767 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10768 if (new_count[i])
10769 ctx->iowq_limits[i] = new_count[i];
10770 ctx->iowq_limits_set = true;
10771
10772 ret = -EINVAL;
10773 if (tctx && tctx->io_wq) {
10774 ret = io_wq_max_workers(tctx->io_wq, new_count);
10775 if (ret)
10776 goto err;
10777 } else {
10778 memset(new_count, 0, sizeof(new_count));
10779 }
10780
10781 if (sqd) {
10782 mutex_unlock(&sqd->lock);
10783 io_put_sq_data(sqd);
10784 }
10785
10786 if (copy_to_user(arg, new_count, sizeof(new_count)))
10787 return -EFAULT;
10788
10789 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10790 if (sqd)
10791 return 0;
10792
10793 /* now propagate the restriction to all registered users */
10794 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10795 struct io_uring_task *tctx = node->task->io_uring;
10796
10797 if (WARN_ON_ONCE(!tctx->io_wq))
10798 continue;
10799
10800 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10801 new_count[i] = ctx->iowq_limits[i];
10802 /* ignore errors, it always returns zero anyway */
10803 (void)io_wq_max_workers(tctx->io_wq, new_count);
10804 }
10805 return 0;
10806 err:
10807 if (sqd) {
10808 mutex_unlock(&sqd->lock);
10809 io_put_sq_data(sqd);
10810 }
10811 return ret;
10812 }
10813
io_register_op_must_quiesce(int op)10814 static bool io_register_op_must_quiesce(int op)
10815 {
10816 switch (op) {
10817 case IORING_REGISTER_BUFFERS:
10818 case IORING_UNREGISTER_BUFFERS:
10819 case IORING_REGISTER_FILES:
10820 case IORING_UNREGISTER_FILES:
10821 case IORING_REGISTER_FILES_UPDATE:
10822 case IORING_REGISTER_PROBE:
10823 case IORING_REGISTER_PERSONALITY:
10824 case IORING_UNREGISTER_PERSONALITY:
10825 case IORING_REGISTER_FILES2:
10826 case IORING_REGISTER_FILES_UPDATE2:
10827 case IORING_REGISTER_BUFFERS2:
10828 case IORING_REGISTER_BUFFERS_UPDATE:
10829 case IORING_REGISTER_IOWQ_AFF:
10830 case IORING_UNREGISTER_IOWQ_AFF:
10831 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10832 return false;
10833 default:
10834 return true;
10835 }
10836 }
10837
io_ctx_quiesce(struct io_ring_ctx * ctx)10838 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10839 {
10840 long ret;
10841
10842 percpu_ref_kill(&ctx->refs);
10843
10844 /*
10845 * Drop uring mutex before waiting for references to exit. If another
10846 * thread is currently inside io_uring_enter() it might need to grab the
10847 * uring_lock to make progress. If we hold it here across the drain
10848 * wait, then we can deadlock. It's safe to drop the mutex here, since
10849 * no new references will come in after we've killed the percpu ref.
10850 */
10851 mutex_unlock(&ctx->uring_lock);
10852 do {
10853 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10854 if (!ret)
10855 break;
10856 ret = io_run_task_work_sig();
10857 } while (ret >= 0);
10858 mutex_lock(&ctx->uring_lock);
10859
10860 if (ret)
10861 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10862 return ret;
10863 }
10864
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)10865 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10866 void __user *arg, unsigned nr_args)
10867 __releases(ctx->uring_lock)
10868 __acquires(ctx->uring_lock)
10869 {
10870 int ret;
10871
10872 /*
10873 * We're inside the ring mutex, if the ref is already dying, then
10874 * someone else killed the ctx or is already going through
10875 * io_uring_register().
10876 */
10877 if (percpu_ref_is_dying(&ctx->refs))
10878 return -ENXIO;
10879
10880 if (ctx->restricted) {
10881 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10882 if (!test_bit(opcode, ctx->restrictions.register_op))
10883 return -EACCES;
10884 }
10885
10886 if (io_register_op_must_quiesce(opcode)) {
10887 ret = io_ctx_quiesce(ctx);
10888 if (ret)
10889 return ret;
10890 }
10891
10892 switch (opcode) {
10893 case IORING_REGISTER_BUFFERS:
10894 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10895 break;
10896 case IORING_UNREGISTER_BUFFERS:
10897 ret = -EINVAL;
10898 if (arg || nr_args)
10899 break;
10900 ret = io_sqe_buffers_unregister(ctx);
10901 break;
10902 case IORING_REGISTER_FILES:
10903 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10904 break;
10905 case IORING_UNREGISTER_FILES:
10906 ret = -EINVAL;
10907 if (arg || nr_args)
10908 break;
10909 ret = io_sqe_files_unregister(ctx);
10910 break;
10911 case IORING_REGISTER_FILES_UPDATE:
10912 ret = io_register_files_update(ctx, arg, nr_args);
10913 break;
10914 case IORING_REGISTER_EVENTFD:
10915 case IORING_REGISTER_EVENTFD_ASYNC:
10916 ret = -EINVAL;
10917 if (nr_args != 1)
10918 break;
10919 ret = io_eventfd_register(ctx, arg);
10920 if (ret)
10921 break;
10922 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10923 ctx->eventfd_async = 1;
10924 else
10925 ctx->eventfd_async = 0;
10926 break;
10927 case IORING_UNREGISTER_EVENTFD:
10928 ret = -EINVAL;
10929 if (arg || nr_args)
10930 break;
10931 ret = io_eventfd_unregister(ctx);
10932 break;
10933 case IORING_REGISTER_PROBE:
10934 ret = -EINVAL;
10935 if (!arg || nr_args > 256)
10936 break;
10937 ret = io_probe(ctx, arg, nr_args);
10938 break;
10939 case IORING_REGISTER_PERSONALITY:
10940 ret = -EINVAL;
10941 if (arg || nr_args)
10942 break;
10943 ret = io_register_personality(ctx);
10944 break;
10945 case IORING_UNREGISTER_PERSONALITY:
10946 ret = -EINVAL;
10947 if (arg)
10948 break;
10949 ret = io_unregister_personality(ctx, nr_args);
10950 break;
10951 case IORING_REGISTER_ENABLE_RINGS:
10952 ret = -EINVAL;
10953 if (arg || nr_args)
10954 break;
10955 ret = io_register_enable_rings(ctx);
10956 break;
10957 case IORING_REGISTER_RESTRICTIONS:
10958 ret = io_register_restrictions(ctx, arg, nr_args);
10959 break;
10960 case IORING_REGISTER_FILES2:
10961 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10962 break;
10963 case IORING_REGISTER_FILES_UPDATE2:
10964 ret = io_register_rsrc_update(ctx, arg, nr_args,
10965 IORING_RSRC_FILE);
10966 break;
10967 case IORING_REGISTER_BUFFERS2:
10968 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10969 break;
10970 case IORING_REGISTER_BUFFERS_UPDATE:
10971 ret = io_register_rsrc_update(ctx, arg, nr_args,
10972 IORING_RSRC_BUFFER);
10973 break;
10974 case IORING_REGISTER_IOWQ_AFF:
10975 ret = -EINVAL;
10976 if (!arg || !nr_args)
10977 break;
10978 ret = io_register_iowq_aff(ctx, arg, nr_args);
10979 break;
10980 case IORING_UNREGISTER_IOWQ_AFF:
10981 ret = -EINVAL;
10982 if (arg || nr_args)
10983 break;
10984 ret = io_unregister_iowq_aff(ctx);
10985 break;
10986 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10987 ret = -EINVAL;
10988 if (!arg || nr_args != 2)
10989 break;
10990 ret = io_register_iowq_max_workers(ctx, arg);
10991 break;
10992 default:
10993 ret = -EINVAL;
10994 break;
10995 }
10996
10997 if (io_register_op_must_quiesce(opcode)) {
10998 /* bring the ctx back to life */
10999 percpu_ref_reinit(&ctx->refs);
11000 reinit_completion(&ctx->ref_comp);
11001 }
11002 return ret;
11003 }
11004
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)11005 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
11006 void __user *, arg, unsigned int, nr_args)
11007 {
11008 struct io_ring_ctx *ctx;
11009 long ret = -EBADF;
11010 struct fd f;
11011
11012 if (opcode >= IORING_REGISTER_LAST)
11013 return -EINVAL;
11014
11015 f = fdget(fd);
11016 if (!f.file)
11017 return -EBADF;
11018
11019 ret = -EOPNOTSUPP;
11020 if (f.file->f_op != &io_uring_fops)
11021 goto out_fput;
11022
11023 ctx = f.file->private_data;
11024
11025 io_run_task_work();
11026
11027 mutex_lock(&ctx->uring_lock);
11028 ret = __io_uring_register(ctx, opcode, arg, nr_args);
11029 mutex_unlock(&ctx->uring_lock);
11030 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11031 ctx->cq_ev_fd != NULL, ret);
11032 out_fput:
11033 fdput(f);
11034 return ret;
11035 }
11036
io_uring_init(void)11037 static int __init io_uring_init(void)
11038 {
11039 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11040 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11041 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11042 } while (0)
11043
11044 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11045 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11046 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11047 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
11048 BUILD_BUG_SQE_ELEM(1, __u8, flags);
11049 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
11050 BUILD_BUG_SQE_ELEM(4, __s32, fd);
11051 BUILD_BUG_SQE_ELEM(8, __u64, off);
11052 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11053 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11054 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11055 BUILD_BUG_SQE_ELEM(24, __u32, len);
11056 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11057 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11058 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11059 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11060 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11061 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11062 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11063 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11064 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11065 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11066 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11067 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11068 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11069 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11070 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11071 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11072 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11073 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11074 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11075 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11076 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11077
11078 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11079 sizeof(struct io_uring_rsrc_update));
11080 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11081 sizeof(struct io_uring_rsrc_update2));
11082
11083 /* ->buf_index is u16 */
11084 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11085
11086 /* should fit into one byte */
11087 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11088
11089 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11090 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11091
11092 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11093 SLAB_ACCOUNT);
11094 return 0;
11095 };
11096 __initcall(io_uring_init);
11097