• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*	Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
2 
3 	Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
4 	which also acknowledges contributions by Mike Burrows, David Wheeler,
5 	Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
6 	Robert Sedgewick, and Jon L. Bentley.
7 
8 	This code is licensed under the LGPLv2:
9 		LGPL (http://www.gnu.org/copyleft/lgpl.html
10 */
11 
12 /*
13 	Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org).
14 
15 	More efficient reading of Huffman codes, a streamlined read_bunzip()
16 	function, and various other tweaks.  In (limited) tests, approximately
17 	20% faster than bzcat on x86 and about 10% faster on arm.
18 
19 	Note that about 2/3 of the time is spent in read_unzip() reversing
20 	the Burrows-Wheeler transformation.  Much of that time is delay
21 	resulting from cache misses.
22 
23 	I would ask that anyone benefiting from this work, especially those
24 	using it in commercial products, consider making a donation to my local
25 	non-profit hospice organization in the name of the woman I loved, who
26 	passed away Feb. 12, 2003.
27 
28 		In memory of Toni W. Hagan
29 
30 		Hospice of Acadiana, Inc.
31 		2600 Johnston St., Suite 200
32 		Lafayette, LA 70503-3240
33 
34 		Phone (337) 232-1234 or 1-800-738-2226
35 		Fax   (337) 232-1297
36 
37 		https://www.hospiceacadiana.com/
38 
39 	Manuel
40  */
41 
42 /*
43 	Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu)
44 */
45 
46 
47 #ifdef STATIC
48 #define PREBOOT
49 #else
50 #include <linux/decompress/bunzip2.h>
51 #endif /* STATIC */
52 
53 #include <linux/decompress/mm.h>
54 #include <linux/crc32poly.h>
55 
56 #ifndef INT_MAX
57 #define INT_MAX 0x7fffffff
58 #endif
59 
60 /* Constants for Huffman coding */
61 #define MAX_GROUPS		6
62 #define GROUP_SIZE   		50	/* 64 would have been more efficient */
63 #define MAX_HUFCODE_BITS 	20	/* Longest Huffman code allowed */
64 #define MAX_SYMBOLS 		258	/* 256 literals + RUNA + RUNB */
65 #define SYMBOL_RUNA		0
66 #define SYMBOL_RUNB		1
67 
68 /* Status return values */
69 #define RETVAL_OK			0
70 #define RETVAL_LAST_BLOCK		(-1)
71 #define RETVAL_NOT_BZIP_DATA		(-2)
72 #define RETVAL_UNEXPECTED_INPUT_EOF	(-3)
73 #define RETVAL_UNEXPECTED_OUTPUT_EOF	(-4)
74 #define RETVAL_DATA_ERROR		(-5)
75 #define RETVAL_OUT_OF_MEMORY		(-6)
76 #define RETVAL_OBSOLETE_INPUT		(-7)
77 
78 /* Other housekeeping constants */
79 #define BZIP2_IOBUF_SIZE		4096
80 
81 /* This is what we know about each Huffman coding group */
82 struct group_data {
83 	/* We have an extra slot at the end of limit[] for a sentinal value. */
84 	int limit[MAX_HUFCODE_BITS+1];
85 	int base[MAX_HUFCODE_BITS];
86 	int permute[MAX_SYMBOLS];
87 	int minLen, maxLen;
88 };
89 
90 /* Structure holding all the housekeeping data, including IO buffers and
91    memory that persists between calls to bunzip */
92 struct bunzip_data {
93 	/* State for interrupting output loop */
94 	int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
95 	/* I/O tracking data (file handles, buffers, positions, etc.) */
96 	long (*fill)(void*, unsigned long);
97 	long inbufCount, inbufPos /*, outbufPos*/;
98 	unsigned char *inbuf /*,*outbuf*/;
99 	unsigned int inbufBitCount, inbufBits;
100 	/* The CRC values stored in the block header and calculated from the
101 	data */
102 	unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC;
103 	/* Intermediate buffer and its size (in bytes) */
104 	unsigned int *dbuf, dbufSize;
105 	/* These things are a bit too big to go on the stack */
106 	unsigned char selectors[32768];		/* nSelectors = 15 bits */
107 	struct group_data groups[MAX_GROUPS];	/* Huffman coding tables */
108 	int io_error;			/* non-zero if we have IO error */
109 	int byteCount[256];
110 	unsigned char symToByte[256], mtfSymbol[256];
111 };
112 
113 
114 /* Return the next nnn bits of input.  All reads from the compressed input
115    are done through this function.  All reads are big endian */
get_bits(struct bunzip_data * bd,char bits_wanted)116 static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted)
117 {
118 	unsigned int bits = 0;
119 
120 	/* If we need to get more data from the byte buffer, do so.
121 	   (Loop getting one byte at a time to enforce endianness and avoid
122 	   unaligned access.) */
123 	while (bd->inbufBitCount < bits_wanted) {
124 		/* If we need to read more data from file into byte buffer, do
125 		   so */
126 		if (bd->inbufPos == bd->inbufCount) {
127 			if (bd->io_error)
128 				return 0;
129 			bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE);
130 			if (bd->inbufCount <= 0) {
131 				bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF;
132 				return 0;
133 			}
134 			bd->inbufPos = 0;
135 		}
136 		/* Avoid 32-bit overflow (dump bit buffer to top of output) */
137 		if (bd->inbufBitCount >= 24) {
138 			bits = bd->inbufBits&((1 << bd->inbufBitCount)-1);
139 			bits_wanted -= bd->inbufBitCount;
140 			bits <<= bits_wanted;
141 			bd->inbufBitCount = 0;
142 		}
143 		/* Grab next 8 bits of input from buffer. */
144 		bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
145 		bd->inbufBitCount += 8;
146 	}
147 	/* Calculate result */
148 	bd->inbufBitCount -= bits_wanted;
149 	bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1);
150 
151 	return bits;
152 }
153 
154 /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
155 
get_next_block(struct bunzip_data * bd)156 static int INIT get_next_block(struct bunzip_data *bd)
157 {
158 	struct group_data *hufGroup = NULL;
159 	int *base = NULL;
160 	int *limit = NULL;
161 	int dbufCount, nextSym, dbufSize, groupCount, selector,
162 		i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount;
163 	unsigned char uc, *symToByte, *mtfSymbol, *selectors;
164 	unsigned int *dbuf, origPtr;
165 
166 	dbuf = bd->dbuf;
167 	dbufSize = bd->dbufSize;
168 	selectors = bd->selectors;
169 	byteCount = bd->byteCount;
170 	symToByte = bd->symToByte;
171 	mtfSymbol = bd->mtfSymbol;
172 
173 	/* Read in header signature and CRC, then validate signature.
174 	   (last block signature means CRC is for whole file, return now) */
175 	i = get_bits(bd, 24);
176 	j = get_bits(bd, 24);
177 	bd->headerCRC = get_bits(bd, 32);
178 	if ((i == 0x177245) && (j == 0x385090))
179 		return RETVAL_LAST_BLOCK;
180 	if ((i != 0x314159) || (j != 0x265359))
181 		return RETVAL_NOT_BZIP_DATA;
182 	/* We can add support for blockRandomised if anybody complains.
183 	   There was some code for this in busybox 1.0.0-pre3, but nobody ever
184 	   noticed that it didn't actually work. */
185 	if (get_bits(bd, 1))
186 		return RETVAL_OBSOLETE_INPUT;
187 	origPtr = get_bits(bd, 24);
188 	if (origPtr >= dbufSize)
189 		return RETVAL_DATA_ERROR;
190 	/* mapping table: if some byte values are never used (encoding things
191 	   like ascii text), the compression code removes the gaps to have fewer
192 	   symbols to deal with, and writes a sparse bitfield indicating which
193 	   values were present.  We make a translation table to convert the
194 	   symbols back to the corresponding bytes. */
195 	t = get_bits(bd, 16);
196 	symTotal = 0;
197 	for (i = 0; i < 16; i++) {
198 		if (t&(1 << (15-i))) {
199 			k = get_bits(bd, 16);
200 			for (j = 0; j < 16; j++)
201 				if (k&(1 << (15-j)))
202 					symToByte[symTotal++] = (16*i)+j;
203 		}
204 	}
205 	/* How many different Huffman coding groups does this block use? */
206 	groupCount = get_bits(bd, 3);
207 	if (groupCount < 2 || groupCount > MAX_GROUPS)
208 		return RETVAL_DATA_ERROR;
209 	/* nSelectors: Every GROUP_SIZE many symbols we select a new
210 	   Huffman coding group.  Read in the group selector list,
211 	   which is stored as MTF encoded bit runs.  (MTF = Move To
212 	   Front, as each value is used it's moved to the start of the
213 	   list.) */
214 	nSelectors = get_bits(bd, 15);
215 	if (!nSelectors)
216 		return RETVAL_DATA_ERROR;
217 	for (i = 0; i < groupCount; i++)
218 		mtfSymbol[i] = i;
219 	for (i = 0; i < nSelectors; i++) {
220 		/* Get next value */
221 		for (j = 0; get_bits(bd, 1); j++)
222 			if (j >= groupCount)
223 				return RETVAL_DATA_ERROR;
224 		/* Decode MTF to get the next selector */
225 		uc = mtfSymbol[j];
226 		for (; j; j--)
227 			mtfSymbol[j] = mtfSymbol[j-1];
228 		mtfSymbol[0] = selectors[i] = uc;
229 	}
230 	/* Read the Huffman coding tables for each group, which code
231 	   for symTotal literal symbols, plus two run symbols (RUNA,
232 	   RUNB) */
233 	symCount = symTotal+2;
234 	for (j = 0; j < groupCount; j++) {
235 		unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
236 		int	minLen,	maxLen, pp;
237 		/* Read Huffman code lengths for each symbol.  They're
238 		   stored in a way similar to mtf; record a starting
239 		   value for the first symbol, and an offset from the
240 		   previous value for everys symbol after that.
241 		   (Subtracting 1 before the loop and then adding it
242 		   back at the end is an optimization that makes the
243 		   test inside the loop simpler: symbol length 0
244 		   becomes negative, so an unsigned inequality catches
245 		   it.) */
246 		t = get_bits(bd, 5)-1;
247 		for (i = 0; i < symCount; i++) {
248 			for (;;) {
249 				if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
250 					return RETVAL_DATA_ERROR;
251 
252 				/* If first bit is 0, stop.  Else
253 				   second bit indicates whether to
254 				   increment or decrement the value.
255 				   Optimization: grab 2 bits and unget
256 				   the second if the first was 0. */
257 
258 				k = get_bits(bd, 2);
259 				if (k < 2) {
260 					bd->inbufBitCount++;
261 					break;
262 				}
263 				/* Add one if second bit 1, else
264 				 * subtract 1.  Avoids if/else */
265 				t += (((k+1)&2)-1);
266 			}
267 			/* Correct for the initial -1, to get the
268 			 * final symbol length */
269 			length[i] = t+1;
270 		}
271 		/* Find largest and smallest lengths in this group */
272 		minLen = maxLen = length[0];
273 
274 		for (i = 1; i < symCount; i++) {
275 			if (length[i] > maxLen)
276 				maxLen = length[i];
277 			else if (length[i] < minLen)
278 				minLen = length[i];
279 		}
280 
281 		/* Calculate permute[], base[], and limit[] tables from
282 		 * length[].
283 		 *
284 		 * permute[] is the lookup table for converting
285 		 * Huffman coded symbols into decoded symbols.  base[]
286 		 * is the amount to subtract from the value of a
287 		 * Huffman symbol of a given length when using
288 		 * permute[].
289 		 *
290 		 * limit[] indicates the largest numerical value a
291 		 * symbol with a given number of bits can have.  This
292 		 * is how the Huffman codes can vary in length: each
293 		 * code with a value > limit[length] needs another
294 		 * bit.
295 		 */
296 		hufGroup = bd->groups+j;
297 		hufGroup->minLen = minLen;
298 		hufGroup->maxLen = maxLen;
299 		/* Note that minLen can't be smaller than 1, so we
300 		   adjust the base and limit array pointers so we're
301 		   not always wasting the first entry.  We do this
302 		   again when using them (during symbol decoding).*/
303 		base = hufGroup->base-1;
304 		limit = hufGroup->limit-1;
305 		/* Calculate permute[].  Concurrently, initialize
306 		 * temp[] and limit[]. */
307 		pp = 0;
308 		for (i = minLen; i <= maxLen; i++) {
309 			temp[i] = limit[i] = 0;
310 			for (t = 0; t < symCount; t++)
311 				if (length[t] == i)
312 					hufGroup->permute[pp++] = t;
313 		}
314 		/* Count symbols coded for at each bit length */
315 		for (i = 0; i < symCount; i++)
316 			temp[length[i]]++;
317 		/* Calculate limit[] (the largest symbol-coding value
318 		 *at each bit length, which is (previous limit <<
319 		 *1)+symbols at this level), and base[] (number of
320 		 *symbols to ignore at each bit length, which is limit
321 		 *minus the cumulative count of symbols coded for
322 		 *already). */
323 		pp = t = 0;
324 		for (i = minLen; i < maxLen; i++) {
325 			pp += temp[i];
326 			/* We read the largest possible symbol size
327 			   and then unget bits after determining how
328 			   many we need, and those extra bits could be
329 			   set to anything.  (They're noise from
330 			   future symbols.)  At each level we're
331 			   really only interested in the first few
332 			   bits, so here we set all the trailing
333 			   to-be-ignored bits to 1 so they don't
334 			   affect the value > limit[length]
335 			   comparison. */
336 			limit[i] = (pp << (maxLen - i)) - 1;
337 			pp <<= 1;
338 			base[i+1] = pp-(t += temp[i]);
339 		}
340 		limit[maxLen+1] = INT_MAX; /* Sentinal value for
341 					    * reading next sym. */
342 		limit[maxLen] = pp+temp[maxLen]-1;
343 		base[minLen] = 0;
344 	}
345 	/* We've finished reading and digesting the block header.  Now
346 	   read this block's Huffman coded symbols from the file and
347 	   undo the Huffman coding and run length encoding, saving the
348 	   result into dbuf[dbufCount++] = uc */
349 
350 	/* Initialize symbol occurrence counters and symbol Move To
351 	 * Front table */
352 	for (i = 0; i < 256; i++) {
353 		byteCount[i] = 0;
354 		mtfSymbol[i] = (unsigned char)i;
355 	}
356 	/* Loop through compressed symbols. */
357 	runPos = dbufCount = symCount = selector = 0;
358 	for (;;) {
359 		/* Determine which Huffman coding group to use. */
360 		if (!(symCount--)) {
361 			symCount = GROUP_SIZE-1;
362 			if (selector >= nSelectors)
363 				return RETVAL_DATA_ERROR;
364 			hufGroup = bd->groups+selectors[selector++];
365 			base = hufGroup->base-1;
366 			limit = hufGroup->limit-1;
367 		}
368 		/* Read next Huffman-coded symbol. */
369 		/* Note: It is far cheaper to read maxLen bits and
370 		   back up than it is to read minLen bits and then an
371 		   additional bit at a time, testing as we go.
372 		   Because there is a trailing last block (with file
373 		   CRC), there is no danger of the overread causing an
374 		   unexpected EOF for a valid compressed file.  As a
375 		   further optimization, we do the read inline
376 		   (falling back to a call to get_bits if the buffer
377 		   runs dry).  The following (up to got_huff_bits:) is
378 		   equivalent to j = get_bits(bd, hufGroup->maxLen);
379 		 */
380 		while (bd->inbufBitCount < hufGroup->maxLen) {
381 			if (bd->inbufPos == bd->inbufCount) {
382 				j = get_bits(bd, hufGroup->maxLen);
383 				goto got_huff_bits;
384 			}
385 			bd->inbufBits =
386 				(bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
387 			bd->inbufBitCount += 8;
388 		};
389 		bd->inbufBitCount -= hufGroup->maxLen;
390 		j = (bd->inbufBits >> bd->inbufBitCount)&
391 			((1 << hufGroup->maxLen)-1);
392 got_huff_bits:
393 		/* Figure how many bits are in next symbol and
394 		 * unget extras */
395 		i = hufGroup->minLen;
396 		while (j > limit[i])
397 			++i;
398 		bd->inbufBitCount += (hufGroup->maxLen - i);
399 		/* Huffman decode value to get nextSym (with bounds checking) */
400 		if ((i > hufGroup->maxLen)
401 			|| (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i]))
402 				>= MAX_SYMBOLS))
403 			return RETVAL_DATA_ERROR;
404 		nextSym = hufGroup->permute[j];
405 		/* We have now decoded the symbol, which indicates
406 		   either a new literal byte, or a repeated run of the
407 		   most recent literal byte.  First, check if nextSym
408 		   indicates a repeated run, and if so loop collecting
409 		   how many times to repeat the last literal. */
410 		if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
411 			/* If this is the start of a new run, zero out
412 			 * counter */
413 			if (!runPos) {
414 				runPos = 1;
415 				t = 0;
416 			}
417 			/* Neat trick that saves 1 symbol: instead of
418 			   or-ing 0 or 1 at each bit position, add 1
419 			   or 2 instead.  For example, 1011 is 1 << 0
420 			   + 1 << 1 + 2 << 2.  1010 is 2 << 0 + 2 << 1
421 			   + 1 << 2.  You can make any bit pattern
422 			   that way using 1 less symbol than the basic
423 			   or 0/1 method (except all bits 0, which
424 			   would use no symbols, but a run of length 0
425 			   doesn't mean anything in this context).
426 			   Thus space is saved. */
427 			t += (runPos << nextSym);
428 			/* +runPos if RUNA; +2*runPos if RUNB */
429 
430 			runPos <<= 1;
431 			continue;
432 		}
433 		/* When we hit the first non-run symbol after a run,
434 		   we now know how many times to repeat the last
435 		   literal, so append that many copies to our buffer
436 		   of decoded symbols (dbuf) now.  (The last literal
437 		   used is the one at the head of the mtfSymbol
438 		   array.) */
439 		if (runPos) {
440 			runPos = 0;
441 			if (dbufCount+t >= dbufSize)
442 				return RETVAL_DATA_ERROR;
443 
444 			uc = symToByte[mtfSymbol[0]];
445 			byteCount[uc] += t;
446 			while (t--)
447 				dbuf[dbufCount++] = uc;
448 		}
449 		/* Is this the terminating symbol? */
450 		if (nextSym > symTotal)
451 			break;
452 		/* At this point, nextSym indicates a new literal
453 		   character.  Subtract one to get the position in the
454 		   MTF array at which this literal is currently to be
455 		   found.  (Note that the result can't be -1 or 0,
456 		   because 0 and 1 are RUNA and RUNB.  But another
457 		   instance of the first symbol in the mtf array,
458 		   position 0, would have been handled as part of a
459 		   run above.  Therefore 1 unused mtf position minus 2
460 		   non-literal nextSym values equals -1.) */
461 		if (dbufCount >= dbufSize)
462 			return RETVAL_DATA_ERROR;
463 		i = nextSym - 1;
464 		uc = mtfSymbol[i];
465 		/* Adjust the MTF array.  Since we typically expect to
466 		 *move only a small number of symbols, and are bound
467 		 *by 256 in any case, using memmove here would
468 		 *typically be bigger and slower due to function call
469 		 *overhead and other assorted setup costs. */
470 		do {
471 			mtfSymbol[i] = mtfSymbol[i-1];
472 		} while (--i);
473 		mtfSymbol[0] = uc;
474 		uc = symToByte[uc];
475 		/* We have our literal byte.  Save it into dbuf. */
476 		byteCount[uc]++;
477 		dbuf[dbufCount++] = (unsigned int)uc;
478 	}
479 	/* At this point, we've read all the Huffman-coded symbols
480 	   (and repeated runs) for this block from the input stream,
481 	   and decoded them into the intermediate buffer.  There are
482 	   dbufCount many decoded bytes in dbuf[].  Now undo the
483 	   Burrows-Wheeler transform on dbuf.  See
484 	   http://dogma.net/markn/articles/bwt/bwt.htm
485 	 */
486 	/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
487 	j = 0;
488 	for (i = 0; i < 256; i++) {
489 		k = j+byteCount[i];
490 		byteCount[i] = j;
491 		j = k;
492 	}
493 	/* Figure out what order dbuf would be in if we sorted it. */
494 	for (i = 0; i < dbufCount; i++) {
495 		uc = (unsigned char)(dbuf[i] & 0xff);
496 		dbuf[byteCount[uc]] |= (i << 8);
497 		byteCount[uc]++;
498 	}
499 	/* Decode first byte by hand to initialize "previous" byte.
500 	   Note that it doesn't get output, and if the first three
501 	   characters are identical it doesn't qualify as a run (hence
502 	   writeRunCountdown = 5). */
503 	if (dbufCount) {
504 		if (origPtr >= dbufCount)
505 			return RETVAL_DATA_ERROR;
506 		bd->writePos = dbuf[origPtr];
507 		bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
508 		bd->writePos >>= 8;
509 		bd->writeRunCountdown = 5;
510 	}
511 	bd->writeCount = dbufCount;
512 
513 	return RETVAL_OK;
514 }
515 
516 /* Undo burrows-wheeler transform on intermediate buffer to produce output.
517    If start_bunzip was initialized with out_fd =-1, then up to len bytes of
518    data are written to outbuf.  Return value is number of bytes written or
519    error (all errors are negative numbers).  If out_fd!=-1, outbuf and len
520    are ignored, data is written to out_fd and return is RETVAL_OK or error.
521 */
522 
read_bunzip(struct bunzip_data * bd,char * outbuf,int len)523 static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len)
524 {
525 	const unsigned int *dbuf;
526 	int pos, xcurrent, previous, gotcount;
527 
528 	/* If last read was short due to end of file, return last block now */
529 	if (bd->writeCount < 0)
530 		return bd->writeCount;
531 
532 	gotcount = 0;
533 	dbuf = bd->dbuf;
534 	pos = bd->writePos;
535 	xcurrent = bd->writeCurrent;
536 
537 	/* We will always have pending decoded data to write into the output
538 	   buffer unless this is the very first call (in which case we haven't
539 	   Huffman-decoded a block into the intermediate buffer yet). */
540 
541 	if (bd->writeCopies) {
542 		/* Inside the loop, writeCopies means extra copies (beyond 1) */
543 		--bd->writeCopies;
544 		/* Loop outputting bytes */
545 		for (;;) {
546 			/* If the output buffer is full, snapshot
547 			 * state and return */
548 			if (gotcount >= len) {
549 				bd->writePos = pos;
550 				bd->writeCurrent = xcurrent;
551 				bd->writeCopies++;
552 				return len;
553 			}
554 			/* Write next byte into output buffer, updating CRC */
555 			outbuf[gotcount++] = xcurrent;
556 			bd->writeCRC = (((bd->writeCRC) << 8)
557 				^bd->crc32Table[((bd->writeCRC) >> 24)
558 				^xcurrent]);
559 			/* Loop now if we're outputting multiple
560 			 * copies of this byte */
561 			if (bd->writeCopies) {
562 				--bd->writeCopies;
563 				continue;
564 			}
565 decode_next_byte:
566 			if (!bd->writeCount--)
567 				break;
568 			/* Follow sequence vector to undo
569 			 * Burrows-Wheeler transform */
570 			previous = xcurrent;
571 			pos = dbuf[pos];
572 			xcurrent = pos&0xff;
573 			pos >>= 8;
574 			/* After 3 consecutive copies of the same
575 			   byte, the 4th is a repeat count.  We count
576 			   down from 4 instead *of counting up because
577 			   testing for non-zero is faster */
578 			if (--bd->writeRunCountdown) {
579 				if (xcurrent != previous)
580 					bd->writeRunCountdown = 4;
581 			} else {
582 				/* We have a repeated run, this byte
583 				 * indicates the count */
584 				bd->writeCopies = xcurrent;
585 				xcurrent = previous;
586 				bd->writeRunCountdown = 5;
587 				/* Sometimes there are just 3 bytes
588 				 * (run length 0) */
589 				if (!bd->writeCopies)
590 					goto decode_next_byte;
591 				/* Subtract the 1 copy we'd output
592 				 * anyway to get extras */
593 				--bd->writeCopies;
594 			}
595 		}
596 		/* Decompression of this block completed successfully */
597 		bd->writeCRC = ~bd->writeCRC;
598 		bd->totalCRC = ((bd->totalCRC << 1) |
599 				(bd->totalCRC >> 31)) ^ bd->writeCRC;
600 		/* If this block had a CRC error, force file level CRC error. */
601 		if (bd->writeCRC != bd->headerCRC) {
602 			bd->totalCRC = bd->headerCRC+1;
603 			return RETVAL_LAST_BLOCK;
604 		}
605 	}
606 
607 	/* Refill the intermediate buffer by Huffman-decoding next
608 	 * block of input */
609 	/* (previous is just a convenient unused temp variable here) */
610 	previous = get_next_block(bd);
611 	if (previous) {
612 		bd->writeCount = previous;
613 		return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
614 	}
615 	bd->writeCRC = 0xffffffffUL;
616 	pos = bd->writePos;
617 	xcurrent = bd->writeCurrent;
618 	goto decode_next_byte;
619 }
620 
nofill(void * buf,unsigned long len)621 static long INIT nofill(void *buf, unsigned long len)
622 {
623 	return -1;
624 }
625 
626 /* Allocate the structure, read file header.  If in_fd ==-1, inbuf must contain
627    a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are
628    ignored, and data is read from file handle into temporary buffer. */
start_bunzip(struct bunzip_data ** bdp,void * inbuf,long len,long (* fill)(void *,unsigned long))629 static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, long len,
630 			     long (*fill)(void*, unsigned long))
631 {
632 	struct bunzip_data *bd;
633 	unsigned int i, j, c;
634 	const unsigned int BZh0 =
635 		(((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16)
636 		+(((unsigned int)'h') << 8)+(unsigned int)'0';
637 
638 	/* Figure out how much data to allocate */
639 	i = sizeof(struct bunzip_data);
640 
641 	/* Allocate bunzip_data.  Most fields initialize to zero. */
642 	bd = *bdp = malloc(i);
643 	if (!bd)
644 		return RETVAL_OUT_OF_MEMORY;
645 	memset(bd, 0, sizeof(struct bunzip_data));
646 	/* Setup input buffer */
647 	bd->inbuf = inbuf;
648 	bd->inbufCount = len;
649 	if (fill != NULL)
650 		bd->fill = fill;
651 	else
652 		bd->fill = nofill;
653 
654 	/* Init the CRC32 table (big endian) */
655 	for (i = 0; i < 256; i++) {
656 		c = i << 24;
657 		for (j = 8; j; j--)
658 			c = c&0x80000000 ? (c << 1)^(CRC32_POLY_BE) : (c << 1);
659 		bd->crc32Table[i] = c;
660 	}
661 
662 	/* Ensure that file starts with "BZh['1'-'9']." */
663 	i = get_bits(bd, 32);
664 	if (((unsigned int)(i-BZh0-1)) >= 9)
665 		return RETVAL_NOT_BZIP_DATA;
666 
667 	/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
668 	   uncompressed data.  Allocate intermediate buffer for block. */
669 	bd->dbufSize = 100000*(i-BZh0);
670 
671 	bd->dbuf = large_malloc(bd->dbufSize * sizeof(int));
672 	if (!bd->dbuf)
673 		return RETVAL_OUT_OF_MEMORY;
674 	return RETVAL_OK;
675 }
676 
677 /* Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip2 data,
678    not end of file.) */
bunzip2(unsigned char * buf,long len,long (* fill)(void *,unsigned long),long (* flush)(void *,unsigned long),unsigned char * outbuf,long * pos,void (* error)(char * x))679 STATIC int INIT bunzip2(unsigned char *buf, long len,
680 			long (*fill)(void*, unsigned long),
681 			long (*flush)(void*, unsigned long),
682 			unsigned char *outbuf,
683 			long *pos,
684 			void(*error)(char *x))
685 {
686 	struct bunzip_data *bd;
687 	int i = -1;
688 	unsigned char *inbuf;
689 
690 	if (flush)
691 		outbuf = malloc(BZIP2_IOBUF_SIZE);
692 
693 	if (!outbuf) {
694 		error("Could not allocate output buffer");
695 		return RETVAL_OUT_OF_MEMORY;
696 	}
697 	if (buf)
698 		inbuf = buf;
699 	else
700 		inbuf = malloc(BZIP2_IOBUF_SIZE);
701 	if (!inbuf) {
702 		error("Could not allocate input buffer");
703 		i = RETVAL_OUT_OF_MEMORY;
704 		goto exit_0;
705 	}
706 	i = start_bunzip(&bd, inbuf, len, fill);
707 	if (!i) {
708 		for (;;) {
709 			i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE);
710 			if (i <= 0)
711 				break;
712 			if (!flush)
713 				outbuf += i;
714 			else
715 				if (i != flush(outbuf, i)) {
716 					i = RETVAL_UNEXPECTED_OUTPUT_EOF;
717 					break;
718 				}
719 		}
720 	}
721 	/* Check CRC and release memory */
722 	if (i == RETVAL_LAST_BLOCK) {
723 		if (bd->headerCRC != bd->totalCRC)
724 			error("Data integrity error when decompressing.");
725 		else
726 			i = RETVAL_OK;
727 	} else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
728 		error("Compressed file ends unexpectedly");
729 	}
730 	if (!bd)
731 		goto exit_1;
732 	if (bd->dbuf)
733 		large_free(bd->dbuf);
734 	if (pos)
735 		*pos = bd->inbufPos;
736 	free(bd);
737 exit_1:
738 	if (!buf)
739 		free(inbuf);
740 exit_0:
741 	if (flush)
742 		free(outbuf);
743 	return i;
744 }
745 
746 #ifdef PREBOOT
__decompress(unsigned char * buf,long len,long (* fill)(void *,unsigned long),long (* flush)(void *,unsigned long),unsigned char * outbuf,long olen,long * pos,void (* error)(char * x))747 STATIC int INIT __decompress(unsigned char *buf, long len,
748 			long (*fill)(void*, unsigned long),
749 			long (*flush)(void*, unsigned long),
750 			unsigned char *outbuf, long olen,
751 			long *pos,
752 			void (*error)(char *x))
753 {
754 	return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error);
755 }
756 #endif
757