• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/kmem.h>
40 
41 #include "internal.h"
42 
43 /*
44  * Lock order:
45  *   1. slab_mutex (Global Mutex)
46  *   2. node->list_lock
47  *   3. slab_lock(page) (Only on some arches and for debugging)
48  *
49  *   slab_mutex
50  *
51  *   The role of the slab_mutex is to protect the list of all the slabs
52  *   and to synchronize major metadata changes to slab cache structures.
53  *
54  *   The slab_lock is only used for debugging and on arches that do not
55  *   have the ability to do a cmpxchg_double. It only protects:
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->inuse		-> Number of objects in use
58  *	C. page->objects	-> Number of objects in page
59  *	D. page->frozen		-> frozen state
60  *
61  *   If a slab is frozen then it is exempt from list management. It is not
62  *   on any list except per cpu partial list. The processor that froze the
63  *   slab is the one who can perform list operations on the page. Other
64  *   processors may put objects onto the freelist but the processor that
65  *   froze the slab is the only one that can retrieve the objects from the
66  *   page's freelist.
67  *
68  *   The list_lock protects the partial and full list on each node and
69  *   the partial slab counter. If taken then no new slabs may be added or
70  *   removed from the lists nor make the number of partial slabs be modified.
71  *   (Note that the total number of slabs is an atomic value that may be
72  *   modified without taking the list lock).
73  *
74  *   The list_lock is a centralized lock and thus we avoid taking it as
75  *   much as possible. As long as SLUB does not have to handle partial
76  *   slabs, operations can continue without any centralized lock. F.e.
77  *   allocating a long series of objects that fill up slabs does not require
78  *   the list lock.
79  *   Interrupts are disabled during allocation and deallocation in order to
80  *   make the slab allocator safe to use in the context of an irq. In addition
81  *   interrupts are disabled to ensure that the processor does not change
82  *   while handling per_cpu slabs, due to kernel preemption.
83  *
84  * SLUB assigns one slab for allocation to each processor.
85  * Allocations only occur from these slabs called cpu slabs.
86  *
87  * Slabs with free elements are kept on a partial list and during regular
88  * operations no list for full slabs is used. If an object in a full slab is
89  * freed then the slab will show up again on the partial lists.
90  * We track full slabs for debugging purposes though because otherwise we
91  * cannot scan all objects.
92  *
93  * Slabs are freed when they become empty. Teardown and setup is
94  * minimal so we rely on the page allocators per cpu caches for
95  * fast frees and allocs.
96  *
97  * page->frozen		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 #ifdef CONFIG_SLUB_DEBUG
119 #ifdef CONFIG_SLUB_DEBUG_ON
120 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121 #else
122 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123 #endif
124 #endif
125 
kmem_cache_debug(struct kmem_cache * s)126 static inline bool kmem_cache_debug(struct kmem_cache *s)
127 {
128 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
129 }
130 
fixup_red_left(struct kmem_cache * s,void * p)131 void *fixup_red_left(struct kmem_cache *s, void *p)
132 {
133 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
134 		p += s->red_left_pad;
135 
136 	return p;
137 }
138 
kmem_cache_has_cpu_partial(struct kmem_cache * s)139 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140 {
141 #ifdef CONFIG_SLUB_CPU_PARTIAL
142 	return !kmem_cache_debug(s);
143 #else
144 	return false;
145 #endif
146 }
147 
148 /*
149  * Issues still to be resolved:
150  *
151  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152  *
153  * - Variable sizing of the per node arrays
154  */
155 
156 /* Enable to test recovery from slab corruption on boot */
157 #undef SLUB_RESILIENCY_TEST
158 
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161 
162 /*
163  * Mininum number of partial slabs. These will be left on the partial
164  * lists even if they are empty. kmem_cache_shrink may reclaim them.
165  */
166 #define MIN_PARTIAL 5
167 
168 /*
169  * Maximum number of desirable partial slabs.
170  * The existence of more partial slabs makes kmem_cache_shrink
171  * sort the partial list by the number of objects in use.
172  */
173 #define MAX_PARTIAL 10
174 
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 				SLAB_POISON | SLAB_STORE_USER)
177 
178 /*
179  * These debug flags cannot use CMPXCHG because there might be consistency
180  * issues when checking or reading debug information
181  */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 				SLAB_TRACE)
184 
185 
186 /*
187  * Debugging flags that require metadata to be stored in the slab.  These get
188  * disabled when slub_debug=O is used and a cache's min order increases with
189  * metadata.
190  */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192 
193 #define OO_SHIFT	16
194 #define OO_MASK		((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
196 
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
202 
203 /*
204  * Tracking user of a slab.
205  */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 	unsigned long addr;	/* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
211 #endif
212 	int cpu;		/* Was running on cpu */
213 	int pid;		/* Pid context */
214 	unsigned long when;	/* When did the operation occur */
215 };
216 
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218 
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
sysfs_slab_add(struct kmem_cache * s)223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 							{ return 0; }
226 #endif
227 
stat(const struct kmem_cache * s,enum stat_item si)228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	/*
232 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 	 * avoid this_cpu_add()'s irq-disable overhead.
234 	 */
235 	raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238 
239 /********************************************************************
240  * 			Core slab cache functions
241  *******************************************************************/
242 
243 /*
244  * Returns freelist pointer (ptr). With hardening, this is obfuscated
245  * with an XOR of the address where the pointer is held and a per-cache
246  * random number.
247  */
freelist_ptr(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 				 unsigned long ptr_addr)
250 {
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 	/*
253 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
254 	 * Normally, this doesn't cause any issues, as both set_freepointer()
255 	 * and get_freepointer() are called with a pointer with the same tag.
256 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
257 	 * example, when __free_slub() iterates over objects in a cache, it
258 	 * passes untagged pointers to check_object(). check_object() in turns
259 	 * calls get_freepointer() with an untagged pointer, which causes the
260 	 * freepointer to be restored incorrectly.
261 	 */
262 	return (void *)((unsigned long)ptr ^ s->random ^
263 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
264 #else
265 	return ptr;
266 #endif
267 }
268 
269 /* Returns the freelist pointer recorded at location ptr_addr. */
freelist_dereference(const struct kmem_cache * s,void * ptr_addr)270 static inline void *freelist_dereference(const struct kmem_cache *s,
271 					 void *ptr_addr)
272 {
273 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
274 			    (unsigned long)ptr_addr);
275 }
276 
get_freepointer(struct kmem_cache * s,void * object)277 static inline void *get_freepointer(struct kmem_cache *s, void *object)
278 {
279 	return freelist_dereference(s, object + s->offset);
280 }
281 
prefetch_freepointer(const struct kmem_cache * s,void * object)282 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283 {
284 	prefetch(object + s->offset);
285 }
286 
get_freepointer_safe(struct kmem_cache * s,void * object)287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288 {
289 	unsigned long freepointer_addr;
290 	void *p;
291 
292 	if (!debug_pagealloc_enabled_static())
293 		return get_freepointer(s, object);
294 
295 	freepointer_addr = (unsigned long)object + s->offset;
296 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
297 	return freelist_ptr(s, p, freepointer_addr);
298 }
299 
set_freepointer(struct kmem_cache * s,void * object,void * fp)300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
303 
304 #ifdef CONFIG_SLAB_FREELIST_HARDENED
305 	BUG_ON(object == fp); /* naive detection of double free or corruption */
306 #endif
307 
308 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
309 }
310 
311 /* Loop over all objects in a slab */
312 #define for_each_object(__p, __s, __addr, __objects) \
313 	for (__p = fixup_red_left(__s, __addr); \
314 		__p < (__addr) + (__objects) * (__s)->size; \
315 		__p += (__s)->size)
316 
order_objects(unsigned int order,unsigned int size)317 static inline unsigned int order_objects(unsigned int order, unsigned int size)
318 {
319 	return ((unsigned int)PAGE_SIZE << order) / size;
320 }
321 
oo_make(unsigned int order,unsigned int size)322 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
323 		unsigned int size)
324 {
325 	struct kmem_cache_order_objects x = {
326 		(order << OO_SHIFT) + order_objects(order, size)
327 	};
328 
329 	return x;
330 }
331 
oo_order(struct kmem_cache_order_objects x)332 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
333 {
334 	return x.x >> OO_SHIFT;
335 }
336 
oo_objects(struct kmem_cache_order_objects x)337 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
338 {
339 	return x.x & OO_MASK;
340 }
341 
342 /*
343  * Per slab locking using the pagelock
344  */
slab_lock(struct page * page)345 static __always_inline void slab_lock(struct page *page)
346 {
347 	VM_BUG_ON_PAGE(PageTail(page), page);
348 	bit_spin_lock(PG_locked, &page->flags);
349 }
350 
slab_unlock(struct page * page)351 static __always_inline void slab_unlock(struct page *page)
352 {
353 	VM_BUG_ON_PAGE(PageTail(page), page);
354 	__bit_spin_unlock(PG_locked, &page->flags);
355 }
356 
357 /* Interrupts must be disabled (for the fallback code to work right) */
__cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)358 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
359 		void *freelist_old, unsigned long counters_old,
360 		void *freelist_new, unsigned long counters_new,
361 		const char *n)
362 {
363 	VM_BUG_ON(!irqs_disabled());
364 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
365     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
366 	if (s->flags & __CMPXCHG_DOUBLE) {
367 		if (cmpxchg_double(&page->freelist, &page->counters,
368 				   freelist_old, counters_old,
369 				   freelist_new, counters_new))
370 			return true;
371 	} else
372 #endif
373 	{
374 		slab_lock(page);
375 		if (page->freelist == freelist_old &&
376 					page->counters == counters_old) {
377 			page->freelist = freelist_new;
378 			page->counters = counters_new;
379 			slab_unlock(page);
380 			return true;
381 		}
382 		slab_unlock(page);
383 	}
384 
385 	cpu_relax();
386 	stat(s, CMPXCHG_DOUBLE_FAIL);
387 
388 #ifdef SLUB_DEBUG_CMPXCHG
389 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
390 #endif
391 
392 	return false;
393 }
394 
cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
396 		void *freelist_old, unsigned long counters_old,
397 		void *freelist_new, unsigned long counters_new,
398 		const char *n)
399 {
400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402 	if (s->flags & __CMPXCHG_DOUBLE) {
403 		if (cmpxchg_double(&page->freelist, &page->counters,
404 				   freelist_old, counters_old,
405 				   freelist_new, counters_new))
406 			return true;
407 	} else
408 #endif
409 	{
410 		unsigned long flags;
411 
412 		local_irq_save(flags);
413 		slab_lock(page);
414 		if (page->freelist == freelist_old &&
415 					page->counters == counters_old) {
416 			page->freelist = freelist_new;
417 			page->counters = counters_new;
418 			slab_unlock(page);
419 			local_irq_restore(flags);
420 			return true;
421 		}
422 		slab_unlock(page);
423 		local_irq_restore(flags);
424 	}
425 
426 	cpu_relax();
427 	stat(s, CMPXCHG_DOUBLE_FAIL);
428 
429 #ifdef SLUB_DEBUG_CMPXCHG
430 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
431 #endif
432 
433 	return false;
434 }
435 
436 #ifdef CONFIG_SLUB_DEBUG
437 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
438 static DEFINE_SPINLOCK(object_map_lock);
439 
440 /*
441  * Determine a map of object in use on a page.
442  *
443  * Node listlock must be held to guarantee that the page does
444  * not vanish from under us.
445  */
get_map(struct kmem_cache * s,struct page * page)446 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
447 	__acquires(&object_map_lock)
448 {
449 	void *p;
450 	void *addr = page_address(page);
451 
452 	VM_BUG_ON(!irqs_disabled());
453 
454 	spin_lock(&object_map_lock);
455 
456 	bitmap_zero(object_map, page->objects);
457 
458 	for (p = page->freelist; p; p = get_freepointer(s, p))
459 		set_bit(__obj_to_index(s, addr, p), object_map);
460 
461 	return object_map;
462 }
463 
put_map(unsigned long * map)464 static void put_map(unsigned long *map) __releases(&object_map_lock)
465 {
466 	VM_BUG_ON(map != object_map);
467 	spin_unlock(&object_map_lock);
468 }
469 
size_from_object(struct kmem_cache * s)470 static inline unsigned int size_from_object(struct kmem_cache *s)
471 {
472 	if (s->flags & SLAB_RED_ZONE)
473 		return s->size - s->red_left_pad;
474 
475 	return s->size;
476 }
477 
restore_red_left(struct kmem_cache * s,void * p)478 static inline void *restore_red_left(struct kmem_cache *s, void *p)
479 {
480 	if (s->flags & SLAB_RED_ZONE)
481 		p -= s->red_left_pad;
482 
483 	return p;
484 }
485 
486 /*
487  * Debug settings:
488  */
489 #if defined(CONFIG_SLUB_DEBUG_ON)
490 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
491 #else
492 static slab_flags_t slub_debug;
493 #endif
494 
495 static char *slub_debug_string;
496 static int disable_higher_order_debug;
497 
498 /*
499  * slub is about to manipulate internal object metadata.  This memory lies
500  * outside the range of the allocated object, so accessing it would normally
501  * be reported by kasan as a bounds error.  metadata_access_enable() is used
502  * to tell kasan that these accesses are OK.
503  */
metadata_access_enable(void)504 static inline void metadata_access_enable(void)
505 {
506 	kasan_disable_current();
507 }
508 
metadata_access_disable(void)509 static inline void metadata_access_disable(void)
510 {
511 	kasan_enable_current();
512 }
513 
514 /*
515  * Object debugging
516  */
517 
518 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct page * page,void * object)519 static inline int check_valid_pointer(struct kmem_cache *s,
520 				struct page *page, void *object)
521 {
522 	void *base;
523 
524 	if (!object)
525 		return 1;
526 
527 	base = page_address(page);
528 	object = kasan_reset_tag(object);
529 	object = restore_red_left(s, object);
530 	if (object < base || object >= base + page->objects * s->size ||
531 		(object - base) % s->size) {
532 		return 0;
533 	}
534 
535 	return 1;
536 }
537 
print_section(char * level,char * text,u8 * addr,unsigned int length)538 static void print_section(char *level, char *text, u8 *addr,
539 			  unsigned int length)
540 {
541 	metadata_access_enable();
542 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
543 			length, 1);
544 	metadata_access_disable();
545 }
546 
547 /*
548  * See comment in calculate_sizes().
549  */
freeptr_outside_object(struct kmem_cache * s)550 static inline bool freeptr_outside_object(struct kmem_cache *s)
551 {
552 	return s->offset >= s->inuse;
553 }
554 
555 /*
556  * Return offset of the end of info block which is inuse + free pointer if
557  * not overlapping with object.
558  */
get_info_end(struct kmem_cache * s)559 static inline unsigned int get_info_end(struct kmem_cache *s)
560 {
561 	if (freeptr_outside_object(s))
562 		return s->inuse + sizeof(void *);
563 	else
564 		return s->inuse;
565 }
566 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)567 static struct track *get_track(struct kmem_cache *s, void *object,
568 	enum track_item alloc)
569 {
570 	struct track *p;
571 
572 	p = object + get_info_end(s);
573 
574 	return p + alloc;
575 }
576 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)577 static void set_track(struct kmem_cache *s, void *object,
578 			enum track_item alloc, unsigned long addr)
579 {
580 	struct track *p = get_track(s, object, alloc);
581 
582 	if (addr) {
583 #ifdef CONFIG_STACKTRACE
584 		unsigned int nr_entries;
585 
586 		metadata_access_enable();
587 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
588 		metadata_access_disable();
589 
590 		if (nr_entries < TRACK_ADDRS_COUNT)
591 			p->addrs[nr_entries] = 0;
592 #endif
593 		p->addr = addr;
594 		p->cpu = smp_processor_id();
595 		p->pid = current->pid;
596 		p->when = jiffies;
597 	} else {
598 		memset(p, 0, sizeof(struct track));
599 	}
600 }
601 
init_tracking(struct kmem_cache * s,void * object)602 static void init_tracking(struct kmem_cache *s, void *object)
603 {
604 	if (!(s->flags & SLAB_STORE_USER))
605 		return;
606 
607 	set_track(s, object, TRACK_FREE, 0UL);
608 	set_track(s, object, TRACK_ALLOC, 0UL);
609 }
610 
print_track(const char * s,struct track * t,unsigned long pr_time)611 static void print_track(const char *s, struct track *t, unsigned long pr_time)
612 {
613 	if (!t->addr)
614 		return;
615 
616 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
617 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
618 #ifdef CONFIG_STACKTRACE
619 	{
620 		int i;
621 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
622 			if (t->addrs[i])
623 				pr_err("\t%pS\n", (void *)t->addrs[i]);
624 			else
625 				break;
626 	}
627 #endif
628 }
629 
print_tracking(struct kmem_cache * s,void * object)630 void print_tracking(struct kmem_cache *s, void *object)
631 {
632 	unsigned long pr_time = jiffies;
633 	if (!(s->flags & SLAB_STORE_USER))
634 		return;
635 
636 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
637 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
638 }
639 
print_page_info(struct page * page)640 static void print_page_info(struct page *page)
641 {
642 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
643 	       page, page->objects, page->inuse, page->freelist, page->flags);
644 
645 }
646 
slab_bug(struct kmem_cache * s,char * fmt,...)647 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
648 {
649 	struct va_format vaf;
650 	va_list args;
651 
652 	va_start(args, fmt);
653 	vaf.fmt = fmt;
654 	vaf.va = &args;
655 	pr_err("=============================================================================\n");
656 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
657 	pr_err("-----------------------------------------------------------------------------\n\n");
658 
659 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
660 	va_end(args);
661 }
662 
slab_fix(struct kmem_cache * s,char * fmt,...)663 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
664 {
665 	struct va_format vaf;
666 	va_list args;
667 
668 	va_start(args, fmt);
669 	vaf.fmt = fmt;
670 	vaf.va = &args;
671 	pr_err("FIX %s: %pV\n", s->name, &vaf);
672 	va_end(args);
673 }
674 
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)675 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
676 			       void **freelist, void *nextfree)
677 {
678 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
679 	    !check_valid_pointer(s, page, nextfree) && freelist) {
680 		object_err(s, page, *freelist, "Freechain corrupt");
681 		*freelist = NULL;
682 		slab_fix(s, "Isolate corrupted freechain");
683 		return true;
684 	}
685 
686 	return false;
687 }
688 
print_trailer(struct kmem_cache * s,struct page * page,u8 * p)689 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
690 {
691 	unsigned int off;	/* Offset of last byte */
692 	u8 *addr = page_address(page);
693 
694 	print_tracking(s, p);
695 
696 	print_page_info(page);
697 
698 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
699 	       p, p - addr, get_freepointer(s, p));
700 
701 	if (s->flags & SLAB_RED_ZONE)
702 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
703 			      s->red_left_pad);
704 	else if (p > addr + 16)
705 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
706 
707 	print_section(KERN_ERR,         "Object   ", p,
708 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
709 	if (s->flags & SLAB_RED_ZONE)
710 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
711 			s->inuse - s->object_size);
712 
713 	off = get_info_end(s);
714 
715 	if (s->flags & SLAB_STORE_USER)
716 		off += 2 * sizeof(struct track);
717 
718 	off += kasan_metadata_size(s);
719 
720 	if (off != size_from_object(s))
721 		/* Beginning of the filler is the free pointer */
722 		print_section(KERN_ERR, "Padding  ", p + off,
723 			      size_from_object(s) - off);
724 
725 	dump_stack();
726 }
727 
object_err(struct kmem_cache * s,struct page * page,u8 * object,char * reason)728 void object_err(struct kmem_cache *s, struct page *page,
729 			u8 *object, char *reason)
730 {
731 	slab_bug(s, "%s", reason);
732 	print_trailer(s, page, object);
733 }
734 
slab_err(struct kmem_cache * s,struct page * page,const char * fmt,...)735 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
736 			const char *fmt, ...)
737 {
738 	va_list args;
739 	char buf[100];
740 
741 	va_start(args, fmt);
742 	vsnprintf(buf, sizeof(buf), fmt, args);
743 	va_end(args);
744 	slab_bug(s, "%s", buf);
745 	print_page_info(page);
746 	dump_stack();
747 }
748 
init_object(struct kmem_cache * s,void * object,u8 val)749 static void init_object(struct kmem_cache *s, void *object, u8 val)
750 {
751 	u8 *p = object;
752 
753 	if (s->flags & SLAB_RED_ZONE)
754 		memset(p - s->red_left_pad, val, s->red_left_pad);
755 
756 	if (s->flags & __OBJECT_POISON) {
757 		memset(p, POISON_FREE, s->object_size - 1);
758 		p[s->object_size - 1] = POISON_END;
759 	}
760 
761 	if (s->flags & SLAB_RED_ZONE)
762 		memset(p + s->object_size, val, s->inuse - s->object_size);
763 }
764 
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)765 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
766 						void *from, void *to)
767 {
768 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
769 	memset(from, data, to - from);
770 }
771 
check_bytes_and_report(struct kmem_cache * s,struct page * page,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)772 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
773 			u8 *object, char *what,
774 			u8 *start, unsigned int value, unsigned int bytes)
775 {
776 	u8 *fault;
777 	u8 *end;
778 	u8 *addr = page_address(page);
779 
780 	metadata_access_enable();
781 	fault = memchr_inv(start, value, bytes);
782 	metadata_access_disable();
783 	if (!fault)
784 		return 1;
785 
786 	end = start + bytes;
787 	while (end > fault && end[-1] == value)
788 		end--;
789 
790 	slab_bug(s, "%s overwritten", what);
791 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
792 					fault, end - 1, fault - addr,
793 					fault[0], value);
794 	print_trailer(s, page, object);
795 
796 	restore_bytes(s, what, value, fault, end);
797 	return 0;
798 }
799 
800 /*
801  * Object layout:
802  *
803  * object address
804  * 	Bytes of the object to be managed.
805  * 	If the freepointer may overlay the object then the free
806  *	pointer is at the middle of the object.
807  *
808  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
809  * 	0xa5 (POISON_END)
810  *
811  * object + s->object_size
812  * 	Padding to reach word boundary. This is also used for Redzoning.
813  * 	Padding is extended by another word if Redzoning is enabled and
814  * 	object_size == inuse.
815  *
816  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
817  * 	0xcc (RED_ACTIVE) for objects in use.
818  *
819  * object + s->inuse
820  * 	Meta data starts here.
821  *
822  * 	A. Free pointer (if we cannot overwrite object on free)
823  * 	B. Tracking data for SLAB_STORE_USER
824  * 	C. Padding to reach required alignment boundary or at mininum
825  * 		one word if debugging is on to be able to detect writes
826  * 		before the word boundary.
827  *
828  *	Padding is done using 0x5a (POISON_INUSE)
829  *
830  * object + s->size
831  * 	Nothing is used beyond s->size.
832  *
833  * If slabcaches are merged then the object_size and inuse boundaries are mostly
834  * ignored. And therefore no slab options that rely on these boundaries
835  * may be used with merged slabcaches.
836  */
837 
check_pad_bytes(struct kmem_cache * s,struct page * page,u8 * p)838 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
839 {
840 	unsigned long off = get_info_end(s);	/* The end of info */
841 
842 	if (s->flags & SLAB_STORE_USER)
843 		/* We also have user information there */
844 		off += 2 * sizeof(struct track);
845 
846 	off += kasan_metadata_size(s);
847 
848 	if (size_from_object(s) == off)
849 		return 1;
850 
851 	return check_bytes_and_report(s, page, p, "Object padding",
852 			p + off, POISON_INUSE, size_from_object(s) - off);
853 }
854 
855 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct page * page)856 static int slab_pad_check(struct kmem_cache *s, struct page *page)
857 {
858 	u8 *start;
859 	u8 *fault;
860 	u8 *end;
861 	u8 *pad;
862 	int length;
863 	int remainder;
864 
865 	if (!(s->flags & SLAB_POISON))
866 		return 1;
867 
868 	start = page_address(page);
869 	length = page_size(page);
870 	end = start + length;
871 	remainder = length % s->size;
872 	if (!remainder)
873 		return 1;
874 
875 	pad = end - remainder;
876 	metadata_access_enable();
877 	fault = memchr_inv(pad, POISON_INUSE, remainder);
878 	metadata_access_disable();
879 	if (!fault)
880 		return 1;
881 	while (end > fault && end[-1] == POISON_INUSE)
882 		end--;
883 
884 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
885 			fault, end - 1, fault - start);
886 	print_section(KERN_ERR, "Padding ", pad, remainder);
887 
888 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
889 	return 0;
890 }
891 
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)892 static int check_object(struct kmem_cache *s, struct page *page,
893 					void *object, u8 val)
894 {
895 	u8 *p = object;
896 	u8 *endobject = object + s->object_size;
897 
898 	if (s->flags & SLAB_RED_ZONE) {
899 		if (!check_bytes_and_report(s, page, object, "Left Redzone",
900 			object - s->red_left_pad, val, s->red_left_pad))
901 			return 0;
902 
903 		if (!check_bytes_and_report(s, page, object, "Right Redzone",
904 			endobject, val, s->inuse - s->object_size))
905 			return 0;
906 	} else {
907 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
908 			check_bytes_and_report(s, page, p, "Alignment padding",
909 				endobject, POISON_INUSE,
910 				s->inuse - s->object_size);
911 		}
912 	}
913 
914 	if (s->flags & SLAB_POISON) {
915 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
916 			(!check_bytes_and_report(s, page, p, "Poison", p,
917 					POISON_FREE, s->object_size - 1) ||
918 			 !check_bytes_and_report(s, page, p, "End Poison",
919 				p + s->object_size - 1, POISON_END, 1)))
920 			return 0;
921 		/*
922 		 * check_pad_bytes cleans up on its own.
923 		 */
924 		check_pad_bytes(s, page, p);
925 	}
926 
927 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
928 		/*
929 		 * Object and freepointer overlap. Cannot check
930 		 * freepointer while object is allocated.
931 		 */
932 		return 1;
933 
934 	/* Check free pointer validity */
935 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
936 		object_err(s, page, p, "Freepointer corrupt");
937 		/*
938 		 * No choice but to zap it and thus lose the remainder
939 		 * of the free objects in this slab. May cause
940 		 * another error because the object count is now wrong.
941 		 */
942 		set_freepointer(s, p, NULL);
943 		return 0;
944 	}
945 	return 1;
946 }
947 
check_slab(struct kmem_cache * s,struct page * page)948 static int check_slab(struct kmem_cache *s, struct page *page)
949 {
950 	int maxobj;
951 
952 	VM_BUG_ON(!irqs_disabled());
953 
954 	if (!PageSlab(page)) {
955 		slab_err(s, page, "Not a valid slab page");
956 		return 0;
957 	}
958 
959 	maxobj = order_objects(compound_order(page), s->size);
960 	if (page->objects > maxobj) {
961 		slab_err(s, page, "objects %u > max %u",
962 			page->objects, maxobj);
963 		return 0;
964 	}
965 	if (page->inuse > page->objects) {
966 		slab_err(s, page, "inuse %u > max %u",
967 			page->inuse, page->objects);
968 		return 0;
969 	}
970 	/* Slab_pad_check fixes things up after itself */
971 	slab_pad_check(s, page);
972 	return 1;
973 }
974 
975 /*
976  * Determine if a certain object on a page is on the freelist. Must hold the
977  * slab lock to guarantee that the chains are in a consistent state.
978  */
on_freelist(struct kmem_cache * s,struct page * page,void * search)979 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
980 {
981 	int nr = 0;
982 	void *fp;
983 	void *object = NULL;
984 	int max_objects;
985 
986 	fp = page->freelist;
987 	while (fp && nr <= page->objects) {
988 		if (fp == search)
989 			return 1;
990 		if (!check_valid_pointer(s, page, fp)) {
991 			if (object) {
992 				object_err(s, page, object,
993 					"Freechain corrupt");
994 				set_freepointer(s, object, NULL);
995 			} else {
996 				slab_err(s, page, "Freepointer corrupt");
997 				page->freelist = NULL;
998 				page->inuse = page->objects;
999 				slab_fix(s, "Freelist cleared");
1000 				return 0;
1001 			}
1002 			break;
1003 		}
1004 		object = fp;
1005 		fp = get_freepointer(s, object);
1006 		nr++;
1007 	}
1008 
1009 	max_objects = order_objects(compound_order(page), s->size);
1010 	if (max_objects > MAX_OBJS_PER_PAGE)
1011 		max_objects = MAX_OBJS_PER_PAGE;
1012 
1013 	if (page->objects != max_objects) {
1014 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1015 			 page->objects, max_objects);
1016 		page->objects = max_objects;
1017 		slab_fix(s, "Number of objects adjusted.");
1018 	}
1019 	if (page->inuse != page->objects - nr) {
1020 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1021 			 page->inuse, page->objects - nr);
1022 		page->inuse = page->objects - nr;
1023 		slab_fix(s, "Object count adjusted.");
1024 	}
1025 	return search == NULL;
1026 }
1027 
trace(struct kmem_cache * s,struct page * page,void * object,int alloc)1028 static void trace(struct kmem_cache *s, struct page *page, void *object,
1029 								int alloc)
1030 {
1031 	if (s->flags & SLAB_TRACE) {
1032 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1033 			s->name,
1034 			alloc ? "alloc" : "free",
1035 			object, page->inuse,
1036 			page->freelist);
1037 
1038 		if (!alloc)
1039 			print_section(KERN_INFO, "Object ", (void *)object,
1040 					s->object_size);
1041 
1042 		dump_stack();
1043 	}
1044 }
1045 
1046 /*
1047  * Tracking of fully allocated slabs for debugging purposes.
1048  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1049 static void add_full(struct kmem_cache *s,
1050 	struct kmem_cache_node *n, struct page *page)
1051 {
1052 	if (!(s->flags & SLAB_STORE_USER))
1053 		return;
1054 
1055 	lockdep_assert_held(&n->list_lock);
1056 	list_add(&page->slab_list, &n->full);
1057 }
1058 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1059 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1060 {
1061 	if (!(s->flags & SLAB_STORE_USER))
1062 		return;
1063 
1064 	lockdep_assert_held(&n->list_lock);
1065 	list_del(&page->slab_list);
1066 }
1067 
1068 /* Tracking of the number of slabs for debugging purposes */
slabs_node(struct kmem_cache * s,int node)1069 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1070 {
1071 	struct kmem_cache_node *n = get_node(s, node);
1072 
1073 	return atomic_long_read(&n->nr_slabs);
1074 }
1075 
node_nr_slabs(struct kmem_cache_node * n)1076 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1077 {
1078 	return atomic_long_read(&n->nr_slabs);
1079 }
1080 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1081 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1082 {
1083 	struct kmem_cache_node *n = get_node(s, node);
1084 
1085 	/*
1086 	 * May be called early in order to allocate a slab for the
1087 	 * kmem_cache_node structure. Solve the chicken-egg
1088 	 * dilemma by deferring the increment of the count during
1089 	 * bootstrap (see early_kmem_cache_node_alloc).
1090 	 */
1091 	if (likely(n)) {
1092 		atomic_long_inc(&n->nr_slabs);
1093 		atomic_long_add(objects, &n->total_objects);
1094 	}
1095 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1096 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1097 {
1098 	struct kmem_cache_node *n = get_node(s, node);
1099 
1100 	atomic_long_dec(&n->nr_slabs);
1101 	atomic_long_sub(objects, &n->total_objects);
1102 }
1103 
1104 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1105 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1106 								void *object)
1107 {
1108 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1109 		return;
1110 
1111 	init_object(s, object, SLUB_RED_INACTIVE);
1112 	init_tracking(s, object);
1113 }
1114 
1115 static
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1116 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1117 {
1118 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1119 		return;
1120 
1121 	metadata_access_enable();
1122 	memset(addr, POISON_INUSE, page_size(page));
1123 	metadata_access_disable();
1124 }
1125 
alloc_consistency_checks(struct kmem_cache * s,struct page * page,void * object)1126 static inline int alloc_consistency_checks(struct kmem_cache *s,
1127 					struct page *page, void *object)
1128 {
1129 	if (!check_slab(s, page))
1130 		return 0;
1131 
1132 	if (!check_valid_pointer(s, page, object)) {
1133 		object_err(s, page, object, "Freelist Pointer check fails");
1134 		return 0;
1135 	}
1136 
1137 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1138 		return 0;
1139 
1140 	return 1;
1141 }
1142 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1143 static noinline int alloc_debug_processing(struct kmem_cache *s,
1144 					struct page *page,
1145 					void *object, unsigned long addr)
1146 {
1147 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1148 		if (!alloc_consistency_checks(s, page, object))
1149 			goto bad;
1150 	}
1151 
1152 	/* Success perform special debug activities for allocs */
1153 	if (s->flags & SLAB_STORE_USER)
1154 		set_track(s, object, TRACK_ALLOC, addr);
1155 	trace(s, page, object, 1);
1156 	init_object(s, object, SLUB_RED_ACTIVE);
1157 	return 1;
1158 
1159 bad:
1160 	if (PageSlab(page)) {
1161 		/*
1162 		 * If this is a slab page then lets do the best we can
1163 		 * to avoid issues in the future. Marking all objects
1164 		 * as used avoids touching the remaining objects.
1165 		 */
1166 		slab_fix(s, "Marking all objects used");
1167 		page->inuse = page->objects;
1168 		page->freelist = NULL;
1169 	}
1170 	return 0;
1171 }
1172 
free_consistency_checks(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1173 static inline int free_consistency_checks(struct kmem_cache *s,
1174 		struct page *page, void *object, unsigned long addr)
1175 {
1176 	if (!check_valid_pointer(s, page, object)) {
1177 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1178 		return 0;
1179 	}
1180 
1181 	if (on_freelist(s, page, object)) {
1182 		object_err(s, page, object, "Object already free");
1183 		return 0;
1184 	}
1185 
1186 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1187 		return 0;
1188 
1189 	if (unlikely(s != page->slab_cache)) {
1190 		if (!PageSlab(page)) {
1191 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1192 				 object);
1193 		} else if (!page->slab_cache) {
1194 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1195 			       object);
1196 			dump_stack();
1197 		} else
1198 			object_err(s, page, object,
1199 					"page slab pointer corrupt.");
1200 		return 0;
1201 	}
1202 	return 1;
1203 }
1204 
1205 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1206 static noinline int free_debug_processing(
1207 	struct kmem_cache *s, struct page *page,
1208 	void *head, void *tail, int bulk_cnt,
1209 	unsigned long addr)
1210 {
1211 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1212 	void *object = head;
1213 	int cnt = 0;
1214 	unsigned long flags;
1215 	int ret = 0;
1216 
1217 	spin_lock_irqsave(&n->list_lock, flags);
1218 	slab_lock(page);
1219 
1220 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1221 		if (!check_slab(s, page))
1222 			goto out;
1223 	}
1224 
1225 next_object:
1226 	cnt++;
1227 
1228 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1229 		if (!free_consistency_checks(s, page, object, addr))
1230 			goto out;
1231 	}
1232 
1233 	if (s->flags & SLAB_STORE_USER)
1234 		set_track(s, object, TRACK_FREE, addr);
1235 	trace(s, page, object, 0);
1236 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1237 	init_object(s, object, SLUB_RED_INACTIVE);
1238 
1239 	/* Reached end of constructed freelist yet? */
1240 	if (object != tail) {
1241 		object = get_freepointer(s, object);
1242 		goto next_object;
1243 	}
1244 	ret = 1;
1245 
1246 out:
1247 	if (cnt != bulk_cnt)
1248 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1249 			 bulk_cnt, cnt);
1250 
1251 	slab_unlock(page);
1252 	spin_unlock_irqrestore(&n->list_lock, flags);
1253 	if (!ret)
1254 		slab_fix(s, "Object at 0x%p not freed", object);
1255 	return ret;
1256 }
1257 
1258 /*
1259  * Parse a block of slub_debug options. Blocks are delimited by ';'
1260  *
1261  * @str:    start of block
1262  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1263  * @slabs:  return start of list of slabs, or NULL when there's no list
1264  * @init:   assume this is initial parsing and not per-kmem-create parsing
1265  *
1266  * returns the start of next block if there's any, or NULL
1267  */
1268 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1269 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1270 {
1271 	bool higher_order_disable = false;
1272 
1273 	/* Skip any completely empty blocks */
1274 	while (*str && *str == ';')
1275 		str++;
1276 
1277 	if (*str == ',') {
1278 		/*
1279 		 * No options but restriction on slabs. This means full
1280 		 * debugging for slabs matching a pattern.
1281 		 */
1282 		*flags = DEBUG_DEFAULT_FLAGS;
1283 		goto check_slabs;
1284 	}
1285 	*flags = 0;
1286 
1287 	/* Determine which debug features should be switched on */
1288 	for (; *str && *str != ',' && *str != ';'; str++) {
1289 		switch (tolower(*str)) {
1290 		case '-':
1291 			*flags = 0;
1292 			break;
1293 		case 'f':
1294 			*flags |= SLAB_CONSISTENCY_CHECKS;
1295 			break;
1296 		case 'z':
1297 			*flags |= SLAB_RED_ZONE;
1298 			break;
1299 		case 'p':
1300 			*flags |= SLAB_POISON;
1301 			break;
1302 		case 'u':
1303 			*flags |= SLAB_STORE_USER;
1304 			break;
1305 		case 't':
1306 			*flags |= SLAB_TRACE;
1307 			break;
1308 		case 'a':
1309 			*flags |= SLAB_FAILSLAB;
1310 			break;
1311 		case 'o':
1312 			/*
1313 			 * Avoid enabling debugging on caches if its minimum
1314 			 * order would increase as a result.
1315 			 */
1316 			higher_order_disable = true;
1317 			break;
1318 		default:
1319 			if (init)
1320 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1321 		}
1322 	}
1323 check_slabs:
1324 	if (*str == ',')
1325 		*slabs = ++str;
1326 	else
1327 		*slabs = NULL;
1328 
1329 	/* Skip over the slab list */
1330 	while (*str && *str != ';')
1331 		str++;
1332 
1333 	/* Skip any completely empty blocks */
1334 	while (*str && *str == ';')
1335 		str++;
1336 
1337 	if (init && higher_order_disable)
1338 		disable_higher_order_debug = 1;
1339 
1340 	if (*str)
1341 		return str;
1342 	else
1343 		return NULL;
1344 }
1345 
setup_slub_debug(char * str)1346 static int __init setup_slub_debug(char *str)
1347 {
1348 	slab_flags_t flags;
1349 	slab_flags_t global_flags;
1350 	char *saved_str;
1351 	char *slab_list;
1352 	bool global_slub_debug_changed = false;
1353 	bool slab_list_specified = false;
1354 
1355 	global_flags = DEBUG_DEFAULT_FLAGS;
1356 	if (*str++ != '=' || !*str)
1357 		/*
1358 		 * No options specified. Switch on full debugging.
1359 		 */
1360 		goto out;
1361 
1362 	saved_str = str;
1363 	while (str) {
1364 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1365 
1366 		if (!slab_list) {
1367 			global_flags = flags;
1368 			global_slub_debug_changed = true;
1369 		} else {
1370 			slab_list_specified = true;
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * For backwards compatibility, a single list of flags with list of
1376 	 * slabs means debugging is only changed for those slabs, so the global
1377 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1378 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1379 	 * long as there is no option specifying flags without a slab list.
1380 	 */
1381 	if (slab_list_specified) {
1382 		if (!global_slub_debug_changed)
1383 			global_flags = slub_debug;
1384 		slub_debug_string = saved_str;
1385 	}
1386 out:
1387 	slub_debug = global_flags;
1388 	if (slub_debug != 0 || slub_debug_string)
1389 		static_branch_enable(&slub_debug_enabled);
1390 	if ((static_branch_unlikely(&init_on_alloc) ||
1391 	     static_branch_unlikely(&init_on_free)) &&
1392 	    (slub_debug & SLAB_POISON))
1393 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1394 	return 1;
1395 }
1396 
1397 __setup("slub_debug", setup_slub_debug);
1398 
1399 /*
1400  * kmem_cache_flags - apply debugging options to the cache
1401  * @object_size:	the size of an object without meta data
1402  * @flags:		flags to set
1403  * @name:		name of the cache
1404  *
1405  * Debug option(s) are applied to @flags. In addition to the debug
1406  * option(s), if a slab name (or multiple) is specified i.e.
1407  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1408  * then only the select slabs will receive the debug option(s).
1409  */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1410 slab_flags_t kmem_cache_flags(unsigned int object_size,
1411 	slab_flags_t flags, const char *name)
1412 {
1413 	char *iter;
1414 	size_t len;
1415 	char *next_block;
1416 	slab_flags_t block_flags;
1417 
1418 	len = strlen(name);
1419 	next_block = slub_debug_string;
1420 	/* Go through all blocks of debug options, see if any matches our slab's name */
1421 	while (next_block) {
1422 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1423 		if (!iter)
1424 			continue;
1425 		/* Found a block that has a slab list, search it */
1426 		while (*iter) {
1427 			char *end, *glob;
1428 			size_t cmplen;
1429 
1430 			end = strchrnul(iter, ',');
1431 			if (next_block && next_block < end)
1432 				end = next_block - 1;
1433 
1434 			glob = strnchr(iter, end - iter, '*');
1435 			if (glob)
1436 				cmplen = glob - iter;
1437 			else
1438 				cmplen = max_t(size_t, len, (end - iter));
1439 
1440 			if (!strncmp(name, iter, cmplen)) {
1441 				flags |= block_flags;
1442 				return flags;
1443 			}
1444 
1445 			if (!*end || *end == ';')
1446 				break;
1447 			iter = end + 1;
1448 		}
1449 	}
1450 
1451 	return flags | slub_debug;
1452 }
1453 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1454 static inline void setup_object_debug(struct kmem_cache *s,
1455 			struct page *page, void *object) {}
1456 static inline
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1457 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1458 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1459 static inline int alloc_debug_processing(struct kmem_cache *s,
1460 	struct page *page, void *object, unsigned long addr) { return 0; }
1461 
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1462 static inline int free_debug_processing(
1463 	struct kmem_cache *s, struct page *page,
1464 	void *head, void *tail, int bulk_cnt,
1465 	unsigned long addr) { return 0; }
1466 
slab_pad_check(struct kmem_cache * s,struct page * page)1467 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1468 			{ return 1; }
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)1469 static inline int check_object(struct kmem_cache *s, struct page *page,
1470 			void *object, u8 val) { return 1; }
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1471 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1472 					struct page *page) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1473 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1474 					struct page *page) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1475 slab_flags_t kmem_cache_flags(unsigned int object_size,
1476 	slab_flags_t flags, const char *name)
1477 {
1478 	return flags;
1479 }
1480 #define slub_debug 0
1481 
1482 #define disable_higher_order_debug 0
1483 
slabs_node(struct kmem_cache * s,int node)1484 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1485 							{ return 0; }
node_nr_slabs(struct kmem_cache_node * n)1486 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1487 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1488 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1489 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1490 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1491 							int objects) {}
1492 
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)1493 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1494 			       void **freelist, void *nextfree)
1495 {
1496 	return false;
1497 }
1498 #endif /* CONFIG_SLUB_DEBUG */
1499 
1500 /*
1501  * Hooks for other subsystems that check memory allocations. In a typical
1502  * production configuration these hooks all should produce no code at all.
1503  */
kmalloc_large_node_hook(void * ptr,size_t size,gfp_t flags)1504 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1505 {
1506 	ptr = kasan_kmalloc_large(ptr, size, flags);
1507 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1508 	kmemleak_alloc(ptr, size, 1, flags);
1509 	return ptr;
1510 }
1511 
kfree_hook(void * x)1512 static __always_inline void kfree_hook(void *x)
1513 {
1514 	kmemleak_free(x);
1515 	kasan_kfree_large(x, _RET_IP_);
1516 }
1517 
slab_free_hook(struct kmem_cache * s,void * x)1518 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1519 {
1520 	kmemleak_free_recursive(x, s->flags);
1521 
1522 	/*
1523 	 * Trouble is that we may no longer disable interrupts in the fast path
1524 	 * So in order to make the debug calls that expect irqs to be
1525 	 * disabled we need to disable interrupts temporarily.
1526 	 */
1527 #ifdef CONFIG_LOCKDEP
1528 	{
1529 		unsigned long flags;
1530 
1531 		local_irq_save(flags);
1532 		debug_check_no_locks_freed(x, s->object_size);
1533 		local_irq_restore(flags);
1534 	}
1535 #endif
1536 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1537 		debug_check_no_obj_freed(x, s->object_size);
1538 
1539 	/* Use KCSAN to help debug racy use-after-free. */
1540 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1541 		__kcsan_check_access(x, s->object_size,
1542 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1543 
1544 	/* KASAN might put x into memory quarantine, delaying its reuse */
1545 	return kasan_slab_free(s, x, _RET_IP_);
1546 }
1547 
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)1548 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1549 					   void **head, void **tail,
1550 					   int *cnt)
1551 {
1552 
1553 	void *object;
1554 	void *next = *head;
1555 	void *old_tail = *tail ? *tail : *head;
1556 	int rsize;
1557 
1558 	/* Head and tail of the reconstructed freelist */
1559 	*head = NULL;
1560 	*tail = NULL;
1561 
1562 	do {
1563 		object = next;
1564 		next = get_freepointer(s, object);
1565 
1566 		if (slab_want_init_on_free(s)) {
1567 			/*
1568 			 * Clear the object and the metadata, but don't touch
1569 			 * the redzone.
1570 			 */
1571 			memset(object, 0, s->object_size);
1572 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1573 							   : 0;
1574 			memset((char *)object + s->inuse, 0,
1575 			       s->size - s->inuse - rsize);
1576 
1577 		}
1578 		/* If object's reuse doesn't have to be delayed */
1579 		if (!slab_free_hook(s, object)) {
1580 			/* Move object to the new freelist */
1581 			set_freepointer(s, object, *head);
1582 			*head = object;
1583 			if (!*tail)
1584 				*tail = object;
1585 		} else {
1586 			/*
1587 			 * Adjust the reconstructed freelist depth
1588 			 * accordingly if object's reuse is delayed.
1589 			 */
1590 			--(*cnt);
1591 		}
1592 	} while (object != old_tail);
1593 
1594 	if (*head == *tail)
1595 		*tail = NULL;
1596 
1597 	return *head != NULL;
1598 }
1599 
setup_object(struct kmem_cache * s,struct page * page,void * object)1600 static void *setup_object(struct kmem_cache *s, struct page *page,
1601 				void *object)
1602 {
1603 	setup_object_debug(s, page, object);
1604 	object = kasan_init_slab_obj(s, object);
1605 	if (unlikely(s->ctor)) {
1606 		kasan_unpoison_object_data(s, object);
1607 		s->ctor(object);
1608 		kasan_poison_object_data(s, object);
1609 	}
1610 	return object;
1611 }
1612 
1613 /*
1614  * Slab allocation and freeing
1615  */
alloc_slab_page(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_order_objects oo)1616 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1617 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1618 {
1619 	struct page *page;
1620 	unsigned int order = oo_order(oo);
1621 
1622 	if (node == NUMA_NO_NODE)
1623 		page = alloc_pages(flags, order);
1624 	else
1625 		page = __alloc_pages_node(node, flags, order);
1626 
1627 	if (page)
1628 		account_slab_page(page, order, s);
1629 
1630 	return page;
1631 }
1632 
1633 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1634 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1635 static int init_cache_random_seq(struct kmem_cache *s)
1636 {
1637 	unsigned int count = oo_objects(s->oo);
1638 	int err;
1639 
1640 	/* Bailout if already initialised */
1641 	if (s->random_seq)
1642 		return 0;
1643 
1644 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1645 	if (err) {
1646 		pr_err("SLUB: Unable to initialize free list for %s\n",
1647 			s->name);
1648 		return err;
1649 	}
1650 
1651 	/* Transform to an offset on the set of pages */
1652 	if (s->random_seq) {
1653 		unsigned int i;
1654 
1655 		for (i = 0; i < count; i++)
1656 			s->random_seq[i] *= s->size;
1657 	}
1658 	return 0;
1659 }
1660 
1661 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1662 static void __init init_freelist_randomization(void)
1663 {
1664 	struct kmem_cache *s;
1665 
1666 	mutex_lock(&slab_mutex);
1667 
1668 	list_for_each_entry(s, &slab_caches, list)
1669 		init_cache_random_seq(s);
1670 
1671 	mutex_unlock(&slab_mutex);
1672 }
1673 
1674 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct page * page,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1675 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1676 				unsigned long *pos, void *start,
1677 				unsigned long page_limit,
1678 				unsigned long freelist_count)
1679 {
1680 	unsigned int idx;
1681 
1682 	/*
1683 	 * If the target page allocation failed, the number of objects on the
1684 	 * page might be smaller than the usual size defined by the cache.
1685 	 */
1686 	do {
1687 		idx = s->random_seq[*pos];
1688 		*pos += 1;
1689 		if (*pos >= freelist_count)
1690 			*pos = 0;
1691 	} while (unlikely(idx >= page_limit));
1692 
1693 	return (char *)start + idx;
1694 }
1695 
1696 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct page * page)1697 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1698 {
1699 	void *start;
1700 	void *cur;
1701 	void *next;
1702 	unsigned long idx, pos, page_limit, freelist_count;
1703 
1704 	if (page->objects < 2 || !s->random_seq)
1705 		return false;
1706 
1707 	freelist_count = oo_objects(s->oo);
1708 	pos = get_random_int() % freelist_count;
1709 
1710 	page_limit = page->objects * s->size;
1711 	start = fixup_red_left(s, page_address(page));
1712 
1713 	/* First entry is used as the base of the freelist */
1714 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1715 				freelist_count);
1716 	cur = setup_object(s, page, cur);
1717 	page->freelist = cur;
1718 
1719 	for (idx = 1; idx < page->objects; idx++) {
1720 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1721 			freelist_count);
1722 		next = setup_object(s, page, next);
1723 		set_freepointer(s, cur, next);
1724 		cur = next;
1725 	}
1726 	set_freepointer(s, cur, NULL);
1727 
1728 	return true;
1729 }
1730 #else
init_cache_random_seq(struct kmem_cache * s)1731 static inline int init_cache_random_seq(struct kmem_cache *s)
1732 {
1733 	return 0;
1734 }
init_freelist_randomization(void)1735 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct page * page)1736 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1737 {
1738 	return false;
1739 }
1740 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1741 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)1742 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1743 {
1744 	struct page *page;
1745 	struct kmem_cache_order_objects oo = s->oo;
1746 	gfp_t alloc_gfp;
1747 	void *start, *p, *next;
1748 	int idx;
1749 	bool shuffle;
1750 
1751 	flags &= gfp_allowed_mask;
1752 
1753 	if (gfpflags_allow_blocking(flags))
1754 		local_irq_enable();
1755 
1756 	flags |= s->allocflags;
1757 
1758 	/*
1759 	 * Let the initial higher-order allocation fail under memory pressure
1760 	 * so we fall-back to the minimum order allocation.
1761 	 */
1762 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1763 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1764 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1765 
1766 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1767 	if (unlikely(!page)) {
1768 		oo = s->min;
1769 		alloc_gfp = flags;
1770 		/*
1771 		 * Allocation may have failed due to fragmentation.
1772 		 * Try a lower order alloc if possible
1773 		 */
1774 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1775 		if (unlikely(!page))
1776 			goto out;
1777 		stat(s, ORDER_FALLBACK);
1778 	}
1779 
1780 	page->objects = oo_objects(oo);
1781 
1782 	page->slab_cache = s;
1783 	__SetPageSlab(page);
1784 	if (page_is_pfmemalloc(page))
1785 		SetPageSlabPfmemalloc(page);
1786 
1787 	kasan_poison_slab(page);
1788 
1789 	start = page_address(page);
1790 
1791 	setup_page_debug(s, page, start);
1792 
1793 	shuffle = shuffle_freelist(s, page);
1794 
1795 	if (!shuffle) {
1796 		start = fixup_red_left(s, start);
1797 		start = setup_object(s, page, start);
1798 		page->freelist = start;
1799 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1800 			next = p + s->size;
1801 			next = setup_object(s, page, next);
1802 			set_freepointer(s, p, next);
1803 			p = next;
1804 		}
1805 		set_freepointer(s, p, NULL);
1806 	}
1807 
1808 	page->inuse = page->objects;
1809 	page->frozen = 1;
1810 
1811 out:
1812 	if (gfpflags_allow_blocking(flags))
1813 		local_irq_disable();
1814 	if (!page)
1815 		return NULL;
1816 
1817 	inc_slabs_node(s, page_to_nid(page), page->objects);
1818 
1819 	return page;
1820 }
1821 
new_slab(struct kmem_cache * s,gfp_t flags,int node)1822 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1823 {
1824 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1825 		flags = kmalloc_fix_flags(flags);
1826 
1827 	return allocate_slab(s,
1828 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1829 }
1830 
__free_slab(struct kmem_cache * s,struct page * page)1831 static void __free_slab(struct kmem_cache *s, struct page *page)
1832 {
1833 	int order = compound_order(page);
1834 	int pages = 1 << order;
1835 
1836 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1837 		void *p;
1838 
1839 		slab_pad_check(s, page);
1840 		for_each_object(p, s, page_address(page),
1841 						page->objects)
1842 			check_object(s, page, p, SLUB_RED_INACTIVE);
1843 	}
1844 
1845 	__ClearPageSlabPfmemalloc(page);
1846 	__ClearPageSlab(page);
1847 
1848 	page->mapping = NULL;
1849 	if (current->reclaim_state)
1850 		current->reclaim_state->reclaimed_slab += pages;
1851 	unaccount_slab_page(page, order, s);
1852 	__free_pages(page, order);
1853 }
1854 
rcu_free_slab(struct rcu_head * h)1855 static void rcu_free_slab(struct rcu_head *h)
1856 {
1857 	struct page *page = container_of(h, struct page, rcu_head);
1858 
1859 	__free_slab(page->slab_cache, page);
1860 }
1861 
free_slab(struct kmem_cache * s,struct page * page)1862 static void free_slab(struct kmem_cache *s, struct page *page)
1863 {
1864 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1865 		call_rcu(&page->rcu_head, rcu_free_slab);
1866 	} else
1867 		__free_slab(s, page);
1868 }
1869 
discard_slab(struct kmem_cache * s,struct page * page)1870 static void discard_slab(struct kmem_cache *s, struct page *page)
1871 {
1872 	dec_slabs_node(s, page_to_nid(page), page->objects);
1873 	free_slab(s, page);
1874 }
1875 
1876 /*
1877  * Management of partially allocated slabs.
1878  */
1879 static inline void
__add_partial(struct kmem_cache_node * n,struct page * page,int tail)1880 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1881 {
1882 	n->nr_partial++;
1883 	if (tail == DEACTIVATE_TO_TAIL)
1884 		list_add_tail(&page->slab_list, &n->partial);
1885 	else
1886 		list_add(&page->slab_list, &n->partial);
1887 }
1888 
add_partial(struct kmem_cache_node * n,struct page * page,int tail)1889 static inline void add_partial(struct kmem_cache_node *n,
1890 				struct page *page, int tail)
1891 {
1892 	lockdep_assert_held(&n->list_lock);
1893 	__add_partial(n, page, tail);
1894 }
1895 
remove_partial(struct kmem_cache_node * n,struct page * page)1896 static inline void remove_partial(struct kmem_cache_node *n,
1897 					struct page *page)
1898 {
1899 	lockdep_assert_held(&n->list_lock);
1900 	list_del(&page->slab_list);
1901 	n->nr_partial--;
1902 }
1903 
1904 /*
1905  * Remove slab from the partial list, freeze it and
1906  * return the pointer to the freelist.
1907  *
1908  * Returns a list of objects or NULL if it fails.
1909  */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page,int mode,int * objects)1910 static inline void *acquire_slab(struct kmem_cache *s,
1911 		struct kmem_cache_node *n, struct page *page,
1912 		int mode, int *objects)
1913 {
1914 	void *freelist;
1915 	unsigned long counters;
1916 	struct page new;
1917 
1918 	lockdep_assert_held(&n->list_lock);
1919 
1920 	/*
1921 	 * Zap the freelist and set the frozen bit.
1922 	 * The old freelist is the list of objects for the
1923 	 * per cpu allocation list.
1924 	 */
1925 	freelist = page->freelist;
1926 	counters = page->counters;
1927 	new.counters = counters;
1928 	*objects = new.objects - new.inuse;
1929 	if (mode) {
1930 		new.inuse = page->objects;
1931 		new.freelist = NULL;
1932 	} else {
1933 		new.freelist = freelist;
1934 	}
1935 
1936 	VM_BUG_ON(new.frozen);
1937 	new.frozen = 1;
1938 
1939 	if (!__cmpxchg_double_slab(s, page,
1940 			freelist, counters,
1941 			new.freelist, new.counters,
1942 			"acquire_slab"))
1943 		return NULL;
1944 
1945 	remove_partial(n, page);
1946 	WARN_ON(!freelist);
1947 	return freelist;
1948 }
1949 
1950 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1951 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1952 
1953 /*
1954  * Try to allocate a partial slab from a specific node.
1955  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct kmem_cache_cpu * c,gfp_t flags)1956 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1957 				struct kmem_cache_cpu *c, gfp_t flags)
1958 {
1959 	struct page *page, *page2;
1960 	void *object = NULL;
1961 	unsigned int available = 0;
1962 	int objects;
1963 
1964 	/*
1965 	 * Racy check. If we mistakenly see no partial slabs then we
1966 	 * just allocate an empty slab. If we mistakenly try to get a
1967 	 * partial slab and there is none available then get_partial()
1968 	 * will return NULL.
1969 	 */
1970 	if (!n || !n->nr_partial)
1971 		return NULL;
1972 
1973 	spin_lock(&n->list_lock);
1974 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1975 		void *t;
1976 
1977 		if (!pfmemalloc_match(page, flags))
1978 			continue;
1979 
1980 		t = acquire_slab(s, n, page, object == NULL, &objects);
1981 		if (!t)
1982 			break;
1983 
1984 		available += objects;
1985 		if (!object) {
1986 			c->page = page;
1987 			stat(s, ALLOC_FROM_PARTIAL);
1988 			object = t;
1989 		} else {
1990 			put_cpu_partial(s, page, 0);
1991 			stat(s, CPU_PARTIAL_NODE);
1992 		}
1993 		if (!kmem_cache_has_cpu_partial(s)
1994 			|| available > slub_cpu_partial(s) / 2)
1995 			break;
1996 
1997 	}
1998 	spin_unlock(&n->list_lock);
1999 	return object;
2000 }
2001 
2002 /*
2003  * Get a page from somewhere. Search in increasing NUMA distances.
2004  */
get_any_partial(struct kmem_cache * s,gfp_t flags,struct kmem_cache_cpu * c)2005 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2006 		struct kmem_cache_cpu *c)
2007 {
2008 #ifdef CONFIG_NUMA
2009 	struct zonelist *zonelist;
2010 	struct zoneref *z;
2011 	struct zone *zone;
2012 	enum zone_type highest_zoneidx = gfp_zone(flags);
2013 	void *object;
2014 	unsigned int cpuset_mems_cookie;
2015 
2016 	/*
2017 	 * The defrag ratio allows a configuration of the tradeoffs between
2018 	 * inter node defragmentation and node local allocations. A lower
2019 	 * defrag_ratio increases the tendency to do local allocations
2020 	 * instead of attempting to obtain partial slabs from other nodes.
2021 	 *
2022 	 * If the defrag_ratio is set to 0 then kmalloc() always
2023 	 * returns node local objects. If the ratio is higher then kmalloc()
2024 	 * may return off node objects because partial slabs are obtained
2025 	 * from other nodes and filled up.
2026 	 *
2027 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2028 	 * (which makes defrag_ratio = 1000) then every (well almost)
2029 	 * allocation will first attempt to defrag slab caches on other nodes.
2030 	 * This means scanning over all nodes to look for partial slabs which
2031 	 * may be expensive if we do it every time we are trying to find a slab
2032 	 * with available objects.
2033 	 */
2034 	if (!s->remote_node_defrag_ratio ||
2035 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2036 		return NULL;
2037 
2038 	do {
2039 		cpuset_mems_cookie = read_mems_allowed_begin();
2040 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2041 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2042 			struct kmem_cache_node *n;
2043 
2044 			n = get_node(s, zone_to_nid(zone));
2045 
2046 			if (n && cpuset_zone_allowed(zone, flags) &&
2047 					n->nr_partial > s->min_partial) {
2048 				object = get_partial_node(s, n, c, flags);
2049 				if (object) {
2050 					/*
2051 					 * Don't check read_mems_allowed_retry()
2052 					 * here - if mems_allowed was updated in
2053 					 * parallel, that was a harmless race
2054 					 * between allocation and the cpuset
2055 					 * update
2056 					 */
2057 					return object;
2058 				}
2059 			}
2060 		}
2061 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2062 #endif	/* CONFIG_NUMA */
2063 	return NULL;
2064 }
2065 
2066 /*
2067  * Get a partial page, lock it and return it.
2068  */
get_partial(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu * c)2069 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2070 		struct kmem_cache_cpu *c)
2071 {
2072 	void *object;
2073 	int searchnode = node;
2074 
2075 	if (node == NUMA_NO_NODE)
2076 		searchnode = numa_mem_id();
2077 
2078 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2079 	if (object || node != NUMA_NO_NODE)
2080 		return object;
2081 
2082 	return get_any_partial(s, flags, c);
2083 }
2084 
2085 #ifdef CONFIG_PREEMPTION
2086 /*
2087  * Calculate the next globally unique transaction for disambiguation
2088  * during cmpxchg. The transactions start with the cpu number and are then
2089  * incremented by CONFIG_NR_CPUS.
2090  */
2091 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2092 #else
2093 /*
2094  * No preemption supported therefore also no need to check for
2095  * different cpus.
2096  */
2097 #define TID_STEP 1
2098 #endif
2099 
next_tid(unsigned long tid)2100 static inline unsigned long next_tid(unsigned long tid)
2101 {
2102 	return tid + TID_STEP;
2103 }
2104 
2105 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2106 static inline unsigned int tid_to_cpu(unsigned long tid)
2107 {
2108 	return tid % TID_STEP;
2109 }
2110 
tid_to_event(unsigned long tid)2111 static inline unsigned long tid_to_event(unsigned long tid)
2112 {
2113 	return tid / TID_STEP;
2114 }
2115 #endif
2116 
init_tid(int cpu)2117 static inline unsigned int init_tid(int cpu)
2118 {
2119 	return cpu;
2120 }
2121 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2122 static inline void note_cmpxchg_failure(const char *n,
2123 		const struct kmem_cache *s, unsigned long tid)
2124 {
2125 #ifdef SLUB_DEBUG_CMPXCHG
2126 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2127 
2128 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2129 
2130 #ifdef CONFIG_PREEMPTION
2131 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2132 		pr_warn("due to cpu change %d -> %d\n",
2133 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2134 	else
2135 #endif
2136 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2137 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2138 			tid_to_event(tid), tid_to_event(actual_tid));
2139 	else
2140 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2141 			actual_tid, tid, next_tid(tid));
2142 #endif
2143 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2144 }
2145 
init_kmem_cache_cpus(struct kmem_cache * s)2146 static void init_kmem_cache_cpus(struct kmem_cache *s)
2147 {
2148 	int cpu;
2149 
2150 	for_each_possible_cpu(cpu)
2151 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2152 }
2153 
2154 /*
2155  * Remove the cpu slab
2156  */
deactivate_slab(struct kmem_cache * s,struct page * page,void * freelist,struct kmem_cache_cpu * c)2157 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2158 				void *freelist, struct kmem_cache_cpu *c)
2159 {
2160 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2161 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2162 	int lock = 0;
2163 	enum slab_modes l = M_NONE, m = M_NONE;
2164 	void *nextfree;
2165 	int tail = DEACTIVATE_TO_HEAD;
2166 	struct page new;
2167 	struct page old;
2168 
2169 	if (page->freelist) {
2170 		stat(s, DEACTIVATE_REMOTE_FREES);
2171 		tail = DEACTIVATE_TO_TAIL;
2172 	}
2173 
2174 	/*
2175 	 * Stage one: Free all available per cpu objects back
2176 	 * to the page freelist while it is still frozen. Leave the
2177 	 * last one.
2178 	 *
2179 	 * There is no need to take the list->lock because the page
2180 	 * is still frozen.
2181 	 */
2182 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2183 		void *prior;
2184 		unsigned long counters;
2185 
2186 		/*
2187 		 * If 'nextfree' is invalid, it is possible that the object at
2188 		 * 'freelist' is already corrupted.  So isolate all objects
2189 		 * starting at 'freelist'.
2190 		 */
2191 		if (freelist_corrupted(s, page, &freelist, nextfree))
2192 			break;
2193 
2194 		do {
2195 			prior = page->freelist;
2196 			counters = page->counters;
2197 			set_freepointer(s, freelist, prior);
2198 			new.counters = counters;
2199 			new.inuse--;
2200 			VM_BUG_ON(!new.frozen);
2201 
2202 		} while (!__cmpxchg_double_slab(s, page,
2203 			prior, counters,
2204 			freelist, new.counters,
2205 			"drain percpu freelist"));
2206 
2207 		freelist = nextfree;
2208 	}
2209 
2210 	/*
2211 	 * Stage two: Ensure that the page is unfrozen while the
2212 	 * list presence reflects the actual number of objects
2213 	 * during unfreeze.
2214 	 *
2215 	 * We setup the list membership and then perform a cmpxchg
2216 	 * with the count. If there is a mismatch then the page
2217 	 * is not unfrozen but the page is on the wrong list.
2218 	 *
2219 	 * Then we restart the process which may have to remove
2220 	 * the page from the list that we just put it on again
2221 	 * because the number of objects in the slab may have
2222 	 * changed.
2223 	 */
2224 redo:
2225 
2226 	old.freelist = page->freelist;
2227 	old.counters = page->counters;
2228 	VM_BUG_ON(!old.frozen);
2229 
2230 	/* Determine target state of the slab */
2231 	new.counters = old.counters;
2232 	if (freelist) {
2233 		new.inuse--;
2234 		set_freepointer(s, freelist, old.freelist);
2235 		new.freelist = freelist;
2236 	} else
2237 		new.freelist = old.freelist;
2238 
2239 	new.frozen = 0;
2240 
2241 	if (!new.inuse && n->nr_partial >= s->min_partial)
2242 		m = M_FREE;
2243 	else if (new.freelist) {
2244 		m = M_PARTIAL;
2245 		if (!lock) {
2246 			lock = 1;
2247 			/*
2248 			 * Taking the spinlock removes the possibility
2249 			 * that acquire_slab() will see a slab page that
2250 			 * is frozen
2251 			 */
2252 			spin_lock(&n->list_lock);
2253 		}
2254 	} else {
2255 		m = M_FULL;
2256 #ifdef CONFIG_SLUB_DEBUG
2257 		if ((s->flags & SLAB_STORE_USER) && !lock) {
2258 			lock = 1;
2259 			/*
2260 			 * This also ensures that the scanning of full
2261 			 * slabs from diagnostic functions will not see
2262 			 * any frozen slabs.
2263 			 */
2264 			spin_lock(&n->list_lock);
2265 		}
2266 #endif
2267 	}
2268 
2269 	if (l != m) {
2270 		if (l == M_PARTIAL)
2271 			remove_partial(n, page);
2272 		else if (l == M_FULL)
2273 			remove_full(s, n, page);
2274 
2275 		if (m == M_PARTIAL)
2276 			add_partial(n, page, tail);
2277 		else if (m == M_FULL)
2278 			add_full(s, n, page);
2279 	}
2280 
2281 	l = m;
2282 	if (!__cmpxchg_double_slab(s, page,
2283 				old.freelist, old.counters,
2284 				new.freelist, new.counters,
2285 				"unfreezing slab"))
2286 		goto redo;
2287 
2288 	if (lock)
2289 		spin_unlock(&n->list_lock);
2290 
2291 	if (m == M_PARTIAL)
2292 		stat(s, tail);
2293 	else if (m == M_FULL)
2294 		stat(s, DEACTIVATE_FULL);
2295 	else if (m == M_FREE) {
2296 		stat(s, DEACTIVATE_EMPTY);
2297 		discard_slab(s, page);
2298 		stat(s, FREE_SLAB);
2299 	}
2300 
2301 	c->page = NULL;
2302 	c->freelist = NULL;
2303 	c->tid = next_tid(c->tid);
2304 }
2305 
2306 /*
2307  * Unfreeze all the cpu partial slabs.
2308  *
2309  * This function must be called with interrupts disabled
2310  * for the cpu using c (or some other guarantee must be there
2311  * to guarantee no concurrent accesses).
2312  */
unfreeze_partials(struct kmem_cache * s,struct kmem_cache_cpu * c)2313 static void unfreeze_partials(struct kmem_cache *s,
2314 		struct kmem_cache_cpu *c)
2315 {
2316 #ifdef CONFIG_SLUB_CPU_PARTIAL
2317 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2318 	struct page *page, *discard_page = NULL;
2319 
2320 	while ((page = slub_percpu_partial(c))) {
2321 		struct page new;
2322 		struct page old;
2323 
2324 		slub_set_percpu_partial(c, page);
2325 
2326 		n2 = get_node(s, page_to_nid(page));
2327 		if (n != n2) {
2328 			if (n)
2329 				spin_unlock(&n->list_lock);
2330 
2331 			n = n2;
2332 			spin_lock(&n->list_lock);
2333 		}
2334 
2335 		do {
2336 
2337 			old.freelist = page->freelist;
2338 			old.counters = page->counters;
2339 			VM_BUG_ON(!old.frozen);
2340 
2341 			new.counters = old.counters;
2342 			new.freelist = old.freelist;
2343 
2344 			new.frozen = 0;
2345 
2346 		} while (!__cmpxchg_double_slab(s, page,
2347 				old.freelist, old.counters,
2348 				new.freelist, new.counters,
2349 				"unfreezing slab"));
2350 
2351 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2352 			page->next = discard_page;
2353 			discard_page = page;
2354 		} else {
2355 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2356 			stat(s, FREE_ADD_PARTIAL);
2357 		}
2358 	}
2359 
2360 	if (n)
2361 		spin_unlock(&n->list_lock);
2362 
2363 	while (discard_page) {
2364 		page = discard_page;
2365 		discard_page = discard_page->next;
2366 
2367 		stat(s, DEACTIVATE_EMPTY);
2368 		discard_slab(s, page);
2369 		stat(s, FREE_SLAB);
2370 	}
2371 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2372 }
2373 
2374 /*
2375  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2376  * partial page slot if available.
2377  *
2378  * If we did not find a slot then simply move all the partials to the
2379  * per node partial list.
2380  */
put_cpu_partial(struct kmem_cache * s,struct page * page,int drain)2381 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2382 {
2383 #ifdef CONFIG_SLUB_CPU_PARTIAL
2384 	struct page *oldpage;
2385 	int pages;
2386 	int pobjects;
2387 
2388 	preempt_disable();
2389 	do {
2390 		pages = 0;
2391 		pobjects = 0;
2392 		oldpage = this_cpu_read(s->cpu_slab->partial);
2393 
2394 		if (oldpage) {
2395 			pobjects = oldpage->pobjects;
2396 			pages = oldpage->pages;
2397 			if (drain && pobjects > slub_cpu_partial(s)) {
2398 				unsigned long flags;
2399 				/*
2400 				 * partial array is full. Move the existing
2401 				 * set to the per node partial list.
2402 				 */
2403 				local_irq_save(flags);
2404 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2405 				local_irq_restore(flags);
2406 				oldpage = NULL;
2407 				pobjects = 0;
2408 				pages = 0;
2409 				stat(s, CPU_PARTIAL_DRAIN);
2410 			}
2411 		}
2412 
2413 		pages++;
2414 		pobjects += page->objects - page->inuse;
2415 
2416 		page->pages = pages;
2417 		page->pobjects = pobjects;
2418 		page->next = oldpage;
2419 
2420 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2421 								!= oldpage);
2422 	if (unlikely(!slub_cpu_partial(s))) {
2423 		unsigned long flags;
2424 
2425 		local_irq_save(flags);
2426 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2427 		local_irq_restore(flags);
2428 	}
2429 	preempt_enable();
2430 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2431 }
2432 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2433 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2434 {
2435 	stat(s, CPUSLAB_FLUSH);
2436 	deactivate_slab(s, c->page, c->freelist, c);
2437 }
2438 
2439 /*
2440  * Flush cpu slab.
2441  *
2442  * Called from IPI handler with interrupts disabled.
2443  */
__flush_cpu_slab(struct kmem_cache * s,int cpu)2444 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2445 {
2446 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2447 
2448 	if (c->page)
2449 		flush_slab(s, c);
2450 
2451 	unfreeze_partials(s, c);
2452 }
2453 
flush_cpu_slab(void * d)2454 static void flush_cpu_slab(void *d)
2455 {
2456 	struct kmem_cache *s = d;
2457 
2458 	__flush_cpu_slab(s, smp_processor_id());
2459 }
2460 
has_cpu_slab(int cpu,void * info)2461 static bool has_cpu_slab(int cpu, void *info)
2462 {
2463 	struct kmem_cache *s = info;
2464 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2465 
2466 	return c->page || slub_percpu_partial(c);
2467 }
2468 
flush_all(struct kmem_cache * s)2469 static void flush_all(struct kmem_cache *s)
2470 {
2471 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2472 }
2473 
2474 /*
2475  * Use the cpu notifier to insure that the cpu slabs are flushed when
2476  * necessary.
2477  */
slub_cpu_dead(unsigned int cpu)2478 static int slub_cpu_dead(unsigned int cpu)
2479 {
2480 	struct kmem_cache *s;
2481 	unsigned long flags;
2482 
2483 	mutex_lock(&slab_mutex);
2484 	list_for_each_entry(s, &slab_caches, list) {
2485 		local_irq_save(flags);
2486 		__flush_cpu_slab(s, cpu);
2487 		local_irq_restore(flags);
2488 	}
2489 	mutex_unlock(&slab_mutex);
2490 	return 0;
2491 }
2492 
2493 /*
2494  * Check if the objects in a per cpu structure fit numa
2495  * locality expectations.
2496  */
node_match(struct page * page,int node)2497 static inline int node_match(struct page *page, int node)
2498 {
2499 #ifdef CONFIG_NUMA
2500 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2501 		return 0;
2502 #endif
2503 	return 1;
2504 }
2505 
2506 #ifdef CONFIG_SLUB_DEBUG
count_free(struct page * page)2507 static int count_free(struct page *page)
2508 {
2509 	return page->objects - page->inuse;
2510 }
2511 
node_nr_objs(struct kmem_cache_node * n)2512 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2513 {
2514 	return atomic_long_read(&n->total_objects);
2515 }
2516 #endif /* CONFIG_SLUB_DEBUG */
2517 
2518 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct page *))2519 static unsigned long count_partial(struct kmem_cache_node *n,
2520 					int (*get_count)(struct page *))
2521 {
2522 	unsigned long flags;
2523 	unsigned long x = 0;
2524 	struct page *page;
2525 
2526 	spin_lock_irqsave(&n->list_lock, flags);
2527 	list_for_each_entry(page, &n->partial, slab_list)
2528 		x += get_count(page);
2529 	spin_unlock_irqrestore(&n->list_lock, flags);
2530 	return x;
2531 }
2532 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2533 
2534 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2535 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2536 {
2537 #ifdef CONFIG_SLUB_DEBUG
2538 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2539 				      DEFAULT_RATELIMIT_BURST);
2540 	int node;
2541 	struct kmem_cache_node *n;
2542 
2543 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2544 		return;
2545 
2546 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2547 		nid, gfpflags, &gfpflags);
2548 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2549 		s->name, s->object_size, s->size, oo_order(s->oo),
2550 		oo_order(s->min));
2551 
2552 	if (oo_order(s->min) > get_order(s->object_size))
2553 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2554 			s->name);
2555 
2556 	for_each_kmem_cache_node(s, node, n) {
2557 		unsigned long nr_slabs;
2558 		unsigned long nr_objs;
2559 		unsigned long nr_free;
2560 
2561 		nr_free  = count_partial(n, count_free);
2562 		nr_slabs = node_nr_slabs(n);
2563 		nr_objs  = node_nr_objs(n);
2564 
2565 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2566 			node, nr_slabs, nr_objs, nr_free);
2567 	}
2568 #endif
2569 }
2570 
new_slab_objects(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu ** pc)2571 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2572 			int node, struct kmem_cache_cpu **pc)
2573 {
2574 	void *freelist;
2575 	struct kmem_cache_cpu *c = *pc;
2576 	struct page *page;
2577 
2578 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2579 
2580 	freelist = get_partial(s, flags, node, c);
2581 
2582 	if (freelist)
2583 		return freelist;
2584 
2585 	page = new_slab(s, flags, node);
2586 	if (page) {
2587 		c = raw_cpu_ptr(s->cpu_slab);
2588 		if (c->page)
2589 			flush_slab(s, c);
2590 
2591 		/*
2592 		 * No other reference to the page yet so we can
2593 		 * muck around with it freely without cmpxchg
2594 		 */
2595 		freelist = page->freelist;
2596 		page->freelist = NULL;
2597 
2598 		stat(s, ALLOC_SLAB);
2599 		c->page = page;
2600 		*pc = c;
2601 	}
2602 
2603 	return freelist;
2604 }
2605 
pfmemalloc_match(struct page * page,gfp_t gfpflags)2606 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2607 {
2608 	if (unlikely(PageSlabPfmemalloc(page)))
2609 		return gfp_pfmemalloc_allowed(gfpflags);
2610 
2611 	return true;
2612 }
2613 
2614 /*
2615  * Check the page->freelist of a page and either transfer the freelist to the
2616  * per cpu freelist or deactivate the page.
2617  *
2618  * The page is still frozen if the return value is not NULL.
2619  *
2620  * If this function returns NULL then the page has been unfrozen.
2621  *
2622  * This function must be called with interrupt disabled.
2623  */
get_freelist(struct kmem_cache * s,struct page * page)2624 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2625 {
2626 	struct page new;
2627 	unsigned long counters;
2628 	void *freelist;
2629 
2630 	do {
2631 		freelist = page->freelist;
2632 		counters = page->counters;
2633 
2634 		new.counters = counters;
2635 		VM_BUG_ON(!new.frozen);
2636 
2637 		new.inuse = page->objects;
2638 		new.frozen = freelist != NULL;
2639 
2640 	} while (!__cmpxchg_double_slab(s, page,
2641 		freelist, counters,
2642 		NULL, new.counters,
2643 		"get_freelist"));
2644 
2645 	return freelist;
2646 }
2647 
2648 /*
2649  * Slow path. The lockless freelist is empty or we need to perform
2650  * debugging duties.
2651  *
2652  * Processing is still very fast if new objects have been freed to the
2653  * regular freelist. In that case we simply take over the regular freelist
2654  * as the lockless freelist and zap the regular freelist.
2655  *
2656  * If that is not working then we fall back to the partial lists. We take the
2657  * first element of the freelist as the object to allocate now and move the
2658  * rest of the freelist to the lockless freelist.
2659  *
2660  * And if we were unable to get a new slab from the partial slab lists then
2661  * we need to allocate a new slab. This is the slowest path since it involves
2662  * a call to the page allocator and the setup of a new slab.
2663  *
2664  * Version of __slab_alloc to use when we know that interrupts are
2665  * already disabled (which is the case for bulk allocation).
2666  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2667 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2668 			  unsigned long addr, struct kmem_cache_cpu *c)
2669 {
2670 	void *freelist;
2671 	struct page *page;
2672 
2673 	stat(s, ALLOC_SLOWPATH);
2674 
2675 	page = c->page;
2676 	if (!page) {
2677 		/*
2678 		 * if the node is not online or has no normal memory, just
2679 		 * ignore the node constraint
2680 		 */
2681 		if (unlikely(node != NUMA_NO_NODE &&
2682 			     !node_state(node, N_NORMAL_MEMORY)))
2683 			node = NUMA_NO_NODE;
2684 		goto new_slab;
2685 	}
2686 redo:
2687 
2688 	if (unlikely(!node_match(page, node))) {
2689 		/*
2690 		 * same as above but node_match() being false already
2691 		 * implies node != NUMA_NO_NODE
2692 		 */
2693 		if (!node_state(node, N_NORMAL_MEMORY)) {
2694 			node = NUMA_NO_NODE;
2695 			goto redo;
2696 		} else {
2697 			stat(s, ALLOC_NODE_MISMATCH);
2698 			deactivate_slab(s, page, c->freelist, c);
2699 			goto new_slab;
2700 		}
2701 	}
2702 
2703 	/*
2704 	 * By rights, we should be searching for a slab page that was
2705 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2706 	 * information when the page leaves the per-cpu allocator
2707 	 */
2708 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2709 		deactivate_slab(s, page, c->freelist, c);
2710 		goto new_slab;
2711 	}
2712 
2713 	/* must check again c->freelist in case of cpu migration or IRQ */
2714 	freelist = c->freelist;
2715 	if (freelist)
2716 		goto load_freelist;
2717 
2718 	freelist = get_freelist(s, page);
2719 
2720 	if (!freelist) {
2721 		c->page = NULL;
2722 		c->tid = next_tid(c->tid);
2723 		stat(s, DEACTIVATE_BYPASS);
2724 		goto new_slab;
2725 	}
2726 
2727 	stat(s, ALLOC_REFILL);
2728 
2729 load_freelist:
2730 	/*
2731 	 * freelist is pointing to the list of objects to be used.
2732 	 * page is pointing to the page from which the objects are obtained.
2733 	 * That page must be frozen for per cpu allocations to work.
2734 	 */
2735 	VM_BUG_ON(!c->page->frozen);
2736 	c->freelist = get_freepointer(s, freelist);
2737 	c->tid = next_tid(c->tid);
2738 	return freelist;
2739 
2740 new_slab:
2741 
2742 	if (slub_percpu_partial(c)) {
2743 		page = c->page = slub_percpu_partial(c);
2744 		slub_set_percpu_partial(c, page);
2745 		stat(s, CPU_PARTIAL_ALLOC);
2746 		goto redo;
2747 	}
2748 
2749 	freelist = new_slab_objects(s, gfpflags, node, &c);
2750 
2751 	if (unlikely(!freelist)) {
2752 		slab_out_of_memory(s, gfpflags, node);
2753 		return NULL;
2754 	}
2755 
2756 	page = c->page;
2757 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2758 		goto load_freelist;
2759 
2760 	/* Only entered in the debug case */
2761 	if (kmem_cache_debug(s) &&
2762 			!alloc_debug_processing(s, page, freelist, addr))
2763 		goto new_slab;	/* Slab failed checks. Next slab needed */
2764 
2765 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2766 	return freelist;
2767 }
2768 
2769 /*
2770  * Another one that disabled interrupt and compensates for possible
2771  * cpu changes by refetching the per cpu area pointer.
2772  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2773 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2774 			  unsigned long addr, struct kmem_cache_cpu *c)
2775 {
2776 	void *p;
2777 	unsigned long flags;
2778 
2779 	local_irq_save(flags);
2780 #ifdef CONFIG_PREEMPTION
2781 	/*
2782 	 * We may have been preempted and rescheduled on a different
2783 	 * cpu before disabling interrupts. Need to reload cpu area
2784 	 * pointer.
2785 	 */
2786 	c = this_cpu_ptr(s->cpu_slab);
2787 #endif
2788 
2789 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2790 	local_irq_restore(flags);
2791 	return p;
2792 }
2793 
2794 /*
2795  * If the object has been wiped upon free, make sure it's fully initialized by
2796  * zeroing out freelist pointer.
2797  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)2798 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2799 						   void *obj)
2800 {
2801 	if (unlikely(slab_want_init_on_free(s)) && obj)
2802 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2803 }
2804 
2805 /*
2806  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2807  * have the fastpath folded into their functions. So no function call
2808  * overhead for requests that can be satisfied on the fastpath.
2809  *
2810  * The fastpath works by first checking if the lockless freelist can be used.
2811  * If not then __slab_alloc is called for slow processing.
2812  *
2813  * Otherwise we can simply pick the next object from the lockless free list.
2814  */
slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr)2815 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2816 		gfp_t gfpflags, int node, unsigned long addr)
2817 {
2818 	void *object;
2819 	struct kmem_cache_cpu *c;
2820 	struct page *page;
2821 	unsigned long tid;
2822 	struct obj_cgroup *objcg = NULL;
2823 
2824 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2825 	if (!s)
2826 		return NULL;
2827 redo:
2828 	/*
2829 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2830 	 * enabled. We may switch back and forth between cpus while
2831 	 * reading from one cpu area. That does not matter as long
2832 	 * as we end up on the original cpu again when doing the cmpxchg.
2833 	 *
2834 	 * We should guarantee that tid and kmem_cache are retrieved on
2835 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2836 	 * to check if it is matched or not.
2837 	 */
2838 	do {
2839 		tid = this_cpu_read(s->cpu_slab->tid);
2840 		c = raw_cpu_ptr(s->cpu_slab);
2841 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2842 		 unlikely(tid != READ_ONCE(c->tid)));
2843 
2844 	/*
2845 	 * Irqless object alloc/free algorithm used here depends on sequence
2846 	 * of fetching cpu_slab's data. tid should be fetched before anything
2847 	 * on c to guarantee that object and page associated with previous tid
2848 	 * won't be used with current tid. If we fetch tid first, object and
2849 	 * page could be one associated with next tid and our alloc/free
2850 	 * request will be failed. In this case, we will retry. So, no problem.
2851 	 */
2852 	barrier();
2853 
2854 	/*
2855 	 * The transaction ids are globally unique per cpu and per operation on
2856 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2857 	 * occurs on the right processor and that there was no operation on the
2858 	 * linked list in between.
2859 	 */
2860 
2861 	object = c->freelist;
2862 	page = c->page;
2863 	if (unlikely(!object || !page || !node_match(page, node))) {
2864 		object = __slab_alloc(s, gfpflags, node, addr, c);
2865 	} else {
2866 		void *next_object = get_freepointer_safe(s, object);
2867 
2868 		/*
2869 		 * The cmpxchg will only match if there was no additional
2870 		 * operation and if we are on the right processor.
2871 		 *
2872 		 * The cmpxchg does the following atomically (without lock
2873 		 * semantics!)
2874 		 * 1. Relocate first pointer to the current per cpu area.
2875 		 * 2. Verify that tid and freelist have not been changed
2876 		 * 3. If they were not changed replace tid and freelist
2877 		 *
2878 		 * Since this is without lock semantics the protection is only
2879 		 * against code executing on this cpu *not* from access by
2880 		 * other cpus.
2881 		 */
2882 		if (unlikely(!this_cpu_cmpxchg_double(
2883 				s->cpu_slab->freelist, s->cpu_slab->tid,
2884 				object, tid,
2885 				next_object, next_tid(tid)))) {
2886 
2887 			note_cmpxchg_failure("slab_alloc", s, tid);
2888 			goto redo;
2889 		}
2890 		prefetch_freepointer(s, next_object);
2891 		stat(s, ALLOC_FASTPATH);
2892 	}
2893 
2894 	maybe_wipe_obj_freeptr(s, object);
2895 
2896 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2897 		memset(object, 0, s->object_size);
2898 
2899 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2900 
2901 	return object;
2902 }
2903 
slab_alloc(struct kmem_cache * s,gfp_t gfpflags,unsigned long addr)2904 static __always_inline void *slab_alloc(struct kmem_cache *s,
2905 		gfp_t gfpflags, unsigned long addr)
2906 {
2907 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2908 }
2909 
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)2910 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2911 {
2912 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2913 
2914 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2915 				s->size, gfpflags);
2916 
2917 	return ret;
2918 }
2919 EXPORT_SYMBOL(kmem_cache_alloc);
2920 
2921 #ifdef CONFIG_TRACING
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)2922 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2923 {
2924 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2925 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2926 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2927 	return ret;
2928 }
2929 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2930 #endif
2931 
2932 #ifdef CONFIG_NUMA
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)2933 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2934 {
2935 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2936 
2937 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2938 				    s->object_size, s->size, gfpflags, node);
2939 
2940 	return ret;
2941 }
2942 EXPORT_SYMBOL(kmem_cache_alloc_node);
2943 
2944 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)2945 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2946 				    gfp_t gfpflags,
2947 				    int node, size_t size)
2948 {
2949 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2950 
2951 	trace_kmalloc_node(_RET_IP_, ret,
2952 			   size, s->size, gfpflags, node);
2953 
2954 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2955 	return ret;
2956 }
2957 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2958 #endif
2959 #endif	/* CONFIG_NUMA */
2960 
2961 /*
2962  * Slow path handling. This may still be called frequently since objects
2963  * have a longer lifetime than the cpu slabs in most processing loads.
2964  *
2965  * So we still attempt to reduce cache line usage. Just take the slab
2966  * lock and free the item. If there is no additional partial page
2967  * handling required then we can return immediately.
2968  */
__slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)2969 static void __slab_free(struct kmem_cache *s, struct page *page,
2970 			void *head, void *tail, int cnt,
2971 			unsigned long addr)
2972 
2973 {
2974 	void *prior;
2975 	int was_frozen;
2976 	struct page new;
2977 	unsigned long counters;
2978 	struct kmem_cache_node *n = NULL;
2979 	unsigned long flags;
2980 
2981 	stat(s, FREE_SLOWPATH);
2982 
2983 	if (kmem_cache_debug(s) &&
2984 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2985 		return;
2986 
2987 	do {
2988 		if (unlikely(n)) {
2989 			spin_unlock_irqrestore(&n->list_lock, flags);
2990 			n = NULL;
2991 		}
2992 		prior = page->freelist;
2993 		counters = page->counters;
2994 		set_freepointer(s, tail, prior);
2995 		new.counters = counters;
2996 		was_frozen = new.frozen;
2997 		new.inuse -= cnt;
2998 		if ((!new.inuse || !prior) && !was_frozen) {
2999 
3000 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3001 
3002 				/*
3003 				 * Slab was on no list before and will be
3004 				 * partially empty
3005 				 * We can defer the list move and instead
3006 				 * freeze it.
3007 				 */
3008 				new.frozen = 1;
3009 
3010 			} else { /* Needs to be taken off a list */
3011 
3012 				n = get_node(s, page_to_nid(page));
3013 				/*
3014 				 * Speculatively acquire the list_lock.
3015 				 * If the cmpxchg does not succeed then we may
3016 				 * drop the list_lock without any processing.
3017 				 *
3018 				 * Otherwise the list_lock will synchronize with
3019 				 * other processors updating the list of slabs.
3020 				 */
3021 				spin_lock_irqsave(&n->list_lock, flags);
3022 
3023 			}
3024 		}
3025 
3026 	} while (!cmpxchg_double_slab(s, page,
3027 		prior, counters,
3028 		head, new.counters,
3029 		"__slab_free"));
3030 
3031 	if (likely(!n)) {
3032 
3033 		if (likely(was_frozen)) {
3034 			/*
3035 			 * The list lock was not taken therefore no list
3036 			 * activity can be necessary.
3037 			 */
3038 			stat(s, FREE_FROZEN);
3039 		} else if (new.frozen) {
3040 			/*
3041 			 * If we just froze the page then put it onto the
3042 			 * per cpu partial list.
3043 			 */
3044 			put_cpu_partial(s, page, 1);
3045 			stat(s, CPU_PARTIAL_FREE);
3046 		}
3047 
3048 		return;
3049 	}
3050 
3051 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3052 		goto slab_empty;
3053 
3054 	/*
3055 	 * Objects left in the slab. If it was not on the partial list before
3056 	 * then add it.
3057 	 */
3058 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3059 		remove_full(s, n, page);
3060 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3061 		stat(s, FREE_ADD_PARTIAL);
3062 	}
3063 	spin_unlock_irqrestore(&n->list_lock, flags);
3064 	return;
3065 
3066 slab_empty:
3067 	if (prior) {
3068 		/*
3069 		 * Slab on the partial list.
3070 		 */
3071 		remove_partial(n, page);
3072 		stat(s, FREE_REMOVE_PARTIAL);
3073 	} else {
3074 		/* Slab must be on the full list */
3075 		remove_full(s, n, page);
3076 	}
3077 
3078 	spin_unlock_irqrestore(&n->list_lock, flags);
3079 	stat(s, FREE_SLAB);
3080 	discard_slab(s, page);
3081 }
3082 
3083 /*
3084  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3085  * can perform fastpath freeing without additional function calls.
3086  *
3087  * The fastpath is only possible if we are freeing to the current cpu slab
3088  * of this processor. This typically the case if we have just allocated
3089  * the item before.
3090  *
3091  * If fastpath is not possible then fall back to __slab_free where we deal
3092  * with all sorts of special processing.
3093  *
3094  * Bulk free of a freelist with several objects (all pointing to the
3095  * same page) possible by specifying head and tail ptr, plus objects
3096  * count (cnt). Bulk free indicated by tail pointer being set.
3097  */
do_slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3098 static __always_inline void do_slab_free(struct kmem_cache *s,
3099 				struct page *page, void *head, void *tail,
3100 				int cnt, unsigned long addr)
3101 {
3102 	void *tail_obj = tail ? : head;
3103 	struct kmem_cache_cpu *c;
3104 	unsigned long tid;
3105 
3106 	/* memcg_slab_free_hook() is already called for bulk free. */
3107 	if (!tail)
3108 		memcg_slab_free_hook(s, &head, 1);
3109 redo:
3110 	/*
3111 	 * Determine the currently cpus per cpu slab.
3112 	 * The cpu may change afterward. However that does not matter since
3113 	 * data is retrieved via this pointer. If we are on the same cpu
3114 	 * during the cmpxchg then the free will succeed.
3115 	 */
3116 	do {
3117 		tid = this_cpu_read(s->cpu_slab->tid);
3118 		c = raw_cpu_ptr(s->cpu_slab);
3119 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3120 		 unlikely(tid != READ_ONCE(c->tid)));
3121 
3122 	/* Same with comment on barrier() in slab_alloc_node() */
3123 	barrier();
3124 
3125 	if (likely(page == c->page)) {
3126 		void **freelist = READ_ONCE(c->freelist);
3127 
3128 		set_freepointer(s, tail_obj, freelist);
3129 
3130 		if (unlikely(!this_cpu_cmpxchg_double(
3131 				s->cpu_slab->freelist, s->cpu_slab->tid,
3132 				freelist, tid,
3133 				head, next_tid(tid)))) {
3134 
3135 			note_cmpxchg_failure("slab_free", s, tid);
3136 			goto redo;
3137 		}
3138 		stat(s, FREE_FASTPATH);
3139 	} else
3140 		__slab_free(s, page, head, tail_obj, cnt, addr);
3141 
3142 }
3143 
slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3144 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3145 				      void *head, void *tail, int cnt,
3146 				      unsigned long addr)
3147 {
3148 	/*
3149 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3150 	 * to remove objects, whose reuse must be delayed.
3151 	 */
3152 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3153 		do_slab_free(s, page, head, tail, cnt, addr);
3154 }
3155 
3156 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3157 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3158 {
3159 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3160 }
3161 #endif
3162 
kmem_cache_free(struct kmem_cache * s,void * x)3163 void kmem_cache_free(struct kmem_cache *s, void *x)
3164 {
3165 	s = cache_from_obj(s, x);
3166 	if (!s)
3167 		return;
3168 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3169 	trace_kmem_cache_free(_RET_IP_, x);
3170 }
3171 EXPORT_SYMBOL(kmem_cache_free);
3172 
3173 struct detached_freelist {
3174 	struct page *page;
3175 	void *tail;
3176 	void *freelist;
3177 	int cnt;
3178 	struct kmem_cache *s;
3179 };
3180 
3181 /*
3182  * This function progressively scans the array with free objects (with
3183  * a limited look ahead) and extract objects belonging to the same
3184  * page.  It builds a detached freelist directly within the given
3185  * page/objects.  This can happen without any need for
3186  * synchronization, because the objects are owned by running process.
3187  * The freelist is build up as a single linked list in the objects.
3188  * The idea is, that this detached freelist can then be bulk
3189  * transferred to the real freelist(s), but only requiring a single
3190  * synchronization primitive.  Look ahead in the array is limited due
3191  * to performance reasons.
3192  */
3193 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3194 int build_detached_freelist(struct kmem_cache *s, size_t size,
3195 			    void **p, struct detached_freelist *df)
3196 {
3197 	size_t first_skipped_index = 0;
3198 	int lookahead = 3;
3199 	void *object;
3200 	struct page *page;
3201 
3202 	/* Always re-init detached_freelist */
3203 	df->page = NULL;
3204 
3205 	do {
3206 		object = p[--size];
3207 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3208 	} while (!object && size);
3209 
3210 	if (!object)
3211 		return 0;
3212 
3213 	page = virt_to_head_page(object);
3214 	if (!s) {
3215 		/* Handle kalloc'ed objects */
3216 		if (unlikely(!PageSlab(page))) {
3217 			BUG_ON(!PageCompound(page));
3218 			kfree_hook(object);
3219 			__free_pages(page, compound_order(page));
3220 			p[size] = NULL; /* mark object processed */
3221 			return size;
3222 		}
3223 		/* Derive kmem_cache from object */
3224 		df->s = page->slab_cache;
3225 	} else {
3226 		df->s = cache_from_obj(s, object); /* Support for memcg */
3227 	}
3228 
3229 	/* Start new detached freelist */
3230 	df->page = page;
3231 	set_freepointer(df->s, object, NULL);
3232 	df->tail = object;
3233 	df->freelist = object;
3234 	p[size] = NULL; /* mark object processed */
3235 	df->cnt = 1;
3236 
3237 	while (size) {
3238 		object = p[--size];
3239 		if (!object)
3240 			continue; /* Skip processed objects */
3241 
3242 		/* df->page is always set at this point */
3243 		if (df->page == virt_to_head_page(object)) {
3244 			/* Opportunity build freelist */
3245 			set_freepointer(df->s, object, df->freelist);
3246 			df->freelist = object;
3247 			df->cnt++;
3248 			p[size] = NULL; /* mark object processed */
3249 
3250 			continue;
3251 		}
3252 
3253 		/* Limit look ahead search */
3254 		if (!--lookahead)
3255 			break;
3256 
3257 		if (!first_skipped_index)
3258 			first_skipped_index = size + 1;
3259 	}
3260 
3261 	return first_skipped_index;
3262 }
3263 
3264 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3265 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3266 {
3267 	if (WARN_ON(!size))
3268 		return;
3269 
3270 	memcg_slab_free_hook(s, p, size);
3271 	do {
3272 		struct detached_freelist df;
3273 
3274 		size = build_detached_freelist(s, size, p, &df);
3275 		if (!df.page)
3276 			continue;
3277 
3278 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3279 	} while (likely(size));
3280 }
3281 EXPORT_SYMBOL(kmem_cache_free_bulk);
3282 
3283 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3284 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3285 			  void **p)
3286 {
3287 	struct kmem_cache_cpu *c;
3288 	int i;
3289 	struct obj_cgroup *objcg = NULL;
3290 
3291 	/* memcg and kmem_cache debug support */
3292 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3293 	if (unlikely(!s))
3294 		return false;
3295 	/*
3296 	 * Drain objects in the per cpu slab, while disabling local
3297 	 * IRQs, which protects against PREEMPT and interrupts
3298 	 * handlers invoking normal fastpath.
3299 	 */
3300 	local_irq_disable();
3301 	c = this_cpu_ptr(s->cpu_slab);
3302 
3303 	for (i = 0; i < size; i++) {
3304 		void *object = c->freelist;
3305 
3306 		if (unlikely(!object)) {
3307 			/*
3308 			 * We may have removed an object from c->freelist using
3309 			 * the fastpath in the previous iteration; in that case,
3310 			 * c->tid has not been bumped yet.
3311 			 * Since ___slab_alloc() may reenable interrupts while
3312 			 * allocating memory, we should bump c->tid now.
3313 			 */
3314 			c->tid = next_tid(c->tid);
3315 
3316 			/*
3317 			 * Invoking slow path likely have side-effect
3318 			 * of re-populating per CPU c->freelist
3319 			 */
3320 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3321 					    _RET_IP_, c);
3322 			if (unlikely(!p[i]))
3323 				goto error;
3324 
3325 			c = this_cpu_ptr(s->cpu_slab);
3326 			maybe_wipe_obj_freeptr(s, p[i]);
3327 
3328 			continue; /* goto for-loop */
3329 		}
3330 		c->freelist = get_freepointer(s, object);
3331 		p[i] = object;
3332 		maybe_wipe_obj_freeptr(s, p[i]);
3333 	}
3334 	c->tid = next_tid(c->tid);
3335 	local_irq_enable();
3336 
3337 	/* Clear memory outside IRQ disabled fastpath loop */
3338 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3339 		int j;
3340 
3341 		for (j = 0; j < i; j++)
3342 			memset(p[j], 0, s->object_size);
3343 	}
3344 
3345 	/* memcg and kmem_cache debug support */
3346 	slab_post_alloc_hook(s, objcg, flags, size, p);
3347 	return i;
3348 error:
3349 	local_irq_enable();
3350 	slab_post_alloc_hook(s, objcg, flags, i, p);
3351 	__kmem_cache_free_bulk(s, i, p);
3352 	return 0;
3353 }
3354 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3355 
3356 
3357 /*
3358  * Object placement in a slab is made very easy because we always start at
3359  * offset 0. If we tune the size of the object to the alignment then we can
3360  * get the required alignment by putting one properly sized object after
3361  * another.
3362  *
3363  * Notice that the allocation order determines the sizes of the per cpu
3364  * caches. Each processor has always one slab available for allocations.
3365  * Increasing the allocation order reduces the number of times that slabs
3366  * must be moved on and off the partial lists and is therefore a factor in
3367  * locking overhead.
3368  */
3369 
3370 /*
3371  * Mininum / Maximum order of slab pages. This influences locking overhead
3372  * and slab fragmentation. A higher order reduces the number of partial slabs
3373  * and increases the number of allocations possible without having to
3374  * take the list_lock.
3375  */
3376 static unsigned int slub_min_order;
3377 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3378 static unsigned int slub_min_objects;
3379 
3380 /*
3381  * Calculate the order of allocation given an slab object size.
3382  *
3383  * The order of allocation has significant impact on performance and other
3384  * system components. Generally order 0 allocations should be preferred since
3385  * order 0 does not cause fragmentation in the page allocator. Larger objects
3386  * be problematic to put into order 0 slabs because there may be too much
3387  * unused space left. We go to a higher order if more than 1/16th of the slab
3388  * would be wasted.
3389  *
3390  * In order to reach satisfactory performance we must ensure that a minimum
3391  * number of objects is in one slab. Otherwise we may generate too much
3392  * activity on the partial lists which requires taking the list_lock. This is
3393  * less a concern for large slabs though which are rarely used.
3394  *
3395  * slub_max_order specifies the order where we begin to stop considering the
3396  * number of objects in a slab as critical. If we reach slub_max_order then
3397  * we try to keep the page order as low as possible. So we accept more waste
3398  * of space in favor of a small page order.
3399  *
3400  * Higher order allocations also allow the placement of more objects in a
3401  * slab and thereby reduce object handling overhead. If the user has
3402  * requested a higher mininum order then we start with that one instead of
3403  * the smallest order which will fit the object.
3404  */
slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)3405 static inline unsigned int slab_order(unsigned int size,
3406 		unsigned int min_objects, unsigned int max_order,
3407 		unsigned int fract_leftover)
3408 {
3409 	unsigned int min_order = slub_min_order;
3410 	unsigned int order;
3411 
3412 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3413 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3414 
3415 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3416 			order <= max_order; order++) {
3417 
3418 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3419 		unsigned int rem;
3420 
3421 		rem = slab_size % size;
3422 
3423 		if (rem <= slab_size / fract_leftover)
3424 			break;
3425 	}
3426 
3427 	return order;
3428 }
3429 
calculate_order(unsigned int size)3430 static inline int calculate_order(unsigned int size)
3431 {
3432 	unsigned int order;
3433 	unsigned int min_objects;
3434 	unsigned int max_objects;
3435 
3436 	/*
3437 	 * Attempt to find best configuration for a slab. This
3438 	 * works by first attempting to generate a layout with
3439 	 * the best configuration and backing off gradually.
3440 	 *
3441 	 * First we increase the acceptable waste in a slab. Then
3442 	 * we reduce the minimum objects required in a slab.
3443 	 */
3444 	min_objects = slub_min_objects;
3445 	if (!min_objects)
3446 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3447 	max_objects = order_objects(slub_max_order, size);
3448 	min_objects = min(min_objects, max_objects);
3449 
3450 	while (min_objects > 1) {
3451 		unsigned int fraction;
3452 
3453 		fraction = 16;
3454 		while (fraction >= 4) {
3455 			order = slab_order(size, min_objects,
3456 					slub_max_order, fraction);
3457 			if (order <= slub_max_order)
3458 				return order;
3459 			fraction /= 2;
3460 		}
3461 		min_objects--;
3462 	}
3463 
3464 	/*
3465 	 * We were unable to place multiple objects in a slab. Now
3466 	 * lets see if we can place a single object there.
3467 	 */
3468 	order = slab_order(size, 1, slub_max_order, 1);
3469 	if (order <= slub_max_order)
3470 		return order;
3471 
3472 	/*
3473 	 * Doh this slab cannot be placed using slub_max_order.
3474 	 */
3475 	order = slab_order(size, 1, MAX_ORDER, 1);
3476 	if (order < MAX_ORDER)
3477 		return order;
3478 	return -ENOSYS;
3479 }
3480 
3481 static void
init_kmem_cache_node(struct kmem_cache_node * n)3482 init_kmem_cache_node(struct kmem_cache_node *n)
3483 {
3484 	n->nr_partial = 0;
3485 	spin_lock_init(&n->list_lock);
3486 	INIT_LIST_HEAD(&n->partial);
3487 #ifdef CONFIG_SLUB_DEBUG
3488 	atomic_long_set(&n->nr_slabs, 0);
3489 	atomic_long_set(&n->total_objects, 0);
3490 	INIT_LIST_HEAD(&n->full);
3491 #endif
3492 }
3493 
alloc_kmem_cache_cpus(struct kmem_cache * s)3494 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3495 {
3496 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3497 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3498 
3499 	/*
3500 	 * Must align to double word boundary for the double cmpxchg
3501 	 * instructions to work; see __pcpu_double_call_return_bool().
3502 	 */
3503 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3504 				     2 * sizeof(void *));
3505 
3506 	if (!s->cpu_slab)
3507 		return 0;
3508 
3509 	init_kmem_cache_cpus(s);
3510 
3511 	return 1;
3512 }
3513 
3514 static struct kmem_cache *kmem_cache_node;
3515 
3516 /*
3517  * No kmalloc_node yet so do it by hand. We know that this is the first
3518  * slab on the node for this slabcache. There are no concurrent accesses
3519  * possible.
3520  *
3521  * Note that this function only works on the kmem_cache_node
3522  * when allocating for the kmem_cache_node. This is used for bootstrapping
3523  * memory on a fresh node that has no slab structures yet.
3524  */
early_kmem_cache_node_alloc(int node)3525 static void early_kmem_cache_node_alloc(int node)
3526 {
3527 	struct page *page;
3528 	struct kmem_cache_node *n;
3529 
3530 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3531 
3532 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3533 
3534 	BUG_ON(!page);
3535 	if (page_to_nid(page) != node) {
3536 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3537 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3538 	}
3539 
3540 	n = page->freelist;
3541 	BUG_ON(!n);
3542 #ifdef CONFIG_SLUB_DEBUG
3543 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3544 	init_tracking(kmem_cache_node, n);
3545 #endif
3546 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3547 		      GFP_KERNEL);
3548 	page->freelist = get_freepointer(kmem_cache_node, n);
3549 	page->inuse = 1;
3550 	page->frozen = 0;
3551 	kmem_cache_node->node[node] = n;
3552 	init_kmem_cache_node(n);
3553 	inc_slabs_node(kmem_cache_node, node, page->objects);
3554 
3555 	/*
3556 	 * No locks need to be taken here as it has just been
3557 	 * initialized and there is no concurrent access.
3558 	 */
3559 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3560 }
3561 
free_kmem_cache_nodes(struct kmem_cache * s)3562 static void free_kmem_cache_nodes(struct kmem_cache *s)
3563 {
3564 	int node;
3565 	struct kmem_cache_node *n;
3566 
3567 	for_each_kmem_cache_node(s, node, n) {
3568 		s->node[node] = NULL;
3569 		kmem_cache_free(kmem_cache_node, n);
3570 	}
3571 }
3572 
__kmem_cache_release(struct kmem_cache * s)3573 void __kmem_cache_release(struct kmem_cache *s)
3574 {
3575 	cache_random_seq_destroy(s);
3576 	free_percpu(s->cpu_slab);
3577 	free_kmem_cache_nodes(s);
3578 }
3579 
init_kmem_cache_nodes(struct kmem_cache * s)3580 static int init_kmem_cache_nodes(struct kmem_cache *s)
3581 {
3582 	int node;
3583 
3584 	for_each_node_state(node, N_NORMAL_MEMORY) {
3585 		struct kmem_cache_node *n;
3586 
3587 		if (slab_state == DOWN) {
3588 			early_kmem_cache_node_alloc(node);
3589 			continue;
3590 		}
3591 		n = kmem_cache_alloc_node(kmem_cache_node,
3592 						GFP_KERNEL, node);
3593 
3594 		if (!n) {
3595 			free_kmem_cache_nodes(s);
3596 			return 0;
3597 		}
3598 
3599 		init_kmem_cache_node(n);
3600 		s->node[node] = n;
3601 	}
3602 	return 1;
3603 }
3604 
set_min_partial(struct kmem_cache * s,unsigned long min)3605 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3606 {
3607 	if (min < MIN_PARTIAL)
3608 		min = MIN_PARTIAL;
3609 	else if (min > MAX_PARTIAL)
3610 		min = MAX_PARTIAL;
3611 	s->min_partial = min;
3612 }
3613 
set_cpu_partial(struct kmem_cache * s)3614 static void set_cpu_partial(struct kmem_cache *s)
3615 {
3616 #ifdef CONFIG_SLUB_CPU_PARTIAL
3617 	/*
3618 	 * cpu_partial determined the maximum number of objects kept in the
3619 	 * per cpu partial lists of a processor.
3620 	 *
3621 	 * Per cpu partial lists mainly contain slabs that just have one
3622 	 * object freed. If they are used for allocation then they can be
3623 	 * filled up again with minimal effort. The slab will never hit the
3624 	 * per node partial lists and therefore no locking will be required.
3625 	 *
3626 	 * This setting also determines
3627 	 *
3628 	 * A) The number of objects from per cpu partial slabs dumped to the
3629 	 *    per node list when we reach the limit.
3630 	 * B) The number of objects in cpu partial slabs to extract from the
3631 	 *    per node list when we run out of per cpu objects. We only fetch
3632 	 *    50% to keep some capacity around for frees.
3633 	 */
3634 	if (!kmem_cache_has_cpu_partial(s))
3635 		slub_set_cpu_partial(s, 0);
3636 	else if (s->size >= PAGE_SIZE)
3637 		slub_set_cpu_partial(s, 2);
3638 	else if (s->size >= 1024)
3639 		slub_set_cpu_partial(s, 6);
3640 	else if (s->size >= 256)
3641 		slub_set_cpu_partial(s, 13);
3642 	else
3643 		slub_set_cpu_partial(s, 30);
3644 #endif
3645 }
3646 
3647 /*
3648  * calculate_sizes() determines the order and the distribution of data within
3649  * a slab object.
3650  */
calculate_sizes(struct kmem_cache * s,int forced_order)3651 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3652 {
3653 	slab_flags_t flags = s->flags;
3654 	unsigned int size = s->object_size;
3655 	unsigned int order;
3656 
3657 	/*
3658 	 * Round up object size to the next word boundary. We can only
3659 	 * place the free pointer at word boundaries and this determines
3660 	 * the possible location of the free pointer.
3661 	 */
3662 	size = ALIGN(size, sizeof(void *));
3663 
3664 #ifdef CONFIG_SLUB_DEBUG
3665 	/*
3666 	 * Determine if we can poison the object itself. If the user of
3667 	 * the slab may touch the object after free or before allocation
3668 	 * then we should never poison the object itself.
3669 	 */
3670 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3671 			!s->ctor)
3672 		s->flags |= __OBJECT_POISON;
3673 	else
3674 		s->flags &= ~__OBJECT_POISON;
3675 
3676 
3677 	/*
3678 	 * If we are Redzoning then check if there is some space between the
3679 	 * end of the object and the free pointer. If not then add an
3680 	 * additional word to have some bytes to store Redzone information.
3681 	 */
3682 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3683 		size += sizeof(void *);
3684 #endif
3685 
3686 	/*
3687 	 * With that we have determined the number of bytes in actual use
3688 	 * by the object and redzoning.
3689 	 */
3690 	s->inuse = size;
3691 
3692 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3693 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3694 	    s->ctor) {
3695 		/*
3696 		 * Relocate free pointer after the object if it is not
3697 		 * permitted to overwrite the first word of the object on
3698 		 * kmem_cache_free.
3699 		 *
3700 		 * This is the case if we do RCU, have a constructor or
3701 		 * destructor, are poisoning the objects, or are
3702 		 * redzoning an object smaller than sizeof(void *).
3703 		 *
3704 		 * The assumption that s->offset >= s->inuse means free
3705 		 * pointer is outside of the object is used in the
3706 		 * freeptr_outside_object() function. If that is no
3707 		 * longer true, the function needs to be modified.
3708 		 */
3709 		s->offset = size;
3710 		size += sizeof(void *);
3711 	} else {
3712 		/*
3713 		 * Store freelist pointer near middle of object to keep
3714 		 * it away from the edges of the object to avoid small
3715 		 * sized over/underflows from neighboring allocations.
3716 		 */
3717 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3718 	}
3719 
3720 #ifdef CONFIG_SLUB_DEBUG
3721 	if (flags & SLAB_STORE_USER)
3722 		/*
3723 		 * Need to store information about allocs and frees after
3724 		 * the object.
3725 		 */
3726 		size += 2 * sizeof(struct track);
3727 #endif
3728 
3729 	kasan_cache_create(s, &size, &s->flags);
3730 #ifdef CONFIG_SLUB_DEBUG
3731 	if (flags & SLAB_RED_ZONE) {
3732 		/*
3733 		 * Add some empty padding so that we can catch
3734 		 * overwrites from earlier objects rather than let
3735 		 * tracking information or the free pointer be
3736 		 * corrupted if a user writes before the start
3737 		 * of the object.
3738 		 */
3739 		size += sizeof(void *);
3740 
3741 		s->red_left_pad = sizeof(void *);
3742 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3743 		size += s->red_left_pad;
3744 	}
3745 #endif
3746 
3747 	/*
3748 	 * SLUB stores one object immediately after another beginning from
3749 	 * offset 0. In order to align the objects we have to simply size
3750 	 * each object to conform to the alignment.
3751 	 */
3752 	size = ALIGN(size, s->align);
3753 	s->size = size;
3754 	s->reciprocal_size = reciprocal_value(size);
3755 	if (forced_order >= 0)
3756 		order = forced_order;
3757 	else
3758 		order = calculate_order(size);
3759 
3760 	if ((int)order < 0)
3761 		return 0;
3762 
3763 	s->allocflags = 0;
3764 	if (order)
3765 		s->allocflags |= __GFP_COMP;
3766 
3767 	if (s->flags & SLAB_CACHE_DMA)
3768 		s->allocflags |= GFP_DMA;
3769 
3770 	if (s->flags & SLAB_CACHE_DMA32)
3771 		s->allocflags |= GFP_DMA32;
3772 
3773 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3774 		s->allocflags |= __GFP_RECLAIMABLE;
3775 
3776 	/*
3777 	 * Determine the number of objects per slab
3778 	 */
3779 	s->oo = oo_make(order, size);
3780 	s->min = oo_make(get_order(size), size);
3781 	if (oo_objects(s->oo) > oo_objects(s->max))
3782 		s->max = s->oo;
3783 
3784 	return !!oo_objects(s->oo);
3785 }
3786 
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)3787 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3788 {
3789 	s->flags = kmem_cache_flags(s->size, flags, s->name);
3790 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3791 	s->random = get_random_long();
3792 #endif
3793 
3794 	if (!calculate_sizes(s, -1))
3795 		goto error;
3796 	if (disable_higher_order_debug) {
3797 		/*
3798 		 * Disable debugging flags that store metadata if the min slab
3799 		 * order increased.
3800 		 */
3801 		if (get_order(s->size) > get_order(s->object_size)) {
3802 			s->flags &= ~DEBUG_METADATA_FLAGS;
3803 			s->offset = 0;
3804 			if (!calculate_sizes(s, -1))
3805 				goto error;
3806 		}
3807 	}
3808 
3809 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3810     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3811 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3812 		/* Enable fast mode */
3813 		s->flags |= __CMPXCHG_DOUBLE;
3814 #endif
3815 
3816 	/*
3817 	 * The larger the object size is, the more pages we want on the partial
3818 	 * list to avoid pounding the page allocator excessively.
3819 	 */
3820 	set_min_partial(s, ilog2(s->size) / 2);
3821 
3822 	set_cpu_partial(s);
3823 
3824 #ifdef CONFIG_NUMA
3825 	s->remote_node_defrag_ratio = 1000;
3826 #endif
3827 
3828 	/* Initialize the pre-computed randomized freelist if slab is up */
3829 	if (slab_state >= UP) {
3830 		if (init_cache_random_seq(s))
3831 			goto error;
3832 	}
3833 
3834 	if (!init_kmem_cache_nodes(s))
3835 		goto error;
3836 
3837 	if (alloc_kmem_cache_cpus(s))
3838 		return 0;
3839 
3840 error:
3841 	__kmem_cache_release(s);
3842 	return -EINVAL;
3843 }
3844 
list_slab_objects(struct kmem_cache * s,struct page * page,const char * text)3845 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3846 			      const char *text)
3847 {
3848 #ifdef CONFIG_SLUB_DEBUG
3849 	void *addr = page_address(page);
3850 	unsigned long *map;
3851 	void *p;
3852 
3853 	slab_err(s, page, text, s->name);
3854 	slab_lock(page);
3855 
3856 	map = get_map(s, page);
3857 	for_each_object(p, s, addr, page->objects) {
3858 
3859 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3860 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3861 			print_tracking(s, p);
3862 		}
3863 	}
3864 	put_map(map);
3865 	slab_unlock(page);
3866 #endif
3867 }
3868 
3869 /*
3870  * Attempt to free all partial slabs on a node.
3871  * This is called from __kmem_cache_shutdown(). We must take list_lock
3872  * because sysfs file might still access partial list after the shutdowning.
3873  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)3874 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3875 {
3876 	LIST_HEAD(discard);
3877 	struct page *page, *h;
3878 
3879 	BUG_ON(irqs_disabled());
3880 	spin_lock_irq(&n->list_lock);
3881 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3882 		if (!page->inuse) {
3883 			remove_partial(n, page);
3884 			list_add(&page->slab_list, &discard);
3885 		} else {
3886 			list_slab_objects(s, page,
3887 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3888 		}
3889 	}
3890 	spin_unlock_irq(&n->list_lock);
3891 
3892 	list_for_each_entry_safe(page, h, &discard, slab_list)
3893 		discard_slab(s, page);
3894 }
3895 
__kmem_cache_empty(struct kmem_cache * s)3896 bool __kmem_cache_empty(struct kmem_cache *s)
3897 {
3898 	int node;
3899 	struct kmem_cache_node *n;
3900 
3901 	for_each_kmem_cache_node(s, node, n)
3902 		if (n->nr_partial || slabs_node(s, node))
3903 			return false;
3904 	return true;
3905 }
3906 
3907 /*
3908  * Release all resources used by a slab cache.
3909  */
__kmem_cache_shutdown(struct kmem_cache * s)3910 int __kmem_cache_shutdown(struct kmem_cache *s)
3911 {
3912 	int node;
3913 	struct kmem_cache_node *n;
3914 
3915 	flush_all(s);
3916 	/* Attempt to free all objects */
3917 	for_each_kmem_cache_node(s, node, n) {
3918 		free_partial(s, n);
3919 		if (n->nr_partial || slabs_node(s, node))
3920 			return 1;
3921 	}
3922 	return 0;
3923 }
3924 
3925 /********************************************************************
3926  *		Kmalloc subsystem
3927  *******************************************************************/
3928 
setup_slub_min_order(char * str)3929 static int __init setup_slub_min_order(char *str)
3930 {
3931 	get_option(&str, (int *)&slub_min_order);
3932 
3933 	return 1;
3934 }
3935 
3936 __setup("slub_min_order=", setup_slub_min_order);
3937 
setup_slub_max_order(char * str)3938 static int __init setup_slub_max_order(char *str)
3939 {
3940 	get_option(&str, (int *)&slub_max_order);
3941 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3942 
3943 	return 1;
3944 }
3945 
3946 __setup("slub_max_order=", setup_slub_max_order);
3947 
setup_slub_min_objects(char * str)3948 static int __init setup_slub_min_objects(char *str)
3949 {
3950 	get_option(&str, (int *)&slub_min_objects);
3951 
3952 	return 1;
3953 }
3954 
3955 __setup("slub_min_objects=", setup_slub_min_objects);
3956 
__kmalloc(size_t size,gfp_t flags)3957 void *__kmalloc(size_t size, gfp_t flags)
3958 {
3959 	struct kmem_cache *s;
3960 	void *ret;
3961 
3962 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3963 		return kmalloc_large(size, flags);
3964 
3965 	s = kmalloc_slab(size, flags);
3966 
3967 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3968 		return s;
3969 
3970 	ret = slab_alloc(s, flags, _RET_IP_);
3971 
3972 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3973 
3974 	ret = kasan_kmalloc(s, ret, size, flags);
3975 
3976 	return ret;
3977 }
3978 EXPORT_SYMBOL(__kmalloc);
3979 
3980 #ifdef CONFIG_NUMA
kmalloc_large_node(size_t size,gfp_t flags,int node)3981 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3982 {
3983 	struct page *page;
3984 	void *ptr = NULL;
3985 	unsigned int order = get_order(size);
3986 
3987 	flags |= __GFP_COMP;
3988 	page = alloc_pages_node(node, flags, order);
3989 	if (page) {
3990 		ptr = page_address(page);
3991 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
3992 				      PAGE_SIZE << order);
3993 	}
3994 
3995 	return kmalloc_large_node_hook(ptr, size, flags);
3996 }
3997 
__kmalloc_node(size_t size,gfp_t flags,int node)3998 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3999 {
4000 	struct kmem_cache *s;
4001 	void *ret;
4002 
4003 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4004 		ret = kmalloc_large_node(size, flags, node);
4005 
4006 		trace_kmalloc_node(_RET_IP_, ret,
4007 				   size, PAGE_SIZE << get_order(size),
4008 				   flags, node);
4009 
4010 		return ret;
4011 	}
4012 
4013 	s = kmalloc_slab(size, flags);
4014 
4015 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4016 		return s;
4017 
4018 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
4019 
4020 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4021 
4022 	ret = kasan_kmalloc(s, ret, size, flags);
4023 
4024 	return ret;
4025 }
4026 EXPORT_SYMBOL(__kmalloc_node);
4027 #endif	/* CONFIG_NUMA */
4028 
4029 #ifdef CONFIG_HARDENED_USERCOPY
4030 /*
4031  * Rejects incorrectly sized objects and objects that are to be copied
4032  * to/from userspace but do not fall entirely within the containing slab
4033  * cache's usercopy region.
4034  *
4035  * Returns NULL if check passes, otherwise const char * to name of cache
4036  * to indicate an error.
4037  */
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)4038 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4039 			 bool to_user)
4040 {
4041 	struct kmem_cache *s;
4042 	unsigned int offset;
4043 	size_t object_size;
4044 
4045 	ptr = kasan_reset_tag(ptr);
4046 
4047 	/* Find object and usable object size. */
4048 	s = page->slab_cache;
4049 
4050 	/* Reject impossible pointers. */
4051 	if (ptr < page_address(page))
4052 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4053 			       to_user, 0, n);
4054 
4055 	/* Find offset within object. */
4056 	offset = (ptr - page_address(page)) % s->size;
4057 
4058 	/* Adjust for redzone and reject if within the redzone. */
4059 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4060 		if (offset < s->red_left_pad)
4061 			usercopy_abort("SLUB object in left red zone",
4062 				       s->name, to_user, offset, n);
4063 		offset -= s->red_left_pad;
4064 	}
4065 
4066 	/* Allow address range falling entirely within usercopy region. */
4067 	if (offset >= s->useroffset &&
4068 	    offset - s->useroffset <= s->usersize &&
4069 	    n <= s->useroffset - offset + s->usersize)
4070 		return;
4071 
4072 	/*
4073 	 * If the copy is still within the allocated object, produce
4074 	 * a warning instead of rejecting the copy. This is intended
4075 	 * to be a temporary method to find any missing usercopy
4076 	 * whitelists.
4077 	 */
4078 	object_size = slab_ksize(s);
4079 	if (usercopy_fallback &&
4080 	    offset <= object_size && n <= object_size - offset) {
4081 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4082 		return;
4083 	}
4084 
4085 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4086 }
4087 #endif /* CONFIG_HARDENED_USERCOPY */
4088 
__ksize(const void * object)4089 size_t __ksize(const void *object)
4090 {
4091 	struct page *page;
4092 
4093 	if (unlikely(object == ZERO_SIZE_PTR))
4094 		return 0;
4095 
4096 	page = virt_to_head_page(object);
4097 
4098 	if (unlikely(!PageSlab(page))) {
4099 		WARN_ON(!PageCompound(page));
4100 		return page_size(page);
4101 	}
4102 
4103 	return slab_ksize(page->slab_cache);
4104 }
4105 EXPORT_SYMBOL(__ksize);
4106 
kfree(const void * x)4107 void kfree(const void *x)
4108 {
4109 	struct page *page;
4110 	void *object = (void *)x;
4111 
4112 	trace_kfree(_RET_IP_, x);
4113 
4114 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4115 		return;
4116 
4117 	page = virt_to_head_page(x);
4118 	if (unlikely(!PageSlab(page))) {
4119 		unsigned int order = compound_order(page);
4120 
4121 		BUG_ON(!PageCompound(page));
4122 		kfree_hook(object);
4123 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4124 				      -(PAGE_SIZE << order));
4125 		__free_pages(page, order);
4126 		return;
4127 	}
4128 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4129 }
4130 EXPORT_SYMBOL(kfree);
4131 
4132 #define SHRINK_PROMOTE_MAX 32
4133 
4134 /*
4135  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4136  * up most to the head of the partial lists. New allocations will then
4137  * fill those up and thus they can be removed from the partial lists.
4138  *
4139  * The slabs with the least items are placed last. This results in them
4140  * being allocated from last increasing the chance that the last objects
4141  * are freed in them.
4142  */
__kmem_cache_shrink(struct kmem_cache * s)4143 int __kmem_cache_shrink(struct kmem_cache *s)
4144 {
4145 	int node;
4146 	int i;
4147 	struct kmem_cache_node *n;
4148 	struct page *page;
4149 	struct page *t;
4150 	struct list_head discard;
4151 	struct list_head promote[SHRINK_PROMOTE_MAX];
4152 	unsigned long flags;
4153 	int ret = 0;
4154 
4155 	flush_all(s);
4156 	for_each_kmem_cache_node(s, node, n) {
4157 		INIT_LIST_HEAD(&discard);
4158 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4159 			INIT_LIST_HEAD(promote + i);
4160 
4161 		spin_lock_irqsave(&n->list_lock, flags);
4162 
4163 		/*
4164 		 * Build lists of slabs to discard or promote.
4165 		 *
4166 		 * Note that concurrent frees may occur while we hold the
4167 		 * list_lock. page->inuse here is the upper limit.
4168 		 */
4169 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4170 			int free = page->objects - page->inuse;
4171 
4172 			/* Do not reread page->inuse */
4173 			barrier();
4174 
4175 			/* We do not keep full slabs on the list */
4176 			BUG_ON(free <= 0);
4177 
4178 			if (free == page->objects) {
4179 				list_move(&page->slab_list, &discard);
4180 				n->nr_partial--;
4181 			} else if (free <= SHRINK_PROMOTE_MAX)
4182 				list_move(&page->slab_list, promote + free - 1);
4183 		}
4184 
4185 		/*
4186 		 * Promote the slabs filled up most to the head of the
4187 		 * partial list.
4188 		 */
4189 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4190 			list_splice(promote + i, &n->partial);
4191 
4192 		spin_unlock_irqrestore(&n->list_lock, flags);
4193 
4194 		/* Release empty slabs */
4195 		list_for_each_entry_safe(page, t, &discard, slab_list)
4196 			discard_slab(s, page);
4197 
4198 		if (slabs_node(s, node))
4199 			ret = 1;
4200 	}
4201 
4202 	return ret;
4203 }
4204 
slab_mem_going_offline_callback(void * arg)4205 static int slab_mem_going_offline_callback(void *arg)
4206 {
4207 	struct kmem_cache *s;
4208 
4209 	mutex_lock(&slab_mutex);
4210 	list_for_each_entry(s, &slab_caches, list)
4211 		__kmem_cache_shrink(s);
4212 	mutex_unlock(&slab_mutex);
4213 
4214 	return 0;
4215 }
4216 
slab_mem_offline_callback(void * arg)4217 static void slab_mem_offline_callback(void *arg)
4218 {
4219 	struct kmem_cache_node *n;
4220 	struct kmem_cache *s;
4221 	struct memory_notify *marg = arg;
4222 	int offline_node;
4223 
4224 	offline_node = marg->status_change_nid_normal;
4225 
4226 	/*
4227 	 * If the node still has available memory. we need kmem_cache_node
4228 	 * for it yet.
4229 	 */
4230 	if (offline_node < 0)
4231 		return;
4232 
4233 	mutex_lock(&slab_mutex);
4234 	list_for_each_entry(s, &slab_caches, list) {
4235 		n = get_node(s, offline_node);
4236 		if (n) {
4237 			/*
4238 			 * if n->nr_slabs > 0, slabs still exist on the node
4239 			 * that is going down. We were unable to free them,
4240 			 * and offline_pages() function shouldn't call this
4241 			 * callback. So, we must fail.
4242 			 */
4243 			BUG_ON(slabs_node(s, offline_node));
4244 
4245 			s->node[offline_node] = NULL;
4246 			kmem_cache_free(kmem_cache_node, n);
4247 		}
4248 	}
4249 	mutex_unlock(&slab_mutex);
4250 }
4251 
slab_mem_going_online_callback(void * arg)4252 static int slab_mem_going_online_callback(void *arg)
4253 {
4254 	struct kmem_cache_node *n;
4255 	struct kmem_cache *s;
4256 	struct memory_notify *marg = arg;
4257 	int nid = marg->status_change_nid_normal;
4258 	int ret = 0;
4259 
4260 	/*
4261 	 * If the node's memory is already available, then kmem_cache_node is
4262 	 * already created. Nothing to do.
4263 	 */
4264 	if (nid < 0)
4265 		return 0;
4266 
4267 	/*
4268 	 * We are bringing a node online. No memory is available yet. We must
4269 	 * allocate a kmem_cache_node structure in order to bring the node
4270 	 * online.
4271 	 */
4272 	mutex_lock(&slab_mutex);
4273 	list_for_each_entry(s, &slab_caches, list) {
4274 		/*
4275 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4276 		 *      since memory is not yet available from the node that
4277 		 *      is brought up.
4278 		 */
4279 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4280 		if (!n) {
4281 			ret = -ENOMEM;
4282 			goto out;
4283 		}
4284 		init_kmem_cache_node(n);
4285 		s->node[nid] = n;
4286 	}
4287 out:
4288 	mutex_unlock(&slab_mutex);
4289 	return ret;
4290 }
4291 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4292 static int slab_memory_callback(struct notifier_block *self,
4293 				unsigned long action, void *arg)
4294 {
4295 	int ret = 0;
4296 
4297 	switch (action) {
4298 	case MEM_GOING_ONLINE:
4299 		ret = slab_mem_going_online_callback(arg);
4300 		break;
4301 	case MEM_GOING_OFFLINE:
4302 		ret = slab_mem_going_offline_callback(arg);
4303 		break;
4304 	case MEM_OFFLINE:
4305 	case MEM_CANCEL_ONLINE:
4306 		slab_mem_offline_callback(arg);
4307 		break;
4308 	case MEM_ONLINE:
4309 	case MEM_CANCEL_OFFLINE:
4310 		break;
4311 	}
4312 	if (ret)
4313 		ret = notifier_from_errno(ret);
4314 	else
4315 		ret = NOTIFY_OK;
4316 	return ret;
4317 }
4318 
4319 static struct notifier_block slab_memory_callback_nb = {
4320 	.notifier_call = slab_memory_callback,
4321 	.priority = SLAB_CALLBACK_PRI,
4322 };
4323 
4324 /********************************************************************
4325  *			Basic setup of slabs
4326  *******************************************************************/
4327 
4328 /*
4329  * Used for early kmem_cache structures that were allocated using
4330  * the page allocator. Allocate them properly then fix up the pointers
4331  * that may be pointing to the wrong kmem_cache structure.
4332  */
4333 
bootstrap(struct kmem_cache * static_cache)4334 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4335 {
4336 	int node;
4337 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4338 	struct kmem_cache_node *n;
4339 
4340 	memcpy(s, static_cache, kmem_cache->object_size);
4341 
4342 	/*
4343 	 * This runs very early, and only the boot processor is supposed to be
4344 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4345 	 * IPIs around.
4346 	 */
4347 	__flush_cpu_slab(s, smp_processor_id());
4348 	for_each_kmem_cache_node(s, node, n) {
4349 		struct page *p;
4350 
4351 		list_for_each_entry(p, &n->partial, slab_list)
4352 			p->slab_cache = s;
4353 
4354 #ifdef CONFIG_SLUB_DEBUG
4355 		list_for_each_entry(p, &n->full, slab_list)
4356 			p->slab_cache = s;
4357 #endif
4358 	}
4359 	list_add(&s->list, &slab_caches);
4360 	return s;
4361 }
4362 
kmem_cache_init(void)4363 void __init kmem_cache_init(void)
4364 {
4365 	static __initdata struct kmem_cache boot_kmem_cache,
4366 		boot_kmem_cache_node;
4367 
4368 	if (debug_guardpage_minorder())
4369 		slub_max_order = 0;
4370 
4371 	kmem_cache_node = &boot_kmem_cache_node;
4372 	kmem_cache = &boot_kmem_cache;
4373 
4374 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4375 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4376 
4377 	register_hotmemory_notifier(&slab_memory_callback_nb);
4378 
4379 	/* Able to allocate the per node structures */
4380 	slab_state = PARTIAL;
4381 
4382 	create_boot_cache(kmem_cache, "kmem_cache",
4383 			offsetof(struct kmem_cache, node) +
4384 				nr_node_ids * sizeof(struct kmem_cache_node *),
4385 		       SLAB_HWCACHE_ALIGN, 0, 0);
4386 
4387 	kmem_cache = bootstrap(&boot_kmem_cache);
4388 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4389 
4390 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4391 	setup_kmalloc_cache_index_table();
4392 	create_kmalloc_caches(0);
4393 
4394 	/* Setup random freelists for each cache */
4395 	init_freelist_randomization();
4396 
4397 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4398 				  slub_cpu_dead);
4399 
4400 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4401 		cache_line_size(),
4402 		slub_min_order, slub_max_order, slub_min_objects,
4403 		nr_cpu_ids, nr_node_ids);
4404 }
4405 
kmem_cache_init_late(void)4406 void __init kmem_cache_init_late(void)
4407 {
4408 }
4409 
4410 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))4411 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4412 		   slab_flags_t flags, void (*ctor)(void *))
4413 {
4414 	struct kmem_cache *s;
4415 
4416 	s = find_mergeable(size, align, flags, name, ctor);
4417 	if (s) {
4418 		s->refcount++;
4419 
4420 		/*
4421 		 * Adjust the object sizes so that we clear
4422 		 * the complete object on kzalloc.
4423 		 */
4424 		s->object_size = max(s->object_size, size);
4425 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4426 
4427 		if (sysfs_slab_alias(s, name)) {
4428 			s->refcount--;
4429 			s = NULL;
4430 		}
4431 	}
4432 
4433 	return s;
4434 }
4435 
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)4436 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4437 {
4438 	int err;
4439 
4440 	err = kmem_cache_open(s, flags);
4441 	if (err)
4442 		return err;
4443 
4444 	/* Mutex is not taken during early boot */
4445 	if (slab_state <= UP)
4446 		return 0;
4447 
4448 	err = sysfs_slab_add(s);
4449 	if (err)
4450 		__kmem_cache_release(s);
4451 
4452 	return err;
4453 }
4454 
__kmalloc_track_caller(size_t size,gfp_t gfpflags,unsigned long caller)4455 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4456 {
4457 	struct kmem_cache *s;
4458 	void *ret;
4459 
4460 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4461 		return kmalloc_large(size, gfpflags);
4462 
4463 	s = kmalloc_slab(size, gfpflags);
4464 
4465 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4466 		return s;
4467 
4468 	ret = slab_alloc(s, gfpflags, caller);
4469 
4470 	/* Honor the call site pointer we received. */
4471 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4472 
4473 	return ret;
4474 }
4475 EXPORT_SYMBOL(__kmalloc_track_caller);
4476 
4477 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfpflags,int node,unsigned long caller)4478 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4479 					int node, unsigned long caller)
4480 {
4481 	struct kmem_cache *s;
4482 	void *ret;
4483 
4484 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4485 		ret = kmalloc_large_node(size, gfpflags, node);
4486 
4487 		trace_kmalloc_node(caller, ret,
4488 				   size, PAGE_SIZE << get_order(size),
4489 				   gfpflags, node);
4490 
4491 		return ret;
4492 	}
4493 
4494 	s = kmalloc_slab(size, gfpflags);
4495 
4496 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4497 		return s;
4498 
4499 	ret = slab_alloc_node(s, gfpflags, node, caller);
4500 
4501 	/* Honor the call site pointer we received. */
4502 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4503 
4504 	return ret;
4505 }
4506 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4507 #endif
4508 
4509 #ifdef CONFIG_SYSFS
count_inuse(struct page * page)4510 static int count_inuse(struct page *page)
4511 {
4512 	return page->inuse;
4513 }
4514 
count_total(struct page * page)4515 static int count_total(struct page *page)
4516 {
4517 	return page->objects;
4518 }
4519 #endif
4520 
4521 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct page * page)4522 static void validate_slab(struct kmem_cache *s, struct page *page)
4523 {
4524 	void *p;
4525 	void *addr = page_address(page);
4526 	unsigned long *map;
4527 
4528 	slab_lock(page);
4529 
4530 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4531 		goto unlock;
4532 
4533 	/* Now we know that a valid freelist exists */
4534 	map = get_map(s, page);
4535 	for_each_object(p, s, addr, page->objects) {
4536 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4537 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4538 
4539 		if (!check_object(s, page, p, val))
4540 			break;
4541 	}
4542 	put_map(map);
4543 unlock:
4544 	slab_unlock(page);
4545 }
4546 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n)4547 static int validate_slab_node(struct kmem_cache *s,
4548 		struct kmem_cache_node *n)
4549 {
4550 	unsigned long count = 0;
4551 	struct page *page;
4552 	unsigned long flags;
4553 
4554 	spin_lock_irqsave(&n->list_lock, flags);
4555 
4556 	list_for_each_entry(page, &n->partial, slab_list) {
4557 		validate_slab(s, page);
4558 		count++;
4559 	}
4560 	if (count != n->nr_partial)
4561 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4562 		       s->name, count, n->nr_partial);
4563 
4564 	if (!(s->flags & SLAB_STORE_USER))
4565 		goto out;
4566 
4567 	list_for_each_entry(page, &n->full, slab_list) {
4568 		validate_slab(s, page);
4569 		count++;
4570 	}
4571 	if (count != atomic_long_read(&n->nr_slabs))
4572 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4573 		       s->name, count, atomic_long_read(&n->nr_slabs));
4574 
4575 out:
4576 	spin_unlock_irqrestore(&n->list_lock, flags);
4577 	return count;
4578 }
4579 
validate_slab_cache(struct kmem_cache * s)4580 static long validate_slab_cache(struct kmem_cache *s)
4581 {
4582 	int node;
4583 	unsigned long count = 0;
4584 	struct kmem_cache_node *n;
4585 
4586 	flush_all(s);
4587 	for_each_kmem_cache_node(s, node, n)
4588 		count += validate_slab_node(s, n);
4589 
4590 	return count;
4591 }
4592 /*
4593  * Generate lists of code addresses where slabcache objects are allocated
4594  * and freed.
4595  */
4596 
4597 struct location {
4598 	unsigned long count;
4599 	unsigned long addr;
4600 	long long sum_time;
4601 	long min_time;
4602 	long max_time;
4603 	long min_pid;
4604 	long max_pid;
4605 	DECLARE_BITMAP(cpus, NR_CPUS);
4606 	nodemask_t nodes;
4607 };
4608 
4609 struct loc_track {
4610 	unsigned long max;
4611 	unsigned long count;
4612 	struct location *loc;
4613 };
4614 
free_loc_track(struct loc_track * t)4615 static void free_loc_track(struct loc_track *t)
4616 {
4617 	if (t->max)
4618 		free_pages((unsigned long)t->loc,
4619 			get_order(sizeof(struct location) * t->max));
4620 }
4621 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)4622 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4623 {
4624 	struct location *l;
4625 	int order;
4626 
4627 	order = get_order(sizeof(struct location) * max);
4628 
4629 	l = (void *)__get_free_pages(flags, order);
4630 	if (!l)
4631 		return 0;
4632 
4633 	if (t->count) {
4634 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4635 		free_loc_track(t);
4636 	}
4637 	t->max = max;
4638 	t->loc = l;
4639 	return 1;
4640 }
4641 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track)4642 static int add_location(struct loc_track *t, struct kmem_cache *s,
4643 				const struct track *track)
4644 {
4645 	long start, end, pos;
4646 	struct location *l;
4647 	unsigned long caddr;
4648 	unsigned long age = jiffies - track->when;
4649 
4650 	start = -1;
4651 	end = t->count;
4652 
4653 	for ( ; ; ) {
4654 		pos = start + (end - start + 1) / 2;
4655 
4656 		/*
4657 		 * There is nothing at "end". If we end up there
4658 		 * we need to add something to before end.
4659 		 */
4660 		if (pos == end)
4661 			break;
4662 
4663 		caddr = t->loc[pos].addr;
4664 		if (track->addr == caddr) {
4665 
4666 			l = &t->loc[pos];
4667 			l->count++;
4668 			if (track->when) {
4669 				l->sum_time += age;
4670 				if (age < l->min_time)
4671 					l->min_time = age;
4672 				if (age > l->max_time)
4673 					l->max_time = age;
4674 
4675 				if (track->pid < l->min_pid)
4676 					l->min_pid = track->pid;
4677 				if (track->pid > l->max_pid)
4678 					l->max_pid = track->pid;
4679 
4680 				cpumask_set_cpu(track->cpu,
4681 						to_cpumask(l->cpus));
4682 			}
4683 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4684 			return 1;
4685 		}
4686 
4687 		if (track->addr < caddr)
4688 			end = pos;
4689 		else
4690 			start = pos;
4691 	}
4692 
4693 	/*
4694 	 * Not found. Insert new tracking element.
4695 	 */
4696 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4697 		return 0;
4698 
4699 	l = t->loc + pos;
4700 	if (pos < t->count)
4701 		memmove(l + 1, l,
4702 			(t->count - pos) * sizeof(struct location));
4703 	t->count++;
4704 	l->count = 1;
4705 	l->addr = track->addr;
4706 	l->sum_time = age;
4707 	l->min_time = age;
4708 	l->max_time = age;
4709 	l->min_pid = track->pid;
4710 	l->max_pid = track->pid;
4711 	cpumask_clear(to_cpumask(l->cpus));
4712 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4713 	nodes_clear(l->nodes);
4714 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4715 	return 1;
4716 }
4717 
process_slab(struct loc_track * t,struct kmem_cache * s,struct page * page,enum track_item alloc)4718 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4719 		struct page *page, enum track_item alloc)
4720 {
4721 	void *addr = page_address(page);
4722 	void *p;
4723 	unsigned long *map;
4724 
4725 	map = get_map(s, page);
4726 	for_each_object(p, s, addr, page->objects)
4727 		if (!test_bit(__obj_to_index(s, addr, p), map))
4728 			add_location(t, s, get_track(s, p, alloc));
4729 	put_map(map);
4730 }
4731 
list_locations(struct kmem_cache * s,char * buf,enum track_item alloc)4732 static int list_locations(struct kmem_cache *s, char *buf,
4733 					enum track_item alloc)
4734 {
4735 	int len = 0;
4736 	unsigned long i;
4737 	struct loc_track t = { 0, 0, NULL };
4738 	int node;
4739 	struct kmem_cache_node *n;
4740 
4741 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4742 			     GFP_KERNEL)) {
4743 		return sprintf(buf, "Out of memory\n");
4744 	}
4745 	/* Push back cpu slabs */
4746 	flush_all(s);
4747 
4748 	for_each_kmem_cache_node(s, node, n) {
4749 		unsigned long flags;
4750 		struct page *page;
4751 
4752 		if (!atomic_long_read(&n->nr_slabs))
4753 			continue;
4754 
4755 		spin_lock_irqsave(&n->list_lock, flags);
4756 		list_for_each_entry(page, &n->partial, slab_list)
4757 			process_slab(&t, s, page, alloc);
4758 		list_for_each_entry(page, &n->full, slab_list)
4759 			process_slab(&t, s, page, alloc);
4760 		spin_unlock_irqrestore(&n->list_lock, flags);
4761 	}
4762 
4763 	for (i = 0; i < t.count; i++) {
4764 		struct location *l = &t.loc[i];
4765 
4766 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4767 			break;
4768 		len += sprintf(buf + len, "%7ld ", l->count);
4769 
4770 		if (l->addr)
4771 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4772 		else
4773 			len += sprintf(buf + len, "<not-available>");
4774 
4775 		if (l->sum_time != l->min_time) {
4776 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4777 				l->min_time,
4778 				(long)div_u64(l->sum_time, l->count),
4779 				l->max_time);
4780 		} else
4781 			len += sprintf(buf + len, " age=%ld",
4782 				l->min_time);
4783 
4784 		if (l->min_pid != l->max_pid)
4785 			len += sprintf(buf + len, " pid=%ld-%ld",
4786 				l->min_pid, l->max_pid);
4787 		else
4788 			len += sprintf(buf + len, " pid=%ld",
4789 				l->min_pid);
4790 
4791 		if (num_online_cpus() > 1 &&
4792 				!cpumask_empty(to_cpumask(l->cpus)) &&
4793 				len < PAGE_SIZE - 60)
4794 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4795 					 " cpus=%*pbl",
4796 					 cpumask_pr_args(to_cpumask(l->cpus)));
4797 
4798 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4799 				len < PAGE_SIZE - 60)
4800 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4801 					 " nodes=%*pbl",
4802 					 nodemask_pr_args(&l->nodes));
4803 
4804 		len += sprintf(buf + len, "\n");
4805 	}
4806 
4807 	free_loc_track(&t);
4808 	if (!t.count)
4809 		len += sprintf(buf, "No data\n");
4810 	return len;
4811 }
4812 #endif	/* CONFIG_SLUB_DEBUG */
4813 
4814 #ifdef SLUB_RESILIENCY_TEST
resiliency_test(void)4815 static void __init resiliency_test(void)
4816 {
4817 	u8 *p;
4818 	int type = KMALLOC_NORMAL;
4819 
4820 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4821 
4822 	pr_err("SLUB resiliency testing\n");
4823 	pr_err("-----------------------\n");
4824 	pr_err("A. Corruption after allocation\n");
4825 
4826 	p = kzalloc(16, GFP_KERNEL);
4827 	p[16] = 0x12;
4828 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4829 	       p + 16);
4830 
4831 	validate_slab_cache(kmalloc_caches[type][4]);
4832 
4833 	/* Hmmm... The next two are dangerous */
4834 	p = kzalloc(32, GFP_KERNEL);
4835 	p[32 + sizeof(void *)] = 0x34;
4836 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4837 	       p);
4838 	pr_err("If allocated object is overwritten then not detectable\n\n");
4839 
4840 	validate_slab_cache(kmalloc_caches[type][5]);
4841 	p = kzalloc(64, GFP_KERNEL);
4842 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4843 	*p = 0x56;
4844 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4845 	       p);
4846 	pr_err("If allocated object is overwritten then not detectable\n\n");
4847 	validate_slab_cache(kmalloc_caches[type][6]);
4848 
4849 	pr_err("\nB. Corruption after free\n");
4850 	p = kzalloc(128, GFP_KERNEL);
4851 	kfree(p);
4852 	*p = 0x78;
4853 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4854 	validate_slab_cache(kmalloc_caches[type][7]);
4855 
4856 	p = kzalloc(256, GFP_KERNEL);
4857 	kfree(p);
4858 	p[50] = 0x9a;
4859 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4860 	validate_slab_cache(kmalloc_caches[type][8]);
4861 
4862 	p = kzalloc(512, GFP_KERNEL);
4863 	kfree(p);
4864 	p[512] = 0xab;
4865 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4866 	validate_slab_cache(kmalloc_caches[type][9]);
4867 }
4868 #else
4869 #ifdef CONFIG_SYSFS
resiliency_test(void)4870 static void resiliency_test(void) {};
4871 #endif
4872 #endif	/* SLUB_RESILIENCY_TEST */
4873 
4874 #ifdef CONFIG_SYSFS
4875 enum slab_stat_type {
4876 	SL_ALL,			/* All slabs */
4877 	SL_PARTIAL,		/* Only partially allocated slabs */
4878 	SL_CPU,			/* Only slabs used for cpu caches */
4879 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4880 	SL_TOTAL		/* Determine object capacity not slabs */
4881 };
4882 
4883 #define SO_ALL		(1 << SL_ALL)
4884 #define SO_PARTIAL	(1 << SL_PARTIAL)
4885 #define SO_CPU		(1 << SL_CPU)
4886 #define SO_OBJECTS	(1 << SL_OBJECTS)
4887 #define SO_TOTAL	(1 << SL_TOTAL)
4888 
4889 #ifdef CONFIG_MEMCG
4890 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4891 
setup_slub_memcg_sysfs(char * str)4892 static int __init setup_slub_memcg_sysfs(char *str)
4893 {
4894 	int v;
4895 
4896 	if (get_option(&str, &v) > 0)
4897 		memcg_sysfs_enabled = v;
4898 
4899 	return 1;
4900 }
4901 
4902 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4903 #endif
4904 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)4905 static ssize_t show_slab_objects(struct kmem_cache *s,
4906 			    char *buf, unsigned long flags)
4907 {
4908 	unsigned long total = 0;
4909 	int node;
4910 	int x;
4911 	unsigned long *nodes;
4912 
4913 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4914 	if (!nodes)
4915 		return -ENOMEM;
4916 
4917 	if (flags & SO_CPU) {
4918 		int cpu;
4919 
4920 		for_each_possible_cpu(cpu) {
4921 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4922 							       cpu);
4923 			int node;
4924 			struct page *page;
4925 
4926 			page = READ_ONCE(c->page);
4927 			if (!page)
4928 				continue;
4929 
4930 			node = page_to_nid(page);
4931 			if (flags & SO_TOTAL)
4932 				x = page->objects;
4933 			else if (flags & SO_OBJECTS)
4934 				x = page->inuse;
4935 			else
4936 				x = 1;
4937 
4938 			total += x;
4939 			nodes[node] += x;
4940 
4941 			page = slub_percpu_partial_read_once(c);
4942 			if (page) {
4943 				node = page_to_nid(page);
4944 				if (flags & SO_TOTAL)
4945 					WARN_ON_ONCE(1);
4946 				else if (flags & SO_OBJECTS)
4947 					WARN_ON_ONCE(1);
4948 				else
4949 					x = page->pages;
4950 				total += x;
4951 				nodes[node] += x;
4952 			}
4953 		}
4954 	}
4955 
4956 	/*
4957 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4958 	 * already held which will conflict with an existing lock order:
4959 	 *
4960 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4961 	 *
4962 	 * We don't really need mem_hotplug_lock (to hold off
4963 	 * slab_mem_going_offline_callback) here because slab's memory hot
4964 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4965 	 */
4966 
4967 #ifdef CONFIG_SLUB_DEBUG
4968 	if (flags & SO_ALL) {
4969 		struct kmem_cache_node *n;
4970 
4971 		for_each_kmem_cache_node(s, node, n) {
4972 
4973 			if (flags & SO_TOTAL)
4974 				x = atomic_long_read(&n->total_objects);
4975 			else if (flags & SO_OBJECTS)
4976 				x = atomic_long_read(&n->total_objects) -
4977 					count_partial(n, count_free);
4978 			else
4979 				x = atomic_long_read(&n->nr_slabs);
4980 			total += x;
4981 			nodes[node] += x;
4982 		}
4983 
4984 	} else
4985 #endif
4986 	if (flags & SO_PARTIAL) {
4987 		struct kmem_cache_node *n;
4988 
4989 		for_each_kmem_cache_node(s, node, n) {
4990 			if (flags & SO_TOTAL)
4991 				x = count_partial(n, count_total);
4992 			else if (flags & SO_OBJECTS)
4993 				x = count_partial(n, count_inuse);
4994 			else
4995 				x = n->nr_partial;
4996 			total += x;
4997 			nodes[node] += x;
4998 		}
4999 	}
5000 	x = sprintf(buf, "%lu", total);
5001 #ifdef CONFIG_NUMA
5002 	for (node = 0; node < nr_node_ids; node++)
5003 		if (nodes[node])
5004 			x += sprintf(buf + x, " N%d=%lu",
5005 					node, nodes[node]);
5006 #endif
5007 	kfree(nodes);
5008 	return x + sprintf(buf + x, "\n");
5009 }
5010 
5011 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5012 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5013 
5014 struct slab_attribute {
5015 	struct attribute attr;
5016 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5017 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5018 };
5019 
5020 #define SLAB_ATTR_RO(_name) \
5021 	static struct slab_attribute _name##_attr = \
5022 	__ATTR(_name, 0400, _name##_show, NULL)
5023 
5024 #define SLAB_ATTR(_name) \
5025 	static struct slab_attribute _name##_attr =  \
5026 	__ATTR(_name, 0600, _name##_show, _name##_store)
5027 
slab_size_show(struct kmem_cache * s,char * buf)5028 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5029 {
5030 	return sprintf(buf, "%u\n", s->size);
5031 }
5032 SLAB_ATTR_RO(slab_size);
5033 
align_show(struct kmem_cache * s,char * buf)5034 static ssize_t align_show(struct kmem_cache *s, char *buf)
5035 {
5036 	return sprintf(buf, "%u\n", s->align);
5037 }
5038 SLAB_ATTR_RO(align);
5039 
object_size_show(struct kmem_cache * s,char * buf)5040 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5041 {
5042 	return sprintf(buf, "%u\n", s->object_size);
5043 }
5044 SLAB_ATTR_RO(object_size);
5045 
objs_per_slab_show(struct kmem_cache * s,char * buf)5046 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5047 {
5048 	return sprintf(buf, "%u\n", oo_objects(s->oo));
5049 }
5050 SLAB_ATTR_RO(objs_per_slab);
5051 
order_show(struct kmem_cache * s,char * buf)5052 static ssize_t order_show(struct kmem_cache *s, char *buf)
5053 {
5054 	return sprintf(buf, "%u\n", oo_order(s->oo));
5055 }
5056 SLAB_ATTR_RO(order);
5057 
min_partial_show(struct kmem_cache * s,char * buf)5058 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5059 {
5060 	return sprintf(buf, "%lu\n", s->min_partial);
5061 }
5062 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)5063 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5064 				 size_t length)
5065 {
5066 	unsigned long min;
5067 	int err;
5068 
5069 	err = kstrtoul(buf, 10, &min);
5070 	if (err)
5071 		return err;
5072 
5073 	set_min_partial(s, min);
5074 	return length;
5075 }
5076 SLAB_ATTR(min_partial);
5077 
cpu_partial_show(struct kmem_cache * s,char * buf)5078 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5079 {
5080 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5081 }
5082 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)5083 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5084 				 size_t length)
5085 {
5086 	unsigned int objects;
5087 	int err;
5088 
5089 	err = kstrtouint(buf, 10, &objects);
5090 	if (err)
5091 		return err;
5092 	if (objects && !kmem_cache_has_cpu_partial(s))
5093 		return -EINVAL;
5094 
5095 	slub_set_cpu_partial(s, objects);
5096 	flush_all(s);
5097 	return length;
5098 }
5099 SLAB_ATTR(cpu_partial);
5100 
ctor_show(struct kmem_cache * s,char * buf)5101 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5102 {
5103 	if (!s->ctor)
5104 		return 0;
5105 	return sprintf(buf, "%pS\n", s->ctor);
5106 }
5107 SLAB_ATTR_RO(ctor);
5108 
aliases_show(struct kmem_cache * s,char * buf)5109 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5110 {
5111 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5112 }
5113 SLAB_ATTR_RO(aliases);
5114 
partial_show(struct kmem_cache * s,char * buf)5115 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5116 {
5117 	return show_slab_objects(s, buf, SO_PARTIAL);
5118 }
5119 SLAB_ATTR_RO(partial);
5120 
cpu_slabs_show(struct kmem_cache * s,char * buf)5121 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5122 {
5123 	return show_slab_objects(s, buf, SO_CPU);
5124 }
5125 SLAB_ATTR_RO(cpu_slabs);
5126 
objects_show(struct kmem_cache * s,char * buf)5127 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5128 {
5129 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5130 }
5131 SLAB_ATTR_RO(objects);
5132 
objects_partial_show(struct kmem_cache * s,char * buf)5133 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5134 {
5135 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5136 }
5137 SLAB_ATTR_RO(objects_partial);
5138 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5139 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5140 {
5141 	int objects = 0;
5142 	int pages = 0;
5143 	int cpu;
5144 	int len;
5145 
5146 	for_each_online_cpu(cpu) {
5147 		struct page *page;
5148 
5149 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5150 
5151 		if (page) {
5152 			pages += page->pages;
5153 			objects += page->pobjects;
5154 		}
5155 	}
5156 
5157 	len = sprintf(buf, "%d(%d)", objects, pages);
5158 
5159 #ifdef CONFIG_SMP
5160 	for_each_online_cpu(cpu) {
5161 		struct page *page;
5162 
5163 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5164 
5165 		if (page && len < PAGE_SIZE - 20)
5166 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5167 				page->pobjects, page->pages);
5168 	}
5169 #endif
5170 	return len + sprintf(buf + len, "\n");
5171 }
5172 SLAB_ATTR_RO(slabs_cpu_partial);
5173 
reclaim_account_show(struct kmem_cache * s,char * buf)5174 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5175 {
5176 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5177 }
5178 SLAB_ATTR_RO(reclaim_account);
5179 
hwcache_align_show(struct kmem_cache * s,char * buf)5180 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5181 {
5182 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5183 }
5184 SLAB_ATTR_RO(hwcache_align);
5185 
5186 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5187 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5188 {
5189 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5190 }
5191 SLAB_ATTR_RO(cache_dma);
5192 #endif
5193 
usersize_show(struct kmem_cache * s,char * buf)5194 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5195 {
5196 	return sprintf(buf, "%u\n", s->usersize);
5197 }
5198 SLAB_ATTR_RO(usersize);
5199 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5200 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5201 {
5202 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5203 }
5204 SLAB_ATTR_RO(destroy_by_rcu);
5205 
5206 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5207 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5208 {
5209 	return show_slab_objects(s, buf, SO_ALL);
5210 }
5211 SLAB_ATTR_RO(slabs);
5212 
total_objects_show(struct kmem_cache * s,char * buf)5213 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5214 {
5215 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5216 }
5217 SLAB_ATTR_RO(total_objects);
5218 
sanity_checks_show(struct kmem_cache * s,char * buf)5219 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5220 {
5221 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5222 }
5223 SLAB_ATTR_RO(sanity_checks);
5224 
trace_show(struct kmem_cache * s,char * buf)5225 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5226 {
5227 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5228 }
5229 SLAB_ATTR_RO(trace);
5230 
red_zone_show(struct kmem_cache * s,char * buf)5231 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5232 {
5233 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5234 }
5235 
5236 SLAB_ATTR_RO(red_zone);
5237 
poison_show(struct kmem_cache * s,char * buf)5238 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5239 {
5240 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5241 }
5242 
5243 SLAB_ATTR_RO(poison);
5244 
store_user_show(struct kmem_cache * s,char * buf)5245 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5246 {
5247 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5248 }
5249 
5250 SLAB_ATTR_RO(store_user);
5251 
validate_show(struct kmem_cache * s,char * buf)5252 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5253 {
5254 	return 0;
5255 }
5256 
validate_store(struct kmem_cache * s,const char * buf,size_t length)5257 static ssize_t validate_store(struct kmem_cache *s,
5258 			const char *buf, size_t length)
5259 {
5260 	int ret = -EINVAL;
5261 
5262 	if (buf[0] == '1') {
5263 		ret = validate_slab_cache(s);
5264 		if (ret >= 0)
5265 			ret = length;
5266 	}
5267 	return ret;
5268 }
5269 SLAB_ATTR(validate);
5270 
alloc_calls_show(struct kmem_cache * s,char * buf)5271 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5272 {
5273 	if (!(s->flags & SLAB_STORE_USER))
5274 		return -ENOSYS;
5275 	return list_locations(s, buf, TRACK_ALLOC);
5276 }
5277 SLAB_ATTR_RO(alloc_calls);
5278 
free_calls_show(struct kmem_cache * s,char * buf)5279 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5280 {
5281 	if (!(s->flags & SLAB_STORE_USER))
5282 		return -ENOSYS;
5283 	return list_locations(s, buf, TRACK_FREE);
5284 }
5285 SLAB_ATTR_RO(free_calls);
5286 #endif /* CONFIG_SLUB_DEBUG */
5287 
5288 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5289 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5290 {
5291 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5292 }
5293 SLAB_ATTR_RO(failslab);
5294 #endif
5295 
shrink_show(struct kmem_cache * s,char * buf)5296 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5297 {
5298 	return 0;
5299 }
5300 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5301 static ssize_t shrink_store(struct kmem_cache *s,
5302 			const char *buf, size_t length)
5303 {
5304 	if (buf[0] == '1')
5305 		kmem_cache_shrink(s);
5306 	else
5307 		return -EINVAL;
5308 	return length;
5309 }
5310 SLAB_ATTR(shrink);
5311 
5312 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5313 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5314 {
5315 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5316 }
5317 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5318 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5319 				const char *buf, size_t length)
5320 {
5321 	unsigned int ratio;
5322 	int err;
5323 
5324 	err = kstrtouint(buf, 10, &ratio);
5325 	if (err)
5326 		return err;
5327 	if (ratio > 100)
5328 		return -ERANGE;
5329 
5330 	s->remote_node_defrag_ratio = ratio * 10;
5331 
5332 	return length;
5333 }
5334 SLAB_ATTR(remote_node_defrag_ratio);
5335 #endif
5336 
5337 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5338 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5339 {
5340 	unsigned long sum  = 0;
5341 	int cpu;
5342 	int len;
5343 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5344 
5345 	if (!data)
5346 		return -ENOMEM;
5347 
5348 	for_each_online_cpu(cpu) {
5349 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5350 
5351 		data[cpu] = x;
5352 		sum += x;
5353 	}
5354 
5355 	len = sprintf(buf, "%lu", sum);
5356 
5357 #ifdef CONFIG_SMP
5358 	for_each_online_cpu(cpu) {
5359 		if (data[cpu] && len < PAGE_SIZE - 20)
5360 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5361 	}
5362 #endif
5363 	kfree(data);
5364 	return len + sprintf(buf + len, "\n");
5365 }
5366 
clear_stat(struct kmem_cache * s,enum stat_item si)5367 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5368 {
5369 	int cpu;
5370 
5371 	for_each_online_cpu(cpu)
5372 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5373 }
5374 
5375 #define STAT_ATTR(si, text) 					\
5376 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5377 {								\
5378 	return show_stat(s, buf, si);				\
5379 }								\
5380 static ssize_t text##_store(struct kmem_cache *s,		\
5381 				const char *buf, size_t length)	\
5382 {								\
5383 	if (buf[0] != '0')					\
5384 		return -EINVAL;					\
5385 	clear_stat(s, si);					\
5386 	return length;						\
5387 }								\
5388 SLAB_ATTR(text);						\
5389 
5390 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5391 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5392 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5393 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5394 STAT_ATTR(FREE_FROZEN, free_frozen);
5395 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5396 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5397 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5398 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5399 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5400 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5401 STAT_ATTR(FREE_SLAB, free_slab);
5402 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5403 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5404 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5405 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5406 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5407 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5408 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5409 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5410 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5411 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5412 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5413 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5414 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5415 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5416 #endif	/* CONFIG_SLUB_STATS */
5417 
5418 static struct attribute *slab_attrs[] = {
5419 	&slab_size_attr.attr,
5420 	&object_size_attr.attr,
5421 	&objs_per_slab_attr.attr,
5422 	&order_attr.attr,
5423 	&min_partial_attr.attr,
5424 	&cpu_partial_attr.attr,
5425 	&objects_attr.attr,
5426 	&objects_partial_attr.attr,
5427 	&partial_attr.attr,
5428 	&cpu_slabs_attr.attr,
5429 	&ctor_attr.attr,
5430 	&aliases_attr.attr,
5431 	&align_attr.attr,
5432 	&hwcache_align_attr.attr,
5433 	&reclaim_account_attr.attr,
5434 	&destroy_by_rcu_attr.attr,
5435 	&shrink_attr.attr,
5436 	&slabs_cpu_partial_attr.attr,
5437 #ifdef CONFIG_SLUB_DEBUG
5438 	&total_objects_attr.attr,
5439 	&slabs_attr.attr,
5440 	&sanity_checks_attr.attr,
5441 	&trace_attr.attr,
5442 	&red_zone_attr.attr,
5443 	&poison_attr.attr,
5444 	&store_user_attr.attr,
5445 	&validate_attr.attr,
5446 	&alloc_calls_attr.attr,
5447 	&free_calls_attr.attr,
5448 #endif
5449 #ifdef CONFIG_ZONE_DMA
5450 	&cache_dma_attr.attr,
5451 #endif
5452 #ifdef CONFIG_NUMA
5453 	&remote_node_defrag_ratio_attr.attr,
5454 #endif
5455 #ifdef CONFIG_SLUB_STATS
5456 	&alloc_fastpath_attr.attr,
5457 	&alloc_slowpath_attr.attr,
5458 	&free_fastpath_attr.attr,
5459 	&free_slowpath_attr.attr,
5460 	&free_frozen_attr.attr,
5461 	&free_add_partial_attr.attr,
5462 	&free_remove_partial_attr.attr,
5463 	&alloc_from_partial_attr.attr,
5464 	&alloc_slab_attr.attr,
5465 	&alloc_refill_attr.attr,
5466 	&alloc_node_mismatch_attr.attr,
5467 	&free_slab_attr.attr,
5468 	&cpuslab_flush_attr.attr,
5469 	&deactivate_full_attr.attr,
5470 	&deactivate_empty_attr.attr,
5471 	&deactivate_to_head_attr.attr,
5472 	&deactivate_to_tail_attr.attr,
5473 	&deactivate_remote_frees_attr.attr,
5474 	&deactivate_bypass_attr.attr,
5475 	&order_fallback_attr.attr,
5476 	&cmpxchg_double_fail_attr.attr,
5477 	&cmpxchg_double_cpu_fail_attr.attr,
5478 	&cpu_partial_alloc_attr.attr,
5479 	&cpu_partial_free_attr.attr,
5480 	&cpu_partial_node_attr.attr,
5481 	&cpu_partial_drain_attr.attr,
5482 #endif
5483 #ifdef CONFIG_FAILSLAB
5484 	&failslab_attr.attr,
5485 #endif
5486 	&usersize_attr.attr,
5487 
5488 	NULL
5489 };
5490 
5491 static const struct attribute_group slab_attr_group = {
5492 	.attrs = slab_attrs,
5493 };
5494 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)5495 static ssize_t slab_attr_show(struct kobject *kobj,
5496 				struct attribute *attr,
5497 				char *buf)
5498 {
5499 	struct slab_attribute *attribute;
5500 	struct kmem_cache *s;
5501 	int err;
5502 
5503 	attribute = to_slab_attr(attr);
5504 	s = to_slab(kobj);
5505 
5506 	if (!attribute->show)
5507 		return -EIO;
5508 
5509 	err = attribute->show(s, buf);
5510 
5511 	return err;
5512 }
5513 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)5514 static ssize_t slab_attr_store(struct kobject *kobj,
5515 				struct attribute *attr,
5516 				const char *buf, size_t len)
5517 {
5518 	struct slab_attribute *attribute;
5519 	struct kmem_cache *s;
5520 	int err;
5521 
5522 	attribute = to_slab_attr(attr);
5523 	s = to_slab(kobj);
5524 
5525 	if (!attribute->store)
5526 		return -EIO;
5527 
5528 	err = attribute->store(s, buf, len);
5529 	return err;
5530 }
5531 
kmem_cache_release(struct kobject * k)5532 static void kmem_cache_release(struct kobject *k)
5533 {
5534 	slab_kmem_cache_release(to_slab(k));
5535 }
5536 
5537 static const struct sysfs_ops slab_sysfs_ops = {
5538 	.show = slab_attr_show,
5539 	.store = slab_attr_store,
5540 };
5541 
5542 static struct kobj_type slab_ktype = {
5543 	.sysfs_ops = &slab_sysfs_ops,
5544 	.release = kmem_cache_release,
5545 };
5546 
5547 static struct kset *slab_kset;
5548 
cache_kset(struct kmem_cache * s)5549 static inline struct kset *cache_kset(struct kmem_cache *s)
5550 {
5551 	return slab_kset;
5552 }
5553 
5554 #define ID_STR_LENGTH 64
5555 
5556 /* Create a unique string id for a slab cache:
5557  *
5558  * Format	:[flags-]size
5559  */
create_unique_id(struct kmem_cache * s)5560 static char *create_unique_id(struct kmem_cache *s)
5561 {
5562 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5563 	char *p = name;
5564 
5565 	if (!name)
5566 		return ERR_PTR(-ENOMEM);
5567 
5568 	*p++ = ':';
5569 	/*
5570 	 * First flags affecting slabcache operations. We will only
5571 	 * get here for aliasable slabs so we do not need to support
5572 	 * too many flags. The flags here must cover all flags that
5573 	 * are matched during merging to guarantee that the id is
5574 	 * unique.
5575 	 */
5576 	if (s->flags & SLAB_CACHE_DMA)
5577 		*p++ = 'd';
5578 	if (s->flags & SLAB_CACHE_DMA32)
5579 		*p++ = 'D';
5580 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5581 		*p++ = 'a';
5582 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5583 		*p++ = 'F';
5584 	if (s->flags & SLAB_ACCOUNT)
5585 		*p++ = 'A';
5586 	if (p != name + 1)
5587 		*p++ = '-';
5588 	p += sprintf(p, "%07u", s->size);
5589 
5590 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5591 	return name;
5592 }
5593 
sysfs_slab_add(struct kmem_cache * s)5594 static int sysfs_slab_add(struct kmem_cache *s)
5595 {
5596 	int err;
5597 	const char *name;
5598 	struct kset *kset = cache_kset(s);
5599 	int unmergeable = slab_unmergeable(s);
5600 
5601 	if (!kset) {
5602 		kobject_init(&s->kobj, &slab_ktype);
5603 		return 0;
5604 	}
5605 
5606 	if (!unmergeable && disable_higher_order_debug &&
5607 			(slub_debug & DEBUG_METADATA_FLAGS))
5608 		unmergeable = 1;
5609 
5610 	if (unmergeable) {
5611 		/*
5612 		 * Slabcache can never be merged so we can use the name proper.
5613 		 * This is typically the case for debug situations. In that
5614 		 * case we can catch duplicate names easily.
5615 		 */
5616 		sysfs_remove_link(&slab_kset->kobj, s->name);
5617 		name = s->name;
5618 	} else {
5619 		/*
5620 		 * Create a unique name for the slab as a target
5621 		 * for the symlinks.
5622 		 */
5623 		name = create_unique_id(s);
5624 		if (IS_ERR(name))
5625 			return PTR_ERR(name);
5626 	}
5627 
5628 	s->kobj.kset = kset;
5629 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5630 	if (err)
5631 		goto out;
5632 
5633 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5634 	if (err)
5635 		goto out_del_kobj;
5636 
5637 	if (!unmergeable) {
5638 		/* Setup first alias */
5639 		sysfs_slab_alias(s, s->name);
5640 	}
5641 out:
5642 	if (!unmergeable)
5643 		kfree(name);
5644 	return err;
5645 out_del_kobj:
5646 	kobject_del(&s->kobj);
5647 	goto out;
5648 }
5649 
sysfs_slab_unlink(struct kmem_cache * s)5650 void sysfs_slab_unlink(struct kmem_cache *s)
5651 {
5652 	if (slab_state >= FULL)
5653 		kobject_del(&s->kobj);
5654 }
5655 
sysfs_slab_release(struct kmem_cache * s)5656 void sysfs_slab_release(struct kmem_cache *s)
5657 {
5658 	if (slab_state >= FULL)
5659 		kobject_put(&s->kobj);
5660 }
5661 
5662 /*
5663  * Need to buffer aliases during bootup until sysfs becomes
5664  * available lest we lose that information.
5665  */
5666 struct saved_alias {
5667 	struct kmem_cache *s;
5668 	const char *name;
5669 	struct saved_alias *next;
5670 };
5671 
5672 static struct saved_alias *alias_list;
5673 
sysfs_slab_alias(struct kmem_cache * s,const char * name)5674 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5675 {
5676 	struct saved_alias *al;
5677 
5678 	if (slab_state == FULL) {
5679 		/*
5680 		 * If we have a leftover link then remove it.
5681 		 */
5682 		sysfs_remove_link(&slab_kset->kobj, name);
5683 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5684 	}
5685 
5686 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5687 	if (!al)
5688 		return -ENOMEM;
5689 
5690 	al->s = s;
5691 	al->name = name;
5692 	al->next = alias_list;
5693 	alias_list = al;
5694 	return 0;
5695 }
5696 
slab_sysfs_init(void)5697 static int __init slab_sysfs_init(void)
5698 {
5699 	struct kmem_cache *s;
5700 	int err;
5701 
5702 	mutex_lock(&slab_mutex);
5703 
5704 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5705 	if (!slab_kset) {
5706 		mutex_unlock(&slab_mutex);
5707 		pr_err("Cannot register slab subsystem.\n");
5708 		return -ENOSYS;
5709 	}
5710 
5711 	slab_state = FULL;
5712 
5713 	list_for_each_entry(s, &slab_caches, list) {
5714 		err = sysfs_slab_add(s);
5715 		if (err)
5716 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5717 			       s->name);
5718 	}
5719 
5720 	while (alias_list) {
5721 		struct saved_alias *al = alias_list;
5722 
5723 		alias_list = alias_list->next;
5724 		err = sysfs_slab_alias(al->s, al->name);
5725 		if (err)
5726 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5727 			       al->name);
5728 		kfree(al);
5729 	}
5730 
5731 	mutex_unlock(&slab_mutex);
5732 	resiliency_test();
5733 	return 0;
5734 }
5735 
5736 __initcall(slab_sysfs_init);
5737 #endif /* CONFIG_SYSFS */
5738 
5739 /*
5740  * The /proc/slabinfo ABI
5741  */
5742 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)5743 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5744 {
5745 	unsigned long nr_slabs = 0;
5746 	unsigned long nr_objs = 0;
5747 	unsigned long nr_free = 0;
5748 	int node;
5749 	struct kmem_cache_node *n;
5750 
5751 	for_each_kmem_cache_node(s, node, n) {
5752 		nr_slabs += node_nr_slabs(n);
5753 		nr_objs += node_nr_objs(n);
5754 		nr_free += count_partial(n, count_free);
5755 	}
5756 
5757 	sinfo->active_objs = nr_objs - nr_free;
5758 	sinfo->num_objs = nr_objs;
5759 	sinfo->active_slabs = nr_slabs;
5760 	sinfo->num_slabs = nr_slabs;
5761 	sinfo->objects_per_slab = oo_objects(s->oo);
5762 	sinfo->cache_order = oo_order(s->oo);
5763 }
5764 
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)5765 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5766 {
5767 }
5768 
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)5769 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5770 		       size_t count, loff_t *ppos)
5771 {
5772 	return -EIO;
5773 }
5774 #endif /* CONFIG_SLUB_DEBUG */
5775