1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects:
56 * A. page->freelist -> List of object free in a page
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list except per cpu partial list. The processor that froze the
63 * slab is the one who can perform list operations on the page. Other
64 * processors may put objects onto the freelist but the processor that
65 * froze the slab is the only one that can retrieve the objects from the
66 * page's freelist.
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
89 * freed then the slab will show up again on the partial lists.
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
97 * page->frozen The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 #ifdef CONFIG_SLUB_DEBUG
119 #ifdef CONFIG_SLUB_DEBUG_ON
120 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121 #else
122 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123 #endif
124 #endif
125
kmem_cache_debug(struct kmem_cache * s)126 static inline bool kmem_cache_debug(struct kmem_cache *s)
127 {
128 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
129 }
130
fixup_red_left(struct kmem_cache * s,void * p)131 void *fixup_red_left(struct kmem_cache *s, void *p)
132 {
133 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
134 p += s->red_left_pad;
135
136 return p;
137 }
138
kmem_cache_has_cpu_partial(struct kmem_cache * s)139 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140 {
141 #ifdef CONFIG_SLUB_CPU_PARTIAL
142 return !kmem_cache_debug(s);
143 #else
144 return false;
145 #endif
146 }
147
148 /*
149 * Issues still to be resolved:
150 *
151 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152 *
153 * - Variable sizing of the per node arrays
154 */
155
156 /* Enable to test recovery from slab corruption on boot */
157 #undef SLUB_RESILIENCY_TEST
158
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161
162 /*
163 * Mininum number of partial slabs. These will be left on the partial
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
166 #define MIN_PARTIAL 5
167
168 /*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
171 * sort the partial list by the number of objects in use.
172 */
173 #define MAX_PARTIAL 10
174
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_STORE_USER)
177
178 /*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
186 /*
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
190 */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192
193 #define OO_SHIFT 16
194 #define OO_MASK ((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
196
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
202
203 /*
204 * Tracking user of a slab.
205 */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 unsigned long addr; /* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211 #endif
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215 };
216
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
sysfs_slab_add(struct kmem_cache * s)223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
226 #endif
227
stat(const struct kmem_cache * s,enum stat_item si)228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238
239 /********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
243 /*
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
246 * random number.
247 */
freelist_ptr(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 unsigned long ptr_addr)
250 {
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 /*
253 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
254 * Normally, this doesn't cause any issues, as both set_freepointer()
255 * and get_freepointer() are called with a pointer with the same tag.
256 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
257 * example, when __free_slub() iterates over objects in a cache, it
258 * passes untagged pointers to check_object(). check_object() in turns
259 * calls get_freepointer() with an untagged pointer, which causes the
260 * freepointer to be restored incorrectly.
261 */
262 return (void *)((unsigned long)ptr ^ s->random ^
263 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
264 #else
265 return ptr;
266 #endif
267 }
268
269 /* Returns the freelist pointer recorded at location ptr_addr. */
freelist_dereference(const struct kmem_cache * s,void * ptr_addr)270 static inline void *freelist_dereference(const struct kmem_cache *s,
271 void *ptr_addr)
272 {
273 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
274 (unsigned long)ptr_addr);
275 }
276
get_freepointer(struct kmem_cache * s,void * object)277 static inline void *get_freepointer(struct kmem_cache *s, void *object)
278 {
279 return freelist_dereference(s, object + s->offset);
280 }
281
prefetch_freepointer(const struct kmem_cache * s,void * object)282 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283 {
284 prefetch(object + s->offset);
285 }
286
get_freepointer_safe(struct kmem_cache * s,void * object)287 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288 {
289 unsigned long freepointer_addr;
290 void *p;
291
292 if (!debug_pagealloc_enabled_static())
293 return get_freepointer(s, object);
294
295 freepointer_addr = (unsigned long)object + s->offset;
296 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
297 return freelist_ptr(s, p, freepointer_addr);
298 }
299
set_freepointer(struct kmem_cache * s,void * object,void * fp)300 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 {
302 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303
304 #ifdef CONFIG_SLAB_FREELIST_HARDENED
305 BUG_ON(object == fp); /* naive detection of double free or corruption */
306 #endif
307
308 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
309 }
310
311 /* Loop over all objects in a slab */
312 #define for_each_object(__p, __s, __addr, __objects) \
313 for (__p = fixup_red_left(__s, __addr); \
314 __p < (__addr) + (__objects) * (__s)->size; \
315 __p += (__s)->size)
316
order_objects(unsigned int order,unsigned int size)317 static inline unsigned int order_objects(unsigned int order, unsigned int size)
318 {
319 return ((unsigned int)PAGE_SIZE << order) / size;
320 }
321
oo_make(unsigned int order,unsigned int size)322 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
323 unsigned int size)
324 {
325 struct kmem_cache_order_objects x = {
326 (order << OO_SHIFT) + order_objects(order, size)
327 };
328
329 return x;
330 }
331
oo_order(struct kmem_cache_order_objects x)332 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
333 {
334 return x.x >> OO_SHIFT;
335 }
336
oo_objects(struct kmem_cache_order_objects x)337 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
338 {
339 return x.x & OO_MASK;
340 }
341
342 /*
343 * Per slab locking using the pagelock
344 */
slab_lock(struct page * page)345 static __always_inline void slab_lock(struct page *page)
346 {
347 VM_BUG_ON_PAGE(PageTail(page), page);
348 bit_spin_lock(PG_locked, &page->flags);
349 }
350
slab_unlock(struct page * page)351 static __always_inline void slab_unlock(struct page *page)
352 {
353 VM_BUG_ON_PAGE(PageTail(page), page);
354 __bit_spin_unlock(PG_locked, &page->flags);
355 }
356
357 /* Interrupts must be disabled (for the fallback code to work right) */
__cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)358 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
359 void *freelist_old, unsigned long counters_old,
360 void *freelist_new, unsigned long counters_new,
361 const char *n)
362 {
363 VM_BUG_ON(!irqs_disabled());
364 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
365 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
366 if (s->flags & __CMPXCHG_DOUBLE) {
367 if (cmpxchg_double(&page->freelist, &page->counters,
368 freelist_old, counters_old,
369 freelist_new, counters_new))
370 return true;
371 } else
372 #endif
373 {
374 slab_lock(page);
375 if (page->freelist == freelist_old &&
376 page->counters == counters_old) {
377 page->freelist = freelist_new;
378 page->counters = counters_new;
379 slab_unlock(page);
380 return true;
381 }
382 slab_unlock(page);
383 }
384
385 cpu_relax();
386 stat(s, CMPXCHG_DOUBLE_FAIL);
387
388 #ifdef SLUB_DEBUG_CMPXCHG
389 pr_info("%s %s: cmpxchg double redo ", n, s->name);
390 #endif
391
392 return false;
393 }
394
cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)395 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
396 void *freelist_old, unsigned long counters_old,
397 void *freelist_new, unsigned long counters_new,
398 const char *n)
399 {
400 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
402 if (s->flags & __CMPXCHG_DOUBLE) {
403 if (cmpxchg_double(&page->freelist, &page->counters,
404 freelist_old, counters_old,
405 freelist_new, counters_new))
406 return true;
407 } else
408 #endif
409 {
410 unsigned long flags;
411
412 local_irq_save(flags);
413 slab_lock(page);
414 if (page->freelist == freelist_old &&
415 page->counters == counters_old) {
416 page->freelist = freelist_new;
417 page->counters = counters_new;
418 slab_unlock(page);
419 local_irq_restore(flags);
420 return true;
421 }
422 slab_unlock(page);
423 local_irq_restore(flags);
424 }
425
426 cpu_relax();
427 stat(s, CMPXCHG_DOUBLE_FAIL);
428
429 #ifdef SLUB_DEBUG_CMPXCHG
430 pr_info("%s %s: cmpxchg double redo ", n, s->name);
431 #endif
432
433 return false;
434 }
435
436 #ifdef CONFIG_SLUB_DEBUG
437 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
438 static DEFINE_SPINLOCK(object_map_lock);
439
440 /*
441 * Determine a map of object in use on a page.
442 *
443 * Node listlock must be held to guarantee that the page does
444 * not vanish from under us.
445 */
get_map(struct kmem_cache * s,struct page * page)446 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
447 __acquires(&object_map_lock)
448 {
449 void *p;
450 void *addr = page_address(page);
451
452 VM_BUG_ON(!irqs_disabled());
453
454 spin_lock(&object_map_lock);
455
456 bitmap_zero(object_map, page->objects);
457
458 for (p = page->freelist; p; p = get_freepointer(s, p))
459 set_bit(__obj_to_index(s, addr, p), object_map);
460
461 return object_map;
462 }
463
put_map(unsigned long * map)464 static void put_map(unsigned long *map) __releases(&object_map_lock)
465 {
466 VM_BUG_ON(map != object_map);
467 spin_unlock(&object_map_lock);
468 }
469
size_from_object(struct kmem_cache * s)470 static inline unsigned int size_from_object(struct kmem_cache *s)
471 {
472 if (s->flags & SLAB_RED_ZONE)
473 return s->size - s->red_left_pad;
474
475 return s->size;
476 }
477
restore_red_left(struct kmem_cache * s,void * p)478 static inline void *restore_red_left(struct kmem_cache *s, void *p)
479 {
480 if (s->flags & SLAB_RED_ZONE)
481 p -= s->red_left_pad;
482
483 return p;
484 }
485
486 /*
487 * Debug settings:
488 */
489 #if defined(CONFIG_SLUB_DEBUG_ON)
490 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
491 #else
492 static slab_flags_t slub_debug;
493 #endif
494
495 static char *slub_debug_string;
496 static int disable_higher_order_debug;
497
498 /*
499 * slub is about to manipulate internal object metadata. This memory lies
500 * outside the range of the allocated object, so accessing it would normally
501 * be reported by kasan as a bounds error. metadata_access_enable() is used
502 * to tell kasan that these accesses are OK.
503 */
metadata_access_enable(void)504 static inline void metadata_access_enable(void)
505 {
506 kasan_disable_current();
507 }
508
metadata_access_disable(void)509 static inline void metadata_access_disable(void)
510 {
511 kasan_enable_current();
512 }
513
514 /*
515 * Object debugging
516 */
517
518 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct page * page,void * object)519 static inline int check_valid_pointer(struct kmem_cache *s,
520 struct page *page, void *object)
521 {
522 void *base;
523
524 if (!object)
525 return 1;
526
527 base = page_address(page);
528 object = kasan_reset_tag(object);
529 object = restore_red_left(s, object);
530 if (object < base || object >= base + page->objects * s->size ||
531 (object - base) % s->size) {
532 return 0;
533 }
534
535 return 1;
536 }
537
print_section(char * level,char * text,u8 * addr,unsigned int length)538 static void print_section(char *level, char *text, u8 *addr,
539 unsigned int length)
540 {
541 metadata_access_enable();
542 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
543 length, 1);
544 metadata_access_disable();
545 }
546
547 /*
548 * See comment in calculate_sizes().
549 */
freeptr_outside_object(struct kmem_cache * s)550 static inline bool freeptr_outside_object(struct kmem_cache *s)
551 {
552 return s->offset >= s->inuse;
553 }
554
555 /*
556 * Return offset of the end of info block which is inuse + free pointer if
557 * not overlapping with object.
558 */
get_info_end(struct kmem_cache * s)559 static inline unsigned int get_info_end(struct kmem_cache *s)
560 {
561 if (freeptr_outside_object(s))
562 return s->inuse + sizeof(void *);
563 else
564 return s->inuse;
565 }
566
get_track(struct kmem_cache * s,void * object,enum track_item alloc)567 static struct track *get_track(struct kmem_cache *s, void *object,
568 enum track_item alloc)
569 {
570 struct track *p;
571
572 p = object + get_info_end(s);
573
574 return p + alloc;
575 }
576
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)577 static void set_track(struct kmem_cache *s, void *object,
578 enum track_item alloc, unsigned long addr)
579 {
580 struct track *p = get_track(s, object, alloc);
581
582 if (addr) {
583 #ifdef CONFIG_STACKTRACE
584 unsigned int nr_entries;
585
586 metadata_access_enable();
587 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
588 metadata_access_disable();
589
590 if (nr_entries < TRACK_ADDRS_COUNT)
591 p->addrs[nr_entries] = 0;
592 #endif
593 p->addr = addr;
594 p->cpu = smp_processor_id();
595 p->pid = current->pid;
596 p->when = jiffies;
597 } else {
598 memset(p, 0, sizeof(struct track));
599 }
600 }
601
init_tracking(struct kmem_cache * s,void * object)602 static void init_tracking(struct kmem_cache *s, void *object)
603 {
604 if (!(s->flags & SLAB_STORE_USER))
605 return;
606
607 set_track(s, object, TRACK_FREE, 0UL);
608 set_track(s, object, TRACK_ALLOC, 0UL);
609 }
610
print_track(const char * s,struct track * t,unsigned long pr_time)611 static void print_track(const char *s, struct track *t, unsigned long pr_time)
612 {
613 if (!t->addr)
614 return;
615
616 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
617 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
618 #ifdef CONFIG_STACKTRACE
619 {
620 int i;
621 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
622 if (t->addrs[i])
623 pr_err("\t%pS\n", (void *)t->addrs[i]);
624 else
625 break;
626 }
627 #endif
628 }
629
print_tracking(struct kmem_cache * s,void * object)630 void print_tracking(struct kmem_cache *s, void *object)
631 {
632 unsigned long pr_time = jiffies;
633 if (!(s->flags & SLAB_STORE_USER))
634 return;
635
636 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
637 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
638 }
639
print_page_info(struct page * page)640 static void print_page_info(struct page *page)
641 {
642 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
643 page, page->objects, page->inuse, page->freelist, page->flags);
644
645 }
646
slab_bug(struct kmem_cache * s,char * fmt,...)647 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
648 {
649 struct va_format vaf;
650 va_list args;
651
652 va_start(args, fmt);
653 vaf.fmt = fmt;
654 vaf.va = &args;
655 pr_err("=============================================================================\n");
656 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
657 pr_err("-----------------------------------------------------------------------------\n\n");
658
659 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
660 va_end(args);
661 }
662
slab_fix(struct kmem_cache * s,char * fmt,...)663 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
664 {
665 struct va_format vaf;
666 va_list args;
667
668 va_start(args, fmt);
669 vaf.fmt = fmt;
670 vaf.va = &args;
671 pr_err("FIX %s: %pV\n", s->name, &vaf);
672 va_end(args);
673 }
674
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)675 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
676 void **freelist, void *nextfree)
677 {
678 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
679 !check_valid_pointer(s, page, nextfree) && freelist) {
680 object_err(s, page, *freelist, "Freechain corrupt");
681 *freelist = NULL;
682 slab_fix(s, "Isolate corrupted freechain");
683 return true;
684 }
685
686 return false;
687 }
688
print_trailer(struct kmem_cache * s,struct page * page,u8 * p)689 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
690 {
691 unsigned int off; /* Offset of last byte */
692 u8 *addr = page_address(page);
693
694 print_tracking(s, p);
695
696 print_page_info(page);
697
698 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
699 p, p - addr, get_freepointer(s, p));
700
701 if (s->flags & SLAB_RED_ZONE)
702 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
703 s->red_left_pad);
704 else if (p > addr + 16)
705 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
706
707 print_section(KERN_ERR, "Object ", p,
708 min_t(unsigned int, s->object_size, PAGE_SIZE));
709 if (s->flags & SLAB_RED_ZONE)
710 print_section(KERN_ERR, "Redzone ", p + s->object_size,
711 s->inuse - s->object_size);
712
713 off = get_info_end(s);
714
715 if (s->flags & SLAB_STORE_USER)
716 off += 2 * sizeof(struct track);
717
718 off += kasan_metadata_size(s);
719
720 if (off != size_from_object(s))
721 /* Beginning of the filler is the free pointer */
722 print_section(KERN_ERR, "Padding ", p + off,
723 size_from_object(s) - off);
724
725 dump_stack();
726 }
727
object_err(struct kmem_cache * s,struct page * page,u8 * object,char * reason)728 void object_err(struct kmem_cache *s, struct page *page,
729 u8 *object, char *reason)
730 {
731 slab_bug(s, "%s", reason);
732 print_trailer(s, page, object);
733 }
734
slab_err(struct kmem_cache * s,struct page * page,const char * fmt,...)735 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
736 const char *fmt, ...)
737 {
738 va_list args;
739 char buf[100];
740
741 va_start(args, fmt);
742 vsnprintf(buf, sizeof(buf), fmt, args);
743 va_end(args);
744 slab_bug(s, "%s", buf);
745 print_page_info(page);
746 dump_stack();
747 }
748
init_object(struct kmem_cache * s,void * object,u8 val)749 static void init_object(struct kmem_cache *s, void *object, u8 val)
750 {
751 u8 *p = object;
752
753 if (s->flags & SLAB_RED_ZONE)
754 memset(p - s->red_left_pad, val, s->red_left_pad);
755
756 if (s->flags & __OBJECT_POISON) {
757 memset(p, POISON_FREE, s->object_size - 1);
758 p[s->object_size - 1] = POISON_END;
759 }
760
761 if (s->flags & SLAB_RED_ZONE)
762 memset(p + s->object_size, val, s->inuse - s->object_size);
763 }
764
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)765 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
766 void *from, void *to)
767 {
768 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
769 memset(from, data, to - from);
770 }
771
check_bytes_and_report(struct kmem_cache * s,struct page * page,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)772 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
773 u8 *object, char *what,
774 u8 *start, unsigned int value, unsigned int bytes)
775 {
776 u8 *fault;
777 u8 *end;
778 u8 *addr = page_address(page);
779
780 metadata_access_enable();
781 fault = memchr_inv(start, value, bytes);
782 metadata_access_disable();
783 if (!fault)
784 return 1;
785
786 end = start + bytes;
787 while (end > fault && end[-1] == value)
788 end--;
789
790 slab_bug(s, "%s overwritten", what);
791 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
792 fault, end - 1, fault - addr,
793 fault[0], value);
794 print_trailer(s, page, object);
795
796 restore_bytes(s, what, value, fault, end);
797 return 0;
798 }
799
800 /*
801 * Object layout:
802 *
803 * object address
804 * Bytes of the object to be managed.
805 * If the freepointer may overlay the object then the free
806 * pointer is at the middle of the object.
807 *
808 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
809 * 0xa5 (POISON_END)
810 *
811 * object + s->object_size
812 * Padding to reach word boundary. This is also used for Redzoning.
813 * Padding is extended by another word if Redzoning is enabled and
814 * object_size == inuse.
815 *
816 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
817 * 0xcc (RED_ACTIVE) for objects in use.
818 *
819 * object + s->inuse
820 * Meta data starts here.
821 *
822 * A. Free pointer (if we cannot overwrite object on free)
823 * B. Tracking data for SLAB_STORE_USER
824 * C. Padding to reach required alignment boundary or at mininum
825 * one word if debugging is on to be able to detect writes
826 * before the word boundary.
827 *
828 * Padding is done using 0x5a (POISON_INUSE)
829 *
830 * object + s->size
831 * Nothing is used beyond s->size.
832 *
833 * If slabcaches are merged then the object_size and inuse boundaries are mostly
834 * ignored. And therefore no slab options that rely on these boundaries
835 * may be used with merged slabcaches.
836 */
837
check_pad_bytes(struct kmem_cache * s,struct page * page,u8 * p)838 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
839 {
840 unsigned long off = get_info_end(s); /* The end of info */
841
842 if (s->flags & SLAB_STORE_USER)
843 /* We also have user information there */
844 off += 2 * sizeof(struct track);
845
846 off += kasan_metadata_size(s);
847
848 if (size_from_object(s) == off)
849 return 1;
850
851 return check_bytes_and_report(s, page, p, "Object padding",
852 p + off, POISON_INUSE, size_from_object(s) - off);
853 }
854
855 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct page * page)856 static int slab_pad_check(struct kmem_cache *s, struct page *page)
857 {
858 u8 *start;
859 u8 *fault;
860 u8 *end;
861 u8 *pad;
862 int length;
863 int remainder;
864
865 if (!(s->flags & SLAB_POISON))
866 return 1;
867
868 start = page_address(page);
869 length = page_size(page);
870 end = start + length;
871 remainder = length % s->size;
872 if (!remainder)
873 return 1;
874
875 pad = end - remainder;
876 metadata_access_enable();
877 fault = memchr_inv(pad, POISON_INUSE, remainder);
878 metadata_access_disable();
879 if (!fault)
880 return 1;
881 while (end > fault && end[-1] == POISON_INUSE)
882 end--;
883
884 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
885 fault, end - 1, fault - start);
886 print_section(KERN_ERR, "Padding ", pad, remainder);
887
888 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
889 return 0;
890 }
891
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)892 static int check_object(struct kmem_cache *s, struct page *page,
893 void *object, u8 val)
894 {
895 u8 *p = object;
896 u8 *endobject = object + s->object_size;
897
898 if (s->flags & SLAB_RED_ZONE) {
899 if (!check_bytes_and_report(s, page, object, "Left Redzone",
900 object - s->red_left_pad, val, s->red_left_pad))
901 return 0;
902
903 if (!check_bytes_and_report(s, page, object, "Right Redzone",
904 endobject, val, s->inuse - s->object_size))
905 return 0;
906 } else {
907 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
908 check_bytes_and_report(s, page, p, "Alignment padding",
909 endobject, POISON_INUSE,
910 s->inuse - s->object_size);
911 }
912 }
913
914 if (s->flags & SLAB_POISON) {
915 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
916 (!check_bytes_and_report(s, page, p, "Poison", p,
917 POISON_FREE, s->object_size - 1) ||
918 !check_bytes_and_report(s, page, p, "End Poison",
919 p + s->object_size - 1, POISON_END, 1)))
920 return 0;
921 /*
922 * check_pad_bytes cleans up on its own.
923 */
924 check_pad_bytes(s, page, p);
925 }
926
927 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
928 /*
929 * Object and freepointer overlap. Cannot check
930 * freepointer while object is allocated.
931 */
932 return 1;
933
934 /* Check free pointer validity */
935 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
936 object_err(s, page, p, "Freepointer corrupt");
937 /*
938 * No choice but to zap it and thus lose the remainder
939 * of the free objects in this slab. May cause
940 * another error because the object count is now wrong.
941 */
942 set_freepointer(s, p, NULL);
943 return 0;
944 }
945 return 1;
946 }
947
check_slab(struct kmem_cache * s,struct page * page)948 static int check_slab(struct kmem_cache *s, struct page *page)
949 {
950 int maxobj;
951
952 VM_BUG_ON(!irqs_disabled());
953
954 if (!PageSlab(page)) {
955 slab_err(s, page, "Not a valid slab page");
956 return 0;
957 }
958
959 maxobj = order_objects(compound_order(page), s->size);
960 if (page->objects > maxobj) {
961 slab_err(s, page, "objects %u > max %u",
962 page->objects, maxobj);
963 return 0;
964 }
965 if (page->inuse > page->objects) {
966 slab_err(s, page, "inuse %u > max %u",
967 page->inuse, page->objects);
968 return 0;
969 }
970 /* Slab_pad_check fixes things up after itself */
971 slab_pad_check(s, page);
972 return 1;
973 }
974
975 /*
976 * Determine if a certain object on a page is on the freelist. Must hold the
977 * slab lock to guarantee that the chains are in a consistent state.
978 */
on_freelist(struct kmem_cache * s,struct page * page,void * search)979 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
980 {
981 int nr = 0;
982 void *fp;
983 void *object = NULL;
984 int max_objects;
985
986 fp = page->freelist;
987 while (fp && nr <= page->objects) {
988 if (fp == search)
989 return 1;
990 if (!check_valid_pointer(s, page, fp)) {
991 if (object) {
992 object_err(s, page, object,
993 "Freechain corrupt");
994 set_freepointer(s, object, NULL);
995 } else {
996 slab_err(s, page, "Freepointer corrupt");
997 page->freelist = NULL;
998 page->inuse = page->objects;
999 slab_fix(s, "Freelist cleared");
1000 return 0;
1001 }
1002 break;
1003 }
1004 object = fp;
1005 fp = get_freepointer(s, object);
1006 nr++;
1007 }
1008
1009 max_objects = order_objects(compound_order(page), s->size);
1010 if (max_objects > MAX_OBJS_PER_PAGE)
1011 max_objects = MAX_OBJS_PER_PAGE;
1012
1013 if (page->objects != max_objects) {
1014 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1015 page->objects, max_objects);
1016 page->objects = max_objects;
1017 slab_fix(s, "Number of objects adjusted.");
1018 }
1019 if (page->inuse != page->objects - nr) {
1020 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1021 page->inuse, page->objects - nr);
1022 page->inuse = page->objects - nr;
1023 slab_fix(s, "Object count adjusted.");
1024 }
1025 return search == NULL;
1026 }
1027
trace(struct kmem_cache * s,struct page * page,void * object,int alloc)1028 static void trace(struct kmem_cache *s, struct page *page, void *object,
1029 int alloc)
1030 {
1031 if (s->flags & SLAB_TRACE) {
1032 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1033 s->name,
1034 alloc ? "alloc" : "free",
1035 object, page->inuse,
1036 page->freelist);
1037
1038 if (!alloc)
1039 print_section(KERN_INFO, "Object ", (void *)object,
1040 s->object_size);
1041
1042 dump_stack();
1043 }
1044 }
1045
1046 /*
1047 * Tracking of fully allocated slabs for debugging purposes.
1048 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1049 static void add_full(struct kmem_cache *s,
1050 struct kmem_cache_node *n, struct page *page)
1051 {
1052 if (!(s->flags & SLAB_STORE_USER))
1053 return;
1054
1055 lockdep_assert_held(&n->list_lock);
1056 list_add(&page->slab_list, &n->full);
1057 }
1058
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1059 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1060 {
1061 if (!(s->flags & SLAB_STORE_USER))
1062 return;
1063
1064 lockdep_assert_held(&n->list_lock);
1065 list_del(&page->slab_list);
1066 }
1067
1068 /* Tracking of the number of slabs for debugging purposes */
slabs_node(struct kmem_cache * s,int node)1069 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1070 {
1071 struct kmem_cache_node *n = get_node(s, node);
1072
1073 return atomic_long_read(&n->nr_slabs);
1074 }
1075
node_nr_slabs(struct kmem_cache_node * n)1076 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1077 {
1078 return atomic_long_read(&n->nr_slabs);
1079 }
1080
inc_slabs_node(struct kmem_cache * s,int node,int objects)1081 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1082 {
1083 struct kmem_cache_node *n = get_node(s, node);
1084
1085 /*
1086 * May be called early in order to allocate a slab for the
1087 * kmem_cache_node structure. Solve the chicken-egg
1088 * dilemma by deferring the increment of the count during
1089 * bootstrap (see early_kmem_cache_node_alloc).
1090 */
1091 if (likely(n)) {
1092 atomic_long_inc(&n->nr_slabs);
1093 atomic_long_add(objects, &n->total_objects);
1094 }
1095 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1096 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1097 {
1098 struct kmem_cache_node *n = get_node(s, node);
1099
1100 atomic_long_dec(&n->nr_slabs);
1101 atomic_long_sub(objects, &n->total_objects);
1102 }
1103
1104 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1105 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1106 void *object)
1107 {
1108 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1109 return;
1110
1111 init_object(s, object, SLUB_RED_INACTIVE);
1112 init_tracking(s, object);
1113 }
1114
1115 static
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1116 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1117 {
1118 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1119 return;
1120
1121 metadata_access_enable();
1122 memset(addr, POISON_INUSE, page_size(page));
1123 metadata_access_disable();
1124 }
1125
alloc_consistency_checks(struct kmem_cache * s,struct page * page,void * object)1126 static inline int alloc_consistency_checks(struct kmem_cache *s,
1127 struct page *page, void *object)
1128 {
1129 if (!check_slab(s, page))
1130 return 0;
1131
1132 if (!check_valid_pointer(s, page, object)) {
1133 object_err(s, page, object, "Freelist Pointer check fails");
1134 return 0;
1135 }
1136
1137 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1138 return 0;
1139
1140 return 1;
1141 }
1142
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1143 static noinline int alloc_debug_processing(struct kmem_cache *s,
1144 struct page *page,
1145 void *object, unsigned long addr)
1146 {
1147 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1148 if (!alloc_consistency_checks(s, page, object))
1149 goto bad;
1150 }
1151
1152 /* Success perform special debug activities for allocs */
1153 if (s->flags & SLAB_STORE_USER)
1154 set_track(s, object, TRACK_ALLOC, addr);
1155 trace(s, page, object, 1);
1156 init_object(s, object, SLUB_RED_ACTIVE);
1157 return 1;
1158
1159 bad:
1160 if (PageSlab(page)) {
1161 /*
1162 * If this is a slab page then lets do the best we can
1163 * to avoid issues in the future. Marking all objects
1164 * as used avoids touching the remaining objects.
1165 */
1166 slab_fix(s, "Marking all objects used");
1167 page->inuse = page->objects;
1168 page->freelist = NULL;
1169 }
1170 return 0;
1171 }
1172
free_consistency_checks(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1173 static inline int free_consistency_checks(struct kmem_cache *s,
1174 struct page *page, void *object, unsigned long addr)
1175 {
1176 if (!check_valid_pointer(s, page, object)) {
1177 slab_err(s, page, "Invalid object pointer 0x%p", object);
1178 return 0;
1179 }
1180
1181 if (on_freelist(s, page, object)) {
1182 object_err(s, page, object, "Object already free");
1183 return 0;
1184 }
1185
1186 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1187 return 0;
1188
1189 if (unlikely(s != page->slab_cache)) {
1190 if (!PageSlab(page)) {
1191 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1192 object);
1193 } else if (!page->slab_cache) {
1194 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1195 object);
1196 dump_stack();
1197 } else
1198 object_err(s, page, object,
1199 "page slab pointer corrupt.");
1200 return 0;
1201 }
1202 return 1;
1203 }
1204
1205 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1206 static noinline int free_debug_processing(
1207 struct kmem_cache *s, struct page *page,
1208 void *head, void *tail, int bulk_cnt,
1209 unsigned long addr)
1210 {
1211 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1212 void *object = head;
1213 int cnt = 0;
1214 unsigned long flags;
1215 int ret = 0;
1216
1217 spin_lock_irqsave(&n->list_lock, flags);
1218 slab_lock(page);
1219
1220 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1221 if (!check_slab(s, page))
1222 goto out;
1223 }
1224
1225 next_object:
1226 cnt++;
1227
1228 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1229 if (!free_consistency_checks(s, page, object, addr))
1230 goto out;
1231 }
1232
1233 if (s->flags & SLAB_STORE_USER)
1234 set_track(s, object, TRACK_FREE, addr);
1235 trace(s, page, object, 0);
1236 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1237 init_object(s, object, SLUB_RED_INACTIVE);
1238
1239 /* Reached end of constructed freelist yet? */
1240 if (object != tail) {
1241 object = get_freepointer(s, object);
1242 goto next_object;
1243 }
1244 ret = 1;
1245
1246 out:
1247 if (cnt != bulk_cnt)
1248 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1249 bulk_cnt, cnt);
1250
1251 slab_unlock(page);
1252 spin_unlock_irqrestore(&n->list_lock, flags);
1253 if (!ret)
1254 slab_fix(s, "Object at 0x%p not freed", object);
1255 return ret;
1256 }
1257
1258 /*
1259 * Parse a block of slub_debug options. Blocks are delimited by ';'
1260 *
1261 * @str: start of block
1262 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1263 * @slabs: return start of list of slabs, or NULL when there's no list
1264 * @init: assume this is initial parsing and not per-kmem-create parsing
1265 *
1266 * returns the start of next block if there's any, or NULL
1267 */
1268 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1269 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1270 {
1271 bool higher_order_disable = false;
1272
1273 /* Skip any completely empty blocks */
1274 while (*str && *str == ';')
1275 str++;
1276
1277 if (*str == ',') {
1278 /*
1279 * No options but restriction on slabs. This means full
1280 * debugging for slabs matching a pattern.
1281 */
1282 *flags = DEBUG_DEFAULT_FLAGS;
1283 goto check_slabs;
1284 }
1285 *flags = 0;
1286
1287 /* Determine which debug features should be switched on */
1288 for (; *str && *str != ',' && *str != ';'; str++) {
1289 switch (tolower(*str)) {
1290 case '-':
1291 *flags = 0;
1292 break;
1293 case 'f':
1294 *flags |= SLAB_CONSISTENCY_CHECKS;
1295 break;
1296 case 'z':
1297 *flags |= SLAB_RED_ZONE;
1298 break;
1299 case 'p':
1300 *flags |= SLAB_POISON;
1301 break;
1302 case 'u':
1303 *flags |= SLAB_STORE_USER;
1304 break;
1305 case 't':
1306 *flags |= SLAB_TRACE;
1307 break;
1308 case 'a':
1309 *flags |= SLAB_FAILSLAB;
1310 break;
1311 case 'o':
1312 /*
1313 * Avoid enabling debugging on caches if its minimum
1314 * order would increase as a result.
1315 */
1316 higher_order_disable = true;
1317 break;
1318 default:
1319 if (init)
1320 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1321 }
1322 }
1323 check_slabs:
1324 if (*str == ',')
1325 *slabs = ++str;
1326 else
1327 *slabs = NULL;
1328
1329 /* Skip over the slab list */
1330 while (*str && *str != ';')
1331 str++;
1332
1333 /* Skip any completely empty blocks */
1334 while (*str && *str == ';')
1335 str++;
1336
1337 if (init && higher_order_disable)
1338 disable_higher_order_debug = 1;
1339
1340 if (*str)
1341 return str;
1342 else
1343 return NULL;
1344 }
1345
setup_slub_debug(char * str)1346 static int __init setup_slub_debug(char *str)
1347 {
1348 slab_flags_t flags;
1349 slab_flags_t global_flags;
1350 char *saved_str;
1351 char *slab_list;
1352 bool global_slub_debug_changed = false;
1353 bool slab_list_specified = false;
1354
1355 global_flags = DEBUG_DEFAULT_FLAGS;
1356 if (*str++ != '=' || !*str)
1357 /*
1358 * No options specified. Switch on full debugging.
1359 */
1360 goto out;
1361
1362 saved_str = str;
1363 while (str) {
1364 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1365
1366 if (!slab_list) {
1367 global_flags = flags;
1368 global_slub_debug_changed = true;
1369 } else {
1370 slab_list_specified = true;
1371 }
1372 }
1373
1374 /*
1375 * For backwards compatibility, a single list of flags with list of
1376 * slabs means debugging is only changed for those slabs, so the global
1377 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1378 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1379 * long as there is no option specifying flags without a slab list.
1380 */
1381 if (slab_list_specified) {
1382 if (!global_slub_debug_changed)
1383 global_flags = slub_debug;
1384 slub_debug_string = saved_str;
1385 }
1386 out:
1387 slub_debug = global_flags;
1388 if (slub_debug != 0 || slub_debug_string)
1389 static_branch_enable(&slub_debug_enabled);
1390 if ((static_branch_unlikely(&init_on_alloc) ||
1391 static_branch_unlikely(&init_on_free)) &&
1392 (slub_debug & SLAB_POISON))
1393 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1394 return 1;
1395 }
1396
1397 __setup("slub_debug", setup_slub_debug);
1398
1399 /*
1400 * kmem_cache_flags - apply debugging options to the cache
1401 * @object_size: the size of an object without meta data
1402 * @flags: flags to set
1403 * @name: name of the cache
1404 *
1405 * Debug option(s) are applied to @flags. In addition to the debug
1406 * option(s), if a slab name (or multiple) is specified i.e.
1407 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1408 * then only the select slabs will receive the debug option(s).
1409 */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1410 slab_flags_t kmem_cache_flags(unsigned int object_size,
1411 slab_flags_t flags, const char *name)
1412 {
1413 char *iter;
1414 size_t len;
1415 char *next_block;
1416 slab_flags_t block_flags;
1417
1418 len = strlen(name);
1419 next_block = slub_debug_string;
1420 /* Go through all blocks of debug options, see if any matches our slab's name */
1421 while (next_block) {
1422 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1423 if (!iter)
1424 continue;
1425 /* Found a block that has a slab list, search it */
1426 while (*iter) {
1427 char *end, *glob;
1428 size_t cmplen;
1429
1430 end = strchrnul(iter, ',');
1431 if (next_block && next_block < end)
1432 end = next_block - 1;
1433
1434 glob = strnchr(iter, end - iter, '*');
1435 if (glob)
1436 cmplen = glob - iter;
1437 else
1438 cmplen = max_t(size_t, len, (end - iter));
1439
1440 if (!strncmp(name, iter, cmplen)) {
1441 flags |= block_flags;
1442 return flags;
1443 }
1444
1445 if (!*end || *end == ';')
1446 break;
1447 iter = end + 1;
1448 }
1449 }
1450
1451 return flags | slub_debug;
1452 }
1453 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1454 static inline void setup_object_debug(struct kmem_cache *s,
1455 struct page *page, void *object) {}
1456 static inline
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1457 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1458
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1459 static inline int alloc_debug_processing(struct kmem_cache *s,
1460 struct page *page, void *object, unsigned long addr) { return 0; }
1461
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1462 static inline int free_debug_processing(
1463 struct kmem_cache *s, struct page *page,
1464 void *head, void *tail, int bulk_cnt,
1465 unsigned long addr) { return 0; }
1466
slab_pad_check(struct kmem_cache * s,struct page * page)1467 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1468 { return 1; }
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)1469 static inline int check_object(struct kmem_cache *s, struct page *page,
1470 void *object, u8 val) { return 1; }
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1471 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1472 struct page *page) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1473 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1474 struct page *page) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1475 slab_flags_t kmem_cache_flags(unsigned int object_size,
1476 slab_flags_t flags, const char *name)
1477 {
1478 return flags;
1479 }
1480 #define slub_debug 0
1481
1482 #define disable_higher_order_debug 0
1483
slabs_node(struct kmem_cache * s,int node)1484 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1485 { return 0; }
node_nr_slabs(struct kmem_cache_node * n)1486 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1487 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1488 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1489 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1490 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1491 int objects) {}
1492
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)1493 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1494 void **freelist, void *nextfree)
1495 {
1496 return false;
1497 }
1498 #endif /* CONFIG_SLUB_DEBUG */
1499
1500 /*
1501 * Hooks for other subsystems that check memory allocations. In a typical
1502 * production configuration these hooks all should produce no code at all.
1503 */
kmalloc_large_node_hook(void * ptr,size_t size,gfp_t flags)1504 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1505 {
1506 ptr = kasan_kmalloc_large(ptr, size, flags);
1507 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1508 kmemleak_alloc(ptr, size, 1, flags);
1509 return ptr;
1510 }
1511
kfree_hook(void * x)1512 static __always_inline void kfree_hook(void *x)
1513 {
1514 kmemleak_free(x);
1515 kasan_kfree_large(x, _RET_IP_);
1516 }
1517
slab_free_hook(struct kmem_cache * s,void * x)1518 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1519 {
1520 kmemleak_free_recursive(x, s->flags);
1521
1522 /*
1523 * Trouble is that we may no longer disable interrupts in the fast path
1524 * So in order to make the debug calls that expect irqs to be
1525 * disabled we need to disable interrupts temporarily.
1526 */
1527 #ifdef CONFIG_LOCKDEP
1528 {
1529 unsigned long flags;
1530
1531 local_irq_save(flags);
1532 debug_check_no_locks_freed(x, s->object_size);
1533 local_irq_restore(flags);
1534 }
1535 #endif
1536 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1537 debug_check_no_obj_freed(x, s->object_size);
1538
1539 /* Use KCSAN to help debug racy use-after-free. */
1540 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1541 __kcsan_check_access(x, s->object_size,
1542 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1543
1544 /* KASAN might put x into memory quarantine, delaying its reuse */
1545 return kasan_slab_free(s, x, _RET_IP_);
1546 }
1547
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)1548 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1549 void **head, void **tail,
1550 int *cnt)
1551 {
1552
1553 void *object;
1554 void *next = *head;
1555 void *old_tail = *tail ? *tail : *head;
1556 int rsize;
1557
1558 /* Head and tail of the reconstructed freelist */
1559 *head = NULL;
1560 *tail = NULL;
1561
1562 do {
1563 object = next;
1564 next = get_freepointer(s, object);
1565
1566 if (slab_want_init_on_free(s)) {
1567 /*
1568 * Clear the object and the metadata, but don't touch
1569 * the redzone.
1570 */
1571 memset(object, 0, s->object_size);
1572 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1573 : 0;
1574 memset((char *)object + s->inuse, 0,
1575 s->size - s->inuse - rsize);
1576
1577 }
1578 /* If object's reuse doesn't have to be delayed */
1579 if (!slab_free_hook(s, object)) {
1580 /* Move object to the new freelist */
1581 set_freepointer(s, object, *head);
1582 *head = object;
1583 if (!*tail)
1584 *tail = object;
1585 } else {
1586 /*
1587 * Adjust the reconstructed freelist depth
1588 * accordingly if object's reuse is delayed.
1589 */
1590 --(*cnt);
1591 }
1592 } while (object != old_tail);
1593
1594 if (*head == *tail)
1595 *tail = NULL;
1596
1597 return *head != NULL;
1598 }
1599
setup_object(struct kmem_cache * s,struct page * page,void * object)1600 static void *setup_object(struct kmem_cache *s, struct page *page,
1601 void *object)
1602 {
1603 setup_object_debug(s, page, object);
1604 object = kasan_init_slab_obj(s, object);
1605 if (unlikely(s->ctor)) {
1606 kasan_unpoison_object_data(s, object);
1607 s->ctor(object);
1608 kasan_poison_object_data(s, object);
1609 }
1610 return object;
1611 }
1612
1613 /*
1614 * Slab allocation and freeing
1615 */
alloc_slab_page(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_order_objects oo)1616 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1617 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1618 {
1619 struct page *page;
1620 unsigned int order = oo_order(oo);
1621
1622 if (node == NUMA_NO_NODE)
1623 page = alloc_pages(flags, order);
1624 else
1625 page = __alloc_pages_node(node, flags, order);
1626
1627 if (page)
1628 account_slab_page(page, order, s);
1629
1630 return page;
1631 }
1632
1633 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1634 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1635 static int init_cache_random_seq(struct kmem_cache *s)
1636 {
1637 unsigned int count = oo_objects(s->oo);
1638 int err;
1639
1640 /* Bailout if already initialised */
1641 if (s->random_seq)
1642 return 0;
1643
1644 err = cache_random_seq_create(s, count, GFP_KERNEL);
1645 if (err) {
1646 pr_err("SLUB: Unable to initialize free list for %s\n",
1647 s->name);
1648 return err;
1649 }
1650
1651 /* Transform to an offset on the set of pages */
1652 if (s->random_seq) {
1653 unsigned int i;
1654
1655 for (i = 0; i < count; i++)
1656 s->random_seq[i] *= s->size;
1657 }
1658 return 0;
1659 }
1660
1661 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1662 static void __init init_freelist_randomization(void)
1663 {
1664 struct kmem_cache *s;
1665
1666 mutex_lock(&slab_mutex);
1667
1668 list_for_each_entry(s, &slab_caches, list)
1669 init_cache_random_seq(s);
1670
1671 mutex_unlock(&slab_mutex);
1672 }
1673
1674 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct page * page,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1675 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1676 unsigned long *pos, void *start,
1677 unsigned long page_limit,
1678 unsigned long freelist_count)
1679 {
1680 unsigned int idx;
1681
1682 /*
1683 * If the target page allocation failed, the number of objects on the
1684 * page might be smaller than the usual size defined by the cache.
1685 */
1686 do {
1687 idx = s->random_seq[*pos];
1688 *pos += 1;
1689 if (*pos >= freelist_count)
1690 *pos = 0;
1691 } while (unlikely(idx >= page_limit));
1692
1693 return (char *)start + idx;
1694 }
1695
1696 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct page * page)1697 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1698 {
1699 void *start;
1700 void *cur;
1701 void *next;
1702 unsigned long idx, pos, page_limit, freelist_count;
1703
1704 if (page->objects < 2 || !s->random_seq)
1705 return false;
1706
1707 freelist_count = oo_objects(s->oo);
1708 pos = get_random_int() % freelist_count;
1709
1710 page_limit = page->objects * s->size;
1711 start = fixup_red_left(s, page_address(page));
1712
1713 /* First entry is used as the base of the freelist */
1714 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1715 freelist_count);
1716 cur = setup_object(s, page, cur);
1717 page->freelist = cur;
1718
1719 for (idx = 1; idx < page->objects; idx++) {
1720 next = next_freelist_entry(s, page, &pos, start, page_limit,
1721 freelist_count);
1722 next = setup_object(s, page, next);
1723 set_freepointer(s, cur, next);
1724 cur = next;
1725 }
1726 set_freepointer(s, cur, NULL);
1727
1728 return true;
1729 }
1730 #else
init_cache_random_seq(struct kmem_cache * s)1731 static inline int init_cache_random_seq(struct kmem_cache *s)
1732 {
1733 return 0;
1734 }
init_freelist_randomization(void)1735 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct page * page)1736 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1737 {
1738 return false;
1739 }
1740 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1741
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)1742 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1743 {
1744 struct page *page;
1745 struct kmem_cache_order_objects oo = s->oo;
1746 gfp_t alloc_gfp;
1747 void *start, *p, *next;
1748 int idx;
1749 bool shuffle;
1750
1751 flags &= gfp_allowed_mask;
1752
1753 if (gfpflags_allow_blocking(flags))
1754 local_irq_enable();
1755
1756 flags |= s->allocflags;
1757
1758 /*
1759 * Let the initial higher-order allocation fail under memory pressure
1760 * so we fall-back to the minimum order allocation.
1761 */
1762 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1763 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1764 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1765
1766 page = alloc_slab_page(s, alloc_gfp, node, oo);
1767 if (unlikely(!page)) {
1768 oo = s->min;
1769 alloc_gfp = flags;
1770 /*
1771 * Allocation may have failed due to fragmentation.
1772 * Try a lower order alloc if possible
1773 */
1774 page = alloc_slab_page(s, alloc_gfp, node, oo);
1775 if (unlikely(!page))
1776 goto out;
1777 stat(s, ORDER_FALLBACK);
1778 }
1779
1780 page->objects = oo_objects(oo);
1781
1782 page->slab_cache = s;
1783 __SetPageSlab(page);
1784 if (page_is_pfmemalloc(page))
1785 SetPageSlabPfmemalloc(page);
1786
1787 kasan_poison_slab(page);
1788
1789 start = page_address(page);
1790
1791 setup_page_debug(s, page, start);
1792
1793 shuffle = shuffle_freelist(s, page);
1794
1795 if (!shuffle) {
1796 start = fixup_red_left(s, start);
1797 start = setup_object(s, page, start);
1798 page->freelist = start;
1799 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1800 next = p + s->size;
1801 next = setup_object(s, page, next);
1802 set_freepointer(s, p, next);
1803 p = next;
1804 }
1805 set_freepointer(s, p, NULL);
1806 }
1807
1808 page->inuse = page->objects;
1809 page->frozen = 1;
1810
1811 out:
1812 if (gfpflags_allow_blocking(flags))
1813 local_irq_disable();
1814 if (!page)
1815 return NULL;
1816
1817 inc_slabs_node(s, page_to_nid(page), page->objects);
1818
1819 return page;
1820 }
1821
new_slab(struct kmem_cache * s,gfp_t flags,int node)1822 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1823 {
1824 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1825 flags = kmalloc_fix_flags(flags);
1826
1827 return allocate_slab(s,
1828 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1829 }
1830
__free_slab(struct kmem_cache * s,struct page * page)1831 static void __free_slab(struct kmem_cache *s, struct page *page)
1832 {
1833 int order = compound_order(page);
1834 int pages = 1 << order;
1835
1836 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1837 void *p;
1838
1839 slab_pad_check(s, page);
1840 for_each_object(p, s, page_address(page),
1841 page->objects)
1842 check_object(s, page, p, SLUB_RED_INACTIVE);
1843 }
1844
1845 __ClearPageSlabPfmemalloc(page);
1846 __ClearPageSlab(page);
1847
1848 page->mapping = NULL;
1849 if (current->reclaim_state)
1850 current->reclaim_state->reclaimed_slab += pages;
1851 unaccount_slab_page(page, order, s);
1852 __free_pages(page, order);
1853 }
1854
rcu_free_slab(struct rcu_head * h)1855 static void rcu_free_slab(struct rcu_head *h)
1856 {
1857 struct page *page = container_of(h, struct page, rcu_head);
1858
1859 __free_slab(page->slab_cache, page);
1860 }
1861
free_slab(struct kmem_cache * s,struct page * page)1862 static void free_slab(struct kmem_cache *s, struct page *page)
1863 {
1864 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1865 call_rcu(&page->rcu_head, rcu_free_slab);
1866 } else
1867 __free_slab(s, page);
1868 }
1869
discard_slab(struct kmem_cache * s,struct page * page)1870 static void discard_slab(struct kmem_cache *s, struct page *page)
1871 {
1872 dec_slabs_node(s, page_to_nid(page), page->objects);
1873 free_slab(s, page);
1874 }
1875
1876 /*
1877 * Management of partially allocated slabs.
1878 */
1879 static inline void
__add_partial(struct kmem_cache_node * n,struct page * page,int tail)1880 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1881 {
1882 n->nr_partial++;
1883 if (tail == DEACTIVATE_TO_TAIL)
1884 list_add_tail(&page->slab_list, &n->partial);
1885 else
1886 list_add(&page->slab_list, &n->partial);
1887 }
1888
add_partial(struct kmem_cache_node * n,struct page * page,int tail)1889 static inline void add_partial(struct kmem_cache_node *n,
1890 struct page *page, int tail)
1891 {
1892 lockdep_assert_held(&n->list_lock);
1893 __add_partial(n, page, tail);
1894 }
1895
remove_partial(struct kmem_cache_node * n,struct page * page)1896 static inline void remove_partial(struct kmem_cache_node *n,
1897 struct page *page)
1898 {
1899 lockdep_assert_held(&n->list_lock);
1900 list_del(&page->slab_list);
1901 n->nr_partial--;
1902 }
1903
1904 /*
1905 * Remove slab from the partial list, freeze it and
1906 * return the pointer to the freelist.
1907 *
1908 * Returns a list of objects or NULL if it fails.
1909 */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page,int mode,int * objects)1910 static inline void *acquire_slab(struct kmem_cache *s,
1911 struct kmem_cache_node *n, struct page *page,
1912 int mode, int *objects)
1913 {
1914 void *freelist;
1915 unsigned long counters;
1916 struct page new;
1917
1918 lockdep_assert_held(&n->list_lock);
1919
1920 /*
1921 * Zap the freelist and set the frozen bit.
1922 * The old freelist is the list of objects for the
1923 * per cpu allocation list.
1924 */
1925 freelist = page->freelist;
1926 counters = page->counters;
1927 new.counters = counters;
1928 *objects = new.objects - new.inuse;
1929 if (mode) {
1930 new.inuse = page->objects;
1931 new.freelist = NULL;
1932 } else {
1933 new.freelist = freelist;
1934 }
1935
1936 VM_BUG_ON(new.frozen);
1937 new.frozen = 1;
1938
1939 if (!__cmpxchg_double_slab(s, page,
1940 freelist, counters,
1941 new.freelist, new.counters,
1942 "acquire_slab"))
1943 return NULL;
1944
1945 remove_partial(n, page);
1946 WARN_ON(!freelist);
1947 return freelist;
1948 }
1949
1950 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1951 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1952
1953 /*
1954 * Try to allocate a partial slab from a specific node.
1955 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct kmem_cache_cpu * c,gfp_t flags)1956 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1957 struct kmem_cache_cpu *c, gfp_t flags)
1958 {
1959 struct page *page, *page2;
1960 void *object = NULL;
1961 unsigned int available = 0;
1962 int objects;
1963
1964 /*
1965 * Racy check. If we mistakenly see no partial slabs then we
1966 * just allocate an empty slab. If we mistakenly try to get a
1967 * partial slab and there is none available then get_partial()
1968 * will return NULL.
1969 */
1970 if (!n || !n->nr_partial)
1971 return NULL;
1972
1973 spin_lock(&n->list_lock);
1974 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1975 void *t;
1976
1977 if (!pfmemalloc_match(page, flags))
1978 continue;
1979
1980 t = acquire_slab(s, n, page, object == NULL, &objects);
1981 if (!t)
1982 break;
1983
1984 available += objects;
1985 if (!object) {
1986 c->page = page;
1987 stat(s, ALLOC_FROM_PARTIAL);
1988 object = t;
1989 } else {
1990 put_cpu_partial(s, page, 0);
1991 stat(s, CPU_PARTIAL_NODE);
1992 }
1993 if (!kmem_cache_has_cpu_partial(s)
1994 || available > slub_cpu_partial(s) / 2)
1995 break;
1996
1997 }
1998 spin_unlock(&n->list_lock);
1999 return object;
2000 }
2001
2002 /*
2003 * Get a page from somewhere. Search in increasing NUMA distances.
2004 */
get_any_partial(struct kmem_cache * s,gfp_t flags,struct kmem_cache_cpu * c)2005 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2006 struct kmem_cache_cpu *c)
2007 {
2008 #ifdef CONFIG_NUMA
2009 struct zonelist *zonelist;
2010 struct zoneref *z;
2011 struct zone *zone;
2012 enum zone_type highest_zoneidx = gfp_zone(flags);
2013 void *object;
2014 unsigned int cpuset_mems_cookie;
2015
2016 /*
2017 * The defrag ratio allows a configuration of the tradeoffs between
2018 * inter node defragmentation and node local allocations. A lower
2019 * defrag_ratio increases the tendency to do local allocations
2020 * instead of attempting to obtain partial slabs from other nodes.
2021 *
2022 * If the defrag_ratio is set to 0 then kmalloc() always
2023 * returns node local objects. If the ratio is higher then kmalloc()
2024 * may return off node objects because partial slabs are obtained
2025 * from other nodes and filled up.
2026 *
2027 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2028 * (which makes defrag_ratio = 1000) then every (well almost)
2029 * allocation will first attempt to defrag slab caches on other nodes.
2030 * This means scanning over all nodes to look for partial slabs which
2031 * may be expensive if we do it every time we are trying to find a slab
2032 * with available objects.
2033 */
2034 if (!s->remote_node_defrag_ratio ||
2035 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2036 return NULL;
2037
2038 do {
2039 cpuset_mems_cookie = read_mems_allowed_begin();
2040 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2041 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2042 struct kmem_cache_node *n;
2043
2044 n = get_node(s, zone_to_nid(zone));
2045
2046 if (n && cpuset_zone_allowed(zone, flags) &&
2047 n->nr_partial > s->min_partial) {
2048 object = get_partial_node(s, n, c, flags);
2049 if (object) {
2050 /*
2051 * Don't check read_mems_allowed_retry()
2052 * here - if mems_allowed was updated in
2053 * parallel, that was a harmless race
2054 * between allocation and the cpuset
2055 * update
2056 */
2057 return object;
2058 }
2059 }
2060 }
2061 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2062 #endif /* CONFIG_NUMA */
2063 return NULL;
2064 }
2065
2066 /*
2067 * Get a partial page, lock it and return it.
2068 */
get_partial(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu * c)2069 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2070 struct kmem_cache_cpu *c)
2071 {
2072 void *object;
2073 int searchnode = node;
2074
2075 if (node == NUMA_NO_NODE)
2076 searchnode = numa_mem_id();
2077
2078 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2079 if (object || node != NUMA_NO_NODE)
2080 return object;
2081
2082 return get_any_partial(s, flags, c);
2083 }
2084
2085 #ifdef CONFIG_PREEMPTION
2086 /*
2087 * Calculate the next globally unique transaction for disambiguation
2088 * during cmpxchg. The transactions start with the cpu number and are then
2089 * incremented by CONFIG_NR_CPUS.
2090 */
2091 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2092 #else
2093 /*
2094 * No preemption supported therefore also no need to check for
2095 * different cpus.
2096 */
2097 #define TID_STEP 1
2098 #endif
2099
next_tid(unsigned long tid)2100 static inline unsigned long next_tid(unsigned long tid)
2101 {
2102 return tid + TID_STEP;
2103 }
2104
2105 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2106 static inline unsigned int tid_to_cpu(unsigned long tid)
2107 {
2108 return tid % TID_STEP;
2109 }
2110
tid_to_event(unsigned long tid)2111 static inline unsigned long tid_to_event(unsigned long tid)
2112 {
2113 return tid / TID_STEP;
2114 }
2115 #endif
2116
init_tid(int cpu)2117 static inline unsigned int init_tid(int cpu)
2118 {
2119 return cpu;
2120 }
2121
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2122 static inline void note_cmpxchg_failure(const char *n,
2123 const struct kmem_cache *s, unsigned long tid)
2124 {
2125 #ifdef SLUB_DEBUG_CMPXCHG
2126 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2127
2128 pr_info("%s %s: cmpxchg redo ", n, s->name);
2129
2130 #ifdef CONFIG_PREEMPTION
2131 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2132 pr_warn("due to cpu change %d -> %d\n",
2133 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2134 else
2135 #endif
2136 if (tid_to_event(tid) != tid_to_event(actual_tid))
2137 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2138 tid_to_event(tid), tid_to_event(actual_tid));
2139 else
2140 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2141 actual_tid, tid, next_tid(tid));
2142 #endif
2143 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2144 }
2145
init_kmem_cache_cpus(struct kmem_cache * s)2146 static void init_kmem_cache_cpus(struct kmem_cache *s)
2147 {
2148 int cpu;
2149
2150 for_each_possible_cpu(cpu)
2151 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2152 }
2153
2154 /*
2155 * Remove the cpu slab
2156 */
deactivate_slab(struct kmem_cache * s,struct page * page,void * freelist,struct kmem_cache_cpu * c)2157 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2158 void *freelist, struct kmem_cache_cpu *c)
2159 {
2160 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2161 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2162 int lock = 0;
2163 enum slab_modes l = M_NONE, m = M_NONE;
2164 void *nextfree;
2165 int tail = DEACTIVATE_TO_HEAD;
2166 struct page new;
2167 struct page old;
2168
2169 if (page->freelist) {
2170 stat(s, DEACTIVATE_REMOTE_FREES);
2171 tail = DEACTIVATE_TO_TAIL;
2172 }
2173
2174 /*
2175 * Stage one: Free all available per cpu objects back
2176 * to the page freelist while it is still frozen. Leave the
2177 * last one.
2178 *
2179 * There is no need to take the list->lock because the page
2180 * is still frozen.
2181 */
2182 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2183 void *prior;
2184 unsigned long counters;
2185
2186 /*
2187 * If 'nextfree' is invalid, it is possible that the object at
2188 * 'freelist' is already corrupted. So isolate all objects
2189 * starting at 'freelist'.
2190 */
2191 if (freelist_corrupted(s, page, &freelist, nextfree))
2192 break;
2193
2194 do {
2195 prior = page->freelist;
2196 counters = page->counters;
2197 set_freepointer(s, freelist, prior);
2198 new.counters = counters;
2199 new.inuse--;
2200 VM_BUG_ON(!new.frozen);
2201
2202 } while (!__cmpxchg_double_slab(s, page,
2203 prior, counters,
2204 freelist, new.counters,
2205 "drain percpu freelist"));
2206
2207 freelist = nextfree;
2208 }
2209
2210 /*
2211 * Stage two: Ensure that the page is unfrozen while the
2212 * list presence reflects the actual number of objects
2213 * during unfreeze.
2214 *
2215 * We setup the list membership and then perform a cmpxchg
2216 * with the count. If there is a mismatch then the page
2217 * is not unfrozen but the page is on the wrong list.
2218 *
2219 * Then we restart the process which may have to remove
2220 * the page from the list that we just put it on again
2221 * because the number of objects in the slab may have
2222 * changed.
2223 */
2224 redo:
2225
2226 old.freelist = page->freelist;
2227 old.counters = page->counters;
2228 VM_BUG_ON(!old.frozen);
2229
2230 /* Determine target state of the slab */
2231 new.counters = old.counters;
2232 if (freelist) {
2233 new.inuse--;
2234 set_freepointer(s, freelist, old.freelist);
2235 new.freelist = freelist;
2236 } else
2237 new.freelist = old.freelist;
2238
2239 new.frozen = 0;
2240
2241 if (!new.inuse && n->nr_partial >= s->min_partial)
2242 m = M_FREE;
2243 else if (new.freelist) {
2244 m = M_PARTIAL;
2245 if (!lock) {
2246 lock = 1;
2247 /*
2248 * Taking the spinlock removes the possibility
2249 * that acquire_slab() will see a slab page that
2250 * is frozen
2251 */
2252 spin_lock(&n->list_lock);
2253 }
2254 } else {
2255 m = M_FULL;
2256 #ifdef CONFIG_SLUB_DEBUG
2257 if ((s->flags & SLAB_STORE_USER) && !lock) {
2258 lock = 1;
2259 /*
2260 * This also ensures that the scanning of full
2261 * slabs from diagnostic functions will not see
2262 * any frozen slabs.
2263 */
2264 spin_lock(&n->list_lock);
2265 }
2266 #endif
2267 }
2268
2269 if (l != m) {
2270 if (l == M_PARTIAL)
2271 remove_partial(n, page);
2272 else if (l == M_FULL)
2273 remove_full(s, n, page);
2274
2275 if (m == M_PARTIAL)
2276 add_partial(n, page, tail);
2277 else if (m == M_FULL)
2278 add_full(s, n, page);
2279 }
2280
2281 l = m;
2282 if (!__cmpxchg_double_slab(s, page,
2283 old.freelist, old.counters,
2284 new.freelist, new.counters,
2285 "unfreezing slab"))
2286 goto redo;
2287
2288 if (lock)
2289 spin_unlock(&n->list_lock);
2290
2291 if (m == M_PARTIAL)
2292 stat(s, tail);
2293 else if (m == M_FULL)
2294 stat(s, DEACTIVATE_FULL);
2295 else if (m == M_FREE) {
2296 stat(s, DEACTIVATE_EMPTY);
2297 discard_slab(s, page);
2298 stat(s, FREE_SLAB);
2299 }
2300
2301 c->page = NULL;
2302 c->freelist = NULL;
2303 c->tid = next_tid(c->tid);
2304 }
2305
2306 /*
2307 * Unfreeze all the cpu partial slabs.
2308 *
2309 * This function must be called with interrupts disabled
2310 * for the cpu using c (or some other guarantee must be there
2311 * to guarantee no concurrent accesses).
2312 */
unfreeze_partials(struct kmem_cache * s,struct kmem_cache_cpu * c)2313 static void unfreeze_partials(struct kmem_cache *s,
2314 struct kmem_cache_cpu *c)
2315 {
2316 #ifdef CONFIG_SLUB_CPU_PARTIAL
2317 struct kmem_cache_node *n = NULL, *n2 = NULL;
2318 struct page *page, *discard_page = NULL;
2319
2320 while ((page = slub_percpu_partial(c))) {
2321 struct page new;
2322 struct page old;
2323
2324 slub_set_percpu_partial(c, page);
2325
2326 n2 = get_node(s, page_to_nid(page));
2327 if (n != n2) {
2328 if (n)
2329 spin_unlock(&n->list_lock);
2330
2331 n = n2;
2332 spin_lock(&n->list_lock);
2333 }
2334
2335 do {
2336
2337 old.freelist = page->freelist;
2338 old.counters = page->counters;
2339 VM_BUG_ON(!old.frozen);
2340
2341 new.counters = old.counters;
2342 new.freelist = old.freelist;
2343
2344 new.frozen = 0;
2345
2346 } while (!__cmpxchg_double_slab(s, page,
2347 old.freelist, old.counters,
2348 new.freelist, new.counters,
2349 "unfreezing slab"));
2350
2351 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2352 page->next = discard_page;
2353 discard_page = page;
2354 } else {
2355 add_partial(n, page, DEACTIVATE_TO_TAIL);
2356 stat(s, FREE_ADD_PARTIAL);
2357 }
2358 }
2359
2360 if (n)
2361 spin_unlock(&n->list_lock);
2362
2363 while (discard_page) {
2364 page = discard_page;
2365 discard_page = discard_page->next;
2366
2367 stat(s, DEACTIVATE_EMPTY);
2368 discard_slab(s, page);
2369 stat(s, FREE_SLAB);
2370 }
2371 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2372 }
2373
2374 /*
2375 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2376 * partial page slot if available.
2377 *
2378 * If we did not find a slot then simply move all the partials to the
2379 * per node partial list.
2380 */
put_cpu_partial(struct kmem_cache * s,struct page * page,int drain)2381 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2382 {
2383 #ifdef CONFIG_SLUB_CPU_PARTIAL
2384 struct page *oldpage;
2385 int pages;
2386 int pobjects;
2387
2388 preempt_disable();
2389 do {
2390 pages = 0;
2391 pobjects = 0;
2392 oldpage = this_cpu_read(s->cpu_slab->partial);
2393
2394 if (oldpage) {
2395 pobjects = oldpage->pobjects;
2396 pages = oldpage->pages;
2397 if (drain && pobjects > slub_cpu_partial(s)) {
2398 unsigned long flags;
2399 /*
2400 * partial array is full. Move the existing
2401 * set to the per node partial list.
2402 */
2403 local_irq_save(flags);
2404 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2405 local_irq_restore(flags);
2406 oldpage = NULL;
2407 pobjects = 0;
2408 pages = 0;
2409 stat(s, CPU_PARTIAL_DRAIN);
2410 }
2411 }
2412
2413 pages++;
2414 pobjects += page->objects - page->inuse;
2415
2416 page->pages = pages;
2417 page->pobjects = pobjects;
2418 page->next = oldpage;
2419
2420 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2421 != oldpage);
2422 if (unlikely(!slub_cpu_partial(s))) {
2423 unsigned long flags;
2424
2425 local_irq_save(flags);
2426 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2427 local_irq_restore(flags);
2428 }
2429 preempt_enable();
2430 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2431 }
2432
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2433 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2434 {
2435 stat(s, CPUSLAB_FLUSH);
2436 deactivate_slab(s, c->page, c->freelist, c);
2437 }
2438
2439 /*
2440 * Flush cpu slab.
2441 *
2442 * Called from IPI handler with interrupts disabled.
2443 */
__flush_cpu_slab(struct kmem_cache * s,int cpu)2444 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2445 {
2446 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2447
2448 if (c->page)
2449 flush_slab(s, c);
2450
2451 unfreeze_partials(s, c);
2452 }
2453
flush_cpu_slab(void * d)2454 static void flush_cpu_slab(void *d)
2455 {
2456 struct kmem_cache *s = d;
2457
2458 __flush_cpu_slab(s, smp_processor_id());
2459 }
2460
has_cpu_slab(int cpu,void * info)2461 static bool has_cpu_slab(int cpu, void *info)
2462 {
2463 struct kmem_cache *s = info;
2464 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2465
2466 return c->page || slub_percpu_partial(c);
2467 }
2468
flush_all(struct kmem_cache * s)2469 static void flush_all(struct kmem_cache *s)
2470 {
2471 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2472 }
2473
2474 /*
2475 * Use the cpu notifier to insure that the cpu slabs are flushed when
2476 * necessary.
2477 */
slub_cpu_dead(unsigned int cpu)2478 static int slub_cpu_dead(unsigned int cpu)
2479 {
2480 struct kmem_cache *s;
2481 unsigned long flags;
2482
2483 mutex_lock(&slab_mutex);
2484 list_for_each_entry(s, &slab_caches, list) {
2485 local_irq_save(flags);
2486 __flush_cpu_slab(s, cpu);
2487 local_irq_restore(flags);
2488 }
2489 mutex_unlock(&slab_mutex);
2490 return 0;
2491 }
2492
2493 /*
2494 * Check if the objects in a per cpu structure fit numa
2495 * locality expectations.
2496 */
node_match(struct page * page,int node)2497 static inline int node_match(struct page *page, int node)
2498 {
2499 #ifdef CONFIG_NUMA
2500 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2501 return 0;
2502 #endif
2503 return 1;
2504 }
2505
2506 #ifdef CONFIG_SLUB_DEBUG
count_free(struct page * page)2507 static int count_free(struct page *page)
2508 {
2509 return page->objects - page->inuse;
2510 }
2511
node_nr_objs(struct kmem_cache_node * n)2512 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2513 {
2514 return atomic_long_read(&n->total_objects);
2515 }
2516 #endif /* CONFIG_SLUB_DEBUG */
2517
2518 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct page *))2519 static unsigned long count_partial(struct kmem_cache_node *n,
2520 int (*get_count)(struct page *))
2521 {
2522 unsigned long flags;
2523 unsigned long x = 0;
2524 struct page *page;
2525
2526 spin_lock_irqsave(&n->list_lock, flags);
2527 list_for_each_entry(page, &n->partial, slab_list)
2528 x += get_count(page);
2529 spin_unlock_irqrestore(&n->list_lock, flags);
2530 return x;
2531 }
2532 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2533
2534 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2535 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2536 {
2537 #ifdef CONFIG_SLUB_DEBUG
2538 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2539 DEFAULT_RATELIMIT_BURST);
2540 int node;
2541 struct kmem_cache_node *n;
2542
2543 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2544 return;
2545
2546 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2547 nid, gfpflags, &gfpflags);
2548 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2549 s->name, s->object_size, s->size, oo_order(s->oo),
2550 oo_order(s->min));
2551
2552 if (oo_order(s->min) > get_order(s->object_size))
2553 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2554 s->name);
2555
2556 for_each_kmem_cache_node(s, node, n) {
2557 unsigned long nr_slabs;
2558 unsigned long nr_objs;
2559 unsigned long nr_free;
2560
2561 nr_free = count_partial(n, count_free);
2562 nr_slabs = node_nr_slabs(n);
2563 nr_objs = node_nr_objs(n);
2564
2565 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2566 node, nr_slabs, nr_objs, nr_free);
2567 }
2568 #endif
2569 }
2570
new_slab_objects(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu ** pc)2571 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2572 int node, struct kmem_cache_cpu **pc)
2573 {
2574 void *freelist;
2575 struct kmem_cache_cpu *c = *pc;
2576 struct page *page;
2577
2578 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2579
2580 freelist = get_partial(s, flags, node, c);
2581
2582 if (freelist)
2583 return freelist;
2584
2585 page = new_slab(s, flags, node);
2586 if (page) {
2587 c = raw_cpu_ptr(s->cpu_slab);
2588 if (c->page)
2589 flush_slab(s, c);
2590
2591 /*
2592 * No other reference to the page yet so we can
2593 * muck around with it freely without cmpxchg
2594 */
2595 freelist = page->freelist;
2596 page->freelist = NULL;
2597
2598 stat(s, ALLOC_SLAB);
2599 c->page = page;
2600 *pc = c;
2601 }
2602
2603 return freelist;
2604 }
2605
pfmemalloc_match(struct page * page,gfp_t gfpflags)2606 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2607 {
2608 if (unlikely(PageSlabPfmemalloc(page)))
2609 return gfp_pfmemalloc_allowed(gfpflags);
2610
2611 return true;
2612 }
2613
2614 /*
2615 * Check the page->freelist of a page and either transfer the freelist to the
2616 * per cpu freelist or deactivate the page.
2617 *
2618 * The page is still frozen if the return value is not NULL.
2619 *
2620 * If this function returns NULL then the page has been unfrozen.
2621 *
2622 * This function must be called with interrupt disabled.
2623 */
get_freelist(struct kmem_cache * s,struct page * page)2624 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2625 {
2626 struct page new;
2627 unsigned long counters;
2628 void *freelist;
2629
2630 do {
2631 freelist = page->freelist;
2632 counters = page->counters;
2633
2634 new.counters = counters;
2635 VM_BUG_ON(!new.frozen);
2636
2637 new.inuse = page->objects;
2638 new.frozen = freelist != NULL;
2639
2640 } while (!__cmpxchg_double_slab(s, page,
2641 freelist, counters,
2642 NULL, new.counters,
2643 "get_freelist"));
2644
2645 return freelist;
2646 }
2647
2648 /*
2649 * Slow path. The lockless freelist is empty or we need to perform
2650 * debugging duties.
2651 *
2652 * Processing is still very fast if new objects have been freed to the
2653 * regular freelist. In that case we simply take over the regular freelist
2654 * as the lockless freelist and zap the regular freelist.
2655 *
2656 * If that is not working then we fall back to the partial lists. We take the
2657 * first element of the freelist as the object to allocate now and move the
2658 * rest of the freelist to the lockless freelist.
2659 *
2660 * And if we were unable to get a new slab from the partial slab lists then
2661 * we need to allocate a new slab. This is the slowest path since it involves
2662 * a call to the page allocator and the setup of a new slab.
2663 *
2664 * Version of __slab_alloc to use when we know that interrupts are
2665 * already disabled (which is the case for bulk allocation).
2666 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2667 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2668 unsigned long addr, struct kmem_cache_cpu *c)
2669 {
2670 void *freelist;
2671 struct page *page;
2672
2673 stat(s, ALLOC_SLOWPATH);
2674
2675 page = c->page;
2676 if (!page) {
2677 /*
2678 * if the node is not online or has no normal memory, just
2679 * ignore the node constraint
2680 */
2681 if (unlikely(node != NUMA_NO_NODE &&
2682 !node_state(node, N_NORMAL_MEMORY)))
2683 node = NUMA_NO_NODE;
2684 goto new_slab;
2685 }
2686 redo:
2687
2688 if (unlikely(!node_match(page, node))) {
2689 /*
2690 * same as above but node_match() being false already
2691 * implies node != NUMA_NO_NODE
2692 */
2693 if (!node_state(node, N_NORMAL_MEMORY)) {
2694 node = NUMA_NO_NODE;
2695 goto redo;
2696 } else {
2697 stat(s, ALLOC_NODE_MISMATCH);
2698 deactivate_slab(s, page, c->freelist, c);
2699 goto new_slab;
2700 }
2701 }
2702
2703 /*
2704 * By rights, we should be searching for a slab page that was
2705 * PFMEMALLOC but right now, we are losing the pfmemalloc
2706 * information when the page leaves the per-cpu allocator
2707 */
2708 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2709 deactivate_slab(s, page, c->freelist, c);
2710 goto new_slab;
2711 }
2712
2713 /* must check again c->freelist in case of cpu migration or IRQ */
2714 freelist = c->freelist;
2715 if (freelist)
2716 goto load_freelist;
2717
2718 freelist = get_freelist(s, page);
2719
2720 if (!freelist) {
2721 c->page = NULL;
2722 c->tid = next_tid(c->tid);
2723 stat(s, DEACTIVATE_BYPASS);
2724 goto new_slab;
2725 }
2726
2727 stat(s, ALLOC_REFILL);
2728
2729 load_freelist:
2730 /*
2731 * freelist is pointing to the list of objects to be used.
2732 * page is pointing to the page from which the objects are obtained.
2733 * That page must be frozen for per cpu allocations to work.
2734 */
2735 VM_BUG_ON(!c->page->frozen);
2736 c->freelist = get_freepointer(s, freelist);
2737 c->tid = next_tid(c->tid);
2738 return freelist;
2739
2740 new_slab:
2741
2742 if (slub_percpu_partial(c)) {
2743 page = c->page = slub_percpu_partial(c);
2744 slub_set_percpu_partial(c, page);
2745 stat(s, CPU_PARTIAL_ALLOC);
2746 goto redo;
2747 }
2748
2749 freelist = new_slab_objects(s, gfpflags, node, &c);
2750
2751 if (unlikely(!freelist)) {
2752 slab_out_of_memory(s, gfpflags, node);
2753 return NULL;
2754 }
2755
2756 page = c->page;
2757 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2758 goto load_freelist;
2759
2760 /* Only entered in the debug case */
2761 if (kmem_cache_debug(s) &&
2762 !alloc_debug_processing(s, page, freelist, addr))
2763 goto new_slab; /* Slab failed checks. Next slab needed */
2764
2765 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2766 return freelist;
2767 }
2768
2769 /*
2770 * Another one that disabled interrupt and compensates for possible
2771 * cpu changes by refetching the per cpu area pointer.
2772 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2773 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2774 unsigned long addr, struct kmem_cache_cpu *c)
2775 {
2776 void *p;
2777 unsigned long flags;
2778
2779 local_irq_save(flags);
2780 #ifdef CONFIG_PREEMPTION
2781 /*
2782 * We may have been preempted and rescheduled on a different
2783 * cpu before disabling interrupts. Need to reload cpu area
2784 * pointer.
2785 */
2786 c = this_cpu_ptr(s->cpu_slab);
2787 #endif
2788
2789 p = ___slab_alloc(s, gfpflags, node, addr, c);
2790 local_irq_restore(flags);
2791 return p;
2792 }
2793
2794 /*
2795 * If the object has been wiped upon free, make sure it's fully initialized by
2796 * zeroing out freelist pointer.
2797 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)2798 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2799 void *obj)
2800 {
2801 if (unlikely(slab_want_init_on_free(s)) && obj)
2802 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2803 }
2804
2805 /*
2806 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2807 * have the fastpath folded into their functions. So no function call
2808 * overhead for requests that can be satisfied on the fastpath.
2809 *
2810 * The fastpath works by first checking if the lockless freelist can be used.
2811 * If not then __slab_alloc is called for slow processing.
2812 *
2813 * Otherwise we can simply pick the next object from the lockless free list.
2814 */
slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr)2815 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2816 gfp_t gfpflags, int node, unsigned long addr)
2817 {
2818 void *object;
2819 struct kmem_cache_cpu *c;
2820 struct page *page;
2821 unsigned long tid;
2822 struct obj_cgroup *objcg = NULL;
2823
2824 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2825 if (!s)
2826 return NULL;
2827 redo:
2828 /*
2829 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2830 * enabled. We may switch back and forth between cpus while
2831 * reading from one cpu area. That does not matter as long
2832 * as we end up on the original cpu again when doing the cmpxchg.
2833 *
2834 * We should guarantee that tid and kmem_cache are retrieved on
2835 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2836 * to check if it is matched or not.
2837 */
2838 do {
2839 tid = this_cpu_read(s->cpu_slab->tid);
2840 c = raw_cpu_ptr(s->cpu_slab);
2841 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2842 unlikely(tid != READ_ONCE(c->tid)));
2843
2844 /*
2845 * Irqless object alloc/free algorithm used here depends on sequence
2846 * of fetching cpu_slab's data. tid should be fetched before anything
2847 * on c to guarantee that object and page associated with previous tid
2848 * won't be used with current tid. If we fetch tid first, object and
2849 * page could be one associated with next tid and our alloc/free
2850 * request will be failed. In this case, we will retry. So, no problem.
2851 */
2852 barrier();
2853
2854 /*
2855 * The transaction ids are globally unique per cpu and per operation on
2856 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2857 * occurs on the right processor and that there was no operation on the
2858 * linked list in between.
2859 */
2860
2861 object = c->freelist;
2862 page = c->page;
2863 if (unlikely(!object || !page || !node_match(page, node))) {
2864 object = __slab_alloc(s, gfpflags, node, addr, c);
2865 } else {
2866 void *next_object = get_freepointer_safe(s, object);
2867
2868 /*
2869 * The cmpxchg will only match if there was no additional
2870 * operation and if we are on the right processor.
2871 *
2872 * The cmpxchg does the following atomically (without lock
2873 * semantics!)
2874 * 1. Relocate first pointer to the current per cpu area.
2875 * 2. Verify that tid and freelist have not been changed
2876 * 3. If they were not changed replace tid and freelist
2877 *
2878 * Since this is without lock semantics the protection is only
2879 * against code executing on this cpu *not* from access by
2880 * other cpus.
2881 */
2882 if (unlikely(!this_cpu_cmpxchg_double(
2883 s->cpu_slab->freelist, s->cpu_slab->tid,
2884 object, tid,
2885 next_object, next_tid(tid)))) {
2886
2887 note_cmpxchg_failure("slab_alloc", s, tid);
2888 goto redo;
2889 }
2890 prefetch_freepointer(s, next_object);
2891 stat(s, ALLOC_FASTPATH);
2892 }
2893
2894 maybe_wipe_obj_freeptr(s, object);
2895
2896 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2897 memset(object, 0, s->object_size);
2898
2899 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2900
2901 return object;
2902 }
2903
slab_alloc(struct kmem_cache * s,gfp_t gfpflags,unsigned long addr)2904 static __always_inline void *slab_alloc(struct kmem_cache *s,
2905 gfp_t gfpflags, unsigned long addr)
2906 {
2907 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2908 }
2909
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)2910 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2911 {
2912 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2913
2914 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2915 s->size, gfpflags);
2916
2917 return ret;
2918 }
2919 EXPORT_SYMBOL(kmem_cache_alloc);
2920
2921 #ifdef CONFIG_TRACING
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)2922 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2923 {
2924 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2925 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2926 ret = kasan_kmalloc(s, ret, size, gfpflags);
2927 return ret;
2928 }
2929 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2930 #endif
2931
2932 #ifdef CONFIG_NUMA
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)2933 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2934 {
2935 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2936
2937 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2938 s->object_size, s->size, gfpflags, node);
2939
2940 return ret;
2941 }
2942 EXPORT_SYMBOL(kmem_cache_alloc_node);
2943
2944 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)2945 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2946 gfp_t gfpflags,
2947 int node, size_t size)
2948 {
2949 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2950
2951 trace_kmalloc_node(_RET_IP_, ret,
2952 size, s->size, gfpflags, node);
2953
2954 ret = kasan_kmalloc(s, ret, size, gfpflags);
2955 return ret;
2956 }
2957 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2958 #endif
2959 #endif /* CONFIG_NUMA */
2960
2961 /*
2962 * Slow path handling. This may still be called frequently since objects
2963 * have a longer lifetime than the cpu slabs in most processing loads.
2964 *
2965 * So we still attempt to reduce cache line usage. Just take the slab
2966 * lock and free the item. If there is no additional partial page
2967 * handling required then we can return immediately.
2968 */
__slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)2969 static void __slab_free(struct kmem_cache *s, struct page *page,
2970 void *head, void *tail, int cnt,
2971 unsigned long addr)
2972
2973 {
2974 void *prior;
2975 int was_frozen;
2976 struct page new;
2977 unsigned long counters;
2978 struct kmem_cache_node *n = NULL;
2979 unsigned long flags;
2980
2981 stat(s, FREE_SLOWPATH);
2982
2983 if (kmem_cache_debug(s) &&
2984 !free_debug_processing(s, page, head, tail, cnt, addr))
2985 return;
2986
2987 do {
2988 if (unlikely(n)) {
2989 spin_unlock_irqrestore(&n->list_lock, flags);
2990 n = NULL;
2991 }
2992 prior = page->freelist;
2993 counters = page->counters;
2994 set_freepointer(s, tail, prior);
2995 new.counters = counters;
2996 was_frozen = new.frozen;
2997 new.inuse -= cnt;
2998 if ((!new.inuse || !prior) && !was_frozen) {
2999
3000 if (kmem_cache_has_cpu_partial(s) && !prior) {
3001
3002 /*
3003 * Slab was on no list before and will be
3004 * partially empty
3005 * We can defer the list move and instead
3006 * freeze it.
3007 */
3008 new.frozen = 1;
3009
3010 } else { /* Needs to be taken off a list */
3011
3012 n = get_node(s, page_to_nid(page));
3013 /*
3014 * Speculatively acquire the list_lock.
3015 * If the cmpxchg does not succeed then we may
3016 * drop the list_lock without any processing.
3017 *
3018 * Otherwise the list_lock will synchronize with
3019 * other processors updating the list of slabs.
3020 */
3021 spin_lock_irqsave(&n->list_lock, flags);
3022
3023 }
3024 }
3025
3026 } while (!cmpxchg_double_slab(s, page,
3027 prior, counters,
3028 head, new.counters,
3029 "__slab_free"));
3030
3031 if (likely(!n)) {
3032
3033 if (likely(was_frozen)) {
3034 /*
3035 * The list lock was not taken therefore no list
3036 * activity can be necessary.
3037 */
3038 stat(s, FREE_FROZEN);
3039 } else if (new.frozen) {
3040 /*
3041 * If we just froze the page then put it onto the
3042 * per cpu partial list.
3043 */
3044 put_cpu_partial(s, page, 1);
3045 stat(s, CPU_PARTIAL_FREE);
3046 }
3047
3048 return;
3049 }
3050
3051 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3052 goto slab_empty;
3053
3054 /*
3055 * Objects left in the slab. If it was not on the partial list before
3056 * then add it.
3057 */
3058 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3059 remove_full(s, n, page);
3060 add_partial(n, page, DEACTIVATE_TO_TAIL);
3061 stat(s, FREE_ADD_PARTIAL);
3062 }
3063 spin_unlock_irqrestore(&n->list_lock, flags);
3064 return;
3065
3066 slab_empty:
3067 if (prior) {
3068 /*
3069 * Slab on the partial list.
3070 */
3071 remove_partial(n, page);
3072 stat(s, FREE_REMOVE_PARTIAL);
3073 } else {
3074 /* Slab must be on the full list */
3075 remove_full(s, n, page);
3076 }
3077
3078 spin_unlock_irqrestore(&n->list_lock, flags);
3079 stat(s, FREE_SLAB);
3080 discard_slab(s, page);
3081 }
3082
3083 /*
3084 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3085 * can perform fastpath freeing without additional function calls.
3086 *
3087 * The fastpath is only possible if we are freeing to the current cpu slab
3088 * of this processor. This typically the case if we have just allocated
3089 * the item before.
3090 *
3091 * If fastpath is not possible then fall back to __slab_free where we deal
3092 * with all sorts of special processing.
3093 *
3094 * Bulk free of a freelist with several objects (all pointing to the
3095 * same page) possible by specifying head and tail ptr, plus objects
3096 * count (cnt). Bulk free indicated by tail pointer being set.
3097 */
do_slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3098 static __always_inline void do_slab_free(struct kmem_cache *s,
3099 struct page *page, void *head, void *tail,
3100 int cnt, unsigned long addr)
3101 {
3102 void *tail_obj = tail ? : head;
3103 struct kmem_cache_cpu *c;
3104 unsigned long tid;
3105
3106 /* memcg_slab_free_hook() is already called for bulk free. */
3107 if (!tail)
3108 memcg_slab_free_hook(s, &head, 1);
3109 redo:
3110 /*
3111 * Determine the currently cpus per cpu slab.
3112 * The cpu may change afterward. However that does not matter since
3113 * data is retrieved via this pointer. If we are on the same cpu
3114 * during the cmpxchg then the free will succeed.
3115 */
3116 do {
3117 tid = this_cpu_read(s->cpu_slab->tid);
3118 c = raw_cpu_ptr(s->cpu_slab);
3119 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3120 unlikely(tid != READ_ONCE(c->tid)));
3121
3122 /* Same with comment on barrier() in slab_alloc_node() */
3123 barrier();
3124
3125 if (likely(page == c->page)) {
3126 void **freelist = READ_ONCE(c->freelist);
3127
3128 set_freepointer(s, tail_obj, freelist);
3129
3130 if (unlikely(!this_cpu_cmpxchg_double(
3131 s->cpu_slab->freelist, s->cpu_slab->tid,
3132 freelist, tid,
3133 head, next_tid(tid)))) {
3134
3135 note_cmpxchg_failure("slab_free", s, tid);
3136 goto redo;
3137 }
3138 stat(s, FREE_FASTPATH);
3139 } else
3140 __slab_free(s, page, head, tail_obj, cnt, addr);
3141
3142 }
3143
slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3144 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3145 void *head, void *tail, int cnt,
3146 unsigned long addr)
3147 {
3148 /*
3149 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3150 * to remove objects, whose reuse must be delayed.
3151 */
3152 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3153 do_slab_free(s, page, head, tail, cnt, addr);
3154 }
3155
3156 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3157 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3158 {
3159 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3160 }
3161 #endif
3162
kmem_cache_free(struct kmem_cache * s,void * x)3163 void kmem_cache_free(struct kmem_cache *s, void *x)
3164 {
3165 s = cache_from_obj(s, x);
3166 if (!s)
3167 return;
3168 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3169 trace_kmem_cache_free(_RET_IP_, x);
3170 }
3171 EXPORT_SYMBOL(kmem_cache_free);
3172
3173 struct detached_freelist {
3174 struct page *page;
3175 void *tail;
3176 void *freelist;
3177 int cnt;
3178 struct kmem_cache *s;
3179 };
3180
3181 /*
3182 * This function progressively scans the array with free objects (with
3183 * a limited look ahead) and extract objects belonging to the same
3184 * page. It builds a detached freelist directly within the given
3185 * page/objects. This can happen without any need for
3186 * synchronization, because the objects are owned by running process.
3187 * The freelist is build up as a single linked list in the objects.
3188 * The idea is, that this detached freelist can then be bulk
3189 * transferred to the real freelist(s), but only requiring a single
3190 * synchronization primitive. Look ahead in the array is limited due
3191 * to performance reasons.
3192 */
3193 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3194 int build_detached_freelist(struct kmem_cache *s, size_t size,
3195 void **p, struct detached_freelist *df)
3196 {
3197 size_t first_skipped_index = 0;
3198 int lookahead = 3;
3199 void *object;
3200 struct page *page;
3201
3202 /* Always re-init detached_freelist */
3203 df->page = NULL;
3204
3205 do {
3206 object = p[--size];
3207 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3208 } while (!object && size);
3209
3210 if (!object)
3211 return 0;
3212
3213 page = virt_to_head_page(object);
3214 if (!s) {
3215 /* Handle kalloc'ed objects */
3216 if (unlikely(!PageSlab(page))) {
3217 BUG_ON(!PageCompound(page));
3218 kfree_hook(object);
3219 __free_pages(page, compound_order(page));
3220 p[size] = NULL; /* mark object processed */
3221 return size;
3222 }
3223 /* Derive kmem_cache from object */
3224 df->s = page->slab_cache;
3225 } else {
3226 df->s = cache_from_obj(s, object); /* Support for memcg */
3227 }
3228
3229 /* Start new detached freelist */
3230 df->page = page;
3231 set_freepointer(df->s, object, NULL);
3232 df->tail = object;
3233 df->freelist = object;
3234 p[size] = NULL; /* mark object processed */
3235 df->cnt = 1;
3236
3237 while (size) {
3238 object = p[--size];
3239 if (!object)
3240 continue; /* Skip processed objects */
3241
3242 /* df->page is always set at this point */
3243 if (df->page == virt_to_head_page(object)) {
3244 /* Opportunity build freelist */
3245 set_freepointer(df->s, object, df->freelist);
3246 df->freelist = object;
3247 df->cnt++;
3248 p[size] = NULL; /* mark object processed */
3249
3250 continue;
3251 }
3252
3253 /* Limit look ahead search */
3254 if (!--lookahead)
3255 break;
3256
3257 if (!first_skipped_index)
3258 first_skipped_index = size + 1;
3259 }
3260
3261 return first_skipped_index;
3262 }
3263
3264 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3265 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3266 {
3267 if (WARN_ON(!size))
3268 return;
3269
3270 memcg_slab_free_hook(s, p, size);
3271 do {
3272 struct detached_freelist df;
3273
3274 size = build_detached_freelist(s, size, p, &df);
3275 if (!df.page)
3276 continue;
3277
3278 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3279 } while (likely(size));
3280 }
3281 EXPORT_SYMBOL(kmem_cache_free_bulk);
3282
3283 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3284 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3285 void **p)
3286 {
3287 struct kmem_cache_cpu *c;
3288 int i;
3289 struct obj_cgroup *objcg = NULL;
3290
3291 /* memcg and kmem_cache debug support */
3292 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3293 if (unlikely(!s))
3294 return false;
3295 /*
3296 * Drain objects in the per cpu slab, while disabling local
3297 * IRQs, which protects against PREEMPT and interrupts
3298 * handlers invoking normal fastpath.
3299 */
3300 local_irq_disable();
3301 c = this_cpu_ptr(s->cpu_slab);
3302
3303 for (i = 0; i < size; i++) {
3304 void *object = c->freelist;
3305
3306 if (unlikely(!object)) {
3307 /*
3308 * We may have removed an object from c->freelist using
3309 * the fastpath in the previous iteration; in that case,
3310 * c->tid has not been bumped yet.
3311 * Since ___slab_alloc() may reenable interrupts while
3312 * allocating memory, we should bump c->tid now.
3313 */
3314 c->tid = next_tid(c->tid);
3315
3316 /*
3317 * Invoking slow path likely have side-effect
3318 * of re-populating per CPU c->freelist
3319 */
3320 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3321 _RET_IP_, c);
3322 if (unlikely(!p[i]))
3323 goto error;
3324
3325 c = this_cpu_ptr(s->cpu_slab);
3326 maybe_wipe_obj_freeptr(s, p[i]);
3327
3328 continue; /* goto for-loop */
3329 }
3330 c->freelist = get_freepointer(s, object);
3331 p[i] = object;
3332 maybe_wipe_obj_freeptr(s, p[i]);
3333 }
3334 c->tid = next_tid(c->tid);
3335 local_irq_enable();
3336
3337 /* Clear memory outside IRQ disabled fastpath loop */
3338 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3339 int j;
3340
3341 for (j = 0; j < i; j++)
3342 memset(p[j], 0, s->object_size);
3343 }
3344
3345 /* memcg and kmem_cache debug support */
3346 slab_post_alloc_hook(s, objcg, flags, size, p);
3347 return i;
3348 error:
3349 local_irq_enable();
3350 slab_post_alloc_hook(s, objcg, flags, i, p);
3351 __kmem_cache_free_bulk(s, i, p);
3352 return 0;
3353 }
3354 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3355
3356
3357 /*
3358 * Object placement in a slab is made very easy because we always start at
3359 * offset 0. If we tune the size of the object to the alignment then we can
3360 * get the required alignment by putting one properly sized object after
3361 * another.
3362 *
3363 * Notice that the allocation order determines the sizes of the per cpu
3364 * caches. Each processor has always one slab available for allocations.
3365 * Increasing the allocation order reduces the number of times that slabs
3366 * must be moved on and off the partial lists and is therefore a factor in
3367 * locking overhead.
3368 */
3369
3370 /*
3371 * Mininum / Maximum order of slab pages. This influences locking overhead
3372 * and slab fragmentation. A higher order reduces the number of partial slabs
3373 * and increases the number of allocations possible without having to
3374 * take the list_lock.
3375 */
3376 static unsigned int slub_min_order;
3377 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3378 static unsigned int slub_min_objects;
3379
3380 /*
3381 * Calculate the order of allocation given an slab object size.
3382 *
3383 * The order of allocation has significant impact on performance and other
3384 * system components. Generally order 0 allocations should be preferred since
3385 * order 0 does not cause fragmentation in the page allocator. Larger objects
3386 * be problematic to put into order 0 slabs because there may be too much
3387 * unused space left. We go to a higher order if more than 1/16th of the slab
3388 * would be wasted.
3389 *
3390 * In order to reach satisfactory performance we must ensure that a minimum
3391 * number of objects is in one slab. Otherwise we may generate too much
3392 * activity on the partial lists which requires taking the list_lock. This is
3393 * less a concern for large slabs though which are rarely used.
3394 *
3395 * slub_max_order specifies the order where we begin to stop considering the
3396 * number of objects in a slab as critical. If we reach slub_max_order then
3397 * we try to keep the page order as low as possible. So we accept more waste
3398 * of space in favor of a small page order.
3399 *
3400 * Higher order allocations also allow the placement of more objects in a
3401 * slab and thereby reduce object handling overhead. If the user has
3402 * requested a higher mininum order then we start with that one instead of
3403 * the smallest order which will fit the object.
3404 */
slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)3405 static inline unsigned int slab_order(unsigned int size,
3406 unsigned int min_objects, unsigned int max_order,
3407 unsigned int fract_leftover)
3408 {
3409 unsigned int min_order = slub_min_order;
3410 unsigned int order;
3411
3412 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3413 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3414
3415 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3416 order <= max_order; order++) {
3417
3418 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3419 unsigned int rem;
3420
3421 rem = slab_size % size;
3422
3423 if (rem <= slab_size / fract_leftover)
3424 break;
3425 }
3426
3427 return order;
3428 }
3429
calculate_order(unsigned int size)3430 static inline int calculate_order(unsigned int size)
3431 {
3432 unsigned int order;
3433 unsigned int min_objects;
3434 unsigned int max_objects;
3435
3436 /*
3437 * Attempt to find best configuration for a slab. This
3438 * works by first attempting to generate a layout with
3439 * the best configuration and backing off gradually.
3440 *
3441 * First we increase the acceptable waste in a slab. Then
3442 * we reduce the minimum objects required in a slab.
3443 */
3444 min_objects = slub_min_objects;
3445 if (!min_objects)
3446 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3447 max_objects = order_objects(slub_max_order, size);
3448 min_objects = min(min_objects, max_objects);
3449
3450 while (min_objects > 1) {
3451 unsigned int fraction;
3452
3453 fraction = 16;
3454 while (fraction >= 4) {
3455 order = slab_order(size, min_objects,
3456 slub_max_order, fraction);
3457 if (order <= slub_max_order)
3458 return order;
3459 fraction /= 2;
3460 }
3461 min_objects--;
3462 }
3463
3464 /*
3465 * We were unable to place multiple objects in a slab. Now
3466 * lets see if we can place a single object there.
3467 */
3468 order = slab_order(size, 1, slub_max_order, 1);
3469 if (order <= slub_max_order)
3470 return order;
3471
3472 /*
3473 * Doh this slab cannot be placed using slub_max_order.
3474 */
3475 order = slab_order(size, 1, MAX_ORDER, 1);
3476 if (order < MAX_ORDER)
3477 return order;
3478 return -ENOSYS;
3479 }
3480
3481 static void
init_kmem_cache_node(struct kmem_cache_node * n)3482 init_kmem_cache_node(struct kmem_cache_node *n)
3483 {
3484 n->nr_partial = 0;
3485 spin_lock_init(&n->list_lock);
3486 INIT_LIST_HEAD(&n->partial);
3487 #ifdef CONFIG_SLUB_DEBUG
3488 atomic_long_set(&n->nr_slabs, 0);
3489 atomic_long_set(&n->total_objects, 0);
3490 INIT_LIST_HEAD(&n->full);
3491 #endif
3492 }
3493
alloc_kmem_cache_cpus(struct kmem_cache * s)3494 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3495 {
3496 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3497 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3498
3499 /*
3500 * Must align to double word boundary for the double cmpxchg
3501 * instructions to work; see __pcpu_double_call_return_bool().
3502 */
3503 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3504 2 * sizeof(void *));
3505
3506 if (!s->cpu_slab)
3507 return 0;
3508
3509 init_kmem_cache_cpus(s);
3510
3511 return 1;
3512 }
3513
3514 static struct kmem_cache *kmem_cache_node;
3515
3516 /*
3517 * No kmalloc_node yet so do it by hand. We know that this is the first
3518 * slab on the node for this slabcache. There are no concurrent accesses
3519 * possible.
3520 *
3521 * Note that this function only works on the kmem_cache_node
3522 * when allocating for the kmem_cache_node. This is used for bootstrapping
3523 * memory on a fresh node that has no slab structures yet.
3524 */
early_kmem_cache_node_alloc(int node)3525 static void early_kmem_cache_node_alloc(int node)
3526 {
3527 struct page *page;
3528 struct kmem_cache_node *n;
3529
3530 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3531
3532 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3533
3534 BUG_ON(!page);
3535 if (page_to_nid(page) != node) {
3536 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3537 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3538 }
3539
3540 n = page->freelist;
3541 BUG_ON(!n);
3542 #ifdef CONFIG_SLUB_DEBUG
3543 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3544 init_tracking(kmem_cache_node, n);
3545 #endif
3546 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3547 GFP_KERNEL);
3548 page->freelist = get_freepointer(kmem_cache_node, n);
3549 page->inuse = 1;
3550 page->frozen = 0;
3551 kmem_cache_node->node[node] = n;
3552 init_kmem_cache_node(n);
3553 inc_slabs_node(kmem_cache_node, node, page->objects);
3554
3555 /*
3556 * No locks need to be taken here as it has just been
3557 * initialized and there is no concurrent access.
3558 */
3559 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3560 }
3561
free_kmem_cache_nodes(struct kmem_cache * s)3562 static void free_kmem_cache_nodes(struct kmem_cache *s)
3563 {
3564 int node;
3565 struct kmem_cache_node *n;
3566
3567 for_each_kmem_cache_node(s, node, n) {
3568 s->node[node] = NULL;
3569 kmem_cache_free(kmem_cache_node, n);
3570 }
3571 }
3572
__kmem_cache_release(struct kmem_cache * s)3573 void __kmem_cache_release(struct kmem_cache *s)
3574 {
3575 cache_random_seq_destroy(s);
3576 free_percpu(s->cpu_slab);
3577 free_kmem_cache_nodes(s);
3578 }
3579
init_kmem_cache_nodes(struct kmem_cache * s)3580 static int init_kmem_cache_nodes(struct kmem_cache *s)
3581 {
3582 int node;
3583
3584 for_each_node_state(node, N_NORMAL_MEMORY) {
3585 struct kmem_cache_node *n;
3586
3587 if (slab_state == DOWN) {
3588 early_kmem_cache_node_alloc(node);
3589 continue;
3590 }
3591 n = kmem_cache_alloc_node(kmem_cache_node,
3592 GFP_KERNEL, node);
3593
3594 if (!n) {
3595 free_kmem_cache_nodes(s);
3596 return 0;
3597 }
3598
3599 init_kmem_cache_node(n);
3600 s->node[node] = n;
3601 }
3602 return 1;
3603 }
3604
set_min_partial(struct kmem_cache * s,unsigned long min)3605 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3606 {
3607 if (min < MIN_PARTIAL)
3608 min = MIN_PARTIAL;
3609 else if (min > MAX_PARTIAL)
3610 min = MAX_PARTIAL;
3611 s->min_partial = min;
3612 }
3613
set_cpu_partial(struct kmem_cache * s)3614 static void set_cpu_partial(struct kmem_cache *s)
3615 {
3616 #ifdef CONFIG_SLUB_CPU_PARTIAL
3617 /*
3618 * cpu_partial determined the maximum number of objects kept in the
3619 * per cpu partial lists of a processor.
3620 *
3621 * Per cpu partial lists mainly contain slabs that just have one
3622 * object freed. If they are used for allocation then they can be
3623 * filled up again with minimal effort. The slab will never hit the
3624 * per node partial lists and therefore no locking will be required.
3625 *
3626 * This setting also determines
3627 *
3628 * A) The number of objects from per cpu partial slabs dumped to the
3629 * per node list when we reach the limit.
3630 * B) The number of objects in cpu partial slabs to extract from the
3631 * per node list when we run out of per cpu objects. We only fetch
3632 * 50% to keep some capacity around for frees.
3633 */
3634 if (!kmem_cache_has_cpu_partial(s))
3635 slub_set_cpu_partial(s, 0);
3636 else if (s->size >= PAGE_SIZE)
3637 slub_set_cpu_partial(s, 2);
3638 else if (s->size >= 1024)
3639 slub_set_cpu_partial(s, 6);
3640 else if (s->size >= 256)
3641 slub_set_cpu_partial(s, 13);
3642 else
3643 slub_set_cpu_partial(s, 30);
3644 #endif
3645 }
3646
3647 /*
3648 * calculate_sizes() determines the order and the distribution of data within
3649 * a slab object.
3650 */
calculate_sizes(struct kmem_cache * s,int forced_order)3651 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3652 {
3653 slab_flags_t flags = s->flags;
3654 unsigned int size = s->object_size;
3655 unsigned int order;
3656
3657 /*
3658 * Round up object size to the next word boundary. We can only
3659 * place the free pointer at word boundaries and this determines
3660 * the possible location of the free pointer.
3661 */
3662 size = ALIGN(size, sizeof(void *));
3663
3664 #ifdef CONFIG_SLUB_DEBUG
3665 /*
3666 * Determine if we can poison the object itself. If the user of
3667 * the slab may touch the object after free or before allocation
3668 * then we should never poison the object itself.
3669 */
3670 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3671 !s->ctor)
3672 s->flags |= __OBJECT_POISON;
3673 else
3674 s->flags &= ~__OBJECT_POISON;
3675
3676
3677 /*
3678 * If we are Redzoning then check if there is some space between the
3679 * end of the object and the free pointer. If not then add an
3680 * additional word to have some bytes to store Redzone information.
3681 */
3682 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3683 size += sizeof(void *);
3684 #endif
3685
3686 /*
3687 * With that we have determined the number of bytes in actual use
3688 * by the object and redzoning.
3689 */
3690 s->inuse = size;
3691
3692 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3693 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3694 s->ctor) {
3695 /*
3696 * Relocate free pointer after the object if it is not
3697 * permitted to overwrite the first word of the object on
3698 * kmem_cache_free.
3699 *
3700 * This is the case if we do RCU, have a constructor or
3701 * destructor, are poisoning the objects, or are
3702 * redzoning an object smaller than sizeof(void *).
3703 *
3704 * The assumption that s->offset >= s->inuse means free
3705 * pointer is outside of the object is used in the
3706 * freeptr_outside_object() function. If that is no
3707 * longer true, the function needs to be modified.
3708 */
3709 s->offset = size;
3710 size += sizeof(void *);
3711 } else {
3712 /*
3713 * Store freelist pointer near middle of object to keep
3714 * it away from the edges of the object to avoid small
3715 * sized over/underflows from neighboring allocations.
3716 */
3717 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3718 }
3719
3720 #ifdef CONFIG_SLUB_DEBUG
3721 if (flags & SLAB_STORE_USER)
3722 /*
3723 * Need to store information about allocs and frees after
3724 * the object.
3725 */
3726 size += 2 * sizeof(struct track);
3727 #endif
3728
3729 kasan_cache_create(s, &size, &s->flags);
3730 #ifdef CONFIG_SLUB_DEBUG
3731 if (flags & SLAB_RED_ZONE) {
3732 /*
3733 * Add some empty padding so that we can catch
3734 * overwrites from earlier objects rather than let
3735 * tracking information or the free pointer be
3736 * corrupted if a user writes before the start
3737 * of the object.
3738 */
3739 size += sizeof(void *);
3740
3741 s->red_left_pad = sizeof(void *);
3742 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3743 size += s->red_left_pad;
3744 }
3745 #endif
3746
3747 /*
3748 * SLUB stores one object immediately after another beginning from
3749 * offset 0. In order to align the objects we have to simply size
3750 * each object to conform to the alignment.
3751 */
3752 size = ALIGN(size, s->align);
3753 s->size = size;
3754 s->reciprocal_size = reciprocal_value(size);
3755 if (forced_order >= 0)
3756 order = forced_order;
3757 else
3758 order = calculate_order(size);
3759
3760 if ((int)order < 0)
3761 return 0;
3762
3763 s->allocflags = 0;
3764 if (order)
3765 s->allocflags |= __GFP_COMP;
3766
3767 if (s->flags & SLAB_CACHE_DMA)
3768 s->allocflags |= GFP_DMA;
3769
3770 if (s->flags & SLAB_CACHE_DMA32)
3771 s->allocflags |= GFP_DMA32;
3772
3773 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3774 s->allocflags |= __GFP_RECLAIMABLE;
3775
3776 /*
3777 * Determine the number of objects per slab
3778 */
3779 s->oo = oo_make(order, size);
3780 s->min = oo_make(get_order(size), size);
3781 if (oo_objects(s->oo) > oo_objects(s->max))
3782 s->max = s->oo;
3783
3784 return !!oo_objects(s->oo);
3785 }
3786
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)3787 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3788 {
3789 s->flags = kmem_cache_flags(s->size, flags, s->name);
3790 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3791 s->random = get_random_long();
3792 #endif
3793
3794 if (!calculate_sizes(s, -1))
3795 goto error;
3796 if (disable_higher_order_debug) {
3797 /*
3798 * Disable debugging flags that store metadata if the min slab
3799 * order increased.
3800 */
3801 if (get_order(s->size) > get_order(s->object_size)) {
3802 s->flags &= ~DEBUG_METADATA_FLAGS;
3803 s->offset = 0;
3804 if (!calculate_sizes(s, -1))
3805 goto error;
3806 }
3807 }
3808
3809 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3810 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3811 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3812 /* Enable fast mode */
3813 s->flags |= __CMPXCHG_DOUBLE;
3814 #endif
3815
3816 /*
3817 * The larger the object size is, the more pages we want on the partial
3818 * list to avoid pounding the page allocator excessively.
3819 */
3820 set_min_partial(s, ilog2(s->size) / 2);
3821
3822 set_cpu_partial(s);
3823
3824 #ifdef CONFIG_NUMA
3825 s->remote_node_defrag_ratio = 1000;
3826 #endif
3827
3828 /* Initialize the pre-computed randomized freelist if slab is up */
3829 if (slab_state >= UP) {
3830 if (init_cache_random_seq(s))
3831 goto error;
3832 }
3833
3834 if (!init_kmem_cache_nodes(s))
3835 goto error;
3836
3837 if (alloc_kmem_cache_cpus(s))
3838 return 0;
3839
3840 error:
3841 __kmem_cache_release(s);
3842 return -EINVAL;
3843 }
3844
list_slab_objects(struct kmem_cache * s,struct page * page,const char * text)3845 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3846 const char *text)
3847 {
3848 #ifdef CONFIG_SLUB_DEBUG
3849 void *addr = page_address(page);
3850 unsigned long *map;
3851 void *p;
3852
3853 slab_err(s, page, text, s->name);
3854 slab_lock(page);
3855
3856 map = get_map(s, page);
3857 for_each_object(p, s, addr, page->objects) {
3858
3859 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3860 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3861 print_tracking(s, p);
3862 }
3863 }
3864 put_map(map);
3865 slab_unlock(page);
3866 #endif
3867 }
3868
3869 /*
3870 * Attempt to free all partial slabs on a node.
3871 * This is called from __kmem_cache_shutdown(). We must take list_lock
3872 * because sysfs file might still access partial list after the shutdowning.
3873 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)3874 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3875 {
3876 LIST_HEAD(discard);
3877 struct page *page, *h;
3878
3879 BUG_ON(irqs_disabled());
3880 spin_lock_irq(&n->list_lock);
3881 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3882 if (!page->inuse) {
3883 remove_partial(n, page);
3884 list_add(&page->slab_list, &discard);
3885 } else {
3886 list_slab_objects(s, page,
3887 "Objects remaining in %s on __kmem_cache_shutdown()");
3888 }
3889 }
3890 spin_unlock_irq(&n->list_lock);
3891
3892 list_for_each_entry_safe(page, h, &discard, slab_list)
3893 discard_slab(s, page);
3894 }
3895
__kmem_cache_empty(struct kmem_cache * s)3896 bool __kmem_cache_empty(struct kmem_cache *s)
3897 {
3898 int node;
3899 struct kmem_cache_node *n;
3900
3901 for_each_kmem_cache_node(s, node, n)
3902 if (n->nr_partial || slabs_node(s, node))
3903 return false;
3904 return true;
3905 }
3906
3907 /*
3908 * Release all resources used by a slab cache.
3909 */
__kmem_cache_shutdown(struct kmem_cache * s)3910 int __kmem_cache_shutdown(struct kmem_cache *s)
3911 {
3912 int node;
3913 struct kmem_cache_node *n;
3914
3915 flush_all(s);
3916 /* Attempt to free all objects */
3917 for_each_kmem_cache_node(s, node, n) {
3918 free_partial(s, n);
3919 if (n->nr_partial || slabs_node(s, node))
3920 return 1;
3921 }
3922 return 0;
3923 }
3924
3925 /********************************************************************
3926 * Kmalloc subsystem
3927 *******************************************************************/
3928
setup_slub_min_order(char * str)3929 static int __init setup_slub_min_order(char *str)
3930 {
3931 get_option(&str, (int *)&slub_min_order);
3932
3933 return 1;
3934 }
3935
3936 __setup("slub_min_order=", setup_slub_min_order);
3937
setup_slub_max_order(char * str)3938 static int __init setup_slub_max_order(char *str)
3939 {
3940 get_option(&str, (int *)&slub_max_order);
3941 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3942
3943 return 1;
3944 }
3945
3946 __setup("slub_max_order=", setup_slub_max_order);
3947
setup_slub_min_objects(char * str)3948 static int __init setup_slub_min_objects(char *str)
3949 {
3950 get_option(&str, (int *)&slub_min_objects);
3951
3952 return 1;
3953 }
3954
3955 __setup("slub_min_objects=", setup_slub_min_objects);
3956
__kmalloc(size_t size,gfp_t flags)3957 void *__kmalloc(size_t size, gfp_t flags)
3958 {
3959 struct kmem_cache *s;
3960 void *ret;
3961
3962 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3963 return kmalloc_large(size, flags);
3964
3965 s = kmalloc_slab(size, flags);
3966
3967 if (unlikely(ZERO_OR_NULL_PTR(s)))
3968 return s;
3969
3970 ret = slab_alloc(s, flags, _RET_IP_);
3971
3972 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3973
3974 ret = kasan_kmalloc(s, ret, size, flags);
3975
3976 return ret;
3977 }
3978 EXPORT_SYMBOL(__kmalloc);
3979
3980 #ifdef CONFIG_NUMA
kmalloc_large_node(size_t size,gfp_t flags,int node)3981 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3982 {
3983 struct page *page;
3984 void *ptr = NULL;
3985 unsigned int order = get_order(size);
3986
3987 flags |= __GFP_COMP;
3988 page = alloc_pages_node(node, flags, order);
3989 if (page) {
3990 ptr = page_address(page);
3991 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
3992 PAGE_SIZE << order);
3993 }
3994
3995 return kmalloc_large_node_hook(ptr, size, flags);
3996 }
3997
__kmalloc_node(size_t size,gfp_t flags,int node)3998 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3999 {
4000 struct kmem_cache *s;
4001 void *ret;
4002
4003 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4004 ret = kmalloc_large_node(size, flags, node);
4005
4006 trace_kmalloc_node(_RET_IP_, ret,
4007 size, PAGE_SIZE << get_order(size),
4008 flags, node);
4009
4010 return ret;
4011 }
4012
4013 s = kmalloc_slab(size, flags);
4014
4015 if (unlikely(ZERO_OR_NULL_PTR(s)))
4016 return s;
4017
4018 ret = slab_alloc_node(s, flags, node, _RET_IP_);
4019
4020 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4021
4022 ret = kasan_kmalloc(s, ret, size, flags);
4023
4024 return ret;
4025 }
4026 EXPORT_SYMBOL(__kmalloc_node);
4027 #endif /* CONFIG_NUMA */
4028
4029 #ifdef CONFIG_HARDENED_USERCOPY
4030 /*
4031 * Rejects incorrectly sized objects and objects that are to be copied
4032 * to/from userspace but do not fall entirely within the containing slab
4033 * cache's usercopy region.
4034 *
4035 * Returns NULL if check passes, otherwise const char * to name of cache
4036 * to indicate an error.
4037 */
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)4038 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4039 bool to_user)
4040 {
4041 struct kmem_cache *s;
4042 unsigned int offset;
4043 size_t object_size;
4044
4045 ptr = kasan_reset_tag(ptr);
4046
4047 /* Find object and usable object size. */
4048 s = page->slab_cache;
4049
4050 /* Reject impossible pointers. */
4051 if (ptr < page_address(page))
4052 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4053 to_user, 0, n);
4054
4055 /* Find offset within object. */
4056 offset = (ptr - page_address(page)) % s->size;
4057
4058 /* Adjust for redzone and reject if within the redzone. */
4059 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4060 if (offset < s->red_left_pad)
4061 usercopy_abort("SLUB object in left red zone",
4062 s->name, to_user, offset, n);
4063 offset -= s->red_left_pad;
4064 }
4065
4066 /* Allow address range falling entirely within usercopy region. */
4067 if (offset >= s->useroffset &&
4068 offset - s->useroffset <= s->usersize &&
4069 n <= s->useroffset - offset + s->usersize)
4070 return;
4071
4072 /*
4073 * If the copy is still within the allocated object, produce
4074 * a warning instead of rejecting the copy. This is intended
4075 * to be a temporary method to find any missing usercopy
4076 * whitelists.
4077 */
4078 object_size = slab_ksize(s);
4079 if (usercopy_fallback &&
4080 offset <= object_size && n <= object_size - offset) {
4081 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4082 return;
4083 }
4084
4085 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4086 }
4087 #endif /* CONFIG_HARDENED_USERCOPY */
4088
__ksize(const void * object)4089 size_t __ksize(const void *object)
4090 {
4091 struct page *page;
4092
4093 if (unlikely(object == ZERO_SIZE_PTR))
4094 return 0;
4095
4096 page = virt_to_head_page(object);
4097
4098 if (unlikely(!PageSlab(page))) {
4099 WARN_ON(!PageCompound(page));
4100 return page_size(page);
4101 }
4102
4103 return slab_ksize(page->slab_cache);
4104 }
4105 EXPORT_SYMBOL(__ksize);
4106
kfree(const void * x)4107 void kfree(const void *x)
4108 {
4109 struct page *page;
4110 void *object = (void *)x;
4111
4112 trace_kfree(_RET_IP_, x);
4113
4114 if (unlikely(ZERO_OR_NULL_PTR(x)))
4115 return;
4116
4117 page = virt_to_head_page(x);
4118 if (unlikely(!PageSlab(page))) {
4119 unsigned int order = compound_order(page);
4120
4121 BUG_ON(!PageCompound(page));
4122 kfree_hook(object);
4123 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4124 -(PAGE_SIZE << order));
4125 __free_pages(page, order);
4126 return;
4127 }
4128 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4129 }
4130 EXPORT_SYMBOL(kfree);
4131
4132 #define SHRINK_PROMOTE_MAX 32
4133
4134 /*
4135 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4136 * up most to the head of the partial lists. New allocations will then
4137 * fill those up and thus they can be removed from the partial lists.
4138 *
4139 * The slabs with the least items are placed last. This results in them
4140 * being allocated from last increasing the chance that the last objects
4141 * are freed in them.
4142 */
__kmem_cache_shrink(struct kmem_cache * s)4143 int __kmem_cache_shrink(struct kmem_cache *s)
4144 {
4145 int node;
4146 int i;
4147 struct kmem_cache_node *n;
4148 struct page *page;
4149 struct page *t;
4150 struct list_head discard;
4151 struct list_head promote[SHRINK_PROMOTE_MAX];
4152 unsigned long flags;
4153 int ret = 0;
4154
4155 flush_all(s);
4156 for_each_kmem_cache_node(s, node, n) {
4157 INIT_LIST_HEAD(&discard);
4158 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4159 INIT_LIST_HEAD(promote + i);
4160
4161 spin_lock_irqsave(&n->list_lock, flags);
4162
4163 /*
4164 * Build lists of slabs to discard or promote.
4165 *
4166 * Note that concurrent frees may occur while we hold the
4167 * list_lock. page->inuse here is the upper limit.
4168 */
4169 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4170 int free = page->objects - page->inuse;
4171
4172 /* Do not reread page->inuse */
4173 barrier();
4174
4175 /* We do not keep full slabs on the list */
4176 BUG_ON(free <= 0);
4177
4178 if (free == page->objects) {
4179 list_move(&page->slab_list, &discard);
4180 n->nr_partial--;
4181 } else if (free <= SHRINK_PROMOTE_MAX)
4182 list_move(&page->slab_list, promote + free - 1);
4183 }
4184
4185 /*
4186 * Promote the slabs filled up most to the head of the
4187 * partial list.
4188 */
4189 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4190 list_splice(promote + i, &n->partial);
4191
4192 spin_unlock_irqrestore(&n->list_lock, flags);
4193
4194 /* Release empty slabs */
4195 list_for_each_entry_safe(page, t, &discard, slab_list)
4196 discard_slab(s, page);
4197
4198 if (slabs_node(s, node))
4199 ret = 1;
4200 }
4201
4202 return ret;
4203 }
4204
slab_mem_going_offline_callback(void * arg)4205 static int slab_mem_going_offline_callback(void *arg)
4206 {
4207 struct kmem_cache *s;
4208
4209 mutex_lock(&slab_mutex);
4210 list_for_each_entry(s, &slab_caches, list)
4211 __kmem_cache_shrink(s);
4212 mutex_unlock(&slab_mutex);
4213
4214 return 0;
4215 }
4216
slab_mem_offline_callback(void * arg)4217 static void slab_mem_offline_callback(void *arg)
4218 {
4219 struct kmem_cache_node *n;
4220 struct kmem_cache *s;
4221 struct memory_notify *marg = arg;
4222 int offline_node;
4223
4224 offline_node = marg->status_change_nid_normal;
4225
4226 /*
4227 * If the node still has available memory. we need kmem_cache_node
4228 * for it yet.
4229 */
4230 if (offline_node < 0)
4231 return;
4232
4233 mutex_lock(&slab_mutex);
4234 list_for_each_entry(s, &slab_caches, list) {
4235 n = get_node(s, offline_node);
4236 if (n) {
4237 /*
4238 * if n->nr_slabs > 0, slabs still exist on the node
4239 * that is going down. We were unable to free them,
4240 * and offline_pages() function shouldn't call this
4241 * callback. So, we must fail.
4242 */
4243 BUG_ON(slabs_node(s, offline_node));
4244
4245 s->node[offline_node] = NULL;
4246 kmem_cache_free(kmem_cache_node, n);
4247 }
4248 }
4249 mutex_unlock(&slab_mutex);
4250 }
4251
slab_mem_going_online_callback(void * arg)4252 static int slab_mem_going_online_callback(void *arg)
4253 {
4254 struct kmem_cache_node *n;
4255 struct kmem_cache *s;
4256 struct memory_notify *marg = arg;
4257 int nid = marg->status_change_nid_normal;
4258 int ret = 0;
4259
4260 /*
4261 * If the node's memory is already available, then kmem_cache_node is
4262 * already created. Nothing to do.
4263 */
4264 if (nid < 0)
4265 return 0;
4266
4267 /*
4268 * We are bringing a node online. No memory is available yet. We must
4269 * allocate a kmem_cache_node structure in order to bring the node
4270 * online.
4271 */
4272 mutex_lock(&slab_mutex);
4273 list_for_each_entry(s, &slab_caches, list) {
4274 /*
4275 * XXX: kmem_cache_alloc_node will fallback to other nodes
4276 * since memory is not yet available from the node that
4277 * is brought up.
4278 */
4279 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4280 if (!n) {
4281 ret = -ENOMEM;
4282 goto out;
4283 }
4284 init_kmem_cache_node(n);
4285 s->node[nid] = n;
4286 }
4287 out:
4288 mutex_unlock(&slab_mutex);
4289 return ret;
4290 }
4291
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4292 static int slab_memory_callback(struct notifier_block *self,
4293 unsigned long action, void *arg)
4294 {
4295 int ret = 0;
4296
4297 switch (action) {
4298 case MEM_GOING_ONLINE:
4299 ret = slab_mem_going_online_callback(arg);
4300 break;
4301 case MEM_GOING_OFFLINE:
4302 ret = slab_mem_going_offline_callback(arg);
4303 break;
4304 case MEM_OFFLINE:
4305 case MEM_CANCEL_ONLINE:
4306 slab_mem_offline_callback(arg);
4307 break;
4308 case MEM_ONLINE:
4309 case MEM_CANCEL_OFFLINE:
4310 break;
4311 }
4312 if (ret)
4313 ret = notifier_from_errno(ret);
4314 else
4315 ret = NOTIFY_OK;
4316 return ret;
4317 }
4318
4319 static struct notifier_block slab_memory_callback_nb = {
4320 .notifier_call = slab_memory_callback,
4321 .priority = SLAB_CALLBACK_PRI,
4322 };
4323
4324 /********************************************************************
4325 * Basic setup of slabs
4326 *******************************************************************/
4327
4328 /*
4329 * Used for early kmem_cache structures that were allocated using
4330 * the page allocator. Allocate them properly then fix up the pointers
4331 * that may be pointing to the wrong kmem_cache structure.
4332 */
4333
bootstrap(struct kmem_cache * static_cache)4334 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4335 {
4336 int node;
4337 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4338 struct kmem_cache_node *n;
4339
4340 memcpy(s, static_cache, kmem_cache->object_size);
4341
4342 /*
4343 * This runs very early, and only the boot processor is supposed to be
4344 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4345 * IPIs around.
4346 */
4347 __flush_cpu_slab(s, smp_processor_id());
4348 for_each_kmem_cache_node(s, node, n) {
4349 struct page *p;
4350
4351 list_for_each_entry(p, &n->partial, slab_list)
4352 p->slab_cache = s;
4353
4354 #ifdef CONFIG_SLUB_DEBUG
4355 list_for_each_entry(p, &n->full, slab_list)
4356 p->slab_cache = s;
4357 #endif
4358 }
4359 list_add(&s->list, &slab_caches);
4360 return s;
4361 }
4362
kmem_cache_init(void)4363 void __init kmem_cache_init(void)
4364 {
4365 static __initdata struct kmem_cache boot_kmem_cache,
4366 boot_kmem_cache_node;
4367
4368 if (debug_guardpage_minorder())
4369 slub_max_order = 0;
4370
4371 kmem_cache_node = &boot_kmem_cache_node;
4372 kmem_cache = &boot_kmem_cache;
4373
4374 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4375 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4376
4377 register_hotmemory_notifier(&slab_memory_callback_nb);
4378
4379 /* Able to allocate the per node structures */
4380 slab_state = PARTIAL;
4381
4382 create_boot_cache(kmem_cache, "kmem_cache",
4383 offsetof(struct kmem_cache, node) +
4384 nr_node_ids * sizeof(struct kmem_cache_node *),
4385 SLAB_HWCACHE_ALIGN, 0, 0);
4386
4387 kmem_cache = bootstrap(&boot_kmem_cache);
4388 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4389
4390 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4391 setup_kmalloc_cache_index_table();
4392 create_kmalloc_caches(0);
4393
4394 /* Setup random freelists for each cache */
4395 init_freelist_randomization();
4396
4397 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4398 slub_cpu_dead);
4399
4400 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4401 cache_line_size(),
4402 slub_min_order, slub_max_order, slub_min_objects,
4403 nr_cpu_ids, nr_node_ids);
4404 }
4405
kmem_cache_init_late(void)4406 void __init kmem_cache_init_late(void)
4407 {
4408 }
4409
4410 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))4411 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4412 slab_flags_t flags, void (*ctor)(void *))
4413 {
4414 struct kmem_cache *s;
4415
4416 s = find_mergeable(size, align, flags, name, ctor);
4417 if (s) {
4418 s->refcount++;
4419
4420 /*
4421 * Adjust the object sizes so that we clear
4422 * the complete object on kzalloc.
4423 */
4424 s->object_size = max(s->object_size, size);
4425 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4426
4427 if (sysfs_slab_alias(s, name)) {
4428 s->refcount--;
4429 s = NULL;
4430 }
4431 }
4432
4433 return s;
4434 }
4435
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)4436 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4437 {
4438 int err;
4439
4440 err = kmem_cache_open(s, flags);
4441 if (err)
4442 return err;
4443
4444 /* Mutex is not taken during early boot */
4445 if (slab_state <= UP)
4446 return 0;
4447
4448 err = sysfs_slab_add(s);
4449 if (err)
4450 __kmem_cache_release(s);
4451
4452 return err;
4453 }
4454
__kmalloc_track_caller(size_t size,gfp_t gfpflags,unsigned long caller)4455 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4456 {
4457 struct kmem_cache *s;
4458 void *ret;
4459
4460 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4461 return kmalloc_large(size, gfpflags);
4462
4463 s = kmalloc_slab(size, gfpflags);
4464
4465 if (unlikely(ZERO_OR_NULL_PTR(s)))
4466 return s;
4467
4468 ret = slab_alloc(s, gfpflags, caller);
4469
4470 /* Honor the call site pointer we received. */
4471 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4472
4473 return ret;
4474 }
4475 EXPORT_SYMBOL(__kmalloc_track_caller);
4476
4477 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfpflags,int node,unsigned long caller)4478 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4479 int node, unsigned long caller)
4480 {
4481 struct kmem_cache *s;
4482 void *ret;
4483
4484 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4485 ret = kmalloc_large_node(size, gfpflags, node);
4486
4487 trace_kmalloc_node(caller, ret,
4488 size, PAGE_SIZE << get_order(size),
4489 gfpflags, node);
4490
4491 return ret;
4492 }
4493
4494 s = kmalloc_slab(size, gfpflags);
4495
4496 if (unlikely(ZERO_OR_NULL_PTR(s)))
4497 return s;
4498
4499 ret = slab_alloc_node(s, gfpflags, node, caller);
4500
4501 /* Honor the call site pointer we received. */
4502 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4503
4504 return ret;
4505 }
4506 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4507 #endif
4508
4509 #ifdef CONFIG_SYSFS
count_inuse(struct page * page)4510 static int count_inuse(struct page *page)
4511 {
4512 return page->inuse;
4513 }
4514
count_total(struct page * page)4515 static int count_total(struct page *page)
4516 {
4517 return page->objects;
4518 }
4519 #endif
4520
4521 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct page * page)4522 static void validate_slab(struct kmem_cache *s, struct page *page)
4523 {
4524 void *p;
4525 void *addr = page_address(page);
4526 unsigned long *map;
4527
4528 slab_lock(page);
4529
4530 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4531 goto unlock;
4532
4533 /* Now we know that a valid freelist exists */
4534 map = get_map(s, page);
4535 for_each_object(p, s, addr, page->objects) {
4536 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4537 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4538
4539 if (!check_object(s, page, p, val))
4540 break;
4541 }
4542 put_map(map);
4543 unlock:
4544 slab_unlock(page);
4545 }
4546
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n)4547 static int validate_slab_node(struct kmem_cache *s,
4548 struct kmem_cache_node *n)
4549 {
4550 unsigned long count = 0;
4551 struct page *page;
4552 unsigned long flags;
4553
4554 spin_lock_irqsave(&n->list_lock, flags);
4555
4556 list_for_each_entry(page, &n->partial, slab_list) {
4557 validate_slab(s, page);
4558 count++;
4559 }
4560 if (count != n->nr_partial)
4561 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4562 s->name, count, n->nr_partial);
4563
4564 if (!(s->flags & SLAB_STORE_USER))
4565 goto out;
4566
4567 list_for_each_entry(page, &n->full, slab_list) {
4568 validate_slab(s, page);
4569 count++;
4570 }
4571 if (count != atomic_long_read(&n->nr_slabs))
4572 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4573 s->name, count, atomic_long_read(&n->nr_slabs));
4574
4575 out:
4576 spin_unlock_irqrestore(&n->list_lock, flags);
4577 return count;
4578 }
4579
validate_slab_cache(struct kmem_cache * s)4580 static long validate_slab_cache(struct kmem_cache *s)
4581 {
4582 int node;
4583 unsigned long count = 0;
4584 struct kmem_cache_node *n;
4585
4586 flush_all(s);
4587 for_each_kmem_cache_node(s, node, n)
4588 count += validate_slab_node(s, n);
4589
4590 return count;
4591 }
4592 /*
4593 * Generate lists of code addresses where slabcache objects are allocated
4594 * and freed.
4595 */
4596
4597 struct location {
4598 unsigned long count;
4599 unsigned long addr;
4600 long long sum_time;
4601 long min_time;
4602 long max_time;
4603 long min_pid;
4604 long max_pid;
4605 DECLARE_BITMAP(cpus, NR_CPUS);
4606 nodemask_t nodes;
4607 };
4608
4609 struct loc_track {
4610 unsigned long max;
4611 unsigned long count;
4612 struct location *loc;
4613 };
4614
free_loc_track(struct loc_track * t)4615 static void free_loc_track(struct loc_track *t)
4616 {
4617 if (t->max)
4618 free_pages((unsigned long)t->loc,
4619 get_order(sizeof(struct location) * t->max));
4620 }
4621
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)4622 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4623 {
4624 struct location *l;
4625 int order;
4626
4627 order = get_order(sizeof(struct location) * max);
4628
4629 l = (void *)__get_free_pages(flags, order);
4630 if (!l)
4631 return 0;
4632
4633 if (t->count) {
4634 memcpy(l, t->loc, sizeof(struct location) * t->count);
4635 free_loc_track(t);
4636 }
4637 t->max = max;
4638 t->loc = l;
4639 return 1;
4640 }
4641
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track)4642 static int add_location(struct loc_track *t, struct kmem_cache *s,
4643 const struct track *track)
4644 {
4645 long start, end, pos;
4646 struct location *l;
4647 unsigned long caddr;
4648 unsigned long age = jiffies - track->when;
4649
4650 start = -1;
4651 end = t->count;
4652
4653 for ( ; ; ) {
4654 pos = start + (end - start + 1) / 2;
4655
4656 /*
4657 * There is nothing at "end". If we end up there
4658 * we need to add something to before end.
4659 */
4660 if (pos == end)
4661 break;
4662
4663 caddr = t->loc[pos].addr;
4664 if (track->addr == caddr) {
4665
4666 l = &t->loc[pos];
4667 l->count++;
4668 if (track->when) {
4669 l->sum_time += age;
4670 if (age < l->min_time)
4671 l->min_time = age;
4672 if (age > l->max_time)
4673 l->max_time = age;
4674
4675 if (track->pid < l->min_pid)
4676 l->min_pid = track->pid;
4677 if (track->pid > l->max_pid)
4678 l->max_pid = track->pid;
4679
4680 cpumask_set_cpu(track->cpu,
4681 to_cpumask(l->cpus));
4682 }
4683 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4684 return 1;
4685 }
4686
4687 if (track->addr < caddr)
4688 end = pos;
4689 else
4690 start = pos;
4691 }
4692
4693 /*
4694 * Not found. Insert new tracking element.
4695 */
4696 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4697 return 0;
4698
4699 l = t->loc + pos;
4700 if (pos < t->count)
4701 memmove(l + 1, l,
4702 (t->count - pos) * sizeof(struct location));
4703 t->count++;
4704 l->count = 1;
4705 l->addr = track->addr;
4706 l->sum_time = age;
4707 l->min_time = age;
4708 l->max_time = age;
4709 l->min_pid = track->pid;
4710 l->max_pid = track->pid;
4711 cpumask_clear(to_cpumask(l->cpus));
4712 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4713 nodes_clear(l->nodes);
4714 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4715 return 1;
4716 }
4717
process_slab(struct loc_track * t,struct kmem_cache * s,struct page * page,enum track_item alloc)4718 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4719 struct page *page, enum track_item alloc)
4720 {
4721 void *addr = page_address(page);
4722 void *p;
4723 unsigned long *map;
4724
4725 map = get_map(s, page);
4726 for_each_object(p, s, addr, page->objects)
4727 if (!test_bit(__obj_to_index(s, addr, p), map))
4728 add_location(t, s, get_track(s, p, alloc));
4729 put_map(map);
4730 }
4731
list_locations(struct kmem_cache * s,char * buf,enum track_item alloc)4732 static int list_locations(struct kmem_cache *s, char *buf,
4733 enum track_item alloc)
4734 {
4735 int len = 0;
4736 unsigned long i;
4737 struct loc_track t = { 0, 0, NULL };
4738 int node;
4739 struct kmem_cache_node *n;
4740
4741 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4742 GFP_KERNEL)) {
4743 return sprintf(buf, "Out of memory\n");
4744 }
4745 /* Push back cpu slabs */
4746 flush_all(s);
4747
4748 for_each_kmem_cache_node(s, node, n) {
4749 unsigned long flags;
4750 struct page *page;
4751
4752 if (!atomic_long_read(&n->nr_slabs))
4753 continue;
4754
4755 spin_lock_irqsave(&n->list_lock, flags);
4756 list_for_each_entry(page, &n->partial, slab_list)
4757 process_slab(&t, s, page, alloc);
4758 list_for_each_entry(page, &n->full, slab_list)
4759 process_slab(&t, s, page, alloc);
4760 spin_unlock_irqrestore(&n->list_lock, flags);
4761 }
4762
4763 for (i = 0; i < t.count; i++) {
4764 struct location *l = &t.loc[i];
4765
4766 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4767 break;
4768 len += sprintf(buf + len, "%7ld ", l->count);
4769
4770 if (l->addr)
4771 len += sprintf(buf + len, "%pS", (void *)l->addr);
4772 else
4773 len += sprintf(buf + len, "<not-available>");
4774
4775 if (l->sum_time != l->min_time) {
4776 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4777 l->min_time,
4778 (long)div_u64(l->sum_time, l->count),
4779 l->max_time);
4780 } else
4781 len += sprintf(buf + len, " age=%ld",
4782 l->min_time);
4783
4784 if (l->min_pid != l->max_pid)
4785 len += sprintf(buf + len, " pid=%ld-%ld",
4786 l->min_pid, l->max_pid);
4787 else
4788 len += sprintf(buf + len, " pid=%ld",
4789 l->min_pid);
4790
4791 if (num_online_cpus() > 1 &&
4792 !cpumask_empty(to_cpumask(l->cpus)) &&
4793 len < PAGE_SIZE - 60)
4794 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4795 " cpus=%*pbl",
4796 cpumask_pr_args(to_cpumask(l->cpus)));
4797
4798 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4799 len < PAGE_SIZE - 60)
4800 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4801 " nodes=%*pbl",
4802 nodemask_pr_args(&l->nodes));
4803
4804 len += sprintf(buf + len, "\n");
4805 }
4806
4807 free_loc_track(&t);
4808 if (!t.count)
4809 len += sprintf(buf, "No data\n");
4810 return len;
4811 }
4812 #endif /* CONFIG_SLUB_DEBUG */
4813
4814 #ifdef SLUB_RESILIENCY_TEST
resiliency_test(void)4815 static void __init resiliency_test(void)
4816 {
4817 u8 *p;
4818 int type = KMALLOC_NORMAL;
4819
4820 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4821
4822 pr_err("SLUB resiliency testing\n");
4823 pr_err("-----------------------\n");
4824 pr_err("A. Corruption after allocation\n");
4825
4826 p = kzalloc(16, GFP_KERNEL);
4827 p[16] = 0x12;
4828 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4829 p + 16);
4830
4831 validate_slab_cache(kmalloc_caches[type][4]);
4832
4833 /* Hmmm... The next two are dangerous */
4834 p = kzalloc(32, GFP_KERNEL);
4835 p[32 + sizeof(void *)] = 0x34;
4836 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4837 p);
4838 pr_err("If allocated object is overwritten then not detectable\n\n");
4839
4840 validate_slab_cache(kmalloc_caches[type][5]);
4841 p = kzalloc(64, GFP_KERNEL);
4842 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4843 *p = 0x56;
4844 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4845 p);
4846 pr_err("If allocated object is overwritten then not detectable\n\n");
4847 validate_slab_cache(kmalloc_caches[type][6]);
4848
4849 pr_err("\nB. Corruption after free\n");
4850 p = kzalloc(128, GFP_KERNEL);
4851 kfree(p);
4852 *p = 0x78;
4853 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4854 validate_slab_cache(kmalloc_caches[type][7]);
4855
4856 p = kzalloc(256, GFP_KERNEL);
4857 kfree(p);
4858 p[50] = 0x9a;
4859 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4860 validate_slab_cache(kmalloc_caches[type][8]);
4861
4862 p = kzalloc(512, GFP_KERNEL);
4863 kfree(p);
4864 p[512] = 0xab;
4865 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4866 validate_slab_cache(kmalloc_caches[type][9]);
4867 }
4868 #else
4869 #ifdef CONFIG_SYSFS
resiliency_test(void)4870 static void resiliency_test(void) {};
4871 #endif
4872 #endif /* SLUB_RESILIENCY_TEST */
4873
4874 #ifdef CONFIG_SYSFS
4875 enum slab_stat_type {
4876 SL_ALL, /* All slabs */
4877 SL_PARTIAL, /* Only partially allocated slabs */
4878 SL_CPU, /* Only slabs used for cpu caches */
4879 SL_OBJECTS, /* Determine allocated objects not slabs */
4880 SL_TOTAL /* Determine object capacity not slabs */
4881 };
4882
4883 #define SO_ALL (1 << SL_ALL)
4884 #define SO_PARTIAL (1 << SL_PARTIAL)
4885 #define SO_CPU (1 << SL_CPU)
4886 #define SO_OBJECTS (1 << SL_OBJECTS)
4887 #define SO_TOTAL (1 << SL_TOTAL)
4888
4889 #ifdef CONFIG_MEMCG
4890 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4891
setup_slub_memcg_sysfs(char * str)4892 static int __init setup_slub_memcg_sysfs(char *str)
4893 {
4894 int v;
4895
4896 if (get_option(&str, &v) > 0)
4897 memcg_sysfs_enabled = v;
4898
4899 return 1;
4900 }
4901
4902 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4903 #endif
4904
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)4905 static ssize_t show_slab_objects(struct kmem_cache *s,
4906 char *buf, unsigned long flags)
4907 {
4908 unsigned long total = 0;
4909 int node;
4910 int x;
4911 unsigned long *nodes;
4912
4913 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4914 if (!nodes)
4915 return -ENOMEM;
4916
4917 if (flags & SO_CPU) {
4918 int cpu;
4919
4920 for_each_possible_cpu(cpu) {
4921 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4922 cpu);
4923 int node;
4924 struct page *page;
4925
4926 page = READ_ONCE(c->page);
4927 if (!page)
4928 continue;
4929
4930 node = page_to_nid(page);
4931 if (flags & SO_TOTAL)
4932 x = page->objects;
4933 else if (flags & SO_OBJECTS)
4934 x = page->inuse;
4935 else
4936 x = 1;
4937
4938 total += x;
4939 nodes[node] += x;
4940
4941 page = slub_percpu_partial_read_once(c);
4942 if (page) {
4943 node = page_to_nid(page);
4944 if (flags & SO_TOTAL)
4945 WARN_ON_ONCE(1);
4946 else if (flags & SO_OBJECTS)
4947 WARN_ON_ONCE(1);
4948 else
4949 x = page->pages;
4950 total += x;
4951 nodes[node] += x;
4952 }
4953 }
4954 }
4955
4956 /*
4957 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4958 * already held which will conflict with an existing lock order:
4959 *
4960 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4961 *
4962 * We don't really need mem_hotplug_lock (to hold off
4963 * slab_mem_going_offline_callback) here because slab's memory hot
4964 * unplug code doesn't destroy the kmem_cache->node[] data.
4965 */
4966
4967 #ifdef CONFIG_SLUB_DEBUG
4968 if (flags & SO_ALL) {
4969 struct kmem_cache_node *n;
4970
4971 for_each_kmem_cache_node(s, node, n) {
4972
4973 if (flags & SO_TOTAL)
4974 x = atomic_long_read(&n->total_objects);
4975 else if (flags & SO_OBJECTS)
4976 x = atomic_long_read(&n->total_objects) -
4977 count_partial(n, count_free);
4978 else
4979 x = atomic_long_read(&n->nr_slabs);
4980 total += x;
4981 nodes[node] += x;
4982 }
4983
4984 } else
4985 #endif
4986 if (flags & SO_PARTIAL) {
4987 struct kmem_cache_node *n;
4988
4989 for_each_kmem_cache_node(s, node, n) {
4990 if (flags & SO_TOTAL)
4991 x = count_partial(n, count_total);
4992 else if (flags & SO_OBJECTS)
4993 x = count_partial(n, count_inuse);
4994 else
4995 x = n->nr_partial;
4996 total += x;
4997 nodes[node] += x;
4998 }
4999 }
5000 x = sprintf(buf, "%lu", total);
5001 #ifdef CONFIG_NUMA
5002 for (node = 0; node < nr_node_ids; node++)
5003 if (nodes[node])
5004 x += sprintf(buf + x, " N%d=%lu",
5005 node, nodes[node]);
5006 #endif
5007 kfree(nodes);
5008 return x + sprintf(buf + x, "\n");
5009 }
5010
5011 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5012 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5013
5014 struct slab_attribute {
5015 struct attribute attr;
5016 ssize_t (*show)(struct kmem_cache *s, char *buf);
5017 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5018 };
5019
5020 #define SLAB_ATTR_RO(_name) \
5021 static struct slab_attribute _name##_attr = \
5022 __ATTR(_name, 0400, _name##_show, NULL)
5023
5024 #define SLAB_ATTR(_name) \
5025 static struct slab_attribute _name##_attr = \
5026 __ATTR(_name, 0600, _name##_show, _name##_store)
5027
slab_size_show(struct kmem_cache * s,char * buf)5028 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5029 {
5030 return sprintf(buf, "%u\n", s->size);
5031 }
5032 SLAB_ATTR_RO(slab_size);
5033
align_show(struct kmem_cache * s,char * buf)5034 static ssize_t align_show(struct kmem_cache *s, char *buf)
5035 {
5036 return sprintf(buf, "%u\n", s->align);
5037 }
5038 SLAB_ATTR_RO(align);
5039
object_size_show(struct kmem_cache * s,char * buf)5040 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5041 {
5042 return sprintf(buf, "%u\n", s->object_size);
5043 }
5044 SLAB_ATTR_RO(object_size);
5045
objs_per_slab_show(struct kmem_cache * s,char * buf)5046 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5047 {
5048 return sprintf(buf, "%u\n", oo_objects(s->oo));
5049 }
5050 SLAB_ATTR_RO(objs_per_slab);
5051
order_show(struct kmem_cache * s,char * buf)5052 static ssize_t order_show(struct kmem_cache *s, char *buf)
5053 {
5054 return sprintf(buf, "%u\n", oo_order(s->oo));
5055 }
5056 SLAB_ATTR_RO(order);
5057
min_partial_show(struct kmem_cache * s,char * buf)5058 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5059 {
5060 return sprintf(buf, "%lu\n", s->min_partial);
5061 }
5062
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)5063 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5064 size_t length)
5065 {
5066 unsigned long min;
5067 int err;
5068
5069 err = kstrtoul(buf, 10, &min);
5070 if (err)
5071 return err;
5072
5073 set_min_partial(s, min);
5074 return length;
5075 }
5076 SLAB_ATTR(min_partial);
5077
cpu_partial_show(struct kmem_cache * s,char * buf)5078 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5079 {
5080 return sprintf(buf, "%u\n", slub_cpu_partial(s));
5081 }
5082
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)5083 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5084 size_t length)
5085 {
5086 unsigned int objects;
5087 int err;
5088
5089 err = kstrtouint(buf, 10, &objects);
5090 if (err)
5091 return err;
5092 if (objects && !kmem_cache_has_cpu_partial(s))
5093 return -EINVAL;
5094
5095 slub_set_cpu_partial(s, objects);
5096 flush_all(s);
5097 return length;
5098 }
5099 SLAB_ATTR(cpu_partial);
5100
ctor_show(struct kmem_cache * s,char * buf)5101 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5102 {
5103 if (!s->ctor)
5104 return 0;
5105 return sprintf(buf, "%pS\n", s->ctor);
5106 }
5107 SLAB_ATTR_RO(ctor);
5108
aliases_show(struct kmem_cache * s,char * buf)5109 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5110 {
5111 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5112 }
5113 SLAB_ATTR_RO(aliases);
5114
partial_show(struct kmem_cache * s,char * buf)5115 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5116 {
5117 return show_slab_objects(s, buf, SO_PARTIAL);
5118 }
5119 SLAB_ATTR_RO(partial);
5120
cpu_slabs_show(struct kmem_cache * s,char * buf)5121 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5122 {
5123 return show_slab_objects(s, buf, SO_CPU);
5124 }
5125 SLAB_ATTR_RO(cpu_slabs);
5126
objects_show(struct kmem_cache * s,char * buf)5127 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5128 {
5129 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5130 }
5131 SLAB_ATTR_RO(objects);
5132
objects_partial_show(struct kmem_cache * s,char * buf)5133 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5134 {
5135 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5136 }
5137 SLAB_ATTR_RO(objects_partial);
5138
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5139 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5140 {
5141 int objects = 0;
5142 int pages = 0;
5143 int cpu;
5144 int len;
5145
5146 for_each_online_cpu(cpu) {
5147 struct page *page;
5148
5149 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5150
5151 if (page) {
5152 pages += page->pages;
5153 objects += page->pobjects;
5154 }
5155 }
5156
5157 len = sprintf(buf, "%d(%d)", objects, pages);
5158
5159 #ifdef CONFIG_SMP
5160 for_each_online_cpu(cpu) {
5161 struct page *page;
5162
5163 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5164
5165 if (page && len < PAGE_SIZE - 20)
5166 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5167 page->pobjects, page->pages);
5168 }
5169 #endif
5170 return len + sprintf(buf + len, "\n");
5171 }
5172 SLAB_ATTR_RO(slabs_cpu_partial);
5173
reclaim_account_show(struct kmem_cache * s,char * buf)5174 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5175 {
5176 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5177 }
5178 SLAB_ATTR_RO(reclaim_account);
5179
hwcache_align_show(struct kmem_cache * s,char * buf)5180 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5181 {
5182 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5183 }
5184 SLAB_ATTR_RO(hwcache_align);
5185
5186 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5187 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5188 {
5189 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5190 }
5191 SLAB_ATTR_RO(cache_dma);
5192 #endif
5193
usersize_show(struct kmem_cache * s,char * buf)5194 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5195 {
5196 return sprintf(buf, "%u\n", s->usersize);
5197 }
5198 SLAB_ATTR_RO(usersize);
5199
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5200 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5201 {
5202 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5203 }
5204 SLAB_ATTR_RO(destroy_by_rcu);
5205
5206 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5207 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5208 {
5209 return show_slab_objects(s, buf, SO_ALL);
5210 }
5211 SLAB_ATTR_RO(slabs);
5212
total_objects_show(struct kmem_cache * s,char * buf)5213 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5214 {
5215 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5216 }
5217 SLAB_ATTR_RO(total_objects);
5218
sanity_checks_show(struct kmem_cache * s,char * buf)5219 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5220 {
5221 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5222 }
5223 SLAB_ATTR_RO(sanity_checks);
5224
trace_show(struct kmem_cache * s,char * buf)5225 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5226 {
5227 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5228 }
5229 SLAB_ATTR_RO(trace);
5230
red_zone_show(struct kmem_cache * s,char * buf)5231 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5232 {
5233 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5234 }
5235
5236 SLAB_ATTR_RO(red_zone);
5237
poison_show(struct kmem_cache * s,char * buf)5238 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5239 {
5240 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5241 }
5242
5243 SLAB_ATTR_RO(poison);
5244
store_user_show(struct kmem_cache * s,char * buf)5245 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5246 {
5247 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5248 }
5249
5250 SLAB_ATTR_RO(store_user);
5251
validate_show(struct kmem_cache * s,char * buf)5252 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5253 {
5254 return 0;
5255 }
5256
validate_store(struct kmem_cache * s,const char * buf,size_t length)5257 static ssize_t validate_store(struct kmem_cache *s,
5258 const char *buf, size_t length)
5259 {
5260 int ret = -EINVAL;
5261
5262 if (buf[0] == '1') {
5263 ret = validate_slab_cache(s);
5264 if (ret >= 0)
5265 ret = length;
5266 }
5267 return ret;
5268 }
5269 SLAB_ATTR(validate);
5270
alloc_calls_show(struct kmem_cache * s,char * buf)5271 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5272 {
5273 if (!(s->flags & SLAB_STORE_USER))
5274 return -ENOSYS;
5275 return list_locations(s, buf, TRACK_ALLOC);
5276 }
5277 SLAB_ATTR_RO(alloc_calls);
5278
free_calls_show(struct kmem_cache * s,char * buf)5279 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5280 {
5281 if (!(s->flags & SLAB_STORE_USER))
5282 return -ENOSYS;
5283 return list_locations(s, buf, TRACK_FREE);
5284 }
5285 SLAB_ATTR_RO(free_calls);
5286 #endif /* CONFIG_SLUB_DEBUG */
5287
5288 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5289 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5290 {
5291 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5292 }
5293 SLAB_ATTR_RO(failslab);
5294 #endif
5295
shrink_show(struct kmem_cache * s,char * buf)5296 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5297 {
5298 return 0;
5299 }
5300
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5301 static ssize_t shrink_store(struct kmem_cache *s,
5302 const char *buf, size_t length)
5303 {
5304 if (buf[0] == '1')
5305 kmem_cache_shrink(s);
5306 else
5307 return -EINVAL;
5308 return length;
5309 }
5310 SLAB_ATTR(shrink);
5311
5312 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5313 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5314 {
5315 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5316 }
5317
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5318 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5319 const char *buf, size_t length)
5320 {
5321 unsigned int ratio;
5322 int err;
5323
5324 err = kstrtouint(buf, 10, &ratio);
5325 if (err)
5326 return err;
5327 if (ratio > 100)
5328 return -ERANGE;
5329
5330 s->remote_node_defrag_ratio = ratio * 10;
5331
5332 return length;
5333 }
5334 SLAB_ATTR(remote_node_defrag_ratio);
5335 #endif
5336
5337 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5338 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5339 {
5340 unsigned long sum = 0;
5341 int cpu;
5342 int len;
5343 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5344
5345 if (!data)
5346 return -ENOMEM;
5347
5348 for_each_online_cpu(cpu) {
5349 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5350
5351 data[cpu] = x;
5352 sum += x;
5353 }
5354
5355 len = sprintf(buf, "%lu", sum);
5356
5357 #ifdef CONFIG_SMP
5358 for_each_online_cpu(cpu) {
5359 if (data[cpu] && len < PAGE_SIZE - 20)
5360 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5361 }
5362 #endif
5363 kfree(data);
5364 return len + sprintf(buf + len, "\n");
5365 }
5366
clear_stat(struct kmem_cache * s,enum stat_item si)5367 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5368 {
5369 int cpu;
5370
5371 for_each_online_cpu(cpu)
5372 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5373 }
5374
5375 #define STAT_ATTR(si, text) \
5376 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5377 { \
5378 return show_stat(s, buf, si); \
5379 } \
5380 static ssize_t text##_store(struct kmem_cache *s, \
5381 const char *buf, size_t length) \
5382 { \
5383 if (buf[0] != '0') \
5384 return -EINVAL; \
5385 clear_stat(s, si); \
5386 return length; \
5387 } \
5388 SLAB_ATTR(text); \
5389
5390 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5391 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5392 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5393 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5394 STAT_ATTR(FREE_FROZEN, free_frozen);
5395 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5396 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5397 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5398 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5399 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5400 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5401 STAT_ATTR(FREE_SLAB, free_slab);
5402 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5403 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5404 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5405 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5406 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5407 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5408 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5409 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5410 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5411 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5412 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5413 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5414 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5415 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5416 #endif /* CONFIG_SLUB_STATS */
5417
5418 static struct attribute *slab_attrs[] = {
5419 &slab_size_attr.attr,
5420 &object_size_attr.attr,
5421 &objs_per_slab_attr.attr,
5422 &order_attr.attr,
5423 &min_partial_attr.attr,
5424 &cpu_partial_attr.attr,
5425 &objects_attr.attr,
5426 &objects_partial_attr.attr,
5427 &partial_attr.attr,
5428 &cpu_slabs_attr.attr,
5429 &ctor_attr.attr,
5430 &aliases_attr.attr,
5431 &align_attr.attr,
5432 &hwcache_align_attr.attr,
5433 &reclaim_account_attr.attr,
5434 &destroy_by_rcu_attr.attr,
5435 &shrink_attr.attr,
5436 &slabs_cpu_partial_attr.attr,
5437 #ifdef CONFIG_SLUB_DEBUG
5438 &total_objects_attr.attr,
5439 &slabs_attr.attr,
5440 &sanity_checks_attr.attr,
5441 &trace_attr.attr,
5442 &red_zone_attr.attr,
5443 &poison_attr.attr,
5444 &store_user_attr.attr,
5445 &validate_attr.attr,
5446 &alloc_calls_attr.attr,
5447 &free_calls_attr.attr,
5448 #endif
5449 #ifdef CONFIG_ZONE_DMA
5450 &cache_dma_attr.attr,
5451 #endif
5452 #ifdef CONFIG_NUMA
5453 &remote_node_defrag_ratio_attr.attr,
5454 #endif
5455 #ifdef CONFIG_SLUB_STATS
5456 &alloc_fastpath_attr.attr,
5457 &alloc_slowpath_attr.attr,
5458 &free_fastpath_attr.attr,
5459 &free_slowpath_attr.attr,
5460 &free_frozen_attr.attr,
5461 &free_add_partial_attr.attr,
5462 &free_remove_partial_attr.attr,
5463 &alloc_from_partial_attr.attr,
5464 &alloc_slab_attr.attr,
5465 &alloc_refill_attr.attr,
5466 &alloc_node_mismatch_attr.attr,
5467 &free_slab_attr.attr,
5468 &cpuslab_flush_attr.attr,
5469 &deactivate_full_attr.attr,
5470 &deactivate_empty_attr.attr,
5471 &deactivate_to_head_attr.attr,
5472 &deactivate_to_tail_attr.attr,
5473 &deactivate_remote_frees_attr.attr,
5474 &deactivate_bypass_attr.attr,
5475 &order_fallback_attr.attr,
5476 &cmpxchg_double_fail_attr.attr,
5477 &cmpxchg_double_cpu_fail_attr.attr,
5478 &cpu_partial_alloc_attr.attr,
5479 &cpu_partial_free_attr.attr,
5480 &cpu_partial_node_attr.attr,
5481 &cpu_partial_drain_attr.attr,
5482 #endif
5483 #ifdef CONFIG_FAILSLAB
5484 &failslab_attr.attr,
5485 #endif
5486 &usersize_attr.attr,
5487
5488 NULL
5489 };
5490
5491 static const struct attribute_group slab_attr_group = {
5492 .attrs = slab_attrs,
5493 };
5494
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)5495 static ssize_t slab_attr_show(struct kobject *kobj,
5496 struct attribute *attr,
5497 char *buf)
5498 {
5499 struct slab_attribute *attribute;
5500 struct kmem_cache *s;
5501 int err;
5502
5503 attribute = to_slab_attr(attr);
5504 s = to_slab(kobj);
5505
5506 if (!attribute->show)
5507 return -EIO;
5508
5509 err = attribute->show(s, buf);
5510
5511 return err;
5512 }
5513
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)5514 static ssize_t slab_attr_store(struct kobject *kobj,
5515 struct attribute *attr,
5516 const char *buf, size_t len)
5517 {
5518 struct slab_attribute *attribute;
5519 struct kmem_cache *s;
5520 int err;
5521
5522 attribute = to_slab_attr(attr);
5523 s = to_slab(kobj);
5524
5525 if (!attribute->store)
5526 return -EIO;
5527
5528 err = attribute->store(s, buf, len);
5529 return err;
5530 }
5531
kmem_cache_release(struct kobject * k)5532 static void kmem_cache_release(struct kobject *k)
5533 {
5534 slab_kmem_cache_release(to_slab(k));
5535 }
5536
5537 static const struct sysfs_ops slab_sysfs_ops = {
5538 .show = slab_attr_show,
5539 .store = slab_attr_store,
5540 };
5541
5542 static struct kobj_type slab_ktype = {
5543 .sysfs_ops = &slab_sysfs_ops,
5544 .release = kmem_cache_release,
5545 };
5546
5547 static struct kset *slab_kset;
5548
cache_kset(struct kmem_cache * s)5549 static inline struct kset *cache_kset(struct kmem_cache *s)
5550 {
5551 return slab_kset;
5552 }
5553
5554 #define ID_STR_LENGTH 64
5555
5556 /* Create a unique string id for a slab cache:
5557 *
5558 * Format :[flags-]size
5559 */
create_unique_id(struct kmem_cache * s)5560 static char *create_unique_id(struct kmem_cache *s)
5561 {
5562 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5563 char *p = name;
5564
5565 if (!name)
5566 return ERR_PTR(-ENOMEM);
5567
5568 *p++ = ':';
5569 /*
5570 * First flags affecting slabcache operations. We will only
5571 * get here for aliasable slabs so we do not need to support
5572 * too many flags. The flags here must cover all flags that
5573 * are matched during merging to guarantee that the id is
5574 * unique.
5575 */
5576 if (s->flags & SLAB_CACHE_DMA)
5577 *p++ = 'd';
5578 if (s->flags & SLAB_CACHE_DMA32)
5579 *p++ = 'D';
5580 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5581 *p++ = 'a';
5582 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5583 *p++ = 'F';
5584 if (s->flags & SLAB_ACCOUNT)
5585 *p++ = 'A';
5586 if (p != name + 1)
5587 *p++ = '-';
5588 p += sprintf(p, "%07u", s->size);
5589
5590 BUG_ON(p > name + ID_STR_LENGTH - 1);
5591 return name;
5592 }
5593
sysfs_slab_add(struct kmem_cache * s)5594 static int sysfs_slab_add(struct kmem_cache *s)
5595 {
5596 int err;
5597 const char *name;
5598 struct kset *kset = cache_kset(s);
5599 int unmergeable = slab_unmergeable(s);
5600
5601 if (!kset) {
5602 kobject_init(&s->kobj, &slab_ktype);
5603 return 0;
5604 }
5605
5606 if (!unmergeable && disable_higher_order_debug &&
5607 (slub_debug & DEBUG_METADATA_FLAGS))
5608 unmergeable = 1;
5609
5610 if (unmergeable) {
5611 /*
5612 * Slabcache can never be merged so we can use the name proper.
5613 * This is typically the case for debug situations. In that
5614 * case we can catch duplicate names easily.
5615 */
5616 sysfs_remove_link(&slab_kset->kobj, s->name);
5617 name = s->name;
5618 } else {
5619 /*
5620 * Create a unique name for the slab as a target
5621 * for the symlinks.
5622 */
5623 name = create_unique_id(s);
5624 if (IS_ERR(name))
5625 return PTR_ERR(name);
5626 }
5627
5628 s->kobj.kset = kset;
5629 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5630 if (err)
5631 goto out;
5632
5633 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5634 if (err)
5635 goto out_del_kobj;
5636
5637 if (!unmergeable) {
5638 /* Setup first alias */
5639 sysfs_slab_alias(s, s->name);
5640 }
5641 out:
5642 if (!unmergeable)
5643 kfree(name);
5644 return err;
5645 out_del_kobj:
5646 kobject_del(&s->kobj);
5647 goto out;
5648 }
5649
sysfs_slab_unlink(struct kmem_cache * s)5650 void sysfs_slab_unlink(struct kmem_cache *s)
5651 {
5652 if (slab_state >= FULL)
5653 kobject_del(&s->kobj);
5654 }
5655
sysfs_slab_release(struct kmem_cache * s)5656 void sysfs_slab_release(struct kmem_cache *s)
5657 {
5658 if (slab_state >= FULL)
5659 kobject_put(&s->kobj);
5660 }
5661
5662 /*
5663 * Need to buffer aliases during bootup until sysfs becomes
5664 * available lest we lose that information.
5665 */
5666 struct saved_alias {
5667 struct kmem_cache *s;
5668 const char *name;
5669 struct saved_alias *next;
5670 };
5671
5672 static struct saved_alias *alias_list;
5673
sysfs_slab_alias(struct kmem_cache * s,const char * name)5674 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5675 {
5676 struct saved_alias *al;
5677
5678 if (slab_state == FULL) {
5679 /*
5680 * If we have a leftover link then remove it.
5681 */
5682 sysfs_remove_link(&slab_kset->kobj, name);
5683 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5684 }
5685
5686 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5687 if (!al)
5688 return -ENOMEM;
5689
5690 al->s = s;
5691 al->name = name;
5692 al->next = alias_list;
5693 alias_list = al;
5694 return 0;
5695 }
5696
slab_sysfs_init(void)5697 static int __init slab_sysfs_init(void)
5698 {
5699 struct kmem_cache *s;
5700 int err;
5701
5702 mutex_lock(&slab_mutex);
5703
5704 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5705 if (!slab_kset) {
5706 mutex_unlock(&slab_mutex);
5707 pr_err("Cannot register slab subsystem.\n");
5708 return -ENOSYS;
5709 }
5710
5711 slab_state = FULL;
5712
5713 list_for_each_entry(s, &slab_caches, list) {
5714 err = sysfs_slab_add(s);
5715 if (err)
5716 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5717 s->name);
5718 }
5719
5720 while (alias_list) {
5721 struct saved_alias *al = alias_list;
5722
5723 alias_list = alias_list->next;
5724 err = sysfs_slab_alias(al->s, al->name);
5725 if (err)
5726 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5727 al->name);
5728 kfree(al);
5729 }
5730
5731 mutex_unlock(&slab_mutex);
5732 resiliency_test();
5733 return 0;
5734 }
5735
5736 __initcall(slab_sysfs_init);
5737 #endif /* CONFIG_SYSFS */
5738
5739 /*
5740 * The /proc/slabinfo ABI
5741 */
5742 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)5743 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5744 {
5745 unsigned long nr_slabs = 0;
5746 unsigned long nr_objs = 0;
5747 unsigned long nr_free = 0;
5748 int node;
5749 struct kmem_cache_node *n;
5750
5751 for_each_kmem_cache_node(s, node, n) {
5752 nr_slabs += node_nr_slabs(n);
5753 nr_objs += node_nr_objs(n);
5754 nr_free += count_partial(n, count_free);
5755 }
5756
5757 sinfo->active_objs = nr_objs - nr_free;
5758 sinfo->num_objs = nr_objs;
5759 sinfo->active_slabs = nr_slabs;
5760 sinfo->num_slabs = nr_slabs;
5761 sinfo->objects_per_slab = oo_objects(s->oo);
5762 sinfo->cache_order = oo_order(s->oo);
5763 }
5764
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)5765 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5766 {
5767 }
5768
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)5769 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5770 size_t count, loff_t *ppos)
5771 {
5772 return -EIO;
5773 }
5774 #endif /* CONFIG_SLUB_DEBUG */
5775