1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port
4 *
5 * Copyright (C) 2008 Nokia Corporation
6 *
7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8 * Peter Ujfalusi <peter.ujfalusi@ti.com>
9 */
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <sound/core.h>
18 #include <sound/pcm.h>
19 #include <sound/pcm_params.h>
20 #include <sound/initval.h>
21 #include <sound/soc.h>
22 #include <sound/dmaengine_pcm.h>
23
24 #include "omap-mcbsp-priv.h"
25 #include "omap-mcbsp.h"
26 #include "sdma-pcm.h"
27
28 #define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000)
29
30 enum {
31 OMAP_MCBSP_WORD_8 = 0,
32 OMAP_MCBSP_WORD_12,
33 OMAP_MCBSP_WORD_16,
34 OMAP_MCBSP_WORD_20,
35 OMAP_MCBSP_WORD_24,
36 OMAP_MCBSP_WORD_32,
37 };
38
omap_mcbsp_dump_reg(struct omap_mcbsp * mcbsp)39 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
40 {
41 dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
42 dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2));
43 dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1));
44 dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2));
45 dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1));
46 dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
47 dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
48 dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2));
49 dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1));
50 dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2));
51 dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1));
52 dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
53 dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
54 dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0));
55 dev_dbg(mcbsp->dev, "***********************\n");
56 }
57
omap2_mcbsp_set_clks_src(struct omap_mcbsp * mcbsp,u8 fck_src_id)58 static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
59 {
60 struct clk *fck_src;
61 const char *src;
62 int r;
63
64 if (fck_src_id == MCBSP_CLKS_PAD_SRC)
65 src = "pad_fck";
66 else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
67 src = "prcm_fck";
68 else
69 return -EINVAL;
70
71 fck_src = clk_get(mcbsp->dev, src);
72 if (IS_ERR(fck_src)) {
73 dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
74 return -EINVAL;
75 }
76
77 pm_runtime_put_sync(mcbsp->dev);
78
79 r = clk_set_parent(mcbsp->fclk, fck_src);
80 if (r)
81 dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
82 src);
83
84 pm_runtime_get_sync(mcbsp->dev);
85
86 clk_put(fck_src);
87
88 return r;
89 }
90
omap_mcbsp_irq_handler(int irq,void * data)91 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
92 {
93 struct omap_mcbsp *mcbsp = data;
94 u16 irqst;
95
96 irqst = MCBSP_READ(mcbsp, IRQST);
97 dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
98
99 if (irqst & RSYNCERREN)
100 dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
101 if (irqst & RFSREN)
102 dev_dbg(mcbsp->dev, "RX Frame Sync\n");
103 if (irqst & REOFEN)
104 dev_dbg(mcbsp->dev, "RX End Of Frame\n");
105 if (irqst & RRDYEN)
106 dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
107 if (irqst & RUNDFLEN)
108 dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
109 if (irqst & ROVFLEN)
110 dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
111
112 if (irqst & XSYNCERREN)
113 dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
114 if (irqst & XFSXEN)
115 dev_dbg(mcbsp->dev, "TX Frame Sync\n");
116 if (irqst & XEOFEN)
117 dev_dbg(mcbsp->dev, "TX End Of Frame\n");
118 if (irqst & XRDYEN)
119 dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
120 if (irqst & XUNDFLEN)
121 dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
122 if (irqst & XOVFLEN)
123 dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
124 if (irqst & XEMPTYEOFEN)
125 dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
126
127 MCBSP_WRITE(mcbsp, IRQST, irqst);
128
129 return IRQ_HANDLED;
130 }
131
omap_mcbsp_tx_irq_handler(int irq,void * data)132 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
133 {
134 struct omap_mcbsp *mcbsp = data;
135 u16 irqst_spcr2;
136
137 irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
138 dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
139
140 if (irqst_spcr2 & XSYNC_ERR) {
141 dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
142 irqst_spcr2);
143 /* Writing zero to XSYNC_ERR clears the IRQ */
144 MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
145 }
146
147 return IRQ_HANDLED;
148 }
149
omap_mcbsp_rx_irq_handler(int irq,void * data)150 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
151 {
152 struct omap_mcbsp *mcbsp = data;
153 u16 irqst_spcr1;
154
155 irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
156 dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
157
158 if (irqst_spcr1 & RSYNC_ERR) {
159 dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
160 irqst_spcr1);
161 /* Writing zero to RSYNC_ERR clears the IRQ */
162 MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
163 }
164
165 return IRQ_HANDLED;
166 }
167
168 /*
169 * omap_mcbsp_config simply write a config to the
170 * appropriate McBSP.
171 * You either call this function or set the McBSP registers
172 * by yourself before calling omap_mcbsp_start().
173 */
omap_mcbsp_config(struct omap_mcbsp * mcbsp,const struct omap_mcbsp_reg_cfg * config)174 static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
175 const struct omap_mcbsp_reg_cfg *config)
176 {
177 dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
178 mcbsp->id, mcbsp->phys_base);
179
180 /* We write the given config */
181 MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
182 MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
183 MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
184 MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
185 MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
186 MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
187 MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
188 MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
189 MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
190 MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
191 MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
192 if (mcbsp->pdata->has_ccr) {
193 MCBSP_WRITE(mcbsp, XCCR, config->xccr);
194 MCBSP_WRITE(mcbsp, RCCR, config->rccr);
195 }
196 /* Enable wakeup behavior */
197 if (mcbsp->pdata->has_wakeup)
198 MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
199
200 /* Enable TX/RX sync error interrupts by default */
201 if (mcbsp->irq)
202 MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
203 RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
204 }
205
206 /**
207 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
208 * @mcbsp: omap_mcbsp struct for the McBSP instance
209 * @stream: Stream direction (playback/capture)
210 *
211 * Returns the address of mcbsp data transmit register or data receive register
212 * to be used by DMA for transferring/receiving data
213 */
omap_mcbsp_dma_reg_params(struct omap_mcbsp * mcbsp,unsigned int stream)214 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
215 unsigned int stream)
216 {
217 int data_reg;
218
219 if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
220 if (mcbsp->pdata->reg_size == 2)
221 data_reg = OMAP_MCBSP_REG_DXR1;
222 else
223 data_reg = OMAP_MCBSP_REG_DXR;
224 } else {
225 if (mcbsp->pdata->reg_size == 2)
226 data_reg = OMAP_MCBSP_REG_DRR1;
227 else
228 data_reg = OMAP_MCBSP_REG_DRR;
229 }
230
231 return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
232 }
233
234 /*
235 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
236 * The threshold parameter is 1 based, and it is converted (threshold - 1)
237 * for the THRSH2 register.
238 */
omap_mcbsp_set_tx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)239 static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
240 {
241 if (threshold && threshold <= mcbsp->max_tx_thres)
242 MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
243 }
244
245 /*
246 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
247 * The threshold parameter is 1 based, and it is converted (threshold - 1)
248 * for the THRSH1 register.
249 */
omap_mcbsp_set_rx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)250 static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
251 {
252 if (threshold && threshold <= mcbsp->max_rx_thres)
253 MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
254 }
255
256 /*
257 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
258 */
omap_mcbsp_get_tx_delay(struct omap_mcbsp * mcbsp)259 static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
260 {
261 u16 buffstat;
262
263 /* Returns the number of free locations in the buffer */
264 buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
265
266 /* Number of slots are different in McBSP ports */
267 return mcbsp->pdata->buffer_size - buffstat;
268 }
269
270 /*
271 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
272 * to reach the threshold value (when the DMA will be triggered to read it)
273 */
omap_mcbsp_get_rx_delay(struct omap_mcbsp * mcbsp)274 static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
275 {
276 u16 buffstat, threshold;
277
278 /* Returns the number of used locations in the buffer */
279 buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
280 /* RX threshold */
281 threshold = MCBSP_READ(mcbsp, THRSH1);
282
283 /* Return the number of location till we reach the threshold limit */
284 if (threshold <= buffstat)
285 return 0;
286 else
287 return threshold - buffstat;
288 }
289
omap_mcbsp_request(struct omap_mcbsp * mcbsp)290 static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
291 {
292 void *reg_cache;
293 int err;
294
295 reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
296 if (!reg_cache)
297 return -ENOMEM;
298
299 spin_lock(&mcbsp->lock);
300 if (!mcbsp->free) {
301 dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
302 err = -EBUSY;
303 goto err_kfree;
304 }
305
306 mcbsp->free = false;
307 mcbsp->reg_cache = reg_cache;
308 spin_unlock(&mcbsp->lock);
309
310 if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
311 mcbsp->pdata->ops->request(mcbsp->id - 1);
312
313 /*
314 * Make sure that transmitter, receiver and sample-rate generator are
315 * not running before activating IRQs.
316 */
317 MCBSP_WRITE(mcbsp, SPCR1, 0);
318 MCBSP_WRITE(mcbsp, SPCR2, 0);
319
320 if (mcbsp->irq) {
321 err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
322 "McBSP", (void *)mcbsp);
323 if (err != 0) {
324 dev_err(mcbsp->dev, "Unable to request IRQ\n");
325 goto err_clk_disable;
326 }
327 } else {
328 err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
329 "McBSP TX", (void *)mcbsp);
330 if (err != 0) {
331 dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
332 goto err_clk_disable;
333 }
334
335 err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
336 "McBSP RX", (void *)mcbsp);
337 if (err != 0) {
338 dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
339 goto err_free_irq;
340 }
341 }
342
343 return 0;
344 err_free_irq:
345 free_irq(mcbsp->tx_irq, (void *)mcbsp);
346 err_clk_disable:
347 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
348 mcbsp->pdata->ops->free(mcbsp->id - 1);
349
350 /* Disable wakeup behavior */
351 if (mcbsp->pdata->has_wakeup)
352 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
353
354 spin_lock(&mcbsp->lock);
355 mcbsp->free = true;
356 mcbsp->reg_cache = NULL;
357 err_kfree:
358 spin_unlock(&mcbsp->lock);
359 kfree(reg_cache);
360
361 return err;
362 }
363
omap_mcbsp_free(struct omap_mcbsp * mcbsp)364 static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
365 {
366 void *reg_cache;
367
368 if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
369 mcbsp->pdata->ops->free(mcbsp->id - 1);
370
371 /* Disable wakeup behavior */
372 if (mcbsp->pdata->has_wakeup)
373 MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
374
375 /* Disable interrupt requests */
376 if (mcbsp->irq)
377 MCBSP_WRITE(mcbsp, IRQEN, 0);
378
379 if (mcbsp->irq) {
380 free_irq(mcbsp->irq, (void *)mcbsp);
381 } else {
382 free_irq(mcbsp->rx_irq, (void *)mcbsp);
383 free_irq(mcbsp->tx_irq, (void *)mcbsp);
384 }
385
386 reg_cache = mcbsp->reg_cache;
387
388 /*
389 * Select CLKS source from internal source unconditionally before
390 * marking the McBSP port as free.
391 * If the external clock source via MCBSP_CLKS pin has been selected the
392 * system will refuse to enter idle if the CLKS pin source is not reset
393 * back to internal source.
394 */
395 if (!mcbsp_omap1())
396 omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
397
398 spin_lock(&mcbsp->lock);
399 if (mcbsp->free)
400 dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
401 else
402 mcbsp->free = true;
403 mcbsp->reg_cache = NULL;
404 spin_unlock(&mcbsp->lock);
405
406 kfree(reg_cache);
407 }
408
409 /*
410 * Here we start the McBSP, by enabling transmitter, receiver or both.
411 * If no transmitter or receiver is active prior calling, then sample-rate
412 * generator and frame sync are started.
413 */
omap_mcbsp_start(struct omap_mcbsp * mcbsp,int stream)414 static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
415 {
416 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
417 int rx = !tx;
418 int enable_srg = 0;
419 u16 w;
420
421 if (mcbsp->st_data)
422 omap_mcbsp_st_start(mcbsp);
423
424 /* Only enable SRG, if McBSP is master */
425 w = MCBSP_READ_CACHE(mcbsp, PCR0);
426 if (w & (FSXM | FSRM | CLKXM | CLKRM))
427 enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
428 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
429
430 if (enable_srg) {
431 /* Start the sample generator */
432 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
433 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
434 }
435
436 /* Enable transmitter and receiver */
437 tx &= 1;
438 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
439 MCBSP_WRITE(mcbsp, SPCR2, w | tx);
440
441 rx &= 1;
442 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
443 MCBSP_WRITE(mcbsp, SPCR1, w | rx);
444
445 /*
446 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
447 * REVISIT: 100us may give enough time for two CLKSRG, however
448 * due to some unknown PM related, clock gating etc. reason it
449 * is now at 500us.
450 */
451 udelay(500);
452
453 if (enable_srg) {
454 /* Start frame sync */
455 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
456 MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
457 }
458
459 if (mcbsp->pdata->has_ccr) {
460 /* Release the transmitter and receiver */
461 w = MCBSP_READ_CACHE(mcbsp, XCCR);
462 w &= ~(tx ? XDISABLE : 0);
463 MCBSP_WRITE(mcbsp, XCCR, w);
464 w = MCBSP_READ_CACHE(mcbsp, RCCR);
465 w &= ~(rx ? RDISABLE : 0);
466 MCBSP_WRITE(mcbsp, RCCR, w);
467 }
468
469 /* Dump McBSP Regs */
470 omap_mcbsp_dump_reg(mcbsp);
471 }
472
omap_mcbsp_stop(struct omap_mcbsp * mcbsp,int stream)473 static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
474 {
475 int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
476 int rx = !tx;
477 int idle;
478 u16 w;
479
480 /* Reset transmitter */
481 tx &= 1;
482 if (mcbsp->pdata->has_ccr) {
483 w = MCBSP_READ_CACHE(mcbsp, XCCR);
484 w |= (tx ? XDISABLE : 0);
485 MCBSP_WRITE(mcbsp, XCCR, w);
486 }
487 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
488 MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
489
490 /* Reset receiver */
491 rx &= 1;
492 if (mcbsp->pdata->has_ccr) {
493 w = MCBSP_READ_CACHE(mcbsp, RCCR);
494 w |= (rx ? RDISABLE : 0);
495 MCBSP_WRITE(mcbsp, RCCR, w);
496 }
497 w = MCBSP_READ_CACHE(mcbsp, SPCR1);
498 MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
499
500 idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
501 MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
502
503 if (idle) {
504 /* Reset the sample rate generator */
505 w = MCBSP_READ_CACHE(mcbsp, SPCR2);
506 MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
507 }
508
509 if (mcbsp->st_data)
510 omap_mcbsp_st_stop(mcbsp);
511 }
512
513 #define max_thres(m) (mcbsp->pdata->buffer_size)
514 #define valid_threshold(m, val) ((val) <= max_thres(m))
515 #define THRESHOLD_PROP_BUILDER(prop) \
516 static ssize_t prop##_show(struct device *dev, \
517 struct device_attribute *attr, char *buf) \
518 { \
519 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
520 \
521 return sprintf(buf, "%u\n", mcbsp->prop); \
522 } \
523 \
524 static ssize_t prop##_store(struct device *dev, \
525 struct device_attribute *attr, \
526 const char *buf, size_t size) \
527 { \
528 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
529 unsigned long val; \
530 int status; \
531 \
532 status = kstrtoul(buf, 0, &val); \
533 if (status) \
534 return status; \
535 \
536 if (!valid_threshold(mcbsp, val)) \
537 return -EDOM; \
538 \
539 mcbsp->prop = val; \
540 return size; \
541 } \
542 \
543 static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store)
544
545 THRESHOLD_PROP_BUILDER(max_tx_thres);
546 THRESHOLD_PROP_BUILDER(max_rx_thres);
547
548 static const char * const dma_op_modes[] = {
549 "element", "threshold",
550 };
551
dma_op_mode_show(struct device * dev,struct device_attribute * attr,char * buf)552 static ssize_t dma_op_mode_show(struct device *dev,
553 struct device_attribute *attr, char *buf)
554 {
555 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
556 int dma_op_mode, i = 0;
557 ssize_t len = 0;
558 const char * const *s;
559
560 dma_op_mode = mcbsp->dma_op_mode;
561
562 for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
563 if (dma_op_mode == i)
564 len += sprintf(buf + len, "[%s] ", *s);
565 else
566 len += sprintf(buf + len, "%s ", *s);
567 }
568 len += sprintf(buf + len, "\n");
569
570 return len;
571 }
572
dma_op_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)573 static ssize_t dma_op_mode_store(struct device *dev,
574 struct device_attribute *attr, const char *buf,
575 size_t size)
576 {
577 struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
578 int i;
579
580 i = sysfs_match_string(dma_op_modes, buf);
581 if (i < 0)
582 return i;
583
584 spin_lock_irq(&mcbsp->lock);
585 if (!mcbsp->free) {
586 size = -EBUSY;
587 goto unlock;
588 }
589 mcbsp->dma_op_mode = i;
590
591 unlock:
592 spin_unlock_irq(&mcbsp->lock);
593
594 return size;
595 }
596
597 static DEVICE_ATTR_RW(dma_op_mode);
598
599 static const struct attribute *additional_attrs[] = {
600 &dev_attr_max_tx_thres.attr,
601 &dev_attr_max_rx_thres.attr,
602 &dev_attr_dma_op_mode.attr,
603 NULL,
604 };
605
606 static const struct attribute_group additional_attr_group = {
607 .attrs = (struct attribute **)additional_attrs,
608 };
609
610 /*
611 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
612 * 730 has only 2 McBSP, and both of them are MPU peripherals.
613 */
omap_mcbsp_init(struct platform_device * pdev)614 static int omap_mcbsp_init(struct platform_device *pdev)
615 {
616 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
617 struct resource *res;
618 int ret = 0;
619
620 spin_lock_init(&mcbsp->lock);
621 mcbsp->free = true;
622
623 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
624 if (!res)
625 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
626
627 mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
628 if (IS_ERR(mcbsp->io_base))
629 return PTR_ERR(mcbsp->io_base);
630
631 mcbsp->phys_base = res->start;
632 mcbsp->reg_cache_size = resource_size(res);
633
634 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
635 if (!res)
636 mcbsp->phys_dma_base = mcbsp->phys_base;
637 else
638 mcbsp->phys_dma_base = res->start;
639
640 /*
641 * OMAP1, 2 uses two interrupt lines: TX, RX
642 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
643 * OMAP4 and newer SoC only have the combined IRQ line.
644 * Use the combined IRQ if available since it gives better debugging
645 * possibilities.
646 */
647 mcbsp->irq = platform_get_irq_byname(pdev, "common");
648 if (mcbsp->irq == -ENXIO) {
649 mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
650
651 if (mcbsp->tx_irq == -ENXIO) {
652 mcbsp->irq = platform_get_irq(pdev, 0);
653 mcbsp->tx_irq = 0;
654 } else {
655 mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
656 mcbsp->irq = 0;
657 }
658 }
659
660 if (!pdev->dev.of_node) {
661 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
662 if (!res) {
663 dev_err(&pdev->dev, "invalid tx DMA channel\n");
664 return -ENODEV;
665 }
666 mcbsp->dma_req[0] = res->start;
667 mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
668
669 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
670 if (!res) {
671 dev_err(&pdev->dev, "invalid rx DMA channel\n");
672 return -ENODEV;
673 }
674 mcbsp->dma_req[1] = res->start;
675 mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
676 } else {
677 mcbsp->dma_data[0].filter_data = "tx";
678 mcbsp->dma_data[1].filter_data = "rx";
679 }
680
681 mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
682 SNDRV_PCM_STREAM_PLAYBACK);
683 mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
684 SNDRV_PCM_STREAM_CAPTURE);
685
686 mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
687 if (IS_ERR(mcbsp->fclk)) {
688 ret = PTR_ERR(mcbsp->fclk);
689 dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
690 return ret;
691 }
692
693 mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
694 if (mcbsp->pdata->buffer_size) {
695 /*
696 * Initially configure the maximum thresholds to a safe value.
697 * The McBSP FIFO usage with these values should not go under
698 * 16 locations.
699 * If the whole FIFO without safety buffer is used, than there
700 * is a possibility that the DMA will be not able to push the
701 * new data on time, causing channel shifts in runtime.
702 */
703 mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
704 mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
705
706 ret = sysfs_create_group(&mcbsp->dev->kobj,
707 &additional_attr_group);
708 if (ret) {
709 dev_err(mcbsp->dev,
710 "Unable to create additional controls\n");
711 return ret;
712 }
713 }
714
715 ret = omap_mcbsp_st_init(pdev);
716 if (ret)
717 goto err_st;
718
719 return 0;
720
721 err_st:
722 if (mcbsp->pdata->buffer_size)
723 sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
724 return ret;
725 }
726
727 /*
728 * Stream DMA parameters. DMA request line and port address are set runtime
729 * since they are different between OMAP1 and later OMAPs
730 */
omap_mcbsp_set_threshold(struct snd_pcm_substream * substream,unsigned int packet_size)731 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
732 unsigned int packet_size)
733 {
734 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
735 struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
736 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
737 int words;
738
739 /* No need to proceed further if McBSP does not have FIFO */
740 if (mcbsp->pdata->buffer_size == 0)
741 return;
742
743 /*
744 * Configure McBSP threshold based on either:
745 * packet_size, when the sDMA is in packet mode, or based on the
746 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
747 * for mono streams.
748 */
749 if (packet_size)
750 words = packet_size;
751 else
752 words = 1;
753
754 /* Configure McBSP internal buffer usage */
755 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
756 omap_mcbsp_set_tx_threshold(mcbsp, words);
757 else
758 omap_mcbsp_set_rx_threshold(mcbsp, words);
759 }
760
omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)761 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
762 struct snd_pcm_hw_rule *rule)
763 {
764 struct snd_interval *buffer_size = hw_param_interval(params,
765 SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
766 struct snd_interval *channels = hw_param_interval(params,
767 SNDRV_PCM_HW_PARAM_CHANNELS);
768 struct omap_mcbsp *mcbsp = rule->private;
769 struct snd_interval frames;
770 int size;
771
772 snd_interval_any(&frames);
773 size = mcbsp->pdata->buffer_size;
774
775 frames.min = size / channels->min;
776 frames.integer = 1;
777 return snd_interval_refine(buffer_size, &frames);
778 }
779
omap_mcbsp_dai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)780 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
781 struct snd_soc_dai *cpu_dai)
782 {
783 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
784 int err = 0;
785
786 if (!snd_soc_dai_active(cpu_dai))
787 err = omap_mcbsp_request(mcbsp);
788
789 /*
790 * OMAP3 McBSP FIFO is word structured.
791 * McBSP2 has 1024 + 256 = 1280 word long buffer,
792 * McBSP1,3,4,5 has 128 word long buffer
793 * This means that the size of the FIFO depends on the sample format.
794 * For example on McBSP3:
795 * 16bit samples: size is 128 * 2 = 256 bytes
796 * 32bit samples: size is 128 * 4 = 512 bytes
797 * It is simpler to place constraint for buffer and period based on
798 * channels.
799 * McBSP3 as example again (16 or 32 bit samples):
800 * 1 channel (mono): size is 128 frames (128 words)
801 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
802 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
803 */
804 if (mcbsp->pdata->buffer_size) {
805 /*
806 * Rule for the buffer size. We should not allow
807 * smaller buffer than the FIFO size to avoid underruns.
808 * This applies only for the playback stream.
809 */
810 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
811 snd_pcm_hw_rule_add(substream->runtime, 0,
812 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
813 omap_mcbsp_hwrule_min_buffersize,
814 mcbsp,
815 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
816
817 /* Make sure, that the period size is always even */
818 snd_pcm_hw_constraint_step(substream->runtime, 0,
819 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
820 }
821
822 return err;
823 }
824
omap_mcbsp_dai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)825 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
826 struct snd_soc_dai *cpu_dai)
827 {
828 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
829 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
830 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
831 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
832
833 if (mcbsp->latency[stream2])
834 cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
835 mcbsp->latency[stream2]);
836 else if (mcbsp->latency[stream1])
837 cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
838
839 mcbsp->latency[stream1] = 0;
840
841 if (!snd_soc_dai_active(cpu_dai)) {
842 omap_mcbsp_free(mcbsp);
843 mcbsp->configured = 0;
844 }
845 }
846
omap_mcbsp_dai_prepare(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)847 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
848 struct snd_soc_dai *cpu_dai)
849 {
850 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
851 struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
852 int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
853 int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
854 int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
855 int latency = mcbsp->latency[stream2];
856
857 /* Prevent omap hardware from hitting off between FIFO fills */
858 if (!latency || mcbsp->latency[stream1] < latency)
859 latency = mcbsp->latency[stream1];
860
861 if (cpu_latency_qos_request_active(pm_qos_req))
862 cpu_latency_qos_update_request(pm_qos_req, latency);
863 else if (latency)
864 cpu_latency_qos_add_request(pm_qos_req, latency);
865
866 return 0;
867 }
868
omap_mcbsp_dai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)869 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
870 struct snd_soc_dai *cpu_dai)
871 {
872 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
873
874 switch (cmd) {
875 case SNDRV_PCM_TRIGGER_START:
876 case SNDRV_PCM_TRIGGER_RESUME:
877 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
878 mcbsp->active++;
879 omap_mcbsp_start(mcbsp, substream->stream);
880 break;
881
882 case SNDRV_PCM_TRIGGER_STOP:
883 case SNDRV_PCM_TRIGGER_SUSPEND:
884 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
885 omap_mcbsp_stop(mcbsp, substream->stream);
886 mcbsp->active--;
887 break;
888 default:
889 return -EINVAL;
890 }
891
892 return 0;
893 }
894
omap_mcbsp_dai_delay(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)895 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
896 struct snd_pcm_substream *substream,
897 struct snd_soc_dai *dai)
898 {
899 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
900 struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
901 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
902 u16 fifo_use;
903 snd_pcm_sframes_t delay;
904
905 /* No need to proceed further if McBSP does not have FIFO */
906 if (mcbsp->pdata->buffer_size == 0)
907 return 0;
908
909 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
910 fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
911 else
912 fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
913
914 /*
915 * Divide the used locations with the channel count to get the
916 * FIFO usage in samples (don't care about partial samples in the
917 * buffer).
918 */
919 delay = fifo_use / substream->runtime->channels;
920
921 return delay;
922 }
923
omap_mcbsp_dai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)924 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
925 struct snd_pcm_hw_params *params,
926 struct snd_soc_dai *cpu_dai)
927 {
928 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
929 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
930 struct snd_dmaengine_dai_dma_data *dma_data;
931 int wlen, channels, wpf;
932 int pkt_size = 0;
933 unsigned int format, div, framesize, master;
934 unsigned int buffer_size = mcbsp->pdata->buffer_size;
935
936 dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
937 channels = params_channels(params);
938
939 switch (params_format(params)) {
940 case SNDRV_PCM_FORMAT_S16_LE:
941 wlen = 16;
942 break;
943 case SNDRV_PCM_FORMAT_S32_LE:
944 wlen = 32;
945 break;
946 default:
947 return -EINVAL;
948 }
949 if (buffer_size) {
950 int latency;
951
952 if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
953 int period_words, max_thrsh;
954 int divider = 0;
955
956 period_words = params_period_bytes(params) / (wlen / 8);
957 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
958 max_thrsh = mcbsp->max_tx_thres;
959 else
960 max_thrsh = mcbsp->max_rx_thres;
961 /*
962 * Use sDMA packet mode if McBSP is in threshold mode:
963 * If period words less than the FIFO size the packet
964 * size is set to the number of period words, otherwise
965 * Look for the biggest threshold value which divides
966 * the period size evenly.
967 */
968 divider = period_words / max_thrsh;
969 if (period_words % max_thrsh)
970 divider++;
971 while (period_words % divider &&
972 divider < period_words)
973 divider++;
974 if (divider == period_words)
975 return -EINVAL;
976
977 pkt_size = period_words / divider;
978 } else if (channels > 1) {
979 /* Use packet mode for non mono streams */
980 pkt_size = channels;
981 }
982
983 latency = (buffer_size - pkt_size) / channels;
984 latency = latency * USEC_PER_SEC /
985 (params->rate_num / params->rate_den);
986 mcbsp->latency[substream->stream] = latency;
987
988 omap_mcbsp_set_threshold(substream, pkt_size);
989 }
990
991 dma_data->maxburst = pkt_size;
992
993 if (mcbsp->configured) {
994 /* McBSP already configured by another stream */
995 return 0;
996 }
997
998 regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
999 regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
1000 regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7));
1001 regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7));
1002 format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1003 wpf = channels;
1004 if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
1005 format == SND_SOC_DAIFMT_LEFT_J)) {
1006 /* Use dual-phase frames */
1007 regs->rcr2 |= RPHASE;
1008 regs->xcr2 |= XPHASE;
1009 /* Set 1 word per (McBSP) frame for phase1 and phase2 */
1010 wpf--;
1011 regs->rcr2 |= RFRLEN2(wpf - 1);
1012 regs->xcr2 |= XFRLEN2(wpf - 1);
1013 }
1014
1015 regs->rcr1 |= RFRLEN1(wpf - 1);
1016 regs->xcr1 |= XFRLEN1(wpf - 1);
1017
1018 switch (params_format(params)) {
1019 case SNDRV_PCM_FORMAT_S16_LE:
1020 /* Set word lengths */
1021 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16);
1022 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16);
1023 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16);
1024 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16);
1025 break;
1026 case SNDRV_PCM_FORMAT_S32_LE:
1027 /* Set word lengths */
1028 regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32);
1029 regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32);
1030 regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32);
1031 regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32);
1032 break;
1033 default:
1034 /* Unsupported PCM format */
1035 return -EINVAL;
1036 }
1037
1038 /* In McBSP master modes, FRAME (i.e. sample rate) is generated
1039 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1040 master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
1041 if (master == SND_SOC_DAIFMT_CBS_CFS) {
1042 div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1043 framesize = (mcbsp->in_freq / div) / params_rate(params);
1044
1045 if (framesize < wlen * channels) {
1046 printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1047 "channels\n", __func__);
1048 return -EINVAL;
1049 }
1050 } else
1051 framesize = wlen * channels;
1052
1053 /* Set FS period and length in terms of bit clock periods */
1054 regs->srgr2 &= ~FPER(0xfff);
1055 regs->srgr1 &= ~FWID(0xff);
1056 switch (format) {
1057 case SND_SOC_DAIFMT_I2S:
1058 case SND_SOC_DAIFMT_LEFT_J:
1059 regs->srgr2 |= FPER(framesize - 1);
1060 regs->srgr1 |= FWID((framesize >> 1) - 1);
1061 break;
1062 case SND_SOC_DAIFMT_DSP_A:
1063 case SND_SOC_DAIFMT_DSP_B:
1064 regs->srgr2 |= FPER(framesize - 1);
1065 regs->srgr1 |= FWID(0);
1066 break;
1067 }
1068
1069 omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1070 mcbsp->wlen = wlen;
1071 mcbsp->configured = 1;
1072
1073 return 0;
1074 }
1075
1076 /*
1077 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1078 * cache is initialized here
1079 */
omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)1080 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1081 unsigned int fmt)
1082 {
1083 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1084 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1085 bool inv_fs = false;
1086
1087 if (mcbsp->configured)
1088 return 0;
1089
1090 mcbsp->fmt = fmt;
1091 memset(regs, 0, sizeof(*regs));
1092 /* Generic McBSP register settings */
1093 regs->spcr2 |= XINTM(3) | FREE;
1094 regs->spcr1 |= RINTM(3);
1095 /* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1096 if (!mcbsp->pdata->has_ccr) {
1097 regs->rcr2 |= RFIG;
1098 regs->xcr2 |= XFIG;
1099 }
1100
1101 /* Configure XCCR/RCCR only for revisions which have ccr registers */
1102 if (mcbsp->pdata->has_ccr) {
1103 regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1104 regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1105 }
1106
1107 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1108 case SND_SOC_DAIFMT_I2S:
1109 /* 1-bit data delay */
1110 regs->rcr2 |= RDATDLY(1);
1111 regs->xcr2 |= XDATDLY(1);
1112 break;
1113 case SND_SOC_DAIFMT_LEFT_J:
1114 /* 0-bit data delay */
1115 regs->rcr2 |= RDATDLY(0);
1116 regs->xcr2 |= XDATDLY(0);
1117 regs->spcr1 |= RJUST(2);
1118 /* Invert FS polarity configuration */
1119 inv_fs = true;
1120 break;
1121 case SND_SOC_DAIFMT_DSP_A:
1122 /* 1-bit data delay */
1123 regs->rcr2 |= RDATDLY(1);
1124 regs->xcr2 |= XDATDLY(1);
1125 /* Invert FS polarity configuration */
1126 inv_fs = true;
1127 break;
1128 case SND_SOC_DAIFMT_DSP_B:
1129 /* 0-bit data delay */
1130 regs->rcr2 |= RDATDLY(0);
1131 regs->xcr2 |= XDATDLY(0);
1132 /* Invert FS polarity configuration */
1133 inv_fs = true;
1134 break;
1135 default:
1136 /* Unsupported data format */
1137 return -EINVAL;
1138 }
1139
1140 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1141 case SND_SOC_DAIFMT_CBS_CFS:
1142 /* McBSP master. Set FS and bit clocks as outputs */
1143 regs->pcr0 |= FSXM | FSRM |
1144 CLKXM | CLKRM;
1145 /* Sample rate generator drives the FS */
1146 regs->srgr2 |= FSGM;
1147 break;
1148 case SND_SOC_DAIFMT_CBM_CFS:
1149 /* McBSP slave. FS clock as output */
1150 regs->srgr2 |= FSGM;
1151 regs->pcr0 |= FSXM | FSRM;
1152 break;
1153 case SND_SOC_DAIFMT_CBM_CFM:
1154 /* McBSP slave */
1155 break;
1156 default:
1157 /* Unsupported master/slave configuration */
1158 return -EINVAL;
1159 }
1160
1161 /* Set bit clock (CLKX/CLKR) and FS polarities */
1162 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1163 case SND_SOC_DAIFMT_NB_NF:
1164 /*
1165 * Normal BCLK + FS.
1166 * FS active low. TX data driven on falling edge of bit clock
1167 * and RX data sampled on rising edge of bit clock.
1168 */
1169 regs->pcr0 |= FSXP | FSRP |
1170 CLKXP | CLKRP;
1171 break;
1172 case SND_SOC_DAIFMT_NB_IF:
1173 regs->pcr0 |= CLKXP | CLKRP;
1174 break;
1175 case SND_SOC_DAIFMT_IB_NF:
1176 regs->pcr0 |= FSXP | FSRP;
1177 break;
1178 case SND_SOC_DAIFMT_IB_IF:
1179 break;
1180 default:
1181 return -EINVAL;
1182 }
1183 if (inv_fs)
1184 regs->pcr0 ^= FSXP | FSRP;
1185
1186 return 0;
1187 }
1188
omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai * cpu_dai,int div_id,int div)1189 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1190 int div_id, int div)
1191 {
1192 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1193 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1194
1195 if (div_id != OMAP_MCBSP_CLKGDV)
1196 return -ENODEV;
1197
1198 mcbsp->clk_div = div;
1199 regs->srgr1 &= ~CLKGDV(0xff);
1200 regs->srgr1 |= CLKGDV(div - 1);
1201
1202 return 0;
1203 }
1204
omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)1205 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1206 int clk_id, unsigned int freq,
1207 int dir)
1208 {
1209 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1210 struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1211 int err = 0;
1212
1213 if (mcbsp->active) {
1214 if (freq == mcbsp->in_freq)
1215 return 0;
1216 else
1217 return -EBUSY;
1218 }
1219
1220 mcbsp->in_freq = freq;
1221 regs->srgr2 &= ~CLKSM;
1222 regs->pcr0 &= ~SCLKME;
1223
1224 switch (clk_id) {
1225 case OMAP_MCBSP_SYSCLK_CLK:
1226 regs->srgr2 |= CLKSM;
1227 break;
1228 case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1229 if (mcbsp_omap1()) {
1230 err = -EINVAL;
1231 break;
1232 }
1233 err = omap2_mcbsp_set_clks_src(mcbsp,
1234 MCBSP_CLKS_PRCM_SRC);
1235 break;
1236 case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1237 if (mcbsp_omap1()) {
1238 err = 0;
1239 break;
1240 }
1241 err = omap2_mcbsp_set_clks_src(mcbsp,
1242 MCBSP_CLKS_PAD_SRC);
1243 break;
1244
1245 case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1246 regs->srgr2 |= CLKSM;
1247 regs->pcr0 |= SCLKME;
1248 /*
1249 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1250 * disable output on those pins. This enables to inject the
1251 * reference clock through CLKX/CLKR. For this to work
1252 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1253 */
1254 regs->pcr0 &= ~CLKXM;
1255 break;
1256 case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1257 regs->pcr0 |= SCLKME;
1258 /* Disable ouput on CLKR pin in master mode */
1259 regs->pcr0 &= ~CLKRM;
1260 break;
1261 default:
1262 err = -ENODEV;
1263 }
1264
1265 return err;
1266 }
1267
1268 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1269 .startup = omap_mcbsp_dai_startup,
1270 .shutdown = omap_mcbsp_dai_shutdown,
1271 .prepare = omap_mcbsp_dai_prepare,
1272 .trigger = omap_mcbsp_dai_trigger,
1273 .delay = omap_mcbsp_dai_delay,
1274 .hw_params = omap_mcbsp_dai_hw_params,
1275 .set_fmt = omap_mcbsp_dai_set_dai_fmt,
1276 .set_clkdiv = omap_mcbsp_dai_set_clkdiv,
1277 .set_sysclk = omap_mcbsp_dai_set_dai_sysclk,
1278 };
1279
omap_mcbsp_probe(struct snd_soc_dai * dai)1280 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1281 {
1282 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1283
1284 pm_runtime_enable(mcbsp->dev);
1285
1286 snd_soc_dai_init_dma_data(dai,
1287 &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1288 &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1289
1290 return 0;
1291 }
1292
omap_mcbsp_remove(struct snd_soc_dai * dai)1293 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1294 {
1295 struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1296
1297 pm_runtime_disable(mcbsp->dev);
1298
1299 return 0;
1300 }
1301
1302 static struct snd_soc_dai_driver omap_mcbsp_dai = {
1303 .probe = omap_mcbsp_probe,
1304 .remove = omap_mcbsp_remove,
1305 .playback = {
1306 .channels_min = 1,
1307 .channels_max = 16,
1308 .rates = OMAP_MCBSP_RATES,
1309 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1310 },
1311 .capture = {
1312 .channels_min = 1,
1313 .channels_max = 16,
1314 .rates = OMAP_MCBSP_RATES,
1315 .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1316 },
1317 .ops = &mcbsp_dai_ops,
1318 };
1319
1320 static const struct snd_soc_component_driver omap_mcbsp_component = {
1321 .name = "omap-mcbsp",
1322 };
1323
1324 static struct omap_mcbsp_platform_data omap2420_pdata = {
1325 .reg_step = 4,
1326 .reg_size = 2,
1327 };
1328
1329 static struct omap_mcbsp_platform_data omap2430_pdata = {
1330 .reg_step = 4,
1331 .reg_size = 4,
1332 .has_ccr = true,
1333 };
1334
1335 static struct omap_mcbsp_platform_data omap3_pdata = {
1336 .reg_step = 4,
1337 .reg_size = 4,
1338 .has_ccr = true,
1339 .has_wakeup = true,
1340 };
1341
1342 static struct omap_mcbsp_platform_data omap4_pdata = {
1343 .reg_step = 4,
1344 .reg_size = 4,
1345 .has_ccr = true,
1346 .has_wakeup = true,
1347 };
1348
1349 static const struct of_device_id omap_mcbsp_of_match[] = {
1350 {
1351 .compatible = "ti,omap2420-mcbsp",
1352 .data = &omap2420_pdata,
1353 },
1354 {
1355 .compatible = "ti,omap2430-mcbsp",
1356 .data = &omap2430_pdata,
1357 },
1358 {
1359 .compatible = "ti,omap3-mcbsp",
1360 .data = &omap3_pdata,
1361 },
1362 {
1363 .compatible = "ti,omap4-mcbsp",
1364 .data = &omap4_pdata,
1365 },
1366 { },
1367 };
1368 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1369
asoc_mcbsp_probe(struct platform_device * pdev)1370 static int asoc_mcbsp_probe(struct platform_device *pdev)
1371 {
1372 struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1373 struct omap_mcbsp *mcbsp;
1374 const struct of_device_id *match;
1375 int ret;
1376
1377 match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1378 if (match) {
1379 struct device_node *node = pdev->dev.of_node;
1380 struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1381 int buffer_size;
1382
1383 pdata = devm_kzalloc(&pdev->dev,
1384 sizeof(struct omap_mcbsp_platform_data),
1385 GFP_KERNEL);
1386 if (!pdata)
1387 return -ENOMEM;
1388
1389 memcpy(pdata, match->data, sizeof(*pdata));
1390 if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1391 pdata->buffer_size = buffer_size;
1392 if (pdata_quirk)
1393 pdata->force_ick_on = pdata_quirk->force_ick_on;
1394 } else if (!pdata) {
1395 dev_err(&pdev->dev, "missing platform data.\n");
1396 return -EINVAL;
1397 }
1398 mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1399 if (!mcbsp)
1400 return -ENOMEM;
1401
1402 mcbsp->id = pdev->id;
1403 mcbsp->pdata = pdata;
1404 mcbsp->dev = &pdev->dev;
1405 platform_set_drvdata(pdev, mcbsp);
1406
1407 ret = omap_mcbsp_init(pdev);
1408 if (ret)
1409 return ret;
1410
1411 if (mcbsp->pdata->reg_size == 2) {
1412 omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1413 omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1414 }
1415
1416 ret = devm_snd_soc_register_component(&pdev->dev,
1417 &omap_mcbsp_component,
1418 &omap_mcbsp_dai, 1);
1419 if (ret)
1420 return ret;
1421
1422 return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1423 }
1424
asoc_mcbsp_remove(struct platform_device * pdev)1425 static int asoc_mcbsp_remove(struct platform_device *pdev)
1426 {
1427 struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1428
1429 if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1430 mcbsp->pdata->ops->free(mcbsp->id);
1431
1432 if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1433 cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1434
1435 if (mcbsp->pdata->buffer_size)
1436 sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1437
1438 omap_mcbsp_st_cleanup(pdev);
1439
1440 return 0;
1441 }
1442
1443 static struct platform_driver asoc_mcbsp_driver = {
1444 .driver = {
1445 .name = "omap-mcbsp",
1446 .of_match_table = omap_mcbsp_of_match,
1447 },
1448
1449 .probe = asoc_mcbsp_probe,
1450 .remove = asoc_mcbsp_remove,
1451 };
1452
1453 module_platform_driver(asoc_mcbsp_driver);
1454
1455 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1456 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1457 MODULE_LICENSE("GPL");
1458 MODULE_ALIAS("platform:omap-mcbsp");
1459