• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 struct range {
50 	u64 start;
51 	u64 end;
52 };
53 
54 struct intel_pt {
55 	struct auxtrace auxtrace;
56 	struct auxtrace_queues queues;
57 	struct auxtrace_heap heap;
58 	u32 auxtrace_type;
59 	struct perf_session *session;
60 	struct machine *machine;
61 	struct evsel *switch_evsel;
62 	struct thread *unknown_thread;
63 	bool timeless_decoding;
64 	bool sampling_mode;
65 	bool snapshot_mode;
66 	bool per_cpu_mmaps;
67 	bool have_tsc;
68 	bool data_queued;
69 	bool est_tsc;
70 	bool sync_switch;
71 	bool mispred_all;
72 	bool use_thread_stack;
73 	bool callstack;
74 	unsigned int br_stack_sz;
75 	unsigned int br_stack_sz_plus;
76 	int have_sched_switch;
77 	u32 pmu_type;
78 	u64 kernel_start;
79 	u64 switch_ip;
80 	u64 ptss_ip;
81 
82 	struct perf_tsc_conversion tc;
83 	bool cap_user_time_zero;
84 
85 	struct itrace_synth_opts synth_opts;
86 
87 	bool sample_instructions;
88 	u64 instructions_sample_type;
89 	u64 instructions_id;
90 
91 	bool sample_branches;
92 	u32 branches_filter;
93 	u64 branches_sample_type;
94 	u64 branches_id;
95 
96 	bool sample_transactions;
97 	u64 transactions_sample_type;
98 	u64 transactions_id;
99 
100 	bool sample_ptwrites;
101 	u64 ptwrites_sample_type;
102 	u64 ptwrites_id;
103 
104 	bool sample_pwr_events;
105 	u64 pwr_events_sample_type;
106 	u64 mwait_id;
107 	u64 pwre_id;
108 	u64 exstop_id;
109 	u64 pwrx_id;
110 	u64 cbr_id;
111 
112 	bool sample_pebs;
113 	struct evsel *pebs_evsel;
114 
115 	u64 tsc_bit;
116 	u64 mtc_bit;
117 	u64 mtc_freq_bits;
118 	u32 tsc_ctc_ratio_n;
119 	u32 tsc_ctc_ratio_d;
120 	u64 cyc_bit;
121 	u64 noretcomp_bit;
122 	unsigned max_non_turbo_ratio;
123 	unsigned cbr2khz;
124 
125 	unsigned long num_events;
126 
127 	char *filter;
128 	struct addr_filters filts;
129 
130 	struct range *time_ranges;
131 	unsigned int range_cnt;
132 
133 	struct ip_callchain *chain;
134 	struct branch_stack *br_stack;
135 };
136 
137 enum switch_state {
138 	INTEL_PT_SS_NOT_TRACING,
139 	INTEL_PT_SS_UNKNOWN,
140 	INTEL_PT_SS_TRACING,
141 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
142 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
143 };
144 
145 struct intel_pt_queue {
146 	struct intel_pt *pt;
147 	unsigned int queue_nr;
148 	struct auxtrace_buffer *buffer;
149 	struct auxtrace_buffer *old_buffer;
150 	void *decoder;
151 	const struct intel_pt_state *state;
152 	struct ip_callchain *chain;
153 	struct branch_stack *last_branch;
154 	union perf_event *event_buf;
155 	bool on_heap;
156 	bool stop;
157 	bool step_through_buffers;
158 	bool use_buffer_pid_tid;
159 	bool sync_switch;
160 	pid_t pid, tid;
161 	int cpu;
162 	int switch_state;
163 	pid_t next_tid;
164 	struct thread *thread;
165 	bool exclude_kernel;
166 	bool have_sample;
167 	u64 time;
168 	u64 timestamp;
169 	u64 sel_timestamp;
170 	bool sel_start;
171 	unsigned int sel_idx;
172 	u32 flags;
173 	u16 insn_len;
174 	u64 last_insn_cnt;
175 	u64 ipc_insn_cnt;
176 	u64 ipc_cyc_cnt;
177 	u64 last_in_insn_cnt;
178 	u64 last_in_cyc_cnt;
179 	u64 last_br_insn_cnt;
180 	u64 last_br_cyc_cnt;
181 	unsigned int cbr_seen;
182 	char insn[INTEL_PT_INSN_BUF_SZ];
183 };
184 
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
186 			  unsigned char *buf, size_t len)
187 {
188 	struct intel_pt_pkt packet;
189 	size_t pos = 0;
190 	int ret, pkt_len, i;
191 	char desc[INTEL_PT_PKT_DESC_MAX];
192 	const char *color = PERF_COLOR_BLUE;
193 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
194 
195 	color_fprintf(stdout, color,
196 		      ". ... Intel Processor Trace data: size %zu bytes\n",
197 		      len);
198 
199 	while (len) {
200 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
201 		if (ret > 0)
202 			pkt_len = ret;
203 		else
204 			pkt_len = 1;
205 		printf(".");
206 		color_fprintf(stdout, color, "  %08x: ", pos);
207 		for (i = 0; i < pkt_len; i++)
208 			color_fprintf(stdout, color, " %02x", buf[i]);
209 		for (; i < 16; i++)
210 			color_fprintf(stdout, color, "   ");
211 		if (ret > 0) {
212 			ret = intel_pt_pkt_desc(&packet, desc,
213 						INTEL_PT_PKT_DESC_MAX);
214 			if (ret > 0)
215 				color_fprintf(stdout, color, " %s\n", desc);
216 		} else {
217 			color_fprintf(stdout, color, " Bad packet!\n");
218 		}
219 		pos += pkt_len;
220 		buf += pkt_len;
221 		len -= pkt_len;
222 	}
223 }
224 
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
226 				size_t len)
227 {
228 	printf(".\n");
229 	intel_pt_dump(pt, buf, len);
230 }
231 
intel_pt_log_event(union perf_event * event)232 static void intel_pt_log_event(union perf_event *event)
233 {
234 	FILE *f = intel_pt_log_fp();
235 
236 	if (!intel_pt_enable_logging || !f)
237 		return;
238 
239 	perf_event__fprintf(event, NULL, f);
240 }
241 
intel_pt_dump_sample(struct perf_session * session,struct perf_sample * sample)242 static void intel_pt_dump_sample(struct perf_session *session,
243 				 struct perf_sample *sample)
244 {
245 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
246 					   auxtrace);
247 
248 	printf("\n");
249 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
250 }
251 
intel_pt_log_events(struct intel_pt * pt,u64 tm)252 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
253 {
254 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
255 	int n = pt->synth_opts.range_num;
256 
257 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
258 		return true;
259 
260 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
261 		return false;
262 
263 	/* perf_time__ranges_skip_sample does not work if time is zero */
264 	if (!tm)
265 		tm = 1;
266 
267 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
268 }
269 
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)270 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
271 				   struct auxtrace_buffer *b)
272 {
273 	bool consecutive = false;
274 	void *start;
275 
276 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
277 				      pt->have_tsc, &consecutive);
278 	if (!start)
279 		return -EINVAL;
280 	b->use_size = b->data + b->size - start;
281 	b->use_data = start;
282 	if (b->use_size && consecutive)
283 		b->consecutive = true;
284 	return 0;
285 }
286 
intel_pt_get_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer,struct auxtrace_buffer * old_buffer,struct intel_pt_buffer * b)287 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
288 			       struct auxtrace_buffer *buffer,
289 			       struct auxtrace_buffer *old_buffer,
290 			       struct intel_pt_buffer *b)
291 {
292 	bool might_overlap;
293 
294 	if (!buffer->data) {
295 		int fd = perf_data__fd(ptq->pt->session->data);
296 
297 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
298 		if (!buffer->data)
299 			return -ENOMEM;
300 	}
301 
302 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
303 	if (might_overlap && !buffer->consecutive && old_buffer &&
304 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
305 		return -ENOMEM;
306 
307 	if (buffer->use_data) {
308 		b->len = buffer->use_size;
309 		b->buf = buffer->use_data;
310 	} else {
311 		b->len = buffer->size;
312 		b->buf = buffer->data;
313 	}
314 	b->ref_timestamp = buffer->reference;
315 
316 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
317 		b->consecutive = false;
318 		b->trace_nr = buffer->buffer_nr + 1;
319 	} else {
320 		b->consecutive = true;
321 	}
322 
323 	return 0;
324 }
325 
326 /* Do not drop buffers with references - refer intel_pt_get_trace() */
intel_pt_lookahead_drop_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer)327 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
328 					   struct auxtrace_buffer *buffer)
329 {
330 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
331 		return;
332 
333 	auxtrace_buffer__drop_data(buffer);
334 }
335 
336 /* Must be serialized with respect to intel_pt_get_trace() */
intel_pt_lookahead(void * data,intel_pt_lookahead_cb_t cb,void * cb_data)337 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
338 			      void *cb_data)
339 {
340 	struct intel_pt_queue *ptq = data;
341 	struct auxtrace_buffer *buffer = ptq->buffer;
342 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
343 	struct auxtrace_queue *queue;
344 	int err = 0;
345 
346 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
347 
348 	while (1) {
349 		struct intel_pt_buffer b = { .len = 0 };
350 
351 		buffer = auxtrace_buffer__next(queue, buffer);
352 		if (!buffer)
353 			break;
354 
355 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
356 		if (err)
357 			break;
358 
359 		if (b.len) {
360 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
361 			old_buffer = buffer;
362 		} else {
363 			intel_pt_lookahead_drop_buffer(ptq, buffer);
364 			continue;
365 		}
366 
367 		err = cb(&b, cb_data);
368 		if (err)
369 			break;
370 	}
371 
372 	if (buffer != old_buffer)
373 		intel_pt_lookahead_drop_buffer(ptq, buffer);
374 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
375 
376 	return err;
377 }
378 
379 /*
380  * This function assumes data is processed sequentially only.
381  * Must be serialized with respect to intel_pt_lookahead()
382  */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)383 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
384 {
385 	struct intel_pt_queue *ptq = data;
386 	struct auxtrace_buffer *buffer = ptq->buffer;
387 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
388 	struct auxtrace_queue *queue;
389 	int err;
390 
391 	if (ptq->stop) {
392 		b->len = 0;
393 		return 0;
394 	}
395 
396 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
397 
398 	buffer = auxtrace_buffer__next(queue, buffer);
399 	if (!buffer) {
400 		if (old_buffer)
401 			auxtrace_buffer__drop_data(old_buffer);
402 		b->len = 0;
403 		return 0;
404 	}
405 
406 	ptq->buffer = buffer;
407 
408 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
409 	if (err)
410 		return err;
411 
412 	if (ptq->step_through_buffers)
413 		ptq->stop = true;
414 
415 	if (b->len) {
416 		if (old_buffer)
417 			auxtrace_buffer__drop_data(old_buffer);
418 		ptq->old_buffer = buffer;
419 	} else {
420 		auxtrace_buffer__drop_data(buffer);
421 		return intel_pt_get_trace(b, data);
422 	}
423 
424 	return 0;
425 }
426 
427 struct intel_pt_cache_entry {
428 	struct auxtrace_cache_entry	entry;
429 	u64				insn_cnt;
430 	u64				byte_cnt;
431 	enum intel_pt_insn_op		op;
432 	enum intel_pt_insn_branch	branch;
433 	int				length;
434 	int32_t				rel;
435 	char				insn[INTEL_PT_INSN_BUF_SZ];
436 };
437 
intel_pt_config_div(const char * var,const char * value,void * data)438 static int intel_pt_config_div(const char *var, const char *value, void *data)
439 {
440 	int *d = data;
441 	long val;
442 
443 	if (!strcmp(var, "intel-pt.cache-divisor")) {
444 		val = strtol(value, NULL, 0);
445 		if (val > 0 && val <= INT_MAX)
446 			*d = val;
447 	}
448 
449 	return 0;
450 }
451 
intel_pt_cache_divisor(void)452 static int intel_pt_cache_divisor(void)
453 {
454 	static int d;
455 
456 	if (d)
457 		return d;
458 
459 	perf_config(intel_pt_config_div, &d);
460 
461 	if (!d)
462 		d = 64;
463 
464 	return d;
465 }
466 
intel_pt_cache_size(struct dso * dso,struct machine * machine)467 static unsigned int intel_pt_cache_size(struct dso *dso,
468 					struct machine *machine)
469 {
470 	off_t size;
471 
472 	size = dso__data_size(dso, machine);
473 	size /= intel_pt_cache_divisor();
474 	if (size < 1000)
475 		return 10;
476 	if (size > (1 << 21))
477 		return 21;
478 	return 32 - __builtin_clz(size);
479 }
480 
intel_pt_cache(struct dso * dso,struct machine * machine)481 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
482 					     struct machine *machine)
483 {
484 	struct auxtrace_cache *c;
485 	unsigned int bits;
486 
487 	if (dso->auxtrace_cache)
488 		return dso->auxtrace_cache;
489 
490 	bits = intel_pt_cache_size(dso, machine);
491 
492 	/* Ignoring cache creation failure */
493 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
494 
495 	dso->auxtrace_cache = c;
496 
497 	return c;
498 }
499 
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)500 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
501 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
502 			      struct intel_pt_insn *intel_pt_insn)
503 {
504 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
505 	struct intel_pt_cache_entry *e;
506 	int err;
507 
508 	if (!c)
509 		return -ENOMEM;
510 
511 	e = auxtrace_cache__alloc_entry(c);
512 	if (!e)
513 		return -ENOMEM;
514 
515 	e->insn_cnt = insn_cnt;
516 	e->byte_cnt = byte_cnt;
517 	e->op = intel_pt_insn->op;
518 	e->branch = intel_pt_insn->branch;
519 	e->length = intel_pt_insn->length;
520 	e->rel = intel_pt_insn->rel;
521 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
522 
523 	err = auxtrace_cache__add(c, offset, &e->entry);
524 	if (err)
525 		auxtrace_cache__free_entry(c, e);
526 
527 	return err;
528 }
529 
530 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)531 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
532 {
533 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
534 
535 	if (!c)
536 		return NULL;
537 
538 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
539 }
540 
intel_pt_cache_invalidate(struct dso * dso,struct machine * machine,u64 offset)541 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
542 				      u64 offset)
543 {
544 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
545 
546 	if (!c)
547 		return;
548 
549 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
550 }
551 
intel_pt_cpumode(struct intel_pt * pt,uint64_t ip)552 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
553 {
554 	return ip >= pt->kernel_start ?
555 	       PERF_RECORD_MISC_KERNEL :
556 	       PERF_RECORD_MISC_USER;
557 }
558 
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)559 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
560 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
561 				   uint64_t to_ip, uint64_t max_insn_cnt,
562 				   void *data)
563 {
564 	struct intel_pt_queue *ptq = data;
565 	struct machine *machine = ptq->pt->machine;
566 	struct thread *thread;
567 	struct addr_location al;
568 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
569 	ssize_t len;
570 	int x86_64;
571 	u8 cpumode;
572 	u64 offset, start_offset, start_ip;
573 	u64 insn_cnt = 0;
574 	bool one_map = true;
575 
576 	intel_pt_insn->length = 0;
577 
578 	if (to_ip && *ip == to_ip)
579 		goto out_no_cache;
580 
581 	cpumode = intel_pt_cpumode(ptq->pt, *ip);
582 
583 	thread = ptq->thread;
584 	if (!thread) {
585 		if (cpumode != PERF_RECORD_MISC_KERNEL)
586 			return -EINVAL;
587 		thread = ptq->pt->unknown_thread;
588 	}
589 
590 	while (1) {
591 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
592 			return -EINVAL;
593 
594 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
595 		    dso__data_status_seen(al.map->dso,
596 					  DSO_DATA_STATUS_SEEN_ITRACE))
597 			return -ENOENT;
598 
599 		offset = al.map->map_ip(al.map, *ip);
600 
601 		if (!to_ip && one_map) {
602 			struct intel_pt_cache_entry *e;
603 
604 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
605 			if (e &&
606 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
607 				*insn_cnt_ptr = e->insn_cnt;
608 				*ip += e->byte_cnt;
609 				intel_pt_insn->op = e->op;
610 				intel_pt_insn->branch = e->branch;
611 				intel_pt_insn->length = e->length;
612 				intel_pt_insn->rel = e->rel;
613 				memcpy(intel_pt_insn->buf, e->insn,
614 				       INTEL_PT_INSN_BUF_SZ);
615 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
616 				return 0;
617 			}
618 		}
619 
620 		start_offset = offset;
621 		start_ip = *ip;
622 
623 		/* Load maps to ensure dso->is_64_bit has been updated */
624 		map__load(al.map);
625 
626 		x86_64 = al.map->dso->is_64_bit;
627 
628 		while (1) {
629 			len = dso__data_read_offset(al.map->dso, machine,
630 						    offset, buf,
631 						    INTEL_PT_INSN_BUF_SZ);
632 			if (len <= 0)
633 				return -EINVAL;
634 
635 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
636 				return -EINVAL;
637 
638 			intel_pt_log_insn(intel_pt_insn, *ip);
639 
640 			insn_cnt += 1;
641 
642 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
643 				goto out;
644 
645 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
646 				goto out_no_cache;
647 
648 			*ip += intel_pt_insn->length;
649 
650 			if (to_ip && *ip == to_ip) {
651 				intel_pt_insn->length = 0;
652 				goto out_no_cache;
653 			}
654 
655 			if (*ip >= al.map->end)
656 				break;
657 
658 			offset += intel_pt_insn->length;
659 		}
660 		one_map = false;
661 	}
662 out:
663 	*insn_cnt_ptr = insn_cnt;
664 
665 	if (!one_map)
666 		goto out_no_cache;
667 
668 	/*
669 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
670 	 * entries.
671 	 */
672 	if (to_ip) {
673 		struct intel_pt_cache_entry *e;
674 
675 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
676 		if (e)
677 			return 0;
678 	}
679 
680 	/* Ignore cache errors */
681 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
682 			   *ip - start_ip, intel_pt_insn);
683 
684 	return 0;
685 
686 out_no_cache:
687 	*insn_cnt_ptr = insn_cnt;
688 	return 0;
689 }
690 
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)691 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
692 				  uint64_t offset, const char *filename)
693 {
694 	struct addr_filter *filt;
695 	bool have_filter   = false;
696 	bool hit_tracestop = false;
697 	bool hit_filter    = false;
698 
699 	list_for_each_entry(filt, &pt->filts.head, list) {
700 		if (filt->start)
701 			have_filter = true;
702 
703 		if ((filename && !filt->filename) ||
704 		    (!filename && filt->filename) ||
705 		    (filename && strcmp(filename, filt->filename)))
706 			continue;
707 
708 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
709 			continue;
710 
711 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
712 			     ip, offset, filename ? filename : "[kernel]",
713 			     filt->start ? "filter" : "stop",
714 			     filt->addr, filt->size);
715 
716 		if (filt->start)
717 			hit_filter = true;
718 		else
719 			hit_tracestop = true;
720 	}
721 
722 	if (!hit_tracestop && !hit_filter)
723 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
724 			     ip, offset, filename ? filename : "[kernel]");
725 
726 	return hit_tracestop || (have_filter && !hit_filter);
727 }
728 
__intel_pt_pgd_ip(uint64_t ip,void * data)729 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
730 {
731 	struct intel_pt_queue *ptq = data;
732 	struct thread *thread;
733 	struct addr_location al;
734 	u8 cpumode;
735 	u64 offset;
736 
737 	if (ip >= ptq->pt->kernel_start)
738 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
739 
740 	cpumode = PERF_RECORD_MISC_USER;
741 
742 	thread = ptq->thread;
743 	if (!thread)
744 		return -EINVAL;
745 
746 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
747 		return -EINVAL;
748 
749 	offset = al.map->map_ip(al.map, ip);
750 
751 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
752 				     al.map->dso->long_name);
753 }
754 
intel_pt_pgd_ip(uint64_t ip,void * data)755 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
756 {
757 	return __intel_pt_pgd_ip(ip, data) > 0;
758 }
759 
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)760 static bool intel_pt_get_config(struct intel_pt *pt,
761 				struct perf_event_attr *attr, u64 *config)
762 {
763 	if (attr->type == pt->pmu_type) {
764 		if (config)
765 			*config = attr->config;
766 		return true;
767 	}
768 
769 	return false;
770 }
771 
intel_pt_exclude_kernel(struct intel_pt * pt)772 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
773 {
774 	struct evsel *evsel;
775 
776 	evlist__for_each_entry(pt->session->evlist, evsel) {
777 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
778 		    !evsel->core.attr.exclude_kernel)
779 			return false;
780 	}
781 	return true;
782 }
783 
intel_pt_return_compression(struct intel_pt * pt)784 static bool intel_pt_return_compression(struct intel_pt *pt)
785 {
786 	struct evsel *evsel;
787 	u64 config;
788 
789 	if (!pt->noretcomp_bit)
790 		return true;
791 
792 	evlist__for_each_entry(pt->session->evlist, evsel) {
793 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
794 		    (config & pt->noretcomp_bit))
795 			return false;
796 	}
797 	return true;
798 }
799 
intel_pt_branch_enable(struct intel_pt * pt)800 static bool intel_pt_branch_enable(struct intel_pt *pt)
801 {
802 	struct evsel *evsel;
803 	u64 config;
804 
805 	evlist__for_each_entry(pt->session->evlist, evsel) {
806 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
807 		    (config & 1) && !(config & 0x2000))
808 			return false;
809 	}
810 	return true;
811 }
812 
intel_pt_mtc_period(struct intel_pt * pt)813 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
814 {
815 	struct evsel *evsel;
816 	unsigned int shift;
817 	u64 config;
818 
819 	if (!pt->mtc_freq_bits)
820 		return 0;
821 
822 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
823 		config >>= 1;
824 
825 	evlist__for_each_entry(pt->session->evlist, evsel) {
826 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
827 			return (config & pt->mtc_freq_bits) >> shift;
828 	}
829 	return 0;
830 }
831 
intel_pt_timeless_decoding(struct intel_pt * pt)832 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
833 {
834 	struct evsel *evsel;
835 	bool timeless_decoding = true;
836 	u64 config;
837 
838 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
839 		return true;
840 
841 	evlist__for_each_entry(pt->session->evlist, evsel) {
842 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
843 			return true;
844 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
845 			if (config & pt->tsc_bit)
846 				timeless_decoding = false;
847 			else
848 				return true;
849 		}
850 	}
851 	return timeless_decoding;
852 }
853 
intel_pt_tracing_kernel(struct intel_pt * pt)854 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
855 {
856 	struct evsel *evsel;
857 
858 	evlist__for_each_entry(pt->session->evlist, evsel) {
859 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
860 		    !evsel->core.attr.exclude_kernel)
861 			return true;
862 	}
863 	return false;
864 }
865 
intel_pt_have_tsc(struct intel_pt * pt)866 static bool intel_pt_have_tsc(struct intel_pt *pt)
867 {
868 	struct evsel *evsel;
869 	bool have_tsc = false;
870 	u64 config;
871 
872 	if (!pt->tsc_bit)
873 		return false;
874 
875 	evlist__for_each_entry(pt->session->evlist, evsel) {
876 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
877 			if (config & pt->tsc_bit)
878 				have_tsc = true;
879 			else
880 				return false;
881 		}
882 	}
883 	return have_tsc;
884 }
885 
intel_pt_sampling_mode(struct intel_pt * pt)886 static bool intel_pt_sampling_mode(struct intel_pt *pt)
887 {
888 	struct evsel *evsel;
889 
890 	evlist__for_each_entry(pt->session->evlist, evsel) {
891 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
892 		    evsel->core.attr.aux_sample_size)
893 			return true;
894 	}
895 	return false;
896 }
897 
intel_pt_ctl(struct intel_pt * pt)898 static u64 intel_pt_ctl(struct intel_pt *pt)
899 {
900 	struct evsel *evsel;
901 	u64 config;
902 
903 	evlist__for_each_entry(pt->session->evlist, evsel) {
904 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
905 			return config;
906 	}
907 	return 0;
908 }
909 
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)910 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
911 {
912 	u64 quot, rem;
913 
914 	quot = ns / pt->tc.time_mult;
915 	rem  = ns % pt->tc.time_mult;
916 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
917 		pt->tc.time_mult;
918 }
919 
intel_pt_alloc_chain(struct intel_pt * pt)920 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
921 {
922 	size_t sz = sizeof(struct ip_callchain);
923 
924 	/* Add 1 to callchain_sz for callchain context */
925 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
926 	return zalloc(sz);
927 }
928 
intel_pt_callchain_init(struct intel_pt * pt)929 static int intel_pt_callchain_init(struct intel_pt *pt)
930 {
931 	struct evsel *evsel;
932 
933 	evlist__for_each_entry(pt->session->evlist, evsel) {
934 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
935 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
936 	}
937 
938 	pt->chain = intel_pt_alloc_chain(pt);
939 	if (!pt->chain)
940 		return -ENOMEM;
941 
942 	return 0;
943 }
944 
intel_pt_add_callchain(struct intel_pt * pt,struct perf_sample * sample)945 static void intel_pt_add_callchain(struct intel_pt *pt,
946 				   struct perf_sample *sample)
947 {
948 	struct thread *thread = machine__findnew_thread(pt->machine,
949 							sample->pid,
950 							sample->tid);
951 
952 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
953 				  pt->synth_opts.callchain_sz + 1, sample->ip,
954 				  pt->kernel_start);
955 
956 	sample->callchain = pt->chain;
957 }
958 
intel_pt_alloc_br_stack(unsigned int entry_cnt)959 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
960 {
961 	size_t sz = sizeof(struct branch_stack);
962 
963 	sz += entry_cnt * sizeof(struct branch_entry);
964 	return zalloc(sz);
965 }
966 
intel_pt_br_stack_init(struct intel_pt * pt)967 static int intel_pt_br_stack_init(struct intel_pt *pt)
968 {
969 	struct evsel *evsel;
970 
971 	evlist__for_each_entry(pt->session->evlist, evsel) {
972 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
973 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
974 	}
975 
976 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
977 	if (!pt->br_stack)
978 		return -ENOMEM;
979 
980 	return 0;
981 }
982 
intel_pt_add_br_stack(struct intel_pt * pt,struct perf_sample * sample)983 static void intel_pt_add_br_stack(struct intel_pt *pt,
984 				  struct perf_sample *sample)
985 {
986 	struct thread *thread = machine__findnew_thread(pt->machine,
987 							sample->pid,
988 							sample->tid);
989 
990 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
991 				     pt->br_stack_sz, sample->ip,
992 				     pt->kernel_start);
993 
994 	sample->branch_stack = pt->br_stack;
995 }
996 
997 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
998 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
999 
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)1000 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1001 						   unsigned int queue_nr)
1002 {
1003 	struct intel_pt_params params = { .get_trace = 0, };
1004 	struct perf_env *env = pt->machine->env;
1005 	struct intel_pt_queue *ptq;
1006 
1007 	ptq = zalloc(sizeof(struct intel_pt_queue));
1008 	if (!ptq)
1009 		return NULL;
1010 
1011 	if (pt->synth_opts.callchain) {
1012 		ptq->chain = intel_pt_alloc_chain(pt);
1013 		if (!ptq->chain)
1014 			goto out_free;
1015 	}
1016 
1017 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1018 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1019 
1020 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1021 		if (!ptq->last_branch)
1022 			goto out_free;
1023 	}
1024 
1025 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1026 	if (!ptq->event_buf)
1027 		goto out_free;
1028 
1029 	ptq->pt = pt;
1030 	ptq->queue_nr = queue_nr;
1031 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1032 	ptq->pid = -1;
1033 	ptq->tid = -1;
1034 	ptq->cpu = -1;
1035 	ptq->next_tid = -1;
1036 
1037 	params.get_trace = intel_pt_get_trace;
1038 	params.walk_insn = intel_pt_walk_next_insn;
1039 	params.lookahead = intel_pt_lookahead;
1040 	params.data = ptq;
1041 	params.return_compression = intel_pt_return_compression(pt);
1042 	params.branch_enable = intel_pt_branch_enable(pt);
1043 	params.ctl = intel_pt_ctl(pt);
1044 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1045 	params.mtc_period = intel_pt_mtc_period(pt);
1046 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1047 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1048 	params.quick = pt->synth_opts.quick;
1049 
1050 	if (pt->filts.cnt > 0)
1051 		params.pgd_ip = intel_pt_pgd_ip;
1052 
1053 	if (pt->synth_opts.instructions) {
1054 		if (pt->synth_opts.period) {
1055 			switch (pt->synth_opts.period_type) {
1056 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1057 				params.period_type =
1058 						INTEL_PT_PERIOD_INSTRUCTIONS;
1059 				params.period = pt->synth_opts.period;
1060 				break;
1061 			case PERF_ITRACE_PERIOD_TICKS:
1062 				params.period_type = INTEL_PT_PERIOD_TICKS;
1063 				params.period = pt->synth_opts.period;
1064 				break;
1065 			case PERF_ITRACE_PERIOD_NANOSECS:
1066 				params.period_type = INTEL_PT_PERIOD_TICKS;
1067 				params.period = intel_pt_ns_to_ticks(pt,
1068 							pt->synth_opts.period);
1069 				break;
1070 			default:
1071 				break;
1072 			}
1073 		}
1074 
1075 		if (!params.period) {
1076 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1077 			params.period = 1;
1078 		}
1079 	}
1080 
1081 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1082 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1083 
1084 	ptq->decoder = intel_pt_decoder_new(&params);
1085 	if (!ptq->decoder)
1086 		goto out_free;
1087 
1088 	return ptq;
1089 
1090 out_free:
1091 	zfree(&ptq->event_buf);
1092 	zfree(&ptq->last_branch);
1093 	zfree(&ptq->chain);
1094 	free(ptq);
1095 	return NULL;
1096 }
1097 
intel_pt_free_queue(void * priv)1098 static void intel_pt_free_queue(void *priv)
1099 {
1100 	struct intel_pt_queue *ptq = priv;
1101 
1102 	if (!ptq)
1103 		return;
1104 	thread__zput(ptq->thread);
1105 	intel_pt_decoder_free(ptq->decoder);
1106 	zfree(&ptq->event_buf);
1107 	zfree(&ptq->last_branch);
1108 	zfree(&ptq->chain);
1109 	free(ptq);
1110 }
1111 
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)1112 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1113 				     struct auxtrace_queue *queue)
1114 {
1115 	struct intel_pt_queue *ptq = queue->priv;
1116 
1117 	if (queue->tid == -1 || pt->have_sched_switch) {
1118 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1119 		if (ptq->tid == -1)
1120 			ptq->pid = -1;
1121 		thread__zput(ptq->thread);
1122 	}
1123 
1124 	if (!ptq->thread && ptq->tid != -1)
1125 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1126 
1127 	if (ptq->thread) {
1128 		ptq->pid = ptq->thread->pid_;
1129 		if (queue->cpu == -1)
1130 			ptq->cpu = ptq->thread->cpu;
1131 	}
1132 }
1133 
intel_pt_sample_flags(struct intel_pt_queue * ptq)1134 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1135 {
1136 	ptq->insn_len = 0;
1137 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1138 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1139 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1140 		if (ptq->state->to_ip)
1141 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1142 				     PERF_IP_FLAG_ASYNC |
1143 				     PERF_IP_FLAG_INTERRUPT;
1144 		else
1145 			ptq->flags = PERF_IP_FLAG_BRANCH |
1146 				     PERF_IP_FLAG_TRACE_END;
1147 		ptq->insn_len = 0;
1148 	} else {
1149 		if (ptq->state->from_ip)
1150 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1151 		else
1152 			ptq->flags = PERF_IP_FLAG_BRANCH |
1153 				     PERF_IP_FLAG_TRACE_BEGIN;
1154 		if (ptq->state->flags & INTEL_PT_IN_TX)
1155 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1156 		ptq->insn_len = ptq->state->insn_len;
1157 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1158 	}
1159 
1160 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1161 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1162 	if (ptq->state->type & INTEL_PT_TRACE_END)
1163 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1164 }
1165 
intel_pt_setup_time_range(struct intel_pt * pt,struct intel_pt_queue * ptq)1166 static void intel_pt_setup_time_range(struct intel_pt *pt,
1167 				      struct intel_pt_queue *ptq)
1168 {
1169 	if (!pt->range_cnt)
1170 		return;
1171 
1172 	ptq->sel_timestamp = pt->time_ranges[0].start;
1173 	ptq->sel_idx = 0;
1174 
1175 	if (ptq->sel_timestamp) {
1176 		ptq->sel_start = true;
1177 	} else {
1178 		ptq->sel_timestamp = pt->time_ranges[0].end;
1179 		ptq->sel_start = false;
1180 	}
1181 }
1182 
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)1183 static int intel_pt_setup_queue(struct intel_pt *pt,
1184 				struct auxtrace_queue *queue,
1185 				unsigned int queue_nr)
1186 {
1187 	struct intel_pt_queue *ptq = queue->priv;
1188 
1189 	if (list_empty(&queue->head))
1190 		return 0;
1191 
1192 	if (!ptq) {
1193 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1194 		if (!ptq)
1195 			return -ENOMEM;
1196 		queue->priv = ptq;
1197 
1198 		if (queue->cpu != -1)
1199 			ptq->cpu = queue->cpu;
1200 		ptq->tid = queue->tid;
1201 
1202 		ptq->cbr_seen = UINT_MAX;
1203 
1204 		if (pt->sampling_mode && !pt->snapshot_mode &&
1205 		    pt->timeless_decoding)
1206 			ptq->step_through_buffers = true;
1207 
1208 		ptq->sync_switch = pt->sync_switch;
1209 
1210 		intel_pt_setup_time_range(pt, ptq);
1211 	}
1212 
1213 	if (!ptq->on_heap &&
1214 	    (!ptq->sync_switch ||
1215 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1216 		const struct intel_pt_state *state;
1217 		int ret;
1218 
1219 		if (pt->timeless_decoding)
1220 			return 0;
1221 
1222 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1223 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1224 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1225 
1226 		if (ptq->sel_start && ptq->sel_timestamp) {
1227 			ret = intel_pt_fast_forward(ptq->decoder,
1228 						    ptq->sel_timestamp);
1229 			if (ret)
1230 				return ret;
1231 		}
1232 
1233 		while (1) {
1234 			state = intel_pt_decode(ptq->decoder);
1235 			if (state->err) {
1236 				if (state->err == INTEL_PT_ERR_NODATA) {
1237 					intel_pt_log("queue %u has no timestamp\n",
1238 						     queue_nr);
1239 					return 0;
1240 				}
1241 				continue;
1242 			}
1243 			if (state->timestamp)
1244 				break;
1245 		}
1246 
1247 		ptq->timestamp = state->timestamp;
1248 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1249 			     queue_nr, ptq->timestamp);
1250 		ptq->state = state;
1251 		ptq->have_sample = true;
1252 		if (ptq->sel_start && ptq->sel_timestamp &&
1253 		    ptq->timestamp < ptq->sel_timestamp)
1254 			ptq->have_sample = false;
1255 		intel_pt_sample_flags(ptq);
1256 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1257 		if (ret)
1258 			return ret;
1259 		ptq->on_heap = true;
1260 	}
1261 
1262 	return 0;
1263 }
1264 
intel_pt_setup_queues(struct intel_pt * pt)1265 static int intel_pt_setup_queues(struct intel_pt *pt)
1266 {
1267 	unsigned int i;
1268 	int ret;
1269 
1270 	for (i = 0; i < pt->queues.nr_queues; i++) {
1271 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1272 		if (ret)
1273 			return ret;
1274 	}
1275 	return 0;
1276 }
1277 
intel_pt_skip_event(struct intel_pt * pt)1278 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1279 {
1280 	return pt->synth_opts.initial_skip &&
1281 	       pt->num_events++ < pt->synth_opts.initial_skip;
1282 }
1283 
1284 /*
1285  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1286  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1287  * from this decoder state.
1288  */
intel_pt_skip_cbr_event(struct intel_pt * pt)1289 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1290 {
1291 	return pt->synth_opts.initial_skip &&
1292 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1293 }
1294 
intel_pt_prep_a_sample(struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1295 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1296 				   union perf_event *event,
1297 				   struct perf_sample *sample)
1298 {
1299 	event->sample.header.type = PERF_RECORD_SAMPLE;
1300 	event->sample.header.size = sizeof(struct perf_event_header);
1301 
1302 	sample->pid = ptq->pid;
1303 	sample->tid = ptq->tid;
1304 	sample->cpu = ptq->cpu;
1305 	sample->insn_len = ptq->insn_len;
1306 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1307 }
1308 
intel_pt_prep_b_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1309 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1310 				   struct intel_pt_queue *ptq,
1311 				   union perf_event *event,
1312 				   struct perf_sample *sample)
1313 {
1314 	intel_pt_prep_a_sample(ptq, event, sample);
1315 
1316 	if (!pt->timeless_decoding)
1317 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1318 
1319 	sample->ip = ptq->state->from_ip;
1320 	sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1321 	sample->addr = ptq->state->to_ip;
1322 	sample->period = 1;
1323 	sample->flags = ptq->flags;
1324 
1325 	event->sample.header.misc = sample->cpumode;
1326 }
1327 
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1328 static int intel_pt_inject_event(union perf_event *event,
1329 				 struct perf_sample *sample, u64 type)
1330 {
1331 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1332 	return perf_event__synthesize_sample(event, type, 0, sample);
1333 }
1334 
intel_pt_opt_inject(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1335 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1336 				      union perf_event *event,
1337 				      struct perf_sample *sample, u64 type)
1338 {
1339 	if (!pt->synth_opts.inject)
1340 		return 0;
1341 
1342 	return intel_pt_inject_event(event, sample, type);
1343 }
1344 
intel_pt_deliver_synth_event(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1345 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1346 					union perf_event *event,
1347 					struct perf_sample *sample, u64 type)
1348 {
1349 	int ret;
1350 
1351 	ret = intel_pt_opt_inject(pt, event, sample, type);
1352 	if (ret)
1353 		return ret;
1354 
1355 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1356 	if (ret)
1357 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1358 
1359 	return ret;
1360 }
1361 
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1362 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1363 {
1364 	struct intel_pt *pt = ptq->pt;
1365 	union perf_event *event = ptq->event_buf;
1366 	struct perf_sample sample = { .ip = 0, };
1367 	struct dummy_branch_stack {
1368 		u64			nr;
1369 		u64			hw_idx;
1370 		struct branch_entry	entries;
1371 	} dummy_bs;
1372 
1373 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1374 		return 0;
1375 
1376 	if (intel_pt_skip_event(pt))
1377 		return 0;
1378 
1379 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1380 
1381 	sample.id = ptq->pt->branches_id;
1382 	sample.stream_id = ptq->pt->branches_id;
1383 
1384 	/*
1385 	 * perf report cannot handle events without a branch stack when using
1386 	 * SORT_MODE__BRANCH so make a dummy one.
1387 	 */
1388 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1389 		dummy_bs = (struct dummy_branch_stack){
1390 			.nr = 1,
1391 			.hw_idx = -1ULL,
1392 			.entries = {
1393 				.from = sample.ip,
1394 				.to = sample.addr,
1395 			},
1396 		};
1397 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1398 	}
1399 
1400 	if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1401 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1402 	if (sample.cyc_cnt) {
1403 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1404 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1405 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1406 	}
1407 
1408 	return intel_pt_deliver_synth_event(pt, event, &sample,
1409 					    pt->branches_sample_type);
1410 }
1411 
intel_pt_prep_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1412 static void intel_pt_prep_sample(struct intel_pt *pt,
1413 				 struct intel_pt_queue *ptq,
1414 				 union perf_event *event,
1415 				 struct perf_sample *sample)
1416 {
1417 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1418 
1419 	if (pt->synth_opts.callchain) {
1420 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1421 				     pt->synth_opts.callchain_sz + 1,
1422 				     sample->ip, pt->kernel_start);
1423 		sample->callchain = ptq->chain;
1424 	}
1425 
1426 	if (pt->synth_opts.last_branch) {
1427 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1428 					pt->br_stack_sz);
1429 		sample->branch_stack = ptq->last_branch;
1430 	}
1431 }
1432 
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1433 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1434 {
1435 	struct intel_pt *pt = ptq->pt;
1436 	union perf_event *event = ptq->event_buf;
1437 	struct perf_sample sample = { .ip = 0, };
1438 
1439 	if (intel_pt_skip_event(pt))
1440 		return 0;
1441 
1442 	intel_pt_prep_sample(pt, ptq, event, &sample);
1443 
1444 	sample.id = ptq->pt->instructions_id;
1445 	sample.stream_id = ptq->pt->instructions_id;
1446 	if (pt->synth_opts.quick)
1447 		sample.period = 1;
1448 	else
1449 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1450 
1451 	if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1452 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1453 	if (sample.cyc_cnt) {
1454 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1455 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1456 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1457 	}
1458 
1459 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1460 
1461 	return intel_pt_deliver_synth_event(pt, event, &sample,
1462 					    pt->instructions_sample_type);
1463 }
1464 
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1465 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1466 {
1467 	struct intel_pt *pt = ptq->pt;
1468 	union perf_event *event = ptq->event_buf;
1469 	struct perf_sample sample = { .ip = 0, };
1470 
1471 	if (intel_pt_skip_event(pt))
1472 		return 0;
1473 
1474 	intel_pt_prep_sample(pt, ptq, event, &sample);
1475 
1476 	sample.id = ptq->pt->transactions_id;
1477 	sample.stream_id = ptq->pt->transactions_id;
1478 
1479 	return intel_pt_deliver_synth_event(pt, event, &sample,
1480 					    pt->transactions_sample_type);
1481 }
1482 
intel_pt_prep_p_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1483 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1484 				   struct intel_pt_queue *ptq,
1485 				   union perf_event *event,
1486 				   struct perf_sample *sample)
1487 {
1488 	intel_pt_prep_sample(pt, ptq, event, sample);
1489 
1490 	/*
1491 	 * Zero IP is used to mean "trace start" but that is not the case for
1492 	 * power or PTWRITE events with no IP, so clear the flags.
1493 	 */
1494 	if (!sample->ip)
1495 		sample->flags = 0;
1496 }
1497 
intel_pt_synth_ptwrite_sample(struct intel_pt_queue * ptq)1498 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1499 {
1500 	struct intel_pt *pt = ptq->pt;
1501 	union perf_event *event = ptq->event_buf;
1502 	struct perf_sample sample = { .ip = 0, };
1503 	struct perf_synth_intel_ptwrite raw;
1504 
1505 	if (intel_pt_skip_event(pt))
1506 		return 0;
1507 
1508 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1509 
1510 	sample.id = ptq->pt->ptwrites_id;
1511 	sample.stream_id = ptq->pt->ptwrites_id;
1512 
1513 	raw.flags = 0;
1514 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1515 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1516 
1517 	sample.raw_size = perf_synth__raw_size(raw);
1518 	sample.raw_data = perf_synth__raw_data(&raw);
1519 
1520 	return intel_pt_deliver_synth_event(pt, event, &sample,
1521 					    pt->ptwrites_sample_type);
1522 }
1523 
intel_pt_synth_cbr_sample(struct intel_pt_queue * ptq)1524 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1525 {
1526 	struct intel_pt *pt = ptq->pt;
1527 	union perf_event *event = ptq->event_buf;
1528 	struct perf_sample sample = { .ip = 0, };
1529 	struct perf_synth_intel_cbr raw;
1530 	u32 flags;
1531 
1532 	if (intel_pt_skip_cbr_event(pt))
1533 		return 0;
1534 
1535 	ptq->cbr_seen = ptq->state->cbr;
1536 
1537 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1538 
1539 	sample.id = ptq->pt->cbr_id;
1540 	sample.stream_id = ptq->pt->cbr_id;
1541 
1542 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1543 	raw.flags = cpu_to_le32(flags);
1544 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1545 	raw.reserved3 = 0;
1546 
1547 	sample.raw_size = perf_synth__raw_size(raw);
1548 	sample.raw_data = perf_synth__raw_data(&raw);
1549 
1550 	return intel_pt_deliver_synth_event(pt, event, &sample,
1551 					    pt->pwr_events_sample_type);
1552 }
1553 
intel_pt_synth_mwait_sample(struct intel_pt_queue * ptq)1554 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1555 {
1556 	struct intel_pt *pt = ptq->pt;
1557 	union perf_event *event = ptq->event_buf;
1558 	struct perf_sample sample = { .ip = 0, };
1559 	struct perf_synth_intel_mwait raw;
1560 
1561 	if (intel_pt_skip_event(pt))
1562 		return 0;
1563 
1564 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1565 
1566 	sample.id = ptq->pt->mwait_id;
1567 	sample.stream_id = ptq->pt->mwait_id;
1568 
1569 	raw.reserved = 0;
1570 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1571 
1572 	sample.raw_size = perf_synth__raw_size(raw);
1573 	sample.raw_data = perf_synth__raw_data(&raw);
1574 
1575 	return intel_pt_deliver_synth_event(pt, event, &sample,
1576 					    pt->pwr_events_sample_type);
1577 }
1578 
intel_pt_synth_pwre_sample(struct intel_pt_queue * ptq)1579 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1580 {
1581 	struct intel_pt *pt = ptq->pt;
1582 	union perf_event *event = ptq->event_buf;
1583 	struct perf_sample sample = { .ip = 0, };
1584 	struct perf_synth_intel_pwre raw;
1585 
1586 	if (intel_pt_skip_event(pt))
1587 		return 0;
1588 
1589 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1590 
1591 	sample.id = ptq->pt->pwre_id;
1592 	sample.stream_id = ptq->pt->pwre_id;
1593 
1594 	raw.reserved = 0;
1595 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1596 
1597 	sample.raw_size = perf_synth__raw_size(raw);
1598 	sample.raw_data = perf_synth__raw_data(&raw);
1599 
1600 	return intel_pt_deliver_synth_event(pt, event, &sample,
1601 					    pt->pwr_events_sample_type);
1602 }
1603 
intel_pt_synth_exstop_sample(struct intel_pt_queue * ptq)1604 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1605 {
1606 	struct intel_pt *pt = ptq->pt;
1607 	union perf_event *event = ptq->event_buf;
1608 	struct perf_sample sample = { .ip = 0, };
1609 	struct perf_synth_intel_exstop raw;
1610 
1611 	if (intel_pt_skip_event(pt))
1612 		return 0;
1613 
1614 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1615 
1616 	sample.id = ptq->pt->exstop_id;
1617 	sample.stream_id = ptq->pt->exstop_id;
1618 
1619 	raw.flags = 0;
1620 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1621 
1622 	sample.raw_size = perf_synth__raw_size(raw);
1623 	sample.raw_data = perf_synth__raw_data(&raw);
1624 
1625 	return intel_pt_deliver_synth_event(pt, event, &sample,
1626 					    pt->pwr_events_sample_type);
1627 }
1628 
intel_pt_synth_pwrx_sample(struct intel_pt_queue * ptq)1629 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1630 {
1631 	struct intel_pt *pt = ptq->pt;
1632 	union perf_event *event = ptq->event_buf;
1633 	struct perf_sample sample = { .ip = 0, };
1634 	struct perf_synth_intel_pwrx raw;
1635 
1636 	if (intel_pt_skip_event(pt))
1637 		return 0;
1638 
1639 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1640 
1641 	sample.id = ptq->pt->pwrx_id;
1642 	sample.stream_id = ptq->pt->pwrx_id;
1643 
1644 	raw.reserved = 0;
1645 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1646 
1647 	sample.raw_size = perf_synth__raw_size(raw);
1648 	sample.raw_data = perf_synth__raw_data(&raw);
1649 
1650 	return intel_pt_deliver_synth_event(pt, event, &sample,
1651 					    pt->pwr_events_sample_type);
1652 }
1653 
1654 /*
1655  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1656  * intel_pt_add_gp_regs().
1657  */
1658 static const int pebs_gp_regs[] = {
1659 	[PERF_REG_X86_FLAGS]	= 1,
1660 	[PERF_REG_X86_IP]	= 2,
1661 	[PERF_REG_X86_AX]	= 3,
1662 	[PERF_REG_X86_CX]	= 4,
1663 	[PERF_REG_X86_DX]	= 5,
1664 	[PERF_REG_X86_BX]	= 6,
1665 	[PERF_REG_X86_SP]	= 7,
1666 	[PERF_REG_X86_BP]	= 8,
1667 	[PERF_REG_X86_SI]	= 9,
1668 	[PERF_REG_X86_DI]	= 10,
1669 	[PERF_REG_X86_R8]	= 11,
1670 	[PERF_REG_X86_R9]	= 12,
1671 	[PERF_REG_X86_R10]	= 13,
1672 	[PERF_REG_X86_R11]	= 14,
1673 	[PERF_REG_X86_R12]	= 15,
1674 	[PERF_REG_X86_R13]	= 16,
1675 	[PERF_REG_X86_R14]	= 17,
1676 	[PERF_REG_X86_R15]	= 18,
1677 };
1678 
intel_pt_add_gp_regs(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)1679 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1680 				 const struct intel_pt_blk_items *items,
1681 				 u64 regs_mask)
1682 {
1683 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1684 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1685 	u32 bit;
1686 	int i;
1687 
1688 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1689 		/* Get the PEBS gp_regs array index */
1690 		int n = pebs_gp_regs[i] - 1;
1691 
1692 		if (n < 0)
1693 			continue;
1694 		/*
1695 		 * Add only registers that were requested (i.e. 'regs_mask') and
1696 		 * that were provided (i.e. 'mask'), and update the resulting
1697 		 * mask (i.e. 'intr_regs->mask') accordingly.
1698 		 */
1699 		if (mask & 1 << n && regs_mask & bit) {
1700 			intr_regs->mask |= bit;
1701 			*pos++ = gp_regs[n];
1702 		}
1703 	}
1704 
1705 	return pos;
1706 }
1707 
1708 #ifndef PERF_REG_X86_XMM0
1709 #define PERF_REG_X86_XMM0 32
1710 #endif
1711 
intel_pt_add_xmm(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)1712 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1713 			     const struct intel_pt_blk_items *items,
1714 			     u64 regs_mask)
1715 {
1716 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1717 	const u64 *xmm = items->xmm;
1718 
1719 	/*
1720 	 * If there are any XMM registers, then there should be all of them.
1721 	 * Nevertheless, follow the logic to add only registers that were
1722 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1723 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1724 	 */
1725 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1726 
1727 	for (; mask; mask >>= 1, xmm++) {
1728 		if (mask & 1)
1729 			*pos++ = *xmm;
1730 	}
1731 }
1732 
1733 #define LBR_INFO_MISPRED	(1ULL << 63)
1734 #define LBR_INFO_IN_TX		(1ULL << 62)
1735 #define LBR_INFO_ABORT		(1ULL << 61)
1736 #define LBR_INFO_CYCLES		0xffff
1737 
1738 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
intel_pt_lbr_flags(u64 info)1739 static u64 intel_pt_lbr_flags(u64 info)
1740 {
1741 	union {
1742 		struct branch_flags flags;
1743 		u64 result;
1744 	} u;
1745 
1746 	u.result	  = 0;
1747 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
1748 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
1749 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
1750 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
1751 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
1752 
1753 	return u.result;
1754 }
1755 
intel_pt_add_lbrs(struct branch_stack * br_stack,const struct intel_pt_blk_items * items)1756 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1757 			      const struct intel_pt_blk_items *items)
1758 {
1759 	u64 *to;
1760 	int i;
1761 
1762 	br_stack->nr = 0;
1763 
1764 	to = &br_stack->entries[0].from;
1765 
1766 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1767 		u32 mask = items->mask[i];
1768 		const u64 *from = items->val[i];
1769 
1770 		for (; mask; mask >>= 3, from += 3) {
1771 			if ((mask & 7) == 7) {
1772 				*to++ = from[0];
1773 				*to++ = from[1];
1774 				*to++ = intel_pt_lbr_flags(from[2]);
1775 				br_stack->nr += 1;
1776 			}
1777 		}
1778 	}
1779 }
1780 
intel_pt_synth_pebs_sample(struct intel_pt_queue * ptq)1781 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1782 {
1783 	const struct intel_pt_blk_items *items = &ptq->state->items;
1784 	struct perf_sample sample = { .ip = 0, };
1785 	union perf_event *event = ptq->event_buf;
1786 	struct intel_pt *pt = ptq->pt;
1787 	struct evsel *evsel = pt->pebs_evsel;
1788 	u64 sample_type = evsel->core.attr.sample_type;
1789 	u64 id = evsel->core.id[0];
1790 	u8 cpumode;
1791 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
1792 
1793 	if (intel_pt_skip_event(pt))
1794 		return 0;
1795 
1796 	intel_pt_prep_a_sample(ptq, event, &sample);
1797 
1798 	sample.id = id;
1799 	sample.stream_id = id;
1800 
1801 	if (!evsel->core.attr.freq)
1802 		sample.period = evsel->core.attr.sample_period;
1803 
1804 	/* No support for non-zero CS base */
1805 	if (items->has_ip)
1806 		sample.ip = items->ip;
1807 	else if (items->has_rip)
1808 		sample.ip = items->rip;
1809 	else
1810 		sample.ip = ptq->state->from_ip;
1811 
1812 	/* No support for guest mode at this time */
1813 	cpumode = sample.ip < ptq->pt->kernel_start ?
1814 		  PERF_RECORD_MISC_USER :
1815 		  PERF_RECORD_MISC_KERNEL;
1816 
1817 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1818 
1819 	sample.cpumode = cpumode;
1820 
1821 	if (sample_type & PERF_SAMPLE_TIME) {
1822 		u64 timestamp = 0;
1823 
1824 		if (items->has_timestamp)
1825 			timestamp = items->timestamp;
1826 		else if (!pt->timeless_decoding)
1827 			timestamp = ptq->timestamp;
1828 		if (timestamp)
1829 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1830 	}
1831 
1832 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1833 	    pt->synth_opts.callchain) {
1834 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1835 				     pt->synth_opts.callchain_sz, sample.ip,
1836 				     pt->kernel_start);
1837 		sample.callchain = ptq->chain;
1838 	}
1839 
1840 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1841 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
1842 	     items->mask[INTEL_PT_XMM_POS])) {
1843 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1844 		u64 *pos;
1845 
1846 		sample.intr_regs.abi = items->is_32_bit ?
1847 				       PERF_SAMPLE_REGS_ABI_32 :
1848 				       PERF_SAMPLE_REGS_ABI_64;
1849 		sample.intr_regs.regs = regs;
1850 
1851 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1852 
1853 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1854 	}
1855 
1856 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1857 		if (items->mask[INTEL_PT_LBR_0_POS] ||
1858 		    items->mask[INTEL_PT_LBR_1_POS] ||
1859 		    items->mask[INTEL_PT_LBR_2_POS]) {
1860 			intel_pt_add_lbrs(ptq->last_branch, items);
1861 		} else if (pt->synth_opts.last_branch) {
1862 			thread_stack__br_sample(ptq->thread, ptq->cpu,
1863 						ptq->last_branch,
1864 						pt->br_stack_sz);
1865 		} else {
1866 			ptq->last_branch->nr = 0;
1867 		}
1868 		sample.branch_stack = ptq->last_branch;
1869 	}
1870 
1871 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1872 		sample.addr = items->mem_access_address;
1873 
1874 	if (sample_type & PERF_SAMPLE_WEIGHT) {
1875 		/*
1876 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1877 		 * intel_hsw_weight().
1878 		 */
1879 		if (items->has_mem_access_latency)
1880 			sample.weight = items->mem_access_latency;
1881 		if (!sample.weight && items->has_tsx_aux_info) {
1882 			/* Cycles last block */
1883 			sample.weight = (u32)items->tsx_aux_info;
1884 		}
1885 	}
1886 
1887 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1888 		u64 ax = items->has_rax ? items->rax : 0;
1889 		/* Refer kernel's intel_hsw_transaction() */
1890 		u64 txn = (u8)(items->tsx_aux_info >> 32);
1891 
1892 		/* For RTM XABORTs also log the abort code from AX */
1893 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
1894 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1895 		sample.transaction = txn;
1896 	}
1897 
1898 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
1899 }
1900 
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip,u64 timestamp)1901 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1902 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1903 {
1904 	union perf_event event;
1905 	char msg[MAX_AUXTRACE_ERROR_MSG];
1906 	int err;
1907 
1908 	if (pt->synth_opts.error_minus_flags) {
1909 		if (code == INTEL_PT_ERR_OVR &&
1910 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
1911 			return 0;
1912 		if (code == INTEL_PT_ERR_LOST &&
1913 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
1914 			return 0;
1915 	}
1916 
1917 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1918 
1919 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1920 			     code, cpu, pid, tid, ip, msg, timestamp);
1921 
1922 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1923 	if (err)
1924 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1925 		       err);
1926 
1927 	return err;
1928 }
1929 
intel_ptq_synth_error(struct intel_pt_queue * ptq,const struct intel_pt_state * state)1930 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1931 				 const struct intel_pt_state *state)
1932 {
1933 	struct intel_pt *pt = ptq->pt;
1934 	u64 tm = ptq->timestamp;
1935 
1936 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1937 
1938 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1939 				    ptq->tid, state->from_ip, tm);
1940 }
1941 
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)1942 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1943 {
1944 	struct auxtrace_queue *queue;
1945 	pid_t tid = ptq->next_tid;
1946 	int err;
1947 
1948 	if (tid == -1)
1949 		return 0;
1950 
1951 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1952 
1953 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1954 
1955 	queue = &pt->queues.queue_array[ptq->queue_nr];
1956 	intel_pt_set_pid_tid_cpu(pt, queue);
1957 
1958 	ptq->next_tid = -1;
1959 
1960 	return err;
1961 }
1962 
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)1963 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1964 {
1965 	struct intel_pt *pt = ptq->pt;
1966 
1967 	return ip == pt->switch_ip &&
1968 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1969 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1970 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1971 }
1972 
1973 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1974 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1975 
intel_pt_sample(struct intel_pt_queue * ptq)1976 static int intel_pt_sample(struct intel_pt_queue *ptq)
1977 {
1978 	const struct intel_pt_state *state = ptq->state;
1979 	struct intel_pt *pt = ptq->pt;
1980 	int err;
1981 
1982 	if (!ptq->have_sample)
1983 		return 0;
1984 
1985 	ptq->have_sample = false;
1986 
1987 	ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1988 	ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1989 
1990 	/*
1991 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
1992 	 * precedes the current timestamp.
1993 	 */
1994 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1995 		err = intel_pt_synth_pebs_sample(ptq);
1996 		if (err)
1997 			return err;
1998 	}
1999 
2000 	if (pt->sample_pwr_events) {
2001 		if (ptq->state->cbr != ptq->cbr_seen) {
2002 			err = intel_pt_synth_cbr_sample(ptq);
2003 			if (err)
2004 				return err;
2005 		}
2006 		if (state->type & INTEL_PT_PWR_EVT) {
2007 			if (state->type & INTEL_PT_MWAIT_OP) {
2008 				err = intel_pt_synth_mwait_sample(ptq);
2009 				if (err)
2010 					return err;
2011 			}
2012 			if (state->type & INTEL_PT_PWR_ENTRY) {
2013 				err = intel_pt_synth_pwre_sample(ptq);
2014 				if (err)
2015 					return err;
2016 			}
2017 			if (state->type & INTEL_PT_EX_STOP) {
2018 				err = intel_pt_synth_exstop_sample(ptq);
2019 				if (err)
2020 					return err;
2021 			}
2022 			if (state->type & INTEL_PT_PWR_EXIT) {
2023 				err = intel_pt_synth_pwrx_sample(ptq);
2024 				if (err)
2025 					return err;
2026 			}
2027 		}
2028 	}
2029 
2030 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2031 		err = intel_pt_synth_instruction_sample(ptq);
2032 		if (err)
2033 			return err;
2034 	}
2035 
2036 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2037 		err = intel_pt_synth_transaction_sample(ptq);
2038 		if (err)
2039 			return err;
2040 	}
2041 
2042 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2043 		err = intel_pt_synth_ptwrite_sample(ptq);
2044 		if (err)
2045 			return err;
2046 	}
2047 
2048 	if (!(state->type & INTEL_PT_BRANCH))
2049 		return 0;
2050 
2051 	if (pt->use_thread_stack) {
2052 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2053 				    state->from_ip, state->to_ip, ptq->insn_len,
2054 				    state->trace_nr, pt->callstack,
2055 				    pt->br_stack_sz_plus,
2056 				    pt->mispred_all);
2057 	} else {
2058 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2059 	}
2060 
2061 	if (pt->sample_branches) {
2062 		err = intel_pt_synth_branch_sample(ptq);
2063 		if (err)
2064 			return err;
2065 	}
2066 
2067 	if (!ptq->sync_switch)
2068 		return 0;
2069 
2070 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2071 		switch (ptq->switch_state) {
2072 		case INTEL_PT_SS_NOT_TRACING:
2073 		case INTEL_PT_SS_UNKNOWN:
2074 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2075 			err = intel_pt_next_tid(pt, ptq);
2076 			if (err)
2077 				return err;
2078 			ptq->switch_state = INTEL_PT_SS_TRACING;
2079 			break;
2080 		default:
2081 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2082 			return 1;
2083 		}
2084 	} else if (!state->to_ip) {
2085 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2086 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2087 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2088 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2089 		   state->to_ip == pt->ptss_ip &&
2090 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2091 		ptq->switch_state = INTEL_PT_SS_TRACING;
2092 	}
2093 
2094 	return 0;
2095 }
2096 
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)2097 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2098 {
2099 	struct machine *machine = pt->machine;
2100 	struct map *map;
2101 	struct symbol *sym, *start;
2102 	u64 ip, switch_ip = 0;
2103 	const char *ptss;
2104 
2105 	if (ptss_ip)
2106 		*ptss_ip = 0;
2107 
2108 	map = machine__kernel_map(machine);
2109 	if (!map)
2110 		return 0;
2111 
2112 	if (map__load(map))
2113 		return 0;
2114 
2115 	start = dso__first_symbol(map->dso);
2116 
2117 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2118 		if (sym->binding == STB_GLOBAL &&
2119 		    !strcmp(sym->name, "__switch_to")) {
2120 			ip = map->unmap_ip(map, sym->start);
2121 			if (ip >= map->start && ip < map->end) {
2122 				switch_ip = ip;
2123 				break;
2124 			}
2125 		}
2126 	}
2127 
2128 	if (!switch_ip || !ptss_ip)
2129 		return 0;
2130 
2131 	if (pt->have_sched_switch == 1)
2132 		ptss = "perf_trace_sched_switch";
2133 	else
2134 		ptss = "__perf_event_task_sched_out";
2135 
2136 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2137 		if (!strcmp(sym->name, ptss)) {
2138 			ip = map->unmap_ip(map, sym->start);
2139 			if (ip >= map->start && ip < map->end) {
2140 				*ptss_ip = ip;
2141 				break;
2142 			}
2143 		}
2144 	}
2145 
2146 	return switch_ip;
2147 }
2148 
intel_pt_enable_sync_switch(struct intel_pt * pt)2149 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2150 {
2151 	unsigned int i;
2152 
2153 	pt->sync_switch = true;
2154 
2155 	for (i = 0; i < pt->queues.nr_queues; i++) {
2156 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2157 		struct intel_pt_queue *ptq = queue->priv;
2158 
2159 		if (ptq)
2160 			ptq->sync_switch = true;
2161 	}
2162 }
2163 
2164 /*
2165  * To filter against time ranges, it is only necessary to look at the next start
2166  * or end time.
2167  */
intel_pt_next_time(struct intel_pt_queue * ptq)2168 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2169 {
2170 	struct intel_pt *pt = ptq->pt;
2171 
2172 	if (ptq->sel_start) {
2173 		/* Next time is an end time */
2174 		ptq->sel_start = false;
2175 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2176 		return true;
2177 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2178 		/* Next time is a start time */
2179 		ptq->sel_start = true;
2180 		ptq->sel_idx += 1;
2181 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2182 		return true;
2183 	}
2184 
2185 	/* No next time */
2186 	return false;
2187 }
2188 
intel_pt_time_filter(struct intel_pt_queue * ptq,u64 * ff_timestamp)2189 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2190 {
2191 	int err;
2192 
2193 	while (1) {
2194 		if (ptq->sel_start) {
2195 			if (ptq->timestamp >= ptq->sel_timestamp) {
2196 				/* After start time, so consider next time */
2197 				intel_pt_next_time(ptq);
2198 				if (!ptq->sel_timestamp) {
2199 					/* No end time */
2200 					return 0;
2201 				}
2202 				/* Check against end time */
2203 				continue;
2204 			}
2205 			/* Before start time, so fast forward */
2206 			ptq->have_sample = false;
2207 			if (ptq->sel_timestamp > *ff_timestamp) {
2208 				if (ptq->sync_switch) {
2209 					intel_pt_next_tid(ptq->pt, ptq);
2210 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2211 				}
2212 				*ff_timestamp = ptq->sel_timestamp;
2213 				err = intel_pt_fast_forward(ptq->decoder,
2214 							    ptq->sel_timestamp);
2215 				if (err)
2216 					return err;
2217 			}
2218 			return 0;
2219 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2220 			/* After end time, so consider next time */
2221 			if (!intel_pt_next_time(ptq)) {
2222 				/* No next time range, so stop decoding */
2223 				ptq->have_sample = false;
2224 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2225 				return 1;
2226 			}
2227 			/* Check against next start time */
2228 			continue;
2229 		} else {
2230 			/* Before end time */
2231 			return 0;
2232 		}
2233 	}
2234 }
2235 
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)2236 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2237 {
2238 	const struct intel_pt_state *state = ptq->state;
2239 	struct intel_pt *pt = ptq->pt;
2240 	u64 ff_timestamp = 0;
2241 	int err;
2242 
2243 	if (!pt->kernel_start) {
2244 		pt->kernel_start = machine__kernel_start(pt->machine);
2245 		if (pt->per_cpu_mmaps &&
2246 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2247 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2248 		    !pt->sampling_mode) {
2249 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2250 			if (pt->switch_ip) {
2251 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2252 					     pt->switch_ip, pt->ptss_ip);
2253 				intel_pt_enable_sync_switch(pt);
2254 			}
2255 		}
2256 	}
2257 
2258 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2259 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2260 	while (1) {
2261 		err = intel_pt_sample(ptq);
2262 		if (err)
2263 			return err;
2264 
2265 		state = intel_pt_decode(ptq->decoder);
2266 		if (state->err) {
2267 			if (state->err == INTEL_PT_ERR_NODATA)
2268 				return 1;
2269 			if (ptq->sync_switch &&
2270 			    state->from_ip >= pt->kernel_start) {
2271 				ptq->sync_switch = false;
2272 				intel_pt_next_tid(pt, ptq);
2273 			}
2274 			ptq->timestamp = state->est_timestamp;
2275 			if (pt->synth_opts.errors) {
2276 				err = intel_ptq_synth_error(ptq, state);
2277 				if (err)
2278 					return err;
2279 			}
2280 			continue;
2281 		}
2282 
2283 		ptq->state = state;
2284 		ptq->have_sample = true;
2285 		intel_pt_sample_flags(ptq);
2286 
2287 		/* Use estimated TSC upon return to user space */
2288 		if (pt->est_tsc &&
2289 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2290 		    state->to_ip && state->to_ip < pt->kernel_start) {
2291 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2292 				     state->timestamp, state->est_timestamp);
2293 			ptq->timestamp = state->est_timestamp;
2294 		/* Use estimated TSC in unknown switch state */
2295 		} else if (ptq->sync_switch &&
2296 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2297 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2298 			   ptq->next_tid == -1) {
2299 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2300 				     state->timestamp, state->est_timestamp);
2301 			ptq->timestamp = state->est_timestamp;
2302 		} else if (state->timestamp > ptq->timestamp) {
2303 			ptq->timestamp = state->timestamp;
2304 		}
2305 
2306 		if (ptq->sel_timestamp) {
2307 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2308 			if (err)
2309 				return err;
2310 		}
2311 
2312 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2313 			*timestamp = ptq->timestamp;
2314 			return 0;
2315 		}
2316 	}
2317 	return 0;
2318 }
2319 
intel_pt_update_queues(struct intel_pt * pt)2320 static inline int intel_pt_update_queues(struct intel_pt *pt)
2321 {
2322 	if (pt->queues.new_data) {
2323 		pt->queues.new_data = false;
2324 		return intel_pt_setup_queues(pt);
2325 	}
2326 	return 0;
2327 }
2328 
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)2329 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2330 {
2331 	unsigned int queue_nr;
2332 	u64 ts;
2333 	int ret;
2334 
2335 	while (1) {
2336 		struct auxtrace_queue *queue;
2337 		struct intel_pt_queue *ptq;
2338 
2339 		if (!pt->heap.heap_cnt)
2340 			return 0;
2341 
2342 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2343 			return 0;
2344 
2345 		queue_nr = pt->heap.heap_array[0].queue_nr;
2346 		queue = &pt->queues.queue_array[queue_nr];
2347 		ptq = queue->priv;
2348 
2349 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2350 			     queue_nr, pt->heap.heap_array[0].ordinal,
2351 			     timestamp);
2352 
2353 		auxtrace_heap__pop(&pt->heap);
2354 
2355 		if (pt->heap.heap_cnt) {
2356 			ts = pt->heap.heap_array[0].ordinal + 1;
2357 			if (ts > timestamp)
2358 				ts = timestamp;
2359 		} else {
2360 			ts = timestamp;
2361 		}
2362 
2363 		intel_pt_set_pid_tid_cpu(pt, queue);
2364 
2365 		ret = intel_pt_run_decoder(ptq, &ts);
2366 
2367 		if (ret < 0) {
2368 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2369 			return ret;
2370 		}
2371 
2372 		if (!ret) {
2373 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2374 			if (ret < 0)
2375 				return ret;
2376 		} else {
2377 			ptq->on_heap = false;
2378 		}
2379 	}
2380 
2381 	return 0;
2382 }
2383 
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)2384 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2385 					    u64 time_)
2386 {
2387 	struct auxtrace_queues *queues = &pt->queues;
2388 	unsigned int i;
2389 	u64 ts = 0;
2390 
2391 	for (i = 0; i < queues->nr_queues; i++) {
2392 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2393 		struct intel_pt_queue *ptq = queue->priv;
2394 
2395 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2396 			ptq->time = time_;
2397 			intel_pt_set_pid_tid_cpu(pt, queue);
2398 			intel_pt_run_decoder(ptq, &ts);
2399 		}
2400 	}
2401 	return 0;
2402 }
2403 
intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue * ptq,struct auxtrace_queue * queue,struct perf_sample * sample)2404 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2405 					    struct auxtrace_queue *queue,
2406 					    struct perf_sample *sample)
2407 {
2408 	struct machine *m = ptq->pt->machine;
2409 
2410 	ptq->pid = sample->pid;
2411 	ptq->tid = sample->tid;
2412 	ptq->cpu = queue->cpu;
2413 
2414 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2415 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2416 
2417 	thread__zput(ptq->thread);
2418 
2419 	if (ptq->tid == -1)
2420 		return;
2421 
2422 	if (ptq->pid == -1) {
2423 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2424 		if (ptq->thread)
2425 			ptq->pid = ptq->thread->pid_;
2426 		return;
2427 	}
2428 
2429 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2430 }
2431 
intel_pt_process_timeless_sample(struct intel_pt * pt,struct perf_sample * sample)2432 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2433 					    struct perf_sample *sample)
2434 {
2435 	struct auxtrace_queue *queue;
2436 	struct intel_pt_queue *ptq;
2437 	u64 ts = 0;
2438 
2439 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2440 	if (!queue)
2441 		return -EINVAL;
2442 
2443 	ptq = queue->priv;
2444 	if (!ptq)
2445 		return 0;
2446 
2447 	ptq->stop = false;
2448 	ptq->time = sample->time;
2449 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2450 	intel_pt_run_decoder(ptq, &ts);
2451 	return 0;
2452 }
2453 
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)2454 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2455 {
2456 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2457 				    sample->pid, sample->tid, 0, sample->time);
2458 }
2459 
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)2460 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2461 {
2462 	unsigned i, j;
2463 
2464 	if (cpu < 0 || !pt->queues.nr_queues)
2465 		return NULL;
2466 
2467 	if ((unsigned)cpu >= pt->queues.nr_queues)
2468 		i = pt->queues.nr_queues - 1;
2469 	else
2470 		i = cpu;
2471 
2472 	if (pt->queues.queue_array[i].cpu == cpu)
2473 		return pt->queues.queue_array[i].priv;
2474 
2475 	for (j = 0; i > 0; j++) {
2476 		if (pt->queues.queue_array[--i].cpu == cpu)
2477 			return pt->queues.queue_array[i].priv;
2478 	}
2479 
2480 	for (; j < pt->queues.nr_queues; j++) {
2481 		if (pt->queues.queue_array[j].cpu == cpu)
2482 			return pt->queues.queue_array[j].priv;
2483 	}
2484 
2485 	return NULL;
2486 }
2487 
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)2488 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2489 				u64 timestamp)
2490 {
2491 	struct intel_pt_queue *ptq;
2492 	int err;
2493 
2494 	if (!pt->sync_switch)
2495 		return 1;
2496 
2497 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2498 	if (!ptq || !ptq->sync_switch)
2499 		return 1;
2500 
2501 	switch (ptq->switch_state) {
2502 	case INTEL_PT_SS_NOT_TRACING:
2503 		break;
2504 	case INTEL_PT_SS_UNKNOWN:
2505 	case INTEL_PT_SS_TRACING:
2506 		ptq->next_tid = tid;
2507 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2508 		return 0;
2509 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2510 		if (!ptq->on_heap) {
2511 			ptq->timestamp = perf_time_to_tsc(timestamp,
2512 							  &pt->tc);
2513 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2514 						 ptq->timestamp);
2515 			if (err)
2516 				return err;
2517 			ptq->on_heap = true;
2518 		}
2519 		ptq->switch_state = INTEL_PT_SS_TRACING;
2520 		break;
2521 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2522 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2523 		break;
2524 	default:
2525 		break;
2526 	}
2527 
2528 	ptq->next_tid = -1;
2529 
2530 	return 1;
2531 }
2532 
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)2533 static int intel_pt_process_switch(struct intel_pt *pt,
2534 				   struct perf_sample *sample)
2535 {
2536 	struct evsel *evsel;
2537 	pid_t tid;
2538 	int cpu, ret;
2539 
2540 	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2541 	if (evsel != pt->switch_evsel)
2542 		return 0;
2543 
2544 	tid = evsel__intval(evsel, sample, "next_pid");
2545 	cpu = sample->cpu;
2546 
2547 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2548 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2549 		     &pt->tc));
2550 
2551 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2552 	if (ret <= 0)
2553 		return ret;
2554 
2555 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2556 }
2557 
intel_pt_context_switch_in(struct intel_pt * pt,struct perf_sample * sample)2558 static int intel_pt_context_switch_in(struct intel_pt *pt,
2559 				      struct perf_sample *sample)
2560 {
2561 	pid_t pid = sample->pid;
2562 	pid_t tid = sample->tid;
2563 	int cpu = sample->cpu;
2564 
2565 	if (pt->sync_switch) {
2566 		struct intel_pt_queue *ptq;
2567 
2568 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2569 		if (ptq && ptq->sync_switch) {
2570 			ptq->next_tid = -1;
2571 			switch (ptq->switch_state) {
2572 			case INTEL_PT_SS_NOT_TRACING:
2573 			case INTEL_PT_SS_UNKNOWN:
2574 			case INTEL_PT_SS_TRACING:
2575 				break;
2576 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2577 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2578 				ptq->switch_state = INTEL_PT_SS_TRACING;
2579 				break;
2580 			default:
2581 				break;
2582 			}
2583 		}
2584 	}
2585 
2586 	/*
2587 	 * If the current tid has not been updated yet, ensure it is now that
2588 	 * a "switch in" event has occurred.
2589 	 */
2590 	if (machine__get_current_tid(pt->machine, cpu) == tid)
2591 		return 0;
2592 
2593 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2594 }
2595 
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)2596 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2597 				   struct perf_sample *sample)
2598 {
2599 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2600 	pid_t pid, tid;
2601 	int cpu, ret;
2602 
2603 	cpu = sample->cpu;
2604 
2605 	if (pt->have_sched_switch == 3) {
2606 		if (!out)
2607 			return intel_pt_context_switch_in(pt, sample);
2608 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2609 			pr_err("Expecting CPU-wide context switch event\n");
2610 			return -EINVAL;
2611 		}
2612 		pid = event->context_switch.next_prev_pid;
2613 		tid = event->context_switch.next_prev_tid;
2614 	} else {
2615 		if (out)
2616 			return 0;
2617 		pid = sample->pid;
2618 		tid = sample->tid;
2619 	}
2620 
2621 	if (tid == -1)
2622 		intel_pt_log("context_switch event has no tid\n");
2623 
2624 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2625 	if (ret <= 0)
2626 		return ret;
2627 
2628 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2629 }
2630 
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)2631 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2632 					 union perf_event *event,
2633 					 struct perf_sample *sample)
2634 {
2635 	if (!pt->per_cpu_mmaps)
2636 		return 0;
2637 
2638 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2639 		     sample->cpu, event->itrace_start.pid,
2640 		     event->itrace_start.tid, sample->time,
2641 		     perf_time_to_tsc(sample->time, &pt->tc));
2642 
2643 	return machine__set_current_tid(pt->machine, sample->cpu,
2644 					event->itrace_start.pid,
2645 					event->itrace_start.tid);
2646 }
2647 
intel_pt_find_map(struct thread * thread,u8 cpumode,u64 addr,struct addr_location * al)2648 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2649 			     struct addr_location *al)
2650 {
2651 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
2652 		if (!thread__find_map(thread, cpumode, addr, al))
2653 			return -1;
2654 	}
2655 
2656 	return 0;
2657 }
2658 
2659 /* Invalidate all instruction cache entries that overlap the text poke */
intel_pt_text_poke(struct intel_pt * pt,union perf_event * event)2660 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2661 {
2662 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2663 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2664 	/* Assume text poke begins in a basic block no more than 4096 bytes */
2665 	int cnt = 4096 + event->text_poke.new_len;
2666 	struct thread *thread = pt->unknown_thread;
2667 	struct addr_location al = { .map = NULL };
2668 	struct machine *machine = pt->machine;
2669 	struct intel_pt_cache_entry *e;
2670 	u64 offset;
2671 
2672 	if (!event->text_poke.new_len)
2673 		return 0;
2674 
2675 	for (; cnt; cnt--, addr--) {
2676 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2677 			if (addr < event->text_poke.addr)
2678 				return 0;
2679 			continue;
2680 		}
2681 
2682 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
2683 			continue;
2684 
2685 		offset = al.map->map_ip(al.map, addr);
2686 
2687 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2688 		if (!e)
2689 			continue;
2690 
2691 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2692 			/*
2693 			 * No overlap. Working backwards there cannot be another
2694 			 * basic block that overlaps the text poke if there is a
2695 			 * branch instruction before the text poke address.
2696 			 */
2697 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
2698 				return 0;
2699 		} else {
2700 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
2701 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2702 				     al.map->dso->long_name, addr);
2703 		}
2704 	}
2705 
2706 	return 0;
2707 }
2708 
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2709 static int intel_pt_process_event(struct perf_session *session,
2710 				  union perf_event *event,
2711 				  struct perf_sample *sample,
2712 				  struct perf_tool *tool)
2713 {
2714 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2715 					   auxtrace);
2716 	u64 timestamp;
2717 	int err = 0;
2718 
2719 	if (dump_trace)
2720 		return 0;
2721 
2722 	if (!tool->ordered_events) {
2723 		pr_err("Intel Processor Trace requires ordered events\n");
2724 		return -EINVAL;
2725 	}
2726 
2727 	if (sample->time && sample->time != (u64)-1)
2728 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2729 	else
2730 		timestamp = 0;
2731 
2732 	if (timestamp || pt->timeless_decoding) {
2733 		err = intel_pt_update_queues(pt);
2734 		if (err)
2735 			return err;
2736 	}
2737 
2738 	if (pt->timeless_decoding) {
2739 		if (pt->sampling_mode) {
2740 			if (sample->aux_sample.size)
2741 				err = intel_pt_process_timeless_sample(pt,
2742 								       sample);
2743 		} else if (event->header.type == PERF_RECORD_EXIT) {
2744 			err = intel_pt_process_timeless_queues(pt,
2745 							       event->fork.tid,
2746 							       sample->time);
2747 		}
2748 	} else if (timestamp) {
2749 		err = intel_pt_process_queues(pt, timestamp);
2750 	}
2751 	if (err)
2752 		return err;
2753 
2754 	if (event->header.type == PERF_RECORD_SAMPLE) {
2755 		if (pt->synth_opts.add_callchain && !sample->callchain)
2756 			intel_pt_add_callchain(pt, sample);
2757 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2758 			intel_pt_add_br_stack(pt, sample);
2759 	}
2760 
2761 	if (event->header.type == PERF_RECORD_AUX &&
2762 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2763 	    pt->synth_opts.errors) {
2764 		err = intel_pt_lost(pt, sample);
2765 		if (err)
2766 			return err;
2767 	}
2768 
2769 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2770 		err = intel_pt_process_switch(pt, sample);
2771 	else if (event->header.type == PERF_RECORD_ITRACE_START)
2772 		err = intel_pt_process_itrace_start(pt, event, sample);
2773 	else if (event->header.type == PERF_RECORD_SWITCH ||
2774 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2775 		err = intel_pt_context_switch(pt, event, sample);
2776 
2777 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2778 		err = intel_pt_text_poke(pt, event);
2779 
2780 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2781 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2782 			     event->header.type, sample->cpu, sample->time, timestamp);
2783 		intel_pt_log_event(event);
2784 	}
2785 
2786 	return err;
2787 }
2788 
intel_pt_flush(struct perf_session * session,struct perf_tool * tool)2789 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2790 {
2791 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2792 					   auxtrace);
2793 	int ret;
2794 
2795 	if (dump_trace)
2796 		return 0;
2797 
2798 	if (!tool->ordered_events)
2799 		return -EINVAL;
2800 
2801 	ret = intel_pt_update_queues(pt);
2802 	if (ret < 0)
2803 		return ret;
2804 
2805 	if (pt->timeless_decoding)
2806 		return intel_pt_process_timeless_queues(pt, -1,
2807 							MAX_TIMESTAMP - 1);
2808 
2809 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2810 }
2811 
intel_pt_free_events(struct perf_session * session)2812 static void intel_pt_free_events(struct perf_session *session)
2813 {
2814 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2815 					   auxtrace);
2816 	struct auxtrace_queues *queues = &pt->queues;
2817 	unsigned int i;
2818 
2819 	for (i = 0; i < queues->nr_queues; i++) {
2820 		intel_pt_free_queue(queues->queue_array[i].priv);
2821 		queues->queue_array[i].priv = NULL;
2822 	}
2823 	intel_pt_log_disable();
2824 	auxtrace_queues__free(queues);
2825 }
2826 
intel_pt_free(struct perf_session * session)2827 static void intel_pt_free(struct perf_session *session)
2828 {
2829 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2830 					   auxtrace);
2831 
2832 	auxtrace_heap__free(&pt->heap);
2833 	intel_pt_free_events(session);
2834 	session->auxtrace = NULL;
2835 	thread__put(pt->unknown_thread);
2836 	addr_filters__exit(&pt->filts);
2837 	zfree(&pt->chain);
2838 	zfree(&pt->filter);
2839 	zfree(&pt->time_ranges);
2840 	free(pt);
2841 }
2842 
intel_pt_evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)2843 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2844 				       struct evsel *evsel)
2845 {
2846 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2847 					   auxtrace);
2848 
2849 	return evsel->core.attr.type == pt->pmu_type;
2850 }
2851 
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)2852 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2853 					   union perf_event *event,
2854 					   struct perf_tool *tool __maybe_unused)
2855 {
2856 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2857 					   auxtrace);
2858 
2859 	if (!pt->data_queued) {
2860 		struct auxtrace_buffer *buffer;
2861 		off_t data_offset;
2862 		int fd = perf_data__fd(session->data);
2863 		int err;
2864 
2865 		if (perf_data__is_pipe(session->data)) {
2866 			data_offset = 0;
2867 		} else {
2868 			data_offset = lseek(fd, 0, SEEK_CUR);
2869 			if (data_offset == -1)
2870 				return -errno;
2871 		}
2872 
2873 		err = auxtrace_queues__add_event(&pt->queues, session, event,
2874 						 data_offset, &buffer);
2875 		if (err)
2876 			return err;
2877 
2878 		/* Dump here now we have copied a piped trace out of the pipe */
2879 		if (dump_trace) {
2880 			if (auxtrace_buffer__get_data(buffer, fd)) {
2881 				intel_pt_dump_event(pt, buffer->data,
2882 						    buffer->size);
2883 				auxtrace_buffer__put_data(buffer);
2884 			}
2885 		}
2886 	}
2887 
2888 	return 0;
2889 }
2890 
intel_pt_queue_data(struct perf_session * session,struct perf_sample * sample,union perf_event * event,u64 data_offset)2891 static int intel_pt_queue_data(struct perf_session *session,
2892 			       struct perf_sample *sample,
2893 			       union perf_event *event, u64 data_offset)
2894 {
2895 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2896 					   auxtrace);
2897 	u64 timestamp;
2898 
2899 	if (event) {
2900 		return auxtrace_queues__add_event(&pt->queues, session, event,
2901 						  data_offset, NULL);
2902 	}
2903 
2904 	if (sample->time && sample->time != (u64)-1)
2905 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2906 	else
2907 		timestamp = 0;
2908 
2909 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
2910 					   data_offset, timestamp);
2911 }
2912 
2913 struct intel_pt_synth {
2914 	struct perf_tool dummy_tool;
2915 	struct perf_session *session;
2916 };
2917 
intel_pt_event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)2918 static int intel_pt_event_synth(struct perf_tool *tool,
2919 				union perf_event *event,
2920 				struct perf_sample *sample __maybe_unused,
2921 				struct machine *machine __maybe_unused)
2922 {
2923 	struct intel_pt_synth *intel_pt_synth =
2924 			container_of(tool, struct intel_pt_synth, dummy_tool);
2925 
2926 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2927 						 NULL);
2928 }
2929 
intel_pt_synth_event(struct perf_session * session,const char * name,struct perf_event_attr * attr,u64 id)2930 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2931 				struct perf_event_attr *attr, u64 id)
2932 {
2933 	struct intel_pt_synth intel_pt_synth;
2934 	int err;
2935 
2936 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2937 		 name, id, (u64)attr->sample_type);
2938 
2939 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2940 	intel_pt_synth.session = session;
2941 
2942 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2943 					  &id, intel_pt_event_synth);
2944 	if (err)
2945 		pr_err("%s: failed to synthesize '%s' event type\n",
2946 		       __func__, name);
2947 
2948 	return err;
2949 }
2950 
intel_pt_set_event_name(struct evlist * evlist,u64 id,const char * name)2951 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2952 				    const char *name)
2953 {
2954 	struct evsel *evsel;
2955 
2956 	evlist__for_each_entry(evlist, evsel) {
2957 		if (evsel->core.id && evsel->core.id[0] == id) {
2958 			if (evsel->name)
2959 				zfree(&evsel->name);
2960 			evsel->name = strdup(name);
2961 			break;
2962 		}
2963 	}
2964 }
2965 
intel_pt_evsel(struct intel_pt * pt,struct evlist * evlist)2966 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2967 					 struct evlist *evlist)
2968 {
2969 	struct evsel *evsel;
2970 
2971 	evlist__for_each_entry(evlist, evsel) {
2972 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2973 			return evsel;
2974 	}
2975 
2976 	return NULL;
2977 }
2978 
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)2979 static int intel_pt_synth_events(struct intel_pt *pt,
2980 				 struct perf_session *session)
2981 {
2982 	struct evlist *evlist = session->evlist;
2983 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
2984 	struct perf_event_attr attr;
2985 	u64 id;
2986 	int err;
2987 
2988 	if (!evsel) {
2989 		pr_debug("There are no selected events with Intel Processor Trace data\n");
2990 		return 0;
2991 	}
2992 
2993 	memset(&attr, 0, sizeof(struct perf_event_attr));
2994 	attr.size = sizeof(struct perf_event_attr);
2995 	attr.type = PERF_TYPE_HARDWARE;
2996 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2997 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2998 			    PERF_SAMPLE_PERIOD;
2999 	if (pt->timeless_decoding)
3000 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3001 	else
3002 		attr.sample_type |= PERF_SAMPLE_TIME;
3003 	if (!pt->per_cpu_mmaps)
3004 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3005 	attr.exclude_user = evsel->core.attr.exclude_user;
3006 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3007 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3008 	attr.exclude_host = evsel->core.attr.exclude_host;
3009 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3010 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3011 	attr.read_format = evsel->core.attr.read_format;
3012 
3013 	id = evsel->core.id[0] + 1000000000;
3014 	if (!id)
3015 		id = 1;
3016 
3017 	if (pt->synth_opts.branches) {
3018 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3019 		attr.sample_period = 1;
3020 		attr.sample_type |= PERF_SAMPLE_ADDR;
3021 		err = intel_pt_synth_event(session, "branches", &attr, id);
3022 		if (err)
3023 			return err;
3024 		pt->sample_branches = true;
3025 		pt->branches_sample_type = attr.sample_type;
3026 		pt->branches_id = id;
3027 		id += 1;
3028 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3029 	}
3030 
3031 	if (pt->synth_opts.callchain)
3032 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3033 	if (pt->synth_opts.last_branch) {
3034 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3035 		/*
3036 		 * We don't use the hardware index, but the sample generation
3037 		 * code uses the new format branch_stack with this field,
3038 		 * so the event attributes must indicate that it's present.
3039 		 */
3040 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3041 	}
3042 
3043 	if (pt->synth_opts.instructions) {
3044 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3045 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3046 			attr.sample_period =
3047 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3048 		else
3049 			attr.sample_period = pt->synth_opts.period;
3050 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3051 		if (err)
3052 			return err;
3053 		pt->sample_instructions = true;
3054 		pt->instructions_sample_type = attr.sample_type;
3055 		pt->instructions_id = id;
3056 		id += 1;
3057 	}
3058 
3059 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3060 	attr.sample_period = 1;
3061 
3062 	if (pt->synth_opts.transactions) {
3063 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3064 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3065 		if (err)
3066 			return err;
3067 		pt->sample_transactions = true;
3068 		pt->transactions_sample_type = attr.sample_type;
3069 		pt->transactions_id = id;
3070 		intel_pt_set_event_name(evlist, id, "transactions");
3071 		id += 1;
3072 	}
3073 
3074 	attr.type = PERF_TYPE_SYNTH;
3075 	attr.sample_type |= PERF_SAMPLE_RAW;
3076 
3077 	if (pt->synth_opts.ptwrites) {
3078 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3079 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3080 		if (err)
3081 			return err;
3082 		pt->sample_ptwrites = true;
3083 		pt->ptwrites_sample_type = attr.sample_type;
3084 		pt->ptwrites_id = id;
3085 		intel_pt_set_event_name(evlist, id, "ptwrite");
3086 		id += 1;
3087 	}
3088 
3089 	if (pt->synth_opts.pwr_events) {
3090 		pt->sample_pwr_events = true;
3091 		pt->pwr_events_sample_type = attr.sample_type;
3092 
3093 		attr.config = PERF_SYNTH_INTEL_CBR;
3094 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3095 		if (err)
3096 			return err;
3097 		pt->cbr_id = id;
3098 		intel_pt_set_event_name(evlist, id, "cbr");
3099 		id += 1;
3100 	}
3101 
3102 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3103 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3104 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3105 		if (err)
3106 			return err;
3107 		pt->mwait_id = id;
3108 		intel_pt_set_event_name(evlist, id, "mwait");
3109 		id += 1;
3110 
3111 		attr.config = PERF_SYNTH_INTEL_PWRE;
3112 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3113 		if (err)
3114 			return err;
3115 		pt->pwre_id = id;
3116 		intel_pt_set_event_name(evlist, id, "pwre");
3117 		id += 1;
3118 
3119 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3120 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3121 		if (err)
3122 			return err;
3123 		pt->exstop_id = id;
3124 		intel_pt_set_event_name(evlist, id, "exstop");
3125 		id += 1;
3126 
3127 		attr.config = PERF_SYNTH_INTEL_PWRX;
3128 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3129 		if (err)
3130 			return err;
3131 		pt->pwrx_id = id;
3132 		intel_pt_set_event_name(evlist, id, "pwrx");
3133 		id += 1;
3134 	}
3135 
3136 	return 0;
3137 }
3138 
intel_pt_setup_pebs_events(struct intel_pt * pt)3139 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3140 {
3141 	struct evsel *evsel;
3142 
3143 	if (!pt->synth_opts.other_events)
3144 		return;
3145 
3146 	evlist__for_each_entry(pt->session->evlist, evsel) {
3147 		if (evsel->core.attr.aux_output && evsel->core.id) {
3148 			pt->sample_pebs = true;
3149 			pt->pebs_evsel = evsel;
3150 			return;
3151 		}
3152 	}
3153 }
3154 
intel_pt_find_sched_switch(struct evlist * evlist)3155 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3156 {
3157 	struct evsel *evsel;
3158 
3159 	evlist__for_each_entry_reverse(evlist, evsel) {
3160 		const char *name = evsel__name(evsel);
3161 
3162 		if (!strcmp(name, "sched:sched_switch"))
3163 			return evsel;
3164 	}
3165 
3166 	return NULL;
3167 }
3168 
intel_pt_find_switch(struct evlist * evlist)3169 static bool intel_pt_find_switch(struct evlist *evlist)
3170 {
3171 	struct evsel *evsel;
3172 
3173 	evlist__for_each_entry(evlist, evsel) {
3174 		if (evsel->core.attr.context_switch)
3175 			return true;
3176 	}
3177 
3178 	return false;
3179 }
3180 
intel_pt_perf_config(const char * var,const char * value,void * data)3181 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3182 {
3183 	struct intel_pt *pt = data;
3184 
3185 	if (!strcmp(var, "intel-pt.mispred-all"))
3186 		pt->mispred_all = perf_config_bool(var, value);
3187 
3188 	return 0;
3189 }
3190 
3191 /* Find least TSC which converts to ns or later */
intel_pt_tsc_start(u64 ns,struct intel_pt * pt)3192 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3193 {
3194 	u64 tsc, tm;
3195 
3196 	tsc = perf_time_to_tsc(ns, &pt->tc);
3197 
3198 	while (1) {
3199 		tm = tsc_to_perf_time(tsc, &pt->tc);
3200 		if (tm < ns)
3201 			break;
3202 		tsc -= 1;
3203 	}
3204 
3205 	while (tm < ns)
3206 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3207 
3208 	return tsc;
3209 }
3210 
3211 /* Find greatest TSC which converts to ns or earlier */
intel_pt_tsc_end(u64 ns,struct intel_pt * pt)3212 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3213 {
3214 	u64 tsc, tm;
3215 
3216 	tsc = perf_time_to_tsc(ns, &pt->tc);
3217 
3218 	while (1) {
3219 		tm = tsc_to_perf_time(tsc, &pt->tc);
3220 		if (tm > ns)
3221 			break;
3222 		tsc += 1;
3223 	}
3224 
3225 	while (tm > ns)
3226 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3227 
3228 	return tsc;
3229 }
3230 
intel_pt_setup_time_ranges(struct intel_pt * pt,struct itrace_synth_opts * opts)3231 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3232 				      struct itrace_synth_opts *opts)
3233 {
3234 	struct perf_time_interval *p = opts->ptime_range;
3235 	int n = opts->range_num;
3236 	int i;
3237 
3238 	if (!n || !p || pt->timeless_decoding)
3239 		return 0;
3240 
3241 	pt->time_ranges = calloc(n, sizeof(struct range));
3242 	if (!pt->time_ranges)
3243 		return -ENOMEM;
3244 
3245 	pt->range_cnt = n;
3246 
3247 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3248 
3249 	for (i = 0; i < n; i++) {
3250 		struct range *r = &pt->time_ranges[i];
3251 		u64 ts = p[i].start;
3252 		u64 te = p[i].end;
3253 
3254 		/*
3255 		 * Take care to ensure the TSC range matches the perf-time range
3256 		 * when converted back to perf-time.
3257 		 */
3258 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3259 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3260 
3261 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3262 			     i, ts, te);
3263 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3264 			     i, r->start, r->end);
3265 	}
3266 
3267 	return 0;
3268 }
3269 
3270 static const char * const intel_pt_info_fmts[] = {
3271 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3272 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3273 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3274 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3275 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3276 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3277 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3278 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3279 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3280 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3281 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3282 	[INTEL_PT_MTC_FREQ_BITS]	= "  MTC freq bits       %#"PRIx64"\n",
3283 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3284 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3285 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3286 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3287 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3288 };
3289 
intel_pt_print_info(__u64 * arr,int start,int finish)3290 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3291 {
3292 	int i;
3293 
3294 	if (!dump_trace)
3295 		return;
3296 
3297 	for (i = start; i <= finish; i++) {
3298 		const char *fmt = intel_pt_info_fmts[i];
3299 
3300 		if (fmt)
3301 			fprintf(stdout, fmt, arr[i]);
3302 	}
3303 }
3304 
intel_pt_print_info_str(const char * name,const char * str)3305 static void intel_pt_print_info_str(const char *name, const char *str)
3306 {
3307 	if (!dump_trace)
3308 		return;
3309 
3310 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3311 }
3312 
intel_pt_has(struct perf_record_auxtrace_info * auxtrace_info,int pos)3313 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3314 {
3315 	return auxtrace_info->header.size >=
3316 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3317 }
3318 
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)3319 int intel_pt_process_auxtrace_info(union perf_event *event,
3320 				   struct perf_session *session)
3321 {
3322 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3323 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3324 	struct intel_pt *pt;
3325 	void *info_end;
3326 	__u64 *info;
3327 	int err;
3328 
3329 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3330 					min_sz)
3331 		return -EINVAL;
3332 
3333 	pt = zalloc(sizeof(struct intel_pt));
3334 	if (!pt)
3335 		return -ENOMEM;
3336 
3337 	addr_filters__init(&pt->filts);
3338 
3339 	err = perf_config(intel_pt_perf_config, pt);
3340 	if (err)
3341 		goto err_free;
3342 
3343 	err = auxtrace_queues__init(&pt->queues);
3344 	if (err)
3345 		goto err_free;
3346 
3347 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3348 
3349 	pt->session = session;
3350 	pt->machine = &session->machines.host; /* No kvm support */
3351 	pt->auxtrace_type = auxtrace_info->type;
3352 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3353 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3354 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3355 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3356 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3357 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3358 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3359 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3360 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3361 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3362 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3363 			    INTEL_PT_PER_CPU_MMAPS);
3364 
3365 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3366 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3367 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3368 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3369 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3370 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3371 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3372 				    INTEL_PT_CYC_BIT);
3373 	}
3374 
3375 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3376 		pt->max_non_turbo_ratio =
3377 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3378 		intel_pt_print_info(&auxtrace_info->priv[0],
3379 				    INTEL_PT_MAX_NONTURBO_RATIO,
3380 				    INTEL_PT_MAX_NONTURBO_RATIO);
3381 	}
3382 
3383 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3384 	info_end = (void *)info + auxtrace_info->header.size;
3385 
3386 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3387 		size_t len;
3388 
3389 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3390 		intel_pt_print_info(&auxtrace_info->priv[0],
3391 				    INTEL_PT_FILTER_STR_LEN,
3392 				    INTEL_PT_FILTER_STR_LEN);
3393 		if (len) {
3394 			const char *filter = (const char *)info;
3395 
3396 			len = roundup(len + 1, 8);
3397 			info += len >> 3;
3398 			if ((void *)info > info_end) {
3399 				pr_err("%s: bad filter string length\n", __func__);
3400 				err = -EINVAL;
3401 				goto err_free_queues;
3402 			}
3403 			pt->filter = memdup(filter, len);
3404 			if (!pt->filter) {
3405 				err = -ENOMEM;
3406 				goto err_free_queues;
3407 			}
3408 			if (session->header.needs_swap)
3409 				mem_bswap_64(pt->filter, len);
3410 			if (pt->filter[len - 1]) {
3411 				pr_err("%s: filter string not null terminated\n", __func__);
3412 				err = -EINVAL;
3413 				goto err_free_queues;
3414 			}
3415 			err = addr_filters__parse_bare_filter(&pt->filts,
3416 							      filter);
3417 			if (err)
3418 				goto err_free_queues;
3419 		}
3420 		intel_pt_print_info_str("Filter string", pt->filter);
3421 	}
3422 
3423 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3424 	if (pt->timeless_decoding && !pt->tc.time_mult)
3425 		pt->tc.time_mult = 1;
3426 	pt->have_tsc = intel_pt_have_tsc(pt);
3427 	pt->sampling_mode = intel_pt_sampling_mode(pt);
3428 	pt->est_tsc = !pt->timeless_decoding;
3429 
3430 	pt->unknown_thread = thread__new(999999999, 999999999);
3431 	if (!pt->unknown_thread) {
3432 		err = -ENOMEM;
3433 		goto err_free_queues;
3434 	}
3435 
3436 	/*
3437 	 * Since this thread will not be kept in any rbtree not in a
3438 	 * list, initialize its list node so that at thread__put() the
3439 	 * current thread lifetime assuption is kept and we don't segfault
3440 	 * at list_del_init().
3441 	 */
3442 	INIT_LIST_HEAD(&pt->unknown_thread->node);
3443 
3444 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3445 	if (err)
3446 		goto err_delete_thread;
3447 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3448 		err = -ENOMEM;
3449 		goto err_delete_thread;
3450 	}
3451 
3452 	pt->auxtrace.process_event = intel_pt_process_event;
3453 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3454 	pt->auxtrace.queue_data = intel_pt_queue_data;
3455 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3456 	pt->auxtrace.flush_events = intel_pt_flush;
3457 	pt->auxtrace.free_events = intel_pt_free_events;
3458 	pt->auxtrace.free = intel_pt_free;
3459 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3460 	session->auxtrace = &pt->auxtrace;
3461 
3462 	if (dump_trace)
3463 		return 0;
3464 
3465 	if (pt->have_sched_switch == 1) {
3466 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3467 		if (!pt->switch_evsel) {
3468 			pr_err("%s: missing sched_switch event\n", __func__);
3469 			err = -EINVAL;
3470 			goto err_delete_thread;
3471 		}
3472 	} else if (pt->have_sched_switch == 2 &&
3473 		   !intel_pt_find_switch(session->evlist)) {
3474 		pr_err("%s: missing context_switch attribute flag\n", __func__);
3475 		err = -EINVAL;
3476 		goto err_delete_thread;
3477 	}
3478 
3479 	if (session->itrace_synth_opts->set) {
3480 		pt->synth_opts = *session->itrace_synth_opts;
3481 	} else {
3482 		itrace_synth_opts__set_default(&pt->synth_opts,
3483 				session->itrace_synth_opts->default_no_sample);
3484 		if (!session->itrace_synth_opts->default_no_sample &&
3485 		    !session->itrace_synth_opts->inject) {
3486 			pt->synth_opts.branches = false;
3487 			pt->synth_opts.callchain = true;
3488 			pt->synth_opts.add_callchain = true;
3489 		}
3490 		pt->synth_opts.thread_stack =
3491 				session->itrace_synth_opts->thread_stack;
3492 	}
3493 
3494 	if (pt->synth_opts.log)
3495 		intel_pt_log_enable();
3496 
3497 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3498 	if (pt->tc.time_mult) {
3499 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3500 
3501 		if (!pt->max_non_turbo_ratio)
3502 			pt->max_non_turbo_ratio =
3503 					(tsc_freq + 50000000) / 100000000;
3504 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3505 		intel_pt_log("Maximum non-turbo ratio %u\n",
3506 			     pt->max_non_turbo_ratio);
3507 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3508 	}
3509 
3510 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3511 	if (err)
3512 		goto err_delete_thread;
3513 
3514 	if (pt->synth_opts.calls)
3515 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3516 				       PERF_IP_FLAG_TRACE_END;
3517 	if (pt->synth_opts.returns)
3518 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3519 				       PERF_IP_FLAG_TRACE_BEGIN;
3520 
3521 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3522 	    !symbol_conf.use_callchain) {
3523 		symbol_conf.use_callchain = true;
3524 		if (callchain_register_param(&callchain_param) < 0) {
3525 			symbol_conf.use_callchain = false;
3526 			pt->synth_opts.callchain = false;
3527 			pt->synth_opts.add_callchain = false;
3528 		}
3529 	}
3530 
3531 	if (pt->synth_opts.add_callchain) {
3532 		err = intel_pt_callchain_init(pt);
3533 		if (err)
3534 			goto err_delete_thread;
3535 	}
3536 
3537 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3538 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3539 		pt->br_stack_sz_plus = pt->br_stack_sz;
3540 	}
3541 
3542 	if (pt->synth_opts.add_last_branch) {
3543 		err = intel_pt_br_stack_init(pt);
3544 		if (err)
3545 			goto err_delete_thread;
3546 		/*
3547 		 * Additional branch stack size to cater for tracing from the
3548 		 * actual sample ip to where the sample time is recorded.
3549 		 * Measured at about 200 branches, but generously set to 1024.
3550 		 * If kernel space is not being traced, then add just 1 for the
3551 		 * branch to kernel space.
3552 		 */
3553 		if (intel_pt_tracing_kernel(pt))
3554 			pt->br_stack_sz_plus += 1024;
3555 		else
3556 			pt->br_stack_sz_plus += 1;
3557 	}
3558 
3559 	pt->use_thread_stack = pt->synth_opts.callchain ||
3560 			       pt->synth_opts.add_callchain ||
3561 			       pt->synth_opts.thread_stack ||
3562 			       pt->synth_opts.last_branch ||
3563 			       pt->synth_opts.add_last_branch;
3564 
3565 	pt->callstack = pt->synth_opts.callchain ||
3566 			pt->synth_opts.add_callchain ||
3567 			pt->synth_opts.thread_stack;
3568 
3569 	err = intel_pt_synth_events(pt, session);
3570 	if (err)
3571 		goto err_delete_thread;
3572 
3573 	intel_pt_setup_pebs_events(pt);
3574 
3575 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3576 		err = auxtrace_queue_data(session, true, true);
3577 	else
3578 		err = auxtrace_queues__process_index(&pt->queues, session);
3579 	if (err)
3580 		goto err_delete_thread;
3581 
3582 	if (pt->queues.populated)
3583 		pt->data_queued = true;
3584 
3585 	if (pt->timeless_decoding)
3586 		pr_debug2("Intel PT decoding without timestamps\n");
3587 
3588 	return 0;
3589 
3590 err_delete_thread:
3591 	zfree(&pt->chain);
3592 	thread__zput(pt->unknown_thread);
3593 err_free_queues:
3594 	intel_pt_log_disable();
3595 	auxtrace_queues__free(&pt->queues);
3596 	session->auxtrace = NULL;
3597 err_free:
3598 	addr_filters__exit(&pt->filts);
3599 	zfree(&pt->filter);
3600 	zfree(&pt->time_ranges);
3601 	free(pt);
3602 	return err;
3603 }
3604