1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pt.c: Intel Processor Trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 struct range {
50 u64 start;
51 u64 end;
52 };
53
54 struct intel_pt {
55 struct auxtrace auxtrace;
56 struct auxtrace_queues queues;
57 struct auxtrace_heap heap;
58 u32 auxtrace_type;
59 struct perf_session *session;
60 struct machine *machine;
61 struct evsel *switch_evsel;
62 struct thread *unknown_thread;
63 bool timeless_decoding;
64 bool sampling_mode;
65 bool snapshot_mode;
66 bool per_cpu_mmaps;
67 bool have_tsc;
68 bool data_queued;
69 bool est_tsc;
70 bool sync_switch;
71 bool mispred_all;
72 bool use_thread_stack;
73 bool callstack;
74 unsigned int br_stack_sz;
75 unsigned int br_stack_sz_plus;
76 int have_sched_switch;
77 u32 pmu_type;
78 u64 kernel_start;
79 u64 switch_ip;
80 u64 ptss_ip;
81
82 struct perf_tsc_conversion tc;
83 bool cap_user_time_zero;
84
85 struct itrace_synth_opts synth_opts;
86
87 bool sample_instructions;
88 u64 instructions_sample_type;
89 u64 instructions_id;
90
91 bool sample_branches;
92 u32 branches_filter;
93 u64 branches_sample_type;
94 u64 branches_id;
95
96 bool sample_transactions;
97 u64 transactions_sample_type;
98 u64 transactions_id;
99
100 bool sample_ptwrites;
101 u64 ptwrites_sample_type;
102 u64 ptwrites_id;
103
104 bool sample_pwr_events;
105 u64 pwr_events_sample_type;
106 u64 mwait_id;
107 u64 pwre_id;
108 u64 exstop_id;
109 u64 pwrx_id;
110 u64 cbr_id;
111
112 bool sample_pebs;
113 struct evsel *pebs_evsel;
114
115 u64 tsc_bit;
116 u64 mtc_bit;
117 u64 mtc_freq_bits;
118 u32 tsc_ctc_ratio_n;
119 u32 tsc_ctc_ratio_d;
120 u64 cyc_bit;
121 u64 noretcomp_bit;
122 unsigned max_non_turbo_ratio;
123 unsigned cbr2khz;
124
125 unsigned long num_events;
126
127 char *filter;
128 struct addr_filters filts;
129
130 struct range *time_ranges;
131 unsigned int range_cnt;
132
133 struct ip_callchain *chain;
134 struct branch_stack *br_stack;
135 };
136
137 enum switch_state {
138 INTEL_PT_SS_NOT_TRACING,
139 INTEL_PT_SS_UNKNOWN,
140 INTEL_PT_SS_TRACING,
141 INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
142 INTEL_PT_SS_EXPECTING_SWITCH_IP,
143 };
144
145 struct intel_pt_queue {
146 struct intel_pt *pt;
147 unsigned int queue_nr;
148 struct auxtrace_buffer *buffer;
149 struct auxtrace_buffer *old_buffer;
150 void *decoder;
151 const struct intel_pt_state *state;
152 struct ip_callchain *chain;
153 struct branch_stack *last_branch;
154 union perf_event *event_buf;
155 bool on_heap;
156 bool stop;
157 bool step_through_buffers;
158 bool use_buffer_pid_tid;
159 bool sync_switch;
160 pid_t pid, tid;
161 int cpu;
162 int switch_state;
163 pid_t next_tid;
164 struct thread *thread;
165 bool exclude_kernel;
166 bool have_sample;
167 u64 time;
168 u64 timestamp;
169 u64 sel_timestamp;
170 bool sel_start;
171 unsigned int sel_idx;
172 u32 flags;
173 u16 insn_len;
174 u64 last_insn_cnt;
175 u64 ipc_insn_cnt;
176 u64 ipc_cyc_cnt;
177 u64 last_in_insn_cnt;
178 u64 last_in_cyc_cnt;
179 u64 last_br_insn_cnt;
180 u64 last_br_cyc_cnt;
181 unsigned int cbr_seen;
182 char insn[INTEL_PT_INSN_BUF_SZ];
183 };
184
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
186 unsigned char *buf, size_t len)
187 {
188 struct intel_pt_pkt packet;
189 size_t pos = 0;
190 int ret, pkt_len, i;
191 char desc[INTEL_PT_PKT_DESC_MAX];
192 const char *color = PERF_COLOR_BLUE;
193 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
194
195 color_fprintf(stdout, color,
196 ". ... Intel Processor Trace data: size %zu bytes\n",
197 len);
198
199 while (len) {
200 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
201 if (ret > 0)
202 pkt_len = ret;
203 else
204 pkt_len = 1;
205 printf(".");
206 color_fprintf(stdout, color, " %08x: ", pos);
207 for (i = 0; i < pkt_len; i++)
208 color_fprintf(stdout, color, " %02x", buf[i]);
209 for (; i < 16; i++)
210 color_fprintf(stdout, color, " ");
211 if (ret > 0) {
212 ret = intel_pt_pkt_desc(&packet, desc,
213 INTEL_PT_PKT_DESC_MAX);
214 if (ret > 0)
215 color_fprintf(stdout, color, " %s\n", desc);
216 } else {
217 color_fprintf(stdout, color, " Bad packet!\n");
218 }
219 pos += pkt_len;
220 buf += pkt_len;
221 len -= pkt_len;
222 }
223 }
224
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
226 size_t len)
227 {
228 printf(".\n");
229 intel_pt_dump(pt, buf, len);
230 }
231
intel_pt_log_event(union perf_event * event)232 static void intel_pt_log_event(union perf_event *event)
233 {
234 FILE *f = intel_pt_log_fp();
235
236 if (!intel_pt_enable_logging || !f)
237 return;
238
239 perf_event__fprintf(event, NULL, f);
240 }
241
intel_pt_dump_sample(struct perf_session * session,struct perf_sample * sample)242 static void intel_pt_dump_sample(struct perf_session *session,
243 struct perf_sample *sample)
244 {
245 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
246 auxtrace);
247
248 printf("\n");
249 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
250 }
251
intel_pt_log_events(struct intel_pt * pt,u64 tm)252 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
253 {
254 struct perf_time_interval *range = pt->synth_opts.ptime_range;
255 int n = pt->synth_opts.range_num;
256
257 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
258 return true;
259
260 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
261 return false;
262
263 /* perf_time__ranges_skip_sample does not work if time is zero */
264 if (!tm)
265 tm = 1;
266
267 return !n || !perf_time__ranges_skip_sample(range, n, tm);
268 }
269
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)270 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
271 struct auxtrace_buffer *b)
272 {
273 bool consecutive = false;
274 void *start;
275
276 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
277 pt->have_tsc, &consecutive);
278 if (!start)
279 return -EINVAL;
280 b->use_size = b->data + b->size - start;
281 b->use_data = start;
282 if (b->use_size && consecutive)
283 b->consecutive = true;
284 return 0;
285 }
286
intel_pt_get_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer,struct auxtrace_buffer * old_buffer,struct intel_pt_buffer * b)287 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
288 struct auxtrace_buffer *buffer,
289 struct auxtrace_buffer *old_buffer,
290 struct intel_pt_buffer *b)
291 {
292 bool might_overlap;
293
294 if (!buffer->data) {
295 int fd = perf_data__fd(ptq->pt->session->data);
296
297 buffer->data = auxtrace_buffer__get_data(buffer, fd);
298 if (!buffer->data)
299 return -ENOMEM;
300 }
301
302 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
303 if (might_overlap && !buffer->consecutive && old_buffer &&
304 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
305 return -ENOMEM;
306
307 if (buffer->use_data) {
308 b->len = buffer->use_size;
309 b->buf = buffer->use_data;
310 } else {
311 b->len = buffer->size;
312 b->buf = buffer->data;
313 }
314 b->ref_timestamp = buffer->reference;
315
316 if (!old_buffer || (might_overlap && !buffer->consecutive)) {
317 b->consecutive = false;
318 b->trace_nr = buffer->buffer_nr + 1;
319 } else {
320 b->consecutive = true;
321 }
322
323 return 0;
324 }
325
326 /* Do not drop buffers with references - refer intel_pt_get_trace() */
intel_pt_lookahead_drop_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer)327 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
328 struct auxtrace_buffer *buffer)
329 {
330 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
331 return;
332
333 auxtrace_buffer__drop_data(buffer);
334 }
335
336 /* Must be serialized with respect to intel_pt_get_trace() */
intel_pt_lookahead(void * data,intel_pt_lookahead_cb_t cb,void * cb_data)337 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
338 void *cb_data)
339 {
340 struct intel_pt_queue *ptq = data;
341 struct auxtrace_buffer *buffer = ptq->buffer;
342 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
343 struct auxtrace_queue *queue;
344 int err = 0;
345
346 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
347
348 while (1) {
349 struct intel_pt_buffer b = { .len = 0 };
350
351 buffer = auxtrace_buffer__next(queue, buffer);
352 if (!buffer)
353 break;
354
355 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
356 if (err)
357 break;
358
359 if (b.len) {
360 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
361 old_buffer = buffer;
362 } else {
363 intel_pt_lookahead_drop_buffer(ptq, buffer);
364 continue;
365 }
366
367 err = cb(&b, cb_data);
368 if (err)
369 break;
370 }
371
372 if (buffer != old_buffer)
373 intel_pt_lookahead_drop_buffer(ptq, buffer);
374 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
375
376 return err;
377 }
378
379 /*
380 * This function assumes data is processed sequentially only.
381 * Must be serialized with respect to intel_pt_lookahead()
382 */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)383 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
384 {
385 struct intel_pt_queue *ptq = data;
386 struct auxtrace_buffer *buffer = ptq->buffer;
387 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
388 struct auxtrace_queue *queue;
389 int err;
390
391 if (ptq->stop) {
392 b->len = 0;
393 return 0;
394 }
395
396 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
397
398 buffer = auxtrace_buffer__next(queue, buffer);
399 if (!buffer) {
400 if (old_buffer)
401 auxtrace_buffer__drop_data(old_buffer);
402 b->len = 0;
403 return 0;
404 }
405
406 ptq->buffer = buffer;
407
408 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
409 if (err)
410 return err;
411
412 if (ptq->step_through_buffers)
413 ptq->stop = true;
414
415 if (b->len) {
416 if (old_buffer)
417 auxtrace_buffer__drop_data(old_buffer);
418 ptq->old_buffer = buffer;
419 } else {
420 auxtrace_buffer__drop_data(buffer);
421 return intel_pt_get_trace(b, data);
422 }
423
424 return 0;
425 }
426
427 struct intel_pt_cache_entry {
428 struct auxtrace_cache_entry entry;
429 u64 insn_cnt;
430 u64 byte_cnt;
431 enum intel_pt_insn_op op;
432 enum intel_pt_insn_branch branch;
433 int length;
434 int32_t rel;
435 char insn[INTEL_PT_INSN_BUF_SZ];
436 };
437
intel_pt_config_div(const char * var,const char * value,void * data)438 static int intel_pt_config_div(const char *var, const char *value, void *data)
439 {
440 int *d = data;
441 long val;
442
443 if (!strcmp(var, "intel-pt.cache-divisor")) {
444 val = strtol(value, NULL, 0);
445 if (val > 0 && val <= INT_MAX)
446 *d = val;
447 }
448
449 return 0;
450 }
451
intel_pt_cache_divisor(void)452 static int intel_pt_cache_divisor(void)
453 {
454 static int d;
455
456 if (d)
457 return d;
458
459 perf_config(intel_pt_config_div, &d);
460
461 if (!d)
462 d = 64;
463
464 return d;
465 }
466
intel_pt_cache_size(struct dso * dso,struct machine * machine)467 static unsigned int intel_pt_cache_size(struct dso *dso,
468 struct machine *machine)
469 {
470 off_t size;
471
472 size = dso__data_size(dso, machine);
473 size /= intel_pt_cache_divisor();
474 if (size < 1000)
475 return 10;
476 if (size > (1 << 21))
477 return 21;
478 return 32 - __builtin_clz(size);
479 }
480
intel_pt_cache(struct dso * dso,struct machine * machine)481 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
482 struct machine *machine)
483 {
484 struct auxtrace_cache *c;
485 unsigned int bits;
486
487 if (dso->auxtrace_cache)
488 return dso->auxtrace_cache;
489
490 bits = intel_pt_cache_size(dso, machine);
491
492 /* Ignoring cache creation failure */
493 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
494
495 dso->auxtrace_cache = c;
496
497 return c;
498 }
499
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)500 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
501 u64 offset, u64 insn_cnt, u64 byte_cnt,
502 struct intel_pt_insn *intel_pt_insn)
503 {
504 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
505 struct intel_pt_cache_entry *e;
506 int err;
507
508 if (!c)
509 return -ENOMEM;
510
511 e = auxtrace_cache__alloc_entry(c);
512 if (!e)
513 return -ENOMEM;
514
515 e->insn_cnt = insn_cnt;
516 e->byte_cnt = byte_cnt;
517 e->op = intel_pt_insn->op;
518 e->branch = intel_pt_insn->branch;
519 e->length = intel_pt_insn->length;
520 e->rel = intel_pt_insn->rel;
521 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
522
523 err = auxtrace_cache__add(c, offset, &e->entry);
524 if (err)
525 auxtrace_cache__free_entry(c, e);
526
527 return err;
528 }
529
530 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)531 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
532 {
533 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
534
535 if (!c)
536 return NULL;
537
538 return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
539 }
540
intel_pt_cache_invalidate(struct dso * dso,struct machine * machine,u64 offset)541 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
542 u64 offset)
543 {
544 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
545
546 if (!c)
547 return;
548
549 auxtrace_cache__remove(dso->auxtrace_cache, offset);
550 }
551
intel_pt_cpumode(struct intel_pt * pt,uint64_t ip)552 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
553 {
554 return ip >= pt->kernel_start ?
555 PERF_RECORD_MISC_KERNEL :
556 PERF_RECORD_MISC_USER;
557 }
558
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)559 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
560 uint64_t *insn_cnt_ptr, uint64_t *ip,
561 uint64_t to_ip, uint64_t max_insn_cnt,
562 void *data)
563 {
564 struct intel_pt_queue *ptq = data;
565 struct machine *machine = ptq->pt->machine;
566 struct thread *thread;
567 struct addr_location al;
568 unsigned char buf[INTEL_PT_INSN_BUF_SZ];
569 ssize_t len;
570 int x86_64;
571 u8 cpumode;
572 u64 offset, start_offset, start_ip;
573 u64 insn_cnt = 0;
574 bool one_map = true;
575
576 intel_pt_insn->length = 0;
577
578 if (to_ip && *ip == to_ip)
579 goto out_no_cache;
580
581 cpumode = intel_pt_cpumode(ptq->pt, *ip);
582
583 thread = ptq->thread;
584 if (!thread) {
585 if (cpumode != PERF_RECORD_MISC_KERNEL)
586 return -EINVAL;
587 thread = ptq->pt->unknown_thread;
588 }
589
590 while (1) {
591 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
592 return -EINVAL;
593
594 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
595 dso__data_status_seen(al.map->dso,
596 DSO_DATA_STATUS_SEEN_ITRACE))
597 return -ENOENT;
598
599 offset = al.map->map_ip(al.map, *ip);
600
601 if (!to_ip && one_map) {
602 struct intel_pt_cache_entry *e;
603
604 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
605 if (e &&
606 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
607 *insn_cnt_ptr = e->insn_cnt;
608 *ip += e->byte_cnt;
609 intel_pt_insn->op = e->op;
610 intel_pt_insn->branch = e->branch;
611 intel_pt_insn->length = e->length;
612 intel_pt_insn->rel = e->rel;
613 memcpy(intel_pt_insn->buf, e->insn,
614 INTEL_PT_INSN_BUF_SZ);
615 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
616 return 0;
617 }
618 }
619
620 start_offset = offset;
621 start_ip = *ip;
622
623 /* Load maps to ensure dso->is_64_bit has been updated */
624 map__load(al.map);
625
626 x86_64 = al.map->dso->is_64_bit;
627
628 while (1) {
629 len = dso__data_read_offset(al.map->dso, machine,
630 offset, buf,
631 INTEL_PT_INSN_BUF_SZ);
632 if (len <= 0)
633 return -EINVAL;
634
635 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
636 return -EINVAL;
637
638 intel_pt_log_insn(intel_pt_insn, *ip);
639
640 insn_cnt += 1;
641
642 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
643 goto out;
644
645 if (max_insn_cnt && insn_cnt >= max_insn_cnt)
646 goto out_no_cache;
647
648 *ip += intel_pt_insn->length;
649
650 if (to_ip && *ip == to_ip) {
651 intel_pt_insn->length = 0;
652 goto out_no_cache;
653 }
654
655 if (*ip >= al.map->end)
656 break;
657
658 offset += intel_pt_insn->length;
659 }
660 one_map = false;
661 }
662 out:
663 *insn_cnt_ptr = insn_cnt;
664
665 if (!one_map)
666 goto out_no_cache;
667
668 /*
669 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
670 * entries.
671 */
672 if (to_ip) {
673 struct intel_pt_cache_entry *e;
674
675 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
676 if (e)
677 return 0;
678 }
679
680 /* Ignore cache errors */
681 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
682 *ip - start_ip, intel_pt_insn);
683
684 return 0;
685
686 out_no_cache:
687 *insn_cnt_ptr = insn_cnt;
688 return 0;
689 }
690
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)691 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
692 uint64_t offset, const char *filename)
693 {
694 struct addr_filter *filt;
695 bool have_filter = false;
696 bool hit_tracestop = false;
697 bool hit_filter = false;
698
699 list_for_each_entry(filt, &pt->filts.head, list) {
700 if (filt->start)
701 have_filter = true;
702
703 if ((filename && !filt->filename) ||
704 (!filename && filt->filename) ||
705 (filename && strcmp(filename, filt->filename)))
706 continue;
707
708 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
709 continue;
710
711 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
712 ip, offset, filename ? filename : "[kernel]",
713 filt->start ? "filter" : "stop",
714 filt->addr, filt->size);
715
716 if (filt->start)
717 hit_filter = true;
718 else
719 hit_tracestop = true;
720 }
721
722 if (!hit_tracestop && !hit_filter)
723 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
724 ip, offset, filename ? filename : "[kernel]");
725
726 return hit_tracestop || (have_filter && !hit_filter);
727 }
728
__intel_pt_pgd_ip(uint64_t ip,void * data)729 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
730 {
731 struct intel_pt_queue *ptq = data;
732 struct thread *thread;
733 struct addr_location al;
734 u8 cpumode;
735 u64 offset;
736
737 if (ip >= ptq->pt->kernel_start)
738 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
739
740 cpumode = PERF_RECORD_MISC_USER;
741
742 thread = ptq->thread;
743 if (!thread)
744 return -EINVAL;
745
746 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
747 return -EINVAL;
748
749 offset = al.map->map_ip(al.map, ip);
750
751 return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
752 al.map->dso->long_name);
753 }
754
intel_pt_pgd_ip(uint64_t ip,void * data)755 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
756 {
757 return __intel_pt_pgd_ip(ip, data) > 0;
758 }
759
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)760 static bool intel_pt_get_config(struct intel_pt *pt,
761 struct perf_event_attr *attr, u64 *config)
762 {
763 if (attr->type == pt->pmu_type) {
764 if (config)
765 *config = attr->config;
766 return true;
767 }
768
769 return false;
770 }
771
intel_pt_exclude_kernel(struct intel_pt * pt)772 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
773 {
774 struct evsel *evsel;
775
776 evlist__for_each_entry(pt->session->evlist, evsel) {
777 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
778 !evsel->core.attr.exclude_kernel)
779 return false;
780 }
781 return true;
782 }
783
intel_pt_return_compression(struct intel_pt * pt)784 static bool intel_pt_return_compression(struct intel_pt *pt)
785 {
786 struct evsel *evsel;
787 u64 config;
788
789 if (!pt->noretcomp_bit)
790 return true;
791
792 evlist__for_each_entry(pt->session->evlist, evsel) {
793 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
794 (config & pt->noretcomp_bit))
795 return false;
796 }
797 return true;
798 }
799
intel_pt_branch_enable(struct intel_pt * pt)800 static bool intel_pt_branch_enable(struct intel_pt *pt)
801 {
802 struct evsel *evsel;
803 u64 config;
804
805 evlist__for_each_entry(pt->session->evlist, evsel) {
806 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
807 (config & 1) && !(config & 0x2000))
808 return false;
809 }
810 return true;
811 }
812
intel_pt_mtc_period(struct intel_pt * pt)813 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
814 {
815 struct evsel *evsel;
816 unsigned int shift;
817 u64 config;
818
819 if (!pt->mtc_freq_bits)
820 return 0;
821
822 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
823 config >>= 1;
824
825 evlist__for_each_entry(pt->session->evlist, evsel) {
826 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
827 return (config & pt->mtc_freq_bits) >> shift;
828 }
829 return 0;
830 }
831
intel_pt_timeless_decoding(struct intel_pt * pt)832 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
833 {
834 struct evsel *evsel;
835 bool timeless_decoding = true;
836 u64 config;
837
838 if (!pt->tsc_bit || !pt->cap_user_time_zero)
839 return true;
840
841 evlist__for_each_entry(pt->session->evlist, evsel) {
842 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
843 return true;
844 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
845 if (config & pt->tsc_bit)
846 timeless_decoding = false;
847 else
848 return true;
849 }
850 }
851 return timeless_decoding;
852 }
853
intel_pt_tracing_kernel(struct intel_pt * pt)854 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
855 {
856 struct evsel *evsel;
857
858 evlist__for_each_entry(pt->session->evlist, evsel) {
859 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
860 !evsel->core.attr.exclude_kernel)
861 return true;
862 }
863 return false;
864 }
865
intel_pt_have_tsc(struct intel_pt * pt)866 static bool intel_pt_have_tsc(struct intel_pt *pt)
867 {
868 struct evsel *evsel;
869 bool have_tsc = false;
870 u64 config;
871
872 if (!pt->tsc_bit)
873 return false;
874
875 evlist__for_each_entry(pt->session->evlist, evsel) {
876 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
877 if (config & pt->tsc_bit)
878 have_tsc = true;
879 else
880 return false;
881 }
882 }
883 return have_tsc;
884 }
885
intel_pt_sampling_mode(struct intel_pt * pt)886 static bool intel_pt_sampling_mode(struct intel_pt *pt)
887 {
888 struct evsel *evsel;
889
890 evlist__for_each_entry(pt->session->evlist, evsel) {
891 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
892 evsel->core.attr.aux_sample_size)
893 return true;
894 }
895 return false;
896 }
897
intel_pt_ctl(struct intel_pt * pt)898 static u64 intel_pt_ctl(struct intel_pt *pt)
899 {
900 struct evsel *evsel;
901 u64 config;
902
903 evlist__for_each_entry(pt->session->evlist, evsel) {
904 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
905 return config;
906 }
907 return 0;
908 }
909
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)910 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
911 {
912 u64 quot, rem;
913
914 quot = ns / pt->tc.time_mult;
915 rem = ns % pt->tc.time_mult;
916 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
917 pt->tc.time_mult;
918 }
919
intel_pt_alloc_chain(struct intel_pt * pt)920 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
921 {
922 size_t sz = sizeof(struct ip_callchain);
923
924 /* Add 1 to callchain_sz for callchain context */
925 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
926 return zalloc(sz);
927 }
928
intel_pt_callchain_init(struct intel_pt * pt)929 static int intel_pt_callchain_init(struct intel_pt *pt)
930 {
931 struct evsel *evsel;
932
933 evlist__for_each_entry(pt->session->evlist, evsel) {
934 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
935 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
936 }
937
938 pt->chain = intel_pt_alloc_chain(pt);
939 if (!pt->chain)
940 return -ENOMEM;
941
942 return 0;
943 }
944
intel_pt_add_callchain(struct intel_pt * pt,struct perf_sample * sample)945 static void intel_pt_add_callchain(struct intel_pt *pt,
946 struct perf_sample *sample)
947 {
948 struct thread *thread = machine__findnew_thread(pt->machine,
949 sample->pid,
950 sample->tid);
951
952 thread_stack__sample_late(thread, sample->cpu, pt->chain,
953 pt->synth_opts.callchain_sz + 1, sample->ip,
954 pt->kernel_start);
955
956 sample->callchain = pt->chain;
957 }
958
intel_pt_alloc_br_stack(unsigned int entry_cnt)959 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
960 {
961 size_t sz = sizeof(struct branch_stack);
962
963 sz += entry_cnt * sizeof(struct branch_entry);
964 return zalloc(sz);
965 }
966
intel_pt_br_stack_init(struct intel_pt * pt)967 static int intel_pt_br_stack_init(struct intel_pt *pt)
968 {
969 struct evsel *evsel;
970
971 evlist__for_each_entry(pt->session->evlist, evsel) {
972 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
973 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
974 }
975
976 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
977 if (!pt->br_stack)
978 return -ENOMEM;
979
980 return 0;
981 }
982
intel_pt_add_br_stack(struct intel_pt * pt,struct perf_sample * sample)983 static void intel_pt_add_br_stack(struct intel_pt *pt,
984 struct perf_sample *sample)
985 {
986 struct thread *thread = machine__findnew_thread(pt->machine,
987 sample->pid,
988 sample->tid);
989
990 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
991 pt->br_stack_sz, sample->ip,
992 pt->kernel_start);
993
994 sample->branch_stack = pt->br_stack;
995 }
996
997 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
998 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
999
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)1000 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1001 unsigned int queue_nr)
1002 {
1003 struct intel_pt_params params = { .get_trace = 0, };
1004 struct perf_env *env = pt->machine->env;
1005 struct intel_pt_queue *ptq;
1006
1007 ptq = zalloc(sizeof(struct intel_pt_queue));
1008 if (!ptq)
1009 return NULL;
1010
1011 if (pt->synth_opts.callchain) {
1012 ptq->chain = intel_pt_alloc_chain(pt);
1013 if (!ptq->chain)
1014 goto out_free;
1015 }
1016
1017 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1018 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1019
1020 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1021 if (!ptq->last_branch)
1022 goto out_free;
1023 }
1024
1025 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1026 if (!ptq->event_buf)
1027 goto out_free;
1028
1029 ptq->pt = pt;
1030 ptq->queue_nr = queue_nr;
1031 ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1032 ptq->pid = -1;
1033 ptq->tid = -1;
1034 ptq->cpu = -1;
1035 ptq->next_tid = -1;
1036
1037 params.get_trace = intel_pt_get_trace;
1038 params.walk_insn = intel_pt_walk_next_insn;
1039 params.lookahead = intel_pt_lookahead;
1040 params.data = ptq;
1041 params.return_compression = intel_pt_return_compression(pt);
1042 params.branch_enable = intel_pt_branch_enable(pt);
1043 params.ctl = intel_pt_ctl(pt);
1044 params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1045 params.mtc_period = intel_pt_mtc_period(pt);
1046 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1047 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1048 params.quick = pt->synth_opts.quick;
1049
1050 if (pt->filts.cnt > 0)
1051 params.pgd_ip = intel_pt_pgd_ip;
1052
1053 if (pt->synth_opts.instructions) {
1054 if (pt->synth_opts.period) {
1055 switch (pt->synth_opts.period_type) {
1056 case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1057 params.period_type =
1058 INTEL_PT_PERIOD_INSTRUCTIONS;
1059 params.period = pt->synth_opts.period;
1060 break;
1061 case PERF_ITRACE_PERIOD_TICKS:
1062 params.period_type = INTEL_PT_PERIOD_TICKS;
1063 params.period = pt->synth_opts.period;
1064 break;
1065 case PERF_ITRACE_PERIOD_NANOSECS:
1066 params.period_type = INTEL_PT_PERIOD_TICKS;
1067 params.period = intel_pt_ns_to_ticks(pt,
1068 pt->synth_opts.period);
1069 break;
1070 default:
1071 break;
1072 }
1073 }
1074
1075 if (!params.period) {
1076 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1077 params.period = 1;
1078 }
1079 }
1080
1081 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1082 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1083
1084 ptq->decoder = intel_pt_decoder_new(¶ms);
1085 if (!ptq->decoder)
1086 goto out_free;
1087
1088 return ptq;
1089
1090 out_free:
1091 zfree(&ptq->event_buf);
1092 zfree(&ptq->last_branch);
1093 zfree(&ptq->chain);
1094 free(ptq);
1095 return NULL;
1096 }
1097
intel_pt_free_queue(void * priv)1098 static void intel_pt_free_queue(void *priv)
1099 {
1100 struct intel_pt_queue *ptq = priv;
1101
1102 if (!ptq)
1103 return;
1104 thread__zput(ptq->thread);
1105 intel_pt_decoder_free(ptq->decoder);
1106 zfree(&ptq->event_buf);
1107 zfree(&ptq->last_branch);
1108 zfree(&ptq->chain);
1109 free(ptq);
1110 }
1111
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)1112 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1113 struct auxtrace_queue *queue)
1114 {
1115 struct intel_pt_queue *ptq = queue->priv;
1116
1117 if (queue->tid == -1 || pt->have_sched_switch) {
1118 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1119 if (ptq->tid == -1)
1120 ptq->pid = -1;
1121 thread__zput(ptq->thread);
1122 }
1123
1124 if (!ptq->thread && ptq->tid != -1)
1125 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1126
1127 if (ptq->thread) {
1128 ptq->pid = ptq->thread->pid_;
1129 if (queue->cpu == -1)
1130 ptq->cpu = ptq->thread->cpu;
1131 }
1132 }
1133
intel_pt_sample_flags(struct intel_pt_queue * ptq)1134 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1135 {
1136 ptq->insn_len = 0;
1137 if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1138 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1139 } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1140 if (ptq->state->to_ip)
1141 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1142 PERF_IP_FLAG_ASYNC |
1143 PERF_IP_FLAG_INTERRUPT;
1144 else
1145 ptq->flags = PERF_IP_FLAG_BRANCH |
1146 PERF_IP_FLAG_TRACE_END;
1147 ptq->insn_len = 0;
1148 } else {
1149 if (ptq->state->from_ip)
1150 ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1151 else
1152 ptq->flags = PERF_IP_FLAG_BRANCH |
1153 PERF_IP_FLAG_TRACE_BEGIN;
1154 if (ptq->state->flags & INTEL_PT_IN_TX)
1155 ptq->flags |= PERF_IP_FLAG_IN_TX;
1156 ptq->insn_len = ptq->state->insn_len;
1157 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1158 }
1159
1160 if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1161 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1162 if (ptq->state->type & INTEL_PT_TRACE_END)
1163 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1164 }
1165
intel_pt_setup_time_range(struct intel_pt * pt,struct intel_pt_queue * ptq)1166 static void intel_pt_setup_time_range(struct intel_pt *pt,
1167 struct intel_pt_queue *ptq)
1168 {
1169 if (!pt->range_cnt)
1170 return;
1171
1172 ptq->sel_timestamp = pt->time_ranges[0].start;
1173 ptq->sel_idx = 0;
1174
1175 if (ptq->sel_timestamp) {
1176 ptq->sel_start = true;
1177 } else {
1178 ptq->sel_timestamp = pt->time_ranges[0].end;
1179 ptq->sel_start = false;
1180 }
1181 }
1182
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)1183 static int intel_pt_setup_queue(struct intel_pt *pt,
1184 struct auxtrace_queue *queue,
1185 unsigned int queue_nr)
1186 {
1187 struct intel_pt_queue *ptq = queue->priv;
1188
1189 if (list_empty(&queue->head))
1190 return 0;
1191
1192 if (!ptq) {
1193 ptq = intel_pt_alloc_queue(pt, queue_nr);
1194 if (!ptq)
1195 return -ENOMEM;
1196 queue->priv = ptq;
1197
1198 if (queue->cpu != -1)
1199 ptq->cpu = queue->cpu;
1200 ptq->tid = queue->tid;
1201
1202 ptq->cbr_seen = UINT_MAX;
1203
1204 if (pt->sampling_mode && !pt->snapshot_mode &&
1205 pt->timeless_decoding)
1206 ptq->step_through_buffers = true;
1207
1208 ptq->sync_switch = pt->sync_switch;
1209
1210 intel_pt_setup_time_range(pt, ptq);
1211 }
1212
1213 if (!ptq->on_heap &&
1214 (!ptq->sync_switch ||
1215 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1216 const struct intel_pt_state *state;
1217 int ret;
1218
1219 if (pt->timeless_decoding)
1220 return 0;
1221
1222 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1223 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1224 queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1225
1226 if (ptq->sel_start && ptq->sel_timestamp) {
1227 ret = intel_pt_fast_forward(ptq->decoder,
1228 ptq->sel_timestamp);
1229 if (ret)
1230 return ret;
1231 }
1232
1233 while (1) {
1234 state = intel_pt_decode(ptq->decoder);
1235 if (state->err) {
1236 if (state->err == INTEL_PT_ERR_NODATA) {
1237 intel_pt_log("queue %u has no timestamp\n",
1238 queue_nr);
1239 return 0;
1240 }
1241 continue;
1242 }
1243 if (state->timestamp)
1244 break;
1245 }
1246
1247 ptq->timestamp = state->timestamp;
1248 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1249 queue_nr, ptq->timestamp);
1250 ptq->state = state;
1251 ptq->have_sample = true;
1252 if (ptq->sel_start && ptq->sel_timestamp &&
1253 ptq->timestamp < ptq->sel_timestamp)
1254 ptq->have_sample = false;
1255 intel_pt_sample_flags(ptq);
1256 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1257 if (ret)
1258 return ret;
1259 ptq->on_heap = true;
1260 }
1261
1262 return 0;
1263 }
1264
intel_pt_setup_queues(struct intel_pt * pt)1265 static int intel_pt_setup_queues(struct intel_pt *pt)
1266 {
1267 unsigned int i;
1268 int ret;
1269
1270 for (i = 0; i < pt->queues.nr_queues; i++) {
1271 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1272 if (ret)
1273 return ret;
1274 }
1275 return 0;
1276 }
1277
intel_pt_skip_event(struct intel_pt * pt)1278 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1279 {
1280 return pt->synth_opts.initial_skip &&
1281 pt->num_events++ < pt->synth_opts.initial_skip;
1282 }
1283
1284 /*
1285 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1286 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1287 * from this decoder state.
1288 */
intel_pt_skip_cbr_event(struct intel_pt * pt)1289 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1290 {
1291 return pt->synth_opts.initial_skip &&
1292 pt->num_events + 4 < pt->synth_opts.initial_skip;
1293 }
1294
intel_pt_prep_a_sample(struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1295 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1296 union perf_event *event,
1297 struct perf_sample *sample)
1298 {
1299 event->sample.header.type = PERF_RECORD_SAMPLE;
1300 event->sample.header.size = sizeof(struct perf_event_header);
1301
1302 sample->pid = ptq->pid;
1303 sample->tid = ptq->tid;
1304 sample->cpu = ptq->cpu;
1305 sample->insn_len = ptq->insn_len;
1306 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1307 }
1308
intel_pt_prep_b_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1309 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1310 struct intel_pt_queue *ptq,
1311 union perf_event *event,
1312 struct perf_sample *sample)
1313 {
1314 intel_pt_prep_a_sample(ptq, event, sample);
1315
1316 if (!pt->timeless_decoding)
1317 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1318
1319 sample->ip = ptq->state->from_ip;
1320 sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1321 sample->addr = ptq->state->to_ip;
1322 sample->period = 1;
1323 sample->flags = ptq->flags;
1324
1325 event->sample.header.misc = sample->cpumode;
1326 }
1327
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1328 static int intel_pt_inject_event(union perf_event *event,
1329 struct perf_sample *sample, u64 type)
1330 {
1331 event->header.size = perf_event__sample_event_size(sample, type, 0);
1332 return perf_event__synthesize_sample(event, type, 0, sample);
1333 }
1334
intel_pt_opt_inject(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1335 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1336 union perf_event *event,
1337 struct perf_sample *sample, u64 type)
1338 {
1339 if (!pt->synth_opts.inject)
1340 return 0;
1341
1342 return intel_pt_inject_event(event, sample, type);
1343 }
1344
intel_pt_deliver_synth_event(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1345 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1346 union perf_event *event,
1347 struct perf_sample *sample, u64 type)
1348 {
1349 int ret;
1350
1351 ret = intel_pt_opt_inject(pt, event, sample, type);
1352 if (ret)
1353 return ret;
1354
1355 ret = perf_session__deliver_synth_event(pt->session, event, sample);
1356 if (ret)
1357 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1358
1359 return ret;
1360 }
1361
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1362 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1363 {
1364 struct intel_pt *pt = ptq->pt;
1365 union perf_event *event = ptq->event_buf;
1366 struct perf_sample sample = { .ip = 0, };
1367 struct dummy_branch_stack {
1368 u64 nr;
1369 u64 hw_idx;
1370 struct branch_entry entries;
1371 } dummy_bs;
1372
1373 if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1374 return 0;
1375
1376 if (intel_pt_skip_event(pt))
1377 return 0;
1378
1379 intel_pt_prep_b_sample(pt, ptq, event, &sample);
1380
1381 sample.id = ptq->pt->branches_id;
1382 sample.stream_id = ptq->pt->branches_id;
1383
1384 /*
1385 * perf report cannot handle events without a branch stack when using
1386 * SORT_MODE__BRANCH so make a dummy one.
1387 */
1388 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1389 dummy_bs = (struct dummy_branch_stack){
1390 .nr = 1,
1391 .hw_idx = -1ULL,
1392 .entries = {
1393 .from = sample.ip,
1394 .to = sample.addr,
1395 },
1396 };
1397 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1398 }
1399
1400 if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1401 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1402 if (sample.cyc_cnt) {
1403 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1404 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1405 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1406 }
1407
1408 return intel_pt_deliver_synth_event(pt, event, &sample,
1409 pt->branches_sample_type);
1410 }
1411
intel_pt_prep_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1412 static void intel_pt_prep_sample(struct intel_pt *pt,
1413 struct intel_pt_queue *ptq,
1414 union perf_event *event,
1415 struct perf_sample *sample)
1416 {
1417 intel_pt_prep_b_sample(pt, ptq, event, sample);
1418
1419 if (pt->synth_opts.callchain) {
1420 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1421 pt->synth_opts.callchain_sz + 1,
1422 sample->ip, pt->kernel_start);
1423 sample->callchain = ptq->chain;
1424 }
1425
1426 if (pt->synth_opts.last_branch) {
1427 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1428 pt->br_stack_sz);
1429 sample->branch_stack = ptq->last_branch;
1430 }
1431 }
1432
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1433 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1434 {
1435 struct intel_pt *pt = ptq->pt;
1436 union perf_event *event = ptq->event_buf;
1437 struct perf_sample sample = { .ip = 0, };
1438
1439 if (intel_pt_skip_event(pt))
1440 return 0;
1441
1442 intel_pt_prep_sample(pt, ptq, event, &sample);
1443
1444 sample.id = ptq->pt->instructions_id;
1445 sample.stream_id = ptq->pt->instructions_id;
1446 if (pt->synth_opts.quick)
1447 sample.period = 1;
1448 else
1449 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1450
1451 if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1452 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1453 if (sample.cyc_cnt) {
1454 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1455 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1456 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1457 }
1458
1459 ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1460
1461 return intel_pt_deliver_synth_event(pt, event, &sample,
1462 pt->instructions_sample_type);
1463 }
1464
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1465 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1466 {
1467 struct intel_pt *pt = ptq->pt;
1468 union perf_event *event = ptq->event_buf;
1469 struct perf_sample sample = { .ip = 0, };
1470
1471 if (intel_pt_skip_event(pt))
1472 return 0;
1473
1474 intel_pt_prep_sample(pt, ptq, event, &sample);
1475
1476 sample.id = ptq->pt->transactions_id;
1477 sample.stream_id = ptq->pt->transactions_id;
1478
1479 return intel_pt_deliver_synth_event(pt, event, &sample,
1480 pt->transactions_sample_type);
1481 }
1482
intel_pt_prep_p_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1483 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1484 struct intel_pt_queue *ptq,
1485 union perf_event *event,
1486 struct perf_sample *sample)
1487 {
1488 intel_pt_prep_sample(pt, ptq, event, sample);
1489
1490 /*
1491 * Zero IP is used to mean "trace start" but that is not the case for
1492 * power or PTWRITE events with no IP, so clear the flags.
1493 */
1494 if (!sample->ip)
1495 sample->flags = 0;
1496 }
1497
intel_pt_synth_ptwrite_sample(struct intel_pt_queue * ptq)1498 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1499 {
1500 struct intel_pt *pt = ptq->pt;
1501 union perf_event *event = ptq->event_buf;
1502 struct perf_sample sample = { .ip = 0, };
1503 struct perf_synth_intel_ptwrite raw;
1504
1505 if (intel_pt_skip_event(pt))
1506 return 0;
1507
1508 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1509
1510 sample.id = ptq->pt->ptwrites_id;
1511 sample.stream_id = ptq->pt->ptwrites_id;
1512
1513 raw.flags = 0;
1514 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1515 raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1516
1517 sample.raw_size = perf_synth__raw_size(raw);
1518 sample.raw_data = perf_synth__raw_data(&raw);
1519
1520 return intel_pt_deliver_synth_event(pt, event, &sample,
1521 pt->ptwrites_sample_type);
1522 }
1523
intel_pt_synth_cbr_sample(struct intel_pt_queue * ptq)1524 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1525 {
1526 struct intel_pt *pt = ptq->pt;
1527 union perf_event *event = ptq->event_buf;
1528 struct perf_sample sample = { .ip = 0, };
1529 struct perf_synth_intel_cbr raw;
1530 u32 flags;
1531
1532 if (intel_pt_skip_cbr_event(pt))
1533 return 0;
1534
1535 ptq->cbr_seen = ptq->state->cbr;
1536
1537 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1538
1539 sample.id = ptq->pt->cbr_id;
1540 sample.stream_id = ptq->pt->cbr_id;
1541
1542 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1543 raw.flags = cpu_to_le32(flags);
1544 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1545 raw.reserved3 = 0;
1546
1547 sample.raw_size = perf_synth__raw_size(raw);
1548 sample.raw_data = perf_synth__raw_data(&raw);
1549
1550 return intel_pt_deliver_synth_event(pt, event, &sample,
1551 pt->pwr_events_sample_type);
1552 }
1553
intel_pt_synth_mwait_sample(struct intel_pt_queue * ptq)1554 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1555 {
1556 struct intel_pt *pt = ptq->pt;
1557 union perf_event *event = ptq->event_buf;
1558 struct perf_sample sample = { .ip = 0, };
1559 struct perf_synth_intel_mwait raw;
1560
1561 if (intel_pt_skip_event(pt))
1562 return 0;
1563
1564 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1565
1566 sample.id = ptq->pt->mwait_id;
1567 sample.stream_id = ptq->pt->mwait_id;
1568
1569 raw.reserved = 0;
1570 raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1571
1572 sample.raw_size = perf_synth__raw_size(raw);
1573 sample.raw_data = perf_synth__raw_data(&raw);
1574
1575 return intel_pt_deliver_synth_event(pt, event, &sample,
1576 pt->pwr_events_sample_type);
1577 }
1578
intel_pt_synth_pwre_sample(struct intel_pt_queue * ptq)1579 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1580 {
1581 struct intel_pt *pt = ptq->pt;
1582 union perf_event *event = ptq->event_buf;
1583 struct perf_sample sample = { .ip = 0, };
1584 struct perf_synth_intel_pwre raw;
1585
1586 if (intel_pt_skip_event(pt))
1587 return 0;
1588
1589 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1590
1591 sample.id = ptq->pt->pwre_id;
1592 sample.stream_id = ptq->pt->pwre_id;
1593
1594 raw.reserved = 0;
1595 raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1596
1597 sample.raw_size = perf_synth__raw_size(raw);
1598 sample.raw_data = perf_synth__raw_data(&raw);
1599
1600 return intel_pt_deliver_synth_event(pt, event, &sample,
1601 pt->pwr_events_sample_type);
1602 }
1603
intel_pt_synth_exstop_sample(struct intel_pt_queue * ptq)1604 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1605 {
1606 struct intel_pt *pt = ptq->pt;
1607 union perf_event *event = ptq->event_buf;
1608 struct perf_sample sample = { .ip = 0, };
1609 struct perf_synth_intel_exstop raw;
1610
1611 if (intel_pt_skip_event(pt))
1612 return 0;
1613
1614 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1615
1616 sample.id = ptq->pt->exstop_id;
1617 sample.stream_id = ptq->pt->exstop_id;
1618
1619 raw.flags = 0;
1620 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1621
1622 sample.raw_size = perf_synth__raw_size(raw);
1623 sample.raw_data = perf_synth__raw_data(&raw);
1624
1625 return intel_pt_deliver_synth_event(pt, event, &sample,
1626 pt->pwr_events_sample_type);
1627 }
1628
intel_pt_synth_pwrx_sample(struct intel_pt_queue * ptq)1629 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1630 {
1631 struct intel_pt *pt = ptq->pt;
1632 union perf_event *event = ptq->event_buf;
1633 struct perf_sample sample = { .ip = 0, };
1634 struct perf_synth_intel_pwrx raw;
1635
1636 if (intel_pt_skip_event(pt))
1637 return 0;
1638
1639 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1640
1641 sample.id = ptq->pt->pwrx_id;
1642 sample.stream_id = ptq->pt->pwrx_id;
1643
1644 raw.reserved = 0;
1645 raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1646
1647 sample.raw_size = perf_synth__raw_size(raw);
1648 sample.raw_data = perf_synth__raw_data(&raw);
1649
1650 return intel_pt_deliver_synth_event(pt, event, &sample,
1651 pt->pwr_events_sample_type);
1652 }
1653
1654 /*
1655 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1656 * intel_pt_add_gp_regs().
1657 */
1658 static const int pebs_gp_regs[] = {
1659 [PERF_REG_X86_FLAGS] = 1,
1660 [PERF_REG_X86_IP] = 2,
1661 [PERF_REG_X86_AX] = 3,
1662 [PERF_REG_X86_CX] = 4,
1663 [PERF_REG_X86_DX] = 5,
1664 [PERF_REG_X86_BX] = 6,
1665 [PERF_REG_X86_SP] = 7,
1666 [PERF_REG_X86_BP] = 8,
1667 [PERF_REG_X86_SI] = 9,
1668 [PERF_REG_X86_DI] = 10,
1669 [PERF_REG_X86_R8] = 11,
1670 [PERF_REG_X86_R9] = 12,
1671 [PERF_REG_X86_R10] = 13,
1672 [PERF_REG_X86_R11] = 14,
1673 [PERF_REG_X86_R12] = 15,
1674 [PERF_REG_X86_R13] = 16,
1675 [PERF_REG_X86_R14] = 17,
1676 [PERF_REG_X86_R15] = 18,
1677 };
1678
intel_pt_add_gp_regs(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)1679 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1680 const struct intel_pt_blk_items *items,
1681 u64 regs_mask)
1682 {
1683 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1684 u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1685 u32 bit;
1686 int i;
1687
1688 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1689 /* Get the PEBS gp_regs array index */
1690 int n = pebs_gp_regs[i] - 1;
1691
1692 if (n < 0)
1693 continue;
1694 /*
1695 * Add only registers that were requested (i.e. 'regs_mask') and
1696 * that were provided (i.e. 'mask'), and update the resulting
1697 * mask (i.e. 'intr_regs->mask') accordingly.
1698 */
1699 if (mask & 1 << n && regs_mask & bit) {
1700 intr_regs->mask |= bit;
1701 *pos++ = gp_regs[n];
1702 }
1703 }
1704
1705 return pos;
1706 }
1707
1708 #ifndef PERF_REG_X86_XMM0
1709 #define PERF_REG_X86_XMM0 32
1710 #endif
1711
intel_pt_add_xmm(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)1712 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1713 const struct intel_pt_blk_items *items,
1714 u64 regs_mask)
1715 {
1716 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1717 const u64 *xmm = items->xmm;
1718
1719 /*
1720 * If there are any XMM registers, then there should be all of them.
1721 * Nevertheless, follow the logic to add only registers that were
1722 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1723 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1724 */
1725 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1726
1727 for (; mask; mask >>= 1, xmm++) {
1728 if (mask & 1)
1729 *pos++ = *xmm;
1730 }
1731 }
1732
1733 #define LBR_INFO_MISPRED (1ULL << 63)
1734 #define LBR_INFO_IN_TX (1ULL << 62)
1735 #define LBR_INFO_ABORT (1ULL << 61)
1736 #define LBR_INFO_CYCLES 0xffff
1737
1738 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
intel_pt_lbr_flags(u64 info)1739 static u64 intel_pt_lbr_flags(u64 info)
1740 {
1741 union {
1742 struct branch_flags flags;
1743 u64 result;
1744 } u;
1745
1746 u.result = 0;
1747 u.flags.mispred = !!(info & LBR_INFO_MISPRED);
1748 u.flags.predicted = !(info & LBR_INFO_MISPRED);
1749 u.flags.in_tx = !!(info & LBR_INFO_IN_TX);
1750 u.flags.abort = !!(info & LBR_INFO_ABORT);
1751 u.flags.cycles = info & LBR_INFO_CYCLES;
1752
1753 return u.result;
1754 }
1755
intel_pt_add_lbrs(struct branch_stack * br_stack,const struct intel_pt_blk_items * items)1756 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1757 const struct intel_pt_blk_items *items)
1758 {
1759 u64 *to;
1760 int i;
1761
1762 br_stack->nr = 0;
1763
1764 to = &br_stack->entries[0].from;
1765
1766 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1767 u32 mask = items->mask[i];
1768 const u64 *from = items->val[i];
1769
1770 for (; mask; mask >>= 3, from += 3) {
1771 if ((mask & 7) == 7) {
1772 *to++ = from[0];
1773 *to++ = from[1];
1774 *to++ = intel_pt_lbr_flags(from[2]);
1775 br_stack->nr += 1;
1776 }
1777 }
1778 }
1779 }
1780
intel_pt_synth_pebs_sample(struct intel_pt_queue * ptq)1781 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1782 {
1783 const struct intel_pt_blk_items *items = &ptq->state->items;
1784 struct perf_sample sample = { .ip = 0, };
1785 union perf_event *event = ptq->event_buf;
1786 struct intel_pt *pt = ptq->pt;
1787 struct evsel *evsel = pt->pebs_evsel;
1788 u64 sample_type = evsel->core.attr.sample_type;
1789 u64 id = evsel->core.id[0];
1790 u8 cpumode;
1791 u64 regs[8 * sizeof(sample.intr_regs.mask)];
1792
1793 if (intel_pt_skip_event(pt))
1794 return 0;
1795
1796 intel_pt_prep_a_sample(ptq, event, &sample);
1797
1798 sample.id = id;
1799 sample.stream_id = id;
1800
1801 if (!evsel->core.attr.freq)
1802 sample.period = evsel->core.attr.sample_period;
1803
1804 /* No support for non-zero CS base */
1805 if (items->has_ip)
1806 sample.ip = items->ip;
1807 else if (items->has_rip)
1808 sample.ip = items->rip;
1809 else
1810 sample.ip = ptq->state->from_ip;
1811
1812 /* No support for guest mode at this time */
1813 cpumode = sample.ip < ptq->pt->kernel_start ?
1814 PERF_RECORD_MISC_USER :
1815 PERF_RECORD_MISC_KERNEL;
1816
1817 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1818
1819 sample.cpumode = cpumode;
1820
1821 if (sample_type & PERF_SAMPLE_TIME) {
1822 u64 timestamp = 0;
1823
1824 if (items->has_timestamp)
1825 timestamp = items->timestamp;
1826 else if (!pt->timeless_decoding)
1827 timestamp = ptq->timestamp;
1828 if (timestamp)
1829 sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1830 }
1831
1832 if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1833 pt->synth_opts.callchain) {
1834 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1835 pt->synth_opts.callchain_sz, sample.ip,
1836 pt->kernel_start);
1837 sample.callchain = ptq->chain;
1838 }
1839
1840 if (sample_type & PERF_SAMPLE_REGS_INTR &&
1841 (items->mask[INTEL_PT_GP_REGS_POS] ||
1842 items->mask[INTEL_PT_XMM_POS])) {
1843 u64 regs_mask = evsel->core.attr.sample_regs_intr;
1844 u64 *pos;
1845
1846 sample.intr_regs.abi = items->is_32_bit ?
1847 PERF_SAMPLE_REGS_ABI_32 :
1848 PERF_SAMPLE_REGS_ABI_64;
1849 sample.intr_regs.regs = regs;
1850
1851 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1852
1853 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1854 }
1855
1856 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1857 if (items->mask[INTEL_PT_LBR_0_POS] ||
1858 items->mask[INTEL_PT_LBR_1_POS] ||
1859 items->mask[INTEL_PT_LBR_2_POS]) {
1860 intel_pt_add_lbrs(ptq->last_branch, items);
1861 } else if (pt->synth_opts.last_branch) {
1862 thread_stack__br_sample(ptq->thread, ptq->cpu,
1863 ptq->last_branch,
1864 pt->br_stack_sz);
1865 } else {
1866 ptq->last_branch->nr = 0;
1867 }
1868 sample.branch_stack = ptq->last_branch;
1869 }
1870
1871 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1872 sample.addr = items->mem_access_address;
1873
1874 if (sample_type & PERF_SAMPLE_WEIGHT) {
1875 /*
1876 * Refer kernel's setup_pebs_adaptive_sample_data() and
1877 * intel_hsw_weight().
1878 */
1879 if (items->has_mem_access_latency)
1880 sample.weight = items->mem_access_latency;
1881 if (!sample.weight && items->has_tsx_aux_info) {
1882 /* Cycles last block */
1883 sample.weight = (u32)items->tsx_aux_info;
1884 }
1885 }
1886
1887 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1888 u64 ax = items->has_rax ? items->rax : 0;
1889 /* Refer kernel's intel_hsw_transaction() */
1890 u64 txn = (u8)(items->tsx_aux_info >> 32);
1891
1892 /* For RTM XABORTs also log the abort code from AX */
1893 if (txn & PERF_TXN_TRANSACTION && ax & 1)
1894 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1895 sample.transaction = txn;
1896 }
1897
1898 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
1899 }
1900
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip,u64 timestamp)1901 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1902 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1903 {
1904 union perf_event event;
1905 char msg[MAX_AUXTRACE_ERROR_MSG];
1906 int err;
1907
1908 if (pt->synth_opts.error_minus_flags) {
1909 if (code == INTEL_PT_ERR_OVR &&
1910 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
1911 return 0;
1912 if (code == INTEL_PT_ERR_LOST &&
1913 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
1914 return 0;
1915 }
1916
1917 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1918
1919 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1920 code, cpu, pid, tid, ip, msg, timestamp);
1921
1922 err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1923 if (err)
1924 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1925 err);
1926
1927 return err;
1928 }
1929
intel_ptq_synth_error(struct intel_pt_queue * ptq,const struct intel_pt_state * state)1930 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1931 const struct intel_pt_state *state)
1932 {
1933 struct intel_pt *pt = ptq->pt;
1934 u64 tm = ptq->timestamp;
1935
1936 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1937
1938 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1939 ptq->tid, state->from_ip, tm);
1940 }
1941
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)1942 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1943 {
1944 struct auxtrace_queue *queue;
1945 pid_t tid = ptq->next_tid;
1946 int err;
1947
1948 if (tid == -1)
1949 return 0;
1950
1951 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1952
1953 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1954
1955 queue = &pt->queues.queue_array[ptq->queue_nr];
1956 intel_pt_set_pid_tid_cpu(pt, queue);
1957
1958 ptq->next_tid = -1;
1959
1960 return err;
1961 }
1962
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)1963 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1964 {
1965 struct intel_pt *pt = ptq->pt;
1966
1967 return ip == pt->switch_ip &&
1968 (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1969 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1970 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1971 }
1972
1973 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1974 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1975
intel_pt_sample(struct intel_pt_queue * ptq)1976 static int intel_pt_sample(struct intel_pt_queue *ptq)
1977 {
1978 const struct intel_pt_state *state = ptq->state;
1979 struct intel_pt *pt = ptq->pt;
1980 int err;
1981
1982 if (!ptq->have_sample)
1983 return 0;
1984
1985 ptq->have_sample = false;
1986
1987 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1988 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1989
1990 /*
1991 * Do PEBS first to allow for the possibility that the PEBS timestamp
1992 * precedes the current timestamp.
1993 */
1994 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1995 err = intel_pt_synth_pebs_sample(ptq);
1996 if (err)
1997 return err;
1998 }
1999
2000 if (pt->sample_pwr_events) {
2001 if (ptq->state->cbr != ptq->cbr_seen) {
2002 err = intel_pt_synth_cbr_sample(ptq);
2003 if (err)
2004 return err;
2005 }
2006 if (state->type & INTEL_PT_PWR_EVT) {
2007 if (state->type & INTEL_PT_MWAIT_OP) {
2008 err = intel_pt_synth_mwait_sample(ptq);
2009 if (err)
2010 return err;
2011 }
2012 if (state->type & INTEL_PT_PWR_ENTRY) {
2013 err = intel_pt_synth_pwre_sample(ptq);
2014 if (err)
2015 return err;
2016 }
2017 if (state->type & INTEL_PT_EX_STOP) {
2018 err = intel_pt_synth_exstop_sample(ptq);
2019 if (err)
2020 return err;
2021 }
2022 if (state->type & INTEL_PT_PWR_EXIT) {
2023 err = intel_pt_synth_pwrx_sample(ptq);
2024 if (err)
2025 return err;
2026 }
2027 }
2028 }
2029
2030 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2031 err = intel_pt_synth_instruction_sample(ptq);
2032 if (err)
2033 return err;
2034 }
2035
2036 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2037 err = intel_pt_synth_transaction_sample(ptq);
2038 if (err)
2039 return err;
2040 }
2041
2042 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2043 err = intel_pt_synth_ptwrite_sample(ptq);
2044 if (err)
2045 return err;
2046 }
2047
2048 if (!(state->type & INTEL_PT_BRANCH))
2049 return 0;
2050
2051 if (pt->use_thread_stack) {
2052 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2053 state->from_ip, state->to_ip, ptq->insn_len,
2054 state->trace_nr, pt->callstack,
2055 pt->br_stack_sz_plus,
2056 pt->mispred_all);
2057 } else {
2058 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2059 }
2060
2061 if (pt->sample_branches) {
2062 err = intel_pt_synth_branch_sample(ptq);
2063 if (err)
2064 return err;
2065 }
2066
2067 if (!ptq->sync_switch)
2068 return 0;
2069
2070 if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2071 switch (ptq->switch_state) {
2072 case INTEL_PT_SS_NOT_TRACING:
2073 case INTEL_PT_SS_UNKNOWN:
2074 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2075 err = intel_pt_next_tid(pt, ptq);
2076 if (err)
2077 return err;
2078 ptq->switch_state = INTEL_PT_SS_TRACING;
2079 break;
2080 default:
2081 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2082 return 1;
2083 }
2084 } else if (!state->to_ip) {
2085 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2086 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2087 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2088 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2089 state->to_ip == pt->ptss_ip &&
2090 (ptq->flags & PERF_IP_FLAG_CALL)) {
2091 ptq->switch_state = INTEL_PT_SS_TRACING;
2092 }
2093
2094 return 0;
2095 }
2096
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)2097 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2098 {
2099 struct machine *machine = pt->machine;
2100 struct map *map;
2101 struct symbol *sym, *start;
2102 u64 ip, switch_ip = 0;
2103 const char *ptss;
2104
2105 if (ptss_ip)
2106 *ptss_ip = 0;
2107
2108 map = machine__kernel_map(machine);
2109 if (!map)
2110 return 0;
2111
2112 if (map__load(map))
2113 return 0;
2114
2115 start = dso__first_symbol(map->dso);
2116
2117 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2118 if (sym->binding == STB_GLOBAL &&
2119 !strcmp(sym->name, "__switch_to")) {
2120 ip = map->unmap_ip(map, sym->start);
2121 if (ip >= map->start && ip < map->end) {
2122 switch_ip = ip;
2123 break;
2124 }
2125 }
2126 }
2127
2128 if (!switch_ip || !ptss_ip)
2129 return 0;
2130
2131 if (pt->have_sched_switch == 1)
2132 ptss = "perf_trace_sched_switch";
2133 else
2134 ptss = "__perf_event_task_sched_out";
2135
2136 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2137 if (!strcmp(sym->name, ptss)) {
2138 ip = map->unmap_ip(map, sym->start);
2139 if (ip >= map->start && ip < map->end) {
2140 *ptss_ip = ip;
2141 break;
2142 }
2143 }
2144 }
2145
2146 return switch_ip;
2147 }
2148
intel_pt_enable_sync_switch(struct intel_pt * pt)2149 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2150 {
2151 unsigned int i;
2152
2153 pt->sync_switch = true;
2154
2155 for (i = 0; i < pt->queues.nr_queues; i++) {
2156 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2157 struct intel_pt_queue *ptq = queue->priv;
2158
2159 if (ptq)
2160 ptq->sync_switch = true;
2161 }
2162 }
2163
2164 /*
2165 * To filter against time ranges, it is only necessary to look at the next start
2166 * or end time.
2167 */
intel_pt_next_time(struct intel_pt_queue * ptq)2168 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2169 {
2170 struct intel_pt *pt = ptq->pt;
2171
2172 if (ptq->sel_start) {
2173 /* Next time is an end time */
2174 ptq->sel_start = false;
2175 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2176 return true;
2177 } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2178 /* Next time is a start time */
2179 ptq->sel_start = true;
2180 ptq->sel_idx += 1;
2181 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2182 return true;
2183 }
2184
2185 /* No next time */
2186 return false;
2187 }
2188
intel_pt_time_filter(struct intel_pt_queue * ptq,u64 * ff_timestamp)2189 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2190 {
2191 int err;
2192
2193 while (1) {
2194 if (ptq->sel_start) {
2195 if (ptq->timestamp >= ptq->sel_timestamp) {
2196 /* After start time, so consider next time */
2197 intel_pt_next_time(ptq);
2198 if (!ptq->sel_timestamp) {
2199 /* No end time */
2200 return 0;
2201 }
2202 /* Check against end time */
2203 continue;
2204 }
2205 /* Before start time, so fast forward */
2206 ptq->have_sample = false;
2207 if (ptq->sel_timestamp > *ff_timestamp) {
2208 if (ptq->sync_switch) {
2209 intel_pt_next_tid(ptq->pt, ptq);
2210 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2211 }
2212 *ff_timestamp = ptq->sel_timestamp;
2213 err = intel_pt_fast_forward(ptq->decoder,
2214 ptq->sel_timestamp);
2215 if (err)
2216 return err;
2217 }
2218 return 0;
2219 } else if (ptq->timestamp > ptq->sel_timestamp) {
2220 /* After end time, so consider next time */
2221 if (!intel_pt_next_time(ptq)) {
2222 /* No next time range, so stop decoding */
2223 ptq->have_sample = false;
2224 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2225 return 1;
2226 }
2227 /* Check against next start time */
2228 continue;
2229 } else {
2230 /* Before end time */
2231 return 0;
2232 }
2233 }
2234 }
2235
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)2236 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2237 {
2238 const struct intel_pt_state *state = ptq->state;
2239 struct intel_pt *pt = ptq->pt;
2240 u64 ff_timestamp = 0;
2241 int err;
2242
2243 if (!pt->kernel_start) {
2244 pt->kernel_start = machine__kernel_start(pt->machine);
2245 if (pt->per_cpu_mmaps &&
2246 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2247 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2248 !pt->sampling_mode) {
2249 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2250 if (pt->switch_ip) {
2251 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2252 pt->switch_ip, pt->ptss_ip);
2253 intel_pt_enable_sync_switch(pt);
2254 }
2255 }
2256 }
2257
2258 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2259 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2260 while (1) {
2261 err = intel_pt_sample(ptq);
2262 if (err)
2263 return err;
2264
2265 state = intel_pt_decode(ptq->decoder);
2266 if (state->err) {
2267 if (state->err == INTEL_PT_ERR_NODATA)
2268 return 1;
2269 if (ptq->sync_switch &&
2270 state->from_ip >= pt->kernel_start) {
2271 ptq->sync_switch = false;
2272 intel_pt_next_tid(pt, ptq);
2273 }
2274 ptq->timestamp = state->est_timestamp;
2275 if (pt->synth_opts.errors) {
2276 err = intel_ptq_synth_error(ptq, state);
2277 if (err)
2278 return err;
2279 }
2280 continue;
2281 }
2282
2283 ptq->state = state;
2284 ptq->have_sample = true;
2285 intel_pt_sample_flags(ptq);
2286
2287 /* Use estimated TSC upon return to user space */
2288 if (pt->est_tsc &&
2289 (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2290 state->to_ip && state->to_ip < pt->kernel_start) {
2291 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2292 state->timestamp, state->est_timestamp);
2293 ptq->timestamp = state->est_timestamp;
2294 /* Use estimated TSC in unknown switch state */
2295 } else if (ptq->sync_switch &&
2296 ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2297 intel_pt_is_switch_ip(ptq, state->to_ip) &&
2298 ptq->next_tid == -1) {
2299 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2300 state->timestamp, state->est_timestamp);
2301 ptq->timestamp = state->est_timestamp;
2302 } else if (state->timestamp > ptq->timestamp) {
2303 ptq->timestamp = state->timestamp;
2304 }
2305
2306 if (ptq->sel_timestamp) {
2307 err = intel_pt_time_filter(ptq, &ff_timestamp);
2308 if (err)
2309 return err;
2310 }
2311
2312 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2313 *timestamp = ptq->timestamp;
2314 return 0;
2315 }
2316 }
2317 return 0;
2318 }
2319
intel_pt_update_queues(struct intel_pt * pt)2320 static inline int intel_pt_update_queues(struct intel_pt *pt)
2321 {
2322 if (pt->queues.new_data) {
2323 pt->queues.new_data = false;
2324 return intel_pt_setup_queues(pt);
2325 }
2326 return 0;
2327 }
2328
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)2329 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2330 {
2331 unsigned int queue_nr;
2332 u64 ts;
2333 int ret;
2334
2335 while (1) {
2336 struct auxtrace_queue *queue;
2337 struct intel_pt_queue *ptq;
2338
2339 if (!pt->heap.heap_cnt)
2340 return 0;
2341
2342 if (pt->heap.heap_array[0].ordinal >= timestamp)
2343 return 0;
2344
2345 queue_nr = pt->heap.heap_array[0].queue_nr;
2346 queue = &pt->queues.queue_array[queue_nr];
2347 ptq = queue->priv;
2348
2349 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2350 queue_nr, pt->heap.heap_array[0].ordinal,
2351 timestamp);
2352
2353 auxtrace_heap__pop(&pt->heap);
2354
2355 if (pt->heap.heap_cnt) {
2356 ts = pt->heap.heap_array[0].ordinal + 1;
2357 if (ts > timestamp)
2358 ts = timestamp;
2359 } else {
2360 ts = timestamp;
2361 }
2362
2363 intel_pt_set_pid_tid_cpu(pt, queue);
2364
2365 ret = intel_pt_run_decoder(ptq, &ts);
2366
2367 if (ret < 0) {
2368 auxtrace_heap__add(&pt->heap, queue_nr, ts);
2369 return ret;
2370 }
2371
2372 if (!ret) {
2373 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2374 if (ret < 0)
2375 return ret;
2376 } else {
2377 ptq->on_heap = false;
2378 }
2379 }
2380
2381 return 0;
2382 }
2383
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)2384 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2385 u64 time_)
2386 {
2387 struct auxtrace_queues *queues = &pt->queues;
2388 unsigned int i;
2389 u64 ts = 0;
2390
2391 for (i = 0; i < queues->nr_queues; i++) {
2392 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2393 struct intel_pt_queue *ptq = queue->priv;
2394
2395 if (ptq && (tid == -1 || ptq->tid == tid)) {
2396 ptq->time = time_;
2397 intel_pt_set_pid_tid_cpu(pt, queue);
2398 intel_pt_run_decoder(ptq, &ts);
2399 }
2400 }
2401 return 0;
2402 }
2403
intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue * ptq,struct auxtrace_queue * queue,struct perf_sample * sample)2404 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2405 struct auxtrace_queue *queue,
2406 struct perf_sample *sample)
2407 {
2408 struct machine *m = ptq->pt->machine;
2409
2410 ptq->pid = sample->pid;
2411 ptq->tid = sample->tid;
2412 ptq->cpu = queue->cpu;
2413
2414 intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2415 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2416
2417 thread__zput(ptq->thread);
2418
2419 if (ptq->tid == -1)
2420 return;
2421
2422 if (ptq->pid == -1) {
2423 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2424 if (ptq->thread)
2425 ptq->pid = ptq->thread->pid_;
2426 return;
2427 }
2428
2429 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2430 }
2431
intel_pt_process_timeless_sample(struct intel_pt * pt,struct perf_sample * sample)2432 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2433 struct perf_sample *sample)
2434 {
2435 struct auxtrace_queue *queue;
2436 struct intel_pt_queue *ptq;
2437 u64 ts = 0;
2438
2439 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2440 if (!queue)
2441 return -EINVAL;
2442
2443 ptq = queue->priv;
2444 if (!ptq)
2445 return 0;
2446
2447 ptq->stop = false;
2448 ptq->time = sample->time;
2449 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2450 intel_pt_run_decoder(ptq, &ts);
2451 return 0;
2452 }
2453
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)2454 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2455 {
2456 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2457 sample->pid, sample->tid, 0, sample->time);
2458 }
2459
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)2460 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2461 {
2462 unsigned i, j;
2463
2464 if (cpu < 0 || !pt->queues.nr_queues)
2465 return NULL;
2466
2467 if ((unsigned)cpu >= pt->queues.nr_queues)
2468 i = pt->queues.nr_queues - 1;
2469 else
2470 i = cpu;
2471
2472 if (pt->queues.queue_array[i].cpu == cpu)
2473 return pt->queues.queue_array[i].priv;
2474
2475 for (j = 0; i > 0; j++) {
2476 if (pt->queues.queue_array[--i].cpu == cpu)
2477 return pt->queues.queue_array[i].priv;
2478 }
2479
2480 for (; j < pt->queues.nr_queues; j++) {
2481 if (pt->queues.queue_array[j].cpu == cpu)
2482 return pt->queues.queue_array[j].priv;
2483 }
2484
2485 return NULL;
2486 }
2487
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)2488 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2489 u64 timestamp)
2490 {
2491 struct intel_pt_queue *ptq;
2492 int err;
2493
2494 if (!pt->sync_switch)
2495 return 1;
2496
2497 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2498 if (!ptq || !ptq->sync_switch)
2499 return 1;
2500
2501 switch (ptq->switch_state) {
2502 case INTEL_PT_SS_NOT_TRACING:
2503 break;
2504 case INTEL_PT_SS_UNKNOWN:
2505 case INTEL_PT_SS_TRACING:
2506 ptq->next_tid = tid;
2507 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2508 return 0;
2509 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2510 if (!ptq->on_heap) {
2511 ptq->timestamp = perf_time_to_tsc(timestamp,
2512 &pt->tc);
2513 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2514 ptq->timestamp);
2515 if (err)
2516 return err;
2517 ptq->on_heap = true;
2518 }
2519 ptq->switch_state = INTEL_PT_SS_TRACING;
2520 break;
2521 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2522 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2523 break;
2524 default:
2525 break;
2526 }
2527
2528 ptq->next_tid = -1;
2529
2530 return 1;
2531 }
2532
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)2533 static int intel_pt_process_switch(struct intel_pt *pt,
2534 struct perf_sample *sample)
2535 {
2536 struct evsel *evsel;
2537 pid_t tid;
2538 int cpu, ret;
2539
2540 evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2541 if (evsel != pt->switch_evsel)
2542 return 0;
2543
2544 tid = evsel__intval(evsel, sample, "next_pid");
2545 cpu = sample->cpu;
2546
2547 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2548 cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2549 &pt->tc));
2550
2551 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2552 if (ret <= 0)
2553 return ret;
2554
2555 return machine__set_current_tid(pt->machine, cpu, -1, tid);
2556 }
2557
intel_pt_context_switch_in(struct intel_pt * pt,struct perf_sample * sample)2558 static int intel_pt_context_switch_in(struct intel_pt *pt,
2559 struct perf_sample *sample)
2560 {
2561 pid_t pid = sample->pid;
2562 pid_t tid = sample->tid;
2563 int cpu = sample->cpu;
2564
2565 if (pt->sync_switch) {
2566 struct intel_pt_queue *ptq;
2567
2568 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2569 if (ptq && ptq->sync_switch) {
2570 ptq->next_tid = -1;
2571 switch (ptq->switch_state) {
2572 case INTEL_PT_SS_NOT_TRACING:
2573 case INTEL_PT_SS_UNKNOWN:
2574 case INTEL_PT_SS_TRACING:
2575 break;
2576 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2577 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2578 ptq->switch_state = INTEL_PT_SS_TRACING;
2579 break;
2580 default:
2581 break;
2582 }
2583 }
2584 }
2585
2586 /*
2587 * If the current tid has not been updated yet, ensure it is now that
2588 * a "switch in" event has occurred.
2589 */
2590 if (machine__get_current_tid(pt->machine, cpu) == tid)
2591 return 0;
2592
2593 return machine__set_current_tid(pt->machine, cpu, pid, tid);
2594 }
2595
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)2596 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2597 struct perf_sample *sample)
2598 {
2599 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2600 pid_t pid, tid;
2601 int cpu, ret;
2602
2603 cpu = sample->cpu;
2604
2605 if (pt->have_sched_switch == 3) {
2606 if (!out)
2607 return intel_pt_context_switch_in(pt, sample);
2608 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2609 pr_err("Expecting CPU-wide context switch event\n");
2610 return -EINVAL;
2611 }
2612 pid = event->context_switch.next_prev_pid;
2613 tid = event->context_switch.next_prev_tid;
2614 } else {
2615 if (out)
2616 return 0;
2617 pid = sample->pid;
2618 tid = sample->tid;
2619 }
2620
2621 if (tid == -1)
2622 intel_pt_log("context_switch event has no tid\n");
2623
2624 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2625 if (ret <= 0)
2626 return ret;
2627
2628 return machine__set_current_tid(pt->machine, cpu, pid, tid);
2629 }
2630
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)2631 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2632 union perf_event *event,
2633 struct perf_sample *sample)
2634 {
2635 if (!pt->per_cpu_mmaps)
2636 return 0;
2637
2638 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2639 sample->cpu, event->itrace_start.pid,
2640 event->itrace_start.tid, sample->time,
2641 perf_time_to_tsc(sample->time, &pt->tc));
2642
2643 return machine__set_current_tid(pt->machine, sample->cpu,
2644 event->itrace_start.pid,
2645 event->itrace_start.tid);
2646 }
2647
intel_pt_find_map(struct thread * thread,u8 cpumode,u64 addr,struct addr_location * al)2648 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2649 struct addr_location *al)
2650 {
2651 if (!al->map || addr < al->map->start || addr >= al->map->end) {
2652 if (!thread__find_map(thread, cpumode, addr, al))
2653 return -1;
2654 }
2655
2656 return 0;
2657 }
2658
2659 /* Invalidate all instruction cache entries that overlap the text poke */
intel_pt_text_poke(struct intel_pt * pt,union perf_event * event)2660 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2661 {
2662 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2663 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2664 /* Assume text poke begins in a basic block no more than 4096 bytes */
2665 int cnt = 4096 + event->text_poke.new_len;
2666 struct thread *thread = pt->unknown_thread;
2667 struct addr_location al = { .map = NULL };
2668 struct machine *machine = pt->machine;
2669 struct intel_pt_cache_entry *e;
2670 u64 offset;
2671
2672 if (!event->text_poke.new_len)
2673 return 0;
2674
2675 for (; cnt; cnt--, addr--) {
2676 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2677 if (addr < event->text_poke.addr)
2678 return 0;
2679 continue;
2680 }
2681
2682 if (!al.map->dso || !al.map->dso->auxtrace_cache)
2683 continue;
2684
2685 offset = al.map->map_ip(al.map, addr);
2686
2687 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2688 if (!e)
2689 continue;
2690
2691 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2692 /*
2693 * No overlap. Working backwards there cannot be another
2694 * basic block that overlaps the text poke if there is a
2695 * branch instruction before the text poke address.
2696 */
2697 if (e->branch != INTEL_PT_BR_NO_BRANCH)
2698 return 0;
2699 } else {
2700 intel_pt_cache_invalidate(al.map->dso, machine, offset);
2701 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2702 al.map->dso->long_name, addr);
2703 }
2704 }
2705
2706 return 0;
2707 }
2708
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2709 static int intel_pt_process_event(struct perf_session *session,
2710 union perf_event *event,
2711 struct perf_sample *sample,
2712 struct perf_tool *tool)
2713 {
2714 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2715 auxtrace);
2716 u64 timestamp;
2717 int err = 0;
2718
2719 if (dump_trace)
2720 return 0;
2721
2722 if (!tool->ordered_events) {
2723 pr_err("Intel Processor Trace requires ordered events\n");
2724 return -EINVAL;
2725 }
2726
2727 if (sample->time && sample->time != (u64)-1)
2728 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2729 else
2730 timestamp = 0;
2731
2732 if (timestamp || pt->timeless_decoding) {
2733 err = intel_pt_update_queues(pt);
2734 if (err)
2735 return err;
2736 }
2737
2738 if (pt->timeless_decoding) {
2739 if (pt->sampling_mode) {
2740 if (sample->aux_sample.size)
2741 err = intel_pt_process_timeless_sample(pt,
2742 sample);
2743 } else if (event->header.type == PERF_RECORD_EXIT) {
2744 err = intel_pt_process_timeless_queues(pt,
2745 event->fork.tid,
2746 sample->time);
2747 }
2748 } else if (timestamp) {
2749 err = intel_pt_process_queues(pt, timestamp);
2750 }
2751 if (err)
2752 return err;
2753
2754 if (event->header.type == PERF_RECORD_SAMPLE) {
2755 if (pt->synth_opts.add_callchain && !sample->callchain)
2756 intel_pt_add_callchain(pt, sample);
2757 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2758 intel_pt_add_br_stack(pt, sample);
2759 }
2760
2761 if (event->header.type == PERF_RECORD_AUX &&
2762 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2763 pt->synth_opts.errors) {
2764 err = intel_pt_lost(pt, sample);
2765 if (err)
2766 return err;
2767 }
2768
2769 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2770 err = intel_pt_process_switch(pt, sample);
2771 else if (event->header.type == PERF_RECORD_ITRACE_START)
2772 err = intel_pt_process_itrace_start(pt, event, sample);
2773 else if (event->header.type == PERF_RECORD_SWITCH ||
2774 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2775 err = intel_pt_context_switch(pt, event, sample);
2776
2777 if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2778 err = intel_pt_text_poke(pt, event);
2779
2780 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2781 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2782 event->header.type, sample->cpu, sample->time, timestamp);
2783 intel_pt_log_event(event);
2784 }
2785
2786 return err;
2787 }
2788
intel_pt_flush(struct perf_session * session,struct perf_tool * tool)2789 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2790 {
2791 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2792 auxtrace);
2793 int ret;
2794
2795 if (dump_trace)
2796 return 0;
2797
2798 if (!tool->ordered_events)
2799 return -EINVAL;
2800
2801 ret = intel_pt_update_queues(pt);
2802 if (ret < 0)
2803 return ret;
2804
2805 if (pt->timeless_decoding)
2806 return intel_pt_process_timeless_queues(pt, -1,
2807 MAX_TIMESTAMP - 1);
2808
2809 return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2810 }
2811
intel_pt_free_events(struct perf_session * session)2812 static void intel_pt_free_events(struct perf_session *session)
2813 {
2814 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2815 auxtrace);
2816 struct auxtrace_queues *queues = &pt->queues;
2817 unsigned int i;
2818
2819 for (i = 0; i < queues->nr_queues; i++) {
2820 intel_pt_free_queue(queues->queue_array[i].priv);
2821 queues->queue_array[i].priv = NULL;
2822 }
2823 intel_pt_log_disable();
2824 auxtrace_queues__free(queues);
2825 }
2826
intel_pt_free(struct perf_session * session)2827 static void intel_pt_free(struct perf_session *session)
2828 {
2829 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2830 auxtrace);
2831
2832 auxtrace_heap__free(&pt->heap);
2833 intel_pt_free_events(session);
2834 session->auxtrace = NULL;
2835 thread__put(pt->unknown_thread);
2836 addr_filters__exit(&pt->filts);
2837 zfree(&pt->chain);
2838 zfree(&pt->filter);
2839 zfree(&pt->time_ranges);
2840 free(pt);
2841 }
2842
intel_pt_evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)2843 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2844 struct evsel *evsel)
2845 {
2846 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2847 auxtrace);
2848
2849 return evsel->core.attr.type == pt->pmu_type;
2850 }
2851
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)2852 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2853 union perf_event *event,
2854 struct perf_tool *tool __maybe_unused)
2855 {
2856 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2857 auxtrace);
2858
2859 if (!pt->data_queued) {
2860 struct auxtrace_buffer *buffer;
2861 off_t data_offset;
2862 int fd = perf_data__fd(session->data);
2863 int err;
2864
2865 if (perf_data__is_pipe(session->data)) {
2866 data_offset = 0;
2867 } else {
2868 data_offset = lseek(fd, 0, SEEK_CUR);
2869 if (data_offset == -1)
2870 return -errno;
2871 }
2872
2873 err = auxtrace_queues__add_event(&pt->queues, session, event,
2874 data_offset, &buffer);
2875 if (err)
2876 return err;
2877
2878 /* Dump here now we have copied a piped trace out of the pipe */
2879 if (dump_trace) {
2880 if (auxtrace_buffer__get_data(buffer, fd)) {
2881 intel_pt_dump_event(pt, buffer->data,
2882 buffer->size);
2883 auxtrace_buffer__put_data(buffer);
2884 }
2885 }
2886 }
2887
2888 return 0;
2889 }
2890
intel_pt_queue_data(struct perf_session * session,struct perf_sample * sample,union perf_event * event,u64 data_offset)2891 static int intel_pt_queue_data(struct perf_session *session,
2892 struct perf_sample *sample,
2893 union perf_event *event, u64 data_offset)
2894 {
2895 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2896 auxtrace);
2897 u64 timestamp;
2898
2899 if (event) {
2900 return auxtrace_queues__add_event(&pt->queues, session, event,
2901 data_offset, NULL);
2902 }
2903
2904 if (sample->time && sample->time != (u64)-1)
2905 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2906 else
2907 timestamp = 0;
2908
2909 return auxtrace_queues__add_sample(&pt->queues, session, sample,
2910 data_offset, timestamp);
2911 }
2912
2913 struct intel_pt_synth {
2914 struct perf_tool dummy_tool;
2915 struct perf_session *session;
2916 };
2917
intel_pt_event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)2918 static int intel_pt_event_synth(struct perf_tool *tool,
2919 union perf_event *event,
2920 struct perf_sample *sample __maybe_unused,
2921 struct machine *machine __maybe_unused)
2922 {
2923 struct intel_pt_synth *intel_pt_synth =
2924 container_of(tool, struct intel_pt_synth, dummy_tool);
2925
2926 return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2927 NULL);
2928 }
2929
intel_pt_synth_event(struct perf_session * session,const char * name,struct perf_event_attr * attr,u64 id)2930 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2931 struct perf_event_attr *attr, u64 id)
2932 {
2933 struct intel_pt_synth intel_pt_synth;
2934 int err;
2935
2936 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2937 name, id, (u64)attr->sample_type);
2938
2939 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2940 intel_pt_synth.session = session;
2941
2942 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2943 &id, intel_pt_event_synth);
2944 if (err)
2945 pr_err("%s: failed to synthesize '%s' event type\n",
2946 __func__, name);
2947
2948 return err;
2949 }
2950
intel_pt_set_event_name(struct evlist * evlist,u64 id,const char * name)2951 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2952 const char *name)
2953 {
2954 struct evsel *evsel;
2955
2956 evlist__for_each_entry(evlist, evsel) {
2957 if (evsel->core.id && evsel->core.id[0] == id) {
2958 if (evsel->name)
2959 zfree(&evsel->name);
2960 evsel->name = strdup(name);
2961 break;
2962 }
2963 }
2964 }
2965
intel_pt_evsel(struct intel_pt * pt,struct evlist * evlist)2966 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2967 struct evlist *evlist)
2968 {
2969 struct evsel *evsel;
2970
2971 evlist__for_each_entry(evlist, evsel) {
2972 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2973 return evsel;
2974 }
2975
2976 return NULL;
2977 }
2978
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)2979 static int intel_pt_synth_events(struct intel_pt *pt,
2980 struct perf_session *session)
2981 {
2982 struct evlist *evlist = session->evlist;
2983 struct evsel *evsel = intel_pt_evsel(pt, evlist);
2984 struct perf_event_attr attr;
2985 u64 id;
2986 int err;
2987
2988 if (!evsel) {
2989 pr_debug("There are no selected events with Intel Processor Trace data\n");
2990 return 0;
2991 }
2992
2993 memset(&attr, 0, sizeof(struct perf_event_attr));
2994 attr.size = sizeof(struct perf_event_attr);
2995 attr.type = PERF_TYPE_HARDWARE;
2996 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2997 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2998 PERF_SAMPLE_PERIOD;
2999 if (pt->timeless_decoding)
3000 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3001 else
3002 attr.sample_type |= PERF_SAMPLE_TIME;
3003 if (!pt->per_cpu_mmaps)
3004 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3005 attr.exclude_user = evsel->core.attr.exclude_user;
3006 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3007 attr.exclude_hv = evsel->core.attr.exclude_hv;
3008 attr.exclude_host = evsel->core.attr.exclude_host;
3009 attr.exclude_guest = evsel->core.attr.exclude_guest;
3010 attr.sample_id_all = evsel->core.attr.sample_id_all;
3011 attr.read_format = evsel->core.attr.read_format;
3012
3013 id = evsel->core.id[0] + 1000000000;
3014 if (!id)
3015 id = 1;
3016
3017 if (pt->synth_opts.branches) {
3018 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3019 attr.sample_period = 1;
3020 attr.sample_type |= PERF_SAMPLE_ADDR;
3021 err = intel_pt_synth_event(session, "branches", &attr, id);
3022 if (err)
3023 return err;
3024 pt->sample_branches = true;
3025 pt->branches_sample_type = attr.sample_type;
3026 pt->branches_id = id;
3027 id += 1;
3028 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3029 }
3030
3031 if (pt->synth_opts.callchain)
3032 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3033 if (pt->synth_opts.last_branch) {
3034 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3035 /*
3036 * We don't use the hardware index, but the sample generation
3037 * code uses the new format branch_stack with this field,
3038 * so the event attributes must indicate that it's present.
3039 */
3040 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3041 }
3042
3043 if (pt->synth_opts.instructions) {
3044 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3045 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3046 attr.sample_period =
3047 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3048 else
3049 attr.sample_period = pt->synth_opts.period;
3050 err = intel_pt_synth_event(session, "instructions", &attr, id);
3051 if (err)
3052 return err;
3053 pt->sample_instructions = true;
3054 pt->instructions_sample_type = attr.sample_type;
3055 pt->instructions_id = id;
3056 id += 1;
3057 }
3058
3059 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3060 attr.sample_period = 1;
3061
3062 if (pt->synth_opts.transactions) {
3063 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3064 err = intel_pt_synth_event(session, "transactions", &attr, id);
3065 if (err)
3066 return err;
3067 pt->sample_transactions = true;
3068 pt->transactions_sample_type = attr.sample_type;
3069 pt->transactions_id = id;
3070 intel_pt_set_event_name(evlist, id, "transactions");
3071 id += 1;
3072 }
3073
3074 attr.type = PERF_TYPE_SYNTH;
3075 attr.sample_type |= PERF_SAMPLE_RAW;
3076
3077 if (pt->synth_opts.ptwrites) {
3078 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3079 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3080 if (err)
3081 return err;
3082 pt->sample_ptwrites = true;
3083 pt->ptwrites_sample_type = attr.sample_type;
3084 pt->ptwrites_id = id;
3085 intel_pt_set_event_name(evlist, id, "ptwrite");
3086 id += 1;
3087 }
3088
3089 if (pt->synth_opts.pwr_events) {
3090 pt->sample_pwr_events = true;
3091 pt->pwr_events_sample_type = attr.sample_type;
3092
3093 attr.config = PERF_SYNTH_INTEL_CBR;
3094 err = intel_pt_synth_event(session, "cbr", &attr, id);
3095 if (err)
3096 return err;
3097 pt->cbr_id = id;
3098 intel_pt_set_event_name(evlist, id, "cbr");
3099 id += 1;
3100 }
3101
3102 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3103 attr.config = PERF_SYNTH_INTEL_MWAIT;
3104 err = intel_pt_synth_event(session, "mwait", &attr, id);
3105 if (err)
3106 return err;
3107 pt->mwait_id = id;
3108 intel_pt_set_event_name(evlist, id, "mwait");
3109 id += 1;
3110
3111 attr.config = PERF_SYNTH_INTEL_PWRE;
3112 err = intel_pt_synth_event(session, "pwre", &attr, id);
3113 if (err)
3114 return err;
3115 pt->pwre_id = id;
3116 intel_pt_set_event_name(evlist, id, "pwre");
3117 id += 1;
3118
3119 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3120 err = intel_pt_synth_event(session, "exstop", &attr, id);
3121 if (err)
3122 return err;
3123 pt->exstop_id = id;
3124 intel_pt_set_event_name(evlist, id, "exstop");
3125 id += 1;
3126
3127 attr.config = PERF_SYNTH_INTEL_PWRX;
3128 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3129 if (err)
3130 return err;
3131 pt->pwrx_id = id;
3132 intel_pt_set_event_name(evlist, id, "pwrx");
3133 id += 1;
3134 }
3135
3136 return 0;
3137 }
3138
intel_pt_setup_pebs_events(struct intel_pt * pt)3139 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3140 {
3141 struct evsel *evsel;
3142
3143 if (!pt->synth_opts.other_events)
3144 return;
3145
3146 evlist__for_each_entry(pt->session->evlist, evsel) {
3147 if (evsel->core.attr.aux_output && evsel->core.id) {
3148 pt->sample_pebs = true;
3149 pt->pebs_evsel = evsel;
3150 return;
3151 }
3152 }
3153 }
3154
intel_pt_find_sched_switch(struct evlist * evlist)3155 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3156 {
3157 struct evsel *evsel;
3158
3159 evlist__for_each_entry_reverse(evlist, evsel) {
3160 const char *name = evsel__name(evsel);
3161
3162 if (!strcmp(name, "sched:sched_switch"))
3163 return evsel;
3164 }
3165
3166 return NULL;
3167 }
3168
intel_pt_find_switch(struct evlist * evlist)3169 static bool intel_pt_find_switch(struct evlist *evlist)
3170 {
3171 struct evsel *evsel;
3172
3173 evlist__for_each_entry(evlist, evsel) {
3174 if (evsel->core.attr.context_switch)
3175 return true;
3176 }
3177
3178 return false;
3179 }
3180
intel_pt_perf_config(const char * var,const char * value,void * data)3181 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3182 {
3183 struct intel_pt *pt = data;
3184
3185 if (!strcmp(var, "intel-pt.mispred-all"))
3186 pt->mispred_all = perf_config_bool(var, value);
3187
3188 return 0;
3189 }
3190
3191 /* Find least TSC which converts to ns or later */
intel_pt_tsc_start(u64 ns,struct intel_pt * pt)3192 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3193 {
3194 u64 tsc, tm;
3195
3196 tsc = perf_time_to_tsc(ns, &pt->tc);
3197
3198 while (1) {
3199 tm = tsc_to_perf_time(tsc, &pt->tc);
3200 if (tm < ns)
3201 break;
3202 tsc -= 1;
3203 }
3204
3205 while (tm < ns)
3206 tm = tsc_to_perf_time(++tsc, &pt->tc);
3207
3208 return tsc;
3209 }
3210
3211 /* Find greatest TSC which converts to ns or earlier */
intel_pt_tsc_end(u64 ns,struct intel_pt * pt)3212 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3213 {
3214 u64 tsc, tm;
3215
3216 tsc = perf_time_to_tsc(ns, &pt->tc);
3217
3218 while (1) {
3219 tm = tsc_to_perf_time(tsc, &pt->tc);
3220 if (tm > ns)
3221 break;
3222 tsc += 1;
3223 }
3224
3225 while (tm > ns)
3226 tm = tsc_to_perf_time(--tsc, &pt->tc);
3227
3228 return tsc;
3229 }
3230
intel_pt_setup_time_ranges(struct intel_pt * pt,struct itrace_synth_opts * opts)3231 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3232 struct itrace_synth_opts *opts)
3233 {
3234 struct perf_time_interval *p = opts->ptime_range;
3235 int n = opts->range_num;
3236 int i;
3237
3238 if (!n || !p || pt->timeless_decoding)
3239 return 0;
3240
3241 pt->time_ranges = calloc(n, sizeof(struct range));
3242 if (!pt->time_ranges)
3243 return -ENOMEM;
3244
3245 pt->range_cnt = n;
3246
3247 intel_pt_log("%s: %u range(s)\n", __func__, n);
3248
3249 for (i = 0; i < n; i++) {
3250 struct range *r = &pt->time_ranges[i];
3251 u64 ts = p[i].start;
3252 u64 te = p[i].end;
3253
3254 /*
3255 * Take care to ensure the TSC range matches the perf-time range
3256 * when converted back to perf-time.
3257 */
3258 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3259 r->end = te ? intel_pt_tsc_end(te, pt) : 0;
3260
3261 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3262 i, ts, te);
3263 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3264 i, r->start, r->end);
3265 }
3266
3267 return 0;
3268 }
3269
3270 static const char * const intel_pt_info_fmts[] = {
3271 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
3272 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
3273 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
3274 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
3275 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
3276 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
3277 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
3278 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
3279 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
3280 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
3281 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
3282 [INTEL_PT_MTC_FREQ_BITS] = " MTC freq bits %#"PRIx64"\n",
3283 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
3284 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
3285 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
3286 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n",
3287 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n",
3288 };
3289
intel_pt_print_info(__u64 * arr,int start,int finish)3290 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3291 {
3292 int i;
3293
3294 if (!dump_trace)
3295 return;
3296
3297 for (i = start; i <= finish; i++) {
3298 const char *fmt = intel_pt_info_fmts[i];
3299
3300 if (fmt)
3301 fprintf(stdout, fmt, arr[i]);
3302 }
3303 }
3304
intel_pt_print_info_str(const char * name,const char * str)3305 static void intel_pt_print_info_str(const char *name, const char *str)
3306 {
3307 if (!dump_trace)
3308 return;
3309
3310 fprintf(stdout, " %-20s%s\n", name, str ? str : "");
3311 }
3312
intel_pt_has(struct perf_record_auxtrace_info * auxtrace_info,int pos)3313 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3314 {
3315 return auxtrace_info->header.size >=
3316 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3317 }
3318
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)3319 int intel_pt_process_auxtrace_info(union perf_event *event,
3320 struct perf_session *session)
3321 {
3322 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3323 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3324 struct intel_pt *pt;
3325 void *info_end;
3326 __u64 *info;
3327 int err;
3328
3329 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3330 min_sz)
3331 return -EINVAL;
3332
3333 pt = zalloc(sizeof(struct intel_pt));
3334 if (!pt)
3335 return -ENOMEM;
3336
3337 addr_filters__init(&pt->filts);
3338
3339 err = perf_config(intel_pt_perf_config, pt);
3340 if (err)
3341 goto err_free;
3342
3343 err = auxtrace_queues__init(&pt->queues);
3344 if (err)
3345 goto err_free;
3346
3347 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3348
3349 pt->session = session;
3350 pt->machine = &session->machines.host; /* No kvm support */
3351 pt->auxtrace_type = auxtrace_info->type;
3352 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3353 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3354 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3355 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3356 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3357 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3358 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3359 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3360 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3361 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3362 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3363 INTEL_PT_PER_CPU_MMAPS);
3364
3365 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3366 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3367 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3368 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3369 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3370 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3371 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3372 INTEL_PT_CYC_BIT);
3373 }
3374
3375 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3376 pt->max_non_turbo_ratio =
3377 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3378 intel_pt_print_info(&auxtrace_info->priv[0],
3379 INTEL_PT_MAX_NONTURBO_RATIO,
3380 INTEL_PT_MAX_NONTURBO_RATIO);
3381 }
3382
3383 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3384 info_end = (void *)info + auxtrace_info->header.size;
3385
3386 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3387 size_t len;
3388
3389 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3390 intel_pt_print_info(&auxtrace_info->priv[0],
3391 INTEL_PT_FILTER_STR_LEN,
3392 INTEL_PT_FILTER_STR_LEN);
3393 if (len) {
3394 const char *filter = (const char *)info;
3395
3396 len = roundup(len + 1, 8);
3397 info += len >> 3;
3398 if ((void *)info > info_end) {
3399 pr_err("%s: bad filter string length\n", __func__);
3400 err = -EINVAL;
3401 goto err_free_queues;
3402 }
3403 pt->filter = memdup(filter, len);
3404 if (!pt->filter) {
3405 err = -ENOMEM;
3406 goto err_free_queues;
3407 }
3408 if (session->header.needs_swap)
3409 mem_bswap_64(pt->filter, len);
3410 if (pt->filter[len - 1]) {
3411 pr_err("%s: filter string not null terminated\n", __func__);
3412 err = -EINVAL;
3413 goto err_free_queues;
3414 }
3415 err = addr_filters__parse_bare_filter(&pt->filts,
3416 filter);
3417 if (err)
3418 goto err_free_queues;
3419 }
3420 intel_pt_print_info_str("Filter string", pt->filter);
3421 }
3422
3423 pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3424 if (pt->timeless_decoding && !pt->tc.time_mult)
3425 pt->tc.time_mult = 1;
3426 pt->have_tsc = intel_pt_have_tsc(pt);
3427 pt->sampling_mode = intel_pt_sampling_mode(pt);
3428 pt->est_tsc = !pt->timeless_decoding;
3429
3430 pt->unknown_thread = thread__new(999999999, 999999999);
3431 if (!pt->unknown_thread) {
3432 err = -ENOMEM;
3433 goto err_free_queues;
3434 }
3435
3436 /*
3437 * Since this thread will not be kept in any rbtree not in a
3438 * list, initialize its list node so that at thread__put() the
3439 * current thread lifetime assuption is kept and we don't segfault
3440 * at list_del_init().
3441 */
3442 INIT_LIST_HEAD(&pt->unknown_thread->node);
3443
3444 err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3445 if (err)
3446 goto err_delete_thread;
3447 if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3448 err = -ENOMEM;
3449 goto err_delete_thread;
3450 }
3451
3452 pt->auxtrace.process_event = intel_pt_process_event;
3453 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3454 pt->auxtrace.queue_data = intel_pt_queue_data;
3455 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3456 pt->auxtrace.flush_events = intel_pt_flush;
3457 pt->auxtrace.free_events = intel_pt_free_events;
3458 pt->auxtrace.free = intel_pt_free;
3459 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3460 session->auxtrace = &pt->auxtrace;
3461
3462 if (dump_trace)
3463 return 0;
3464
3465 if (pt->have_sched_switch == 1) {
3466 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3467 if (!pt->switch_evsel) {
3468 pr_err("%s: missing sched_switch event\n", __func__);
3469 err = -EINVAL;
3470 goto err_delete_thread;
3471 }
3472 } else if (pt->have_sched_switch == 2 &&
3473 !intel_pt_find_switch(session->evlist)) {
3474 pr_err("%s: missing context_switch attribute flag\n", __func__);
3475 err = -EINVAL;
3476 goto err_delete_thread;
3477 }
3478
3479 if (session->itrace_synth_opts->set) {
3480 pt->synth_opts = *session->itrace_synth_opts;
3481 } else {
3482 itrace_synth_opts__set_default(&pt->synth_opts,
3483 session->itrace_synth_opts->default_no_sample);
3484 if (!session->itrace_synth_opts->default_no_sample &&
3485 !session->itrace_synth_opts->inject) {
3486 pt->synth_opts.branches = false;
3487 pt->synth_opts.callchain = true;
3488 pt->synth_opts.add_callchain = true;
3489 }
3490 pt->synth_opts.thread_stack =
3491 session->itrace_synth_opts->thread_stack;
3492 }
3493
3494 if (pt->synth_opts.log)
3495 intel_pt_log_enable();
3496
3497 /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3498 if (pt->tc.time_mult) {
3499 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3500
3501 if (!pt->max_non_turbo_ratio)
3502 pt->max_non_turbo_ratio =
3503 (tsc_freq + 50000000) / 100000000;
3504 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3505 intel_pt_log("Maximum non-turbo ratio %u\n",
3506 pt->max_non_turbo_ratio);
3507 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3508 }
3509
3510 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3511 if (err)
3512 goto err_delete_thread;
3513
3514 if (pt->synth_opts.calls)
3515 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3516 PERF_IP_FLAG_TRACE_END;
3517 if (pt->synth_opts.returns)
3518 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3519 PERF_IP_FLAG_TRACE_BEGIN;
3520
3521 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3522 !symbol_conf.use_callchain) {
3523 symbol_conf.use_callchain = true;
3524 if (callchain_register_param(&callchain_param) < 0) {
3525 symbol_conf.use_callchain = false;
3526 pt->synth_opts.callchain = false;
3527 pt->synth_opts.add_callchain = false;
3528 }
3529 }
3530
3531 if (pt->synth_opts.add_callchain) {
3532 err = intel_pt_callchain_init(pt);
3533 if (err)
3534 goto err_delete_thread;
3535 }
3536
3537 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3538 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3539 pt->br_stack_sz_plus = pt->br_stack_sz;
3540 }
3541
3542 if (pt->synth_opts.add_last_branch) {
3543 err = intel_pt_br_stack_init(pt);
3544 if (err)
3545 goto err_delete_thread;
3546 /*
3547 * Additional branch stack size to cater for tracing from the
3548 * actual sample ip to where the sample time is recorded.
3549 * Measured at about 200 branches, but generously set to 1024.
3550 * If kernel space is not being traced, then add just 1 for the
3551 * branch to kernel space.
3552 */
3553 if (intel_pt_tracing_kernel(pt))
3554 pt->br_stack_sz_plus += 1024;
3555 else
3556 pt->br_stack_sz_plus += 1;
3557 }
3558
3559 pt->use_thread_stack = pt->synth_opts.callchain ||
3560 pt->synth_opts.add_callchain ||
3561 pt->synth_opts.thread_stack ||
3562 pt->synth_opts.last_branch ||
3563 pt->synth_opts.add_last_branch;
3564
3565 pt->callstack = pt->synth_opts.callchain ||
3566 pt->synth_opts.add_callchain ||
3567 pt->synth_opts.thread_stack;
3568
3569 err = intel_pt_synth_events(pt, session);
3570 if (err)
3571 goto err_delete_thread;
3572
3573 intel_pt_setup_pebs_events(pt);
3574
3575 if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3576 err = auxtrace_queue_data(session, true, true);
3577 else
3578 err = auxtrace_queues__process_index(&pt->queues, session);
3579 if (err)
3580 goto err_delete_thread;
3581
3582 if (pt->queues.populated)
3583 pt->data_queued = true;
3584
3585 if (pt->timeless_decoding)
3586 pr_debug2("Intel PT decoding without timestamps\n");
3587
3588 return 0;
3589
3590 err_delete_thread:
3591 zfree(&pt->chain);
3592 thread__zput(pt->unknown_thread);
3593 err_free_queues:
3594 intel_pt_log_disable();
3595 auxtrace_queues__free(&pt->queues);
3596 session->auxtrace = NULL;
3597 err_free:
3598 addr_filters__exit(&pt->filts);
3599 zfree(&pt->filter);
3600 zfree(&pt->time_ranges);
3601 free(pt);
3602 return err;
3603 }
3604