• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * mount.c
3  *
4  * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include "fsck.h"
12 #include "node.h"
13 #include "xattr.h"
14 #include <locale.h>
15 #include <stdbool.h>
16 #include <time.h>
17 #ifdef HAVE_LINUX_POSIX_ACL_H
18 #include <linux/posix_acl.h>
19 #endif
20 #ifdef HAVE_SYS_ACL_H
21 #include <sys/acl.h>
22 #endif
23 
24 #ifndef ACL_UNDEFINED_TAG
25 #define ACL_UNDEFINED_TAG	(0x00)
26 #define ACL_USER_OBJ		(0x01)
27 #define ACL_USER		(0x02)
28 #define ACL_GROUP_OBJ		(0x04)
29 #define ACL_GROUP		(0x08)
30 #define ACL_MASK		(0x10)
31 #define ACL_OTHER		(0x20)
32 #endif
33 
34 #ifdef HAVE_LINUX_BLKZONED_H
35 
get_device_idx(struct f2fs_sb_info * sbi,uint32_t segno)36 static int get_device_idx(struct f2fs_sb_info *sbi, uint32_t segno)
37 {
38 	block_t seg_start_blkaddr;
39 	int i;
40 
41 	seg_start_blkaddr = SM_I(sbi)->main_blkaddr +
42 				segno * DEFAULT_BLOCKS_PER_SEGMENT;
43 	for (i = 0; i < c.ndevs; i++)
44 		if (c.devices[i].start_blkaddr <= seg_start_blkaddr &&
45 			c.devices[i].end_blkaddr > seg_start_blkaddr)
46 			return i;
47 	return 0;
48 }
49 
get_zone_idx_from_dev(struct f2fs_sb_info * sbi,uint32_t segno,uint32_t dev_idx)50 static int get_zone_idx_from_dev(struct f2fs_sb_info *sbi,
51 					uint32_t segno, uint32_t dev_idx)
52 {
53 	block_t seg_start_blkaddr = START_BLOCK(sbi, segno);
54 
55 	return (seg_start_blkaddr - c.devices[dev_idx].start_blkaddr) >>
56 			log_base_2(sbi->segs_per_sec * sbi->blocks_per_seg);
57 }
58 
is_usable_seg(struct f2fs_sb_info * sbi,unsigned int segno)59 bool is_usable_seg(struct f2fs_sb_info *sbi, unsigned int segno)
60 {
61 	unsigned int secno = segno / sbi->segs_per_sec;
62 	block_t seg_start = START_BLOCK(sbi, segno);
63 	block_t blocks_per_sec = sbi->blocks_per_seg * sbi->segs_per_sec;
64 	unsigned int dev_idx = get_device_idx(sbi, segno);
65 	unsigned int zone_idx = get_zone_idx_from_dev(sbi, segno, dev_idx);
66 	unsigned int sec_off = SM_I(sbi)->main_blkaddr >>
67 						log_base_2(blocks_per_sec);
68 
69 	if (zone_idx < c.devices[dev_idx].nr_rnd_zones)
70 		return true;
71 
72 	if (c.devices[dev_idx].zoned_model != F2FS_ZONED_HM)
73 		return true;
74 
75 	return seg_start < ((sec_off + secno) * blocks_per_sec) +
76 				c.devices[dev_idx].zone_cap_blocks[zone_idx];
77 }
78 
get_usable_seg_count(struct f2fs_sb_info * sbi)79 unsigned int get_usable_seg_count(struct f2fs_sb_info *sbi)
80 {
81 	unsigned int i, usable_seg_count = 0;
82 
83 	for (i = 0; i < TOTAL_SEGS(sbi); i++)
84 		if (is_usable_seg(sbi, i))
85 			usable_seg_count++;
86 
87 	return usable_seg_count;
88 }
89 
90 #else
91 
is_usable_seg(struct f2fs_sb_info * UNUSED (sbi),unsigned int UNUSED (segno))92 bool is_usable_seg(struct f2fs_sb_info *UNUSED(sbi), unsigned int UNUSED(segno))
93 {
94 	return true;
95 }
96 
get_usable_seg_count(struct f2fs_sb_info * sbi)97 unsigned int get_usable_seg_count(struct f2fs_sb_info *sbi)
98 {
99 	return TOTAL_SEGS(sbi);
100 }
101 
102 #endif
103 
get_free_segments(struct f2fs_sb_info * sbi)104 u32 get_free_segments(struct f2fs_sb_info *sbi)
105 {
106 	u32 i, free_segs = 0;
107 
108 	for (i = 0; i < TOTAL_SEGS(sbi); i++) {
109 		struct seg_entry *se = get_seg_entry(sbi, i);
110 
111 		if (se->valid_blocks == 0x0 && !IS_CUR_SEGNO(sbi, i) &&
112 							is_usable_seg(sbi, i))
113 			free_segs++;
114 	}
115 	return free_segs;
116 }
117 
update_free_segments(struct f2fs_sb_info * sbi)118 void update_free_segments(struct f2fs_sb_info *sbi)
119 {
120 	char *progress = "-*|*-";
121 	static int i = 0;
122 
123 	if (c.dbg_lv)
124 		return;
125 
126 	MSG(0, "\r [ %c ] Free segments: 0x%x", progress[i % 5], get_free_segments(sbi));
127 	fflush(stdout);
128 	i++;
129 }
130 
131 #if defined(HAVE_LINUX_POSIX_ACL_H) || defined(HAVE_SYS_ACL_H)
print_acl(const u8 * value,int size)132 static void print_acl(const u8 *value, int size)
133 {
134 	const struct f2fs_acl_header *hdr = (struct f2fs_acl_header *)value;
135 	const struct f2fs_acl_entry *entry = (struct f2fs_acl_entry *)(hdr + 1);
136 	const u8 *end = value + size;
137 	int i, count;
138 
139 	if (hdr->a_version != cpu_to_le32(F2FS_ACL_VERSION)) {
140 		MSG(0, "Invalid ACL version [0x%x : 0x%x]\n",
141 				le32_to_cpu(hdr->a_version), F2FS_ACL_VERSION);
142 		return;
143 	}
144 
145 	count = f2fs_acl_count(size);
146 	if (count <= 0) {
147 		MSG(0, "Invalid ACL value size %d\n", size);
148 		return;
149 	}
150 
151 	for (i = 0; i < count; i++) {
152 		if ((u8 *)entry > end) {
153 			MSG(0, "Invalid ACL entries count %d\n", count);
154 			return;
155 		}
156 
157 		switch (le16_to_cpu(entry->e_tag)) {
158 		case ACL_USER_OBJ:
159 		case ACL_GROUP_OBJ:
160 		case ACL_MASK:
161 		case ACL_OTHER:
162 			MSG(0, "tag:0x%x perm:0x%x\n",
163 					le16_to_cpu(entry->e_tag),
164 					le16_to_cpu(entry->e_perm));
165 			entry = (struct f2fs_acl_entry *)((char *)entry +
166 					sizeof(struct f2fs_acl_entry_short));
167 			break;
168 		case ACL_USER:
169 			MSG(0, "tag:0x%x perm:0x%x uid:%u\n",
170 					le16_to_cpu(entry->e_tag),
171 					le16_to_cpu(entry->e_perm),
172 					le32_to_cpu(entry->e_id));
173 			entry = (struct f2fs_acl_entry *)((char *)entry +
174 					sizeof(struct f2fs_acl_entry));
175 			break;
176 		case ACL_GROUP:
177 			MSG(0, "tag:0x%x perm:0x%x gid:%u\n",
178 					le16_to_cpu(entry->e_tag),
179 					le16_to_cpu(entry->e_perm),
180 					le32_to_cpu(entry->e_id));
181 			entry = (struct f2fs_acl_entry *)((char *)entry +
182 					sizeof(struct f2fs_acl_entry));
183 			break;
184 		default:
185 			MSG(0, "Unknown ACL tag 0x%x\n",
186 					le16_to_cpu(entry->e_tag));
187 			return;
188 		}
189 	}
190 }
191 #endif /* HAVE_LINUX_POSIX_ACL_H || HAVE_SYS_ACL_H */
192 
print_xattr_entry(const struct f2fs_xattr_entry * ent)193 static void print_xattr_entry(const struct f2fs_xattr_entry *ent)
194 {
195 	const u8 *value = (const u8 *)&ent->e_name[ent->e_name_len];
196 	const int size = le16_to_cpu(ent->e_value_size);
197 	const struct fscrypt_context *ctx;
198 	int i;
199 
200 	MSG(0, "\nxattr: e_name_index:%d e_name:", ent->e_name_index);
201 	for (i = 0; i < ent->e_name_len; i++)
202 		MSG(0, "%c", ent->e_name[i]);
203 	MSG(0, " e_name_len:%d e_value_size:%d e_value:\n",
204 			ent->e_name_len, size);
205 
206 	switch (ent->e_name_index) {
207 #if defined(HAVE_LINUX_POSIX_ACL_H) || defined(HAVE_SYS_ACL_H)
208 	case F2FS_XATTR_INDEX_POSIX_ACL_ACCESS:
209 	case F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT:
210 		print_acl(value, size);
211 		return;
212 #endif
213 	case F2FS_XATTR_INDEX_ENCRYPTION:
214 		ctx = (const struct fscrypt_context *)value;
215 		if (size != sizeof(*ctx) ||
216 		    ctx->format != FS_ENCRYPTION_CONTEXT_FORMAT_V1)
217 			break;
218 		MSG(0, "format: %d\n", ctx->format);
219 		MSG(0, "contents_encryption_mode: 0x%x\n", ctx->contents_encryption_mode);
220 		MSG(0, "filenames_encryption_mode: 0x%x\n", ctx->filenames_encryption_mode);
221 		MSG(0, "flags: 0x%x\n", ctx->flags);
222 		MSG(0, "master_key_descriptor: ");
223 		for (i = 0; i < FS_KEY_DESCRIPTOR_SIZE; i++)
224 			MSG(0, "%02X", ctx->master_key_descriptor[i]);
225 		MSG(0, "\nnonce: ");
226 		for (i = 0; i < FS_KEY_DERIVATION_NONCE_SIZE; i++)
227 			MSG(0, "%02X", ctx->nonce[i]);
228 		MSG(0, "\n");
229 		return;
230 	}
231 	for (i = 0; i < size; i++)
232 		MSG(0, "%02X", value[i]);
233 	MSG(0, "\n");
234 }
235 
print_inode_info(struct f2fs_sb_info * sbi,struct f2fs_node * node,int name)236 void print_inode_info(struct f2fs_sb_info *sbi,
237 			struct f2fs_node *node, int name)
238 {
239 	struct f2fs_inode *inode = &node->i;
240 	void *xattr_addr;
241 	struct f2fs_xattr_entry *ent;
242 	char en[F2FS_PRINT_NAMELEN];
243 	unsigned int i = 0;
244 	u32 namelen = le32_to_cpu(inode->i_namelen);
245 	int enc_name = file_enc_name(inode);
246 	int ofs = get_extra_isize(node);
247 
248 	pretty_print_filename(inode->i_name, namelen, en, enc_name);
249 	if (name && en[0]) {
250 		MSG(0, " - File name         : %s%s\n", en,
251 				enc_name ? " <encrypted>" : "");
252 		setlocale(LC_ALL, "");
253 		MSG(0, " - File size         : %'" PRIu64 " (bytes)\n",
254 				le64_to_cpu(inode->i_size));
255 		return;
256 	}
257 
258 	DISP_u32(inode, i_mode);
259 	DISP_u32(inode, i_advise);
260 	DISP_u32(inode, i_uid);
261 	DISP_u32(inode, i_gid);
262 	DISP_u32(inode, i_links);
263 	DISP_u64(inode, i_size);
264 	DISP_u64(inode, i_blocks);
265 
266 	DISP_u64(inode, i_atime);
267 	DISP_u32(inode, i_atime_nsec);
268 	DISP_u64(inode, i_ctime);
269 	DISP_u32(inode, i_ctime_nsec);
270 	DISP_u64(inode, i_mtime);
271 	DISP_u32(inode, i_mtime_nsec);
272 
273 	DISP_u32(inode, i_generation);
274 	DISP_u32(inode, i_current_depth);
275 	DISP_u32(inode, i_xattr_nid);
276 	DISP_u32(inode, i_flags);
277 	DISP_u32(inode, i_inline);
278 	DISP_u32(inode, i_pino);
279 	DISP_u32(inode, i_dir_level);
280 
281 	if (en[0]) {
282 		DISP_u32(inode, i_namelen);
283 		printf("%-30s\t\t[%s]\n", "i_name", en);
284 	}
285 
286 	printf("i_ext: fofs:%x blkaddr:%x len:%x\n",
287 			le32_to_cpu(inode->i_ext.fofs),
288 			le32_to_cpu(inode->i_ext.blk_addr),
289 			le32_to_cpu(inode->i_ext.len));
290 
291 	if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
292 		DISP_u16(inode, i_extra_isize);
293 		if (c.feature & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR))
294 			DISP_u16(inode, i_inline_xattr_size);
295 		if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
296 			DISP_u32(inode, i_projid);
297 		if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
298 			DISP_u32(inode, i_inode_checksum);
299 		if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
300 			DISP_u64(inode, i_crtime);
301 			DISP_u32(inode, i_crtime_nsec);
302 		}
303 		if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
304 			DISP_u64(inode, i_compr_blocks);
305 			DISP_u32(inode, i_compress_algrithm);
306 			DISP_u32(inode, i_log_cluster_size);
307 			DISP_u32(inode, i_padding);
308 		}
309 	}
310 
311 	for (i = 0; i < ADDRS_PER_INODE(inode); i++) {
312 		block_t blkaddr;
313 		char *flag = "";
314 
315 		if (i + ofs >= DEF_ADDRS_PER_INODE)
316 			break;
317 
318 		blkaddr = le32_to_cpu(inode->i_addr[i + ofs]);
319 
320 		if (blkaddr == 0x0)
321 			continue;
322 		if (blkaddr == COMPRESS_ADDR)
323 			flag = "cluster flag";
324 		else if (blkaddr == NEW_ADDR)
325 			flag = "reserved flag";
326 		printf("i_addr[0x%x] %-16s\t\t[0x%8x : %u]\n", i + ofs, flag,
327 				blkaddr, blkaddr);
328 	}
329 
330 	DISP_u32(inode, i_nid[0]);	/* direct */
331 	DISP_u32(inode, i_nid[1]);	/* direct */
332 	DISP_u32(inode, i_nid[2]);	/* indirect */
333 	DISP_u32(inode, i_nid[3]);	/* indirect */
334 	DISP_u32(inode, i_nid[4]);	/* double indirect */
335 
336 	xattr_addr = read_all_xattrs(sbi, node);
337 	if (xattr_addr) {
338 		list_for_each_xattr(ent, xattr_addr) {
339 			print_xattr_entry(ent);
340 		}
341 		free(xattr_addr);
342 	}
343 
344 	printf("\n");
345 }
346 
print_node_info(struct f2fs_sb_info * sbi,struct f2fs_node * node_block,int verbose)347 void print_node_info(struct f2fs_sb_info *sbi,
348 			struct f2fs_node *node_block, int verbose)
349 {
350 	nid_t ino = le32_to_cpu(node_block->footer.ino);
351 	nid_t nid = le32_to_cpu(node_block->footer.nid);
352 	/* Is this inode? */
353 	if (ino == nid) {
354 		DBG(verbose, "Node ID [0x%x:%u] is inode\n", nid, nid);
355 		print_inode_info(sbi, node_block, verbose);
356 	} else {
357 		int i;
358 		u32 *dump_blk = (u32 *)node_block;
359 		DBG(verbose,
360 			"Node ID [0x%x:%u] is direct node or indirect node.\n",
361 								nid, nid);
362 		for (i = 0; i < DEF_ADDRS_PER_BLOCK; i++)
363 			MSG(verbose, "[%d]\t\t\t[0x%8x : %d]\n",
364 						i, dump_blk[i], dump_blk[i]);
365 	}
366 }
367 
DISP_label(uint16_t * name)368 static void DISP_label(uint16_t *name)
369 {
370 	char buffer[MAX_VOLUME_NAME];
371 
372 	utf16_to_utf8(buffer, name, MAX_VOLUME_NAME, MAX_VOLUME_NAME);
373 	if (c.layout)
374 		printf("%-30s %s\n", "Filesystem volume name:", buffer);
375 	else
376 		printf("%-30s" "\t\t[%s]\n", "volum_name", buffer);
377 }
378 
print_raw_sb_info(struct f2fs_super_block * sb)379 void print_raw_sb_info(struct f2fs_super_block *sb)
380 {
381 	if (c.layout)
382 		goto printout;
383 	if (!c.dbg_lv)
384 		return;
385 
386 	printf("\n");
387 	printf("+--------------------------------------------------------+\n");
388 	printf("| Super block                                            |\n");
389 	printf("+--------------------------------------------------------+\n");
390 printout:
391 	DISP_u32(sb, magic);
392 	DISP_u32(sb, major_ver);
393 
394 	DISP_label(sb->volume_name);
395 
396 	DISP_u32(sb, minor_ver);
397 	DISP_u32(sb, log_sectorsize);
398 	DISP_u32(sb, log_sectors_per_block);
399 
400 	DISP_u32(sb, log_blocksize);
401 	DISP_u32(sb, log_blocks_per_seg);
402 	DISP_u32(sb, segs_per_sec);
403 	DISP_u32(sb, secs_per_zone);
404 	DISP_u32(sb, checksum_offset);
405 	DISP_u64(sb, block_count);
406 
407 	DISP_u32(sb, section_count);
408 	DISP_u32(sb, segment_count);
409 	DISP_u32(sb, segment_count_ckpt);
410 	DISP_u32(sb, segment_count_sit);
411 	DISP_u32(sb, segment_count_nat);
412 
413 	DISP_u32(sb, segment_count_ssa);
414 	DISP_u32(sb, segment_count_main);
415 	DISP_u32(sb, segment0_blkaddr);
416 
417 	DISP_u32(sb, cp_blkaddr);
418 	DISP_u32(sb, sit_blkaddr);
419 	DISP_u32(sb, nat_blkaddr);
420 	DISP_u32(sb, ssa_blkaddr);
421 	DISP_u32(sb, main_blkaddr);
422 
423 	DISP_u32(sb, root_ino);
424 	DISP_u32(sb, node_ino);
425 	DISP_u32(sb, meta_ino);
426 	DISP_u32(sb, cp_payload);
427 	DISP_u32(sb, crc);
428 	DISP("%-.252s", sb, version);
429 	printf("\n");
430 }
431 
print_ckpt_info(struct f2fs_sb_info * sbi)432 void print_ckpt_info(struct f2fs_sb_info *sbi)
433 {
434 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
435 
436 	if (c.layout)
437 		goto printout;
438 	if (!c.dbg_lv)
439 		return;
440 
441 	printf("\n");
442 	printf("+--------------------------------------------------------+\n");
443 	printf("| Checkpoint                                             |\n");
444 	printf("+--------------------------------------------------------+\n");
445 printout:
446 	DISP_u64(cp, checkpoint_ver);
447 	DISP_u64(cp, user_block_count);
448 	DISP_u64(cp, valid_block_count);
449 	DISP_u32(cp, rsvd_segment_count);
450 	DISP_u32(cp, overprov_segment_count);
451 	DISP_u32(cp, free_segment_count);
452 
453 	DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]);
454 	DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]);
455 	DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]);
456 	DISP_u32(cp, cur_node_segno[0]);
457 	DISP_u32(cp, cur_node_segno[1]);
458 	DISP_u32(cp, cur_node_segno[2]);
459 
460 	DISP_u32(cp, cur_node_blkoff[0]);
461 	DISP_u32(cp, cur_node_blkoff[1]);
462 	DISP_u32(cp, cur_node_blkoff[2]);
463 
464 
465 	DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]);
466 	DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]);
467 	DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]);
468 	DISP_u32(cp, cur_data_segno[0]);
469 	DISP_u32(cp, cur_data_segno[1]);
470 	DISP_u32(cp, cur_data_segno[2]);
471 
472 	DISP_u32(cp, cur_data_blkoff[0]);
473 	DISP_u32(cp, cur_data_blkoff[1]);
474 	DISP_u32(cp, cur_data_blkoff[2]);
475 
476 	DISP_u32(cp, ckpt_flags);
477 	DISP_u32(cp, cp_pack_total_block_count);
478 	DISP_u32(cp, cp_pack_start_sum);
479 	DISP_u32(cp, valid_node_count);
480 	DISP_u32(cp, valid_inode_count);
481 	DISP_u32(cp, next_free_nid);
482 	DISP_u32(cp, sit_ver_bitmap_bytesize);
483 	DISP_u32(cp, nat_ver_bitmap_bytesize);
484 	DISP_u32(cp, checksum_offset);
485 	DISP_u64(cp, elapsed_time);
486 
487 	DISP_u32(cp, sit_nat_version_bitmap[0]);
488 	printf("\n\n");
489 }
490 
print_cp_state(u32 flag)491 void print_cp_state(u32 flag)
492 {
493 	if (c.show_file_map)
494 		return;
495 
496 	MSG(0, "Info: checkpoint state = %x : ", flag);
497 	if (flag & CP_QUOTA_NEED_FSCK_FLAG)
498 		MSG(0, "%s", " quota_need_fsck");
499 	if (flag & CP_LARGE_NAT_BITMAP_FLAG)
500 		MSG(0, "%s", " large_nat_bitmap");
501 	if (flag & CP_NOCRC_RECOVERY_FLAG)
502 		MSG(0, "%s", " allow_nocrc");
503 	if (flag & CP_TRIMMED_FLAG)
504 		MSG(0, "%s", " trimmed");
505 	if (flag & CP_NAT_BITS_FLAG)
506 		MSG(0, "%s", " nat_bits");
507 	if (flag & CP_CRC_RECOVERY_FLAG)
508 		MSG(0, "%s", " crc");
509 	if (flag & CP_FASTBOOT_FLAG)
510 		MSG(0, "%s", " fastboot");
511 	if (flag & CP_FSCK_FLAG)
512 		MSG(0, "%s", " fsck");
513 	if (flag & CP_ERROR_FLAG)
514 		MSG(0, "%s", " error");
515 	if (flag & CP_COMPACT_SUM_FLAG)
516 		MSG(0, "%s", " compacted_summary");
517 	if (flag & CP_ORPHAN_PRESENT_FLAG)
518 		MSG(0, "%s", " orphan_inodes");
519 	if (flag & CP_DISABLED_FLAG)
520 		MSG(0, "%s", " disabled");
521 	if (flag & CP_RESIZEFS_FLAG)
522 		MSG(0, "%s", " resizefs");
523 	if (flag & CP_UMOUNT_FLAG)
524 		MSG(0, "%s", " unmount");
525 	else
526 		MSG(0, "%s", " sudden-power-off");
527 	MSG(0, "\n");
528 }
529 
print_sb_state(struct f2fs_super_block * sb)530 void print_sb_state(struct f2fs_super_block *sb)
531 {
532 	__le32 f = sb->feature;
533 	int i;
534 
535 	MSG(0, "Info: superblock features = %x : ", f);
536 	if (f & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) {
537 		MSG(0, "%s", " encrypt");
538 	}
539 	if (f & cpu_to_le32(F2FS_FEATURE_VERITY)) {
540 		MSG(0, "%s", " verity");
541 	}
542 	if (f & cpu_to_le32(F2FS_FEATURE_BLKZONED)) {
543 		MSG(0, "%s", " blkzoned");
544 	}
545 	if (f & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
546 		MSG(0, "%s", " extra_attr");
547 	}
548 	if (f & cpu_to_le32(F2FS_FEATURE_PRJQUOTA)) {
549 		MSG(0, "%s", " project_quota");
550 	}
551 	if (f & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) {
552 		MSG(0, "%s", " inode_checksum");
553 	}
554 	if (f & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR)) {
555 		MSG(0, "%s", " flexible_inline_xattr");
556 	}
557 	if (f & cpu_to_le32(F2FS_FEATURE_QUOTA_INO)) {
558 		MSG(0, "%s", " quota_ino");
559 	}
560 	if (f & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
561 		MSG(0, "%s", " inode_crtime");
562 	}
563 	if (f & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) {
564 		MSG(0, "%s", " lost_found");
565 	}
566 	if (f & cpu_to_le32(F2FS_FEATURE_SB_CHKSUM)) {
567 		MSG(0, "%s", " sb_checksum");
568 	}
569 	if (f & cpu_to_le32(F2FS_FEATURE_CASEFOLD)) {
570 		MSG(0, "%s", " casefold");
571 	}
572 	if (f & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
573 		MSG(0, "%s", " compression");
574 	}
575 	if (f & cpu_to_le32(F2FS_FEATURE_RO)) {
576 		MSG(0, "%s", " ro");
577 	}
578 	MSG(0, "\n");
579 	MSG(0, "Info: superblock encrypt level = %d, salt = ",
580 					sb->encryption_level);
581 	for (i = 0; i < 16; i++)
582 		MSG(0, "%02x", sb->encrypt_pw_salt[i]);
583 	MSG(0, "\n");
584 }
585 
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)586 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
587 					block_t blkaddr, int type)
588 {
589 	switch (type) {
590 	case META_NAT:
591 		break;
592 	case META_SIT:
593 		if (blkaddr >= SIT_BLK_CNT(sbi))
594 			return 0;
595 		break;
596 	case META_SSA:
597 		if (blkaddr >= MAIN_BLKADDR(sbi) ||
598 			blkaddr < SM_I(sbi)->ssa_blkaddr)
599 			return 0;
600 		break;
601 	case META_CP:
602 		if (blkaddr >= SIT_I(sbi)->sit_base_addr ||
603 			blkaddr < __start_cp_addr(sbi))
604 			return 0;
605 		break;
606 	case META_POR:
607 		if (blkaddr >= MAX_BLKADDR(sbi) ||
608 			blkaddr < MAIN_BLKADDR(sbi))
609 			return 0;
610 		break;
611 	default:
612 		ASSERT(0);
613 	}
614 
615 	return 1;
616 }
617 
618 static inline block_t current_sit_addr(struct f2fs_sb_info *sbi,
619 						unsigned int start);
620 
621 /*
622  * Readahead CP/NAT/SIT/SSA pages
623  */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type)624 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
625 							int type)
626 {
627 	block_t blkno = start;
628 	block_t blkaddr, start_blk = 0, len = 0;
629 
630 	for (; nrpages-- > 0; blkno++) {
631 
632 		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
633 			goto out;
634 
635 		switch (type) {
636 		case META_NAT:
637 			if (blkno >= NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))
638 				blkno = 0;
639 			/* get nat block addr */
640 			blkaddr = current_nat_addr(sbi,
641 					blkno * NAT_ENTRY_PER_BLOCK, NULL);
642 			break;
643 		case META_SIT:
644 			/* get sit block addr */
645 			blkaddr = current_sit_addr(sbi,
646 					blkno * SIT_ENTRY_PER_BLOCK);
647 			break;
648 		case META_SSA:
649 		case META_CP:
650 		case META_POR:
651 			blkaddr = blkno;
652 			break;
653 		default:
654 			ASSERT(0);
655 		}
656 
657 		if (!len) {
658 			start_blk = blkaddr;
659 			len = 1;
660 		} else if (start_blk + len == blkaddr) {
661 			len++;
662 		} else {
663 			dev_readahead(start_blk << F2FS_BLKSIZE_BITS,
664 						len << F2FS_BLKSIZE_BITS);
665 		}
666 	}
667 out:
668 	if (len)
669 		dev_readahead(start_blk << F2FS_BLKSIZE_BITS,
670 					len << F2FS_BLKSIZE_BITS);
671 	return blkno - start;
672 }
673 
update_superblock(struct f2fs_super_block * sb,int sb_mask)674 void update_superblock(struct f2fs_super_block *sb, int sb_mask)
675 {
676 	int addr, ret;
677 	uint8_t *buf;
678 	u32 old_crc, new_crc;
679 
680 	buf = calloc(BLOCK_SZ, 1);
681 	ASSERT(buf);
682 
683 	if (get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) {
684 		old_crc = get_sb(crc);
685 		new_crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb,
686 						SB_CHKSUM_OFFSET);
687 		set_sb(crc, new_crc);
688 		MSG(1, "Info: SB CRC is updated (0x%x -> 0x%x)\n",
689 							old_crc, new_crc);
690 	}
691 
692 	memcpy(buf + F2FS_SUPER_OFFSET, sb, sizeof(*sb));
693 	for (addr = SB0_ADDR; addr < SB_MAX_ADDR; addr++) {
694 		if (SB_MASK(addr) & sb_mask) {
695 			ret = dev_write_block(buf, addr);
696 			ASSERT(ret >= 0);
697 		}
698 	}
699 
700 	free(buf);
701 	DBG(0, "Info: Done to update superblock\n");
702 }
703 
sanity_check_area_boundary(struct f2fs_super_block * sb,enum SB_ADDR sb_addr)704 static inline int sanity_check_area_boundary(struct f2fs_super_block *sb,
705 							enum SB_ADDR sb_addr)
706 {
707 	u32 segment0_blkaddr = get_sb(segment0_blkaddr);
708 	u32 cp_blkaddr = get_sb(cp_blkaddr);
709 	u32 sit_blkaddr = get_sb(sit_blkaddr);
710 	u32 nat_blkaddr = get_sb(nat_blkaddr);
711 	u32 ssa_blkaddr = get_sb(ssa_blkaddr);
712 	u32 main_blkaddr = get_sb(main_blkaddr);
713 	u32 segment_count_ckpt = get_sb(segment_count_ckpt);
714 	u32 segment_count_sit = get_sb(segment_count_sit);
715 	u32 segment_count_nat = get_sb(segment_count_nat);
716 	u32 segment_count_ssa = get_sb(segment_count_ssa);
717 	u32 segment_count_main = get_sb(segment_count_main);
718 	u32 segment_count = get_sb(segment_count);
719 	u32 log_blocks_per_seg = get_sb(log_blocks_per_seg);
720 	u64 main_end_blkaddr = main_blkaddr +
721 				(segment_count_main << log_blocks_per_seg);
722 	u64 seg_end_blkaddr = segment0_blkaddr +
723 				(segment_count << log_blocks_per_seg);
724 
725 	if (segment0_blkaddr != cp_blkaddr) {
726 		MSG(0, "\tMismatch segment0(%u) cp_blkaddr(%u)\n",
727 				segment0_blkaddr, cp_blkaddr);
728 		return -1;
729 	}
730 
731 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
732 							sit_blkaddr) {
733 		MSG(0, "\tWrong CP boundary, start(%u) end(%u) blocks(%u)\n",
734 			cp_blkaddr, sit_blkaddr,
735 			segment_count_ckpt << log_blocks_per_seg);
736 		return -1;
737 	}
738 
739 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
740 							nat_blkaddr) {
741 		MSG(0, "\tWrong SIT boundary, start(%u) end(%u) blocks(%u)\n",
742 			sit_blkaddr, nat_blkaddr,
743 			segment_count_sit << log_blocks_per_seg);
744 		return -1;
745 	}
746 
747 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
748 							ssa_blkaddr) {
749 		MSG(0, "\tWrong NAT boundary, start(%u) end(%u) blocks(%u)\n",
750 			nat_blkaddr, ssa_blkaddr,
751 			segment_count_nat << log_blocks_per_seg);
752 		return -1;
753 	}
754 
755 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
756 							main_blkaddr) {
757 		MSG(0, "\tWrong SSA boundary, start(%u) end(%u) blocks(%u)\n",
758 			ssa_blkaddr, main_blkaddr,
759 			segment_count_ssa << log_blocks_per_seg);
760 		return -1;
761 	}
762 
763 	if (main_end_blkaddr > seg_end_blkaddr) {
764 		MSG(0, "\tWrong MAIN_AREA, start(%u) end(%u) block(%u)\n",
765 			main_blkaddr,
766 			segment0_blkaddr +
767 				(segment_count << log_blocks_per_seg),
768 			segment_count_main << log_blocks_per_seg);
769 		return -1;
770 	} else if (main_end_blkaddr < seg_end_blkaddr) {
771 		set_sb(segment_count, (main_end_blkaddr -
772 				segment0_blkaddr) >> log_blocks_per_seg);
773 
774 		update_superblock(sb, SB_MASK(sb_addr));
775 		MSG(0, "Info: Fix alignment: start(%u) end(%u) block(%u)\n",
776 			main_blkaddr,
777 			segment0_blkaddr +
778 				(segment_count << log_blocks_per_seg),
779 			segment_count_main << log_blocks_per_seg);
780 	}
781 	return 0;
782 }
783 
verify_sb_chksum(struct f2fs_super_block * sb)784 static int verify_sb_chksum(struct f2fs_super_block *sb)
785 {
786 	if (SB_CHKSUM_OFFSET != get_sb(checksum_offset)) {
787 		MSG(0, "\tInvalid SB CRC offset: %u\n",
788 					get_sb(checksum_offset));
789 		return -1;
790 	}
791 	if (f2fs_crc_valid(get_sb(crc), sb,
792 			get_sb(checksum_offset))) {
793 		MSG(0, "\tInvalid SB CRC: 0x%x\n", get_sb(crc));
794 		return -1;
795 	}
796 	return 0;
797 }
798 
sanity_check_raw_super(struct f2fs_super_block * sb,enum SB_ADDR sb_addr)799 int sanity_check_raw_super(struct f2fs_super_block *sb, enum SB_ADDR sb_addr)
800 {
801 	unsigned int blocksize;
802 	unsigned int segment_count, segs_per_sec, secs_per_zone, segs_per_zone;
803 	unsigned int total_sections, blocks_per_seg;
804 
805 	if ((get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) &&
806 					verify_sb_chksum(sb))
807 		return -1;
808 
809 	if (F2FS_SUPER_MAGIC != get_sb(magic)) {
810 		MSG(0, "Magic Mismatch, valid(0x%x) - read(0x%x)\n",
811 			F2FS_SUPER_MAGIC, get_sb(magic));
812 		return -1;
813 	}
814 
815 	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
816 		MSG(0, "Invalid page_cache_size (%d), supports only 4KB\n",
817 			PAGE_CACHE_SIZE);
818 		return -1;
819 	}
820 
821 	blocksize = 1 << get_sb(log_blocksize);
822 	if (F2FS_BLKSIZE != blocksize) {
823 		MSG(0, "Invalid blocksize (%u), supports only 4KB\n",
824 			blocksize);
825 		return -1;
826 	}
827 
828 	/* check log blocks per segment */
829 	if (get_sb(log_blocks_per_seg) != 9) {
830 		MSG(0, "Invalid log blocks per segment (%u)\n",
831 			get_sb(log_blocks_per_seg));
832 		return -1;
833 	}
834 
835 	/* Currently, support 512/1024/2048/4096 bytes sector size */
836 	if (get_sb(log_sectorsize) > F2FS_MAX_LOG_SECTOR_SIZE ||
837 			get_sb(log_sectorsize) < F2FS_MIN_LOG_SECTOR_SIZE) {
838 		MSG(0, "Invalid log sectorsize (%u)\n", get_sb(log_sectorsize));
839 		return -1;
840 	}
841 
842 	if (get_sb(log_sectors_per_block) + get_sb(log_sectorsize) !=
843 						F2FS_MAX_LOG_SECTOR_SIZE) {
844 		MSG(0, "Invalid log sectors per block(%u) log sectorsize(%u)\n",
845 			get_sb(log_sectors_per_block),
846 			get_sb(log_sectorsize));
847 		return -1;
848 	}
849 
850 	segment_count = get_sb(segment_count);
851 	segs_per_sec = get_sb(segs_per_sec);
852 	secs_per_zone = get_sb(secs_per_zone);
853 	total_sections = get_sb(section_count);
854 	segs_per_zone = segs_per_sec * secs_per_zone;
855 
856 	/* blocks_per_seg should be 512, given the above check */
857 	blocks_per_seg = 1 << get_sb(log_blocks_per_seg);
858 
859 	if (segment_count > F2FS_MAX_SEGMENT ||
860 			segment_count < F2FS_MIN_SEGMENTS) {
861 		MSG(0, "\tInvalid segment count (%u)\n", segment_count);
862 		return -1;
863 	}
864 
865 	if (!(get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO)) &&
866 			(total_sections > segment_count ||
867 			total_sections < F2FS_MIN_SEGMENTS ||
868 			segs_per_sec > segment_count || !segs_per_sec)) {
869 		MSG(0, "\tInvalid segment/section count (%u, %u x %u)\n",
870 			segment_count, total_sections, segs_per_sec);
871 		return 1;
872 	}
873 
874 	if ((segment_count / segs_per_sec) < total_sections) {
875 		MSG(0, "Small segment_count (%u < %u * %u)\n",
876 			segment_count, segs_per_sec, total_sections);
877 		return 1;
878 	}
879 
880 	if (segment_count > (get_sb(block_count) >> 9)) {
881 		MSG(0, "Wrong segment_count / block_count (%u > %llu)\n",
882 			segment_count, get_sb(block_count));
883 		return 1;
884 	}
885 
886 	if (sb->devs[0].path[0]) {
887 		unsigned int dev_segs = le32_to_cpu(sb->devs[0].total_segments);
888 		int i = 1;
889 
890 		while (i < MAX_DEVICES && sb->devs[i].path[0]) {
891 			dev_segs += le32_to_cpu(sb->devs[i].total_segments);
892 			i++;
893 		}
894 		if (segment_count != dev_segs / segs_per_zone * segs_per_zone) {
895 			MSG(0, "Segment count (%u) mismatch with total segments from devices (%u)",
896 				segment_count, dev_segs);
897 			return 1;
898 		}
899 	}
900 
901 	if (secs_per_zone > total_sections || !secs_per_zone) {
902 		MSG(0, "Wrong secs_per_zone / total_sections (%u, %u)\n",
903 			secs_per_zone, total_sections);
904 		return 1;
905 	}
906 	if (get_sb(extension_count) > F2FS_MAX_EXTENSION ||
907 			sb->hot_ext_count > F2FS_MAX_EXTENSION ||
908 			get_sb(extension_count) +
909 			sb->hot_ext_count > F2FS_MAX_EXTENSION) {
910 		MSG(0, "Corrupted extension count (%u + %u > %u)\n",
911 			get_sb(extension_count),
912 			sb->hot_ext_count,
913 			F2FS_MAX_EXTENSION);
914 		return 1;
915 	}
916 
917 	if (get_sb(cp_payload) > (blocks_per_seg - F2FS_CP_PACKS)) {
918 		MSG(0, "Insane cp_payload (%u > %u)\n",
919 			get_sb(cp_payload), blocks_per_seg - F2FS_CP_PACKS);
920 		return 1;
921 	}
922 
923 	/* check reserved ino info */
924 	if (get_sb(node_ino) != 1 || get_sb(meta_ino) != 2 ||
925 						get_sb(root_ino) != 3) {
926 		MSG(0, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)\n",
927 			get_sb(node_ino), get_sb(meta_ino), get_sb(root_ino));
928 		return -1;
929 	}
930 
931 	/* Check zoned block device feature */
932 	if (c.devices[0].zoned_model == F2FS_ZONED_HM &&
933 			!(sb->feature & cpu_to_le32(F2FS_FEATURE_BLKZONED))) {
934 		MSG(0, "\tMissing zoned block device feature\n");
935 		return -1;
936 	}
937 
938 	if (sanity_check_area_boundary(sb, sb_addr))
939 		return -1;
940 	return 0;
941 }
942 
943 #define CHECK_PERIOD (3600 * 24 * 30)	// one month by default
944 
validate_super_block(struct f2fs_sb_info * sbi,enum SB_ADDR sb_addr)945 int validate_super_block(struct f2fs_sb_info *sbi, enum SB_ADDR sb_addr)
946 {
947 	char buf[F2FS_BLKSIZE];
948 
949 	sbi->raw_super = malloc(sizeof(struct f2fs_super_block));
950 	if (!sbi->raw_super)
951 		return -ENOMEM;
952 
953 	if (dev_read_block(buf, sb_addr))
954 		return -1;
955 
956 	memcpy(sbi->raw_super, buf + F2FS_SUPER_OFFSET,
957 					sizeof(struct f2fs_super_block));
958 
959 	if (!sanity_check_raw_super(sbi->raw_super, sb_addr)) {
960 		/* get kernel version */
961 		if (c.kd >= 0) {
962 			dev_read_version(c.version, 0, VERSION_NAME_LEN);
963 			get_kernel_version(c.version);
964 		} else {
965 			get_kernel_uname_version(c.version);
966 		}
967 
968 		/* build sb version */
969 		memcpy(c.sb_version, sbi->raw_super->version, VERSION_NAME_LEN);
970 		get_kernel_version(c.sb_version);
971 		memcpy(c.init_version, sbi->raw_super->init_version,
972 				VERSION_NAME_LEN);
973 		get_kernel_version(c.init_version);
974 
975 		MSG(0, "Info: MKFS version\n  \"%s\"\n", c.init_version);
976 		MSG(0, "Info: FSCK version\n  from \"%s\"\n    to \"%s\"\n",
977 					c.sb_version, c.version);
978 #if defined(__APPLE__)
979 		if (!c.no_kernel_check &&
980 			memcmp(c.sb_version, c.version,	VERSION_NAME_LEN)) {
981 			c.auto_fix = 0;
982 			c.fix_on = 1;
983 			memcpy(sbi->raw_super->version,
984 					c.version, VERSION_NAME_LEN);
985 			update_superblock(sbi->raw_super, SB_MASK(sb_addr));
986 		}
987 #else
988 		if (!c.no_kernel_check) {
989 			struct timespec t;
990 			u32 prev_time, cur_time, time_diff;
991 			__le32 *ver_ts_ptr = (__le32 *)(sbi->raw_super->version
992 						+ VERSION_NAME_LEN);
993 
994 			t.tv_sec = t.tv_nsec = 0;
995 			clock_gettime(CLOCK_REALTIME, &t);
996 			cur_time = (u32)t.tv_sec;
997 			prev_time = le32_to_cpu(*ver_ts_ptr);
998 
999 			MSG(0, "Info: version timestamp cur: %u, prev: %u\n",
1000 					cur_time, prev_time);
1001 			if (!memcmp(c.sb_version, c.version,
1002 						VERSION_NAME_LEN)) {
1003 				/* valid prev_time */
1004 				if (prev_time != 0 && cur_time > prev_time) {
1005 					time_diff = cur_time - prev_time;
1006 					if (time_diff < CHECK_PERIOD)
1007 						goto out;
1008 					c.auto_fix = 0;
1009 					c.fix_on = 1;
1010 				}
1011 			} else {
1012 				memcpy(sbi->raw_super->version,
1013 						c.version, VERSION_NAME_LEN);
1014 			}
1015 
1016 			*ver_ts_ptr = cpu_to_le32(cur_time);
1017 			update_superblock(sbi->raw_super, SB_MASK(sb_addr));
1018 		}
1019 out:
1020 #endif
1021 		print_sb_state(sbi->raw_super);
1022 		return 0;
1023 	}
1024 
1025 	free(sbi->raw_super);
1026 	sbi->raw_super = NULL;
1027 	MSG(0, "\tCan't find a valid F2FS superblock at 0x%x\n", sb_addr);
1028 
1029 	return -EINVAL;
1030 }
1031 
init_sb_info(struct f2fs_sb_info * sbi)1032 int init_sb_info(struct f2fs_sb_info *sbi)
1033 {
1034 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
1035 	u64 total_sectors;
1036 	int i;
1037 
1038 	sbi->log_sectors_per_block = get_sb(log_sectors_per_block);
1039 	sbi->log_blocksize = get_sb(log_blocksize);
1040 	sbi->blocksize = 1 << sbi->log_blocksize;
1041 	sbi->log_blocks_per_seg = get_sb(log_blocks_per_seg);
1042 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1043 	sbi->segs_per_sec = get_sb(segs_per_sec);
1044 	sbi->secs_per_zone = get_sb(secs_per_zone);
1045 	sbi->total_sections = get_sb(section_count);
1046 	sbi->total_node_count = (get_sb(segment_count_nat) / 2) *
1047 				sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1048 	sbi->root_ino_num = get_sb(root_ino);
1049 	sbi->node_ino_num = get_sb(node_ino);
1050 	sbi->meta_ino_num = get_sb(meta_ino);
1051 	sbi->cur_victim_sec = NULL_SEGNO;
1052 
1053 	for (i = 0; i < MAX_DEVICES; i++) {
1054 		if (!sb->devs[i].path[0])
1055 			break;
1056 
1057 		if (i) {
1058 			c.devices[i].path = strdup((char *)sb->devs[i].path);
1059 			if (get_device_info(i))
1060 				ASSERT(0);
1061 		} else {
1062 			ASSERT(!strcmp((char *)sb->devs[i].path,
1063 						(char *)c.devices[i].path));
1064 		}
1065 
1066 		c.devices[i].total_segments =
1067 			le32_to_cpu(sb->devs[i].total_segments);
1068 		if (i)
1069 			c.devices[i].start_blkaddr =
1070 				c.devices[i - 1].end_blkaddr + 1;
1071 		c.devices[i].end_blkaddr = c.devices[i].start_blkaddr +
1072 			c.devices[i].total_segments *
1073 			c.blks_per_seg - 1;
1074 		if (i == 0)
1075 			c.devices[i].end_blkaddr += get_sb(segment0_blkaddr);
1076 
1077 		c.ndevs = i + 1;
1078 		MSG(0, "Info: Device[%d] : %s blkaddr = %"PRIx64"--%"PRIx64"\n",
1079 				i, c.devices[i].path,
1080 				c.devices[i].start_blkaddr,
1081 				c.devices[i].end_blkaddr);
1082 	}
1083 
1084 	total_sectors = get_sb(block_count) << sbi->log_sectors_per_block;
1085 	MSG(0, "Info: Segments per section = %d\n", sbi->segs_per_sec);
1086 	MSG(0, "Info: Sections per zone = %d\n", sbi->secs_per_zone);
1087 	MSG(0, "Info: total FS sectors = %"PRIu64" (%"PRIu64" MB)\n",
1088 				total_sectors, total_sectors >>
1089 						(20 - get_sb(log_sectorsize)));
1090 	return 0;
1091 }
1092 
verify_checksum_chksum(struct f2fs_checkpoint * cp)1093 static int verify_checksum_chksum(struct f2fs_checkpoint *cp)
1094 {
1095 	unsigned int chksum_offset = get_cp(checksum_offset);
1096 	unsigned int crc, cal_crc;
1097 
1098 	if (chksum_offset < CP_MIN_CHKSUM_OFFSET ||
1099 			chksum_offset > CP_CHKSUM_OFFSET) {
1100 		MSG(0, "\tInvalid CP CRC offset: %u\n", chksum_offset);
1101 		return -1;
1102 	}
1103 
1104 	crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp + chksum_offset));
1105 	cal_crc = f2fs_checkpoint_chksum(cp);
1106 	if (cal_crc != crc) {
1107 		MSG(0, "\tInvalid CP CRC: offset:%u, crc:0x%x, calc:0x%x\n",
1108 			chksum_offset, crc, cal_crc);
1109 		return -1;
1110 	}
1111 	return 0;
1112 }
1113 
get_checkpoint_version(block_t cp_addr)1114 static void *get_checkpoint_version(block_t cp_addr)
1115 {
1116 	void *cp_page;
1117 
1118 	cp_page = malloc(PAGE_SIZE);
1119 	ASSERT(cp_page);
1120 
1121 	if (dev_read_block(cp_page, cp_addr) < 0)
1122 		ASSERT(0);
1123 
1124 	if (verify_checksum_chksum((struct f2fs_checkpoint *)cp_page))
1125 		goto out;
1126 	return cp_page;
1127 out:
1128 	free(cp_page);
1129 	return NULL;
1130 }
1131 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)1132 void *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr,
1133 				unsigned long long *version)
1134 {
1135 	void *cp_page_1, *cp_page_2;
1136 	struct f2fs_checkpoint *cp;
1137 	unsigned long long cur_version = 0, pre_version = 0;
1138 
1139 	/* Read the 1st cp block in this CP pack */
1140 	cp_page_1 = get_checkpoint_version(cp_addr);
1141 	if (!cp_page_1)
1142 		return NULL;
1143 
1144 	cp = (struct f2fs_checkpoint *)cp_page_1;
1145 	if (get_cp(cp_pack_total_block_count) > sbi->blocks_per_seg)
1146 		goto invalid_cp1;
1147 
1148 	pre_version = get_cp(checkpoint_ver);
1149 
1150 	/* Read the 2nd cp block in this CP pack */
1151 	cp_addr += get_cp(cp_pack_total_block_count) - 1;
1152 	cp_page_2 = get_checkpoint_version(cp_addr);
1153 	if (!cp_page_2)
1154 		goto invalid_cp1;
1155 
1156 	cp = (struct f2fs_checkpoint *)cp_page_2;
1157 	cur_version = get_cp(checkpoint_ver);
1158 
1159 	if (cur_version == pre_version) {
1160 		*version = cur_version;
1161 		free(cp_page_2);
1162 		return cp_page_1;
1163 	}
1164 
1165 	free(cp_page_2);
1166 invalid_cp1:
1167 	free(cp_page_1);
1168 	return NULL;
1169 }
1170 
get_valid_checkpoint(struct f2fs_sb_info * sbi)1171 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
1172 {
1173 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
1174 	void *cp1, *cp2, *cur_page;
1175 	unsigned long blk_size = sbi->blocksize;
1176 	unsigned long long cp1_version = 0, cp2_version = 0, version;
1177 	unsigned long long cp_start_blk_no;
1178 	unsigned int cp_payload, cp_blks;
1179 	int ret;
1180 
1181 	cp_payload = get_sb(cp_payload);
1182 	if (cp_payload > F2FS_BLK_ALIGN(MAX_SIT_BITMAP_SIZE))
1183 		return -EINVAL;
1184 
1185 	cp_blks = 1 + cp_payload;
1186 	sbi->ckpt = malloc(cp_blks * blk_size);
1187 	if (!sbi->ckpt)
1188 		return -ENOMEM;
1189 	/*
1190 	 * Finding out valid cp block involves read both
1191 	 * sets( cp pack1 and cp pack 2)
1192 	 */
1193 	cp_start_blk_no = get_sb(cp_blkaddr);
1194 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
1195 
1196 	/* The second checkpoint pack should start at the next segment */
1197 	cp_start_blk_no += 1 << get_sb(log_blocks_per_seg);
1198 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
1199 
1200 	if (cp1 && cp2) {
1201 		if (ver_after(cp2_version, cp1_version)) {
1202 			cur_page = cp2;
1203 			sbi->cur_cp = 2;
1204 			version = cp2_version;
1205 		} else {
1206 			cur_page = cp1;
1207 			sbi->cur_cp = 1;
1208 			version = cp1_version;
1209 		}
1210 	} else if (cp1) {
1211 		cur_page = cp1;
1212 		sbi->cur_cp = 1;
1213 		version = cp1_version;
1214 	} else if (cp2) {
1215 		cur_page = cp2;
1216 		sbi->cur_cp = 2;
1217 		version = cp2_version;
1218 	} else
1219 		goto fail_no_cp;
1220 
1221 	MSG(0, "Info: CKPT version = %llx\n", version);
1222 
1223 	memcpy(sbi->ckpt, cur_page, blk_size);
1224 
1225 	if (cp_blks > 1) {
1226 		unsigned int i;
1227 		unsigned long long cp_blk_no;
1228 
1229 		cp_blk_no = get_sb(cp_blkaddr);
1230 		if (cur_page == cp2)
1231 			cp_blk_no += 1 << get_sb(log_blocks_per_seg);
1232 
1233 		/* copy sit bitmap */
1234 		for (i = 1; i < cp_blks; i++) {
1235 			unsigned char *ckpt = (unsigned char *)sbi->ckpt;
1236 			ret = dev_read_block(cur_page, cp_blk_no + i);
1237 			ASSERT(ret >= 0);
1238 			memcpy(ckpt + i * blk_size, cur_page, blk_size);
1239 		}
1240 	}
1241 	if (cp1)
1242 		free(cp1);
1243 	if (cp2)
1244 		free(cp2);
1245 	return 0;
1246 
1247 fail_no_cp:
1248 	free(sbi->ckpt);
1249 	sbi->ckpt = NULL;
1250 	return -EINVAL;
1251 }
1252 
1253 /*
1254  * For a return value of 1, caller should further check for c.fix_on state
1255  * and take appropriate action.
1256  */
f2fs_should_proceed(struct f2fs_super_block * sb,u32 flag)1257 static int f2fs_should_proceed(struct f2fs_super_block *sb, u32 flag)
1258 {
1259 	if (!c.fix_on && (c.auto_fix || c.preen_mode)) {
1260 		if (flag & CP_FSCK_FLAG ||
1261 			flag & CP_QUOTA_NEED_FSCK_FLAG ||
1262 			(exist_qf_ino(sb) && (flag & CP_ERROR_FLAG))) {
1263 			c.fix_on = 1;
1264 		} else if (!c.preen_mode) {
1265 			print_cp_state(flag);
1266 			return 0;
1267 		}
1268 	}
1269 	return 1;
1270 }
1271 
sanity_check_ckpt(struct f2fs_sb_info * sbi)1272 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1273 {
1274 	unsigned int total, fsmeta;
1275 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
1276 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1277 	unsigned int flag = get_cp(ckpt_flags);
1278 	unsigned int ovp_segments, reserved_segments;
1279 	unsigned int main_segs, blocks_per_seg;
1280 	unsigned int sit_segs, nat_segs;
1281 	unsigned int sit_bitmap_size, nat_bitmap_size;
1282 	unsigned int log_blocks_per_seg;
1283 	unsigned int segment_count_main;
1284 	unsigned int cp_pack_start_sum, cp_payload;
1285 	block_t user_block_count;
1286 	int i;
1287 
1288 	total = get_sb(segment_count);
1289 	fsmeta = get_sb(segment_count_ckpt);
1290 	sit_segs = get_sb(segment_count_sit);
1291 	fsmeta += sit_segs;
1292 	nat_segs = get_sb(segment_count_nat);
1293 	fsmeta += nat_segs;
1294 	fsmeta += get_cp(rsvd_segment_count);
1295 	fsmeta += get_sb(segment_count_ssa);
1296 
1297 	if (fsmeta >= total)
1298 		return 1;
1299 
1300 	ovp_segments = get_cp(overprov_segment_count);
1301 	reserved_segments = get_cp(rsvd_segment_count);
1302 
1303 	if (!(get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO)) &&
1304 		(fsmeta < F2FS_MIN_SEGMENT || ovp_segments == 0 ||
1305 					reserved_segments == 0)) {
1306 		MSG(0, "\tWrong layout: check mkfs.f2fs version\n");
1307 		return 1;
1308 	}
1309 
1310 	user_block_count = get_cp(user_block_count);
1311 	segment_count_main = get_sb(segment_count_main) +
1312 				(cpu_to_le32(F2FS_FEATURE_RO) ? 1 : 0);
1313 	log_blocks_per_seg = get_sb(log_blocks_per_seg);
1314 	if (!user_block_count || user_block_count >=
1315 			segment_count_main << log_blocks_per_seg) {
1316 		ASSERT_MSG("\tWrong user_block_count(%u)\n", user_block_count);
1317 
1318 		if (!f2fs_should_proceed(sb, flag))
1319 			return 1;
1320 		if (!c.fix_on)
1321 			return 1;
1322 
1323 		if (flag & (CP_FSCK_FLAG | CP_RESIZEFS_FLAG)) {
1324 			u32 valid_user_block_cnt;
1325 			u32 seg_cnt_main = get_sb(segment_count) -
1326 					(get_sb(segment_count_ckpt) +
1327 					 get_sb(segment_count_sit) +
1328 					 get_sb(segment_count_nat) +
1329 					 get_sb(segment_count_ssa));
1330 
1331 			/* validate segment_count_main in sb first */
1332 			if (seg_cnt_main != get_sb(segment_count_main)) {
1333 				MSG(0, "Inconsistent segment_cnt_main %u in sb\n",
1334 						segment_count_main << log_blocks_per_seg);
1335 				return 1;
1336 			}
1337 			valid_user_block_cnt = ((get_sb(segment_count_main) -
1338 						get_cp(overprov_segment_count)) * c.blks_per_seg);
1339 			MSG(0, "Info: Fix wrong user_block_count in CP: (%u) -> (%u)\n",
1340 					user_block_count, valid_user_block_cnt);
1341 			set_cp(user_block_count, valid_user_block_cnt);
1342 			c.bug_on = 1;
1343 		}
1344 	}
1345 
1346 	main_segs = get_sb(segment_count_main);
1347 	blocks_per_seg = sbi->blocks_per_seg;
1348 
1349 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1350 		if (get_cp(cur_node_segno[i]) >= main_segs ||
1351 			get_cp(cur_node_blkoff[i]) >= blocks_per_seg)
1352 			return 1;
1353 	}
1354 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1355 		if (get_cp(cur_data_segno[i]) >= main_segs ||
1356 			get_cp(cur_data_blkoff[i]) >= blocks_per_seg)
1357 			return 1;
1358 	}
1359 
1360 	sit_bitmap_size = get_cp(sit_ver_bitmap_bytesize);
1361 	nat_bitmap_size = get_cp(nat_ver_bitmap_bytesize);
1362 
1363 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
1364 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
1365 		MSG(0, "\tWrong bitmap size: sit(%u), nat(%u)\n",
1366 				sit_bitmap_size, nat_bitmap_size);
1367 		return 1;
1368 	}
1369 
1370 	cp_pack_start_sum = __start_sum_addr(sbi);
1371 	cp_payload = __cp_payload(sbi);
1372 	if (cp_pack_start_sum < cp_payload + 1 ||
1373 		cp_pack_start_sum > blocks_per_seg - 1 -
1374 			NR_CURSEG_TYPE) {
1375 		MSG(0, "\tWrong cp_pack_start_sum(%u) or cp_payload(%u)\n",
1376 			cp_pack_start_sum, cp_payload);
1377 		if ((get_sb(feature) & F2FS_FEATURE_SB_CHKSUM))
1378 			return 1;
1379 		set_sb(cp_payload, cp_pack_start_sum - 1);
1380 		update_superblock(sb, SB_MASK_ALL);
1381 	}
1382 
1383 	return 0;
1384 }
1385 
current_nat_addr(struct f2fs_sb_info * sbi,nid_t start,int * pack)1386 pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start, int *pack)
1387 {
1388 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1389 	pgoff_t block_off;
1390 	pgoff_t block_addr;
1391 	int seg_off;
1392 
1393 	block_off = NAT_BLOCK_OFFSET(start);
1394 	seg_off = block_off >> sbi->log_blocks_per_seg;
1395 
1396 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
1397 			(seg_off << sbi->log_blocks_per_seg << 1) +
1398 			(block_off & ((1 << sbi->log_blocks_per_seg) -1)));
1399 	if (pack)
1400 		*pack = 1;
1401 
1402 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) {
1403 		block_addr += sbi->blocks_per_seg;
1404 		if (pack)
1405 			*pack = 2;
1406 	}
1407 
1408 	return block_addr;
1409 }
1410 
1411 /* will not init nid_bitmap from nat */
f2fs_early_init_nid_bitmap(struct f2fs_sb_info * sbi)1412 static int f2fs_early_init_nid_bitmap(struct f2fs_sb_info *sbi)
1413 {
1414 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1415 	int nid_bitmap_size = (nm_i->max_nid + BITS_PER_BYTE - 1) / BITS_PER_BYTE;
1416 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1417 	struct f2fs_summary_block *sum = curseg->sum_blk;
1418 	struct f2fs_journal *journal = &sum->journal;
1419 	nid_t nid;
1420 	int i;
1421 
1422 	if (!(c.func == SLOAD || c.func == FSCK))
1423 		return 0;
1424 
1425 	nm_i->nid_bitmap = (char *)calloc(nid_bitmap_size, 1);
1426 	if (!nm_i->nid_bitmap)
1427 		return -ENOMEM;
1428 
1429 	/* arbitrarily set 0 bit */
1430 	f2fs_set_bit(0, nm_i->nid_bitmap);
1431 
1432 	if (nats_in_cursum(journal) > NAT_JOURNAL_ENTRIES) {
1433 		MSG(0, "\tError: f2fs_init_nid_bitmap truncate n_nats(%u) to "
1434 			"NAT_JOURNAL_ENTRIES(%zu)\n",
1435 			nats_in_cursum(journal), NAT_JOURNAL_ENTRIES);
1436 		journal->n_nats = cpu_to_le16(NAT_JOURNAL_ENTRIES);
1437 		c.fix_on = 1;
1438 	}
1439 
1440 	for (i = 0; i < nats_in_cursum(journal); i++) {
1441 		block_t addr;
1442 
1443 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1444 		if (!IS_VALID_BLK_ADDR(sbi, addr)) {
1445 			MSG(0, "\tError: f2fs_init_nid_bitmap: addr(%u) is invalid!!!\n", addr);
1446 			journal->n_nats = cpu_to_le16(i);
1447 			c.fix_on = 1;
1448 			continue;
1449 		}
1450 
1451 		nid = le32_to_cpu(nid_in_journal(journal, i));
1452 		if (!IS_VALID_NID(sbi, nid)) {
1453 			MSG(0, "\tError: f2fs_init_nid_bitmap: nid(%u) is invalid!!!\n", nid);
1454 			journal->n_nats = cpu_to_le16(i);
1455 			c.fix_on = 1;
1456 			continue;
1457 		}
1458 		if (addr != NULL_ADDR)
1459 			f2fs_set_bit(nid, nm_i->nid_bitmap);
1460 	}
1461 	return 0;
1462 }
1463 
1464 /* will init nid_bitmap from nat */
f2fs_late_init_nid_bitmap(struct f2fs_sb_info * sbi)1465 static int f2fs_late_init_nid_bitmap(struct f2fs_sb_info *sbi)
1466 {
1467 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1468 	struct f2fs_nat_block *nat_block;
1469 	block_t start_blk;
1470 	nid_t nid;
1471 
1472 	if (!(c.func == SLOAD || c.func == FSCK))
1473 		return 0;
1474 
1475 	nat_block = malloc(F2FS_BLKSIZE);
1476 	if (!nat_block) {
1477 		free(nm_i->nid_bitmap);
1478 		return -ENOMEM;
1479 	}
1480 
1481 	f2fs_ra_meta_pages(sbi, 0, NAT_BLOCK_OFFSET(nm_i->max_nid),
1482 							META_NAT);
1483 	for (nid = 0; nid < nm_i->max_nid; nid++) {
1484 		if (!(nid % NAT_ENTRY_PER_BLOCK)) {
1485 			int ret;
1486 
1487 			start_blk = current_nat_addr(sbi, nid, NULL);
1488 			ret = dev_read_block(nat_block, start_blk);
1489 			ASSERT(ret >= 0);
1490 		}
1491 
1492 		if (nat_block->entries[nid % NAT_ENTRY_PER_BLOCK].block_addr)
1493 			f2fs_set_bit(nid, nm_i->nid_bitmap);
1494 	}
1495 
1496 	free(nat_block);
1497 	return 0;
1498 }
1499 
update_nat_bits_flags(struct f2fs_super_block * sb,struct f2fs_checkpoint * cp,u32 flags)1500 u32 update_nat_bits_flags(struct f2fs_super_block *sb,
1501 				struct f2fs_checkpoint *cp, u32 flags)
1502 {
1503 	uint32_t nat_bits_bytes, nat_bits_blocks;
1504 
1505 	nat_bits_bytes = get_sb(segment_count_nat) << 5;
1506 	nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
1507 						F2FS_BLKSIZE - 1);
1508 	if (get_cp(cp_pack_total_block_count) <=
1509 			(1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks)
1510 		flags |= CP_NAT_BITS_FLAG;
1511 	else
1512 		flags &= (~CP_NAT_BITS_FLAG);
1513 
1514 	return flags;
1515 }
1516 
1517 /* should call flush_journal_entries() bfore this */
write_nat_bits(struct f2fs_sb_info * sbi,struct f2fs_super_block * sb,struct f2fs_checkpoint * cp,int set)1518 void write_nat_bits(struct f2fs_sb_info *sbi,
1519 	struct f2fs_super_block *sb, struct f2fs_checkpoint *cp, int set)
1520 {
1521 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1522 	uint32_t nat_blocks = get_sb(segment_count_nat) <<
1523 				(get_sb(log_blocks_per_seg) - 1);
1524 	uint32_t nat_bits_bytes = nat_blocks >> 3;
1525 	uint32_t nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) +
1526 					8 + F2FS_BLKSIZE - 1);
1527 	unsigned char *nat_bits, *full_nat_bits, *empty_nat_bits;
1528 	struct f2fs_nat_block *nat_block;
1529 	uint32_t i, j;
1530 	block_t blkaddr;
1531 	int ret;
1532 
1533 	nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
1534 	ASSERT(nat_bits);
1535 
1536 	nat_block = malloc(F2FS_BLKSIZE);
1537 	ASSERT(nat_block);
1538 
1539 	full_nat_bits = nat_bits + 8;
1540 	empty_nat_bits = full_nat_bits + nat_bits_bytes;
1541 
1542 	memset(full_nat_bits, 0, nat_bits_bytes);
1543 	memset(empty_nat_bits, 0, nat_bits_bytes);
1544 
1545 	for (i = 0; i < nat_blocks; i++) {
1546 		int seg_off = i >> get_sb(log_blocks_per_seg);
1547 		int valid = 0;
1548 
1549 		blkaddr = (pgoff_t)(get_sb(nat_blkaddr) +
1550 				(seg_off << get_sb(log_blocks_per_seg) << 1) +
1551 				(i & ((1 << get_sb(log_blocks_per_seg)) - 1)));
1552 
1553 		/*
1554 		 * Should consider new nat_blocks is larger than old
1555 		 * nm_i->nat_blocks, since nm_i->nat_bitmap is based on
1556 		 * old one.
1557 		 */
1558 		if (i < nm_i->nat_blocks && f2fs_test_bit(i, nm_i->nat_bitmap))
1559 			blkaddr += (1 << get_sb(log_blocks_per_seg));
1560 
1561 		ret = dev_read_block(nat_block, blkaddr);
1562 		ASSERT(ret >= 0);
1563 
1564 		for (j = 0; j < NAT_ENTRY_PER_BLOCK; j++) {
1565 			if ((i == 0 && j == 0) ||
1566 				nat_block->entries[j].block_addr != NULL_ADDR)
1567 				valid++;
1568 		}
1569 		if (valid == 0)
1570 			test_and_set_bit_le(i, empty_nat_bits);
1571 		else if (valid == NAT_ENTRY_PER_BLOCK)
1572 			test_and_set_bit_le(i, full_nat_bits);
1573 	}
1574 	*(__le64 *)nat_bits = get_cp_crc(cp);
1575 	free(nat_block);
1576 
1577 	blkaddr = get_sb(segment0_blkaddr) + (set <<
1578 				get_sb(log_blocks_per_seg)) - nat_bits_blocks;
1579 
1580 	DBG(1, "\tWriting NAT bits pages, at offset 0x%08x\n", blkaddr);
1581 
1582 	for (i = 0; i < nat_bits_blocks; i++) {
1583 		if (dev_write_block(nat_bits + i * F2FS_BLKSIZE, blkaddr + i))
1584 			ASSERT_MSG("\tError: write NAT bits to disk!!!\n");
1585 	}
1586 	MSG(0, "Info: Write valid nat_bits in checkpoint\n");
1587 
1588 	free(nat_bits);
1589 }
1590 
check_nat_bits(struct f2fs_sb_info * sbi,struct f2fs_super_block * sb,struct f2fs_checkpoint * cp)1591 static int check_nat_bits(struct f2fs_sb_info *sbi,
1592 	struct f2fs_super_block *sb, struct f2fs_checkpoint *cp)
1593 {
1594 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1595 	uint32_t nat_blocks = get_sb(segment_count_nat) <<
1596 				(get_sb(log_blocks_per_seg) - 1);
1597 	uint32_t nat_bits_bytes = nat_blocks >> 3;
1598 	uint32_t nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) +
1599 					8 + F2FS_BLKSIZE - 1);
1600 	unsigned char *nat_bits, *full_nat_bits, *empty_nat_bits;
1601 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1602 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
1603 	uint32_t i, j;
1604 	block_t blkaddr;
1605 	int err = 0;
1606 
1607 	nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
1608 	ASSERT(nat_bits);
1609 
1610 	full_nat_bits = nat_bits + 8;
1611 	empty_nat_bits = full_nat_bits + nat_bits_bytes;
1612 
1613 	blkaddr = get_sb(segment0_blkaddr) + (sbi->cur_cp <<
1614 				get_sb(log_blocks_per_seg)) - nat_bits_blocks;
1615 
1616 	for (i = 0; i < nat_bits_blocks; i++) {
1617 		if (dev_read_block(nat_bits + i * F2FS_BLKSIZE, blkaddr + i))
1618 			ASSERT_MSG("\tError: read NAT bits to disk!!!\n");
1619 	}
1620 
1621 	if (*(__le64 *)nat_bits != get_cp_crc(cp) || nats_in_cursum(journal)) {
1622 		/*
1623 		 * if there is a journal, f2fs was not shutdown cleanly. Let's
1624 		 * flush them with nat_bits.
1625 		 */
1626 		if (c.fix_on)
1627 			err = -1;
1628 		/* Otherwise, kernel will disable nat_bits */
1629 		goto out;
1630 	}
1631 
1632 	for (i = 0; i < nat_blocks; i++) {
1633 		uint32_t start_nid = i * NAT_ENTRY_PER_BLOCK;
1634 		uint32_t valid = 0;
1635 		int empty = test_bit_le(i, empty_nat_bits);
1636 		int full = test_bit_le(i, full_nat_bits);
1637 
1638 		for (j = 0; j < NAT_ENTRY_PER_BLOCK; j++) {
1639 			if (f2fs_test_bit(start_nid + j, nm_i->nid_bitmap))
1640 				valid++;
1641 		}
1642 		if (valid == 0) {
1643 			if (!empty || full) {
1644 				err = -1;
1645 				goto out;
1646 			}
1647 		} else if (valid == NAT_ENTRY_PER_BLOCK) {
1648 			if (empty || !full) {
1649 				err = -1;
1650 				goto out;
1651 			}
1652 		} else {
1653 			if (empty || full) {
1654 				err = -1;
1655 				goto out;
1656 			}
1657 		}
1658 	}
1659 out:
1660 	free(nat_bits);
1661 	if (!err) {
1662 		MSG(0, "Info: Checked valid nat_bits in checkpoint\n");
1663 	} else {
1664 		c.bug_nat_bits = 1;
1665 		MSG(0, "Info: Corrupted valid nat_bits in checkpoint\n");
1666 	}
1667 	return err;
1668 }
1669 
init_node_manager(struct f2fs_sb_info * sbi)1670 int init_node_manager(struct f2fs_sb_info *sbi)
1671 {
1672 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
1673 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1674 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1675 	unsigned char *version_bitmap;
1676 	unsigned int nat_segs;
1677 
1678 	nm_i->nat_blkaddr = get_sb(nat_blkaddr);
1679 
1680 	/* segment_count_nat includes pair segment so divide to 2. */
1681 	nat_segs = get_sb(segment_count_nat) >> 1;
1682 	nm_i->nat_blocks = nat_segs << get_sb(log_blocks_per_seg);
1683 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
1684 	nm_i->fcnt = 0;
1685 	nm_i->nat_cnt = 0;
1686 	nm_i->init_scan_nid = get_cp(next_free_nid);
1687 	nm_i->next_scan_nid = get_cp(next_free_nid);
1688 
1689 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1690 
1691 	nm_i->nat_bitmap = malloc(nm_i->bitmap_size);
1692 	if (!nm_i->nat_bitmap)
1693 		return -ENOMEM;
1694 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1695 	if (!version_bitmap)
1696 		return -EFAULT;
1697 
1698 	/* copy version bitmap */
1699 	memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
1700 	return f2fs_early_init_nid_bitmap(sbi);
1701 }
1702 
build_node_manager(struct f2fs_sb_info * sbi)1703 int build_node_manager(struct f2fs_sb_info *sbi)
1704 {
1705 	int err;
1706 	sbi->nm_info = malloc(sizeof(struct f2fs_nm_info));
1707 	if (!sbi->nm_info)
1708 		return -ENOMEM;
1709 
1710 	err = init_node_manager(sbi);
1711 	if (err)
1712 		return err;
1713 
1714 	return 0;
1715 }
1716 
build_sit_info(struct f2fs_sb_info * sbi)1717 int build_sit_info(struct f2fs_sb_info *sbi)
1718 {
1719 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
1720 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1721 	struct sit_info *sit_i;
1722 	unsigned int sit_segs;
1723 	int start;
1724 	char *src_bitmap, *dst_bitmap;
1725 	unsigned char *bitmap;
1726 	unsigned int bitmap_size;
1727 
1728 	sit_i = malloc(sizeof(struct sit_info));
1729 	if (!sit_i) {
1730 		MSG(1, "\tError: Malloc failed for build_sit_info!\n");
1731 		return -ENOMEM;
1732 	}
1733 
1734 	SM_I(sbi)->sit_info = sit_i;
1735 
1736 	sit_i->sentries = calloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry), 1);
1737 	if (!sit_i->sentries) {
1738 		MSG(1, "\tError: Calloc failed for build_sit_info!\n");
1739 		goto free_sit_info;
1740 	}
1741 
1742 	bitmap_size = TOTAL_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE;
1743 
1744 	if (need_fsync_data_record(sbi))
1745 		bitmap_size += bitmap_size;
1746 
1747 	sit_i->bitmap = calloc(bitmap_size, 1);
1748 	if (!sit_i->bitmap) {
1749 		MSG(1, "\tError: Calloc failed for build_sit_info!!\n");
1750 		goto free_sentries;
1751 	}
1752 
1753 	bitmap = sit_i->bitmap;
1754 
1755 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1756 		sit_i->sentries[start].cur_valid_map = bitmap;
1757 		bitmap += SIT_VBLOCK_MAP_SIZE;
1758 
1759 		if (need_fsync_data_record(sbi)) {
1760 			sit_i->sentries[start].ckpt_valid_map = bitmap;
1761 			bitmap += SIT_VBLOCK_MAP_SIZE;
1762 		}
1763 	}
1764 
1765 	sit_segs = get_sb(segment_count_sit) >> 1;
1766 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1767 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1768 
1769 	dst_bitmap = malloc(bitmap_size);
1770 	if (!dst_bitmap) {
1771 		MSG(1, "\tError: Malloc failed for build_sit_info!!\n");
1772 		goto free_validity_maps;
1773 	}
1774 
1775 	memcpy(dst_bitmap, src_bitmap, bitmap_size);
1776 
1777 	sit_i->sit_base_addr = get_sb(sit_blkaddr);
1778 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1779 	sit_i->written_valid_blocks = get_cp(valid_block_count);
1780 	sit_i->sit_bitmap = dst_bitmap;
1781 	sit_i->bitmap_size = bitmap_size;
1782 	sit_i->dirty_sentries = 0;
1783 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1784 	sit_i->elapsed_time = get_cp(elapsed_time);
1785 	return 0;
1786 
1787 free_validity_maps:
1788 	free(sit_i->bitmap);
1789 free_sentries:
1790 	free(sit_i->sentries);
1791 free_sit_info:
1792 	free(sit_i);
1793 
1794 	return -ENOMEM;
1795 }
1796 
reset_curseg(struct f2fs_sb_info * sbi,int type)1797 void reset_curseg(struct f2fs_sb_info *sbi, int type)
1798 {
1799 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1800 	struct summary_footer *sum_footer;
1801 	struct seg_entry *se;
1802 
1803 	sum_footer = &(curseg->sum_blk->footer);
1804 	memset(sum_footer, 0, sizeof(struct summary_footer));
1805 	if (IS_DATASEG(type))
1806 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1807 	if (IS_NODESEG(type))
1808 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1809 	se = get_seg_entry(sbi, curseg->segno);
1810 	se->type = type;
1811 	se->dirty = 1;
1812 }
1813 
read_compacted_summaries(struct f2fs_sb_info * sbi)1814 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
1815 {
1816 	struct curseg_info *curseg;
1817 	unsigned int i, j, offset;
1818 	block_t start;
1819 	char *kaddr;
1820 	int ret;
1821 
1822 	start = start_sum_block(sbi);
1823 
1824 	kaddr = (char *)malloc(PAGE_SIZE);
1825 	ASSERT(kaddr);
1826 
1827 	ret = dev_read_block(kaddr, start++);
1828 	ASSERT(ret >= 0);
1829 
1830 	curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1831 	memcpy(&curseg->sum_blk->journal.n_nats, kaddr, SUM_JOURNAL_SIZE);
1832 
1833 	curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1834 	memcpy(&curseg->sum_blk->journal.n_sits, kaddr + SUM_JOURNAL_SIZE,
1835 						SUM_JOURNAL_SIZE);
1836 
1837 	offset = 2 * SUM_JOURNAL_SIZE;
1838 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1839 		unsigned short blk_off;
1840 		struct curseg_info *curseg = CURSEG_I(sbi, i);
1841 
1842 		reset_curseg(sbi, i);
1843 
1844 		if (curseg->alloc_type == SSR)
1845 			blk_off = sbi->blocks_per_seg;
1846 		else
1847 			blk_off = curseg->next_blkoff;
1848 
1849 		ASSERT(blk_off <= ENTRIES_IN_SUM);
1850 
1851 		for (j = 0; j < blk_off; j++) {
1852 			struct f2fs_summary *s;
1853 			s = (struct f2fs_summary *)(kaddr + offset);
1854 			curseg->sum_blk->entries[j] = *s;
1855 			offset += SUMMARY_SIZE;
1856 			if (offset + SUMMARY_SIZE <=
1857 					PAGE_CACHE_SIZE - SUM_FOOTER_SIZE)
1858 				continue;
1859 			memset(kaddr, 0, PAGE_SIZE);
1860 			ret = dev_read_block(kaddr, start++);
1861 			ASSERT(ret >= 0);
1862 			offset = 0;
1863 		}
1864 	}
1865 	free(kaddr);
1866 }
1867 
restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum_blk)1868 static void restore_node_summary(struct f2fs_sb_info *sbi,
1869 		unsigned int segno, struct f2fs_summary_block *sum_blk)
1870 {
1871 	struct f2fs_node *node_blk;
1872 	struct f2fs_summary *sum_entry;
1873 	block_t addr;
1874 	unsigned int i;
1875 	int ret;
1876 
1877 	node_blk = malloc(F2FS_BLKSIZE);
1878 	ASSERT(node_blk);
1879 
1880 	/* scan the node segment */
1881 	addr = START_BLOCK(sbi, segno);
1882 	sum_entry = &sum_blk->entries[0];
1883 
1884 	for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) {
1885 		ret = dev_read_block(node_blk, addr);
1886 		ASSERT(ret >= 0);
1887 		sum_entry->nid = node_blk->footer.nid;
1888 		addr++;
1889 	}
1890 	free(node_blk);
1891 }
1892 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)1893 static void read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1894 {
1895 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1896 	struct f2fs_summary_block *sum_blk;
1897 	struct curseg_info *curseg;
1898 	unsigned int segno = 0;
1899 	block_t blk_addr = 0;
1900 	int ret;
1901 
1902 	if (IS_DATASEG(type)) {
1903 		segno = get_cp(cur_data_segno[type]);
1904 		if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
1905 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1906 		else
1907 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1908 	} else {
1909 		segno = get_cp(cur_node_segno[type - CURSEG_HOT_NODE]);
1910 		if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
1911 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1912 							type - CURSEG_HOT_NODE);
1913 		else
1914 			blk_addr = GET_SUM_BLKADDR(sbi, segno);
1915 	}
1916 
1917 	sum_blk = (struct f2fs_summary_block *)malloc(PAGE_SIZE);
1918 	ASSERT(sum_blk);
1919 
1920 	ret = dev_read_block(sum_blk, blk_addr);
1921 	ASSERT(ret >= 0);
1922 
1923 	if (IS_NODESEG(type) && !is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
1924 		restore_node_summary(sbi, segno, sum_blk);
1925 
1926 	curseg = CURSEG_I(sbi, type);
1927 	memcpy(curseg->sum_blk, sum_blk, PAGE_CACHE_SIZE);
1928 	reset_curseg(sbi, type);
1929 	free(sum_blk);
1930 }
1931 
update_sum_entry(struct f2fs_sb_info * sbi,block_t blk_addr,struct f2fs_summary * sum)1932 void update_sum_entry(struct f2fs_sb_info *sbi, block_t blk_addr,
1933 					struct f2fs_summary *sum)
1934 {
1935 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
1936 	struct f2fs_summary_block *sum_blk;
1937 	u32 segno, offset;
1938 	int type, ret;
1939 	struct seg_entry *se;
1940 
1941 	if (get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO))
1942 		return;
1943 
1944 	segno = GET_SEGNO(sbi, blk_addr);
1945 	offset = OFFSET_IN_SEG(sbi, blk_addr);
1946 
1947 	se = get_seg_entry(sbi, segno);
1948 
1949 	sum_blk = get_sum_block(sbi, segno, &type);
1950 	memcpy(&sum_blk->entries[offset], sum, sizeof(*sum));
1951 	sum_blk->footer.entry_type = IS_NODESEG(se->type) ? SUM_TYPE_NODE :
1952 							SUM_TYPE_DATA;
1953 
1954 	/* write SSA all the time */
1955 	ret = dev_write_block(sum_blk, GET_SUM_BLKADDR(sbi, segno));
1956 	ASSERT(ret >= 0);
1957 
1958 	if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
1959 					type == SEG_TYPE_MAX)
1960 		free(sum_blk);
1961 }
1962 
restore_curseg_summaries(struct f2fs_sb_info * sbi)1963 static void restore_curseg_summaries(struct f2fs_sb_info *sbi)
1964 {
1965 	int type = CURSEG_HOT_DATA;
1966 
1967 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1968 		read_compacted_summaries(sbi);
1969 		type = CURSEG_HOT_NODE;
1970 	}
1971 
1972 	for (; type <= CURSEG_COLD_NODE; type++)
1973 		read_normal_summaries(sbi, type);
1974 }
1975 
build_curseg(struct f2fs_sb_info * sbi)1976 static int build_curseg(struct f2fs_sb_info *sbi)
1977 {
1978 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
1979 	struct curseg_info *array;
1980 	unsigned short blk_off;
1981 	unsigned int segno;
1982 	int i;
1983 
1984 	array = malloc(sizeof(*array) * NR_CURSEG_TYPE);
1985 	if (!array) {
1986 		MSG(1, "\tError: Malloc failed for build_curseg!\n");
1987 		return -ENOMEM;
1988 	}
1989 
1990 	SM_I(sbi)->curseg_array = array;
1991 
1992 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1993 		array[i].sum_blk = calloc(PAGE_CACHE_SIZE, 1);
1994 		if (!array[i].sum_blk) {
1995 			MSG(1, "\tError: Calloc failed for build_curseg!!\n");
1996 			goto seg_cleanup;
1997 		}
1998 
1999 		if (i <= CURSEG_COLD_DATA) {
2000 			blk_off = get_cp(cur_data_blkoff[i]);
2001 			segno = get_cp(cur_data_segno[i]);
2002 		}
2003 		if (i > CURSEG_COLD_DATA) {
2004 			blk_off = get_cp(cur_node_blkoff[i - CURSEG_HOT_NODE]);
2005 			segno = get_cp(cur_node_segno[i - CURSEG_HOT_NODE]);
2006 		}
2007 		ASSERT(segno < TOTAL_SEGS(sbi));
2008 		ASSERT(blk_off < DEFAULT_BLOCKS_PER_SEGMENT);
2009 
2010 		array[i].segno = segno;
2011 		array[i].zone = GET_ZONENO_FROM_SEGNO(sbi, segno);
2012 		array[i].next_segno = NULL_SEGNO;
2013 		array[i].next_blkoff = blk_off;
2014 		array[i].alloc_type = cp->alloc_type[i];
2015 	}
2016 	restore_curseg_summaries(sbi);
2017 	return 0;
2018 
2019 seg_cleanup:
2020 	for(--i ; i >=0; --i)
2021 		free(array[i].sum_blk);
2022 	free(array);
2023 
2024 	return -ENOMEM;
2025 }
2026 
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)2027 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
2028 {
2029 	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
2030 	ASSERT(segno <= end_segno);
2031 }
2032 
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int segno)2033 static inline block_t current_sit_addr(struct f2fs_sb_info *sbi,
2034 						unsigned int segno)
2035 {
2036 	struct sit_info *sit_i = SIT_I(sbi);
2037 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
2038 	block_t blk_addr = sit_i->sit_base_addr + offset;
2039 
2040 	check_seg_range(sbi, segno);
2041 
2042 	/* calculate sit block address */
2043 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
2044 		blk_addr += sit_i->sit_blocks;
2045 
2046 	return blk_addr;
2047 }
2048 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_sit_block * sit_blk)2049 void get_current_sit_page(struct f2fs_sb_info *sbi,
2050 			unsigned int segno, struct f2fs_sit_block *sit_blk)
2051 {
2052 	block_t blk_addr = current_sit_addr(sbi, segno);
2053 
2054 	ASSERT(dev_read_block(sit_blk, blk_addr) >= 0);
2055 }
2056 
rewrite_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_sit_block * sit_blk)2057 void rewrite_current_sit_page(struct f2fs_sb_info *sbi,
2058 			unsigned int segno, struct f2fs_sit_block *sit_blk)
2059 {
2060 	block_t blk_addr = current_sit_addr(sbi, segno);
2061 
2062 	ASSERT(dev_write_block(sit_blk, blk_addr) >= 0);
2063 }
2064 
check_block_count(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_sit_entry * raw_sit)2065 void check_block_count(struct f2fs_sb_info *sbi,
2066 		unsigned int segno, struct f2fs_sit_entry *raw_sit)
2067 {
2068 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2069 	unsigned int end_segno = sm_info->segment_count - 1;
2070 	int valid_blocks = 0;
2071 	unsigned int i;
2072 
2073 	/* check segment usage */
2074 	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
2075 		ASSERT_MSG("Invalid SIT vblocks: segno=0x%x, %u",
2076 				segno, GET_SIT_VBLOCKS(raw_sit));
2077 
2078 	/* check boundary of a given segment number */
2079 	if (segno > end_segno)
2080 		ASSERT_MSG("Invalid SEGNO: 0x%x", segno);
2081 
2082 	/* check bitmap with valid block count */
2083 	for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++)
2084 		valid_blocks += get_bits_in_byte(raw_sit->valid_map[i]);
2085 
2086 	if (GET_SIT_VBLOCKS(raw_sit) != valid_blocks)
2087 		ASSERT_MSG("Wrong SIT valid blocks: segno=0x%x, %u vs. %u",
2088 				segno, GET_SIT_VBLOCKS(raw_sit), valid_blocks);
2089 
2090 	if (GET_SIT_TYPE(raw_sit) >= NO_CHECK_TYPE)
2091 		ASSERT_MSG("Wrong SIT type: segno=0x%x, %u",
2092 				segno, GET_SIT_TYPE(raw_sit));
2093 }
2094 
__seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * raw_sit)2095 void __seg_info_from_raw_sit(struct seg_entry *se,
2096 		struct f2fs_sit_entry *raw_sit)
2097 {
2098 	se->valid_blocks = GET_SIT_VBLOCKS(raw_sit);
2099 	memcpy(se->cur_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE);
2100 	se->type = GET_SIT_TYPE(raw_sit);
2101 	se->orig_type = GET_SIT_TYPE(raw_sit);
2102 	se->mtime = le64_to_cpu(raw_sit->mtime);
2103 }
2104 
seg_info_from_raw_sit(struct f2fs_sb_info * sbi,struct seg_entry * se,struct f2fs_sit_entry * raw_sit)2105 void seg_info_from_raw_sit(struct f2fs_sb_info *sbi, struct seg_entry *se,
2106 						struct f2fs_sit_entry *raw_sit)
2107 {
2108 	__seg_info_from_raw_sit(se, raw_sit);
2109 
2110 	if (!need_fsync_data_record(sbi))
2111 		return;
2112 	se->ckpt_valid_blocks = se->valid_blocks;
2113 	memcpy(se->ckpt_valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2114 	se->ckpt_type = se->type;
2115 }
2116 
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)2117 struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
2118 		unsigned int segno)
2119 {
2120 	struct sit_info *sit_i = SIT_I(sbi);
2121 	return &sit_i->sentries[segno];
2122 }
2123 
get_seg_vblocks(struct f2fs_sb_info * sbi,struct seg_entry * se)2124 unsigned short get_seg_vblocks(struct f2fs_sb_info *sbi, struct seg_entry *se)
2125 {
2126 	if (!need_fsync_data_record(sbi))
2127 		return se->valid_blocks;
2128 	else
2129 		return se->ckpt_valid_blocks;
2130 }
2131 
get_seg_bitmap(struct f2fs_sb_info * sbi,struct seg_entry * se)2132 unsigned char *get_seg_bitmap(struct f2fs_sb_info *sbi, struct seg_entry *se)
2133 {
2134 	if (!need_fsync_data_record(sbi))
2135 		return se->cur_valid_map;
2136 	else
2137 		return se->ckpt_valid_map;
2138 }
2139 
get_seg_type(struct f2fs_sb_info * sbi,struct seg_entry * se)2140 unsigned char get_seg_type(struct f2fs_sb_info *sbi, struct seg_entry *se)
2141 {
2142 	if (!need_fsync_data_record(sbi))
2143 		return se->type;
2144 	else
2145 		return se->ckpt_type;
2146 }
2147 
get_sum_block(struct f2fs_sb_info * sbi,unsigned int segno,int * ret_type)2148 struct f2fs_summary_block *get_sum_block(struct f2fs_sb_info *sbi,
2149 				unsigned int segno, int *ret_type)
2150 {
2151 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
2152 	struct f2fs_summary_block *sum_blk;
2153 	struct curseg_info *curseg;
2154 	int type, ret;
2155 	u64 ssa_blk;
2156 
2157 	*ret_type= SEG_TYPE_MAX;
2158 
2159 	ssa_blk = GET_SUM_BLKADDR(sbi, segno);
2160 	for (type = 0; type < NR_CURSEG_NODE_TYPE; type++) {
2161 		if (segno == get_cp(cur_node_segno[type])) {
2162 			curseg = CURSEG_I(sbi, CURSEG_HOT_NODE + type);
2163 			if (!IS_SUM_NODE_SEG(curseg->sum_blk->footer)) {
2164 				ASSERT_MSG("segno [0x%x] indicates a data "
2165 						"segment, but should be node",
2166 						segno);
2167 				*ret_type = -SEG_TYPE_CUR_NODE;
2168 			} else {
2169 				*ret_type = SEG_TYPE_CUR_NODE;
2170 			}
2171 			return curseg->sum_blk;
2172 		}
2173 	}
2174 
2175 	for (type = 0; type < NR_CURSEG_DATA_TYPE; type++) {
2176 		if (segno == get_cp(cur_data_segno[type])) {
2177 			curseg = CURSEG_I(sbi, type);
2178 			if (IS_SUM_NODE_SEG(curseg->sum_blk->footer)) {
2179 				ASSERT_MSG("segno [0x%x] indicates a node "
2180 						"segment, but should be data",
2181 						segno);
2182 				*ret_type = -SEG_TYPE_CUR_DATA;
2183 			} else {
2184 				*ret_type = SEG_TYPE_CUR_DATA;
2185 			}
2186 			return curseg->sum_blk;
2187 		}
2188 	}
2189 
2190 	sum_blk = calloc(BLOCK_SZ, 1);
2191 	ASSERT(sum_blk);
2192 
2193 	ret = dev_read_block(sum_blk, ssa_blk);
2194 	ASSERT(ret >= 0);
2195 
2196 	if (IS_SUM_NODE_SEG(sum_blk->footer))
2197 		*ret_type = SEG_TYPE_NODE;
2198 	else if (IS_SUM_DATA_SEG(sum_blk->footer))
2199 		*ret_type = SEG_TYPE_DATA;
2200 
2201 	return sum_blk;
2202 }
2203 
get_sum_entry(struct f2fs_sb_info * sbi,u32 blk_addr,struct f2fs_summary * sum_entry)2204 int get_sum_entry(struct f2fs_sb_info *sbi, u32 blk_addr,
2205 				struct f2fs_summary *sum_entry)
2206 {
2207 	struct f2fs_summary_block *sum_blk;
2208 	u32 segno, offset;
2209 	int type;
2210 
2211 	segno = GET_SEGNO(sbi, blk_addr);
2212 	offset = OFFSET_IN_SEG(sbi, blk_addr);
2213 
2214 	sum_blk = get_sum_block(sbi, segno, &type);
2215 	memcpy(sum_entry, &(sum_blk->entries[offset]),
2216 				sizeof(struct f2fs_summary));
2217 	if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
2218 					type == SEG_TYPE_MAX)
2219 		free(sum_blk);
2220 	return type;
2221 }
2222 
get_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * raw_nat)2223 static void get_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
2224 				struct f2fs_nat_entry *raw_nat)
2225 {
2226 	struct f2fs_nat_block *nat_block;
2227 	pgoff_t block_addr;
2228 	int entry_off;
2229 	int ret;
2230 
2231 	if (lookup_nat_in_journal(sbi, nid, raw_nat) >= 0)
2232 		return;
2233 
2234 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
2235 	ASSERT(nat_block);
2236 
2237 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
2238 	block_addr = current_nat_addr(sbi, nid, NULL);
2239 
2240 	ret = dev_read_block(nat_block, block_addr);
2241 	ASSERT(ret >= 0);
2242 
2243 	memcpy(raw_nat, &nat_block->entries[entry_off],
2244 					sizeof(struct f2fs_nat_entry));
2245 	free(nat_block);
2246 }
2247 
update_data_blkaddr(struct f2fs_sb_info * sbi,nid_t nid,u16 ofs_in_node,block_t newaddr)2248 void update_data_blkaddr(struct f2fs_sb_info *sbi, nid_t nid,
2249 				u16 ofs_in_node, block_t newaddr)
2250 {
2251 	struct f2fs_node *node_blk = NULL;
2252 	struct node_info ni;
2253 	block_t oldaddr, startaddr, endaddr;
2254 	int ret;
2255 
2256 	node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
2257 	ASSERT(node_blk);
2258 
2259 	get_node_info(sbi, nid, &ni);
2260 
2261 	/* read node_block */
2262 	ret = dev_read_block(node_blk, ni.blk_addr);
2263 	ASSERT(ret >= 0);
2264 
2265 	/* check its block address */
2266 	if (node_blk->footer.nid == node_blk->footer.ino) {
2267 		int ofs = get_extra_isize(node_blk);
2268 
2269 		oldaddr = le32_to_cpu(node_blk->i.i_addr[ofs + ofs_in_node]);
2270 		node_blk->i.i_addr[ofs + ofs_in_node] = cpu_to_le32(newaddr);
2271 		ret = write_inode(node_blk, ni.blk_addr);
2272 		ASSERT(ret >= 0);
2273 	} else {
2274 		oldaddr = le32_to_cpu(node_blk->dn.addr[ofs_in_node]);
2275 		node_blk->dn.addr[ofs_in_node] = cpu_to_le32(newaddr);
2276 		ret = dev_write_block(node_blk, ni.blk_addr);
2277 		ASSERT(ret >= 0);
2278 	}
2279 
2280 	/* check extent cache entry */
2281 	if (node_blk->footer.nid != node_blk->footer.ino) {
2282 		get_node_info(sbi, le32_to_cpu(node_blk->footer.ino), &ni);
2283 
2284 		/* read inode block */
2285 		ret = dev_read_block(node_blk, ni.blk_addr);
2286 		ASSERT(ret >= 0);
2287 	}
2288 
2289 	startaddr = le32_to_cpu(node_blk->i.i_ext.blk_addr);
2290 	endaddr = startaddr + le32_to_cpu(node_blk->i.i_ext.len);
2291 	if (oldaddr >= startaddr && oldaddr < endaddr) {
2292 		node_blk->i.i_ext.len = 0;
2293 
2294 		/* update inode block */
2295 		ASSERT(write_inode(node_blk, ni.blk_addr) >= 0);
2296 	}
2297 	free(node_blk);
2298 }
2299 
update_nat_blkaddr(struct f2fs_sb_info * sbi,nid_t ino,nid_t nid,block_t newaddr)2300 void update_nat_blkaddr(struct f2fs_sb_info *sbi, nid_t ino,
2301 					nid_t nid, block_t newaddr)
2302 {
2303 	struct f2fs_nat_block *nat_block;
2304 	pgoff_t block_addr;
2305 	int entry_off;
2306 	int ret;
2307 
2308 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
2309 	ASSERT(nat_block);
2310 
2311 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
2312 	block_addr = current_nat_addr(sbi, nid, NULL);
2313 
2314 	ret = dev_read_block(nat_block, block_addr);
2315 	ASSERT(ret >= 0);
2316 
2317 	if (ino)
2318 		nat_block->entries[entry_off].ino = cpu_to_le32(ino);
2319 	nat_block->entries[entry_off].block_addr = cpu_to_le32(newaddr);
2320 	if (c.func == FSCK)
2321 		F2FS_FSCK(sbi)->entries[nid] = nat_block->entries[entry_off];
2322 
2323 	ret = dev_write_block(nat_block, block_addr);
2324 	ASSERT(ret >= 0);
2325 	free(nat_block);
2326 }
2327 
get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)2328 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
2329 {
2330 	struct f2fs_nat_entry raw_nat;
2331 
2332 	ni->nid = nid;
2333 	if (c.func == FSCK && F2FS_FSCK(sbi)->nr_nat_entries) {
2334 		node_info_from_raw_nat(ni, &(F2FS_FSCK(sbi)->entries[nid]));
2335 		if (ni->blk_addr)
2336 			return;
2337 		/* nat entry is not cached, read it */
2338 	}
2339 
2340 	get_nat_entry(sbi, nid, &raw_nat);
2341 	node_info_from_raw_nat(ni, &raw_nat);
2342 }
2343 
build_sit_entries(struct f2fs_sb_info * sbi)2344 static int build_sit_entries(struct f2fs_sb_info *sbi)
2345 {
2346 	struct sit_info *sit_i = SIT_I(sbi);
2347 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2348 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
2349 	struct f2fs_sit_block *sit_blk;
2350 	struct seg_entry *se;
2351 	struct f2fs_sit_entry sit;
2352 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2353 	unsigned int i, segno, end;
2354 	unsigned int readed, start_blk = 0;
2355 
2356 	sit_blk = calloc(BLOCK_SZ, 1);
2357 	if (!sit_blk) {
2358 		MSG(1, "\tError: Calloc failed for build_sit_entries!\n");
2359 		return -ENOMEM;
2360 	}
2361 
2362 	do {
2363 		readed = f2fs_ra_meta_pages(sbi, start_blk, MAX_RA_BLOCKS,
2364 								META_SIT);
2365 
2366 		segno = start_blk * sit_i->sents_per_block;
2367 		end = (start_blk + readed) * sit_i->sents_per_block;
2368 
2369 		for (; segno < end && segno < TOTAL_SEGS(sbi); segno++) {
2370 			se = &sit_i->sentries[segno];
2371 
2372 			get_current_sit_page(sbi, segno, sit_blk);
2373 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
2374 
2375 			check_block_count(sbi, segno, &sit);
2376 			seg_info_from_raw_sit(sbi, se, &sit);
2377 		}
2378 		start_blk += readed;
2379 	} while (start_blk < sit_blk_cnt);
2380 
2381 
2382 	free(sit_blk);
2383 
2384 	if (sits_in_cursum(journal) > SIT_JOURNAL_ENTRIES) {
2385 		MSG(0, "\tError: build_sit_entries truncate n_sits(%u) to "
2386 			"SIT_JOURNAL_ENTRIES(%zu)\n",
2387 			sits_in_cursum(journal), SIT_JOURNAL_ENTRIES);
2388 		journal->n_sits = cpu_to_le16(SIT_JOURNAL_ENTRIES);
2389 		c.fix_on = 1;
2390 	}
2391 
2392 	for (i = 0; i < sits_in_cursum(journal); i++) {
2393 		segno = le32_to_cpu(segno_in_journal(journal, i));
2394 
2395 		if (segno >= TOTAL_SEGS(sbi)) {
2396 			MSG(0, "\tError: build_sit_entries: segno(%u) is invalid!!!\n", segno);
2397 			journal->n_sits = cpu_to_le16(i);
2398 			c.fix_on = 1;
2399 			continue;
2400 		}
2401 
2402 		se = &sit_i->sentries[segno];
2403 		sit = sit_in_journal(journal, i);
2404 
2405 		check_block_count(sbi, segno, &sit);
2406 		seg_info_from_raw_sit(sbi, se, &sit);
2407 	}
2408 	return 0;
2409 }
2410 
early_build_segment_manager(struct f2fs_sb_info * sbi)2411 static int early_build_segment_manager(struct f2fs_sb_info *sbi)
2412 {
2413 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
2414 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
2415 	struct f2fs_sm_info *sm_info;
2416 
2417 	sm_info = malloc(sizeof(struct f2fs_sm_info));
2418 	if (!sm_info) {
2419 		MSG(1, "\tError: Malloc failed for build_segment_manager!\n");
2420 		return -ENOMEM;
2421 	}
2422 
2423 	/* init sm info */
2424 	sbi->sm_info = sm_info;
2425 	sm_info->seg0_blkaddr = get_sb(segment0_blkaddr);
2426 	sm_info->main_blkaddr = get_sb(main_blkaddr);
2427 	sm_info->segment_count = get_sb(segment_count);
2428 	sm_info->reserved_segments = get_cp(rsvd_segment_count);
2429 	sm_info->ovp_segments = get_cp(overprov_segment_count);
2430 	sm_info->main_segments = get_sb(segment_count_main);
2431 	sm_info->ssa_blkaddr = get_sb(ssa_blkaddr);
2432 
2433 	if (build_sit_info(sbi) || build_curseg(sbi)) {
2434 		free(sm_info);
2435 		return -ENOMEM;
2436 	}
2437 
2438 	return 0;
2439 }
2440 
late_build_segment_manager(struct f2fs_sb_info * sbi)2441 static int late_build_segment_manager(struct f2fs_sb_info *sbi)
2442 {
2443 	if (sbi->seg_manager_done)
2444 		return 1; /* this function was already called */
2445 
2446 	sbi->seg_manager_done = true;
2447 	if (build_sit_entries(sbi)) {
2448 		free (sbi->sm_info);
2449 		return -ENOMEM;
2450 	}
2451 
2452 	return 0;
2453 }
2454 
build_sit_area_bitmap(struct f2fs_sb_info * sbi)2455 void build_sit_area_bitmap(struct f2fs_sb_info *sbi)
2456 {
2457 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
2458 	struct f2fs_sm_info *sm_i = SM_I(sbi);
2459 	unsigned int segno = 0;
2460 	char *ptr = NULL;
2461 	u32 sum_vblocks = 0;
2462 	u32 free_segs = 0;
2463 	struct seg_entry *se;
2464 
2465 	fsck->sit_area_bitmap_sz = sm_i->main_segments * SIT_VBLOCK_MAP_SIZE;
2466 	fsck->sit_area_bitmap = calloc(1, fsck->sit_area_bitmap_sz);
2467 	ASSERT(fsck->sit_area_bitmap);
2468 	ptr = fsck->sit_area_bitmap;
2469 
2470 	ASSERT(fsck->sit_area_bitmap_sz == fsck->main_area_bitmap_sz);
2471 
2472 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
2473 		se = get_seg_entry(sbi, segno);
2474 
2475 		memcpy(ptr, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2476 		ptr += SIT_VBLOCK_MAP_SIZE;
2477 
2478 		if (se->valid_blocks == 0x0 && is_usable_seg(sbi, segno)) {
2479 			if (le32_to_cpu(sbi->ckpt->cur_node_segno[0]) == segno ||
2480 				le32_to_cpu(sbi->ckpt->cur_data_segno[0]) == segno ||
2481 				le32_to_cpu(sbi->ckpt->cur_node_segno[1]) == segno ||
2482 				le32_to_cpu(sbi->ckpt->cur_data_segno[1]) == segno ||
2483 				le32_to_cpu(sbi->ckpt->cur_node_segno[2]) == segno ||
2484 				le32_to_cpu(sbi->ckpt->cur_data_segno[2]) == segno) {
2485 				continue;
2486 			} else {
2487 				free_segs++;
2488 			}
2489 		} else {
2490 			sum_vblocks += se->valid_blocks;
2491 		}
2492 	}
2493 	fsck->chk.sit_valid_blocks = sum_vblocks;
2494 	fsck->chk.sit_free_segs = free_segs;
2495 
2496 	DBG(1, "Blocks [0x%x : %d] Free Segs [0x%x : %d]\n\n",
2497 			sum_vblocks, sum_vblocks,
2498 			free_segs, free_segs);
2499 }
2500 
rewrite_sit_area_bitmap(struct f2fs_sb_info * sbi)2501 void rewrite_sit_area_bitmap(struct f2fs_sb_info *sbi)
2502 {
2503 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
2504 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2505 	struct sit_info *sit_i = SIT_I(sbi);
2506 	struct f2fs_sit_block *sit_blk;
2507 	unsigned int segno = 0;
2508 	struct f2fs_summary_block *sum = curseg->sum_blk;
2509 	char *ptr = NULL;
2510 
2511 	sit_blk = calloc(BLOCK_SZ, 1);
2512 	ASSERT(sit_blk);
2513 	/* remove sit journal */
2514 	sum->journal.n_sits = 0;
2515 
2516 	ptr = fsck->main_area_bitmap;
2517 
2518 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
2519 		struct f2fs_sit_entry *sit;
2520 		struct seg_entry *se;
2521 		u16 valid_blocks = 0;
2522 		u16 type;
2523 		int i;
2524 
2525 		get_current_sit_page(sbi, segno, sit_blk);
2526 		sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
2527 		memcpy(sit->valid_map, ptr, SIT_VBLOCK_MAP_SIZE);
2528 
2529 		/* update valid block count */
2530 		for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++)
2531 			valid_blocks += get_bits_in_byte(sit->valid_map[i]);
2532 
2533 		se = get_seg_entry(sbi, segno);
2534 		memcpy(se->cur_valid_map, ptr, SIT_VBLOCK_MAP_SIZE);
2535 		se->valid_blocks = valid_blocks;
2536 		type = se->type;
2537 		if (type >= NO_CHECK_TYPE) {
2538 			ASSERT_MSG("Invalid type and valid blocks=%x,%x",
2539 					segno, valid_blocks);
2540 			type = 0;
2541 		}
2542 		sit->vblocks = cpu_to_le16((type << SIT_VBLOCKS_SHIFT) |
2543 								valid_blocks);
2544 		rewrite_current_sit_page(sbi, segno, sit_blk);
2545 
2546 		ptr += SIT_VBLOCK_MAP_SIZE;
2547 	}
2548 
2549 	free(sit_blk);
2550 }
2551 
flush_sit_journal_entries(struct f2fs_sb_info * sbi)2552 static int flush_sit_journal_entries(struct f2fs_sb_info *sbi)
2553 {
2554 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2555 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
2556 	struct sit_info *sit_i = SIT_I(sbi);
2557 	struct f2fs_sit_block *sit_blk;
2558 	unsigned int segno;
2559 	int i;
2560 
2561 	sit_blk = calloc(BLOCK_SZ, 1);
2562 	ASSERT(sit_blk);
2563 	for (i = 0; i < sits_in_cursum(journal); i++) {
2564 		struct f2fs_sit_entry *sit;
2565 		struct seg_entry *se;
2566 
2567 		segno = segno_in_journal(journal, i);
2568 		se = get_seg_entry(sbi, segno);
2569 
2570 		get_current_sit_page(sbi, segno, sit_blk);
2571 		sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
2572 
2573 		memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2574 		sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
2575 							se->valid_blocks);
2576 		sit->mtime = cpu_to_le64(se->mtime);
2577 
2578 		rewrite_current_sit_page(sbi, segno, sit_blk);
2579 	}
2580 
2581 	free(sit_blk);
2582 	journal->n_sits = 0;
2583 	return i;
2584 }
2585 
flush_nat_journal_entries(struct f2fs_sb_info * sbi)2586 static int flush_nat_journal_entries(struct f2fs_sb_info *sbi)
2587 {
2588 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2589 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
2590 	struct f2fs_nat_block *nat_block;
2591 	pgoff_t block_addr;
2592 	int entry_off;
2593 	nid_t nid;
2594 	int ret;
2595 	int i = 0;
2596 
2597 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
2598 	ASSERT(nat_block);
2599 next:
2600 	if (i >= nats_in_cursum(journal)) {
2601 		free(nat_block);
2602 		journal->n_nats = 0;
2603 		return i;
2604 	}
2605 
2606 	nid = le32_to_cpu(nid_in_journal(journal, i));
2607 
2608 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
2609 	block_addr = current_nat_addr(sbi, nid, NULL);
2610 
2611 	ret = dev_read_block(nat_block, block_addr);
2612 	ASSERT(ret >= 0);
2613 
2614 	memcpy(&nat_block->entries[entry_off], &nat_in_journal(journal, i),
2615 					sizeof(struct f2fs_nat_entry));
2616 
2617 	ret = dev_write_block(nat_block, block_addr);
2618 	ASSERT(ret >= 0);
2619 	i++;
2620 	goto next;
2621 }
2622 
flush_journal_entries(struct f2fs_sb_info * sbi)2623 void flush_journal_entries(struct f2fs_sb_info *sbi)
2624 {
2625 	int n_nats = flush_nat_journal_entries(sbi);
2626 	int n_sits = flush_sit_journal_entries(sbi);
2627 
2628 	if (n_nats || n_sits)
2629 		write_checkpoints(sbi);
2630 }
2631 
flush_sit_entries(struct f2fs_sb_info * sbi)2632 void flush_sit_entries(struct f2fs_sb_info *sbi)
2633 {
2634 	struct sit_info *sit_i = SIT_I(sbi);
2635 	struct f2fs_sit_block *sit_blk;
2636 	unsigned int segno = 0;
2637 
2638 	sit_blk = calloc(BLOCK_SZ, 1);
2639 	ASSERT(sit_blk);
2640 	/* update free segments */
2641 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
2642 		struct f2fs_sit_entry *sit;
2643 		struct seg_entry *se;
2644 
2645 		se = get_seg_entry(sbi, segno);
2646 
2647 		if (!se->dirty)
2648 			continue;
2649 
2650 		get_current_sit_page(sbi, segno, sit_blk);
2651 		sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
2652 		memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2653 		sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
2654 							se->valid_blocks);
2655 		rewrite_current_sit_page(sbi, segno, sit_blk);
2656 	}
2657 
2658 	free(sit_blk);
2659 }
2660 
relocate_curseg_offset(struct f2fs_sb_info * sbi,int type)2661 int relocate_curseg_offset(struct f2fs_sb_info *sbi, int type)
2662 {
2663 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2664 	struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
2665 	unsigned int i;
2666 
2667 	if (c.zoned_model == F2FS_ZONED_HM)
2668 		return -EINVAL;
2669 
2670 	for (i = 0; i < sbi->blocks_per_seg; i++) {
2671 		if (!f2fs_test_bit(i, (const char *)se->cur_valid_map))
2672 			break;
2673 	}
2674 
2675 	if (i == sbi->blocks_per_seg)
2676 		return -EINVAL;
2677 
2678 	DBG(1, "Update curseg[%d].next_blkoff %u -> %u, alloc_type %s -> SSR\n",
2679 			type, curseg->next_blkoff, i,
2680 			curseg->alloc_type == LFS ? "LFS" : "SSR");
2681 
2682 	curseg->next_blkoff = i;
2683 	curseg->alloc_type = SSR;
2684 
2685 	return 0;
2686 }
2687 
set_section_type(struct f2fs_sb_info * sbi,unsigned int segno,int type)2688 void set_section_type(struct f2fs_sb_info *sbi, unsigned int segno, int type)
2689 {
2690 	unsigned int i;
2691 
2692 	if (sbi->segs_per_sec == 1)
2693 		return;
2694 
2695 	for (i = 0; i < sbi->segs_per_sec; i++) {
2696 		struct seg_entry *se = get_seg_entry(sbi, segno + i);
2697 
2698 		se->type = type;
2699 	}
2700 }
2701 
2702 #ifdef HAVE_LINUX_BLKZONED_H
2703 
write_pointer_at_zone_start(struct f2fs_sb_info * sbi,unsigned int zone_segno)2704 static bool write_pointer_at_zone_start(struct f2fs_sb_info *sbi,
2705 					unsigned int zone_segno)
2706 {
2707 	uint64_t sector;
2708 	struct blk_zone blkz;
2709 	block_t block = START_BLOCK(sbi, zone_segno);
2710 	int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
2711 	int ret, j;
2712 
2713 	if (c.zoned_model != F2FS_ZONED_HM)
2714 		return true;
2715 
2716 	for (j = 0; j < MAX_DEVICES; j++) {
2717 		if (!c.devices[j].path)
2718 			break;
2719 		if (c.devices[j].start_blkaddr <= block &&
2720 		    block <= c.devices[j].end_blkaddr)
2721 			break;
2722 	}
2723 
2724 	if (j >= MAX_DEVICES)
2725 		return false;
2726 
2727 	sector = (block - c.devices[j].start_blkaddr) << log_sectors_per_block;
2728 	ret = f2fs_report_zone(j, sector, &blkz);
2729 	if (ret)
2730 		return false;
2731 
2732 	if (blk_zone_type(&blkz) != BLK_ZONE_TYPE_SEQWRITE_REQ)
2733 		return true;
2734 
2735 	return blk_zone_sector(&blkz) == blk_zone_wp_sector(&blkz);
2736 }
2737 
2738 #else
2739 
write_pointer_at_zone_start(struct f2fs_sb_info * UNUSED (sbi),unsigned int UNUSED (zone_segno))2740 static bool write_pointer_at_zone_start(struct f2fs_sb_info *UNUSED(sbi),
2741 					unsigned int UNUSED(zone_segno))
2742 {
2743 	return true;
2744 }
2745 
2746 #endif
2747 
find_next_free_block(struct f2fs_sb_info * sbi,u64 * to,int left,int want_type,bool new_sec)2748 int find_next_free_block(struct f2fs_sb_info *sbi, u64 *to, int left,
2749 						int want_type, bool new_sec)
2750 {
2751 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
2752 	struct seg_entry *se;
2753 	u32 segno;
2754 	u32 offset;
2755 	int not_enough = 0;
2756 	u64 end_blkaddr = (get_sb(segment_count_main) <<
2757 			get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr);
2758 
2759 	if (*to > 0)
2760 		*to -= left;
2761 	if (get_free_segments(sbi) <= SM_I(sbi)->reserved_segments + 1)
2762 		not_enough = 1;
2763 
2764 	while (*to >= SM_I(sbi)->main_blkaddr && *to < end_blkaddr) {
2765 		unsigned short vblocks;
2766 		unsigned char *bitmap;
2767 		unsigned char type;
2768 
2769 		segno = GET_SEGNO(sbi, *to);
2770 		offset = OFFSET_IN_SEG(sbi, *to);
2771 
2772 		se = get_seg_entry(sbi, segno);
2773 
2774 		vblocks = get_seg_vblocks(sbi, se);
2775 		bitmap = get_seg_bitmap(sbi, se);
2776 		type = get_seg_type(sbi, se);
2777 
2778 		if (vblocks == sbi->blocks_per_seg) {
2779 next_segment:
2780 			*to = left ? START_BLOCK(sbi, segno) - 1:
2781 						START_BLOCK(sbi, segno + 1);
2782 			continue;
2783 		}
2784 		if (!(get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO)) &&
2785 						IS_CUR_SEGNO(sbi, segno))
2786 			goto next_segment;
2787 		if (vblocks == 0 && not_enough)
2788 			goto next_segment;
2789 
2790 		if (vblocks == 0 && !(segno % sbi->segs_per_sec)) {
2791 			struct seg_entry *se2;
2792 			unsigned int i;
2793 
2794 			for (i = 1; i < sbi->segs_per_sec; i++) {
2795 				se2 = get_seg_entry(sbi, segno + i);
2796 				if (get_seg_vblocks(sbi, se2))
2797 					break;
2798 			}
2799 
2800 			if (i == sbi->segs_per_sec &&
2801 			    write_pointer_at_zone_start(sbi, segno)) {
2802 				set_section_type(sbi, segno, want_type);
2803 				return 0;
2804 			}
2805 		}
2806 
2807 		if (type == want_type && !new_sec &&
2808 			!f2fs_test_bit(offset, (const char *)bitmap))
2809 			return 0;
2810 
2811 		*to = left ? *to - 1: *to + 1;
2812 	}
2813 	return -1;
2814 }
2815 
move_one_curseg_info(struct f2fs_sb_info * sbi,u64 from,int left,int i)2816 static void move_one_curseg_info(struct f2fs_sb_info *sbi, u64 from, int left,
2817 				 int i)
2818 {
2819 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
2820 	struct curseg_info *curseg = CURSEG_I(sbi, i);
2821 	struct f2fs_summary_block buf;
2822 	u32 old_segno;
2823 	u64 ssa_blk, to;
2824 	int ret;
2825 
2826 	if ((get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO))) {
2827 		if (i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
2828 			return;
2829 		goto bypass_ssa;
2830 	}
2831 
2832 	/* update original SSA too */
2833 	ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
2834 	ret = dev_write_block(curseg->sum_blk, ssa_blk);
2835 	ASSERT(ret >= 0);
2836 bypass_ssa:
2837 	to = from;
2838 	ret = find_next_free_block(sbi, &to, left, i,
2839 				   c.zoned_model == F2FS_ZONED_HM);
2840 	ASSERT(ret == 0);
2841 
2842 	old_segno = curseg->segno;
2843 	curseg->segno = GET_SEGNO(sbi, to);
2844 	curseg->next_blkoff = OFFSET_IN_SEG(sbi, to);
2845 	curseg->alloc_type = c.zoned_model == F2FS_ZONED_HM ? LFS : SSR;
2846 
2847 	/* update new segno */
2848 	ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
2849 	ret = dev_read_block(&buf, ssa_blk);
2850 	ASSERT(ret >= 0);
2851 
2852 	memcpy(curseg->sum_blk, &buf, SUM_ENTRIES_SIZE);
2853 
2854 	/* update se->types */
2855 	reset_curseg(sbi, i);
2856 
2857 	FIX_MSG("Move curseg[%d] %x -> %x after %"PRIx64"\n",
2858 		i, old_segno, curseg->segno, from);
2859 }
2860 
move_curseg_info(struct f2fs_sb_info * sbi,u64 from,int left)2861 void move_curseg_info(struct f2fs_sb_info *sbi, u64 from, int left)
2862 {
2863 	int i;
2864 
2865 	/* update summary blocks having nullified journal entries */
2866 	for (i = 0; i < NO_CHECK_TYPE; i++)
2867 		move_one_curseg_info(sbi, from, left, i);
2868 }
2869 
update_curseg_info(struct f2fs_sb_info * sbi,int type)2870 void update_curseg_info(struct f2fs_sb_info *sbi, int type)
2871 {
2872 	if (!relocate_curseg_offset(sbi, type))
2873 		return;
2874 	move_one_curseg_info(sbi, SM_I(sbi)->main_blkaddr, 0, type);
2875 }
2876 
zero_journal_entries(struct f2fs_sb_info * sbi)2877 void zero_journal_entries(struct f2fs_sb_info *sbi)
2878 {
2879 	int i;
2880 
2881 	for (i = 0; i < NO_CHECK_TYPE; i++)
2882 		CURSEG_I(sbi, i)->sum_blk->journal.n_nats = 0;
2883 }
2884 
write_curseg_info(struct f2fs_sb_info * sbi)2885 void write_curseg_info(struct f2fs_sb_info *sbi)
2886 {
2887 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
2888 	int i;
2889 
2890 	for (i = 0; i < NO_CHECK_TYPE; i++) {
2891 		cp->alloc_type[i] = CURSEG_I(sbi, i)->alloc_type;
2892 		if (i < CURSEG_HOT_NODE) {
2893 			set_cp(cur_data_segno[i], CURSEG_I(sbi, i)->segno);
2894 			set_cp(cur_data_blkoff[i],
2895 					CURSEG_I(sbi, i)->next_blkoff);
2896 		} else {
2897 			int n = i - CURSEG_HOT_NODE;
2898 
2899 			set_cp(cur_node_segno[n], CURSEG_I(sbi, i)->segno);
2900 			set_cp(cur_node_blkoff[n],
2901 					CURSEG_I(sbi, i)->next_blkoff);
2902 		}
2903 	}
2904 }
2905 
lookup_nat_in_journal(struct f2fs_sb_info * sbi,u32 nid,struct f2fs_nat_entry * raw_nat)2906 int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid,
2907 					struct f2fs_nat_entry *raw_nat)
2908 {
2909 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2910 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
2911 	int i = 0;
2912 
2913 	for (i = 0; i < nats_in_cursum(journal); i++) {
2914 		if (le32_to_cpu(nid_in_journal(journal, i)) == nid) {
2915 			memcpy(raw_nat, &nat_in_journal(journal, i),
2916 						sizeof(struct f2fs_nat_entry));
2917 			DBG(3, "==> Found nid [0x%x] in nat cache\n", nid);
2918 			return i;
2919 		}
2920 	}
2921 	return -1;
2922 }
2923 
nullify_nat_entry(struct f2fs_sb_info * sbi,u32 nid)2924 void nullify_nat_entry(struct f2fs_sb_info *sbi, u32 nid)
2925 {
2926 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2927 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
2928 	struct f2fs_nat_block *nat_block;
2929 	pgoff_t block_addr;
2930 	int entry_off;
2931 	int ret;
2932 	int i = 0;
2933 
2934 	/* check in journal */
2935 	for (i = 0; i < nats_in_cursum(journal); i++) {
2936 		if (le32_to_cpu(nid_in_journal(journal, i)) == nid) {
2937 			memset(&nat_in_journal(journal, i), 0,
2938 					sizeof(struct f2fs_nat_entry));
2939 			FIX_MSG("Remove nid [0x%x] in nat journal", nid);
2940 			return;
2941 		}
2942 	}
2943 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
2944 	ASSERT(nat_block);
2945 
2946 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
2947 	block_addr = current_nat_addr(sbi, nid, NULL);
2948 
2949 	ret = dev_read_block(nat_block, block_addr);
2950 	ASSERT(ret >= 0);
2951 
2952 	if (nid == F2FS_NODE_INO(sbi) || nid == F2FS_META_INO(sbi)) {
2953 		FIX_MSG("nid [0x%x] block_addr= 0x%x -> 0x1", nid,
2954 			le32_to_cpu(nat_block->entries[entry_off].block_addr));
2955 		nat_block->entries[entry_off].block_addr = cpu_to_le32(0x1);
2956 	} else {
2957 		memset(&nat_block->entries[entry_off], 0,
2958 					sizeof(struct f2fs_nat_entry));
2959 		FIX_MSG("Remove nid [0x%x] in NAT", nid);
2960 	}
2961 
2962 	ret = dev_write_block(nat_block, block_addr);
2963 	ASSERT(ret >= 0);
2964 	free(nat_block);
2965 }
2966 
duplicate_checkpoint(struct f2fs_sb_info * sbi)2967 void duplicate_checkpoint(struct f2fs_sb_info *sbi)
2968 {
2969 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
2970 	unsigned long long dst, src;
2971 	void *buf;
2972 	unsigned int seg_size = 1 << get_sb(log_blocks_per_seg);
2973 	int ret;
2974 
2975 	if (sbi->cp_backuped)
2976 		return;
2977 
2978 	buf = malloc(F2FS_BLKSIZE * seg_size);
2979 	ASSERT(buf);
2980 
2981 	if (sbi->cur_cp == 1) {
2982 		src = get_sb(cp_blkaddr);
2983 		dst = src + seg_size;
2984 	} else {
2985 		dst = get_sb(cp_blkaddr);
2986 		src = dst + seg_size;
2987 	}
2988 
2989 	ret = dev_read(buf, src << F2FS_BLKSIZE_BITS,
2990 				seg_size << F2FS_BLKSIZE_BITS);
2991 	ASSERT(ret >= 0);
2992 
2993 	ret = dev_write(buf, dst << F2FS_BLKSIZE_BITS,
2994 				seg_size << F2FS_BLKSIZE_BITS);
2995 	ASSERT(ret >= 0);
2996 
2997 	free(buf);
2998 
2999 	ret = f2fs_fsync_device();
3000 	ASSERT(ret >= 0);
3001 
3002 	sbi->cp_backuped = 1;
3003 
3004 	MSG(0, "Info: Duplicate valid checkpoint to mirror position "
3005 		"%llu -> %llu\n", src, dst);
3006 }
3007 
write_checkpoint(struct f2fs_sb_info * sbi)3008 void write_checkpoint(struct f2fs_sb_info *sbi)
3009 {
3010 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
3011 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
3012 	block_t orphan_blks = 0;
3013 	unsigned long long cp_blk_no;
3014 	u32 flags = CP_UMOUNT_FLAG;
3015 	int i, ret;
3016 	uint32_t crc = 0;
3017 
3018 	if (is_set_ckpt_flags(cp, CP_ORPHAN_PRESENT_FLAG)) {
3019 		orphan_blks = __start_sum_addr(sbi) - 1;
3020 		flags |= CP_ORPHAN_PRESENT_FLAG;
3021 	}
3022 	if (is_set_ckpt_flags(cp, CP_TRIMMED_FLAG))
3023 		flags |= CP_TRIMMED_FLAG;
3024 	if (is_set_ckpt_flags(cp, CP_DISABLED_FLAG))
3025 		flags |= CP_DISABLED_FLAG;
3026 	if (is_set_ckpt_flags(cp, CP_LARGE_NAT_BITMAP_FLAG)) {
3027 		flags |= CP_LARGE_NAT_BITMAP_FLAG;
3028 		set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET);
3029 	} else {
3030 		set_cp(checksum_offset, CP_CHKSUM_OFFSET);
3031 	}
3032 
3033 	set_cp(free_segment_count, get_free_segments(sbi));
3034 	if (c.func == FSCK) {
3035 		struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
3036 
3037 		set_cp(valid_block_count, fsck->chk.valid_blk_cnt);
3038 		set_cp(valid_node_count, fsck->chk.valid_node_cnt);
3039 		set_cp(valid_inode_count, fsck->chk.valid_inode_cnt);
3040 	} else {
3041 		set_cp(valid_block_count, sbi->total_valid_block_count);
3042 		set_cp(valid_node_count, sbi->total_valid_node_count);
3043 		set_cp(valid_inode_count, sbi->total_valid_inode_count);
3044 	}
3045 	set_cp(cp_pack_total_block_count, 8 + orphan_blks + get_sb(cp_payload));
3046 
3047 	flags = update_nat_bits_flags(sb, cp, flags);
3048 	set_cp(ckpt_flags, flags);
3049 
3050 	crc = f2fs_checkpoint_chksum(cp);
3051 	*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
3052 							cpu_to_le32(crc);
3053 
3054 	cp_blk_no = get_sb(cp_blkaddr);
3055 	if (sbi->cur_cp == 2)
3056 		cp_blk_no += 1 << get_sb(log_blocks_per_seg);
3057 
3058 	/* write the first cp */
3059 	ret = dev_write_block(cp, cp_blk_no++);
3060 	ASSERT(ret >= 0);
3061 
3062 	/* skip payload */
3063 	cp_blk_no += get_sb(cp_payload);
3064 	/* skip orphan blocks */
3065 	cp_blk_no += orphan_blks;
3066 
3067 	/* update summary blocks having nullified journal entries */
3068 	for (i = 0; i < NO_CHECK_TYPE; i++) {
3069 		struct curseg_info *curseg = CURSEG_I(sbi, i);
3070 		u64 ssa_blk;
3071 
3072 		ret = dev_write_block(curseg->sum_blk, cp_blk_no++);
3073 		ASSERT(ret >= 0);
3074 
3075 		if (!(get_sb(feature) & cpu_to_le32(F2FS_FEATURE_RO))) {
3076 			/* update original SSA too */
3077 			ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
3078 			ret = dev_write_block(curseg->sum_blk, ssa_blk);
3079 			ASSERT(ret >= 0);
3080 		}
3081 	}
3082 
3083 	/* Write nat bits */
3084 	if (flags & CP_NAT_BITS_FLAG)
3085 		write_nat_bits(sbi, sb, cp, sbi->cur_cp);
3086 
3087 	/* in case of sudden power off */
3088 	ret = f2fs_fsync_device();
3089 	ASSERT(ret >= 0);
3090 
3091 	/* write the last cp */
3092 	ret = dev_write_block(cp, cp_blk_no++);
3093 	ASSERT(ret >= 0);
3094 
3095 	ret = f2fs_fsync_device();
3096 	ASSERT(ret >= 0);
3097 }
3098 
write_checkpoints(struct f2fs_sb_info * sbi)3099 void write_checkpoints(struct f2fs_sb_info *sbi)
3100 {
3101 	/* copy valid checkpoint to its mirror position */
3102 	duplicate_checkpoint(sbi);
3103 
3104 	/* repair checkpoint at CP #0 position */
3105 	sbi->cur_cp = 1;
3106 	write_checkpoint(sbi);
3107 }
3108 
build_nat_area_bitmap(struct f2fs_sb_info * sbi)3109 void build_nat_area_bitmap(struct f2fs_sb_info *sbi)
3110 {
3111 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3112 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
3113 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
3114 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
3115 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3116 	struct f2fs_nat_block *nat_block;
3117 	struct node_info ni;
3118 	u32 nid, nr_nat_blks;
3119 	pgoff_t block_off;
3120 	pgoff_t block_addr;
3121 	int seg_off;
3122 	int ret;
3123 	unsigned int i;
3124 
3125 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
3126 	ASSERT(nat_block);
3127 
3128 	/* Alloc & build nat entry bitmap */
3129 	nr_nat_blks = (get_sb(segment_count_nat) / 2) <<
3130 					sbi->log_blocks_per_seg;
3131 
3132 	fsck->nr_nat_entries = nr_nat_blks * NAT_ENTRY_PER_BLOCK;
3133 	fsck->nat_area_bitmap_sz = (fsck->nr_nat_entries + 7) / 8;
3134 	fsck->nat_area_bitmap = calloc(fsck->nat_area_bitmap_sz, 1);
3135 	ASSERT(fsck->nat_area_bitmap);
3136 
3137 	fsck->entries = calloc(sizeof(struct f2fs_nat_entry),
3138 					fsck->nr_nat_entries);
3139 	ASSERT(fsck->entries);
3140 
3141 	for (block_off = 0; block_off < nr_nat_blks; block_off++) {
3142 
3143 		seg_off = block_off >> sbi->log_blocks_per_seg;
3144 		block_addr = (pgoff_t)(nm_i->nat_blkaddr +
3145 			(seg_off << sbi->log_blocks_per_seg << 1) +
3146 			(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
3147 
3148 		if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
3149 			block_addr += sbi->blocks_per_seg;
3150 
3151 		ret = dev_read_block(nat_block, block_addr);
3152 		ASSERT(ret >= 0);
3153 
3154 		nid = block_off * NAT_ENTRY_PER_BLOCK;
3155 		for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
3156 			ni.nid = nid + i;
3157 
3158 			if ((nid + i) == F2FS_NODE_INO(sbi) ||
3159 					(nid + i) == F2FS_META_INO(sbi)) {
3160 				/*
3161 				 * block_addr of node/meta inode should be 0x1.
3162 				 * Set this bit, and fsck_verify will fix it.
3163 				 */
3164 				if (le32_to_cpu(nat_block->entries[i].block_addr) != 0x1) {
3165 					ASSERT_MSG("\tError: ino[0x%x] block_addr[0x%x] is invalid\n",
3166 							nid + i, le32_to_cpu(nat_block->entries[i].block_addr));
3167 					f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
3168 				}
3169 				continue;
3170 			}
3171 
3172 			node_info_from_raw_nat(&ni, &nat_block->entries[i]);
3173 			if (ni.blk_addr == 0x0)
3174 				continue;
3175 			if (ni.ino == 0x0) {
3176 				ASSERT_MSG("\tError: ino[0x%8x] or blk_addr[0x%16x]"
3177 					" is invalid\n", ni.ino, ni.blk_addr);
3178 			}
3179 			if (ni.ino == (nid + i)) {
3180 				fsck->nat_valid_inode_cnt++;
3181 				DBG(3, "ino[0x%8x] maybe is inode\n", ni.ino);
3182 			}
3183 			if (nid + i == 0) {
3184 				/*
3185 				 * nat entry [0] must be null.  If
3186 				 * it is corrupted, set its bit in
3187 				 * nat_area_bitmap, fsck_verify will
3188 				 * nullify it
3189 				 */
3190 				ASSERT_MSG("Invalid nat entry[0]: "
3191 					"blk_addr[0x%x]\n", ni.blk_addr);
3192 				fsck->chk.valid_nat_entry_cnt--;
3193 			}
3194 
3195 			DBG(3, "nid[0x%8x] addr[0x%16x] ino[0x%8x]\n",
3196 				nid + i, ni.blk_addr, ni.ino);
3197 			f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
3198 			fsck->chk.valid_nat_entry_cnt++;
3199 
3200 			fsck->entries[nid + i] = nat_block->entries[i];
3201 		}
3202 	}
3203 
3204 	/* Traverse nat journal, update the corresponding entries */
3205 	for (i = 0; i < nats_in_cursum(journal); i++) {
3206 		struct f2fs_nat_entry raw_nat;
3207 		nid = le32_to_cpu(nid_in_journal(journal, i));
3208 		ni.nid = nid;
3209 
3210 		DBG(3, "==> Found nid [0x%x] in nat cache, update it\n", nid);
3211 
3212 		/* Clear the original bit and count */
3213 		if (fsck->entries[nid].block_addr != 0x0) {
3214 			fsck->chk.valid_nat_entry_cnt--;
3215 			f2fs_clear_bit(nid, fsck->nat_area_bitmap);
3216 			if (fsck->entries[nid].ino == nid)
3217 				fsck->nat_valid_inode_cnt--;
3218 		}
3219 
3220 		/* Use nat entries in journal */
3221 		memcpy(&raw_nat, &nat_in_journal(journal, i),
3222 					sizeof(struct f2fs_nat_entry));
3223 		node_info_from_raw_nat(&ni, &raw_nat);
3224 		if (ni.blk_addr != 0x0) {
3225 			if (ni.ino == 0x0)
3226 				ASSERT_MSG("\tError: ino[0x%8x] or blk_addr[0x%16x]"
3227 					" is invalid\n", ni.ino, ni.blk_addr);
3228 			if (ni.ino == nid) {
3229 				fsck->nat_valid_inode_cnt++;
3230 				DBG(3, "ino[0x%8x] maybe is inode\n", ni.ino);
3231 			}
3232 			f2fs_set_bit(nid, fsck->nat_area_bitmap);
3233 			fsck->chk.valid_nat_entry_cnt++;
3234 			DBG(3, "nid[0x%x] in nat cache\n", nid);
3235 		}
3236 		fsck->entries[nid] = raw_nat;
3237 	}
3238 	free(nat_block);
3239 
3240 	DBG(1, "valid nat entries (block_addr != 0x0) [0x%8x : %u]\n",
3241 			fsck->chk.valid_nat_entry_cnt,
3242 			fsck->chk.valid_nat_entry_cnt);
3243 }
3244 
check_sector_size(struct f2fs_super_block * sb)3245 static int check_sector_size(struct f2fs_super_block *sb)
3246 {
3247 	uint32_t log_sectorsize, log_sectors_per_block;
3248 
3249 	log_sectorsize = log_base_2(c.sector_size);
3250 	log_sectors_per_block = log_base_2(c.sectors_per_blk);
3251 
3252 	if (log_sectorsize == get_sb(log_sectorsize) &&
3253 			log_sectors_per_block == get_sb(log_sectors_per_block))
3254 		return 0;
3255 
3256 	set_sb(log_sectorsize, log_sectorsize);
3257 	set_sb(log_sectors_per_block, log_sectors_per_block);
3258 
3259 	update_superblock(sb, SB_MASK_ALL);
3260 	return 0;
3261 }
3262 
tune_sb_features(struct f2fs_sb_info * sbi)3263 static int tune_sb_features(struct f2fs_sb_info *sbi)
3264 {
3265 	int sb_changed = 0;
3266 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
3267 
3268 	if (!(sb->feature & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) &&
3269 			c.feature & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) {
3270 		sb->feature |= cpu_to_le32(F2FS_FEATURE_ENCRYPT);
3271 		MSG(0, "Info: Set Encryption feature\n");
3272 		sb_changed = 1;
3273 	}
3274 	if (!(sb->feature & cpu_to_le32(F2FS_FEATURE_CASEFOLD)) &&
3275 		c.feature & cpu_to_le32(F2FS_FEATURE_CASEFOLD)) {
3276 		if (!c.s_encoding) {
3277 			ERR_MSG("ERROR: Must specify encoding to enable casefolding.\n");
3278 			return -1;
3279 		}
3280 		sb->feature |= cpu_to_le32(F2FS_FEATURE_CASEFOLD);
3281 		MSG(0, "Info: Set Casefold feature\n");
3282 		sb_changed = 1;
3283 	}
3284 	/* TODO: quota needs to allocate inode numbers */
3285 
3286 	c.feature = sb->feature;
3287 	if (!sb_changed)
3288 		return 0;
3289 
3290 	update_superblock(sb, SB_MASK_ALL);
3291 	return 0;
3292 }
3293 
get_fsync_inode(struct list_head * head,nid_t ino)3294 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
3295 								nid_t ino)
3296 {
3297 	struct fsync_inode_entry *entry;
3298 
3299 	list_for_each_entry(entry, head, list)
3300 		if (entry->ino == ino)
3301 			return entry;
3302 
3303 	return NULL;
3304 }
3305 
add_fsync_inode(struct list_head * head,nid_t ino)3306 static struct fsync_inode_entry *add_fsync_inode(struct list_head *head,
3307 								nid_t ino)
3308 {
3309 	struct fsync_inode_entry *entry;
3310 
3311 	entry = calloc(sizeof(struct fsync_inode_entry), 1);
3312 	if (!entry)
3313 		return NULL;
3314 	entry->ino = ino;
3315 	list_add_tail(&entry->list, head);
3316 	return entry;
3317 }
3318 
del_fsync_inode(struct fsync_inode_entry * entry)3319 static void del_fsync_inode(struct fsync_inode_entry *entry)
3320 {
3321 	list_del(&entry->list);
3322 	free(entry);
3323 }
3324 
destroy_fsync_dnodes(struct list_head * head)3325 static void destroy_fsync_dnodes(struct list_head *head)
3326 {
3327 	struct fsync_inode_entry *entry, *tmp;
3328 
3329 	list_for_each_entry_safe(entry, tmp, head, list)
3330 		del_fsync_inode(entry);
3331 }
3332 
find_fsync_inode(struct f2fs_sb_info * sbi,struct list_head * head)3333 static int find_fsync_inode(struct f2fs_sb_info *sbi, struct list_head *head)
3334 {
3335 	struct curseg_info *curseg;
3336 	struct f2fs_node *node_blk;
3337 	block_t blkaddr;
3338 	unsigned int loop_cnt = 0;
3339 	unsigned int free_blocks = TOTAL_SEGS(sbi) * sbi->blocks_per_seg -
3340 						sbi->total_valid_block_count;
3341 	int err = 0;
3342 
3343 	/* get node pages in the current segment */
3344 	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
3345 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3346 
3347 	node_blk = calloc(F2FS_BLKSIZE, 1);
3348 	ASSERT(node_blk);
3349 
3350 	while (1) {
3351 		struct fsync_inode_entry *entry;
3352 
3353 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
3354 			break;
3355 
3356 		err = dev_read_block(node_blk, blkaddr);
3357 		if (err)
3358 			break;
3359 
3360 		if (!is_recoverable_dnode(sbi, node_blk))
3361 			break;
3362 
3363 		if (!is_fsync_dnode(node_blk))
3364 			goto next;
3365 
3366 		entry = get_fsync_inode(head, ino_of_node(node_blk));
3367 		if (!entry) {
3368 			entry = add_fsync_inode(head, ino_of_node(node_blk));
3369 			if (!entry) {
3370 				err = -1;
3371 				break;
3372 			}
3373 		}
3374 		entry->blkaddr = blkaddr;
3375 
3376 		if (IS_INODE(node_blk) && is_dent_dnode(node_blk))
3377 			entry->last_dentry = blkaddr;
3378 next:
3379 		/* sanity check in order to detect looped node chain */
3380 		if (++loop_cnt >= free_blocks ||
3381 			blkaddr == next_blkaddr_of_node(node_blk)) {
3382 			MSG(0, "\tdetect looped node chain, blkaddr:%u, next:%u\n",
3383 				    blkaddr,
3384 				    next_blkaddr_of_node(node_blk));
3385 			err = -1;
3386 			break;
3387 		}
3388 
3389 		blkaddr = next_blkaddr_of_node(node_blk);
3390 	}
3391 
3392 	free(node_blk);
3393 	return err;
3394 }
3395 
do_record_fsync_data(struct f2fs_sb_info * sbi,struct f2fs_node * node_blk,block_t blkaddr)3396 static int do_record_fsync_data(struct f2fs_sb_info *sbi,
3397 					struct f2fs_node *node_blk,
3398 					block_t blkaddr)
3399 {
3400 	unsigned int segno, offset;
3401 	struct seg_entry *se;
3402 	unsigned int ofs_in_node = 0;
3403 	unsigned int start, end;
3404 	int err = 0, recorded = 0;
3405 
3406 	segno = GET_SEGNO(sbi, blkaddr);
3407 	se = get_seg_entry(sbi, segno);
3408 	offset = OFFSET_IN_SEG(sbi, blkaddr);
3409 
3410 	if (f2fs_test_bit(offset, (char *)se->cur_valid_map)) {
3411 		ASSERT(0);
3412 		return -1;
3413 	}
3414 	if (f2fs_test_bit(offset, (char *)se->ckpt_valid_map)) {
3415 		ASSERT(0);
3416 		return -1;
3417 	}
3418 
3419 	if (!se->ckpt_valid_blocks)
3420 		se->ckpt_type = CURSEG_WARM_NODE;
3421 
3422 	se->ckpt_valid_blocks++;
3423 	f2fs_set_bit(offset, (char *)se->ckpt_valid_map);
3424 
3425 	MSG(1, "do_record_fsync_data: [node] ino = %u, nid = %u, blkaddr = %u\n",
3426 	    ino_of_node(node_blk), ofs_of_node(node_blk), blkaddr);
3427 
3428 	/* inline data */
3429 	if (IS_INODE(node_blk) && (node_blk->i.i_inline & F2FS_INLINE_DATA))
3430 		return 0;
3431 	/* xattr node */
3432 	if (ofs_of_node(node_blk) == XATTR_NODE_OFFSET)
3433 		return 0;
3434 
3435 	/* step 3: recover data indices */
3436 	start = start_bidx_of_node(ofs_of_node(node_blk), node_blk);
3437 	end = start + ADDRS_PER_PAGE(sbi, node_blk, NULL);
3438 
3439 	for (; start < end; start++, ofs_in_node++) {
3440 		blkaddr = datablock_addr(node_blk, ofs_in_node);
3441 
3442 		if (!is_valid_data_blkaddr(blkaddr))
3443 			continue;
3444 
3445 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR)) {
3446 			err = -1;
3447 			goto out;
3448 		}
3449 
3450 		segno = GET_SEGNO(sbi, blkaddr);
3451 		se = get_seg_entry(sbi, segno);
3452 		offset = OFFSET_IN_SEG(sbi, blkaddr);
3453 
3454 		if (f2fs_test_bit(offset, (char *)se->cur_valid_map))
3455 			continue;
3456 		if (f2fs_test_bit(offset, (char *)se->ckpt_valid_map))
3457 			continue;
3458 
3459 		if (!se->ckpt_valid_blocks)
3460 			se->ckpt_type = CURSEG_WARM_DATA;
3461 
3462 		se->ckpt_valid_blocks++;
3463 		f2fs_set_bit(offset, (char *)se->ckpt_valid_map);
3464 
3465 		MSG(1, "do_record_fsync_data: [data] ino = %u, nid = %u, blkaddr = %u\n",
3466 		    ino_of_node(node_blk), ofs_of_node(node_blk), blkaddr);
3467 
3468 		recorded++;
3469 	}
3470 out:
3471 	MSG(1, "recover_data: ino = %u, nid = %u, recorded = %d, err = %d\n",
3472 		    ino_of_node(node_blk), ofs_of_node(node_blk),
3473 		    recorded, err);
3474 	return err;
3475 }
3476 
traverse_dnodes(struct f2fs_sb_info * sbi,struct list_head * inode_list)3477 static int traverse_dnodes(struct f2fs_sb_info *sbi,
3478 				struct list_head *inode_list)
3479 {
3480 	struct curseg_info *curseg;
3481 	struct f2fs_node *node_blk;
3482 	block_t blkaddr;
3483 	int err = 0;
3484 
3485 	/* get node pages in the current segment */
3486 	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
3487 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3488 
3489 	node_blk = calloc(F2FS_BLKSIZE, 1);
3490 	ASSERT(node_blk);
3491 
3492 	while (1) {
3493 		struct fsync_inode_entry *entry;
3494 
3495 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
3496 			break;
3497 
3498 		err = dev_read_block(node_blk, blkaddr);
3499 		if (err)
3500 			break;
3501 
3502 		if (!is_recoverable_dnode(sbi, node_blk))
3503 			break;
3504 
3505 		entry = get_fsync_inode(inode_list,
3506 					ino_of_node(node_blk));
3507 		if (!entry)
3508 			goto next;
3509 
3510 		err = do_record_fsync_data(sbi, node_blk, blkaddr);
3511 		if (err)
3512 			break;
3513 
3514 		if (entry->blkaddr == blkaddr)
3515 			del_fsync_inode(entry);
3516 next:
3517 		blkaddr = next_blkaddr_of_node(node_blk);
3518 	}
3519 
3520 	free(node_blk);
3521 	return err;
3522 }
3523 
record_fsync_data(struct f2fs_sb_info * sbi)3524 static int record_fsync_data(struct f2fs_sb_info *sbi)
3525 {
3526 	struct list_head inode_list = LIST_HEAD_INIT(inode_list);
3527 	int ret;
3528 
3529 	if (!need_fsync_data_record(sbi))
3530 		return 0;
3531 
3532 	ret = find_fsync_inode(sbi, &inode_list);
3533 	if (ret)
3534 		goto out;
3535 
3536 	ret = late_build_segment_manager(sbi);
3537 	if (ret < 0) {
3538 		ERR_MSG("late_build_segment_manager failed\n");
3539 		goto out;
3540 	}
3541 
3542 	ret = traverse_dnodes(sbi, &inode_list);
3543 out:
3544 	destroy_fsync_dnodes(&inode_list);
3545 	return ret;
3546 }
3547 
f2fs_do_mount(struct f2fs_sb_info * sbi)3548 int f2fs_do_mount(struct f2fs_sb_info *sbi)
3549 {
3550 	struct f2fs_checkpoint *cp = NULL;
3551 	struct f2fs_super_block *sb = NULL;
3552 	int ret;
3553 
3554 	sbi->active_logs = NR_CURSEG_TYPE;
3555 	ret = validate_super_block(sbi, SB0_ADDR);
3556 	if (ret) {
3557 		ret = validate_super_block(sbi, SB1_ADDR);
3558 		if (ret)
3559 			return -1;
3560 	}
3561 	sb = F2FS_RAW_SUPER(sbi);
3562 
3563 	ret = check_sector_size(sb);
3564 	if (ret)
3565 		return -1;
3566 
3567 	print_raw_sb_info(sb);
3568 
3569 	init_sb_info(sbi);
3570 
3571 	ret = get_valid_checkpoint(sbi);
3572 	if (ret) {
3573 		ERR_MSG("Can't find valid checkpoint\n");
3574 		return -1;
3575 	}
3576 
3577 	c.bug_on = 0;
3578 
3579 	if (sanity_check_ckpt(sbi)) {
3580 		ERR_MSG("Checkpoint is polluted\n");
3581 		return -1;
3582 	}
3583 	cp = F2FS_CKPT(sbi);
3584 
3585 	if (c.func != FSCK && c.func != DUMP &&
3586 		!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
3587 		ERR_MSG("Mount unclean image to replay log first\n");
3588 		return -1;
3589 	}
3590 
3591 	print_ckpt_info(sbi);
3592 
3593 	if (c.quota_fix) {
3594 		if (get_cp(ckpt_flags) & CP_QUOTA_NEED_FSCK_FLAG)
3595 			c.fix_on = 1;
3596 	}
3597 	if (c.layout)
3598 		return 1;
3599 
3600 	if (tune_sb_features(sbi))
3601 		return -1;
3602 
3603 	/* precompute checksum seed for metadata */
3604 	if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
3605 		c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid));
3606 
3607 	sbi->total_valid_node_count = get_cp(valid_node_count);
3608 	sbi->total_valid_inode_count = get_cp(valid_inode_count);
3609 	sbi->user_block_count = get_cp(user_block_count);
3610 	sbi->total_valid_block_count = get_cp(valid_block_count);
3611 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3612 	sbi->alloc_valid_block_count = 0;
3613 
3614 	if (early_build_segment_manager(sbi)) {
3615 		ERR_MSG("early_build_segment_manager failed\n");
3616 		return -1;
3617 	}
3618 
3619 	if (build_node_manager(sbi)) {
3620 		ERR_MSG("build_node_manager failed\n");
3621 		return -1;
3622 	}
3623 
3624 	if (record_fsync_data(sbi)) {
3625 		ERR_MSG("record_fsync_data failed\n");
3626 		return -1;
3627 	}
3628 
3629 	if (!f2fs_should_proceed(sb, get_cp(ckpt_flags)))
3630 		return 1;
3631 
3632 	if (late_build_segment_manager(sbi) < 0) {
3633 		ERR_MSG("late_build_segment_manager failed\n");
3634 		return -1;
3635 	}
3636 
3637 	if (f2fs_late_init_nid_bitmap(sbi)) {
3638 		ERR_MSG("f2fs_late_init_nid_bitmap failed\n");
3639 		return -1;
3640 	}
3641 
3642 	/* Check nat_bits */
3643 	if (c.func == FSCK && is_set_ckpt_flags(cp, CP_NAT_BITS_FLAG)) {
3644 		if (check_nat_bits(sbi, sb, cp) && c.fix_on)
3645 			write_nat_bits(sbi, sb, cp, sbi->cur_cp);
3646 	}
3647 	return 0;
3648 }
3649 
f2fs_do_umount(struct f2fs_sb_info * sbi)3650 void f2fs_do_umount(struct f2fs_sb_info *sbi)
3651 {
3652 	struct sit_info *sit_i = SIT_I(sbi);
3653 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3654 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3655 	unsigned int i;
3656 
3657 	/* free nm_info */
3658 	if (c.func == SLOAD || c.func == FSCK)
3659 		free(nm_i->nid_bitmap);
3660 	free(nm_i->nat_bitmap);
3661 	free(sbi->nm_info);
3662 
3663 	/* free sit_info */
3664 	free(sit_i->bitmap);
3665 	free(sit_i->sit_bitmap);
3666 	free(sit_i->sentries);
3667 	free(sm_i->sit_info);
3668 
3669 	/* free sm_info */
3670 	for (i = 0; i < NR_CURSEG_TYPE; i++)
3671 		free(sm_i->curseg_array[i].sum_blk);
3672 
3673 	free(sm_i->curseg_array);
3674 	free(sbi->sm_info);
3675 
3676 	free(sbi->ckpt);
3677 	free(sbi->raw_super);
3678 }
3679 
3680 #ifdef WITH_ANDROID
f2fs_sparse_initialize_meta(struct f2fs_sb_info * sbi)3681 int f2fs_sparse_initialize_meta(struct f2fs_sb_info *sbi)
3682 {
3683 	struct f2fs_super_block *sb = sbi->raw_super;
3684 	uint32_t sit_seg_count, sit_size;
3685 	uint32_t nat_seg_count, nat_size;
3686 	uint64_t sit_seg_addr, nat_seg_addr, payload_addr;
3687 	uint32_t seg_size = 1 << get_sb(log_blocks_per_seg);
3688 	int ret;
3689 
3690 	if (!c.sparse_mode)
3691 		return 0;
3692 
3693 	sit_seg_addr = get_sb(sit_blkaddr);
3694 	sit_seg_count = get_sb(segment_count_sit);
3695 	sit_size = sit_seg_count * seg_size;
3696 
3697 	DBG(1, "\tSparse: filling sit area at block offset: 0x%08"PRIx64" len: %u\n",
3698 							sit_seg_addr, sit_size);
3699 	ret = dev_fill(NULL, sit_seg_addr * F2FS_BLKSIZE,
3700 					sit_size * F2FS_BLKSIZE);
3701 	if (ret) {
3702 		MSG(1, "\tError: While zeroing out the sit area "
3703 				"on disk!!!\n");
3704 		return -1;
3705 	}
3706 
3707 	nat_seg_addr = get_sb(nat_blkaddr);
3708 	nat_seg_count = get_sb(segment_count_nat);
3709 	nat_size = nat_seg_count * seg_size;
3710 
3711 	DBG(1, "\tSparse: filling nat area at block offset 0x%08"PRIx64" len: %u\n",
3712 							nat_seg_addr, nat_size);
3713 	ret = dev_fill(NULL, nat_seg_addr * F2FS_BLKSIZE,
3714 					nat_size * F2FS_BLKSIZE);
3715 	if (ret) {
3716 		MSG(1, "\tError: While zeroing out the nat area "
3717 				"on disk!!!\n");
3718 		return -1;
3719 	}
3720 
3721 	payload_addr = get_sb(segment0_blkaddr) + 1;
3722 
3723 	DBG(1, "\tSparse: filling bitmap area at block offset 0x%08"PRIx64" len: %u\n",
3724 					payload_addr, get_sb(cp_payload));
3725 	ret = dev_fill(NULL, payload_addr * F2FS_BLKSIZE,
3726 					get_sb(cp_payload) * F2FS_BLKSIZE);
3727 	if (ret) {
3728 		MSG(1, "\tError: While zeroing out the nat/sit bitmap area "
3729 				"on disk!!!\n");
3730 		return -1;
3731 	}
3732 
3733 	payload_addr += seg_size;
3734 
3735 	DBG(1, "\tSparse: filling bitmap area at block offset 0x%08"PRIx64" len: %u\n",
3736 					payload_addr, get_sb(cp_payload));
3737 	ret = dev_fill(NULL, payload_addr * F2FS_BLKSIZE,
3738 					get_sb(cp_payload) * F2FS_BLKSIZE);
3739 	if (ret) {
3740 		MSG(1, "\tError: While zeroing out the nat/sit bitmap area "
3741 				"on disk!!!\n");
3742 		return -1;
3743 	}
3744 	return 0;
3745 }
3746 #else
f2fs_sparse_initialize_meta(struct f2fs_sb_info * sbi)3747 int f2fs_sparse_initialize_meta(struct f2fs_sb_info *sbi) { return 0; }
3748 #endif
3749