1 /*
2 * adaptive and fixed codebook vector operations for ACELP-based codecs
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #include <inttypes.h>
24
25 #include "libavutil/avassert.h"
26 #include "libavutil/common.h"
27 #include "libavutil/float_dsp.h"
28 #include "avcodec.h"
29 #include "acelp_vectors.h"
30
31 const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
32 {
33 1, 3,
34 8, 6,
35 18, 16,
36 11, 13,
37 38, 36,
38 31, 33,
39 21, 23,
40 28, 26,
41 };
42
43 const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
44 {
45 0, 2,
46 5, 4,
47 12, 10,
48 7, 9,
49 25, 24,
50 20, 22,
51 14, 15,
52 19, 17,
53 36, 31,
54 21, 26,
55 1, 6,
56 16, 11,
57 27, 29,
58 32, 30,
59 39, 37,
60 34, 35,
61 };
62
63 const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
64 {
65 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
66 };
67
68 const uint8_t ff_fc_4pulses_8bits_track_4[32] =
69 {
70 3, 4,
71 8, 9,
72 13, 14,
73 18, 19,
74 23, 24,
75 28, 29,
76 33, 34,
77 38, 39,
78 43, 44,
79 48, 49,
80 53, 54,
81 58, 59,
82 63, 64,
83 68, 69,
84 73, 74,
85 78, 79,
86 };
87
88 const float ff_pow_0_7[10] = {
89 0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
90 0.117649, 0.082354, 0.057648, 0.040354, 0.028248
91 };
92
93 const float ff_pow_0_75[10] = {
94 0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
95 0.177979, 0.133484, 0.100113, 0.075085, 0.056314
96 };
97
98 const float ff_pow_0_55[10] = {
99 0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
100 0.027681, 0.015224, 0.008373, 0.004605, 0.002533
101 };
102
103 const float ff_b60_sinc[61] = {
104 0.898529 , 0.865051 , 0.769257 , 0.624054 , 0.448639 , 0.265289 ,
105 0.0959167 , -0.0412598 , -0.134338 , -0.178986 , -0.178528 , -0.142609 ,
106 -0.0849304 , -0.0205078 , 0.0369568 , 0.0773926 , 0.0955200 , 0.0912781 ,
107 0.0689392 , 0.0357056 , 0.0 , -0.0305481 , -0.0504150 , -0.0570068 ,
108 -0.0508423 , -0.0350037 , -0.0141602 , 0.00665283, 0.0230713 , 0.0323486 ,
109 0.0335388 , 0.0275879 , 0.0167847 , 0.00411987, -0.00747681, -0.0156860 ,
110 -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956, 0.0 , 0.00582886 ,
111 0.00939941, 0.0103760 , 0.00903320, 0.00604248, 0.00238037, -0.00109863 ,
112 -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
113 0.00103760, 0.00222778, 0.00277710, 0.00271606, 0.00213623, 0.00115967 ,
114 0.
115 };
116
ff_acelp_fc_pulse_per_track(int16_t * fc_v,const uint8_t * tab1,const uint8_t * tab2,int pulse_indexes,int pulse_signs,int pulse_count,int bits)117 void ff_acelp_fc_pulse_per_track(
118 int16_t* fc_v,
119 const uint8_t *tab1,
120 const uint8_t *tab2,
121 int pulse_indexes,
122 int pulse_signs,
123 int pulse_count,
124 int bits)
125 {
126 int mask = (1 << bits) - 1;
127 int i;
128
129 for(i=0; i<pulse_count; i++)
130 {
131 fc_v[i + tab1[pulse_indexes & mask]] +=
132 (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
133
134 pulse_indexes >>= bits;
135 pulse_signs >>= 1;
136 }
137
138 fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
139 }
140
ff_decode_10_pulses_35bits(const int16_t * fixed_index,AMRFixed * fixed_sparse,const uint8_t * gray_decode,int half_pulse_count,int bits)141 void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
142 AMRFixed *fixed_sparse,
143 const uint8_t *gray_decode,
144 int half_pulse_count, int bits)
145 {
146 int i;
147 int mask = (1 << bits) - 1;
148
149 fixed_sparse->no_repeat_mask = 0;
150 fixed_sparse->n = 2 * half_pulse_count;
151 for (i = 0; i < half_pulse_count; i++) {
152 const int pos1 = gray_decode[fixed_index[2*i+1] & mask] + i;
153 const int pos2 = gray_decode[fixed_index[2*i ] & mask] + i;
154 const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
155 fixed_sparse->x[2*i+1] = pos1;
156 fixed_sparse->x[2*i ] = pos2;
157 fixed_sparse->y[2*i+1] = sign;
158 fixed_sparse->y[2*i ] = pos2 < pos1 ? -sign : sign;
159 }
160 }
161
ff_acelp_weighted_vector_sum(int16_t * out,const int16_t * in_a,const int16_t * in_b,int16_t weight_coeff_a,int16_t weight_coeff_b,int16_t rounder,int shift,int length)162 void ff_acelp_weighted_vector_sum(
163 int16_t* out,
164 const int16_t *in_a,
165 const int16_t *in_b,
166 int16_t weight_coeff_a,
167 int16_t weight_coeff_b,
168 int16_t rounder,
169 int shift,
170 int length)
171 {
172 int i;
173
174 // Clipping required here; breaks OVERFLOW test.
175 for(i=0; i<length; i++)
176 out[i] = av_clip_int16((
177 in_a[i] * weight_coeff_a +
178 in_b[i] * weight_coeff_b +
179 rounder) >> shift);
180 }
181
ff_weighted_vector_sumf(float * out,const float * in_a,const float * in_b,float weight_coeff_a,float weight_coeff_b,int length)182 void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
183 float weight_coeff_a, float weight_coeff_b, int length)
184 {
185 int i;
186
187 for(i=0; i<length; i++)
188 out[i] = weight_coeff_a * in_a[i]
189 + weight_coeff_b * in_b[i];
190 }
191
ff_adaptive_gain_control(float * out,const float * in,float speech_energ,int size,float alpha,float * gain_mem)192 void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
193 int size, float alpha, float *gain_mem)
194 {
195 int i;
196 float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size);
197 float gain_scale_factor = 1.0;
198 float mem = *gain_mem;
199
200 if (postfilter_energ)
201 gain_scale_factor = sqrt(speech_energ / postfilter_energ);
202
203 gain_scale_factor *= 1.0 - alpha;
204
205 for (i = 0; i < size; i++) {
206 mem = alpha * mem + gain_scale_factor;
207 out[i] = in[i] * mem;
208 }
209
210 *gain_mem = mem;
211 }
212
ff_scale_vector_to_given_sum_of_squares(float * out,const float * in,float sum_of_squares,const int n)213 void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
214 float sum_of_squares, const int n)
215 {
216 int i;
217 float scalefactor = avpriv_scalarproduct_float_c(in, in, n);
218 if (scalefactor)
219 scalefactor = sqrt(sum_of_squares / scalefactor);
220 for (i = 0; i < n; i++)
221 out[i] = in[i] * scalefactor;
222 }
223
ff_set_fixed_vector(float * out,const AMRFixed * in,float scale,int size)224 void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
225 {
226 int i;
227
228 for (i=0; i < in->n; i++) {
229 int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
230 float y = in->y[i] * scale;
231
232 if (in->pitch_lag > 0)
233 av_assert0(x < size);
234 do {
235 out[x] += y;
236 y *= in->pitch_fac;
237 x += in->pitch_lag;
238 } while (x < size && repeats);
239 }
240 }
241
ff_clear_fixed_vector(float * out,const AMRFixed * in,int size)242 void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
243 {
244 int i;
245
246 for (i=0; i < in->n; i++) {
247 int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
248
249 if (in->pitch_lag > 0)
250 do {
251 out[x] = 0.0;
252 x += in->pitch_lag;
253 } while (x < size && repeats);
254 }
255 }
256
ff_acelp_vectors_init(ACELPVContext * c)257 void ff_acelp_vectors_init(ACELPVContext *c)
258 {
259 c->weighted_vector_sumf = ff_weighted_vector_sumf;
260
261 if(HAVE_MIPSFPU)
262 ff_acelp_vectors_init_mips(c);
263 }
264