• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Microsoft Screen 4 (aka Microsoft Expression Encoder Screen) decoder
3  * Copyright (c) 2012 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Microsoft Screen 4 (aka Microsoft Titanium Screen 2,
25  * aka Microsoft Expression Encoder Screen) decoder
26  */
27 
28 #include "libavutil/thread.h"
29 
30 #include "avcodec.h"
31 #include "bytestream.h"
32 #include "get_bits.h"
33 #include "internal.h"
34 #include "jpegtables.h"
35 #include "mss34dsp.h"
36 #include "unary.h"
37 
38 #define HEADER_SIZE 8
39 
40 enum FrameType {
41     INTRA_FRAME = 0,
42     INTER_FRAME,
43     SKIP_FRAME
44 };
45 
46 enum BlockType {
47     SKIP_BLOCK = 0,
48     DCT_BLOCK,
49     IMAGE_BLOCK,
50 };
51 
52 enum CachePos {
53     LEFT = 0,
54     TOP_LEFT,
55     TOP,
56 };
57 
58 static const uint8_t mss4_dc_vlc_lens[2][16] = {
59     { 0, 1, 5, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0 },
60     { 0, 3, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0 }
61 };
62 
63 static const uint8_t vec_len_syms[2][4] = {
64     { 4, 2, 3, 1 },
65     { 4, 1, 2, 3 }
66 };
67 
68 static const uint8_t mss4_vec_entry_vlc_lens[2][16] = {
69     { 0, 2, 2, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
70     { 0, 1, 5, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
71 };
72 
73 static const uint8_t mss4_vec_entry_vlc_syms[2][9] = {
74     { 0, 7, 6, 5, 8, 4, 3, 1, 2 },
75     { 0, 2, 3, 4, 5, 6, 7, 1, 8 }
76 };
77 
78 #define MAX_ENTRIES  162
79 
80 typedef struct MSS4Context {
81     AVFrame    *pic;
82 
83     int        block[64];
84     uint8_t    imgbuf[3][16 * 16];
85 
86     int        quality;
87     uint16_t   quant_mat[2][64];
88 
89     int        *prev_dc[3];
90     ptrdiff_t  dc_stride[3];
91     int        dc_cache[4][4];
92 
93     int        prev_vec[3][4];
94 } MSS4Context;
95 
96 static VLC dc_vlc[2], ac_vlc[2];
97 static VLC vec_entry_vlc[2];
98 
mss4_init_vlc(VLC * vlc,unsigned * offset,const uint8_t * lens,const uint8_t * syms)99 static av_cold void mss4_init_vlc(VLC *vlc, unsigned *offset,
100                                   const uint8_t *lens, const uint8_t *syms)
101 {
102     static VLC_TYPE vlc_buf[2146][2];
103     uint8_t  bits[MAX_ENTRIES];
104     int i, j;
105     int idx = 0;
106 
107     for (i = 0; i < 16; i++) {
108         for (j = 0; j < lens[i]; j++) {
109             bits[idx]  = i + 1;
110             idx++;
111         }
112     }
113 
114     vlc->table           = &vlc_buf[*offset];
115     vlc->table_allocated = FF_ARRAY_ELEMS(vlc_buf) - *offset;
116     ff_init_vlc_from_lengths(vlc, FFMIN(bits[idx - 1], 9), idx,
117                              bits, 1, syms, 1, 1,
118                              0, INIT_VLC_STATIC_OVERLONG, NULL);
119     *offset += vlc->table_size;
120 }
121 
mss4_init_vlcs(void)122 static av_cold void mss4_init_vlcs(void)
123 {
124     for (unsigned i = 0, offset = 0; i < 2; i++) {
125         mss4_init_vlc(&dc_vlc[i], &offset, mss4_dc_vlc_lens[i], NULL);
126         mss4_init_vlc(&ac_vlc[i], &offset,
127                       i ? avpriv_mjpeg_bits_ac_chrominance + 1
128                         : avpriv_mjpeg_bits_ac_luminance   + 1,
129                       i ? avpriv_mjpeg_val_ac_chrominance
130                         : avpriv_mjpeg_val_ac_luminance);
131         mss4_init_vlc(&vec_entry_vlc[i], &offset, mss4_vec_entry_vlc_lens[i],
132                       mss4_vec_entry_vlc_syms[i]);
133     }
134 }
135 
136 /* This function returns values in the range
137  * (-range + 1; -range/2] U [range/2; range - 1)
138  * i.e.
139  * nbits = 0 -> 0
140  * nbits = 1 -> -1, 1
141  * nbits = 2 -> -3, -2, 2, 3
142  */
get_coeff_bits(GetBitContext * gb,int nbits)143 static av_always_inline int get_coeff_bits(GetBitContext *gb, int nbits)
144 {
145     int val;
146 
147     if (!nbits)
148         return 0;
149 
150     val = get_bits(gb, nbits);
151     if (val < (1 << (nbits - 1)))
152         val -= (1 << nbits) - 1;
153 
154     return val;
155 }
156 
get_coeff(GetBitContext * gb,VLC * vlc)157 static inline int get_coeff(GetBitContext *gb, VLC *vlc)
158 {
159     int val = get_vlc2(gb, vlc->table, vlc->bits, 2);
160 
161     return get_coeff_bits(gb, val);
162 }
163 
mss4_decode_dct(GetBitContext * gb,VLC * dc_vlc,VLC * ac_vlc,int * block,int * dc_cache,int bx,int by,uint16_t * quant_mat)164 static int mss4_decode_dct(GetBitContext *gb, VLC *dc_vlc, VLC *ac_vlc,
165                            int *block, int *dc_cache,
166                            int bx, int by, uint16_t *quant_mat)
167 {
168     int skip, val, pos = 1, zz_pos, dc;
169 
170     memset(block, 0, sizeof(*block) * 64);
171 
172     dc = get_coeff(gb, dc_vlc);
173     // DC prediction is the same as in MSS3
174     if (by) {
175         if (bx) {
176             int l, tl, t;
177 
178             l  = dc_cache[LEFT];
179             tl = dc_cache[TOP_LEFT];
180             t  = dc_cache[TOP];
181 
182             if (FFABS(t - tl) <= FFABS(l - tl))
183                 dc += l;
184             else
185                 dc += t;
186         } else {
187             dc += dc_cache[TOP];
188         }
189     } else if (bx) {
190         dc += dc_cache[LEFT];
191     }
192     dc_cache[LEFT] = dc;
193     block[0]       = dc * quant_mat[0];
194 
195     while (pos < 64) {
196         val = get_vlc2(gb, ac_vlc->table, 9, 2);
197         if (!val)
198             return 0;
199         if (val == -1)
200             return -1;
201         if (val == 0xF0) {
202             pos += 16;
203             continue;
204         }
205         skip = val >> 4;
206         val  = get_coeff_bits(gb, val & 0xF);
207         pos += skip;
208         if (pos >= 64)
209             return -1;
210 
211         zz_pos = ff_zigzag_direct[pos];
212         block[zz_pos] = val * quant_mat[zz_pos];
213         pos++;
214     }
215 
216     return pos == 64 ? 0 : -1;
217 }
218 
mss4_decode_dct_block(MSS4Context * c,GetBitContext * gb,uint8_t * dst[3],int mb_x,int mb_y)219 static int mss4_decode_dct_block(MSS4Context *c, GetBitContext *gb,
220                                  uint8_t *dst[3], int mb_x, int mb_y)
221 {
222     int i, j, k, ret;
223     uint8_t *out = dst[0];
224 
225     for (j = 0; j < 2; j++) {
226         for (i = 0; i < 2; i++) {
227             int xpos = mb_x * 2 + i;
228             c->dc_cache[j][TOP_LEFT] = c->dc_cache[j][TOP];
229             c->dc_cache[j][TOP]      = c->prev_dc[0][mb_x * 2 + i];
230             ret = mss4_decode_dct(gb, &dc_vlc[0], &ac_vlc[0], c->block,
231                                   c->dc_cache[j],
232                                   xpos, mb_y * 2 + j, c->quant_mat[0]);
233             if (ret)
234                 return ret;
235             c->prev_dc[0][mb_x * 2 + i] = c->dc_cache[j][LEFT];
236 
237             ff_mss34_dct_put(out + xpos * 8, c->pic->linesize[0],
238                              c->block);
239         }
240         out += 8 * c->pic->linesize[0];
241     }
242 
243     for (i = 1; i < 3; i++) {
244         c->dc_cache[i + 1][TOP_LEFT] = c->dc_cache[i + 1][TOP];
245         c->dc_cache[i + 1][TOP]      = c->prev_dc[i][mb_x];
246         ret = mss4_decode_dct(gb, &dc_vlc[1], &ac_vlc[1],
247                               c->block, c->dc_cache[i + 1], mb_x, mb_y,
248                               c->quant_mat[1]);
249         if (ret)
250             return ret;
251         c->prev_dc[i][mb_x] = c->dc_cache[i + 1][LEFT];
252 
253         ff_mss34_dct_put(c->imgbuf[i], 8, c->block);
254         out = dst[i] + mb_x * 16;
255         // Since the DCT block is coded as YUV420 and the whole frame as YUV444,
256         // we need to scale chroma.
257         for (j = 0; j < 16; j++) {
258             for (k = 0; k < 8; k++)
259                 AV_WN16A(out + k * 2, c->imgbuf[i][k + (j & ~1) * 4] * 0x101);
260             out += c->pic->linesize[i];
261         }
262     }
263 
264     return 0;
265 }
266 
read_vec_pos(GetBitContext * gb,int * vec_pos,int * sel_flag,int * sel_len,int * prev)267 static void read_vec_pos(GetBitContext *gb, int *vec_pos, int *sel_flag,
268                          int *sel_len, int *prev)
269 {
270     int i, y_flag = 0;
271 
272     for (i = 2; i >= 0; i--) {
273         if (!sel_flag[i]) {
274             vec_pos[i] = 0;
275             continue;
276         }
277         if ((!i && !y_flag) || get_bits1(gb)) {
278             if (sel_len[i] > 0) {
279                 int pval = prev[i];
280                 vec_pos[i] = get_bits(gb, sel_len[i]);
281                 if (vec_pos[i] >= pval)
282                     vec_pos[i]++;
283             } else {
284                 vec_pos[i] = !prev[i];
285             }
286             y_flag = 1;
287         } else {
288             vec_pos[i] = prev[i];
289         }
290     }
291 }
292 
get_value_cached(GetBitContext * gb,int vec_pos,uint8_t * vec,int vec_size,int component,int shift,int * prev)293 static int get_value_cached(GetBitContext *gb, int vec_pos, uint8_t *vec,
294                             int vec_size, int component, int shift, int *prev)
295 {
296     if (vec_pos < vec_size)
297         return vec[vec_pos];
298     if (!get_bits1(gb))
299         return prev[component];
300     prev[component] = get_bits(gb, 8 - shift) << shift;
301     return prev[component];
302 }
303 
304 #define MKVAL(vals)  ((vals)[0] | ((vals)[1] << 3) | ((vals)[2] << 6))
305 
306 /* Image mode - the hardest to comprehend MSS4 coding mode.
307  *
308  * In this mode all three 16x16 blocks are coded together with a method
309  * remotely similar to the methods employed in MSS1-MSS3.
310  * The idea is that every component has a vector of 1-4 most common symbols
311  * and an escape mode for reading new value from the bitstream. Decoding
312  * consists of retrieving pixel values from the vector or reading new ones
313  * from the bitstream; depending on flags read from the bitstream, these vector
314  * positions can be updated or reused from the state of the previous line
315  * or previous pixel.
316  */
mss4_decode_image_block(MSS4Context * ctx,GetBitContext * gb,uint8_t * picdst[3],int mb_x,int mb_y)317 static int mss4_decode_image_block(MSS4Context *ctx, GetBitContext *gb,
318                                    uint8_t *picdst[3], int mb_x, int mb_y)
319 {
320     uint8_t vec[3][4];
321     int     vec_len[3];
322     int     sel_len[3], sel_flag[3];
323     int     i, j, k, mode, split;
324     int     prev_vec1 = 0, prev_split = 0;
325     int     vals[3] = { 0 };
326     int     prev_pix[3] = { 0 };
327     int     prev_mode[16] = { 0 };
328     uint8_t *dst[3];
329 
330     const int val_shift = ctx->quality == 100 ? 0 : 2;
331 
332     for (i = 0; i < 3; i++)
333         dst[i] = ctx->imgbuf[i];
334 
335     for (i = 0; i < 3; i++) {
336         vec_len[i] = vec_len_syms[!!i][get_unary(gb, 0, 3)];
337         for (j = 0; j < vec_len[i]; j++) {
338             vec[i][j]  = get_coeff(gb, &vec_entry_vlc[!!i]);
339             vec[i][j] += ctx->prev_vec[i][j];
340             ctx->prev_vec[i][j] = vec[i][j];
341         }
342         sel_flag[i] = vec_len[i] > 1;
343         sel_len[i]  = vec_len[i] > 2 ? vec_len[i] - 2 : 0;
344     }
345 
346     for (j = 0; j < 16; j++) {
347         if (get_bits1(gb)) {
348             split = 0;
349             if (get_bits1(gb)) {
350                 prev_mode[0] = 0;
351                 vals[0] = vals[1] = vals[2] = 0;
352                 mode = 2;
353             } else {
354                 mode = get_bits1(gb);
355                 if (mode)
356                     split = get_bits(gb, 4);
357             }
358             for (i = 0; i < 16; i++) {
359                 if (mode <= 1) {
360                     vals[0] =  prev_mode[i]       & 7;
361                     vals[1] = (prev_mode[i] >> 3) & 7;
362                     vals[2] =  prev_mode[i] >> 6;
363                     if (mode == 1 && i == split) {
364                         read_vec_pos(gb, vals, sel_flag, sel_len, vals);
365                     }
366                 } else if (mode == 2) {
367                     if (get_bits1(gb))
368                         read_vec_pos(gb, vals, sel_flag, sel_len, vals);
369                 }
370                 for (k = 0; k < 3; k++)
371                     *dst[k]++ = get_value_cached(gb, vals[k], vec[k],
372                                                  vec_len[k], k,
373                                                  val_shift, prev_pix);
374                 prev_mode[i] = MKVAL(vals);
375             }
376         } else {
377             if (get_bits1(gb)) {
378                 split = get_bits(gb, 4);
379                 if (split >= prev_split)
380                     split++;
381                 prev_split = split;
382             } else {
383                 split = prev_split;
384             }
385             if (split) {
386                 vals[0] =  prev_mode[0]       & 7;
387                 vals[1] = (prev_mode[0] >> 3) & 7;
388                 vals[2] =  prev_mode[0] >> 6;
389                 for (i = 0; i < 3; i++) {
390                     for (k = 0; k < split; k++) {
391                         *dst[i]++ = get_value_cached(gb, vals[i], vec[i],
392                                                      vec_len[i], i, val_shift,
393                                                      prev_pix);
394                         prev_mode[k] = MKVAL(vals);
395                     }
396                 }
397             }
398 
399             if (split != 16) {
400                 vals[0] =  prev_vec1       & 7;
401                 vals[1] = (prev_vec1 >> 3) & 7;
402                 vals[2] =  prev_vec1 >> 6;
403                 if (get_bits1(gb)) {
404                     read_vec_pos(gb, vals, sel_flag, sel_len, vals);
405                     prev_vec1 = MKVAL(vals);
406                 }
407                 for (i = 0; i < 3; i++) {
408                     for (k = 0; k < 16 - split; k++) {
409                         *dst[i]++ = get_value_cached(gb, vals[i], vec[i],
410                                                      vec_len[i], i, val_shift,
411                                                      prev_pix);
412                         prev_mode[split + k] = MKVAL(vals);
413                     }
414                 }
415             }
416         }
417     }
418 
419     for (i = 0; i < 3; i++)
420         for (j = 0; j < 16; j++)
421             memcpy(picdst[i] + mb_x * 16 + j * ctx->pic->linesize[i],
422                    ctx->imgbuf[i] + j * 16, 16);
423 
424     return 0;
425 }
426 
mss4_update_dc_cache(MSS4Context * c,int mb_x)427 static inline void mss4_update_dc_cache(MSS4Context *c, int mb_x)
428 {
429     int i;
430 
431     c->dc_cache[0][TOP]  = c->prev_dc[0][mb_x * 2 + 1];
432     c->dc_cache[0][LEFT] = 0;
433     c->dc_cache[1][TOP]  = 0;
434     c->dc_cache[1][LEFT] = 0;
435 
436     for (i = 0; i < 2; i++)
437         c->prev_dc[0][mb_x * 2 + i] = 0;
438 
439     for (i = 1; i < 3; i++) {
440         c->dc_cache[i + 1][TOP]  = c->prev_dc[i][mb_x];
441         c->dc_cache[i + 1][LEFT] = 0;
442         c->prev_dc[i][mb_x]      = 0;
443     }
444 }
445 
mss4_decode_frame(AVCodecContext * avctx,void * data,int * got_frame,AVPacket * avpkt)446 static int mss4_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
447                              AVPacket *avpkt)
448 {
449     const uint8_t *buf = avpkt->data;
450     int buf_size = avpkt->size;
451     MSS4Context *c = avctx->priv_data;
452     GetBitContext gb;
453     GetByteContext bc;
454     uint8_t *dst[3];
455     int width, height, quality, frame_type;
456     int x, y, i, mb_width, mb_height, blk_type;
457     int ret;
458 
459     if (buf_size < HEADER_SIZE) {
460         av_log(avctx, AV_LOG_ERROR,
461                "Frame should have at least %d bytes, got %d instead\n",
462                HEADER_SIZE, buf_size);
463         return AVERROR_INVALIDDATA;
464     }
465 
466     bytestream2_init(&bc, buf, buf_size);
467     width      = bytestream2_get_be16(&bc);
468     height     = bytestream2_get_be16(&bc);
469     bytestream2_skip(&bc, 2);
470     quality    = bytestream2_get_byte(&bc);
471     frame_type = bytestream2_get_byte(&bc);
472 
473     if (width > avctx->width ||
474         height != avctx->height) {
475         av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions %dx%d\n",
476                width, height);
477         return AVERROR_INVALIDDATA;
478     }
479     if (quality < 1 || quality > 100) {
480         av_log(avctx, AV_LOG_ERROR, "Invalid quality setting %d\n", quality);
481         return AVERROR_INVALIDDATA;
482     }
483     if ((frame_type & ~3) || frame_type == 3) {
484         av_log(avctx, AV_LOG_ERROR, "Invalid frame type %d\n", frame_type);
485         return AVERROR_INVALIDDATA;
486     }
487 
488     if (frame_type != SKIP_FRAME && !bytestream2_get_bytes_left(&bc)) {
489         av_log(avctx, AV_LOG_ERROR,
490                "Empty frame found but it is not a skip frame.\n");
491         return AVERROR_INVALIDDATA;
492     }
493     mb_width  = FFALIGN(width,  16) >> 4;
494     mb_height = FFALIGN(height, 16) >> 4;
495 
496     if (frame_type != SKIP_FRAME && 8*buf_size < 8*HEADER_SIZE + mb_width*mb_height)
497         return AVERROR_INVALIDDATA;
498 
499     if ((ret = ff_reget_buffer(avctx, c->pic, 0)) < 0)
500         return ret;
501     c->pic->key_frame = (frame_type == INTRA_FRAME);
502     c->pic->pict_type = (frame_type == INTRA_FRAME) ? AV_PICTURE_TYPE_I
503                                                    : AV_PICTURE_TYPE_P;
504     if (frame_type == SKIP_FRAME) {
505         *got_frame      = 1;
506         if ((ret = av_frame_ref(data, c->pic)) < 0)
507             return ret;
508 
509         return buf_size;
510     }
511 
512     if (c->quality != quality) {
513         c->quality = quality;
514         for (i = 0; i < 2; i++)
515             ff_mss34_gen_quant_mat(c->quant_mat[i], quality, !i);
516     }
517 
518     if ((ret = init_get_bits8(&gb, buf + HEADER_SIZE, buf_size - HEADER_SIZE)) < 0)
519         return ret;
520     dst[0] = c->pic->data[0];
521     dst[1] = c->pic->data[1];
522     dst[2] = c->pic->data[2];
523 
524     memset(c->prev_vec, 0, sizeof(c->prev_vec));
525     for (y = 0; y < mb_height; y++) {
526         memset(c->dc_cache, 0, sizeof(c->dc_cache));
527         for (x = 0; x < mb_width; x++) {
528             blk_type = decode012(&gb);
529             switch (blk_type) {
530             case DCT_BLOCK:
531                 if (mss4_decode_dct_block(c, &gb, dst, x, y) < 0) {
532                     av_log(avctx, AV_LOG_ERROR,
533                            "Error decoding DCT block %d,%d\n",
534                            x, y);
535                     return AVERROR_INVALIDDATA;
536                 }
537                 break;
538             case IMAGE_BLOCK:
539                 if (mss4_decode_image_block(c, &gb, dst, x, y) < 0) {
540                     av_log(avctx, AV_LOG_ERROR,
541                            "Error decoding VQ block %d,%d\n",
542                            x, y);
543                     return AVERROR_INVALIDDATA;
544                 }
545                 break;
546             case SKIP_BLOCK:
547                 if (frame_type == INTRA_FRAME) {
548                     av_log(avctx, AV_LOG_ERROR, "Skip block in intra frame\n");
549                     return AVERROR_INVALIDDATA;
550                 }
551                 break;
552             }
553             if (blk_type != DCT_BLOCK)
554                 mss4_update_dc_cache(c, x);
555         }
556         dst[0] += c->pic->linesize[0] * 16;
557         dst[1] += c->pic->linesize[1] * 16;
558         dst[2] += c->pic->linesize[2] * 16;
559     }
560 
561     if ((ret = av_frame_ref(data, c->pic)) < 0)
562         return ret;
563 
564     *got_frame      = 1;
565 
566     return buf_size;
567 }
568 
mss4_decode_end(AVCodecContext * avctx)569 static av_cold int mss4_decode_end(AVCodecContext *avctx)
570 {
571     MSS4Context * const c = avctx->priv_data;
572     int i;
573 
574     av_frame_free(&c->pic);
575     for (i = 0; i < 3; i++)
576         av_freep(&c->prev_dc[i]);
577 
578     return 0;
579 }
580 
mss4_decode_init(AVCodecContext * avctx)581 static av_cold int mss4_decode_init(AVCodecContext *avctx)
582 {
583     static AVOnce init_static_once = AV_ONCE_INIT;
584     MSS4Context * const c = avctx->priv_data;
585     int i;
586 
587     for (i = 0; i < 3; i++) {
588         c->dc_stride[i] = FFALIGN(avctx->width, 16) >> (2 + !!i);
589         c->prev_dc[i]   = av_malloc_array(c->dc_stride[i], sizeof(**c->prev_dc));
590         if (!c->prev_dc[i]) {
591             av_log(avctx, AV_LOG_ERROR, "Cannot allocate buffer\n");
592             return AVERROR(ENOMEM);
593         }
594     }
595 
596     c->pic = av_frame_alloc();
597     if (!c->pic)
598         return AVERROR(ENOMEM);
599 
600     avctx->pix_fmt     = AV_PIX_FMT_YUV444P;
601 
602     ff_thread_once(&init_static_once, mss4_init_vlcs);
603 
604     return 0;
605 }
606 
607 AVCodec ff_mts2_decoder = {
608     .name           = "mts2",
609     .long_name      = NULL_IF_CONFIG_SMALL("MS Expression Encoder Screen"),
610     .type           = AVMEDIA_TYPE_VIDEO,
611     .id             = AV_CODEC_ID_MTS2,
612     .priv_data_size = sizeof(MSS4Context),
613     .init           = mss4_decode_init,
614     .close          = mss4_decode_end,
615     .decode         = mss4_decode_frame,
616     .capabilities   = AV_CODEC_CAP_DR1,
617     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_INIT_THREADSAFE,
618 };
619