• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2005 Boðaç Topaktaþ
3  * Copyright (c) 2020 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "libavutil/channel_layout.h"
23 #include "libavutil/ffmath.h"
24 #include "libavutil/opt.h"
25 #include "avfilter.h"
26 #include "audio.h"
27 #include "formats.h"
28 
29 typedef struct BiquadCoeffs {
30     double a1, a2;
31     double b0, b1, b2;
32 } BiquadCoeffs;
33 
34 typedef struct ASuperCutContext {
35     const AVClass *class;
36 
37     double cutoff;
38     double level;
39     double qfactor;
40     int order;
41 
42     int filter_count;
43     int bypass;
44 
45     BiquadCoeffs coeffs[10];
46 
47     AVFrame *w;
48 
49     int (*filter_channels)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
50 } ASuperCutContext;
51 
query_formats(AVFilterContext * ctx)52 static int query_formats(AVFilterContext *ctx)
53 {
54     AVFilterFormats *formats = NULL;
55     AVFilterChannelLayouts *layouts = NULL;
56     static const enum AVSampleFormat sample_fmts[] = {
57         AV_SAMPLE_FMT_FLTP,
58         AV_SAMPLE_FMT_DBLP,
59         AV_SAMPLE_FMT_NONE
60     };
61     int ret;
62 
63     formats = ff_make_format_list(sample_fmts);
64     if (!formats)
65         return AVERROR(ENOMEM);
66     ret = ff_set_common_formats(ctx, formats);
67     if (ret < 0)
68         return ret;
69 
70     layouts = ff_all_channel_counts();
71     if (!layouts)
72         return AVERROR(ENOMEM);
73 
74     ret = ff_set_common_channel_layouts(ctx, layouts);
75     if (ret < 0)
76         return ret;
77 
78     formats = ff_all_samplerates();
79     return ff_set_common_samplerates(ctx, formats);
80 }
81 
calc_q_factors(int n,double * q)82 static void calc_q_factors(int n, double *q)
83 {
84     for (int i = 0; i < n / 2; i++)
85         q[i] = 1. / (-2. * cos(M_PI * (2. * (i + 1) + n - 1.) / (2. * n)));
86 }
87 
get_coeffs(AVFilterContext * ctx)88 static int get_coeffs(AVFilterContext *ctx)
89 {
90     ASuperCutContext *s = ctx->priv;
91     AVFilterLink *inlink = ctx->inputs[0];
92     double w0 = s->cutoff / inlink->sample_rate;
93     double K = tan(M_PI * w0);
94     double q[10];
95 
96     s->bypass = w0 >= 0.5;
97     if (s->bypass)
98         return 0;
99 
100     if (!strcmp(ctx->filter->name, "asubcut")) {
101         s->filter_count = s->order / 2 + (s->order & 1);
102 
103         calc_q_factors(s->order, q);
104 
105         if (s->order & 1) {
106             BiquadCoeffs *coeffs = &s->coeffs[0];
107             double omega = 2. * tan(M_PI * w0);
108 
109             coeffs->b0 = 2. / (2. + omega);
110             coeffs->b1 = -coeffs->b0;
111             coeffs->b2 = 0.;
112             coeffs->a1 = -(omega - 2.) / (2. + omega);
113             coeffs->a2 = 0.;
114         }
115 
116         for (int b = (s->order & 1); b < s->filter_count; b++) {
117             BiquadCoeffs *coeffs = &s->coeffs[b];
118             const int idx = b - (s->order & 1);
119             double norm = 1.0 / (1.0 + K / q[idx] + K * K);
120 
121             coeffs->b0 = norm;
122             coeffs->b1 = -2.0 * coeffs->b0;
123             coeffs->b2 = coeffs->b0;
124             coeffs->a1 = -2.0 * (K * K - 1.0) * norm;
125             coeffs->a2 = -(1.0 - K / q[idx] + K * K) * norm;
126         }
127     } else if (!strcmp(ctx->filter->name, "asupercut")) {
128         s->filter_count = s->order / 2 + (s->order & 1);
129 
130         calc_q_factors(s->order, q);
131 
132         if (s->order & 1) {
133             BiquadCoeffs *coeffs = &s->coeffs[0];
134             double omega = 2. * tan(M_PI * w0);
135 
136             coeffs->b0 = omega / (2. + omega);
137             coeffs->b1 = coeffs->b0;
138             coeffs->b2 = 0.;
139             coeffs->a1 = -(omega - 2.) / (2. + omega);
140             coeffs->a2 = 0.;
141         }
142 
143         for (int b = (s->order & 1); b < s->filter_count; b++) {
144             BiquadCoeffs *coeffs = &s->coeffs[b];
145             const int idx = b - (s->order & 1);
146             double norm = 1.0 / (1.0 + K / q[idx] + K * K);
147 
148             coeffs->b0 = K * K * norm;
149             coeffs->b1 = 2.0 * coeffs->b0;
150             coeffs->b2 = coeffs->b0;
151             coeffs->a1 = -2.0 * (K * K - 1.0) * norm;
152             coeffs->a2 = -(1.0 - K / q[idx] + K * K) * norm;
153         }
154     } else if (!strcmp(ctx->filter->name, "asuperpass")) {
155         double alpha, beta, gamma, theta;
156         double theta_0 = 2. * M_PI * (s->cutoff / inlink->sample_rate);
157         double d_E;
158 
159         s->filter_count = s->order / 2;
160         d_E = (2. * tan(theta_0 / (2. * s->qfactor))) / sin(theta_0);
161 
162         for (int b = 0; b < s->filter_count; b += 2) {
163             double D = 2. * sin(((b + 1) * M_PI) / (2. * s->filter_count));
164             double A = (1. + pow((d_E / 2.), 2)) / (D * d_E / 2.);
165             double d = sqrt((d_E * D) / (A + sqrt(A * A - 1.)));
166             double B = D * (d_E / 2.) / d;
167             double W = B + sqrt(B * B - 1.);
168 
169             for (int j = 0; j < 2; j++) {
170                 BiquadCoeffs *coeffs = &s->coeffs[b + j];
171 
172                 if (j == 1)
173                     theta = 2. * atan(tan(theta_0 / 2.) / W);
174                 else
175                     theta = 2. * atan(W * tan(theta_0 / 2.));
176 
177                 beta = 0.5 * ((1. - (d / 2.) * sin(theta)) / (1. + (d / 2.) * sin(theta)));
178                 gamma = (0.5 + beta) * cos(theta);
179                 alpha = 0.5 * (0.5 - beta) * sqrt(1. + pow((W - (1. / W)) / d, 2.));
180 
181                 coeffs->a1 =  2. * gamma;
182                 coeffs->a2 = -2. * beta;
183                 coeffs->b0 =  2. * alpha;
184                 coeffs->b1 =  0.;
185                 coeffs->b2 = -2. * alpha;
186             }
187         }
188     } else if (!strcmp(ctx->filter->name, "asuperstop")) {
189         double alpha, beta, gamma, theta;
190         double theta_0 = 2. * M_PI * (s->cutoff / inlink->sample_rate);
191         double d_E;
192 
193         s->filter_count = s->order / 2;
194         d_E = (2. * tan(theta_0 / (2. * s->qfactor))) / sin(theta_0);
195 
196         for (int b = 0; b < s->filter_count; b += 2) {
197             double D = 2. * sin(((b + 1) * M_PI) / (2. * s->filter_count));
198             double A = (1. + pow((d_E / 2.), 2)) / (D * d_E / 2.);
199             double d = sqrt((d_E * D) / (A + sqrt(A * A - 1.)));
200             double B = D * (d_E / 2.) / d;
201             double W = B + sqrt(B * B - 1.);
202 
203             for (int j = 0; j < 2; j++) {
204                 BiquadCoeffs *coeffs = &s->coeffs[b + j];
205 
206                 if (j == 1)
207                     theta = 2. * atan(tan(theta_0 / 2.) / W);
208                 else
209                     theta = 2. * atan(W * tan(theta_0 / 2.));
210 
211                 beta = 0.5 * ((1. - (d / 2.) * sin(theta)) / (1. + (d / 2.) * sin(theta)));
212                 gamma = (0.5 + beta) * cos(theta);
213                 alpha = 0.5 * (0.5 + beta) * ((1. - cos(theta)) / (1. - cos(theta_0)));
214 
215                 coeffs->a1 =  2. * gamma;
216                 coeffs->a2 = -2. * beta;
217                 coeffs->b0 =  2. * alpha;
218                 coeffs->b1 = -4. * alpha * cos(theta_0);
219                 coeffs->b2 =  2. * alpha;
220             }
221         }
222     }
223 
224     return 0;
225 }
226 
227 typedef struct ThreadData {
228     AVFrame *in, *out;
229 } ThreadData;
230 
231 #define FILTER(name, type)                                          \
232 static int filter_channels_## name(AVFilterContext *ctx, void *arg, \
233                                    int jobnr, int nb_jobs)          \
234 {                                                                   \
235     ASuperCutContext *s = ctx->priv;                                \
236     ThreadData *td = arg;                                           \
237     AVFrame *out = td->out;                                         \
238     AVFrame *in = td->in;                                           \
239     const int start = (in->channels * jobnr) / nb_jobs;             \
240     const int end = (in->channels * (jobnr+1)) / nb_jobs;           \
241     const double level = s->level;                                  \
242                                                                     \
243     for (int ch = start; ch < end; ch++) {                          \
244         const type *src = (const type *)in->extended_data[ch];      \
245         type *dst = (type *)out->extended_data[ch];                 \
246                                                                     \
247         for (int b = 0; b < s->filter_count; b++) {                 \
248             BiquadCoeffs *coeffs = &s->coeffs[b];                   \
249             const type a1 = coeffs->a1;                             \
250             const type a2 = coeffs->a2;                             \
251             const type b0 = coeffs->b0;                             \
252             const type b1 = coeffs->b1;                             \
253             const type b2 = coeffs->b2;                             \
254             type *w = ((type *)s->w->extended_data[ch]) + b * 2;    \
255                                                                     \
256             for (int n = 0; n < in->nb_samples; n++) {              \
257                 type sin = b ? dst[n] : src[n] * level;             \
258                 type sout = sin * b0 + w[0];                        \
259                                                                     \
260                 w[0] = b1 * sin + w[1] + a1 * sout;                 \
261                 w[1] = b2 * sin + a2 * sout;                        \
262                                                                     \
263                 dst[n] = sout;                                      \
264             }                                                       \
265         }                                                           \
266     }                                                               \
267                                                                     \
268     return 0;                                                       \
269 }
270 
FILTER(fltp,float)271 FILTER(fltp, float)
272 FILTER(dblp, double)
273 
274 static int config_input(AVFilterLink *inlink)
275 {
276     AVFilterContext *ctx = inlink->dst;
277     ASuperCutContext *s = ctx->priv;
278 
279     switch (inlink->format) {
280     case AV_SAMPLE_FMT_FLTP: s->filter_channels = filter_channels_fltp; break;
281     case AV_SAMPLE_FMT_DBLP: s->filter_channels = filter_channels_dblp; break;
282     }
283 
284     s->w = ff_get_audio_buffer(inlink, 2 * 10);
285     if (!s->w)
286         return AVERROR(ENOMEM);
287 
288     return get_coeffs(ctx);
289 }
290 
filter_frame(AVFilterLink * inlink,AVFrame * in)291 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
292 {
293     AVFilterContext *ctx = inlink->dst;
294     ASuperCutContext *s = ctx->priv;
295     AVFilterLink *outlink = ctx->outputs[0];
296     ThreadData td;
297     AVFrame *out;
298 
299     if (s->bypass)
300         return ff_filter_frame(outlink, in);
301 
302     if (av_frame_is_writable(in)) {
303         out = in;
304     } else {
305         out = ff_get_audio_buffer(outlink, in->nb_samples);
306         if (!out) {
307             av_frame_free(&in);
308             return AVERROR(ENOMEM);
309         }
310         av_frame_copy_props(out, in);
311     }
312 
313     td.in = in; td.out = out;
314     ctx->internal->execute(ctx, s->filter_channels, &td, NULL, FFMIN(inlink->channels,
315                                                                ff_filter_get_nb_threads(ctx)));
316 
317     if (out != in)
318         av_frame_free(&in);
319     return ff_filter_frame(outlink, out);
320 }
321 
process_command(AVFilterContext * ctx,const char * cmd,const char * args,char * res,int res_len,int flags)322 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
323                            char *res, int res_len, int flags)
324 {
325     int ret;
326 
327     ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
328     if (ret < 0)
329         return ret;
330 
331     return get_coeffs(ctx);
332 }
333 
uninit(AVFilterContext * ctx)334 static av_cold void uninit(AVFilterContext *ctx)
335 {
336     ASuperCutContext *s = ctx->priv;
337 
338     av_frame_free(&s->w);
339 }
340 
341 #define OFFSET(x) offsetof(ASuperCutContext, x)
342 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
343 
344 static const AVOption asupercut_options[] = {
345     { "cutoff", "set cutoff frequency", OFFSET(cutoff), AV_OPT_TYPE_DOUBLE, {.dbl=20000}, 20000, 192000, FLAGS },
346     { "order",  "set filter order",     OFFSET(order),  AV_OPT_TYPE_INT,    {.i64=10},        3,     20, FLAGS },
347     { "level",  "set input level",      OFFSET(level),  AV_OPT_TYPE_DOUBLE, {.dbl=1.},        0.,    1., FLAGS },
348     { NULL }
349 };
350 
351 AVFILTER_DEFINE_CLASS(asupercut);
352 
353 static const AVFilterPad inputs[] = {
354     {
355         .name         = "default",
356         .type         = AVMEDIA_TYPE_AUDIO,
357         .filter_frame = filter_frame,
358         .config_props = config_input,
359     },
360     { NULL }
361 };
362 
363 static const AVFilterPad outputs[] = {
364     {
365         .name = "default",
366         .type = AVMEDIA_TYPE_AUDIO,
367     },
368     { NULL }
369 };
370 
371 AVFilter ff_af_asupercut = {
372     .name            = "asupercut",
373     .description     = NULL_IF_CONFIG_SMALL("Cut super frequencies."),
374     .query_formats   = query_formats,
375     .priv_size       = sizeof(ASuperCutContext),
376     .priv_class      = &asupercut_class,
377     .uninit          = uninit,
378     .inputs          = inputs,
379     .outputs         = outputs,
380     .process_command = process_command,
381     .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
382                        AVFILTER_FLAG_SLICE_THREADS,
383 };
384 
385 static const AVOption asubcut_options[] = {
386     { "cutoff", "set cutoff frequency", OFFSET(cutoff), AV_OPT_TYPE_DOUBLE, {.dbl=20},  2, 200, FLAGS },
387     { "order",  "set filter order",     OFFSET(order),  AV_OPT_TYPE_INT,    {.i64=10},  3,  20, FLAGS },
388     { "level",  "set input level",      OFFSET(level),  AV_OPT_TYPE_DOUBLE, {.dbl=1.}, 0.,  1., FLAGS },
389     { NULL }
390 };
391 
392 AVFILTER_DEFINE_CLASS(asubcut);
393 
394 AVFilter ff_af_asubcut = {
395     .name            = "asubcut",
396     .description     = NULL_IF_CONFIG_SMALL("Cut subwoofer frequencies."),
397     .query_formats   = query_formats,
398     .priv_size       = sizeof(ASuperCutContext),
399     .priv_class      = &asubcut_class,
400     .uninit          = uninit,
401     .inputs          = inputs,
402     .outputs         = outputs,
403     .process_command = process_command,
404     .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
405                        AVFILTER_FLAG_SLICE_THREADS,
406 };
407 
408 static const AVOption asuperpass_asuperstop_options[] = {
409     { "centerf","set center frequency", OFFSET(cutoff), AV_OPT_TYPE_DOUBLE, {.dbl=1000}, 2, 999999, FLAGS },
410     { "order",  "set filter order",     OFFSET(order),  AV_OPT_TYPE_INT,    {.i64=4},    4,     20, FLAGS },
411     { "qfactor","set Q-factor",         OFFSET(qfactor),AV_OPT_TYPE_DOUBLE, {.dbl=1.},0.01,   100., FLAGS },
412     { "level",  "set input level",      OFFSET(level),  AV_OPT_TYPE_DOUBLE, {.dbl=1.},   0.,    2., FLAGS },
413     { NULL }
414 };
415 
416 #define asuperpass_options asuperpass_asuperstop_options
417 AVFILTER_DEFINE_CLASS(asuperpass);
418 
419 AVFilter ff_af_asuperpass = {
420     .name            = "asuperpass",
421     .description     = NULL_IF_CONFIG_SMALL("Apply high order Butterworth band-pass filter."),
422     .query_formats   = query_formats,
423     .priv_size       = sizeof(ASuperCutContext),
424     .priv_class      = &asuperpass_class,
425     .uninit          = uninit,
426     .inputs          = inputs,
427     .outputs         = outputs,
428     .process_command = process_command,
429     .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
430                        AVFILTER_FLAG_SLICE_THREADS,
431 };
432 
433 #define asuperstop_options asuperpass_asuperstop_options
434 AVFILTER_DEFINE_CLASS(asuperstop);
435 
436 AVFilter ff_af_asuperstop = {
437     .name            = "asuperstop",
438     .description     = NULL_IF_CONFIG_SMALL("Apply high order Butterworth band-stop filter."),
439     .query_formats   = query_formats,
440     .priv_size       = sizeof(ASuperCutContext),
441     .priv_class      = &asuperstop_class,
442     .uninit          = uninit,
443     .inputs          = inputs,
444     .outputs         = outputs,
445     .process_command = process_command,
446     .flags           = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
447                        AVFILTER_FLAG_SLICE_THREADS,
448 };
449