1 /*
2 * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #ifndef SWSCALE_SWSCALE_INTERNAL_H
22 #define SWSCALE_SWSCALE_INTERNAL_H
23
24 #include "config.h"
25 #include "version.h"
26
27 #include "libavutil/avassert.h"
28 #include "libavutil/avutil.h"
29 #include "libavutil/common.h"
30 #include "libavutil/intreadwrite.h"
31 #include "libavutil/log.h"
32 #include "libavutil/mem_internal.h"
33 #include "libavutil/pixfmt.h"
34 #include "libavutil/pixdesc.h"
35 #include "libavutil/ppc/util_altivec.h"
36
37 #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
38
39 #define YUVRGB_TABLE_HEADROOM 512
40 #define YUVRGB_TABLE_LUMA_HEADROOM 512
41
42 #define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE
43
44 #define DITHER1XBPP
45
46 #if HAVE_BIGENDIAN
47 #define ALT32_CORR (-1)
48 #else
49 #define ALT32_CORR 1
50 #endif
51
52 #if ARCH_X86_64
53 # define APCK_PTR2 8
54 # define APCK_COEF 16
55 # define APCK_SIZE 24
56 #else
57 # define APCK_PTR2 4
58 # define APCK_COEF 8
59 # define APCK_SIZE 16
60 #endif
61
62 #define RETCODE_USE_CASCADE -12345
63
64 struct SwsContext;
65
66 typedef enum SwsDither {
67 SWS_DITHER_NONE = 0,
68 SWS_DITHER_AUTO,
69 SWS_DITHER_BAYER,
70 SWS_DITHER_ED,
71 SWS_DITHER_A_DITHER,
72 SWS_DITHER_X_DITHER,
73 NB_SWS_DITHER,
74 } SwsDither;
75
76 typedef enum SwsAlphaBlend {
77 SWS_ALPHA_BLEND_NONE = 0,
78 SWS_ALPHA_BLEND_UNIFORM,
79 SWS_ALPHA_BLEND_CHECKERBOARD,
80 SWS_ALPHA_BLEND_NB,
81 } SwsAlphaBlend;
82
83 typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
84 int srcStride[], int srcSliceY, int srcSliceH,
85 uint8_t *dst[], int dstStride[]);
86
87 /**
88 * Write one line of horizontally scaled data to planar output
89 * without any additional vertical scaling (or point-scaling).
90 *
91 * @param src scaled source data, 15 bits for 8-10-bit output,
92 * 19 bits for 16-bit output (in int32_t)
93 * @param dest pointer to the output plane. For >8-bit
94 * output, this is in uint16_t
95 * @param dstW width of destination in pixels
96 * @param dither ordered dither array of type int16_t and size 8
97 * @param offset Dither offset
98 */
99 typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
100 const uint8_t *dither, int offset);
101
102 /**
103 * Write one line of horizontally scaled data to planar output
104 * with multi-point vertical scaling between input pixels.
105 *
106 * @param filter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
107 * @param src scaled luma (Y) or alpha (A) source data, 15 bits for
108 * 8-10-bit output, 19 bits for 16-bit output (in int32_t)
109 * @param filterSize number of vertical input lines to scale
110 * @param dest pointer to output plane. For >8-bit
111 * output, this is in uint16_t
112 * @param dstW width of destination pixels
113 * @param offset Dither offset
114 */
115 typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
116 const int16_t **src, uint8_t *dest, int dstW,
117 const uint8_t *dither, int offset);
118
119 /**
120 * Write one line of horizontally scaled chroma to interleaved output
121 * with multi-point vertical scaling between input pixels.
122 *
123 * @param dstFormat destination pixel format
124 * @param chrDither ordered dither array of type uint8_t and size 8
125 * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
126 * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit
127 * output, 19 bits for 16-bit output (in int32_t)
128 * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit
129 * output, 19 bits for 16-bit output (in int32_t)
130 * @param chrFilterSize number of vertical chroma input lines to scale
131 * @param dest pointer to the output plane. For >8-bit
132 * output, this is in uint16_t
133 * @param dstW width of chroma planes
134 */
135 typedef void (*yuv2interleavedX_fn)(enum AVPixelFormat dstFormat,
136 const uint8_t *chrDither,
137 const int16_t *chrFilter,
138 int chrFilterSize,
139 const int16_t **chrUSrc,
140 const int16_t **chrVSrc,
141 uint8_t *dest, int dstW);
142
143 /**
144 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
145 * output without any additional vertical scaling (or point-scaling). Note
146 * that this function may do chroma scaling, see the "uvalpha" argument.
147 *
148 * @param c SWS scaling context
149 * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
150 * 19 bits for 16-bit output (in int32_t)
151 * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
152 * 19 bits for 16-bit output (in int32_t)
153 * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
154 * 19 bits for 16-bit output (in int32_t)
155 * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
156 * 19 bits for 16-bit output (in int32_t)
157 * @param dest pointer to the output plane. For 16-bit output, this is
158 * uint16_t
159 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
160 * to write into dest[]
161 * @param uvalpha chroma scaling coefficient for the second line of chroma
162 * pixels, either 2048 or 0. If 0, one chroma input is used
163 * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
164 * is set, it generates 1 output pixel). If 2048, two chroma
165 * input pixels should be averaged for 2 output pixels (this
166 * only happens if SWS_FLAG_FULL_CHR_INT is not set)
167 * @param y vertical line number for this output. This does not need
168 * to be used to calculate the offset in the destination,
169 * but can be used to generate comfort noise using dithering
170 * for some output formats.
171 */
172 typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
173 const int16_t *chrUSrc[2],
174 const int16_t *chrVSrc[2],
175 const int16_t *alpSrc, uint8_t *dest,
176 int dstW, int uvalpha, int y);
177 /**
178 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
179 * output by doing bilinear scaling between two input lines.
180 *
181 * @param c SWS scaling context
182 * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
183 * 19 bits for 16-bit output (in int32_t)
184 * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
185 * 19 bits for 16-bit output (in int32_t)
186 * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
187 * 19 bits for 16-bit output (in int32_t)
188 * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
189 * 19 bits for 16-bit output (in int32_t)
190 * @param dest pointer to the output plane. For 16-bit output, this is
191 * uint16_t
192 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
193 * to write into dest[]
194 * @param yalpha luma/alpha scaling coefficients for the second input line.
195 * The first line's coefficients can be calculated by using
196 * 4096 - yalpha
197 * @param uvalpha chroma scaling coefficient for the second input line. The
198 * first line's coefficients can be calculated by using
199 * 4096 - uvalpha
200 * @param y vertical line number for this output. This does not need
201 * to be used to calculate the offset in the destination,
202 * but can be used to generate comfort noise using dithering
203 * for some output formats.
204 */
205 typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
206 const int16_t *chrUSrc[2],
207 const int16_t *chrVSrc[2],
208 const int16_t *alpSrc[2],
209 uint8_t *dest,
210 int dstW, int yalpha, int uvalpha, int y);
211 /**
212 * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
213 * output by doing multi-point vertical scaling between input pixels.
214 *
215 * @param c SWS scaling context
216 * @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
217 * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
218 * 19 bits for 16-bit output (in int32_t)
219 * @param lumFilterSize number of vertical luma/alpha input lines to scale
220 * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
221 * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
222 * 19 bits for 16-bit output (in int32_t)
223 * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
224 * 19 bits for 16-bit output (in int32_t)
225 * @param chrFilterSize number of vertical chroma input lines to scale
226 * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
227 * 19 bits for 16-bit output (in int32_t)
228 * @param dest pointer to the output plane. For 16-bit output, this is
229 * uint16_t
230 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
231 * to write into dest[]
232 * @param y vertical line number for this output. This does not need
233 * to be used to calculate the offset in the destination,
234 * but can be used to generate comfort noise using dithering
235 * or some output formats.
236 */
237 typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
238 const int16_t **lumSrc, int lumFilterSize,
239 const int16_t *chrFilter,
240 const int16_t **chrUSrc,
241 const int16_t **chrVSrc, int chrFilterSize,
242 const int16_t **alpSrc, uint8_t *dest,
243 int dstW, int y);
244
245 /**
246 * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
247 * output by doing multi-point vertical scaling between input pixels.
248 *
249 * @param c SWS scaling context
250 * @param lumFilter vertical luma/alpha scaling coefficients, 12 bits [0,4096]
251 * @param lumSrc scaled luma (Y) source data, 15 bits for 8-10-bit output,
252 * 19 bits for 16-bit output (in int32_t)
253 * @param lumFilterSize number of vertical luma/alpha input lines to scale
254 * @param chrFilter vertical chroma scaling coefficients, 12 bits [0,4096]
255 * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
256 * 19 bits for 16-bit output (in int32_t)
257 * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
258 * 19 bits for 16-bit output (in int32_t)
259 * @param chrFilterSize number of vertical chroma input lines to scale
260 * @param alpSrc scaled alpha (A) source data, 15 bits for 8-10-bit output,
261 * 19 bits for 16-bit output (in int32_t)
262 * @param dest pointer to the output planes. For 16-bit output, this is
263 * uint16_t
264 * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
265 * to write into dest[]
266 * @param y vertical line number for this output. This does not need
267 * to be used to calculate the offset in the destination,
268 * but can be used to generate comfort noise using dithering
269 * or some output formats.
270 */
271 typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
272 const int16_t **lumSrc, int lumFilterSize,
273 const int16_t *chrFilter,
274 const int16_t **chrUSrc,
275 const int16_t **chrVSrc, int chrFilterSize,
276 const int16_t **alpSrc, uint8_t **dest,
277 int dstW, int y);
278
279 struct SwsSlice;
280 struct SwsFilterDescriptor;
281
282 /* This struct should be aligned on at least a 32-byte boundary. */
283 typedef struct SwsContext {
284 /**
285 * info on struct for av_log
286 */
287 const AVClass *av_class;
288
289 /**
290 * Note that src, dst, srcStride, dstStride will be copied in the
291 * sws_scale() wrapper so they can be freely modified here.
292 */
293 SwsFunc swscale;
294 int srcW; ///< Width of source luma/alpha planes.
295 int srcH; ///< Height of source luma/alpha planes.
296 int dstH; ///< Height of destination luma/alpha planes.
297 int chrSrcW; ///< Width of source chroma planes.
298 int chrSrcH; ///< Height of source chroma planes.
299 int chrDstW; ///< Width of destination chroma planes.
300 int chrDstH; ///< Height of destination chroma planes.
301 int lumXInc, chrXInc;
302 int lumYInc, chrYInc;
303 enum AVPixelFormat dstFormat; ///< Destination pixel format.
304 enum AVPixelFormat srcFormat; ///< Source pixel format.
305 int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
306 int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
307 int dstBpc, srcBpc;
308 int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
309 int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
310 int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
311 int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
312 int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
313 int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
314 double param[2]; ///< Input parameters for scaling algorithms that need them.
315
316 /* The cascaded_* fields allow spliting a scaler task into multiple
317 * sequential steps, this is for example used to limit the maximum
318 * downscaling factor that needs to be supported in one scaler.
319 */
320 struct SwsContext *cascaded_context[3];
321 int cascaded_tmpStride[4];
322 uint8_t *cascaded_tmp[4];
323 int cascaded1_tmpStride[4];
324 uint8_t *cascaded1_tmp[4];
325 int cascaded_mainindex;
326
327 double gamma_value;
328 int gamma_flag;
329 int is_internal_gamma;
330 uint16_t *gamma;
331 uint16_t *inv_gamma;
332
333 int numDesc;
334 int descIndex[2];
335 int numSlice;
336 struct SwsSlice *slice;
337 struct SwsFilterDescriptor *desc;
338
339 uint32_t pal_yuv[256];
340 uint32_t pal_rgb[256];
341
342 float uint2float_lut[256];
343
344 /**
345 * @name Scaled horizontal lines ring buffer.
346 * The horizontal scaler keeps just enough scaled lines in a ring buffer
347 * so they may be passed to the vertical scaler. The pointers to the
348 * allocated buffers for each line are duplicated in sequence in the ring
349 * buffer to simplify indexing and avoid wrapping around between lines
350 * inside the vertical scaler code. The wrapping is done before the
351 * vertical scaler is called.
352 */
353 //@{
354 int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
355 int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
356 //@}
357
358 uint8_t *formatConvBuffer;
359 int needAlpha;
360
361 /**
362 * @name Horizontal and vertical filters.
363 * To better understand the following fields, here is a pseudo-code of
364 * their usage in filtering a horizontal line:
365 * @code
366 * for (i = 0; i < width; i++) {
367 * dst[i] = 0;
368 * for (j = 0; j < filterSize; j++)
369 * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
370 * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
371 * }
372 * @endcode
373 */
374 //@{
375 int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
376 int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
377 int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
378 int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
379 int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
380 int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
381 int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
382 int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
383 int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
384 int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
385 int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
386 int vChrFilterSize; ///< Vertical filter size for chroma pixels.
387 //@}
388
389 int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
390 int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
391 uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
392 uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
393
394 int canMMXEXTBeUsed;
395 int warned_unuseable_bilinear;
396
397 int dstY; ///< Last destination vertical line output from last slice.
398 int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
399 void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
400 // alignment ensures the offset can be added in a single
401 // instruction on e.g. ARM
402 DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM];
403 uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
404 uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
405 uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
406 DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points
407 #define RY_IDX 0
408 #define GY_IDX 1
409 #define BY_IDX 2
410 #define RU_IDX 3
411 #define GU_IDX 4
412 #define BU_IDX 5
413 #define RV_IDX 6
414 #define GV_IDX 7
415 #define BV_IDX 8
416 #define RGB2YUV_SHIFT 15
417
418 int *dither_error[4];
419
420 //Colorspace stuff
421 int contrast, brightness, saturation; // for sws_getColorspaceDetails
422 int srcColorspaceTable[4];
423 int dstColorspaceTable[4];
424 int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
425 int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
426 int src0Alpha;
427 int dst0Alpha;
428 int srcXYZ;
429 int dstXYZ;
430 int src_h_chr_pos;
431 int dst_h_chr_pos;
432 int src_v_chr_pos;
433 int dst_v_chr_pos;
434 int yuv2rgb_y_offset;
435 int yuv2rgb_y_coeff;
436 int yuv2rgb_v2r_coeff;
437 int yuv2rgb_v2g_coeff;
438 int yuv2rgb_u2g_coeff;
439 int yuv2rgb_u2b_coeff;
440
441 #define RED_DITHER "0*8"
442 #define GREEN_DITHER "1*8"
443 #define BLUE_DITHER "2*8"
444 #define Y_COEFF "3*8"
445 #define VR_COEFF "4*8"
446 #define UB_COEFF "5*8"
447 #define VG_COEFF "6*8"
448 #define UG_COEFF "7*8"
449 #define Y_OFFSET "8*8"
450 #define U_OFFSET "9*8"
451 #define V_OFFSET "10*8"
452 #define LUM_MMX_FILTER_OFFSET "11*8"
453 #define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)
454 #define DSTW_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2"
455 #define ESP_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8"
456 #define VROUNDER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16"
457 #define U_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24"
458 #define V_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32"
459 #define Y_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40"
460 #define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48"
461 #define UV_OFF_PX "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48"
462 #define UV_OFF_BYTE "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56"
463 #define DITHER16 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64"
464 #define DITHER32 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80"
465 #define DITHER32_INT (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake
466
467 DECLARE_ALIGNED(8, uint64_t, redDither);
468 DECLARE_ALIGNED(8, uint64_t, greenDither);
469 DECLARE_ALIGNED(8, uint64_t, blueDither);
470
471 DECLARE_ALIGNED(8, uint64_t, yCoeff);
472 DECLARE_ALIGNED(8, uint64_t, vrCoeff);
473 DECLARE_ALIGNED(8, uint64_t, ubCoeff);
474 DECLARE_ALIGNED(8, uint64_t, vgCoeff);
475 DECLARE_ALIGNED(8, uint64_t, ugCoeff);
476 DECLARE_ALIGNED(8, uint64_t, yOffset);
477 DECLARE_ALIGNED(8, uint64_t, uOffset);
478 DECLARE_ALIGNED(8, uint64_t, vOffset);
479 int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
480 int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
481 int dstW; ///< Width of destination luma/alpha planes.
482 DECLARE_ALIGNED(8, uint64_t, esp);
483 DECLARE_ALIGNED(8, uint64_t, vRounder);
484 DECLARE_ALIGNED(8, uint64_t, u_temp);
485 DECLARE_ALIGNED(8, uint64_t, v_temp);
486 DECLARE_ALIGNED(8, uint64_t, y_temp);
487 int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
488 // alignment of these values is not necessary, but merely here
489 // to maintain the same offset across x8632 and x86-64. Once we
490 // use proper offset macros in the asm, they can be removed.
491 DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
492 DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
493 DECLARE_ALIGNED(8, uint16_t, dither16)[8];
494 DECLARE_ALIGNED(8, uint32_t, dither32)[8];
495
496 const uint8_t *chrDither8, *lumDither8;
497
498 #if HAVE_ALTIVEC
499 vector signed short CY;
500 vector signed short CRV;
501 vector signed short CBU;
502 vector signed short CGU;
503 vector signed short CGV;
504 vector signed short OY;
505 vector unsigned short CSHIFT;
506 vector signed short *vYCoeffsBank, *vCCoeffsBank;
507 #endif
508
509 int use_mmx_vfilter;
510
511 /* pre defined color-spaces gamma */
512 #define XYZ_GAMMA (2.6f)
513 #define RGB_GAMMA (2.2f)
514 int16_t *xyzgamma;
515 int16_t *rgbgamma;
516 int16_t *xyzgammainv;
517 int16_t *rgbgammainv;
518 int16_t xyz2rgb_matrix[3][4];
519 int16_t rgb2xyz_matrix[3][4];
520
521 /* function pointers for swscale() */
522 yuv2planar1_fn yuv2plane1;
523 yuv2planarX_fn yuv2planeX;
524 yuv2interleavedX_fn yuv2nv12cX;
525 yuv2packed1_fn yuv2packed1;
526 yuv2packed2_fn yuv2packed2;
527 yuv2packedX_fn yuv2packedX;
528 yuv2anyX_fn yuv2anyX;
529
530 /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
531 void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
532 int width, uint32_t *pal);
533 /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
534 void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
535 int width, uint32_t *pal);
536 /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
537 void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
538 const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
539 int width, uint32_t *pal);
540
541 /**
542 * Functions to read planar input, such as planar RGB, and convert
543 * internally to Y/UV/A.
544 */
545 /** @{ */
546 void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
547 void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
548 int width, int32_t *rgb2yuv);
549 void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
550 /** @} */
551
552 /**
553 * Scale one horizontal line of input data using a bilinear filter
554 * to produce one line of output data. Compared to SwsContext->hScale(),
555 * please take note of the following caveats when using these:
556 * - Scaling is done using only 7 bits instead of 14-bit coefficients.
557 * - You can use no more than 5 input pixels to produce 4 output
558 * pixels. Therefore, this filter should not be used for downscaling
559 * by more than ~20% in width (because that equals more than 5/4th
560 * downscaling and thus more than 5 pixels input per 4 pixels output).
561 * - In general, bilinear filters create artifacts during downscaling
562 * (even when <20%), because one output pixel will span more than one
563 * input pixel, and thus some pixels will need edges of both neighbor
564 * pixels to interpolate the output pixel. Since you can use at most
565 * two input pixels per output pixel in bilinear scaling, this is
566 * impossible and thus downscaling by any size will create artifacts.
567 * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
568 * in SwsContext->flags.
569 */
570 /** @{ */
571 void (*hyscale_fast)(struct SwsContext *c,
572 int16_t *dst, int dstWidth,
573 const uint8_t *src, int srcW, int xInc);
574 void (*hcscale_fast)(struct SwsContext *c,
575 int16_t *dst1, int16_t *dst2, int dstWidth,
576 const uint8_t *src1, const uint8_t *src2,
577 int srcW, int xInc);
578 /** @} */
579
580 /**
581 * Scale one horizontal line of input data using a filter over the input
582 * lines, to produce one (differently sized) line of output data.
583 *
584 * @param dst pointer to destination buffer for horizontally scaled
585 * data. If the number of bits per component of one
586 * destination pixel (SwsContext->dstBpc) is <= 10, data
587 * will be 15 bpc in 16 bits (int16_t) width. Else (i.e.
588 * SwsContext->dstBpc == 16), data will be 19bpc in
589 * 32 bits (int32_t) width.
590 * @param dstW width of destination image
591 * @param src pointer to source data to be scaled. If the number of
592 * bits per component of a source pixel (SwsContext->srcBpc)
593 * is 8, this is 8bpc in 8 bits (uint8_t) width. Else
594 * (i.e. SwsContext->dstBpc > 8), this is native depth
595 * in 16 bits (uint16_t) width. In other words, for 9-bit
596 * YUV input, this is 9bpc, for 10-bit YUV input, this is
597 * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
598 * @param filter filter coefficients to be used per output pixel for
599 * scaling. This contains 14bpp filtering coefficients.
600 * Guaranteed to contain dstW * filterSize entries.
601 * @param filterPos position of the first input pixel to be used for
602 * each output pixel during scaling. Guaranteed to
603 * contain dstW entries.
604 * @param filterSize the number of input coefficients to be used (and
605 * thus the number of input pixels to be used) for
606 * creating a single output pixel. Is aligned to 4
607 * (and input coefficients thus padded with zeroes)
608 * to simplify creating SIMD code.
609 */
610 /** @{ */
611 void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
612 const uint8_t *src, const int16_t *filter,
613 const int32_t *filterPos, int filterSize);
614 void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
615 const uint8_t *src, const int16_t *filter,
616 const int32_t *filterPos, int filterSize);
617 /** @} */
618
619 /// Color range conversion function for luma plane if needed.
620 void (*lumConvertRange)(int16_t *dst, int width);
621 /// Color range conversion function for chroma planes if needed.
622 void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
623
624 int needs_hcscale; ///< Set if there are chroma planes to be converted.
625
626 SwsDither dither;
627
628 SwsAlphaBlend alphablend;
629 } SwsContext;
630 //FIXME check init (where 0)
631
632 SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
633 int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
634 int fullRange, int brightness,
635 int contrast, int saturation);
636 void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
637 int brightness, int contrast, int saturation);
638
639 void ff_updateMMXDitherTables(SwsContext *c, int dstY);
640
641 av_cold void ff_sws_init_range_convert(SwsContext *c);
642
643 SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);
644 SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);
645
is16BPS(enum AVPixelFormat pix_fmt)646 static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
647 {
648 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
649 av_assert0(desc);
650 return desc->comp[0].depth == 16;
651 }
652
is32BPS(enum AVPixelFormat pix_fmt)653 static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt)
654 {
655 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
656 av_assert0(desc);
657 return desc->comp[0].depth == 32;
658 }
659
isNBPS(enum AVPixelFormat pix_fmt)660 static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
661 {
662 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
663 av_assert0(desc);
664 return desc->comp[0].depth >= 9 && desc->comp[0].depth <= 14;
665 }
666
isBE(enum AVPixelFormat pix_fmt)667 static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
668 {
669 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
670 av_assert0(desc);
671 return desc->flags & AV_PIX_FMT_FLAG_BE;
672 }
673
isYUV(enum AVPixelFormat pix_fmt)674 static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
675 {
676 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
677 av_assert0(desc);
678 return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
679 }
680
isPlanarYUV(enum AVPixelFormat pix_fmt)681 static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
682 {
683 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
684 av_assert0(desc);
685 return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
686 }
687
688 /*
689 * Identity semi-planar YUV formats. Specifically, those are YUV formats
690 * where the second and third components (U & V) are on the same plane.
691 */
isSemiPlanarYUV(enum AVPixelFormat pix_fmt)692 static av_always_inline int isSemiPlanarYUV(enum AVPixelFormat pix_fmt)
693 {
694 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
695 av_assert0(desc);
696 return (isPlanarYUV(pix_fmt) && desc->comp[1].plane == desc->comp[2].plane);
697 }
698
isRGB(enum AVPixelFormat pix_fmt)699 static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
700 {
701 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
702 av_assert0(desc);
703 return (desc->flags & AV_PIX_FMT_FLAG_RGB);
704 }
705
isGray(enum AVPixelFormat pix_fmt)706 static av_always_inline int isGray(enum AVPixelFormat pix_fmt)
707 {
708 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
709 av_assert0(desc);
710 return !(desc->flags & AV_PIX_FMT_FLAG_PAL) &&
711 !(desc->flags & AV_PIX_FMT_FLAG_HWACCEL) &&
712 desc->nb_components <= 2 &&
713 pix_fmt != AV_PIX_FMT_MONOBLACK &&
714 pix_fmt != AV_PIX_FMT_MONOWHITE;
715 }
716
isRGBinInt(enum AVPixelFormat pix_fmt)717 static av_always_inline int isRGBinInt(enum AVPixelFormat pix_fmt)
718 {
719 return pix_fmt == AV_PIX_FMT_RGB48BE ||
720 pix_fmt == AV_PIX_FMT_RGB48LE ||
721 pix_fmt == AV_PIX_FMT_RGB32 ||
722 pix_fmt == AV_PIX_FMT_RGB32_1 ||
723 pix_fmt == AV_PIX_FMT_RGB24 ||
724 pix_fmt == AV_PIX_FMT_RGB565BE ||
725 pix_fmt == AV_PIX_FMT_RGB565LE ||
726 pix_fmt == AV_PIX_FMT_RGB555BE ||
727 pix_fmt == AV_PIX_FMT_RGB555LE ||
728 pix_fmt == AV_PIX_FMT_RGB444BE ||
729 pix_fmt == AV_PIX_FMT_RGB444LE ||
730 pix_fmt == AV_PIX_FMT_RGB8 ||
731 pix_fmt == AV_PIX_FMT_RGB4 ||
732 pix_fmt == AV_PIX_FMT_RGB4_BYTE ||
733 pix_fmt == AV_PIX_FMT_RGBA64BE ||
734 pix_fmt == AV_PIX_FMT_RGBA64LE ||
735 pix_fmt == AV_PIX_FMT_MONOBLACK ||
736 pix_fmt == AV_PIX_FMT_MONOWHITE;
737 }
738
isBGRinInt(enum AVPixelFormat pix_fmt)739 static av_always_inline int isBGRinInt(enum AVPixelFormat pix_fmt)
740 {
741 return pix_fmt == AV_PIX_FMT_BGR48BE ||
742 pix_fmt == AV_PIX_FMT_BGR48LE ||
743 pix_fmt == AV_PIX_FMT_BGR32 ||
744 pix_fmt == AV_PIX_FMT_BGR32_1 ||
745 pix_fmt == AV_PIX_FMT_BGR24 ||
746 pix_fmt == AV_PIX_FMT_BGR565BE ||
747 pix_fmt == AV_PIX_FMT_BGR565LE ||
748 pix_fmt == AV_PIX_FMT_BGR555BE ||
749 pix_fmt == AV_PIX_FMT_BGR555LE ||
750 pix_fmt == AV_PIX_FMT_BGR444BE ||
751 pix_fmt == AV_PIX_FMT_BGR444LE ||
752 pix_fmt == AV_PIX_FMT_BGR8 ||
753 pix_fmt == AV_PIX_FMT_BGR4 ||
754 pix_fmt == AV_PIX_FMT_BGR4_BYTE ||
755 pix_fmt == AV_PIX_FMT_BGRA64BE ||
756 pix_fmt == AV_PIX_FMT_BGRA64LE ||
757 pix_fmt == AV_PIX_FMT_MONOBLACK ||
758 pix_fmt == AV_PIX_FMT_MONOWHITE;
759 }
760
isBayer(enum AVPixelFormat pix_fmt)761 static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
762 {
763 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
764 av_assert0(desc);
765 return !!(desc->flags & AV_PIX_FMT_FLAG_BAYER);
766 }
767
isBayer16BPS(enum AVPixelFormat pix_fmt)768 static av_always_inline int isBayer16BPS(enum AVPixelFormat pix_fmt)
769 {
770 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
771 av_assert0(desc);
772 return desc->comp[1].depth == 8;
773 }
774
isAnyRGB(enum AVPixelFormat pix_fmt)775 static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
776 {
777 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
778 av_assert0(desc);
779 return (desc->flags & AV_PIX_FMT_FLAG_RGB) ||
780 pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE;
781 }
782
isFloat(enum AVPixelFormat pix_fmt)783 static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
784 {
785 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
786 av_assert0(desc);
787 return desc->flags & AV_PIX_FMT_FLAG_FLOAT;
788 }
789
isALPHA(enum AVPixelFormat pix_fmt)790 static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
791 {
792 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
793 av_assert0(desc);
794 if (pix_fmt == AV_PIX_FMT_PAL8)
795 return 1;
796 return desc->flags & AV_PIX_FMT_FLAG_ALPHA;
797 }
798
isPacked(enum AVPixelFormat pix_fmt)799 static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
800 {
801 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
802 av_assert0(desc);
803 return (desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
804 pix_fmt == AV_PIX_FMT_PAL8 ||
805 pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE;
806 }
807
isPlanar(enum AVPixelFormat pix_fmt)808 static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
809 {
810 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
811 av_assert0(desc);
812 return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
813 }
814
isPackedRGB(enum AVPixelFormat pix_fmt)815 static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
816 {
817 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
818 av_assert0(desc);
819 return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
820 }
821
isPlanarRGB(enum AVPixelFormat pix_fmt)822 static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
823 {
824 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
825 av_assert0(desc);
826 return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
827 (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
828 }
829
usePal(enum AVPixelFormat pix_fmt)830 static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
831 {
832 switch (pix_fmt) {
833 case AV_PIX_FMT_PAL8:
834 case AV_PIX_FMT_BGR4_BYTE:
835 case AV_PIX_FMT_BGR8:
836 case AV_PIX_FMT_GRAY8:
837 case AV_PIX_FMT_RGB4_BYTE:
838 case AV_PIX_FMT_RGB8:
839 return 1;
840 default:
841 return 0;
842 }
843 }
844
845 extern const uint64_t ff_dither4[2];
846 extern const uint64_t ff_dither8[2];
847
848 extern const uint8_t ff_dither_2x2_4[3][8];
849 extern const uint8_t ff_dither_2x2_8[3][8];
850 extern const uint8_t ff_dither_4x4_16[5][8];
851 extern const uint8_t ff_dither_8x8_32[9][8];
852 extern const uint8_t ff_dither_8x8_73[9][8];
853 extern const uint8_t ff_dither_8x8_128[9][8];
854 extern const uint8_t ff_dither_8x8_220[9][8];
855
856 extern const int32_t ff_yuv2rgb_coeffs[11][4];
857
858 extern const AVClass ff_sws_context_class;
859
860 /**
861 * Set c->swscale to an unscaled converter if one exists for the specific
862 * source and destination formats, bit depths, flags, etc.
863 */
864 void ff_get_unscaled_swscale(SwsContext *c);
865 void ff_get_unscaled_swscale_ppc(SwsContext *c);
866 void ff_get_unscaled_swscale_arm(SwsContext *c);
867 void ff_get_unscaled_swscale_aarch64(SwsContext *c);
868
869 /**
870 * Return function pointer to fastest main scaler path function depending
871 * on architecture and available optimizations.
872 */
873 SwsFunc ff_getSwsFunc(SwsContext *c);
874
875 void ff_sws_init_input_funcs(SwsContext *c);
876 void ff_sws_init_output_funcs(SwsContext *c,
877 yuv2planar1_fn *yuv2plane1,
878 yuv2planarX_fn *yuv2planeX,
879 yuv2interleavedX_fn *yuv2nv12cX,
880 yuv2packed1_fn *yuv2packed1,
881 yuv2packed2_fn *yuv2packed2,
882 yuv2packedX_fn *yuv2packedX,
883 yuv2anyX_fn *yuv2anyX);
884 void ff_sws_init_swscale_ppc(SwsContext *c);
885 void ff_sws_init_swscale_vsx(SwsContext *c);
886 void ff_sws_init_swscale_x86(SwsContext *c);
887 void ff_sws_init_swscale_aarch64(SwsContext *c);
888 void ff_sws_init_swscale_arm(SwsContext *c);
889
890 void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth,
891 const uint8_t *src, int srcW, int xInc);
892 void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2,
893 int dstWidth, const uint8_t *src1,
894 const uint8_t *src2, int srcW, int xInc);
895 int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
896 int16_t *filter, int32_t *filterPos,
897 int numSplits);
898 void ff_hyscale_fast_mmxext(SwsContext *c, int16_t *dst,
899 int dstWidth, const uint8_t *src,
900 int srcW, int xInc);
901 void ff_hcscale_fast_mmxext(SwsContext *c, int16_t *dst1, int16_t *dst2,
902 int dstWidth, const uint8_t *src1,
903 const uint8_t *src2, int srcW, int xInc);
904
905 /**
906 * Allocate and return an SwsContext.
907 * This is like sws_getContext() but does not perform the init step, allowing
908 * the user to set additional AVOptions.
909 *
910 * @see sws_getContext()
911 */
912 struct SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
913 int dstW, int dstH, enum AVPixelFormat dstFormat,
914 int flags, const double *param);
915
916 int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[],
917 int srcStride[], int srcSliceY, int srcSliceH,
918 uint8_t *dst[], int dstStride[]);
919
fillPlane16(uint8_t * plane,int stride,int width,int height,int y,int alpha,int bits,const int big_endian)920 static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
921 int alpha, int bits, const int big_endian)
922 {
923 int i, j;
924 uint8_t *ptr = plane + stride * y;
925 int v = alpha ? 0xFFFF>>(16-bits) : (1<<(bits-1));
926 for (i = 0; i < height; i++) {
927 #define FILL(wfunc) \
928 for (j = 0; j < width; j++) {\
929 wfunc(ptr+2*j, v);\
930 }
931 if (big_endian) {
932 FILL(AV_WB16);
933 } else {
934 FILL(AV_WL16);
935 }
936 ptr += stride;
937 }
938 #undef FILL
939 }
940
fillPlane32(uint8_t * plane,int stride,int width,int height,int y,int alpha,int bits,const int big_endian,int is_float)941 static inline void fillPlane32(uint8_t *plane, int stride, int width, int height, int y,
942 int alpha, int bits, const int big_endian, int is_float)
943 {
944 int i, j;
945 uint8_t *ptr = plane + stride * y;
946 uint32_t v;
947 uint32_t onef32 = 0x3f800000;
948 if (is_float)
949 v = alpha ? onef32 : 0;
950 else
951 v = alpha ? 0xFFFFFFFF>>(32-bits) : (1<<(bits-1));
952
953 for (i = 0; i < height; i++) {
954 #define FILL(wfunc) \
955 for (j = 0; j < width; j++) {\
956 wfunc(ptr+4*j, v);\
957 }
958 if (big_endian) {
959 FILL(AV_WB32);
960 } else {
961 FILL(AV_WL32);
962 }
963 ptr += stride;
964 }
965 #undef FILL
966 }
967
968
969 #define MAX_SLICE_PLANES 4
970
971 /// Slice plane
972 typedef struct SwsPlane
973 {
974 int available_lines; ///< max number of lines that can be hold by this plane
975 int sliceY; ///< index of first line
976 int sliceH; ///< number of lines
977 uint8_t **line; ///< line buffer
978 uint8_t **tmp; ///< Tmp line buffer used by mmx code
979 } SwsPlane;
980
981 /**
982 * Struct which defines a slice of an image to be scaled or an output for
983 * a scaled slice.
984 * A slice can also be used as intermediate ring buffer for scaling steps.
985 */
986 typedef struct SwsSlice
987 {
988 int width; ///< Slice line width
989 int h_chr_sub_sample; ///< horizontal chroma subsampling factor
990 int v_chr_sub_sample; ///< vertical chroma subsampling factor
991 int is_ring; ///< flag to identify if this slice is a ring buffer
992 int should_free_lines; ///< flag to identify if there are dynamic allocated lines
993 enum AVPixelFormat fmt; ///< planes pixel format
994 SwsPlane plane[MAX_SLICE_PLANES]; ///< color planes
995 } SwsSlice;
996
997 /**
998 * Struct which holds all necessary data for processing a slice.
999 * A processing step can be a color conversion or horizontal/vertical scaling.
1000 */
1001 typedef struct SwsFilterDescriptor
1002 {
1003 SwsSlice *src; ///< Source slice
1004 SwsSlice *dst; ///< Output slice
1005
1006 int alpha; ///< Flag for processing alpha channel
1007 void *instance; ///< Filter instance data
1008
1009 /// Function for processing input slice sliceH lines starting from line sliceY
1010 int (*process)(SwsContext *c, struct SwsFilterDescriptor *desc, int sliceY, int sliceH);
1011 } SwsFilterDescriptor;
1012
1013 // warp input lines in the form (src + width*i + j) to slice format (line[i][j])
1014 // relative=true means first line src[x][0] otherwise first line is src[x][lum/crh Y]
1015 int ff_init_slice_from_src(SwsSlice * s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative);
1016
1017 // Initialize scaler filter descriptor chain
1018 int ff_init_filters(SwsContext *c);
1019
1020 // Free all filter data
1021 int ff_free_filters(SwsContext *c);
1022
1023 /*
1024 function for applying ring buffer logic into slice s
1025 It checks if the slice can hold more @lum lines, if yes
1026 do nothing otherwise remove @lum least used lines.
1027 It applies the same procedure for @chr lines.
1028 */
1029 int ff_rotate_slice(SwsSlice *s, int lum, int chr);
1030
1031 /// initializes gamma conversion descriptor
1032 int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice * src, uint16_t *table);
1033
1034 /// initializes lum pixel format conversion descriptor
1035 int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal);
1036
1037 /// initializes lum horizontal scaling descriptor
1038 int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc);
1039
1040 /// initializes chr pixel format conversion descriptor
1041 int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal);
1042
1043 /// initializes chr horizontal scaling descriptor
1044 int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc);
1045
1046 int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst);
1047
1048 /// initializes vertical scaling descriptors
1049 int ff_init_vscale(SwsContext *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst);
1050
1051 /// setup vertical scaler functions
1052 void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX,
1053 yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2,
1054 yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx);
1055
1056 //number of extra lines to process
1057 #define MAX_LINES_AHEAD 4
1058
1059 #endif /* SWSCALE_SWSCALE_INTERNAL_H */
1060