• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkMatrix.h"
9 #include "include/core/SkPoint3.h"
10 #include "include/private/SkNx.h"
11 #include "src/core/SkGeometry.h"
12 #include "src/core/SkPointPriv.h"
13 
14 #include <utility>
15 
to_vector(const Sk2s & x)16 static SkVector to_vector(const Sk2s& x) {
17     SkVector vector;
18     x.store(&vector);
19     return vector;
20 }
21 
22 ////////////////////////////////////////////////////////////////////////
23 
is_not_monotonic(SkScalar a,SkScalar b,SkScalar c)24 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
25     SkScalar ab = a - b;
26     SkScalar bc = b - c;
27     if (ab < 0) {
28         bc = -bc;
29     }
30     return ab == 0 || bc < 0;
31 }
32 
33 ////////////////////////////////////////////////////////////////////////
34 
valid_unit_divide(SkScalar numer,SkScalar denom,SkScalar * ratio)35 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
36     SkASSERT(ratio);
37 
38     if (numer < 0) {
39         numer = -numer;
40         denom = -denom;
41     }
42 
43     if (denom == 0 || numer == 0 || numer >= denom) {
44         return 0;
45     }
46 
47     SkScalar r = numer / denom;
48     if (SkScalarIsNaN(r)) {
49         return 0;
50     }
51     SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
52     if (r == 0) { // catch underflow if numer <<<< denom
53         return 0;
54     }
55     *ratio = r;
56     return 1;
57 }
58 
59 // Just returns its argument, but makes it easy to set a break-point to know when
60 // SkFindUnitQuadRoots is going to return 0 (an error).
return_check_zero(int value)61 static int return_check_zero(int value) {
62     if (value == 0) {
63         return 0;
64     }
65     return value;
66 }
67 
68 /** From Numerical Recipes in C.
69 
70     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
71     x1 = Q / A
72     x2 = C / Q
73 */
SkFindUnitQuadRoots(SkScalar A,SkScalar B,SkScalar C,SkScalar roots[2])74 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
75     SkASSERT(roots);
76 
77     if (A == 0) {
78         return return_check_zero(valid_unit_divide(-C, B, roots));
79     }
80 
81     SkScalar* r = roots;
82 
83     // use doubles so we don't overflow temporarily trying to compute R
84     double dr = (double)B * B - 4 * (double)A * C;
85     if (dr < 0) {
86         return return_check_zero(0);
87     }
88     dr = sqrt(dr);
89     SkScalar R = SkDoubleToScalar(dr);
90     if (!SkScalarIsFinite(R)) {
91         return return_check_zero(0);
92     }
93 
94     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
95     r += valid_unit_divide(Q, A, r);
96     r += valid_unit_divide(C, Q, r);
97     if (r - roots == 2) {
98         if (roots[0] > roots[1]) {
99             using std::swap;
100             swap(roots[0], roots[1]);
101         } else if (roots[0] == roots[1]) { // nearly-equal?
102             r -= 1; // skip the double root
103         }
104     }
105     return return_check_zero((int)(r - roots));
106 }
107 
108 ///////////////////////////////////////////////////////////////////////////////
109 ///////////////////////////////////////////////////////////////////////////////
110 
SkEvalQuadAt(const SkPoint src[3],SkScalar t,SkPoint * pt,SkVector * tangent)111 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
112     SkASSERT(src);
113     SkASSERT(t >= 0 && t <= SK_Scalar1);
114 
115     if (pt) {
116         *pt = SkEvalQuadAt(src, t);
117     }
118     if (tangent) {
119         *tangent = SkEvalQuadTangentAt(src, t);
120     }
121 }
122 
SkEvalQuadAt(const SkPoint src[3],SkScalar t)123 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
124     return to_point(SkQuadCoeff(src).eval(t));
125 }
126 
SkEvalQuadTangentAt(const SkPoint src[3],SkScalar t)127 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
128     // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
129     // zero tangent vector when t is 0 or 1, and the control point is equal
130     // to the end point. In this case, use the quad end points to compute the tangent.
131     if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
132         return src[2] - src[0];
133     }
134     SkASSERT(src);
135     SkASSERT(t >= 0 && t <= SK_Scalar1);
136 
137     Sk2s P0 = from_point(src[0]);
138     Sk2s P1 = from_point(src[1]);
139     Sk2s P2 = from_point(src[2]);
140 
141     Sk2s B = P1 - P0;
142     Sk2s A = P2 - P1 - B;
143     Sk2s T = A * Sk2s(t) + B;
144 
145     return to_vector(T + T);
146 }
147 
interp(const Sk2s & v0,const Sk2s & v1,const Sk2s & t)148 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
149     return v0 + (v1 - v0) * t;
150 }
151 
SkChopQuadAt(const SkPoint src[3],SkPoint dst[5],SkScalar t)152 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
153     SkASSERT(t > 0 && t < SK_Scalar1);
154 
155     Sk2s p0 = from_point(src[0]);
156     Sk2s p1 = from_point(src[1]);
157     Sk2s p2 = from_point(src[2]);
158     Sk2s tt(t);
159 
160     Sk2s p01 = interp(p0, p1, tt);
161     Sk2s p12 = interp(p1, p2, tt);
162 
163     dst[0] = to_point(p0);
164     dst[1] = to_point(p01);
165     dst[2] = to_point(interp(p01, p12, tt));
166     dst[3] = to_point(p12);
167     dst[4] = to_point(p2);
168 }
169 
SkChopQuadAtHalf(const SkPoint src[3],SkPoint dst[5])170 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
171     SkChopQuadAt(src, dst, 0.5f);
172 }
173 
174 /** Quad'(t) = At + B, where
175     A = 2(a - 2b + c)
176     B = 2(b - a)
177     Solve for t, only if it fits between 0 < t < 1
178 */
SkFindQuadExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar tValue[1])179 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
180     /*  At + B == 0
181         t = -B / A
182     */
183     return valid_unit_divide(a - b, a - b - b + c, tValue);
184 }
185 
flatten_double_quad_extrema(SkScalar coords[14])186 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
187     coords[2] = coords[6] = coords[4];
188 }
189 
190 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
191  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
192  */
SkChopQuadAtYExtrema(const SkPoint src[3],SkPoint dst[5])193 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
194     SkASSERT(src);
195     SkASSERT(dst);
196 
197     SkScalar a = src[0].fY;
198     SkScalar b = src[1].fY;
199     SkScalar c = src[2].fY;
200 
201     if (is_not_monotonic(a, b, c)) {
202         SkScalar    tValue;
203         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
204             SkChopQuadAt(src, dst, tValue);
205             flatten_double_quad_extrema(&dst[0].fY);
206             return 1;
207         }
208         // if we get here, we need to force dst to be monotonic, even though
209         // we couldn't compute a unit_divide value (probably underflow).
210         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
211     }
212     dst[0].set(src[0].fX, a);
213     dst[1].set(src[1].fX, b);
214     dst[2].set(src[2].fX, c);
215     return 0;
216 }
217 
218 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
219     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
220  */
SkChopQuadAtXExtrema(const SkPoint src[3],SkPoint dst[5])221 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
222     SkASSERT(src);
223     SkASSERT(dst);
224 
225     SkScalar a = src[0].fX;
226     SkScalar b = src[1].fX;
227     SkScalar c = src[2].fX;
228 
229     if (is_not_monotonic(a, b, c)) {
230         SkScalar tValue;
231         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
232             SkChopQuadAt(src, dst, tValue);
233             flatten_double_quad_extrema(&dst[0].fX);
234             return 1;
235         }
236         // if we get here, we need to force dst to be monotonic, even though
237         // we couldn't compute a unit_divide value (probably underflow).
238         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
239     }
240     dst[0].set(a, src[0].fY);
241     dst[1].set(b, src[1].fY);
242     dst[2].set(c, src[2].fY);
243     return 0;
244 }
245 
246 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
247 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
248 //  F''(t)  = 2 (a - 2b + c)
249 //
250 //  A = 2 (b - a)
251 //  B = 2 (a - 2b + c)
252 //
253 //  Maximum curvature for a quadratic means solving
254 //  Fx' Fx'' + Fy' Fy'' = 0
255 //
256 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
257 //
SkFindQuadMaxCurvature(const SkPoint src[3])258 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
259     SkScalar    Ax = src[1].fX - src[0].fX;
260     SkScalar    Ay = src[1].fY - src[0].fY;
261     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
262     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
263 
264     SkScalar numer = -(Ax * Bx + Ay * By);
265     SkScalar denom = Bx * Bx + By * By;
266     if (denom < 0) {
267         numer = -numer;
268         denom = -denom;
269     }
270     if (numer <= 0) {
271         return 0;
272     }
273     if (numer >= denom) {  // Also catches denom=0.
274         return 1;
275     }
276     SkScalar t = numer / denom;
277     SkASSERT((0 <= t && t < 1) || SkScalarIsNaN(t));
278     return t;
279 }
280 
SkChopQuadAtMaxCurvature(const SkPoint src[3],SkPoint dst[5])281 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
282     SkScalar t = SkFindQuadMaxCurvature(src);
283     if (t == 0 || t == 1) {
284         memcpy(dst, src, 3 * sizeof(SkPoint));
285         return 1;
286     } else {
287         SkChopQuadAt(src, dst, t);
288         return 2;
289     }
290 }
291 
SkConvertQuadToCubic(const SkPoint src[3],SkPoint dst[4])292 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
293     Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
294     Sk2s s0 = from_point(src[0]);
295     Sk2s s1 = from_point(src[1]);
296     Sk2s s2 = from_point(src[2]);
297 
298     dst[0] = to_point(s0);
299     dst[1] = to_point(s0 + (s1 - s0) * scale);
300     dst[2] = to_point(s2 + (s1 - s2) * scale);
301     dst[3] = to_point(s2);
302 }
303 
304 //////////////////////////////////////////////////////////////////////////////
305 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
306 //////////////////////////////////////////////////////////////////////////////
307 
eval_cubic_derivative(const SkPoint src[4],SkScalar t)308 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
309     SkQuadCoeff coeff;
310     Sk2s P0 = from_point(src[0]);
311     Sk2s P1 = from_point(src[1]);
312     Sk2s P2 = from_point(src[2]);
313     Sk2s P3 = from_point(src[3]);
314 
315     coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
316     coeff.fB = times_2(P2 - times_2(P1) + P0);
317     coeff.fC = P1 - P0;
318     return to_vector(coeff.eval(t));
319 }
320 
eval_cubic_2ndDerivative(const SkPoint src[4],SkScalar t)321 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
322     Sk2s P0 = from_point(src[0]);
323     Sk2s P1 = from_point(src[1]);
324     Sk2s P2 = from_point(src[2]);
325     Sk2s P3 = from_point(src[3]);
326     Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
327     Sk2s B = P2 - times_2(P1) + P0;
328 
329     return to_vector(A * Sk2s(t) + B);
330 }
331 
SkEvalCubicAt(const SkPoint src[4],SkScalar t,SkPoint * loc,SkVector * tangent,SkVector * curvature)332 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
333                    SkVector* tangent, SkVector* curvature) {
334     SkASSERT(src);
335     SkASSERT(t >= 0 && t <= SK_Scalar1);
336 
337     if (loc) {
338         *loc = to_point(SkCubicCoeff(src).eval(t));
339     }
340     if (tangent) {
341         // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
342         // adjacent control point is equal to the end point. In this case, use the
343         // next control point or the end points to compute the tangent.
344         if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
345             if (t == 0) {
346                 *tangent = src[2] - src[0];
347             } else {
348                 *tangent = src[3] - src[1];
349             }
350             if (!tangent->fX && !tangent->fY) {
351                 *tangent = src[3] - src[0];
352             }
353         } else {
354             *tangent = eval_cubic_derivative(src, t);
355         }
356     }
357     if (curvature) {
358         *curvature = eval_cubic_2ndDerivative(src, t);
359     }
360 }
361 
362 /** Cubic'(t) = At^2 + Bt + C, where
363     A = 3(-a + 3(b - c) + d)
364     B = 6(a - 2b + c)
365     C = 3(b - a)
366     Solve for t, keeping only those that fit betwee 0 < t < 1
367 */
SkFindCubicExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar tValues[2])368 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
369                        SkScalar tValues[2]) {
370     // we divide A,B,C by 3 to simplify
371     SkScalar A = d - a + 3*(b - c);
372     SkScalar B = 2*(a - b - b + c);
373     SkScalar C = b - a;
374 
375     return SkFindUnitQuadRoots(A, B, C, tValues);
376 }
377 
SkChopCubicAt(const SkPoint src[4],SkPoint dst[7],SkScalar t)378 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
379     SkASSERT(t > 0 && t < SK_Scalar1);
380 
381     Sk2s    p0 = from_point(src[0]);
382     Sk2s    p1 = from_point(src[1]);
383     Sk2s    p2 = from_point(src[2]);
384     Sk2s    p3 = from_point(src[3]);
385     Sk2s    tt(t);
386 
387     Sk2s    ab = interp(p0, p1, tt);
388     Sk2s    bc = interp(p1, p2, tt);
389     Sk2s    cd = interp(p2, p3, tt);
390     Sk2s    abc = interp(ab, bc, tt);
391     Sk2s    bcd = interp(bc, cd, tt);
392     Sk2s    abcd = interp(abc, bcd, tt);
393 
394     dst[0] = to_point(p0);
395     dst[1] = to_point(ab);
396     dst[2] = to_point(abc);
397     dst[3] = to_point(abcd);
398     dst[4] = to_point(bcd);
399     dst[5] = to_point(cd);
400     dst[6] = to_point(p3);
401 }
402 
403 /*  http://code.google.com/p/skia/issues/detail?id=32
404 
405     This test code would fail when we didn't check the return result of
406     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
407     that after the first chop, the parameters to valid_unit_divide are equal
408     (thanks to finite float precision and rounding in the subtracts). Thus
409     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
410     up with 1.0, hence the need to check and just return the last cubic as
411     a degenerate clump of 4 points in the sampe place.
412 
413     static void test_cubic() {
414         SkPoint src[4] = {
415             { 556.25000, 523.03003 },
416             { 556.23999, 522.96002 },
417             { 556.21997, 522.89001 },
418             { 556.21997, 522.82001 }
419         };
420         SkPoint dst[10];
421         SkScalar tval[] = { 0.33333334f, 0.99999994f };
422         SkChopCubicAt(src, dst, tval, 2);
423     }
424  */
425 
SkChopCubicAt(const SkPoint src[4],SkPoint dst[],const SkScalar tValues[],int roots)426 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
427                    const SkScalar tValues[], int roots) {
428 #ifdef SK_DEBUG
429     {
430         for (int i = 0; i < roots - 1; i++)
431         {
432             SkASSERT(0 < tValues[i] && tValues[i] < 1);
433             SkASSERT(0 < tValues[i+1] && tValues[i+1] < 1);
434             SkASSERT(tValues[i] < tValues[i+1]);
435         }
436     }
437 #endif
438 
439     if (dst) {
440         if (roots == 0) { // nothing to chop
441             memcpy(dst, src, 4*sizeof(SkPoint));
442         } else {
443             SkScalar    t = tValues[0];
444             SkPoint     tmp[4];
445 
446             for (int i = 0; i < roots; i++) {
447                 SkChopCubicAt(src, dst, t);
448                 if (i == roots - 1) {
449                     break;
450                 }
451 
452                 dst += 3;
453                 // have src point to the remaining cubic (after the chop)
454                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
455                 src = tmp;
456 
457                 // watch out in case the renormalized t isn't in range
458                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
459                                        SK_Scalar1 - tValues[i], &t)) {
460                     // if we can't, just create a degenerate cubic
461                     dst[4] = dst[5] = dst[6] = src[3];
462                     break;
463                 }
464             }
465         }
466     }
467 }
468 
SkChopCubicAtHalf(const SkPoint src[4],SkPoint dst[7])469 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
470     SkChopCubicAt(src, dst, 0.5f);
471 }
472 
flatten_double_cubic_extrema(SkScalar coords[14])473 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
474     coords[4] = coords[8] = coords[6];
475 }
476 
477 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
478     the resulting beziers are monotonic in Y. This is called by the scan
479     converter.  Depending on what is returned, dst[] is treated as follows:
480     0   dst[0..3] is the original cubic
481     1   dst[0..3] and dst[3..6] are the two new cubics
482     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
483     If dst == null, it is ignored and only the count is returned.
484 */
SkChopCubicAtYExtrema(const SkPoint src[4],SkPoint dst[10])485 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
486     SkScalar    tValues[2];
487     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
488                                            src[3].fY, tValues);
489 
490     SkChopCubicAt(src, dst, tValues, roots);
491     if (dst && roots > 0) {
492         // we do some cleanup to ensure our Y extrema are flat
493         flatten_double_cubic_extrema(&dst[0].fY);
494         if (roots == 2) {
495             flatten_double_cubic_extrema(&dst[3].fY);
496         }
497     }
498     return roots;
499 }
500 
SkChopCubicAtXExtrema(const SkPoint src[4],SkPoint dst[10])501 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
502     SkScalar    tValues[2];
503     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
504                                            src[3].fX, tValues);
505 
506     SkChopCubicAt(src, dst, tValues, roots);
507     if (dst && roots > 0) {
508         // we do some cleanup to ensure our Y extrema are flat
509         flatten_double_cubic_extrema(&dst[0].fX);
510         if (roots == 2) {
511             flatten_double_cubic_extrema(&dst[3].fX);
512         }
513     }
514     return roots;
515 }
516 
517 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
518 
519     Inflection means that curvature is zero.
520     Curvature is [F' x F''] / [F'^3]
521     So we solve F'x X F''y - F'y X F''y == 0
522     After some canceling of the cubic term, we get
523     A = b - a
524     B = c - 2b + a
525     C = d - 3c + 3b - a
526     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
527 */
SkFindCubicInflections(const SkPoint src[4],SkScalar tValues[])528 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
529     SkScalar    Ax = src[1].fX - src[0].fX;
530     SkScalar    Ay = src[1].fY - src[0].fY;
531     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
532     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
533     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
534     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
535 
536     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
537                                Ax*Cy - Ay*Cx,
538                                Ax*By - Ay*Bx,
539                                tValues);
540 }
541 
SkChopCubicAtInflections(const SkPoint src[],SkPoint dst[10])542 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
543     SkScalar    tValues[2];
544     int         count = SkFindCubicInflections(src, tValues);
545 
546     if (dst) {
547         if (count == 0) {
548             memcpy(dst, src, 4 * sizeof(SkPoint));
549         } else {
550             SkChopCubicAt(src, dst, tValues, count);
551         }
552     }
553     return count + 1;
554 }
555 
556 // Assumes the third component of points is 1.
557 // Calcs p0 . (p1 x p2)
calc_dot_cross_cubic(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)558 static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
559     const double xComp = (double) p0.fX * ((double) p1.fY - (double) p2.fY);
560     const double yComp = (double) p0.fY * ((double) p2.fX - (double) p1.fX);
561     const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX;
562     return (xComp + yComp + wComp);
563 }
564 
565 // Returns a positive power of 2 that, when multiplied by n, and excepting the two edge cases listed
566 // below, shifts the exponent of n to yield a magnitude somewhere inside [1..2).
567 // Returns 2^1023 if abs(n) < 2^-1022 (including 0).
568 // Returns NaN if n is Inf or NaN.
previous_inverse_pow2(double n)569 inline static double previous_inverse_pow2(double n) {
570     uint64_t bits;
571     memcpy(&bits, &n, sizeof(double));
572     bits = ((1023llu*2 << 52) + ((1llu << 52) - 1)) - bits; // exp=-exp
573     bits &= (0x7ffllu) << 52; // mantissa=1.0, sign=0
574     memcpy(&n, &bits, sizeof(double));
575     return n;
576 }
577 
write_cubic_inflection_roots(double t0,double s0,double t1,double s1,double * t,double * s)578 inline static void write_cubic_inflection_roots(double t0, double s0, double t1, double s1,
579                                                 double* t, double* s) {
580     t[0] = t0;
581     s[0] = s0;
582 
583     // This copysign/abs business orients the implicit function so positive values are always on the
584     // "left" side of the curve.
585     t[1] = -copysign(t1, t1 * s1);
586     s[1] = -fabs(s1);
587 
588     // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above).
589     if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) {
590         using std::swap;
591         swap(t[0], t[1]);
592         swap(s[0], s[1]);
593     }
594 }
595 
SkClassifyCubic(const SkPoint P[4],double t[2],double s[2],double d[4])596 SkCubicType SkClassifyCubic(const SkPoint P[4], double t[2], double s[2], double d[4]) {
597     // Find the cubic's inflection function, I = [T^3  -3T^2  3T  -1] dot D. (D0 will always be 0
598     // for integral cubics.)
599     //
600     // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
601     // 4.2 Curve Categorization:
602     //
603     // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
604     double A1 = calc_dot_cross_cubic(P[0], P[3], P[2]);
605     double A2 = calc_dot_cross_cubic(P[1], P[0], P[3]);
606     double A3 = calc_dot_cross_cubic(P[2], P[1], P[0]);
607 
608     double D3 = 3 * A3;
609     double D2 = D3 - A2;
610     double D1 = D2 - A2 + A1;
611 
612     // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us
613     // from overflow down the road while solving for roots and KLM functionals.
614     double Dmax = std::max(std::max(fabs(D1), fabs(D2)), fabs(D3));
615     double norm = previous_inverse_pow2(Dmax);
616     D1 *= norm;
617     D2 *= norm;
618     D3 *= norm;
619 
620     if (d) {
621         d[3] = D3;
622         d[2] = D2;
623         d[1] = D1;
624         d[0] = 0;
625     }
626 
627     // Now use the inflection function to classify the cubic.
628     //
629     // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
630     // 4.4 Integral Cubics:
631     //
632     // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
633     if (0 != D1) {
634         double discr = 3*D2*D2 - 4*D1*D3;
635         if (discr > 0) { // Serpentine.
636             if (t && s) {
637                 double q = 3*D2 + copysign(sqrt(3*discr), D2);
638                 write_cubic_inflection_roots(q, 6*D1, 2*D3, q, t, s);
639             }
640             return SkCubicType::kSerpentine;
641         } else if (discr < 0) { // Loop.
642             if (t && s) {
643                 double q = D2 + copysign(sqrt(-discr), D2);
644                 write_cubic_inflection_roots(q, 2*D1, 2*(D2*D2 - D3*D1), D1*q, t, s);
645             }
646             return SkCubicType::kLoop;
647         } else { // Cusp.
648             if (t && s) {
649                 write_cubic_inflection_roots(D2, 2*D1, D2, 2*D1, t, s);
650             }
651             return SkCubicType::kLocalCusp;
652         }
653     } else {
654         if (0 != D2) { // Cusp at T=infinity.
655             if (t && s) {
656                 write_cubic_inflection_roots(D3, 3*D2, 1, 0, t, s); // T1=infinity.
657             }
658             return SkCubicType::kCuspAtInfinity;
659         } else { // Degenerate.
660             if (t && s) {
661                 write_cubic_inflection_roots(1, 0, 1, 0, t, s); // T0=T1=infinity.
662             }
663             return 0 != D3 ? SkCubicType::kQuadratic : SkCubicType::kLineOrPoint;
664         }
665     }
666 }
667 
bubble_sort(T array[],int count)668 template <typename T> void bubble_sort(T array[], int count) {
669     for (int i = count - 1; i > 0; --i)
670         for (int j = i; j > 0; --j)
671             if (array[j] < array[j-1])
672             {
673                 T   tmp(array[j]);
674                 array[j] = array[j-1];
675                 array[j-1] = tmp;
676             }
677 }
678 
679 /**
680  *  Given an array and count, remove all pair-wise duplicates from the array,
681  *  keeping the existing sorting, and return the new count
682  */
collaps_duplicates(SkScalar array[],int count)683 static int collaps_duplicates(SkScalar array[], int count) {
684     for (int n = count; n > 1; --n) {
685         if (array[0] == array[1]) {
686             for (int i = 1; i < n; ++i) {
687                 array[i - 1] = array[i];
688             }
689             count -= 1;
690         } else {
691             array += 1;
692         }
693     }
694     return count;
695 }
696 
697 #ifdef SK_DEBUG
698 
699 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
700 
test_collaps_duplicates()701 static void test_collaps_duplicates() {
702     static bool gOnce;
703     if (gOnce) { return; }
704     gOnce = true;
705     const SkScalar src0[] = { 0 };
706     const SkScalar src1[] = { 0, 0 };
707     const SkScalar src2[] = { 0, 1 };
708     const SkScalar src3[] = { 0, 0, 0 };
709     const SkScalar src4[] = { 0, 0, 1 };
710     const SkScalar src5[] = { 0, 1, 1 };
711     const SkScalar src6[] = { 0, 1, 2 };
712     const struct {
713         const SkScalar* fData;
714         int fCount;
715         int fCollapsedCount;
716     } data[] = {
717         { TEST_COLLAPS_ENTRY(src0), 1 },
718         { TEST_COLLAPS_ENTRY(src1), 1 },
719         { TEST_COLLAPS_ENTRY(src2), 2 },
720         { TEST_COLLAPS_ENTRY(src3), 1 },
721         { TEST_COLLAPS_ENTRY(src4), 2 },
722         { TEST_COLLAPS_ENTRY(src5), 2 },
723         { TEST_COLLAPS_ENTRY(src6), 3 },
724     };
725     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
726         SkScalar dst[3];
727         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
728         int count = collaps_duplicates(dst, data[i].fCount);
729         SkASSERT(data[i].fCollapsedCount == count);
730         for (int j = 1; j < count; ++j) {
731             SkASSERT(dst[j-1] < dst[j]);
732         }
733     }
734 }
735 #endif
736 
SkScalarCubeRoot(SkScalar x)737 static SkScalar SkScalarCubeRoot(SkScalar x) {
738     return SkScalarPow(x, 0.3333333f);
739 }
740 
741 /*  Solve coeff(t) == 0, returning the number of roots that
742     lie withing 0 < t < 1.
743     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
744 
745     Eliminates repeated roots (so that all tValues are distinct, and are always
746     in increasing order.
747 */
solve_cubic_poly(const SkScalar coeff[4],SkScalar tValues[3])748 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
749     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
750         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
751     }
752 
753     SkScalar a, b, c, Q, R;
754 
755     {
756         SkASSERT(coeff[0] != 0);
757 
758         SkScalar inva = SkScalarInvert(coeff[0]);
759         a = coeff[1] * inva;
760         b = coeff[2] * inva;
761         c = coeff[3] * inva;
762     }
763     Q = (a*a - b*3) / 9;
764     R = (2*a*a*a - 9*a*b + 27*c) / 54;
765 
766     SkScalar Q3 = Q * Q * Q;
767     SkScalar R2MinusQ3 = R * R - Q3;
768     SkScalar adiv3 = a / 3;
769 
770     if (R2MinusQ3 < 0) { // we have 3 real roots
771         // the divide/root can, due to finite precisions, be slightly outside of -1...1
772         SkScalar theta = SkScalarACos(SkScalarPin(R / SkScalarSqrt(Q3), -1, 1));
773         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
774 
775         tValues[0] = SkScalarPin(neg2RootQ * SkScalarCos(theta/3) - adiv3, 0, 1);
776         tValues[1] = SkScalarPin(neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3, 0, 1);
777         tValues[2] = SkScalarPin(neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3, 0, 1);
778         SkDEBUGCODE(test_collaps_duplicates();)
779 
780         // now sort the roots
781         bubble_sort(tValues, 3);
782         return collaps_duplicates(tValues, 3);
783     } else {              // we have 1 real root
784         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
785         A = SkScalarCubeRoot(A);
786         if (R > 0) {
787             A = -A;
788         }
789         if (A != 0) {
790             A += Q / A;
791         }
792         tValues[0] = SkScalarPin(A - adiv3, 0, 1);
793         return 1;
794     }
795 }
796 
797 /*  Looking for F' dot F'' == 0
798 
799     A = b - a
800     B = c - 2b + a
801     C = d - 3c + 3b - a
802 
803     F' = 3Ct^2 + 6Bt + 3A
804     F'' = 6Ct + 6B
805 
806     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
807 */
formulate_F1DotF2(const SkScalar src[],SkScalar coeff[4])808 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
809     SkScalar    a = src[2] - src[0];
810     SkScalar    b = src[4] - 2 * src[2] + src[0];
811     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
812 
813     coeff[0] = c * c;
814     coeff[1] = 3 * b * c;
815     coeff[2] = 2 * b * b + c * a;
816     coeff[3] = a * b;
817 }
818 
819 /*  Looking for F' dot F'' == 0
820 
821     A = b - a
822     B = c - 2b + a
823     C = d - 3c + 3b - a
824 
825     F' = 3Ct^2 + 6Bt + 3A
826     F'' = 6Ct + 6B
827 
828     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
829 */
SkFindCubicMaxCurvature(const SkPoint src[4],SkScalar tValues[3])830 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
831     SkScalar coeffX[4], coeffY[4];
832     int      i;
833 
834     formulate_F1DotF2(&src[0].fX, coeffX);
835     formulate_F1DotF2(&src[0].fY, coeffY);
836 
837     for (i = 0; i < 4; i++) {
838         coeffX[i] += coeffY[i];
839     }
840 
841     int numRoots = solve_cubic_poly(coeffX, tValues);
842     // now remove extrema where the curvature is zero (mins)
843     // !!!! need a test for this !!!!
844     return numRoots;
845 }
846 
SkChopCubicAtMaxCurvature(const SkPoint src[4],SkPoint dst[13],SkScalar tValues[3])847 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
848                               SkScalar tValues[3]) {
849     SkScalar    t_storage[3];
850 
851     if (tValues == nullptr) {
852         tValues = t_storage;
853     }
854 
855     SkScalar roots[3];
856     int rootCount = SkFindCubicMaxCurvature(src, roots);
857 
858     // Throw out values not inside 0..1.
859     int count = 0;
860     for (int i = 0; i < rootCount; ++i) {
861         if (0 < roots[i] && roots[i] < 1) {
862             tValues[count++] = roots[i];
863         }
864     }
865 
866     if (dst) {
867         if (count == 0) {
868             memcpy(dst, src, 4 * sizeof(SkPoint));
869         } else {
870             SkChopCubicAt(src, dst, tValues, count);
871         }
872     }
873     return count + 1;
874 }
875 
876 // Returns a constant proportional to the dimensions of the cubic.
877 // Constant found through experimentation -- maybe there's a better way....
calc_cubic_precision(const SkPoint src[4])878 static SkScalar calc_cubic_precision(const SkPoint src[4]) {
879     return (SkPointPriv::DistanceToSqd(src[1], src[0]) + SkPointPriv::DistanceToSqd(src[2], src[1])
880             + SkPointPriv::DistanceToSqd(src[3], src[2])) * 1e-8f;
881 }
882 
883 // Returns true if both points src[testIndex], src[testIndex+1] are in the same half plane defined
884 // by the line segment src[lineIndex], src[lineIndex+1].
on_same_side(const SkPoint src[4],int testIndex,int lineIndex)885 static bool on_same_side(const SkPoint src[4], int testIndex, int lineIndex) {
886     SkPoint origin = src[lineIndex];
887     SkVector line = src[lineIndex + 1] - origin;
888     SkScalar crosses[2];
889     for (int index = 0; index < 2; ++index) {
890         SkVector testLine = src[testIndex + index] - origin;
891         crosses[index] = line.cross(testLine);
892     }
893     return crosses[0] * crosses[1] >= 0;
894 }
895 
896 // Return location (in t) of cubic cusp, if there is one.
897 // Note that classify cubic code does not reliably return all cusp'd cubics, so
898 // it is not called here.
SkFindCubicCusp(const SkPoint src[4])899 SkScalar SkFindCubicCusp(const SkPoint src[4]) {
900     // When the adjacent control point matches the end point, it behaves as if
901     // the cubic has a cusp: there's a point of max curvature where the derivative
902     // goes to zero. Ideally, this would be where t is zero or one, but math
903     // error makes not so. It is not uncommon to create cubics this way; skip them.
904     if (src[0] == src[1]) {
905         return -1;
906     }
907     if (src[2] == src[3]) {
908         return -1;
909     }
910     // Cubics only have a cusp if the line segments formed by the control and end points cross.
911     // Detect crossing if line ends are on opposite sides of plane formed by the other line.
912     if (on_same_side(src, 0, 2) || on_same_side(src, 2, 0)) {
913         return -1;
914     }
915     // Cubics may have multiple points of maximum curvature, although at most only
916     // one is a cusp.
917     SkScalar maxCurvature[3];
918     int roots = SkFindCubicMaxCurvature(src, maxCurvature);
919     for (int index = 0; index < roots; ++index) {
920         SkScalar testT = maxCurvature[index];
921         if (0 >= testT || testT >= 1) {  // no need to consider max curvature on the end
922             continue;
923         }
924         // A cusp is at the max curvature, and also has a derivative close to zero.
925         // Choose the 'close to zero' meaning by comparing the derivative length
926         // with the overall cubic size.
927         SkVector dPt = eval_cubic_derivative(src, testT);
928         SkScalar dPtMagnitude = SkPointPriv::LengthSqd(dPt);
929         SkScalar precision = calc_cubic_precision(src);
930         if (dPtMagnitude < precision) {
931             // All three max curvature t values may be close to the cusp;
932             // return the first one.
933             return testT;
934         }
935     }
936     return -1;
937 }
938 
939 #include "src/pathops/SkPathOpsCubic.h"
940 
941 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
942 
cubic_dchop_at_intercept(const SkPoint src[4],SkScalar intercept,SkPoint dst[7],InterceptProc method)943 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
944                                      InterceptProc method) {
945     SkDCubic cubic;
946     double roots[3];
947     int count = (cubic.set(src).*method)(intercept, roots);
948     if (count > 0) {
949         SkDCubicPair pair = cubic.chopAt(roots[0]);
950         for (int i = 0; i < 7; ++i) {
951             dst[i] = pair.pts[i].asSkPoint();
952         }
953         return true;
954     }
955     return false;
956 }
957 
SkChopMonoCubicAtY(SkPoint src[4],SkScalar y,SkPoint dst[7])958 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
959     return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
960 }
961 
SkChopMonoCubicAtX(SkPoint src[4],SkScalar x,SkPoint dst[7])962 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
963     return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
964 }
965 
966 ///////////////////////////////////////////////////////////////////////////////
967 //
968 // NURB representation for conics.  Helpful explanations at:
969 //
970 // http://citeseerx.ist.psu.edu/viewdoc/
971 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
972 // and
973 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
974 //
975 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
976 //     ------------------------------------------
977 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
978 //
979 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
980 //     ------------------------------------------------
981 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
982 //
983 
984 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
985 //
986 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
987 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
988 //  t^0 : -2 P0 w + 2 P1 w
989 //
990 //  We disregard magnitude, so we can freely ignore the denominator of F', and
991 //  divide the numerator by 2
992 //
993 //    coeff[0] for t^2
994 //    coeff[1] for t^1
995 //    coeff[2] for t^0
996 //
conic_deriv_coeff(const SkScalar src[],SkScalar w,SkScalar coeff[3])997 static void conic_deriv_coeff(const SkScalar src[],
998                               SkScalar w,
999                               SkScalar coeff[3]) {
1000     const SkScalar P20 = src[4] - src[0];
1001     const SkScalar P10 = src[2] - src[0];
1002     const SkScalar wP10 = w * P10;
1003     coeff[0] = w * P20 - P20;
1004     coeff[1] = P20 - 2 * wP10;
1005     coeff[2] = wP10;
1006 }
1007 
conic_find_extrema(const SkScalar src[],SkScalar w,SkScalar * t)1008 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1009     SkScalar coeff[3];
1010     conic_deriv_coeff(src, w, coeff);
1011 
1012     SkScalar tValues[2];
1013     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1014     SkASSERT(0 == roots || 1 == roots);
1015 
1016     if (1 == roots) {
1017         *t = tValues[0];
1018         return true;
1019     }
1020     return false;
1021 }
1022 
1023 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
p3d_interp(const SkScalar src[7],SkScalar dst[7],SkScalar t)1024 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
1025     SkScalar ab = SkScalarInterp(src[0], src[3], t);
1026     SkScalar bc = SkScalarInterp(src[3], src[6], t);
1027     dst[0] = ab;
1028     dst[3] = SkScalarInterp(ab, bc, t);
1029     dst[6] = bc;
1030 }
1031 
ratquad_mapTo3D(const SkPoint src[3],SkScalar w,SkPoint3 dst[3])1032 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkPoint3 dst[3]) {
1033     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1034     dst[1].set(src[1].fX * w, src[1].fY * w, w);
1035     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1036 }
1037 
project_down(const SkPoint3 & src)1038 static SkPoint project_down(const SkPoint3& src) {
1039     return {src.fX / src.fZ, src.fY / src.fZ};
1040 }
1041 
1042 // return false if infinity or NaN is generated; caller must check
chopAt(SkScalar t,SkConic dst[2]) const1043 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1044     SkPoint3 tmp[3], tmp2[3];
1045 
1046     ratquad_mapTo3D(fPts, fW, tmp);
1047 
1048     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1049     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1050     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1051 
1052     dst[0].fPts[0] = fPts[0];
1053     dst[0].fPts[1] = project_down(tmp2[0]);
1054     dst[0].fPts[2] = project_down(tmp2[1]); dst[1].fPts[0] = dst[0].fPts[2];
1055     dst[1].fPts[1] = project_down(tmp2[2]);
1056     dst[1].fPts[2] = fPts[2];
1057 
1058     // to put in "standard form", where w0 and w2 are both 1, we compute the
1059     // new w1 as sqrt(w1*w1/w0*w2)
1060     // or
1061     // w1 /= sqrt(w0*w2)
1062     //
1063     // However, in our case, we know that for dst[0]:
1064     //     w0 == 1, and for dst[1], w2 == 1
1065     //
1066     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1067     dst[0].fW = tmp2[0].fZ / root;
1068     dst[1].fW = tmp2[2].fZ / root;
1069     SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
1070     SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
1071     return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
1072 }
1073 
chopAt(SkScalar t1,SkScalar t2,SkConic * dst) const1074 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
1075     if (0 == t1 || 1 == t2) {
1076         if (0 == t1 && 1 == t2) {
1077             *dst = *this;
1078             return;
1079         } else {
1080             SkConic pair[2];
1081             if (this->chopAt(t1 ? t1 : t2, pair)) {
1082                 *dst = pair[SkToBool(t1)];
1083                 return;
1084             }
1085         }
1086     }
1087     SkConicCoeff coeff(*this);
1088     Sk2s tt1(t1);
1089     Sk2s aXY = coeff.fNumer.eval(tt1);
1090     Sk2s aZZ = coeff.fDenom.eval(tt1);
1091     Sk2s midTT((t1 + t2) / 2);
1092     Sk2s dXY = coeff.fNumer.eval(midTT);
1093     Sk2s dZZ = coeff.fDenom.eval(midTT);
1094     Sk2s tt2(t2);
1095     Sk2s cXY = coeff.fNumer.eval(tt2);
1096     Sk2s cZZ = coeff.fDenom.eval(tt2);
1097     Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
1098     Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
1099     dst->fPts[0] = to_point(aXY / aZZ);
1100     dst->fPts[1] = to_point(bXY / bZZ);
1101     dst->fPts[2] = to_point(cXY / cZZ);
1102     Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
1103     dst->fW = ww[0];
1104 }
1105 
evalAt(SkScalar t) const1106 SkPoint SkConic::evalAt(SkScalar t) const {
1107     return to_point(SkConicCoeff(*this).eval(t));
1108 }
1109 
evalTangentAt(SkScalar t) const1110 SkVector SkConic::evalTangentAt(SkScalar t) const {
1111     // The derivative equation returns a zero tangent vector when t is 0 or 1,
1112     // and the control point is equal to the end point.
1113     // In this case, use the conic endpoints to compute the tangent.
1114     if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1115         return fPts[2] - fPts[0];
1116     }
1117     Sk2s p0 = from_point(fPts[0]);
1118     Sk2s p1 = from_point(fPts[1]);
1119     Sk2s p2 = from_point(fPts[2]);
1120     Sk2s ww(fW);
1121 
1122     Sk2s p20 = p2 - p0;
1123     Sk2s p10 = p1 - p0;
1124 
1125     Sk2s C = ww * p10;
1126     Sk2s A = ww * p20 - p20;
1127     Sk2s B = p20 - C - C;
1128 
1129     return to_vector(SkQuadCoeff(A, B, C).eval(t));
1130 }
1131 
evalAt(SkScalar t,SkPoint * pt,SkVector * tangent) const1132 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1133     SkASSERT(t >= 0 && t <= SK_Scalar1);
1134 
1135     if (pt) {
1136         *pt = this->evalAt(t);
1137     }
1138     if (tangent) {
1139         *tangent = this->evalTangentAt(t);
1140     }
1141 }
1142 
subdivide_w_value(SkScalar w)1143 static SkScalar subdivide_w_value(SkScalar w) {
1144     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1145 }
1146 
chop(SkConic * SK_RESTRICT dst) const1147 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1148     Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1149     SkScalar newW = subdivide_w_value(fW);
1150 
1151     Sk2s p0 = from_point(fPts[0]);
1152     Sk2s p1 = from_point(fPts[1]);
1153     Sk2s p2 = from_point(fPts[2]);
1154     Sk2s ww(fW);
1155 
1156     Sk2s wp1 = ww * p1;
1157     Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
1158     SkPoint mPt = to_point(m);
1159     if (!mPt.isFinite()) {
1160         double w_d = fW;
1161         double w_2 = w_d * 2;
1162         double scale_half = 1 / (1 + w_d) * 0.5;
1163         mPt.fX = SkDoubleToScalar((fPts[0].fX + w_2 * fPts[1].fX + fPts[2].fX) * scale_half);
1164         mPt.fY = SkDoubleToScalar((fPts[0].fY + w_2 * fPts[1].fY + fPts[2].fY) * scale_half);
1165     }
1166     dst[0].fPts[0] = fPts[0];
1167     dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1168     dst[0].fPts[2] = dst[1].fPts[0] = mPt;
1169     dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1170     dst[1].fPts[2] = fPts[2];
1171 
1172     dst[0].fW = dst[1].fW = newW;
1173 }
1174 
1175 /*
1176  *  "High order approximation of conic sections by quadratic splines"
1177  *      by Michael Floater, 1993
1178  */
1179 #define AS_QUAD_ERROR_SETUP                                         \
1180     SkScalar a = fW - 1;                                            \
1181     SkScalar k = a / (4 * (2 + a));                                 \
1182     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1183     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1184 
computeAsQuadError(SkVector * err) const1185 void SkConic::computeAsQuadError(SkVector* err) const {
1186     AS_QUAD_ERROR_SETUP
1187     err->set(x, y);
1188 }
1189 
asQuadTol(SkScalar tol) const1190 bool SkConic::asQuadTol(SkScalar tol) const {
1191     AS_QUAD_ERROR_SETUP
1192     return (x * x + y * y) <= tol * tol;
1193 }
1194 
1195 // Limit the number of suggested quads to approximate a conic
1196 #define kMaxConicToQuadPOW2     5
1197 
computeQuadPOW2(SkScalar tol) const1198 int SkConic::computeQuadPOW2(SkScalar tol) const {
1199     if (tol < 0 || !SkScalarIsFinite(tol) || !SkPointPriv::AreFinite(fPts, 3)) {
1200         return 0;
1201     }
1202 
1203     AS_QUAD_ERROR_SETUP
1204 
1205     SkScalar error = SkScalarSqrt(x * x + y * y);
1206     int pow2;
1207     for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1208         if (error <= tol) {
1209             break;
1210         }
1211         error *= 0.25f;
1212     }
1213     // float version -- using ceil gives the same results as the above.
1214     if (false) {
1215         SkScalar err = SkScalarSqrt(x * x + y * y);
1216         if (err <= tol) {
1217             return 0;
1218         }
1219         SkScalar tol2 = tol * tol;
1220         if (tol2 == 0) {
1221             return kMaxConicToQuadPOW2;
1222         }
1223         SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1224         int altPow2 = SkScalarCeilToInt(fpow2);
1225         if (altPow2 != pow2) {
1226             SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1227         }
1228         pow2 = altPow2;
1229     }
1230     return pow2;
1231 }
1232 
1233 // This was originally developed and tested for pathops: see SkOpTypes.h
1234 // returns true if (a <= b <= c) || (a >= b >= c)
between(SkScalar a,SkScalar b,SkScalar c)1235 static bool between(SkScalar a, SkScalar b, SkScalar c) {
1236     return (a - b) * (c - b) <= 0;
1237 }
1238 
subdivide(const SkConic & src,SkPoint pts[],int level)1239 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1240     SkASSERT(level >= 0);
1241 
1242     if (0 == level) {
1243         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1244         return pts + 2;
1245     } else {
1246         SkConic dst[2];
1247         src.chop(dst);
1248         const SkScalar startY = src.fPts[0].fY;
1249         SkScalar endY = src.fPts[2].fY;
1250         if (between(startY, src.fPts[1].fY, endY)) {
1251             // If the input is monotonic and the output is not, the scan converter hangs.
1252             // Ensure that the chopped conics maintain their y-order.
1253             SkScalar midY = dst[0].fPts[2].fY;
1254             if (!between(startY, midY, endY)) {
1255                 // If the computed midpoint is outside the ends, move it to the closer one.
1256                 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
1257                 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
1258             }
1259             if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
1260                 // If the 1st control is not between the start and end, put it at the start.
1261                 // This also reduces the quad to a line.
1262                 dst[0].fPts[1].fY = startY;
1263             }
1264             if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
1265                 // If the 2nd control is not between the start and end, put it at the end.
1266                 // This also reduces the quad to a line.
1267                 dst[1].fPts[1].fY = endY;
1268             }
1269             // Verify that all five points are in order.
1270             SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
1271             SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
1272             SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
1273         }
1274         --level;
1275         pts = subdivide(dst[0], pts, level);
1276         return subdivide(dst[1], pts, level);
1277     }
1278 }
1279 
chopIntoQuadsPOW2(SkPoint pts[],int pow2) const1280 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1281     SkASSERT(pow2 >= 0);
1282     *pts = fPts[0];
1283     SkDEBUGCODE(SkPoint* endPts);
1284     if (pow2 == kMaxConicToQuadPOW2) {  // If an extreme weight generates many quads ...
1285         SkConic dst[2];
1286         this->chop(dst);
1287         // check to see if the first chop generates a pair of lines
1288         if (SkPointPriv::EqualsWithinTolerance(dst[0].fPts[1], dst[0].fPts[2]) &&
1289                 SkPointPriv::EqualsWithinTolerance(dst[1].fPts[0], dst[1].fPts[1])) {
1290             pts[1] = pts[2] = pts[3] = dst[0].fPts[1];  // set ctrl == end to make lines
1291             pts[4] = dst[1].fPts[2];
1292             pow2 = 1;
1293             SkDEBUGCODE(endPts = &pts[5]);
1294             goto commonFinitePtCheck;
1295         }
1296     }
1297     SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
1298 commonFinitePtCheck:
1299     const int quadCount = 1 << pow2;
1300     const int ptCount = 2 * quadCount + 1;
1301     SkASSERT(endPts - pts == ptCount);
1302     if (!SkPointPriv::AreFinite(pts, ptCount)) {
1303         // if we generated a non-finite, pin ourselves to the middle of the hull,
1304         // as our first and last are already on the first/last pts of the hull.
1305         for (int i = 1; i < ptCount - 1; ++i) {
1306             pts[i] = fPts[1];
1307         }
1308     }
1309     return 1 << pow2;
1310 }
1311 
findXExtrema(SkScalar * t) const1312 bool SkConic::findXExtrema(SkScalar* t) const {
1313     return conic_find_extrema(&fPts[0].fX, fW, t);
1314 }
1315 
findYExtrema(SkScalar * t) const1316 bool SkConic::findYExtrema(SkScalar* t) const {
1317     return conic_find_extrema(&fPts[0].fY, fW, t);
1318 }
1319 
chopAtXExtrema(SkConic dst[2]) const1320 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1321     SkScalar t;
1322     if (this->findXExtrema(&t)) {
1323         if (!this->chopAt(t, dst)) {
1324             // if chop can't return finite values, don't chop
1325             return false;
1326         }
1327         // now clean-up the middle, since we know t was meant to be at
1328         // an X-extrema
1329         SkScalar value = dst[0].fPts[2].fX;
1330         dst[0].fPts[1].fX = value;
1331         dst[1].fPts[0].fX = value;
1332         dst[1].fPts[1].fX = value;
1333         return true;
1334     }
1335     return false;
1336 }
1337 
chopAtYExtrema(SkConic dst[2]) const1338 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1339     SkScalar t;
1340     if (this->findYExtrema(&t)) {
1341         if (!this->chopAt(t, dst)) {
1342             // if chop can't return finite values, don't chop
1343             return false;
1344         }
1345         // now clean-up the middle, since we know t was meant to be at
1346         // an Y-extrema
1347         SkScalar value = dst[0].fPts[2].fY;
1348         dst[0].fPts[1].fY = value;
1349         dst[1].fPts[0].fY = value;
1350         dst[1].fPts[1].fY = value;
1351         return true;
1352     }
1353     return false;
1354 }
1355 
computeTightBounds(SkRect * bounds) const1356 void SkConic::computeTightBounds(SkRect* bounds) const {
1357     SkPoint pts[4];
1358     pts[0] = fPts[0];
1359     pts[1] = fPts[2];
1360     int count = 2;
1361 
1362     SkScalar t;
1363     if (this->findXExtrema(&t)) {
1364         this->evalAt(t, &pts[count++]);
1365     }
1366     if (this->findYExtrema(&t)) {
1367         this->evalAt(t, &pts[count++]);
1368     }
1369     bounds->set(pts, count);
1370 }
1371 
computeFastBounds(SkRect * bounds) const1372 void SkConic::computeFastBounds(SkRect* bounds) const {
1373     bounds->set(fPts, 3);
1374 }
1375 
1376 #if 0  // unimplemented
1377 bool SkConic::findMaxCurvature(SkScalar* t) const {
1378     // TODO: Implement me
1379     return false;
1380 }
1381 #endif
1382 
TransformW(const SkPoint pts[],SkScalar w,const SkMatrix & matrix)1383 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w, const SkMatrix& matrix) {
1384     if (!matrix.hasPerspective()) {
1385         return w;
1386     }
1387 
1388     SkPoint3 src[3], dst[3];
1389 
1390     ratquad_mapTo3D(pts, w, src);
1391 
1392     matrix.mapHomogeneousPoints(dst, src, 3);
1393 
1394     // w' = sqrt(w1*w1/w0*w2)
1395     // use doubles temporarily, to handle small numer/denom
1396     double w0 = dst[0].fZ;
1397     double w1 = dst[1].fZ;
1398     double w2 = dst[2].fZ;
1399     return sk_double_to_float(sqrt(sk_ieee_double_divide(w1 * w1, w0 * w2)));
1400 }
1401 
BuildUnitArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkConic dst[kMaxConicsForArc])1402 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1403                           const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1404     // rotate by x,y so that uStart is (1.0)
1405     SkScalar x = SkPoint::DotProduct(uStart, uStop);
1406     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1407 
1408     SkScalar absY = SkScalarAbs(y);
1409 
1410     // check for (effectively) coincident vectors
1411     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1412     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1413     if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1414                                                  (y <= 0 && kCCW_SkRotationDirection == dir))) {
1415         return 0;
1416     }
1417 
1418     if (dir == kCCW_SkRotationDirection) {
1419         y = -y;
1420     }
1421 
1422     // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1423     //      0 == [0  .. 90)
1424     //      1 == [90 ..180)
1425     //      2 == [180..270)
1426     //      3 == [270..360)
1427     //
1428     int quadrant = 0;
1429     if (0 == y) {
1430         quadrant = 2;        // 180
1431         SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1432     } else if (0 == x) {
1433         SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1434         quadrant = y > 0 ? 1 : 3; // 90 : 270
1435     } else {
1436         if (y < 0) {
1437             quadrant += 2;
1438         }
1439         if ((x < 0) != (y < 0)) {
1440             quadrant += 1;
1441         }
1442     }
1443 
1444     const SkPoint quadrantPts[] = {
1445         { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1446     };
1447     const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1448 
1449     int conicCount = quadrant;
1450     for (int i = 0; i < conicCount; ++i) {
1451         dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1452     }
1453 
1454     // Now compute any remaing (sub-90-degree) arc for the last conic
1455     const SkPoint finalP = { x, y };
1456     const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
1457     const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1458     SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1459 
1460     if (dot < 1) {
1461         SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1462         // compute the bisector vector, and then rescale to be the off-curve point.
1463         // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1464         // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1465         // This is nice, since our computed weight is cos(theta/2) as well!
1466         //
1467         const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1468         offCurve.setLength(SkScalarInvert(cosThetaOver2));
1469         if (!SkPointPriv::EqualsWithinTolerance(lastQ, offCurve)) {
1470             dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1471             conicCount += 1;
1472         }
1473     }
1474 
1475     // now handle counter-clockwise and the initial unitStart rotation
1476     SkMatrix    matrix;
1477     matrix.setSinCos(uStart.fY, uStart.fX);
1478     if (dir == kCCW_SkRotationDirection) {
1479         matrix.preScale(SK_Scalar1, -SK_Scalar1);
1480     }
1481     if (userMatrix) {
1482         matrix.postConcat(*userMatrix);
1483     }
1484     for (int i = 0; i < conicCount; ++i) {
1485         matrix.mapPoints(dst[i].fPts, 3);
1486     }
1487     return conicCount;
1488 }
1489