• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright JS Foundation and other contributors, http://js.foundation
2  *
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  *
15  * This file is based on work under the following copyright and permission
16  * notice:
17  *
18  *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19  *
20  *     Developed at SunSoft, a Sun Microsystems, Inc. business.
21  *     Permission to use, copy, modify, and distribute this
22  *     software is freely granted, provided that this notice
23  *     is preserved.
24  *
25  *     @(#)e_log.c 1.3 95/01/18
26  */
27 
28 #include "jerry-libm-internal.h"
29 
30 /* log(x)
31  * Return the logrithm of x
32  *
33  * Method :
34  *   1. Argument Reduction: find k and f such that
35  *                      x = 2^k * (1+f),
36  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
37  *
38  *   2. Approximation of log(1+f).
39  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
40  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
41  *               = 2s + s*R
42  *      We use a special Reme algorithm on [0,0.1716] to generate
43  *      a polynomial of degree 14 to approximate R The maximum error
44  *      of this polynomial approximation is bounded by 2**-58.45. In
45  *      other words,
46  *                      2      4      6      8      10      12      14
47  *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
48  *      (the values of Lg1 to Lg7 are listed in the program)
49  *      and
50  *          |      2          14          |     -58.45
51  *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
52  *          |                             |
53  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
54  *      In order to guarantee error in log below 1ulp, we compute log
55  *      by
56  *              log(1+f) = f - s*(f - R)                (if f is not too large)
57  *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
58  *
59  *      3. Finally,  log(x) = k*ln2 + log(1+f).
60  *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
61  *         Here ln2 is split into two floating point number:
62  *                      ln2_hi + ln2_lo,
63  *         where n*ln2_hi is always exact for |n| < 2000.
64  *
65  * Special cases:
66  *      log(x) is NaN with signal if x < 0 (including -INF) ;
67  *      log(+INF) is +INF; log(0) is -INF with signal;
68  *      log(NaN) is that NaN with no signal.
69  *
70  * Accuracy:
71  *      according to an error analysis, the error is always less than
72  *      1 ulp (unit in the last place).
73  *
74  * Constants:
75  * The hexadecimal values are the intended ones for the following
76  * constants. The decimal values may be used, provided that the
77  * compiler will convert from decimal to binary accurately enough
78  * to produce the hexadecimal values shown.
79  */
80 
81 #define zero   0.0
82 #define ln2_hi 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
83 #define ln2_lo 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
84 #define two54  1.80143985094819840000e+16 /* 43500000 00000000 */
85 #define Lg1    6.666666666666735130e-01 /* 3FE55555 55555593 */
86 #define Lg2    3.999999999940941908e-01 /* 3FD99999 9997FA04 */
87 #define Lg3    2.857142874366239149e-01 /* 3FD24924 94229359 */
88 #define Lg4    2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */
89 #define Lg5    1.818357216161805012e-01 /* 3FC74664 96CB03DE */
90 #define Lg6    1.531383769920937332e-01 /* 3FC39A09 D078C69F */
91 #define Lg7    1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */
92 
93 double
log(double x)94 log (double x)
95 {
96   double hfsq, f, s, z, R, w, t1, t2, dk;
97   int k, hx, i, j;
98   unsigned lx;
99 
100   hx = __HI (x); /* high word of x */
101   lx = __LO (x); /* low  word of x */
102 
103   k = 0;
104   if (hx < 0x00100000) /* x < 2**-1022  */
105   {
106     if (((hx & 0x7fffffff) | lx) == 0) /* log(+-0) = -inf */
107     {
108       return -two54 / zero;
109     }
110     if (hx < 0) /* log(-#) = NaN */
111     {
112       return (x - x) / zero;
113     }
114     k -= 54;
115     x *= two54; /* subnormal number, scale up x */
116     hx = __HI (x); /* high word of x */
117   }
118   if (hx >= 0x7ff00000)
119   {
120     return x + x;
121   }
122   k += (hx >> 20) - 1023;
123   hx &= 0x000fffff;
124   i = (hx + 0x95f64) & 0x100000;
125 
126   double_accessor temp;
127   temp.dbl = x;
128   temp.as_int.hi = hx | (i ^ 0x3ff00000); /* normalize x or x / 2 */
129   k += (i >> 20);
130   f = temp.dbl - 1.0;
131 
132   if ((0x000fffff & (2 + hx)) < 3) /* |f| < 2**-20 */
133   {
134     if (f == zero)
135     {
136       if (k == 0)
137       {
138         return zero;
139       }
140       else
141       {
142         dk = (double) k;
143         return dk * ln2_hi + dk * ln2_lo;
144       }
145     }
146     R = f * f * (0.5 - 0.33333333333333333 * f);
147     if (k == 0)
148     {
149       return f - R;
150     }
151     else
152     {
153       dk = (double) k;
154       return dk * ln2_hi - ((R - dk * ln2_lo) - f);
155     }
156   }
157   s = f / (2.0 + f);
158   dk = (double) k;
159   z = s * s;
160   i = hx - 0x6147a;
161   w = z * z;
162   j = 0x6b851 - hx;
163   t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
164   t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
165   i |= j;
166   R = t2 + t1;
167   if (i > 0)
168   {
169     hfsq = 0.5 * f * f;
170     if (k == 0)
171     {
172       return f - (hfsq - s * (hfsq + R));
173     }
174     else
175     {
176       return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f);
177     }
178   }
179   else
180   {
181     if (k == 0)
182     {
183       return f - s * (f - R);
184     }
185     else
186     {
187       return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
188     }
189   }
190 } /* log */
191 
192 #undef zero
193 #undef ln2_hi
194 #undef ln2_lo
195 #undef two54
196 #undef Lg1
197 #undef Lg2
198 #undef Lg3
199 #undef Lg4
200 #undef Lg5
201 #undef Lg6
202 #undef Lg7
203