• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jdhuff.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8  * Copyright (C) 2018, Matthias Räncker.
9  * For conditions of distribution and use, see the accompanying README.ijg
10  * file.
11  *
12  * This file contains Huffman entropy decoding routines.
13  *
14  * Much of the complexity here has to do with supporting input suspension.
15  * If the data source module demands suspension, we want to be able to back
16  * up to the start of the current MCU.  To do this, we copy state variables
17  * into local working storage, and update them back to the permanent
18  * storage only upon successful completion of an MCU.
19  *
20  * NOTE: All referenced figures are from
21  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22  */
23 
24 #define JPEG_INTERNALS
25 #include "jinclude.h"
26 #include "jpeglib.h"
27 #include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28 #include "jpegcomp.h"
29 #include "jstdhuff.c"
30 
31 
32 /*
33  * Expanded entropy decoder object for Huffman decoding.
34  *
35  * The savable_state subrecord contains fields that change within an MCU,
36  * but must not be updated permanently until we complete the MCU.
37  */
38 
39 typedef struct {
40   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41 } savable_state;
42 
43 typedef struct {
44   struct jpeg_entropy_decoder pub; /* public fields */
45 
46   /* These fields are loaded into local variables at start of each MCU.
47    * In case of suspension, we exit WITHOUT updating them.
48    */
49   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50   savable_state saved;          /* Other state at start of MCU */
51 
52   /* These fields are NOT loaded into local working state. */
53   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54 
55   /* Pointers to derived tables (these workspaces have image lifespan) */
56   d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57   d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58 
59   /* Precalculated info set up by start_pass for use in decode_mcu: */
60 
61   /* Pointers to derived tables to be used for each block within an MCU */
62   d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63   d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64   /* Whether we care about the DC and AC coefficient values for each block */
65   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67 } huff_entropy_decoder;
68 
69 typedef huff_entropy_decoder *huff_entropy_ptr;
70 
71 
72 /*
73  * Initialize for a Huffman-compressed scan.
74  */
75 
76 METHODDEF(void)
start_pass_huff_decoder(j_decompress_ptr cinfo)77 start_pass_huff_decoder(j_decompress_ptr cinfo)
78 {
79   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80   int ci, blkn, dctbl, actbl;
81   d_derived_tbl **pdtbl;
82   jpeg_component_info *compptr;
83 
84   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85    * This ought to be an error condition, but we make it a warning because
86    * there are some baseline files out there with all zeroes in these bytes.
87    */
88   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89       cinfo->Ah != 0 || cinfo->Al != 0)
90     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91 
92   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93     compptr = cinfo->cur_comp_info[ci];
94     dctbl = compptr->dc_tbl_no;
95     actbl = compptr->ac_tbl_no;
96     /* Compute derived values for Huffman tables */
97     /* We may do this more than once for a table, but it's not expensive */
98     pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100     pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102     /* Initialize DC predictions to 0 */
103     entropy->saved.last_dc_val[ci] = 0;
104   }
105 
106   /* Precalculate decoding info for each block in an MCU of this scan */
107   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108     ci = cinfo->MCU_membership[blkn];
109     compptr = cinfo->cur_comp_info[ci];
110     /* Precalculate which table to use for each block */
111     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113     /* Decide whether we really care about the coefficient values */
114     if (compptr->component_needed) {
115       entropy->dc_needed[blkn] = TRUE;
116       /* we don't need the ACs if producing a 1/8th-size image */
117       entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118     } else {
119       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120     }
121   }
122 
123   /* Initialize bitread state variables */
124   entropy->bitstate.bits_left = 0;
125   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126   entropy->pub.insufficient_data = FALSE;
127 
128   /* Initialize restart counter */
129   entropy->restarts_to_go = cinfo->restart_interval;
130 }
131 
132 
133 /*
134  * Compute the derived values for a Huffman table.
135  * This routine also performs some validation checks on the table.
136  *
137  * Note this is also used by jdphuff.c.
138  */
139 
140 GLOBAL(void)
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo,boolean isDC,int tblno,d_derived_tbl ** pdtbl)141 jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142                         d_derived_tbl **pdtbl)
143 {
144   JHUFF_TBL *htbl;
145   d_derived_tbl *dtbl;
146   int p, i, l, si, numsymbols;
147   int lookbits, ctr;
148   char huffsize[257];
149   unsigned int huffcode[257];
150   unsigned int code;
151 
152   /* Note that huffsize[] and huffcode[] are filled in code-length order,
153    * paralleling the order of the symbols themselves in htbl->huffval[].
154    */
155 
156   /* Find the input Huffman table */
157   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159   htbl =
160     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161   if (htbl == NULL)
162     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163 
164   /* Allocate a workspace if we haven't already done so. */
165   if (*pdtbl == NULL)
166     *pdtbl = (d_derived_tbl *)
167       (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168                                   sizeof(d_derived_tbl));
169   dtbl = *pdtbl;
170   dtbl->pub = htbl;             /* fill in back link */
171 
172   /* Figure C.1: make table of Huffman code length for each symbol */
173 
174   p = 0;
175   for (l = 1; l <= 16; l++) {
176     i = (int)htbl->bits[l];
177     if (i < 0 || p + i > 256)   /* protect against table overrun */
178       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179     while (i--)
180       huffsize[p++] = (char)l;
181   }
182   huffsize[p] = 0;
183   numsymbols = p;
184 
185   /* Figure C.2: generate the codes themselves */
186   /* We also validate that the counts represent a legal Huffman code tree. */
187 
188   code = 0;
189   si = huffsize[0];
190   p = 0;
191   while (huffsize[p]) {
192     while (((int)huffsize[p]) == si) {
193       huffcode[p++] = code;
194       code++;
195     }
196     /* code is now 1 more than the last code used for codelength si; but
197      * it must still fit in si bits, since no code is allowed to be all ones.
198      */
199     if (((JLONG)code) >= (((JLONG)1) << si))
200       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201     code <<= 1;
202     si++;
203   }
204 
205   /* Figure F.15: generate decoding tables for bit-sequential decoding */
206 
207   p = 0;
208   for (l = 1; l <= 16; l++) {
209     if (htbl->bits[l]) {
210       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211        * minus the minimum code of length l
212        */
213       dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214       p += htbl->bits[l];
215       dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216     } else {
217       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218     }
219   }
220   dtbl->valoffset[17] = 0;
221   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222 
223   /* Compute lookahead tables to speed up decoding.
224    * First we set all the table entries to 0, indicating "too long";
225    * then we iterate through the Huffman codes that are short enough and
226    * fill in all the entries that correspond to bit sequences starting
227    * with that code.
228    */
229 
230   for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231     dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232 
233   p = 0;
234   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235     for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237       /* Generate left-justified code followed by all possible bit sequences */
238       lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239       for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240         dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241         lookbits++;
242       }
243     }
244   }
245 
246   /* Validate symbols as being reasonable.
247    * For AC tables, we make no check, but accept all byte values 0..255.
248    * For DC tables, we require the symbols to be in range 0..15.
249    * (Tighter bounds could be applied depending on the data depth and mode,
250    * but this is sufficient to ensure safe decoding.)
251    */
252   if (isDC) {
253     for (i = 0; i < numsymbols; i++) {
254       int sym = htbl->huffval[i];
255       if (sym < 0 || sym > 15)
256         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257     }
258   }
259 }
260 
261 
262 /*
263  * Out-of-line code for bit fetching (shared with jdphuff.c).
264  * See jdhuff.h for info about usage.
265  * Note: current values of get_buffer and bits_left are passed as parameters,
266  * but are returned in the corresponding fields of the state struct.
267  *
268  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269  * of get_buffer to be used.  (On machines with wider words, an even larger
270  * buffer could be used.)  However, on some machines 32-bit shifts are
271  * quite slow and take time proportional to the number of places shifted.
272  * (This is true with most PC compilers, for instance.)  In this case it may
273  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275  */
276 
277 #ifdef SLOW_SHIFT_32
278 #define MIN_GET_BITS  15        /* minimum allowable value */
279 #else
280 #define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281 #endif
282 
283 
284 GLOBAL(boolean)
jpeg_fill_bit_buffer(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,int nbits)285 jpeg_fill_bit_buffer(bitread_working_state *state,
286                      register bit_buf_type get_buffer, register int bits_left,
287                      int nbits)
288 /* Load up the bit buffer to a depth of at least nbits */
289 {
290   /* Copy heavily used state fields into locals (hopefully registers) */
291   register const JOCTET *next_input_byte = state->next_input_byte;
292   register size_t bytes_in_buffer = state->bytes_in_buffer;
293   j_decompress_ptr cinfo = state->cinfo;
294 
295   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296   /* (It is assumed that no request will be for more than that many bits.) */
297   /* We fail to do so only if we hit a marker or are forced to suspend. */
298 
299   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300     while (bits_left < MIN_GET_BITS) {
301       register int c;
302 
303       /* Attempt to read a byte */
304       if (bytes_in_buffer == 0) {
305         if (!(*cinfo->src->fill_input_buffer) (cinfo))
306           return FALSE;
307         next_input_byte = cinfo->src->next_input_byte;
308         bytes_in_buffer = cinfo->src->bytes_in_buffer;
309       }
310       bytes_in_buffer--;
311       c = *next_input_byte++;
312 
313       /* If it's 0xFF, check and discard stuffed zero byte */
314       if (c == 0xFF) {
315         /* Loop here to discard any padding FF's on terminating marker,
316          * so that we can save a valid unread_marker value.  NOTE: we will
317          * accept multiple FF's followed by a 0 as meaning a single FF data
318          * byte.  This data pattern is not valid according to the standard.
319          */
320         do {
321           if (bytes_in_buffer == 0) {
322             if (!(*cinfo->src->fill_input_buffer) (cinfo))
323               return FALSE;
324             next_input_byte = cinfo->src->next_input_byte;
325             bytes_in_buffer = cinfo->src->bytes_in_buffer;
326           }
327           bytes_in_buffer--;
328           c = *next_input_byte++;
329         } while (c == 0xFF);
330 
331         if (c == 0) {
332           /* Found FF/00, which represents an FF data byte */
333           c = 0xFF;
334         } else {
335           /* Oops, it's actually a marker indicating end of compressed data.
336            * Save the marker code for later use.
337            * Fine point: it might appear that we should save the marker into
338            * bitread working state, not straight into permanent state.  But
339            * once we have hit a marker, we cannot need to suspend within the
340            * current MCU, because we will read no more bytes from the data
341            * source.  So it is OK to update permanent state right away.
342            */
343           cinfo->unread_marker = c;
344           /* See if we need to insert some fake zero bits. */
345           goto no_more_bytes;
346         }
347       }
348 
349       /* OK, load c into get_buffer */
350       get_buffer = (get_buffer << 8) | c;
351       bits_left += 8;
352     } /* end while */
353   } else {
354 no_more_bytes:
355     /* We get here if we've read the marker that terminates the compressed
356      * data segment.  There should be enough bits in the buffer register
357      * to satisfy the request; if so, no problem.
358      */
359     if (nbits > bits_left) {
360       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361        * the data stream, so that we can produce some kind of image.
362        * We use a nonvolatile flag to ensure that only one warning message
363        * appears per data segment.
364        */
365       if (!cinfo->entropy->insufficient_data) {
366         WARNMS(cinfo, JWRN_HIT_MARKER);
367         cinfo->entropy->insufficient_data = TRUE;
368       }
369       /* Fill the buffer with zero bits */
370       get_buffer <<= MIN_GET_BITS - bits_left;
371       bits_left = MIN_GET_BITS;
372     }
373   }
374 
375   /* Unload the local registers */
376   state->next_input_byte = next_input_byte;
377   state->bytes_in_buffer = bytes_in_buffer;
378   state->get_buffer = get_buffer;
379   state->bits_left = bits_left;
380 
381   return TRUE;
382 }
383 
384 
385 /* Macro version of the above, which performs much better but does not
386    handle markers.  We have to hand off any blocks with markers to the
387    slower routines. */
388 
389 #define GET_BYTE { \
390   register int c0, c1; \
391   c0 = *buffer++; \
392   c1 = *buffer; \
393   /* Pre-execute most common case */ \
394   get_buffer = (get_buffer << 8) | c0; \
395   bits_left += 8; \
396   if (c0 == 0xFF) { \
397     /* Pre-execute case of FF/00, which represents an FF data byte */ \
398     buffer++; \
399     if (c1 != 0) { \
400       /* Oops, it's actually a marker indicating end of compressed data. */ \
401       cinfo->unread_marker = c1; \
402       /* Back out pre-execution and fill the buffer with zero bits */ \
403       buffer -= 2; \
404       get_buffer &= ~0xFF; \
405     } \
406   } \
407 }
408 
409 #if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410 
411 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
412 #define FILL_BIT_BUFFER_FAST \
413   if (bits_left <= 16) { \
414     GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415   }
416 
417 #else
418 
419 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
420 #define FILL_BIT_BUFFER_FAST \
421   if (bits_left <= 16) { \
422     GET_BYTE GET_BYTE \
423   }
424 
425 #endif
426 
427 
428 /*
429  * Out-of-line code for Huffman code decoding.
430  * See jdhuff.h for info about usage.
431  */
432 
433 GLOBAL(int)
jpeg_huff_decode(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,d_derived_tbl * htbl,int min_bits)434 jpeg_huff_decode(bitread_working_state *state,
435                  register bit_buf_type get_buffer, register int bits_left,
436                  d_derived_tbl *htbl, int min_bits)
437 {
438   register int l = min_bits;
439   register JLONG code;
440 
441   /* HUFF_DECODE has determined that the code is at least min_bits */
442   /* bits long, so fetch that many bits in one swoop. */
443 
444   CHECK_BIT_BUFFER(*state, l, return -1);
445   code = GET_BITS(l);
446 
447   /* Collect the rest of the Huffman code one bit at a time. */
448   /* This is per Figure F.16. */
449 
450   while (code > htbl->maxcode[l]) {
451     code <<= 1;
452     CHECK_BIT_BUFFER(*state, 1, return -1);
453     code |= GET_BITS(1);
454     l++;
455   }
456 
457   /* Unload the local registers */
458   state->get_buffer = get_buffer;
459   state->bits_left = bits_left;
460 
461   /* With garbage input we may reach the sentinel value l = 17. */
462 
463   if (l > 16) {
464     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465     return 0;                   /* fake a zero as the safest result */
466   }
467 
468   return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469 }
470 
471 
472 /*
473  * Figure F.12: extend sign bit.
474  * On some machines, a shift and add will be faster than a table lookup.
475  */
476 
477 #define AVOID_TABLES
478 #ifdef AVOID_TABLES
479 
480 #define NEG_1  ((unsigned int)-1)
481 #define HUFF_EXTEND(x, s) \
482   ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483 
484 #else
485 
486 #define HUFF_EXTEND(x, s) \
487   ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488 
489 static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490   0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491   0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492 };
493 
494 static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495   0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496   ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497   ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498   ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499 };
500 
501 #endif /* AVOID_TABLES */
502 
503 
504 /*
505  * Check for a restart marker & resynchronize decoder.
506  * Returns FALSE if must suspend.
507  */
508 
509 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)510 process_restart(j_decompress_ptr cinfo)
511 {
512   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513   int ci;
514 
515   /* Throw away any unused bits remaining in bit buffer; */
516   /* include any full bytes in next_marker's count of discarded bytes */
517   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518   entropy->bitstate.bits_left = 0;
519 
520   /* Advance past the RSTn marker */
521   if (!(*cinfo->marker->read_restart_marker) (cinfo))
522     return FALSE;
523 
524   /* Re-initialize DC predictions to 0 */
525   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526     entropy->saved.last_dc_val[ci] = 0;
527 
528   /* Reset restart counter */
529   entropy->restarts_to_go = cinfo->restart_interval;
530 
531   /* Reset out-of-data flag, unless read_restart_marker left us smack up
532    * against a marker.  In that case we will end up treating the next data
533    * segment as empty, and we can avoid producing bogus output pixels by
534    * leaving the flag set.
535    */
536   if (cinfo->unread_marker == 0)
537     entropy->pub.insufficient_data = FALSE;
538 
539   return TRUE;
540 }
541 
542 
543 #if defined(__has_feature)
544 #if __has_feature(undefined_behavior_sanitizer)
545 __attribute__((no_sanitize("signed-integer-overflow"),
546                no_sanitize("unsigned-integer-overflow")))
547 #endif
548 #endif
549 LOCAL(boolean)
decode_mcu_slow(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)550 decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551 {
552   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553   BITREAD_STATE_VARS;
554   int blkn;
555   savable_state state;
556   /* Outer loop handles each block in the MCU */
557 
558   /* Load up working state */
559   BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560   state = entropy->saved;
561 
562   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566     register int s, k, r;
567 
568     /* Decode a single block's worth of coefficients */
569 
570     /* Section F.2.2.1: decode the DC coefficient difference */
571     HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572     if (s) {
573       CHECK_BIT_BUFFER(br_state, s, return FALSE);
574       r = GET_BITS(s);
575       s = HUFF_EXTEND(r, s);
576     }
577 
578     if (entropy->dc_needed[blkn]) {
579       /* Convert DC difference to actual value, update last_dc_val */
580       int ci = cinfo->MCU_membership[blkn];
581       /* Certain malformed JPEG images produce repeated DC coefficient
582        * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583        * grow until it overflows or underflows a 32-bit signed integer.  This
584        * behavior is, to the best of our understanding, innocuous, and it is
585        * unclear how to work around it without potentially affecting
586        * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587        * overflow errors for this function and decode_mcu_fast().
588        */
589       s += state.last_dc_val[ci];
590       state.last_dc_val[ci] = s;
591       if (block) {
592         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593         (*block)[0] = (JCOEF)s;
594       }
595     }
596 
597     if (entropy->ac_needed[blkn] && block) {
598 
599       /* Section F.2.2.2: decode the AC coefficients */
600       /* Since zeroes are skipped, output area must be cleared beforehand */
601       for (k = 1; k < DCTSIZE2; k++) {
602         HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603 
604         r = s >> 4;
605         s &= 15;
606 
607         if (s) {
608           k += r;
609           CHECK_BIT_BUFFER(br_state, s, return FALSE);
610           r = GET_BITS(s);
611           s = HUFF_EXTEND(r, s);
612           /* Output coefficient in natural (dezigzagged) order.
613            * Note: the extra entries in jpeg_natural_order[] will save us
614            * if k >= DCTSIZE2, which could happen if the data is corrupted.
615            */
616           (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617         } else {
618           if (r != 15)
619             break;
620           k += 15;
621         }
622       }
623 
624     } else {
625 
626       /* Section F.2.2.2: decode the AC coefficients */
627       /* In this path we just discard the values */
628       for (k = 1; k < DCTSIZE2; k++) {
629         HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630 
631         r = s >> 4;
632         s &= 15;
633 
634         if (s) {
635           k += r;
636           CHECK_BIT_BUFFER(br_state, s, return FALSE);
637           DROP_BITS(s);
638         } else {
639           if (r != 15)
640             break;
641           k += 15;
642         }
643       }
644     }
645   }
646 
647   /* Completed MCU, so update state */
648   BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649   entropy->saved = state;
650   return TRUE;
651 }
652 
653 
654 #if defined(__has_feature)
655 #if __has_feature(undefined_behavior_sanitizer)
656 __attribute__((no_sanitize("signed-integer-overflow"),
657                no_sanitize("unsigned-integer-overflow")))
658 #endif
659 #endif
660 LOCAL(boolean)
decode_mcu_fast(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)661 decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662 {
663   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664   BITREAD_STATE_VARS;
665   JOCTET *buffer;
666   int blkn;
667   savable_state state;
668   /* Outer loop handles each block in the MCU */
669 
670   /* Load up working state */
671   BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672   buffer = (JOCTET *)br_state.next_input_byte;
673   state = entropy->saved;
674 
675   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679     register int s, k, r, l;
680 
681     HUFF_DECODE_FAST(s, l, dctbl);
682     if (s) {
683       FILL_BIT_BUFFER_FAST
684       r = GET_BITS(s);
685       s = HUFF_EXTEND(r, s);
686     }
687 
688     if (entropy->dc_needed[blkn]) {
689       int ci = cinfo->MCU_membership[blkn];
690       /* Refer to the comment in decode_mcu_slow() regarding the supression of
691        * a UBSan integer overflow error in this line of code.
692        */
693       s += state.last_dc_val[ci];
694       state.last_dc_val[ci] = s;
695       if (block)
696         (*block)[0] = (JCOEF)s;
697     }
698 
699     if (entropy->ac_needed[blkn] && block) {
700 
701       for (k = 1; k < DCTSIZE2; k++) {
702         HUFF_DECODE_FAST(s, l, actbl);
703         r = s >> 4;
704         s &= 15;
705 
706         if (s) {
707           k += r;
708           FILL_BIT_BUFFER_FAST
709           r = GET_BITS(s);
710           s = HUFF_EXTEND(r, s);
711           (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712         } else {
713           if (r != 15) break;
714           k += 15;
715         }
716       }
717 
718     } else {
719 
720       for (k = 1; k < DCTSIZE2; k++) {
721         HUFF_DECODE_FAST(s, l, actbl);
722         r = s >> 4;
723         s &= 15;
724 
725         if (s) {
726           k += r;
727           FILL_BIT_BUFFER_FAST
728           DROP_BITS(s);
729         } else {
730           if (r != 15) break;
731           k += 15;
732         }
733       }
734     }
735   }
736 
737   if (cinfo->unread_marker != 0) {
738     cinfo->unread_marker = 0;
739     return FALSE;
740   }
741 
742   br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743   br_state.next_input_byte = buffer;
744   BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745   entropy->saved = state;
746   return TRUE;
747 }
748 
749 
750 /*
751  * Decode and return one MCU's worth of Huffman-compressed coefficients.
752  * The coefficients are reordered from zigzag order into natural array order,
753  * but are not dequantized.
754  *
755  * The i'th block of the MCU is stored into the block pointed to by
756  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757  * (Wholesale zeroing is usually a little faster than retail...)
758  *
759  * Returns FALSE if data source requested suspension.  In that case no
760  * changes have been made to permanent state.  (Exception: some output
761  * coefficients may already have been assigned.  This is harmless for
762  * this module, since we'll just re-assign them on the next call.)
763  */
764 
765 #define BUFSIZE  (DCTSIZE2 * 8)
766 
767 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)768 decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769 {
770   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771   int usefast = 1;
772 
773   /* Process restart marker if needed; may have to suspend */
774   if (cinfo->restart_interval) {
775     if (entropy->restarts_to_go == 0)
776       if (!process_restart(cinfo))
777         return FALSE;
778     usefast = 0;
779   }
780 
781   if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782       cinfo->unread_marker != 0)
783     usefast = 0;
784 
785   /* If we've run out of data, just leave the MCU set to zeroes.
786    * This way, we return uniform gray for the remainder of the segment.
787    */
788   if (!entropy->pub.insufficient_data) {
789 
790     if (usefast) {
791       if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792     } else {
793 use_slow:
794       if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795     }
796 
797   }
798 
799   /* Account for restart interval (no-op if not using restarts) */
800   if (cinfo->restart_interval)
801     entropy->restarts_to_go--;
802 
803   return TRUE;
804 }
805 
806 
807 /*
808  * Module initialization routine for Huffman entropy decoding.
809  */
810 
811 GLOBAL(void)
jinit_huff_decoder(j_decompress_ptr cinfo)812 jinit_huff_decoder(j_decompress_ptr cinfo)
813 {
814   huff_entropy_ptr entropy;
815   int i;
816 
817   /* Motion JPEG frames typically do not include the Huffman tables if they
818      are the default tables.  Thus, if the tables are not set by the time
819      the Huffman decoder is initialized (usually within the body of
820      jpeg_start_decompress()), we set them to default values. */
821   std_huff_tables((j_common_ptr)cinfo);
822 
823   entropy = (huff_entropy_ptr)
824     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825                                 sizeof(huff_entropy_decoder));
826   cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827   entropy->pub.start_pass = start_pass_huff_decoder;
828   entropy->pub.decode_mcu = decode_mcu;
829 
830   /* Mark tables unallocated */
831   for (i = 0; i < NUM_HUFF_TBLS; i++) {
832     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833   }
834 }
835